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Student : Feng-Jang Hwang Advisor : Bertrand Miao-Tsong Lin
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National Chiao Tung University

Abstract

In machine or shop scheduling, sequences of jobs or operations indicate the order
of processing on machines while schedules explicitly specify the starting and
completion times of activities on specific machines. For some problems, determining
an optimal schedule from a given sequence may not be straightforward because
another decision such as batching, interleaving, or idle time insertion is needed for
optimality. In this study, three fixed-job-sequence problems are considered.

The first addressed problem is a two-stage assembly-type flowshop scheduling
problem with batching considerations subject to a fixed job sequence. The
assembly-type flowshop consists of m parallel dedicated machines at stage 1 and a
batch machine at stage 2. The objective is to minimize the total completion time. A
two-phase algorithm is developed to solve the studied problem in O(mn+n°) time,
where n is the number of jobs and m is the number of parallel dedicated machines
arranged at stage 1.

In the second problem, total completion time minimization in a two-stage
differentiation flowshop subject to fixed sequences of jobs per type is studied. The
two-stage differentiation flowshop comprises a stage-1 common machine and m
stage-2 parallel dedicated machines. The goal is to determine an optimal interleaved

processing sequence of all jobs at stage 1. This study presents an O(m*[T", n"*")

dynamic programming algorithm, where n; is the number of type-l jobs. The running
time is polynomial when m is constant.

In the third problem, the single-machine coupled-task scheduling, where the two
tasks of each job are separated by an exact delay, is investigated. The aim is to
schedule these coupled tasks to minimize the makespan subject to a given job
sequence. Several intriguing properties of the studied problem are introduced. While
the complexity status of the fixed-job-sequence problem remains open, an O(n%)
algorithm is proposed to construct a feasible schedule attaining the minimum
makespan for a given permutation of 2n tasks abiding by the fixed-job-sequence



constraint. Three polynomially solvable cases and a complexity graph of the
fixed-job-sequence problem are presented.

Keywords: Fixed-job-sequence problem; Assembly-type flowshop; Differentiation
flowshop; Coupled-task scheduling; Dynamic programming.
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Chapter 1

Introduction

1.1 Background

Scheduling is a process of decision making about how to allocate the limited resources such
as funds, raw materials, manpower, machines, and energy to the processing of projects
or jobs for single- or multi-objective optimization. From the practical point of view, ef-
ficient scheduling plays a pivotal role in manufacturing and service industries owing to
its indication of enterprise competitiveness. The application of scheduling can be found
in production, transportation, communication, information processing, etc. In academic
aspect, the theory of scheduling develops into a foundation of knowledge about mathemat-
ical models, combinatorial optimization, algorithmic methodologies, heuristic techniques
and simulation approaches. Based on computational complexity theory, one significant
branch in scheduling theory is devoted to investigating the efficient solvability of schedul-
ing problems and the computing efforts required by their solution techniques (Baker &
Trietsch, 2009). This research stream aims to explore whether the studied scheduling
problems are intractable and determine their complexity statuses. The well-developed
complexity hierarchies of scheduling problems can provide valuable information about
the direction of effective problem-solving approaches and make a substantial contribution

to industrial enterprises in real-world situations.



1.2 Motivation

Provided that a scheduling problem is proved to be intractable, i.e. NP-hard, it could be
tackled by several approaches. One might adopt meta-heuristic strategies to achieve satis-
factory near-optimal solutions in a reasonable time. Another might design approximation
algorithms or a polynomial time approximation scheme (PTAS) to guarantee provable so-
lution quality and run time bounds. A further approach is to investigate its various special
cases and determine their complexity statuses. For some NP-hard scheduling problems,
one of the special cases which are worthy of consideration could be the case with fixed
sequence(s) of jobs.

In machine or shop scheduling, sequences of jobs or operations indicate the order
of processing on machines while schedules explicitly specify the starting and completion
times of activities on specific machines. In some cases, schedules can be directly deter-
mined by sequences of jobs or operations on the machines involved in the problems. In
the other cases, extra information is needed to fully specify a schedule. The complicated
schedule structure where a permutation/sequence of jobs/operations does not imply a

schedule is paradigmatic of three major types of scheduling problems:

1. scheduling with batching;
2. scheduling with interleaving;

3. scheduling with inserted idle times.

In branch-and-bound, local search and meta-heuristic algorithms for tackling NP-hard
scheduling problems of these types, development of efficient procedures for computing the
incurred costs or objective values of complete or partial sequences of jobs is crucial to
the efficiency of the solution approaches. In other words, within the local search proce-
dure, the solution quality of candidate sequences of jobs needs to be assessed. Therefore,
efficient algorithms for the fixed-job-sequence problems, if exist, can facilitate the develop-
ment of meta-heuristics. Besides, the scheduling problems in which a specific optimal job
sequence is established analytically can be exactly regarded as fixed-job-sequence prob-

lems. In real-life industrial applications, job sequence(s) can be included in input instances
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since the fist-come-first-served (FCFS) principle is commonly regarded fair by customers.
Additionally, a pre-assigned sequence of jobs could be retained on one of the machines
in manufacturing process owing to technological or managerial decisions (Shafransky &
Strusevich, 1998). Justification of the assumption of fixed job sequences can also be found
in previous studies (Cheng et al., 2009, 2000b; Cheng & Wang, 1999; Herrmann & Lee,
1992; Hwang et al., 2010a; Kanet & Sridharan, 2000; Lin & Cheng, 2006, 2010; Lin et al.,
2007; Ng & Kovalyov, 2007). The results conveyed in these previous works indicate that
constructing optimal schedules from given job/operation sequences is not trivial for some

scheduling problems.

1.3 State of the Art

Although several studies relative to “fixed-job-sequence scheduling” can be found in liter-
atures, those results are not well emphasized, reviewed and categorized. The main reason
that this research theme is not well explored seems to be a great diversity of these existing
research results. Making a well-structured categorization for the research theme could be
beneficial for its development. In the dissertation, three categories of fixed-job-sequence
scheduling problems, including the problem of batching, the problem of interleaving, and
the problem of idle time insertion, are proposed. The state of the art in the three cate-
gories of problems are briefly described as follows.

Batching decisions for a fixed job sequence in a flowshop were studied by Cheng
et al. (2000b) and Ng & Kovalyov (2007) for makespan minimization, and by Hwang
et al. (2010a) for total completion time minimization. Considering the fabrication and
assembly of components in a two-machine flow shop, Cheng & Wang (1999) studied the
makespan minimization problem of batching the jobs sequenced according to Johnson’s
rule or the agreeable processing time condition. Lin et al. (2007) investigated optimal
batching of a fixed job sequence in a three-machine assembly-type flowshop for makespan
minimization. Lin & Cheng (2010) also considered the objective function of maximum
lateness, weighted number of tardy jobs or total weighted completion time for a fixed job

sequence with centralized or decentralized batching decisions in concurrent open shops.



The problem commonly arising in the fixed-job-sequence scheduling where there exist
several individual fixed job sequences or one job consists of several components is the
interleaving issue. The first situation can be found in the differentiation flowshop envi-
ronment. In a two-stage differentiation flowshop with a common machine at stage 1 and
two parallel dedicated machines at stage 2, optimal interleaving of two fixed sequences per
job type on the stage-1 machine was studied by Herrmann & Lee (1992) for the makespan
minimization, and by Cheng et al. (2009) for the minimization of total weighted machine
completion time. The second situation comes from the coupled-task scheduling (Shapiro,
1980), where the fixed-job-sequence problem could be worthwhile to investigate.

Scheduling with inserted idle times stems from just-in-time (JIT) production in which
a non-regular performance measure such as the earliness-tardiness criterion is consid-
ered (Kanet & Sridharan, 2000). Algorithms for machine idle time insertion in a fixed
job sequence, also called timing or timetabling algorithms (Hendel & Sourd, 2007), were
applied for single machine (Bauman & Jézefowska, 2006; Colina & Quinino, 2005; Davis &
Kanet, 1993; Garey et al., 1988; Pan & Shi, 2005; Sourd, 2005; Szwarc & Mukhopadhyay,
1995), parallel machines (Della Croce & Trubian, 2002) and flowshop (Hendel & Sourd,
2007). In addition to scheduling with non-regular objective functions, the problem of idle
time insertion also contains fixed-job-sequence scheduling with time-dependent process-
ing times. Optimally timing a fixed job sequence in a two-machine flowshop in which the
machine-2 processing time of each job depends on its waiting time between two machines
was considered by Lin & Cheng (2006) for the makespan minimization, and by Hwang et

al. (2010a) for the minimization of total completion time.

1.4 Research Issues

In this dissertation, three fixed-job-sequence problems are studied. The first addressed
issue is a two-stage assembly-type flowshop scheduling problem with batching considera-
tions subject to a fixed job sequence. There are m parallel dedicated machines arranged
at stage 1, and stage 2 is equipped with a batch machine. The objective is to minimize the

total completion time. In the second problem, total completion time minimization in a

4



two-stage differentiation flowshop subject to fixed sequences per job type is studied. The
two-stage differentiation flowshop consists of a stage-1 common machine and m stage-2
parallel dedicated machines. The goal is to determine an optimal interleaved process-
ing sequence of all jobs at stage 1. The third considered problem is the single-machine
coupled-task scheduling where each job has two tasks separated by an exact delay. The
objective is to schedule the tasks for makespan minimization subject to a given job se-
quence. The classification of the three studied problems is illustrated in Figure 1.1. With
the common consideration of the fixed-job-sequence constraint, the linkage between the

three distinctive studied problems is their affiliation to the same research theme.

Fixed-Job-Sequence
Scheduling Problems

Problems of
Interleaving

Problems of
Batching

The Two-Stage
Assembly-Type

The Two-Stage The Single-Machine
Differentiation Coupled-Task

FLowshop Batching Flowshop Problem Problem

Problem

Figure 1.1: Categorization of the three studied problems.

1.5 Outline

This dissertation is organized into five chapters.

Chapter 2 describes the two-stage assembly-type flowshop batching problem subject
to a fixed job sequence. After the general statements are given, a two-phase algorithm is
described. Then a summary is provided.

In Chapter 3, the two-stage differentiation flowshop problem with fixed sequences per

job type is introduced. The problem statements, the proposed dynamic programming



algorithm, and a summary are contained.

Chapter 4 considers the single-machine coupled-task problem with a fixed job sequence.
Several intriguing properties of the problem are introduced. Then a polynomial time
algorithm is presented to construct a schedule with the minimum makespan for a given
task sequence abiding by the fixed-job-sequence constraint. Three polynomially solvable
cases for the fixed-job-sequence problem are investigated and its complexity graph is given.

Concluding remarks are given in Chapter 5. This chapter presents some conclusions

of this study. Finally, several recommendations for further research are also offered.



Chapter 2

Two-Stage Assembly-Type Flowshop
Batch Scheduling

In this chapter, the minimization of total completion time in a two-stage assembly-type
flowshop with batching considerations subject to a fixed job sequence is addressed. The
goal is to obtain an optimal batching decision for the given job sequence at stage 2.
This study presents a two-phase algorithm, which is developed by coupling a problem-
transformation procedure with a dynamic program. The running time of the proposed
algorithm is O(mn + n®), where m is the number of parallel dedicated machines arranged
at stage 1 and n is the number of jobs.

The main contribution of the research is to demonstrate the polynomial solvability of
the performance measure of total completion time for the studied problem. Base upon the
proposed dynamic programming concept, the potential conflicts between the makespan
and the total completion time of the subschedule can be avoided. Our results are achieved
under the consideration of arbitrary m-machine case, and the proposed methodology can

be exploited for any specific machine configuration in the studied scheduling model.

2.1 Preliminaries

The scheduling model considered in this study is a two-stage assembly-type flowshop,

which is a generalization of Johnson’s two-machine flowshop. The typical example of



the assembly-type flowshop scheduling is automobile assembly, such as the fire engine
production (Lee et al., 1993). A fire engine comprises three major component parts, i.e.
the body, the chassis and the engine. These three parts are produced by three parallel
dedicated machines and then delivered to an assembly line for final assembly operations,
as illustrated in Figure 2.1. Consider a set of n jobs or orders to be processed in a
two-stage flowshop equipped with m + 1 machines. At stage 1, there are m parallel
dedicated machines which independently produce component parts for jobs. Then these
component parts are transferred to the stage-2 assembly line for assembly operation.
Each job consists of m + 1 specific operations to be executed respectively on the m
stage-1 parallel dedicated machines and the stage-2 assembly machine. At stage 2, the
assembly operations are processed in batches, and the batch availability sum-batch (or
sequential-batch) model with a non-anticipatory constant setup time is assumed. The
batch availability indicates that jobs of the same batch complete at the same time, when
processing of the latest job in this batch has been finished. In the sum-batch model, the
processing time of a batch is defined as the sum of the setup time and the processing
times of all jobs belonging to this batch. The non-anticipatory setup implies that a setup
can start only after all the component parts of the jobs in the same batch are transferred
to stage 2 and the stage-2 assembly machine is not occupied. We also assumed that
the centralized decision making policy is adopted. Namely, all the m parallel dedicated
machines comply with the sequencing and batching decisions determined by the assembly
organization. Accordingly, they begin their first operation processing simultaneously and
process the jobs consecutively without inserted idle times. Under the centralized decision
making policy, the fixed job sequence considered in this study is predetermined by the
assembly organization and followed by the m parallel dedicated machines. The objective
is to minimize the total completion time. Following Lin et al. (2007), this study denotes
the considered problem by (m + 1)MAF|mé — @, sum-batch, fized_seq| ) C;, where
(m 4+ 1)MAF stands for (m 4+ 1)-machine assembly flowshop, mdé — S for a two-stage
system with m stage-1 discrete processors and a stage-2 batch processor, sum-batch for

sum-batch model, and fixed_seq for fixed job sequence. Even for the base case m = 2, the



3MAF|26 — B, sum-batch| ) C; problem is strongly NP-hard since it is a generalization
of the strongly NP-hard problem F2|§ — (3, sum-batch| ) C;.

FEB FEEh ﬂ\ﬁ

Figure 2.1: Assembly operation for fire engine production.

Motivation for the studied problem comes from the supply chain management in which
the coordination of production scheduling between cooperative companies can be modelled
as an assembly-type production scheduling problem (Lin et al., 2007). The parallel dedi-
cated machines at stage 1 can be regarded as individual upstream suppliers which produce
component parts or materials for the downstream manufacturer. The downstream com-
pany works as the stage-2 assembly organization which performs its production in batches.
The studied scheduling model can be applied to the multi-product packing problem which
commonly exists in the snack-food industry (Portougal, 1997). Many snack-food manu-
facturing companies offer variety packs of several different flavors of snack products and
the content and size of the variety pack can be custom-made. Then the two-stage as-
sembly flowshop for the variety pack of m different flavors consists of m production lines
for different flavors of snack products at stage 1 and a batching machine for packing at
stage 2. Another similar application can be found in a multi-page invoice printing sys-
tem (Zhang et al., 2010). The production process between the page printing stage and the
invoice assembly stage in the simplified invoice production system can be regarded as the
assembly-type flowshop scheduling. For a three-page invoice, jobs are processed in three
parallel dedicated printing lines at stage 1 and then conveyed to the stage-2 assembly line
for invoice assembly.

Various models involving batching considerations have been proposed and investigated
in the scheduling literature. Allahverdi et al. (1999, 2008); Cheng et al. (2000a); Potts &

Kovalyov (2000) provided comprehensive surveys and reviews on this subject. Lee et al.
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(1992) proposed a so-called burn-in model for semiconductor manufacturing, describing
the processing time of a batch as the longest processing time of the jobs in the batch. This
batching with simultaneous job processing is known as max-batch (parallel-batch) type.
Following the sum-batch model, Cheng et al. (2000b) investigated a two-machine flowshop
batching model with both batch processors for makespan minimization. They presented
a strong NP-hardness proof, polynomial algorithms for several special cases, and some
heuristics. A similar model was considered by Glass et al. (2001), who assume that the
batch setup on machine 2 is anticipatory and that the setup time is machine-dependent.
The strong NP-hardness proof and a heuristic with a worst-case performance ratio of 4/3
were provided. Cheng & Wang (1998) studied the makespan minimization problem in
a two-machine flowshop comprising a discrete processor and a batch processor. In their
model, the jobs are processed individually on machine 1, and processed in batches on
machine 2. The authors proved ordinary NP-completeness of the problem and presented
algorithms for some polynomially solvable cases. Subsequently, a strong NP-hardness
result of the problem was proved by Lin & Cheng (2005). Problem (m + 1)MAF|md —
B|Crmax Was previously studied by Kovalyov et al. (2004), who investigated both the max-
batch and sum-batch scenarios. A heuristic algorithm and a performance ratio analysis
were presented. Lin et al. (2007) studied the 3MAF |25 — 3, sum-batch|Cyax problem
and proved its strong NP-hardness.

Potts & Kovalyov (2000) indicated that dynamic programming is utile for the single-
machine batching problems where the sequencing and batching decisions can be decoupled.
However, for shop models the fixed job sequence is necessary to design dynamic programs.
Considering a given job sequence in a two-machine flowshop with both batch processors,
Cheng et al. (2000b) developed an O(n?) algorithm to minimize the makespan. An O(n®)
algorithm was proposed by Hwang et al. (2010a) for the same machine setting with the
minimization of total completion time. For the makespan minimization, an O(n°™~7) dy-
namic programming algorithm for the generalized m-machine environment was presented
by Ng & Kovalyov (2007). For the fabrication and assembly scheduling in a two-machine

flow shop, each job consists of three components: a common component and a unique

10



component which are both executed on machine 1, and an assembly component which is
executed on machine 2 after the above two components are completed. Common com-
ponents of all jobs are executed in batches, each of which is preceded by the same setup
time. For the makespan minimization in the identical common component case, Cheng
& Wang (1999) proposed an O(n') algorithm to optimally batch the jobs sequenced ac-
cording to Johnson’s rule. For the constant assembly time case, another O(n?) algorithm
was developed for optimally batching the jobs sequenced according to the agreeable pro-
cessing time condition. For the performance measure of total completion time, Hwang et
al. (2010b) designed an O(n”) dynamic program for the general case. As for the assem-
bly flowshop batching problem, Lin et al. (2007) proposed an O(n?) dynamic program
for problem 3MAF|2§ — 3, sum-batch, fixed_seq|Cpax. A brief summary of complexity

results of related fixed-job-sequence flowshop batching problems is given in Table 2.1.

Table 2.1: Complexity results of related fixed-job-sequence flowshop batching problems.

Problem Complexity Reference
F2|sum-batch, fized_seq|Ciyax O(n®) Cheng et al. (2000b)
Fm|sum-batch, fized_seq|Ciax O(n®™=")  Ng & Kovalyov (2007)
F2|sum-batch, fixed_seq| ) C; O(n°) Hwang et al. (2010a)
F2|sum-batch, (c,u;,a;), fized_seq|Crax -~ O(n?) Cheng & Wang (1999)
F2|sum-batch, (¢, u;,a), fized_seq|Cpax  O(n?) Cheng & Wang (1999)

O(n")

O(n?)

F2|sum-batch, (cj, u;, a;), fized_seq| ) C; Hwang et al. (2010b)

3MAF|20 — B, sum-batch, fized_seq|Cupax Lin et al. (2007)

2.2 Problem Definition

In this section, the formal problem definition is provided for the base case m = 2. A
demonstration that the case with arbitrary m parallel dedicated machines can be easily
generalized by the formulation of the base case will be given in the next section.
Assume without loss of generality that a given sequence of jobs (1,2,...,n) is to be
processed in a two-stage assembly flowshop with two dedicated parallel machines, M, and
M,, at stage 1 and one assembly machine M, at stage 2. Each job j consists of three

operations to be processed on M,, M, and Ms, respectively. The corresponding processing

times are p,;, pp; and po;, respectively. Denote pq ;] = Z?L:Z Da,hs Pofizj] = Z?L:Z Db,

11



and po i) = Zi:l p2,n-  After both stage-1 operations of job j are completed, these
two produced component parts of job j are transferred to stage 2 for assembly. M,
processes the jobs in batches with a non-anticipatory constant setup time s. The k-th
batch formed in stage 2 is denoted by By. The objective is to optimally batch the given job
sequence for the minimization of total completion time. Consider the following instance for
illustration: (pa,1,p6.1,02,1) = (2,1,1), (Da,2, Pv,2, P22) = (1,3,3), (Pa3: Pb3:D2,3) = (4,2,2),
(Paas o4, P2.4) = (1,3,1), (Pas; D5, P25) = (2,2,2), (Pass Po6s P2s) = (5,3,3), and s = 1.
Assume that the batching decision is to group jobs {1,2} into By, jobs {3,4,5} into Bs,

and {6} into Bs. The obtained schedule is illustrated in Figure 2.2 and ) C; = 90.

M, | 1|2 3 4| s 6
M, 1] 2 3 4 5 6
B, B, B;
M, s|1 2 s| 3 |4 5 |s 6
‘ I I I I ‘ I I T T ‘ [l I I I ‘ I I I I ‘ 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2.2: Example schedule.

2.3 Two-Phase Algorithm

This section introduces a two-phase algorithm developed for the (m + 1)MAF|mé —
B, sum-batch, fized_seq| > C; problem. The first phase is a preprocessing procedure
utilized to transform the studied problem to a two-machine flowshop batching prob-
lem subject to a fixed job sequence. Notice that given the instance data, the sched-
ule of jobs at stage 1 can be settled in the studied problem. Then problem (m +
L)MAF|md — f, sum-batch, fived_seq| ) C; can be transformed to problem F2[§ —
B, sum-batch, fized_seq| > C; by mapping the stage-1 schedule of the original problem
to the stage-1 discrete processor in the transformed problem. Consider the case with
m = 2. As illustrated in Figure 2.3, the schedule of a dummy discrete processor M; can

be mapped from that of the two parallel dedicated machines M, and M, by setting the
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completion time of job j on M; as C); = max{pa,[lzj],pbﬂ:j]}. Then the studied problem
is transformed to a two-machine flowshop problem with a discrete processor M; at stage
1 and a batch machine M, at stage 2. If m is constant, then O(n) time is needed in the

first phase. For the general case of arbitrary m, the first phase requires O(mn) time.

M, 1 2 00O n-1 n
] I ]
1 1 :
M, |1 2 000 n-1 n |
[] 1 :
! : : : : Cl,j :max{pa{]:j]’pb.[lzj]}
| Y Y Y \'4 Y
0 Ci Ciz 3 Cin1 Cin

Figure 2.3: Mapping of the schedule of M, and M, to that of Mj.

In the second phase, problem F2|d — (3, sum-batch, fized_seq| ) C; is coped with by
a dynamic program. The difficulty in the design of a polynomial time dynamic program
arises from the potential conflicts between the makespan and the total completion time.
A subschedule of the first 7 jobs that minimizes the total completion time may have
a comparatively large makespan, which will worsen the total completion time of the
remaining n — j jobs. To resolve the problem, a dynamic program incorporating one
state variable to specify possible makespans can be developed. Nevertheless, the time
complexity of the dynamic program designed by this approach will be pseudo-polynomial
time. The technique devised in this study is to introduce a fixed number of jobs or
positional indices to specify makespans.

For a partial schedule, a maximal (by inclusion) sequence of stage-2 batches processed
consecutively without inserted idle times is denoted by a block. The last block of a
considered partial schedule is called critical block. A partial schedule of jobs 1,2,...,7 is

defined by a state (1,11, j, k), where
1) 7 and j are respectively the first and the last jobs of the critical block,
2) k is the number of batches in the critical block, and
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3) iy is the last job of the first batch in the critical block.

The structure of a partial schedule (i, i1, 7, k) is shown in Fig. 2.4. Notice that several
partial schedules can be associated with the same state. Let f(i,11, 7, k) denote the min-
imum total completion time in a partial schedule among those associated with the same
state (4,41, 7, k) for 1 <i <i; <j <nand P_jiw +1 <k < j—i;+1. The development of
the proposed dynamic program is based upon forward recursions by batches, i.e. the last
batch of the partial schedule is removed for each recursion. The dynamic programming

formulation is given in a pseudocode-like fashion.

Ml ] ]oeoe| eee eee e l-l [ |eee il e ]

| \ | ' ' N N \

| \ 1 1 1 A N \
[ \ [} [} [ N \ \
y y y y 'Y

M, S|1eeel|s|loee|l OOO |s|eee S|eee i-1| [s|ieeeii[sS{OOO|S|eee]
no idle time
with k batches

Figure 2.4: Illustration of a partial schedule (4,11, j, k).

Algorithm DP-Batch

Initialization:

For each feasible 7,11, 7, k satisfying 1 <1 <i; < j < n, P_%} +1<k<j—i;+1,

j(CLj + s —|—p27[1:j]), ifi=k=1and il = j;

00, otherwise.

f(i7i17j7 k) = {

Recursion:

f(i,i1, j, k) is determined by two disjoint cases: k = 1 (Figure 2.5) and k > 1 (Figure 2.6).

For each feasible 7,11, 7, k satisfying 2 <7 <, < j < n, f%} +1<k<j—i;+1do
Case k = 1 (also implying i; = j):

Set z = o0;

For each feasible ¢/, 4, k' satisfying 1 < ¢ <4} <i—1, fl_ﬁl_lw +1<k <i—i}do
If Cij— Cry > K's+ pajirioa
then temp = f(i',iy, i — 1L,K)+ (j —i+ 1)(Cy+s +p27[i;j});

else temp = o0;
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z = min{z, temp}.

fliyiy, j, k) = 2.

Case k > 1:

Set z = o0;

For each j' from i; +k—2up toj—1do
If Cj — Cri, < (B —=1)s 4 popijn

then temp = f(i,41,5 .k — 1)+ (j — j')(Cri, + ks + pai));

else temp = o0;
z = min{z, temp}.

fliyig, j, k) = 2.

Goal: Find min{f(i,i1,n,k) |1 <i<i; <n, [0 +1 <k <n—i + 1}

| To be removed i
My |1 |eee] oee i'eesli] i-1} i | e e |j| L forrecursion |
' \ ' \ rm—————— /
] \‘ ] \\ l‘ ]
IV VIV by 4 == -
Mz SlocoSooo OO0 Si’oooi{sooosoooi—l Sioooj
|

no idle time P k=1
with k' batches

Figure 2.5: Forward recursion of the case k = 1.

! To be removed

My |1]ees| cee eoe|i-l1|i|eesli eoe | jH][eee jMLf(j[{?C}{{Sjgf}m
' \ | ' 1 Sso S —————— /
| \ | ' [} ~ \
| \ [ | | ~ \
A\ 4 A\ 4 A4 Y A -= -
M2 S[loeeels|leee] OO O |s|eee S| eoe -1 sioooilsooos.ooj’sj'—i—]oooj
_______ 2

no idle time
with k& batches

Figure 2.6: Forward recursion of the case k > 1.

Algorithm DP-Batch consists of two cases: 1) For the case k = 1, there are O(n?) states
(i,7,7,1), each of which requires O(n?) operations; 2) For the case k > 1, there are O(n?)
states (7,11, 7, k), each of which needs O(n) operations. The Goal step requires O(n?)

comparisons, each of which takes constant time. Hence, the running time of algorithm
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DP-Batch is O(n®). Since the first and second phases respectively require O(mn) and

O(n®) times, the running time of the proposed two-phase algorithm is O(mn + n®).

Theorem 2.1. Problem (m+ 1)MAF|md — 3, sum-batch, fized_seq|) . C; can be solved

in O(mn + n®) time. O

Example. Consider the following instance with m = 2 and n = 4: (pa1,Pp1,P21) =

(27171)7 (pa,?;pb,27p2,2) = <1a37 3)7 (pa,Sapb,3>p2,3) = (47272)7 (pa,4:pb,47p2,4) = (17371)7

and s = 1. The two-phase algorithm is demonstrated as follows:

Phase 1. (Problem-transformation procedure)
Ci1 = max{2,1} = 2;
Cio=max{2+ 1,1+ 3} = 4;
Ciz=max{2+1+4,14+3+2} =7,

Cia=max{2+1+4+1,14+3+2+3}=09.

Phase 2. (Algorithm DP-Batch)

Initialization:
f(LL,L,)=1x(24+1+4+1)=
f(1,2,2,1) =2 x (4+1+4)=18;
f(1,3,3,1) =3 x (T+1+6) = 42;
f(1,4,4,1) =4 x(94+1+7) =68;

For other values of 4,11, j, k, we denote f(i,11,j,k) = 0.

Recursion:

f(2,2,2,1) = oc;

(2,2,3,2) = £(2,2,2,1) + (3—=2)(Ci2 + 1 X 1 + poag) =

f(2,2,4,2) = min{oo, f(2,2,3,1) + (4 = 3)(Cr2+ 2 x 1 4+ po o)) } = 00;
(2,2,4,3) = £(2,2,3,3) + (4 = 3)(Cr2 + 3 X 1 + pypg)) = 20
f(2,3,3,1) = f(1,1,1,1) + 3—=2+1)(7T+ 1+ 5) = 30;

f(2,3,4,2) = £(2,3,3,1) + (4 = 3)(T+2+6) =30+ 15 = 45;
f(2,4,4,1)=f(1,1,,1)+(4—2+1)(94+1+6) =4+ 48 = 52;
f(3,3,3,1) = o0;
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f(37 3747 2) = f(37 37 37 1) + (4 - 3)(01,3 +2x1 +p2,[3:4]) = OQ;
F(3,4,4,1) = min{f(1,1,2,2) + (4 = 3+ 1)(9 + 1+ 3),00, f(2,2,2,1) + (4 — 3+

min{ f(i,i1,4,k) |1 <i<iy <4,[E8]+1<k<4—4 +1}
=min{f(2,3,4,2), f(2,4,4,1)} = 45.
The optimal schedule (2,3,4,2) can be constructed by backtracking the recursion,

as demonstrated in Figure 2.7.

M, 1 2 3 4
M, |1 2 3 4
VIV B, wl Z;Z\\‘\ Bs
M, s |1 s 2 3 |s|4
‘ I I I ‘ T I I I ‘ I I I I ‘
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.7: Optimal schedule (2, 3,4, 2).

2.4 Summary

A two-stage assembly-type flowshop batching problem with a fixed job sequence has been
addressed in this study. For the minimization of total completion time, this study designed
an O(mn + n®)-time two-phase algorithm, where m is the number of parallel dedicated
machines arranged at stage 1 and n is the number of jobs. The running time will be O(n?)
if the number of dedicated machines m is not a part of the input. Besides, problem F2|§ —
B, sum-batch, fized_seq| > C; was also solved in O(n®) time in this study. Furthermore,
the developed algorithm can be easily generalized for the weighted counterparts.
Further study could be conducted on the max-batch model, i.e. (m + 1)MAF|méd —
B, mazx-batch, fixed_seq| ) C;. Other performance measures, such as the maximum late-

ness and the total tardiness could also be considered.
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Chapter 3

Two-Stage Differentiation Flowshop

Scheduling

This chapter addresses total completion time minimization in a two-stage differentiation
flowshop where the sequences of jobs per type are predetermined. The two-stage differen-
tiation flowshop consists of a stage-1 common machine and m stage-2 parallel dedicated
machines. The goal is to determine an optimal interleaved processing sequence of all
jobs at the first stage. This study presents an O(m?[[;~, n]"™") dynamic programming
algorithm, where n; is the number of type-/ jobs. The running time is polynomial when
m is constant.

The main research contribution is to investigate the performance merit of total com-
pletion time, which had not been considered in literatures for the studied problem. The
uniqueness of the proposed dynamic programming algorithm is the design of matrix state

variables. With the consideration of arbitrary m-machine case, the presented methodology

can be utilized for any specific machine configuration in the studied problem.

3.1 Problem Statements

This chapter considers a two-stage differentiation flowshop scheduling problem to mini-
mize the total completion time, subject to the condition that job sequences per type are

known a priori. The two-stage differentiation flowshop consists of a stage-1 common ma-
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chine My and m stage-2 parallel dedicated machines, M, ..., M,,. Jobs are categorized
into m types, and the number of type-/ jobs is n; for 1 <[ < m. All jobs are required to be
processed on machine M first, and then jobs of type [ proceed to dedicated machine M,
for their second-stage process. Since the processing sequence of each job type is given, the
goal is to find an interleaved processing sequence of all jobs on machine Mj so as to min-
imize the sum of job completion times at stage 2 of all jobs. The problem under study is
denoted by F(1,m)|fized_seq| > C;, where F'(1,m) stands for a two-stage differentiation
flow shop with m parallel dedicated machines at stage 2, fized_seq for fixed sequences of
jobs per type, and ) C; for the total completion time minimization criterion. To solve the
F(1,m)|fized_seq| Y C; problem optimally, this study presents a dynamic programming
algorithm with a running time that is polynomial when the number of dedicated machines
m is constant.

The studied problem is motivated by a production-and-painting system (Mosheiov &
Sarig, 2010). All products are manufactured by the stage-1 common machine. Then each
fabricated product is delivered to its dedicated machine for the specific color painting at
stage 2. A practical application is furniture manufacturing, such as chairs (Cheng et al.,
2009). At stage 1, the main body of the chair is produced by a common production line.
At stage 2, m types of head-supports or armrests are assembled on the main bodies by
m parallel dedicated machines. Another example is the pottery shaping (Cheng et al.,
2009), as illustrated in Figure 3.1. The main glazing process of potteries is performed on
a common machine at stage 1. To possess distinct appearances or figures, the potteries
need to be processed with different heating treatments, e.g. low-temperature firing and
high-temperature firing. Potteries with various features are made with different firing
processes on the corresponding dedicated machines at stage 2.

Herrmann & Lee (1992) first studied the F(1,2) model (two job types) and showed the
strong NP-hardness of three objectives, namely the makespan, the number of tardy jobs
and the total completion time. An interesting problem arising from the machine configu-
ration is to determine an optimal interleaved sequence on the stage-1 machine from fixed

sequences for the two types of jobs. This interleaving problem of makespan minimization

19



Figure 3.1: Configuration of pottery production.

was reduced to the problem of minimizing the maximum lateness, which can be solved by
Jackson’s earliest due date (EDD) first rule (Jackson, 1955) in O((ny + n2) log(ny + ns))
time. Kyparisis & Koulamas (2000) and Mosheiov & Yovel (2004) proposed polynomial
time algorithms for the F'(1,m) problem of makespan minimization subject to the block
assumption that jobs of the same type must be processed adjacently on the stage-1 ma-
chine. With the block assumption, Mosheiov & Sarig (2010) investigated the F(1,m)
model to minimize the weighted number of tardy jobs with a common due date and
proposed a pseudo-polynomial dynamic programming algorithm to establish the ordi-
nary NP-hardness. Cheng & Kovalyov (1998) considered the F'(1,2) model incorporat-
ing batching decisions on the common machine, where setup times occur whenever the
machine switches processing from a job of one type to a job of the other type. A poly-
nomial time dynamic programming algorithm for makespan minimization was presented.
Cheng et al. (2009) addressed a non-classical objective of minimizing the weighted sum
of stage-2 machine completion times, which is denoted by F(1,2)||[WMT. They proved
the strong NP-hardness and designed an O(n?®) time algorithm for the special case with
given sequences of both types of jobs. The solution approach developed by Herrmann &
Lee (1992) for problem F'(1,2)|fired_seq|Cax actually can be further extended for the
general problem F(1,m)|fized_seq|Cyax. A brief summary of complexity results of the

fixed-job-sequence differentiation flowshop problems is given in Table 3.1.

Table 3.1: Complexity results of fixed-job-sequence differentiation flowshop problems.

Problem Complexity Reference
F(1,2)[fized_seq|Cpax  O((n1 + n2)log(ny + n2)) Herrmann & Lee (1992)
F(1,m)|fized_-seq|Ciax O 2y milogd " m) §
F(1,2)|fized_seq] WMT O(n?) Cheng et al. (2009)

§ The result is derived from Herrmann & Lee (1992).
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To the best of our knowledge, the objective of total completion time minimization was
not previously addressed in the differentiation lowshop problems. Due to the equivalence
of F(1,1)|| > C; and the strong NP-hard F2|| ) C; problem, the F'(1,m)|| > C; problem
is also intractable. Investigating problem F'(1,m)|fized_seq| ) C; is thus appropriate.
The preliminary study suggests that even the F'(1,2)|fized_seq| > C; problem cannot be
solved using the approach developed for problem F(1,2)|fired_seq|Cpax (Herrmann &
Lee, 1992).

3.2 The Proposed Dynamic Program

Denote by J; = {Ji1,...,Jin} the set of type-l jobs, 1 <1 < m. Job J;; requires a
processing time p; ; and ¢; ; on machine M, and M, respectively. The processing sequence
of jobs per type is already predetermined. Assume without loss of generality that the fixed
sequence of type-l jobs is (Jj 1, J12; s Jim,)-

Let us first consider a special case where each type contains exactly one job, i.e. n; =1
for all types [. In this case, we denote p; and ¢; the processing times of the type-l job.

Consider a particular sequence o = (01,03, ...,0,). The completion time of the j-th job

J
is given by Zpai + ¢o,- The total completion time is thus given by
i=1

J m j

f: (Zpai +qaj) => > pa, +]Zj;qaj-

j=1 =1 j=1 i=1

The second term is fixed once the instance is given. Therefore, the problem is equivalent
to minimizing Z;n:l 5:1 Do;, Which can be solved in O(mlogm) time by the shortest
processing time (SPT) first rule using p;.

For the general case, this study proposes a dynamic programming algorithm in which
two matrices, A and B are designed. Define matrix Ajy,, = [a1,as,...,a,] with 0 <
a; < ny for 1 <1 < m, where the element q; is the number of the type-l job(s) in the
considered subschedule. Given A, the objective is to find the optimal interleaved se-

quence of subsequences (J11,..-,J1ay)s--s (mts---s Jma,)- I a given subschedule of
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this problem, the last job having an idle time on its machine at stage 2 inserted in prior
to its dedicated operation is called a critical job of its type. Matrix B,,«., is defined
with 0 < b, < a, for 1 < [, < m, where the element b;, is defined as the number
of the type-r job(s) arranged on machine M, before the stage-1 completion time of the
critical job of type [. A subschedule is associated with a state (k,A,B) subject to the
following conditions: (a) Subsequences (Ji1,...,J141)s--s (Jmi1s---, Jman) are consid-
ered; (b) Job Ji, is the last job on machine My and ax # 0; (c) Job Jiy,, is the critical
job of type [,1 < I < m, and its completion on machine M, is preceded by jobs of
U, -, Jrp s (d) If ap # 0, 1 < by < ag; otherwise by, = 0. As depicted in Fig-
ure 3.2, the configuration is aimed at determining the stage-2 completion time of the job
scheduled last on M,. With the parameter specifications, the completion time of job Jj 4,
is calculated as Cyq, = > 1, Z?irl;bkﬂéo pm-+2?ibk7k ¢k j- Consider an instance with m =
30 (pri,pr2spis) = (2,5,4), (1, @2, 13) = (8,4,7), (P21,P2.2, P23, P24) = (4,5,5,3),

(G2.1, 2.2, P23, @2,4) = (8,4,17,3), (p3.1,P32,P33) = (3,4,6), (g31,¢32,933) = (8,7,4). A
3 2 0

schedule of the state with k=2, A =[3,4,3], and B= |3 3 0] is shown in Figure 3.3,
3 3 1

and we have Cyy = 32°_, Z?i’q;bwo Prij 2 ey, G2 = 25 + 20 = 45.

M, ooo | i, ooo s, 000 | Jiy, ooo Jia
Y Y
M, | i, |
. "‘\‘
° ] 4 Y “
' : i ") L
M, coo iy 000 ia,
. no idle titne
M 4
A A 3 P A 3
M, 000 Jm!bm " ‘]m-bm mtl ©00 vaﬂ n
g—— no idle time

Figure 3.2: Configuration of state (k, A, B).

The corresponding recursive function fi(A,B),1 < k < m is defined as the minimum
total completion time among all schedules associated with the same state (k, A, B). From

the above definition, the recursive formulation of the proposed dynamic program is given
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MO Jl,l J2,1 ‘]1,2 J2,2 J1,3 J2,3 J3,1 J3,2 ‘]3,3 J2,4
Ml Jl,l Jl,2 J1,3
r A y kY L4
MZ J2,l J2.2 J2,3 J2,4
M3 J3,1 J3 2 J3 3

T T T [ v Tt T Tt [ T T T T [ T T T T [ T T T 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 3.3: Instance schedule of the state (2, A, B).

as follows. Note that given a matrix A, the range of possible vales of b, for 1 <[,r <m

can be obtained.

Algorithm DP-F1m

Initialization: For all k € {1,...,m}, all matrices A, and all matrices B,

0, if A and B both are zero matrices;

fk:(A7 B) = {

oo,  otherwise.

Recursion: For 1 < k£ < m, each matrix A satisfying 1 < ay < ng, and 0 < q; < n; for
1 <1 +# k <m, and each possible matrix B corresponding to A, perform the recursion by
removing the last job Jj 4, .

Define the updated matrix A" by letting aj, = ay — 1, and a; = q; for 1 <[ # k < m.
Case 1 (by = ax):

In this case, Ji,, is the critical job of its type. After each recursive call, the critical job
of type k needs to be updated. Construct the updated matrix B' by letting b, = by,
1 <1 # k <m and b, denote the number of the type-r job(s) arranged on machine M,
before the stage-1 completion time of the updated critical job of type k for 1 < r < m.
Subcase 1-1 (b = ap > 1):

Denote the set D = {[b} 1,0} 0,0 ] + 1 < by < bep,and 0 < by < by, for 1 <

r # k < m}. In this subcase, we have the k-th row of B, [0 1,0} 5,...,b; ] € D. The
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configuration of the subcase is presented in Figure 3.4.

m ar aj,
(A, B) = 1§Ilréi£;p{fl(A', B):>S Y > Y qk,j} 4 Choar
=1 j=bl, T 1t Far 7=bhe
Subcase 1-2 (b = ap = 1):
In this subcase, Jj 4, is the unique job of its type as well. After removing Jj, 4, for recursion,
there exists no critical job of type k, i.e. aj, = 0. By virtue of the aforementioned condition
(d), we have b}, = 0 for 1 < r < m. The configuration of the subcase is presented in

Figure 3.5.

fi(A.B) = min {f(A,B)} + i,

1<I<m

Case 2 (bry < ax):
For this case, J;,, is not the critical job of its type. As illustrated in Figure 3.6, we

simply remove J,,, in the recursion.
yAk

!
A

fi(AB) = min {AALB):Y" DT p < Y g+ Gy
T r=1 j=by r+1;by r #a;. J=brk

Goal: Let aq; = n; for 1 <1 < m. Find 11<111€1<n {fk(A, B):0<b, <n,and 1 < b; <

n; for 1 Sl,rgm,r%l}.

M, ooo | Jip,| ©o0o0 | s, 000y, ooo Jive =Jia,

M1 | J] M i To be removed |

| for recursion |

M; coo Jk,b;_k 0oo |Ji, Jk,bu, =Jia,
.

no idie time — T "T"T°T°77

A h. ¥ l“ i

Mm O O O Jm’h Jm Jm,b””"*'l o o O Jm!am

'm

no idle time

Figure 3.4: Recursion of the subcase by, = a; > 1.

As for the complexity of algorithm DP-F1m, the running times for Subcase 1-1, Sub-

case 1-2, Case 2, and the Goal phase are analyzed as follows. For Case 1, by, = a;, implies
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Figure 3.5: Recursion of the subcase by, = a, = 1.
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v 3 3

M, J 000 Jm‘hm 000 JM"
k— no idle time ——

Figure 3.6: Recursion of the case by, < ay.

that by, = a,, 1 <r < m. Hence, there are O(m [, n]") states, each of which takes
O(m %, n) time in Subcase 1-1. The running time is O(m?[[;~, n;"*!). In Subcase
1-2, ar = 1 implies that b, = 0, 1 <1 # k < m, and there are less than O(m [[,%, n]")
states, each of which takes O(m) time. The running time is thus O(m? [[%, nj*). In Case
2, the size of the state space is O(m[[,%, n}”“) and the computation required for each
state takes O(m) time. It results in a total running time of O(m? [, nj*™") for the Re-
cursion phase. When the Recursion phase is done, the Goal phase requires O(m [[;%, n]")
comparisons, each of which takes constant time. Therefore, the overall running time of

algorithm DP-F1m is O(m? [[~, n)"*"), which is polynomial when m is not a part of the

input. For the specific case of m = 2, the complexity is O(n3in3).

Theorem 3.1. Problem F(1,m)|fized_seq| Y C; can be solved in O(m?T[,~, n]"t") time,

where n; is the number of type-l jobs. [

Example. Consider the following instance with m =2, ny = 2 and ny = 2: (p11,p12) =

(2; 5)> (91,17(11,2) = (1,4)7 (p2,1,p2,2) = (4,3)7 and (92,17(12,2) = (3,2)‘ Algorithm DP-F1m
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is demonstrated as follows:

Initialization:

0 0 0 0
fl([070]’ [0 O]):f2<[070]7 [O 0]):07

For other values of k, A, B, we denote fi(A,B) = co.

Recursion:

(Dk=1,1<a; <2,ay =0:

10
fl([lvo}a _O 0_>_37
f1((2,0], ; g_>=oo;
e 2 oh = nol [} -
2k =2,a1=0,1<a, <2
0 0
f2([071}7 _O 1—):77
f2([0,2], 8 ?)Zfz([(),l],[ ) +9 = 16;
fQ([072L 8 Z)ZOO
(3)]€:1,a/1::176:1,2—1 / ]
A h=pdo | Vb=
4k =2,a1=1,a =1
10 10
fo([1, 1], | 1_)=f1([1,0], o 0_>+9:12’
(5)]€:1,(Z1:2,CL2—1
PRI A P
1 ) 7_0 1_ = 0Q,
fl([27”7 j (1]—):00‘
2 1] 1 1]
fi([2,1], o 1_)—f1([1,1], 01 ) + 15 = 29;
2 1] 10
fi((2,1], i 1_):f2([1,1], - )+ 15 = 27.
(6)k=1,a1 = 1,a9 = 2
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fl([L 2}7

fl([lv 2}7
(k=204

f2([1> 2}7

f2([17 2}7

f2([17 2}7

fQ([lv 2}7
(8)k =2,a4

f2([27 ”7

f2([27 1}7
9k =104

fl([27 2}7

fl([Qv 2}7

fl([zv 2}7

fl([Qv 2}7

fl([zv 2}7

fi(12,2];

fl([zv 2}7

fl([2> 2}7

fl([27 2}7

I 1T 1T 1T 1 I LI 1

T 1T 1
o oo =

IP—‘ [\D“H HII)—‘ P—‘“l—‘ H”o P—‘IIO [\3”0 M”O HIIO P—‘IH

2—):f2([0,2], [O 0 )+ 10 = 26;
1: 1

1,0y =2

?_>=f2<[1,11, [1 NIESIEE
g_):oo;

[ RTOCRA b [T
2,05 =1

?—):oo;

?:)Zfl([Q,O],[ 8)-{—14:28.
2,05 = 2

i)=00;

2_)=00;

f:>:f1<[1,21, [1 +is—as
zz)ZOO;

i)ZOO;

;:)—OO;

?:):oo;

2_)200;

?:)—fz([lﬂl [1 NIRSCEEE
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f2.2 | §>=f2<[1,21,[ 15—
(10)k = 2,@1:: 2,:a2 =2

fa(l2.2), ; (1’_>=oo;

fa(12.2], ; f—>=f2<[2,11,[ 10—

fal2.2), ; 2:>=oo;

fal2.2], j gz>=oo;

fa12.2], 1 f:>=oo;

fal2.2], f i):oo;

fal2.2], (1) 1:>=oo;

fa[2.2], (2) i):oo;

fal2.2], ; ;_>:oo;

fal2.2], z ; )= A(2.1), [ )+ 16 = 43;

Goal:
121]322{fk([2,2],8) 0 < b, <2andl < by < 2forl < Lr < 20 # z} -
2 2
2,2], =41.
f(12,2] L 1])
: 2 2 :
The optimal schedule (1, [2,2], ) 1] ) can be constructed by backtracking the re-

cursion, as demonstrated in Figure 3.7.
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Figure 3.7: Optimal schedule for the example.

3.3 Summary

A two-stage differentiation lowshop scheduling problem with predetermined job sequences
per type has been addressed in this study. For the minimization of the total completion
time, we designed an O(m? [, nj**!)-time dynamic programming algorithm, where n; is
the number of type-l jobs. The running time is polynomial when the number of dedicated
machines m is constant.

Two directions are suggested for further extensions of our research. First, since the
stage-1 machine is common for all product types, in the aspect of mass customization the
processing is mostly carried out in batches. It would be interesting to consider different
batching modes, including max-batch (parallel-batch) and sum-batch (sequential-batch)
on the common machine. Second, we can consider the reverse model that has two dedi-
cated machines at stage 1 and a common machine at stage 2. The differentiation flowshop

and its reverse model are equivalent for makespan minimization, but exhibit different

characteristics for the total completion time minimization.
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Chapter 4

Single-Machine Coupled-Task

Scheduling

In this chapter, single-machine coupled-task scheduling where each job has two tasks
separated by an exact delay is investigated. The objective of this study is to schedule
the tasks to minimize the makespan subject to a given job sequence. Several intriguing
properties of the fixed-job-sequence problem under study are introduced. While the com-
plexity status of the studied problem remains open, an O(n?) algorithm is proposed to
construct a feasible schedule attaining the minimum makespan for a given permutation
of 2n tasks abiding by the fixed-job-sequence constraint. Several polynomially solvable
cases of the fixed-job-sequence problem are investigated and a complexity graph of the
problem is presented.

The contribution of the study is the consideration of the fixed-job-sequence assump-
tion, which could be suitable in practical applications, for the studied problem. Although
the considered problem is not solved, a polynomial time algorithm is presented for its
subproblem in which a task sequence abiding by the fixed-job-sequence constraint is pre-
determined. Furthermore, three polynomially solvable cases for the studied problem are

demonstrated.
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4.1 General Statements

This study considers the problem of scheduling coupled tasks with exact delays, i.e. each
job consists of two distinct tasks which are separated by a fixed time interval. Coupled-
task scheduling, also known as the two-phased job scheduling problem (Sherali & Smith,
2005), primarily stems from operations scheduling of pulsed radar systems (Orman et al.,
1998). A pulsed radar system is utilized to detect and locate objects. The typical example
is that the airplanes approaching a congested airport are tracked for the terminal-area air
traffic management. A radar transmits a pulse which will reflect back after reaching an
object, and then receives the echo signal after a specified time period. To track an aircraft,
a radar system repeats the transmission and reception operations. The pulse transmis-
sion and reception cannot occur at the same time. Neither can any two transmission or
reception operations overlap. For multi-target tracking, the pulse transmission and recep-
tion operations, which are regarded as coupled tasks, shall be scheduled to minimize the
idle time for the radar system. Another application is the command-and-control system
in the parallel computing environment (Sherali & Smith, 2005). To solve a large-scale
computational problem, a command unit divides the problem into several subproblems
and distributes them to several client units for numerical calculations. Each client unit
send back its calculation result to the command unit after the computation. The aim is
to obtain the solution of the original problem which is a combination of the solutions of
those subproblems in the minimum computational time.

Assume a set of n two-phased jobs {Ji, Ja, ..., J,} to be processed on a single machine.
Each two-phased job J; consists of two separate tasks that require processing times a;
and b;, respectively. If no confusion would arise, a; and b; are also used to denote
the two tasks of job J;. Under the constraint of exact delays, the starting time of the
second task b; of any job J; must be exactly [; time units after the completion of its
first task a;. The problem, denoted as 1|Coup-Task|Cpax by Orman & Potts (1997)
and 1lexact [;|Cpax by Ageev & Kononov (2006), is to find a feasible schedule such that
the makespan is minimized. This problem is known to be strongly NP-hard even in

some special cases (Orman & Potts, 1997). This study aims to investigate coupled-
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task scheduling subject to a given job sequence. Herewith, given a fixed job sequence,
if job J; precedes job J; in the specified sequence, then it is required to schedule the
tasks such that a; precedes a;, and b; precedes b;. We denote the studied problem by
1(aj,1;,b5), f75|Cmax, where “fjs” in the second field dictates the assumption of a fixed
job sequence.

The first study on coupled-task scheduling with exact delays could be due to Shapiro
(1980), who established that problem 1|(a;,l;, b;)|Cmax is equivalent to the NP-hard job-
shop problem J2|no-wait, My non-bott|Cax, where “no-wait” and “Ms non-bott” respec-
tively refer to the no-wait constraint and the infinite processing capacity of the second
machine. Three polynomial-bounded heuristics for numerical experiments were also pre-
sented. Orman & Potts (1997) investigated the complexity of several special cases of
problem 1|(a;,l;,b;)|Crax. All the analyzed cases are classified to be strongly NP-hard
or polynomially solvable, except for the case with identical coupled tasks, 1|(a, [, b)|Crax-
Ahr et al. (2004) proposed a dynamic programming algorithm based on a directed graph
model for this special case with time complexity O(nr?), where r < */a. The algorithm
is linear in the number of jobs only for fixed [ and is not polynomial in the input size
which is measured by loga + logl 4 log b + log n. Then Baptiste (2010) showed that the
case can be solved in O(logn) when a,l,b are fixed. To the best of our knowledge, the
complexity status of identical coupled-task scheduling problem remains open. Blazewicz
et al. (2010) studied problem 1|(1,1,1), prec|Cpax with strict precedence constraints and
proved its NP-hardness in the strong sense. They also proposed an O(n) algorithm for
the special case where [ = 2 and an in-tree or out-tree precedence constraints graph are
assumed. Ageev & Kononov (2006) designed a 3.5-approximation algorithms for problem
1|(aj,1j,b;)|Cinax and proved that a (2-¢) approximation algorithm does not exist unless
P=NP. Yu et al. (2004) implied the strong NP-hardness of problem 1|(1,/;,1)|Ciax from
the strong NP-hardness proof of problem F2|(1,[;,1)|Cypax. Ageev & Baburin (2007) de-
signed a 7/4-approximation algorithm for problem 1|(1,[;,1)|Ciax. Subsequently, Békési
et al. (2009) improved the analysis of Ageev & Baburin (2007) to derive a better lower

bound of the approximation ratio. Furthermore, Li & Zhao (2007) designed approximation
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algorithms for some NP-hard special cases, and developed a tabu search meta-heuristic
for the general case.

To the best of our knowledge, the constraint of a fixed job sequence was not previously
addressed in the coupled-task problem. For the problem under study, a predetermined
job sequence defines a sequence of the first tasks of all jobs and the same sequence of
the second tasks of all jobs. To construct a feasible schedule subject to a fixed job
sequence, the decision is how to interleave the task-1 sequence and the task-2 sequence.
Due to the strong NP-hardness of problem 1|(aj,l;,b;)|Ciax, it is appropriate to study
the 1|(a;,(;,0;), fj5|Cmax problem. Besides the assumption of a fixed job sequence could
also be suitable for the practical application. A naval warship is commonly equipped with
a radar with the capacities of surveillance, tracking and weapon guidance, which is called
a multifunction radar (Orman et al., 1998). A multifunction radar system simultaneously
performs the missions of surveillance, tracking and weapon guidance. There exists a well-
defined priority structure with these three missions. The mission of weapon guidance
retains the highest priority. For the mission of tracking, an inbound target has higher
priority than the object moving away. If a precedence chain of the targets of all missions
is predetermined, then the assumption of a fixed job sequence in coupled-task scheduling
could be reasonable.

In the following section, several intriguing properties of the fixed-job-sequence problem
are expounded in detail. While the complexity status of the considered problem remains
open, a polynomial-time algorithm is presented to construct a schedule with the minimum
makespan for a given task sequence abiding by the fixed-job- sequence constraint. Three
polynomially solvable cases of the fixed-job-sequence problem are also investigated and a

complexity graph of the problem is presented.

4.2 Problem Description

Without loss of generality, this study assumes that the fixed job sequence is (Jy, Ja, ..., Jp,).
Subject to the constraint of a fixed job sequence and the definition of coupled tasks,

we thus have a directed ladder graph of precedence relationship with two long chains,
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ap — ag = -+ — ap and by — by = -+ — b,, and n single-arc chains, a; — b; for all
j € N,,, as illustrated in Figure 4.1. As a permutation of {a;|j € N,} U{b;|j € N,,}, a
task sequence is called plausible if it adheres to the precedence constraints given by the
ladder graph. An initial idea about how to generate a plausible task sequence is given
first. By virtue of the diagonal-avoiding paths (Davis, 2006), the following observation is

presented.

Observation 4.1. Given n jobs, all plausible task sequences can be generated by the
diagonal-avoiding paths along the edges of a grid with n x n square cells. Fach diagonal-

avoiding path corresponds to exactly one plausible task sequence.

A diagonal-avoiding path is the one which leads from the top-left corner O to the
bottom-right corner D without backtracking, and stays on or above the diagonal without
passing below it. As shown in Figure 4.2 for the case n = 5, the illustrated diagonal-
avoiding path corresponds to the plausible task sequence (a1, as, by, ag, ba, bs, a4, as, by, bs).
The number of diagonal-avoiding paths in a grid of n x n squares is given by the well-

known Catalan number, C, = -1 (*"), which grows in the order of Q(4"/ Vn3).

n+1\n

Figure 4.1: A directed ladder graph of precedence relationship for the
1{(aj,1j,b;), fj$|Ciax problem.

0% 4 a a; a

S

A >

S

.

4 >

O & & &

Figure 4.2: The diagonal-avoiding path corresponding to the plausible task sequence
(alaa’27b17a37b27b37a/47a’57b47b5>‘
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Previous experience suggests that scheduling problems with fixed job sequences could
be resolved by dynamic programs for the objective of makespan or total completion time
minimization (Cheng et al., 2000b; Hwang et al., 2010a; Ng & Kovalyov, 2007). However,
it seems not to be the case for problem 1|(a;,l;,b;), fj$|Crmax. The intrigue could be

ascribed to the following two causes:

1. Although the job sequence is pre-assigned, the studied problem remains a problem

1 2n

of sequencing in which there are =5 (n) plausible task sequences for n jobs.

2. The time lag [; between tasks a; and b; can accommodate the processing of not only
tasks {aj11,a;42,...,a,} but also tasks {b,be,...,b;_1}. Due to the distinctive
scheduling pattern, the principle of optimality fails. Thus, it becomes not clear
whether a dynamic programming approach will work. Take for example the following
instance with five jobs: (ay,l,b1) = (3,9,1), (as,l2,b2) = (1,10,2), (as,l3,b3) =
(2,11,3), (a4,l4,bs) = (3,10,2), (as,ls,bs) = (3,9,1). The optimal schedule for the
fixed-job-sequence problem is demonstrated in Figure 4.3. In the optimal schedule,
the subschedule of the subsequence (.J;, J2) attains the time span equal to 18. But
the time span of the shortest subschedule constructed with the subsequence (.Jy, Js)
is 16. Thus, a subschedule within the shortest complete schedule is not necessarily

a shortest subschedule.

aq ar| as ay b] ds b2 b3 b4 @

1 \ \ 1 I \ 1 \ 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 4.3: Optimal schedule of the instance with (ai,l1,01) = (3,9,1), (ag,ls,be) =
(17 1072>7 (a3al37b3) = (27 1173>7 (a47l47b4) = (37 1072)7 (a’57l57b5) = (3797 1)

Owing to the intrigue of the fixed-job-sequence problem, we turn to aim at scheduling
a given plausible task sequence in the next section. The notation that will be used later

is summarized as follows.

Notation:

7 : a given plausible sequence of 2n tasks, T = (01, 09, ..., 09,);
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On

Xr

Oy

Or

T

Q.

Yro

. the task assigned to the h-th position in m;
. a schedule of 2n tasks;
: the starting time of job J; in a schedule o;
: the completion time of job J; in a schedule o;
: the number of segments in the task sequence (ay,as,...,a,);
. the sequence of subscripts (1,2,...,n);
. a k-subsequence partition of X corresponding to the partition of (ay,as,...,a,);
. the r-th subsequence in X, X, = (n,_1 +1,...,n,), where ng = 0 and ny = n;
. the set of elements in sequence X,;
. the length of X, | X,| =n, —n,_1;
: the immediate predecessor of a,, . in m;
. the r-th fundamental cluster in 7, m, = (@p, 41, -Gy bpp 415+ - 0n,);
: The subsequence obtained by eliminating the jobs of {J;|j € X, U--- U X3}
from ;
: the schedule of 7, constructed by the developed recursive formula;
. a feasible schedule whose permutation of tasks agrees with 7,;
the time span from the start of a,,_,,1 to the completion of a,,,;
the idle time between a,, and b, _,41;
: a subschedule constructed by arranging the first r subschedules, o4, ..., 0,;
: the idle time between b,, and b, . in subschedule S,;
: the time span from the start of b,/ to the completion of b, ;
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i the input task of Checking routine in Algorithm Plausible-Task-Sequence;
v : the task preceded by p in x7i1;

v : the corresponding first or second counterpart task of v.

4.3 Scheduling of Plausible Task Sequences

Discussion in the previous section introduces the notion of n+r1 (2:) plausible task sequence
for a given job sequence. This section is dedicated to the development of a polynomial
time algorithm for determining the makespan of a plausible task sequence, if it is feasible.
Given a plausible task sequence, it could be non-trivial to determine its feasibility and a
schedule with the minimum makespan, if feasible.

Denote a plausible task sequence by m = (01,09, . . ., 09,), where o}, stands for the task
assigned to the h-th position in 7. If no confusion would arise, hereafter this study simply
mentions sequences to indicate plausible task sequences. Notice that in any schedule
considered hereafter, the constraint of exact delays is satisfied. In other words, the interval
between each pair of coupled tasks a; and b; in any schedule is exactly [;, j € N,,. Denote
the starting time and the completion time of job J; in a schedule o by s;(0) and C;(o),
respectively. It is obvious that C;(o) = s;(0) + a; + {; + b;. A schedule ¢ is feasible if
and only if at any time, at most one task is processed in o, i.e. no overlap between tasks
occurs. Sequence 7 is called feasible if and only if there exists a feasible schedule whose
permutation of tasks agrees with 7, i.e. a schedule in which the processing of any task oy,
for h € Ny,,_; completes earlier than or exactly at the starting time of task op1.

Consider first how to determine the feasibility of a given sequence 7. For any feasible
sequence 7, the constraint of exact delays implies that the interval induced by the exact
delay [; of any job J; must accommodate all the tasks arranged between a; and b;. Namely,
the following condition is necessary for the feasibility of a sequence 7.

Condition (C): For any job J; with o, = a; and o, = b;, the inequality Zf;zﬂpoh <
must hold, where p,, is the processing length of task op,.

Note that condition (C) is not sufficient to make sequence 7 feasible. Consider the
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following instance: (a1,l;,b1) = (1,2,1), (az,ls,ba) = (2,5,1), (as,l3,b3) = (2,4,2),
(ag,14,by) = (2,3,1). Condition (C) holds for sequence m = (aq, as, by, as, ay, ba, b3, by).
However, 7 is infeasible since an overlap between by and by (Figure 4.4(a)) or between ay

and by (Figure 4.4(b)) is inevitable in any attempt to create a feasible schedule of 7.

a | o] (8]

a a, b as b, bs a a, |b as b, bs
I I I I I I I I 1

01 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) (b)

Figure 4.4: An inevitable task overlap happens (a) between bz and by or (b) between ay
and bg.

Condition (C) only partially verifies the feasibility of m because in a schedule whether
an idle time or overlap exists between o, and o, cannot be detected before assigning
each task a starting time. Therefore, we turn to develop a procedure for constructing
a schedule for sequence 7 and prove that the feasibility of © can be determined by the
constructed schedule. If sequence 7 is indeed feasible, it can be further proved that the
constructed schedule attains the minimum makespan among those of feasible schedules.

Consider the subsequences of a particular permutation pattern

(ail,ai1+1, Ce ,ai2,bil,bil+1, e 7bi2),

1 < iy < iy < n, where all its first (respectively, second) tasks are consecutively se-
quenced without any second (respectively, first) task inserted. A given sequence 7 is
derived by merging several subsequences of this pattern. Consider the sequence m =
(a1, a9, by, a3, aq, as, ba, b, ag, by, az, as, bs, be, by, bg) as an example. As shown in Figure 4.5,
sequence 7 can be regarded as the outcome of four interleaved subsequences (a;, as, by, bs),
(a3, a4, as, bz, by, bs), (ag, be) and (ar, ag, bz, bg). Such particular subsequences are regarded
as the maximal fundamental clusters of a given sequence m and these subsequences are
scheduled individually. Scheduling these fundamental clusters is the first attempt to ex-

amine the feasibility of sequence 7. Later it will be elucidated that the infeasibility of
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any fundamental cluster leads to the infeasibility of 7. If all these fundamental clusters

are feasible, then we proceed to schedule 7 by interleaving those obtained subschedules.

= (ai, a, by, as, as, as, by, bs, as, ba, as, as, bs, be, b, bx)

(5611 a2§b1 1 by)

bocccce

Figure 4.5: Four subsequences of a particular pattern in sequence .

Now some notations for collating fundamental clusters from sequence 7 are defined.
Given a sequence m, a segment is defined as a maximal, by inclusion, subsequence of tasks
{a;} without inserted tasks {b;}. Assume that the task sequence (ay,as,...,a,) is parti-
tioned into k disjoint segments for 1 < k < n. To facilitate discussion, we denote by X the
sequence of subscripts (1,2, ...,n)and by H a k-subsequence partition of X corresponding
to the k-segment partition of (ay, ag, . .., a,). Partitioning X into k disjoint subsequences,
we have H = { X1, Xy, ..., Xy} and X = X1®Xo®- - @ Xy, where X, denotes the r-th sub-
sequence in X and & is a sequence concatenation operator. For r € Ni, the last element
of subsequence X, is denoted by n,, and we have X, = (n,_1 + 1,...,n,), where ng =0
and ny = n. Denote by )~(T the set of elements in sequence X,.. |X,| = n, —n,_; indicates
the length of X,.. Denote by b,/ the immediate predecessor of a,, . in 7 for r € N;y_; and
nl_,+1<n! <n,, where ny = 0. Notice that any single task a,,_,+1 = ay,., which is sur-
rounded by two tasks b,, and b,y 4y in 7, forms a segment, i.e. | X,-| = 1. According to
the assumption of k£ segments, sequence 7 consists of £ fundamental clusters in which the
r-th one contains jobs {J; |j € X,}, r € Ni. Denote the r-th fundamental cluster in 7 by
Tr = (Qnp 415+ Qnpy by 415 -+ - b, ), 7 € N The subsequence obtained by eliminating

the jobs of {J;|j € X, U -U)E'k} from 7 is denoted by x,, r € N,_;. Note that x, = 7.

To construct a schedule of fundamental cluster 7,., we proposes a recursive procedure

to augment the subschedule job by job, instead of task by task. Namely, coupled tasks a;
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and b; are simultaneously added into the subschedule of jobs (J,, 41, Jn, 142, -5 Jj-1),
j € {ny,-1+2,...,n,}, in each recursion step. In the proposed procedure, job J; is
interleaved with job .J;_; by conjoining two first tasks a;_; and a; (Figure 4.6(a)) or two
second tasks b;_; and b; (Figure 4.6(b)). The obtained schedule is denoted by o,, and

the recursive formula for the job starting times is given as follows:

0, J=n1+1L
Sj(gr) - ijl(O'r) + aj—1 (41)
+max{0,l;_1 + bj—1 —a; — l;}, n.1+2<j<n,.

(ON0) a;.

T I

N
7l
a; (O} bj_] bj (O} aj., a; (O} bj.] bj
I | I

lia [
(a) (b)
Figure 4.6: J; is interleaved with .J;_; by conjoining (a) a,;_; and a; or (b) b;_; and b;.
Eq. (4.1) implies that in o, task a; (respectively, b;) is started later than or exactly at
the completion of a;_y (respectively, b;_1). Schedule o, is a feasible schedule of m, if task

a,, completes earlier than or exactly at the start of task b, _,,+;. The following lemma

(o

gives structural properties of fundamental clusters.

Lemma 4.1. Given a subsequence m, = (@n, 415+ 0npybn, 415+, bn,), the following
three properties hold: (i) If sp, (0y)+an, > Cn,_111(04) —bn,_,+1, then m, is infeasible. (ii)
If sp. (o) + an, < C,,_141(04) — b, 41, then m, is feasible and o, is a feasible schedule
attaining the minimum makespan among those of all feasible schedules of .. (iii) The

feasibility and the shortest schedule, if feasible, can be determined in O(|X,|) time.

Proof. 1f s, (o) +an, > Cpn._+1(0,)—bp, 41, then task a,, completes later than the start
of task b, ,4+1 in 0,. The only possible way to find a feasible schedule of 7, is to process
ay, earlier or process by, ,+1 later. In schedule o, task a; starts exactly at the completion
of a;_q, or task b; starts exactly at the completion of b;_1, j € {n,_1+2,...,n,}. Starting

Jn, earlier or J, 4 later finally results in the shifting of the whole schedule, which is
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futile. Therefore, a feasible schedule of m, does not exist and , is infeasible. Property

(1) is proved.

Property (i) is concerned about the feasibility of 7, and the optimality of o,. As
for the feasibility of =, the inequality s, (0,) + an, < Ch,._,+1(0,) — by, 41 indicates
that task a,, completes earlier than or exactly at the starting time of task b, _,4+1 in o,.
Therefore, a feasible schedule of 7,, i.e. o,, exists and , is feasible. Next, we will show
that schedule o, attains the minimum makespan for sequence 7, i.e. C,, (0,) < Cy, (0x.),
where o, denotes any feasible schedule of 7. This inequality can be proved by induction

on n,. We derive the following recursive equation for C;(o,) by adapting Eq. (4.1).

Ap,_+1 + lnr_lJrl + bnr_1+17 ] =Nyp_1+ 17
Ci(o,) =1 Cj_1(0,) +b; (4.2)
+maX{0, a; + lj I lj—l - bj—1}7 ne—1+2<j<n,.

Consider the induction base n, = n,_1+2 and m. = (an, 41, @np_ 42,00,y +1, 0ny_y42)-
If ap, 42+ ln 142 > Ly, 41 + b, 41, then it is impossible to interleave J, .1 and
Jn,_1+2 With a completion time less than a,, 11 + @n,_, 12 + ln, 12 + bn._ 42, On the
other hand, if a,,, 12+ ln, ;42 <l _,+1 + by, 41, then there exists no feasible schedule
or, where J, .o completes earlier than a,, ,+1 + ln,_,4+1 + bn,_, 41 + bn._,12. Since
Cry_142(07) =,y y1+ 12+ 1o 1o+ bn g for an, o +1n, 10 >y 41+, 41
and Cp,_,42(07) = @n, 41+ lnp_y11 +bnp i1+ bn o for an, o+ 1o, 10 <l 1 +
bn, ,+1 from Eq. (4.2), we have the induction base C,,, ,1+2(0,) < C,_,12(0n,).

Assume, as the induction hypothesis, that the inequality holds for n, =i > n,_1 + 2,
ie. Ci(o.) < Ci(og,). If ajy1 + lix1 > 1; + b;, then the minimum time span from the
completion time of J; to that of J; 1 is a;41 + liy1 +bi01 —1; — b;. In case of a; 41 + 141 <
l; + b;, the minimum aforementioned time span is b; 1. By Eq. (4.2), we have C;4(0,) =
Ci(o,) + big1 + iy + ligr — I; — b for ajpq + lipy > 1; + b; and Ciyq(0,) = Ci(o,) + bip
for a;y 1 + i1 < I; + b;. Hence, Ci11(0,) is less than or equal to the completion time of
Ji+1 in any feasible schedule o, i.e. Cii1(0,) < Ciy1(0y,). By induction, the inequality

Ch,(0,) < Oy, (0x,) is established. The proof of property (ii) is done.
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For schedule 7., the feasibility and the shortest schedule, if feasible, can be obtained
by the values of s;(o,) for j = n,_1 +1,...,n,. By virtue of Eq. (4.1), the calculation
involves |X,| — 1 iterations, each of which requires constant time. Therefore, either a
feasible schedule with the minimum makespan or the infeasibility of sequence 7, can be

determined in O(]|X,|) time. O

The infeasibility of fundamental cluster 7, implies that there exists no feasible sub-
schedule whose task permutation agrees with subsequence 7,, r € Nj. Since the sub-
sequence m, is a part of complete sequence 7, no feasible complete schedule of 7 exists

either. We therefore have the following property.

Property 4.1. If any fundamental cluster m,., r € Ny, is infeasible, then sequence m is

infeasible.

Before presenting a step-wise procedure for determining the infeasibility or the shortest
feasible schedule of sequence 7, we define some notations. For each schedule o, (r € Ny),
denote by «, the time span from the start of a,,_, 41 to the completion of a,,, and v, the
idle time between a,, and b, _,11. S, denotes a subschedule constructed by arranging
the first r subschedules, o4, ..., .. Note that S; is the constructed complete schedule of
sequence 7, which consists of k clusters. Denote by ! the idle time between by and by 4q

in subschedule S,, and by 37 the time span from the start of b,/ 1 to the completion of by, .

Algorithm Plausible-Task-Sequence

Step 1. Scan 7 to obtain the partition H = (Xj,..., X)) and keep track of n,, n, and

xr foreach r=1,... . k— 1.

Step 2. Schedule 7, by Eq. (4.1) for each r = 1,... k. If any m, is infeasible, then go

to Step 7. Otherwise, set I =1 and S; = 0.

Step 3. If n} = n;, then merge S; with o741 by appending a,,+; to the end of b,, and

go to Step 6.
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Step 4. If B} > az1 A% < 7741, then go to Step 4(a). If 8 < aryi AB? < 7141, then
go to Step 4(b). If 8] > a1 A 87 > 7141, then go to Step 4(c). Otherwise, go

to Step 4(d).

Step 4(a). If 3} + 87 < ary1 + V141, then merge S with o741 by appending a,,,; to
the end of b,,. Otherwise, merge S; with o711 by appending by, 41 to the end of by, .

Go to Step 6.

Step 4(b). Shift bw 11 (and a1 will be simultaneously shifted, i.e. shift J, 1) to
extend (1 such that 8} = ayy; and merge S; with o741 by appending a,,,; to the

end of b,,. Go to Step 5.

Step 4(c). Shift J,; 41 to shorten 57 such that 57 = ;1 and merge Sy with o7,y by

appending b,,,+1 to the end of b,,. Go to Step 5.

Step 4(d). If 8} + 5?2 < ayy1 + V41, then shift Jur 41 to extend 3} such that 8} = a4
and merge S; with o711 by appending a,, 41 to the end of b,/ . Otherwise, shift J,» 1
to shorten 3% such that 8? = 4741 and merge S; with o7, by appending b,,.; to

the end of b,,. Go to Step 5.

Step 5. Call Checking routine with input b,/ ;. Call Checking routine with input

Step 6. Let S;.; be the obtained schedule. If I = k£ — 1, then output the schedule S7;

and stop. Otherwise, set I = I + 1 and go to Step 3.
Step 7. Report the infeasibility of 7 and stop.

Checking routine. Denote the input task as pu, the task preceded by p in x;11 as v, and
the corresponding first or second counterpart task of v as v. lf v = by Vay,,+1Vby, 41,

then go to Final checking. Otherwise, go to Checking and shifting.

Final checking: If the completion of y is later than the start of v, then go to Step 7.

Otherwise, terminate the subroutine.
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Checking and shifting: If the completion of u is later than the start of v, shift v
(and 7 will be simultaneously shifted) such that the task v starts at exactly the
completion of u, call Checking routine with input v, and call again Checking

routine with input 7. Otherwise, terminate the subroutine.

Example. Consider an instance of eight jobs with the following parameters (Figure 4.7(a)):
(a1,11,b1) = (3,4,1), (az,ls,bo) = (1,7,2), (as,l3,b3) = (1,8,1), (a4,ls,bs) = (1,10,1),
(as,l5,b5) = (2,9,1), (ag,ls, bs) = (1,4, 3), (a7,l7,b7) = (1,5,2), (as, ls,bs) = (1,6,1). The
sequence T = (aq, as, by, as, ay, as,be, bs, ag, by, az, as, bs, bg, bz, bg) is given. Constructing a
feasible schedule o, attaining the minimum makespan with Algorithm Plausible-Task-

Sequence is demonstrated step by step as follows:

Step 1. We obtain k£ = 4, X; = (1,2), Xo = (3,4,5), X3 = (6), Xy = (7,8),
ny = 27 ng = 5a ng = 67 nll S 17 n/Q 2 3a ng = 47 X1 = (a17a2ab17b2)7 X2 =

((ll,ag, b17a37a47a57 b2)b37b47b5>7 a‘nd X3 = <a1;a2a b17a37a47a57 b2)b37a67b47 b57b6)'

Step 2. Feasible subschedules oy, 09,03 and o4 are derived as shown in Figure 4.7(b).

Set I =1 and S; = o0y.
Step 3. Since nf =1 < ny =2, we go to Step 4.
Step 4. Since 8] =3 < ay =4 and i =2 < vy, = 5, we go to Step 4(b).

Step 4(b). Shift J, such that 8§ = as = 4 and merge S; with oy by appending a3 to

the end of b;. Go to Step 5.
Step 5. Call Checking routine with input by. Call Checking routine with input as.
Checking routine. We have = by, v = b3, and 7 = a3. Go to Final checking.

Final checking: Task by completes (at 14) earlier than the start of b3 (at 17). Terminate

the subroutine.
Checking routine. We have = as, v = by, and 7 = a;. Go to Final checking.

Final checking: Task as completes (at 5) earlier than the start of b, (at 7). Terminate

the subroutine.
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Step 6. The obtained schedule is Sy (Figure 4.8). Set I = 2 and go to Step 3.
Step 3. Since nj, =3 < ny =5, we go to Step 4.
Step 4. Since 81 =2 > a3 =1 and 3 =2 < 73 = 4, we go to Step 4(a).

Step 4(a). Since 83 + 37 =4 < a3z + y3 = 5, we merge Sy with o3 by appending ag to

the end of b3. Go to Step 6.
Step 6. The obtained schedule is S5 (Figure 4.9). Set I = 3 and go to Step 3.
Step 3. Since nj =4 < n3 =6, we go to Step 4.
Step 4. Since 84 =0 < ay =2 and 3 =5 > 7, = 4, we go to Step 4(d).

Step 4(d). Since 83 + 53 =5 < a4 + v4 = 6, we shift J5 such that 83 = ay = 2 and
merge S3 with o4 by appending ar to the end of by, as shown in Figure 4.10(a). Go

to Step 5.

Step 5. Call Checking routine with input b5. Call again Checking routine with

input as.

Checking routine. We have y = b5, v = bg, and 7 = a¢. Go to Checking and

shifting.

Checking and shifting: Task b5 completes (at 24) later than the start of bg (at 23).
Shift Jg such that the start of bg is exactly at 24, as shown in Figure 4.10(b). Call

Checking routine with input bg, and call again Checking routine with input ag.

Checking routine. We have 1 = bg, v = b7, and v = a7. Go to Final checking.

Final checking: Task bs completes (at 27) exactly at the start of b;. Terminate

the subroutine.

Checking routine. We have p = ag, v = by, and v = a4. Go to Checking and

shifting.

Checking and shifting: Task ag completes (at 20) exactly at the start of by.

Terminate the subroutine.

45



Checking routine. We have ;1 = a5, v = by, and v = as. Go to Checking and

shifting.

Checking and shifting: Task as completes (at 14) later than the start of by (at 12).
Shift Jo such that the start of by is exactly at 14, as shown in Figure 4.10(c). Call

Checking routine with input b,, and call again Checking routine with input a,.

Checking routine. We have y = by, v = b3, and 7 = a3. Go to Checking and

shifting.

Checking and shifting: Task b, completes (at 16) earlier than the start of b3 (at
17). Terminate the subroutine.

Checking routine. We have pp = as, v = by, and 7 = a;. Go to Final checking.

Final checking: Task a, completes (at 7) exactly at the start of b;. Terminate

the subroutine.

Step 6. The obtained schedule is Sy. Since I = 3 = k — 1, we output the schedule S,

(Figure 4.10(c)) and stop.

|2

ay
as b o ar]ag) by |by
b 23] Y&l
4 e -

[25) 72

EN by 2
a W (;]) a ap W b,

IS

N
EE
A |lw

o1 2 3 4 5 6 7 8 9 10 11 12 01 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4.7: Illustration of (a) the instance of eight jobs and (b) subschedules o1(= S;),
09, 03 and oy.

Theorem 4.1. Given a sequence , Algorithm Plausible- Task-Sequence either pro-
duces a feasible schedule attaining the minimum makespan or identifies the infeasibility of

7 in O(n?) time.
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Figure 4.10: Step-by-step construction of optimal schedule Sj.

Proof. Assume a feasible schedule Sy, is produced by the algorithm. At the end of Step 2,
we have the £ subschedules, o, ..

respect to its corresponding fundamental cluster. In the recursive procedure from Step 3

to Step 6, Si is obtained by tightly arranging all the & partial schedules, oy, ..

by one. In Step 3, we can easily merge S; with o;,; without shifting any task of S
because b"'z , the task by which a,,+; should be preceded, is known to be b,,. In case
of Step 4(a), o741 can also be greedily embedded in S; without shifting any task of S;
because 87 > aryq and % < 47.1. Notice that in Steps 4(b)-(d), it is required to defer

the processing of ot 41 but all jobs other than Jni 41 are not yet shifted. Step 5 involves
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calling Checking routines with the two tasks b, 11 and a,; 11, respectively. Whenever
Checking routine is invoked, either Final checking or Checking and shifting will
be executed. Subroutine Final checking indicates that the infeasible result can be
concluded whenever task by (also, ay), ap,+1 or b,,4+1 needs to be shifted. In subroutine
Checking and shifting, we examine whether any job needs to be shifted due to the
shifting of the task passed to Checking routine. If the shifting of other tasks are made,
then Checking routine will be called again. Provided that a feasible schedule Sy is
obtained after the recursive procedure, either the first or second task of the job J; in S
tightly adjoins the task preceding it in 7, for each j = 2,...,n. No room is possible to
further condense Sj.

Consider the case of infeasibility. If the infeasibility of 7 arises from Step 2, then
it is due to the results of Property 4.1. If infeasible comes from the subroutine Final
checking, then some task completes later than the start of by, a,,+1 or b,,+1. It is
obvious that shifting .J; is futile and shifting .J,,,1; causes an infinite shifting recursion.
Therefore, sequence 7 is infeasible if infeasibility is reported by the algorithm.

As for the running time of the algorithm, Step 1 requires O(n) time. Step 2 takes at
most O(|X1| + | Xa| + -+ + | Xk|) = O(n) time, and the recursion from Step 3 to Step 6
involves assembling k partial schedules, each of which takes no more than O(n) time for

the checking processes in Step 5. Since k < n, the overall running time is O(n?). O

4.4 Polynomially Solvable Cases

This section discusses three polynomially solvable cases for the fixed-job-sequence prob-
lem. Notice that the complexity result in this section is presented subject to the assump-
tion of input size such that, for example, in the case of identical jobs, we have n copies of

processing times and delay times for the n jobs (Orman & Potts, 1997).
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4.4.1 1|(pj,pj,pj),fj3|0max

In this subsection, the case where a;=[;=0; =p; for all j € N,, is considered. Despite the
strong NP-hardness of the 1|(p;, pj, Pj)|Cmax problem (Orman & Potts, 1997), its fixed-
job-sequence counterpart is polynomially solvable. An optimal schedule can be obtained

by the following procedure.

Algorithm PSC1
Step 1. Set j =1 and E = 0.

Step 2. If p; = pj11, then go to Step 4. Otherwise, append J;1; to the end of J;, and

set g =7+ 1.
Step 3. If j = n, then output the schedule and stop. Otherwise, go to Step 2.

Step 4. Interleave J; and J;1;. Append J,. to the end of J;4;. Set E = EU{j,j+1}

and j = 7+ 2. Go to Step 3.

Theorem 4.2. The 1|(pj,pj, 0j); f75|Cmax problem can be solved in O(n) by Algorithm
PSC1. The makespan of the optimal schedule is 2Zj€Epj + BEjeNn\Epj, where E s

the set of jobs interleaving with each other.

Proof. It is obvious that no interleaving is possible for any two jobs other than two
adjacent identical jobs, J; and J;y; with p; = p;+1. By examining each pair of adjacent
jobs, Algorithm PSC1 matches any un-interleaved J; with J;4q if p; = p;ji1. Since
no more interleaving is possible, Algorithm PSC1 produces an optimal schedule. In
the obtained optimal schedule, each interleaved pair of jobs, J; and Jj4q for {j.j+ 1} C
E, contributes 2(p; + pj+1) to the makespan. Any job .J, that cannot be interleaved
contributes 3p;, to the makespan. Thus, C\.x = 2 EjeE pj+3 ZjeNn\E p;. From Step 2
to Step 4, at most n iterations are required, each of which takes a constant time. The

overall running time of Algorithm PSC1 is O(n). O
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4.4.2 1|(p7p7 bj),fj5|0max

Without the assumption of a fixed job sequence, this special case can be solved in O(n)
time (Orman & Potts, 1997). Since a;=1;=p for j € N,,, any job cannot be interleaved
with more than one job. Subject to a given job sequence, we have the following property

of this special case.

Property 4.2. If the interleaving of jobs exists in a feasible schedule for the problem
1|(p, p,b;), f75|Crmax, then the interleaved pair are some two consecutive jobs J; and Jjiq,

where b; < p, j € Nj_;.

With property 4.2, a forward dynamic program can be designed. A job is called iso-
lated if it is not interleaved with any other job. A subschedule of {J;, J5, ..., J;} can be
completely characterized by the 2-tuples (j, A), where j and A are the number of jobs in
the subschedule and the interleaving status of job J;, respectively. If A = 0, then job J;
is isolated. If A = 1, then job J; is interleaved with job J;_;. Denote the corresponding

minimum makespan as f(j,A) for 1 < 7 <n and A € {0, 1}.

Algorithm PSC2
Initialization: f(1,0) =2p + b; and f(1,1) = oco.

Recursive function: For 2 < j <n,

e 1):{ fG=1,0)+p+b;—bj, b < p;

0, otherwise.

: i A).
Goa Ag{%g}f(n, )

Theorem 4.3. An optimal schedule for the 1|(p,p,b;), fjs|Cmax problem can be produced
in O(n) by Algorithm PSC2.

Proof. Eq. (4.3) indicates that any isolated job J; adjoins .J;_; which is either isolated

or interleaved with J;_5. In Eq. (4.4), job J; can be interleaved with job J;_y if J;_ is

20



isolated and b;_; < p. A subschedule in the state (j,A) with value f(j, ) dominates all
other subschedules in the same state in the sense that it contributes the minimum value
to the makespan among those of all subschedules in this state. The principle of optimality
holds and Algorithm PSC2 can generate an optimal schedule. To obtain miny f(n, A),
at most n—1 iterations are required, each of which takes a constant time. The overall

running time of Algorithm PSC2 is O(n). O

Corollary 4.1. The 1|(aj,p,p), f75|Cmax problem is solvable in O(n).

Proof. Orman & Potts (1997) proved that the coupled-task makespan problem and its
reverse are equivalent. Given the fixed-job-sequence constraint, the equivalence still holds.

By virtue of lemma 4.3, this corollary follows. O

4.4.3 ]-l(p,l,p),fjs‘cmax

Since all jobs are identical, any feasible schedule for problem 1|(p,[,p)|Cpnax satisfies
the fixed-job-sequence constraint. By the results of Orman & Potts (1997) for prob-
lem 1|(p, [, p)|Crax, the fixed-job-sequence problem 1|(p,l,p), fjs|Cmax can be solved in
O(n).

By virtue of these three polynomially solvable cases, we can put the borderline between
polynomially solvable problems and open problems in the complexity graph. In corre-
spondence with the complexity graph of the coupled-task scheduling problems shown in
Figure 4.11, that of the fixed-job-sequence problems is given in Figure 4.12. The strongly
NP-hard problem 1|(p;,pj, pj)|Cmax becomes polynomially solvable when the fixed-job-
sequence assumption is imposed. For each polynomially solvable case of the prototypical
problem, the corresponding fixed-job-sequence problem is also solvable in O(n) time.
However, it cannot be concluded that a fixed-job-sequence problem is easier to deal with

than its counterpart problem without the fixed-job-sequence assumption.
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Figure 4.11: Complexity graph of prototypical problems (Orman & Potts, 1997).
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Figure 4.12: Complexity graph of fixed-job-sequence problems.

4.5 Summary

This chapter has studied a single machine coupled-task makespan minimization prob-
lem subject to a fixed job sequence. To schedule a given task sequence abiding by the
fixed-job-sequence constraint, this study designed an O(n?) algorithm for determining its
feasibility and a schedule with the minimum makespan, if such a feasible schedule exists.

Three polynomially solvable cases for the fixed-job-sequence problem were identified. A
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complexity graph was also presented to depict the complexity statuses of the studied
cases.

Although the complexity status of the 1|(a;,[;,b;), f15|/Cmax problem remains open,
the results presented in this study could inspire further research attention on this subject.
It is also interesting to investigate the complexity status of the open problems indicated in
the complexity graph of the fixed-job-sequence problems. Further research could also be
conducted in developing branch-and-bound procedures in which our proposed algorithm
for plausible task sequences could be exploited. In addition, other different fixed-sequence
constraints, e.g. given a fixed task-1 sequence or a fixed task-2 sequence, can be consid-

ered.
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Chapter 5

Concluding Remarks

5.1 Conclusions

In this dissertation, scheduling problems subject to fixed job sequences were studied. The
fixed-job-sequence scheduling problems can be categorized into three major types, i.e.
problems of batching, problems of interleaving, and problems of idle time insertion. Three
fixed-job-sequence scheduling problems, including the two-stage assembly-type flowshop
batching problem, the two-stage differentiation flowshop problem and the single-machine
coupled-task problem, were studied in this dissertation. The first is concerned with the
minimization of total completion time in the two-stage assembly-type flowshop batching
problem with a fixed job sequence. A two-phase algorithm equipped with a problem-
transformation procedure and a polynomial time dynamic program was developed to solve
the studied problem in O(mn + n®) time, where m is the number of parallel dedicated
machines arranged at stage 1 and n is the number of jobs. The second problem is to
minimize the total completion time in a two-stage differentiation flowshop subject to fixed
sequences of jobs per type. One stage-1 common machine and m stage-2 parallel dedicated
machines are arranged in the considered two-stage differentiation flowshop. To achieve
an optimal interleaved processing sequence of all jobs at the first stage, we presented
an O(m? [T, n)"*") dynamic programming algorithm, where n; is the number of type-l
jobs. In the third problem, the single-machine coupled-task scheduling with exact delays

was investigated. The aim is to schedule these coupled tasks to minimize the makespan
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subject to a given job sequence. Several intriguing properties of the studied problem were
introduced. While the complexity status of the fixed-job-sequence problem remains open,
an O(n?) algorithm was proposed to construct a feasible schedule attaining the minimum
makespan for a given permutation of 2n tasks abiding by the fixed-job-sequence constraint.
We identified three polynomially solvable cases of the fixed-job-sequence problem and

presented a complexity graph of the studied problem.

5.2 Suggestions for Further Studies

Several possible research issues could be developed for further research. Among the fixed-
job-sequence scheduling problems, there could be another type of problems except the
three categories presented in this study. Also, there could be numerous fixed-job-sequence
problems of the three categories which are worthy of consideration. A prime example
would be the scheduling problems with non-regular objective functions (Kanet & Sridha-
ran, 2000), which have drawn much attention. Some open problems in the three fixed-
job-sequence issues under study also remain to be solved in further work. In the assembly
flowshop batching problem with a fixed job sequence, the max-batch model and other
performance measures, such as the maximum lateness and the total tardiness could be
considered. For the two-stage differentiation flowshop problem with fixed job sequences,
the reverse production scheduling model could be investigated. As for the single-machine
coupled-task problem subject to a fixed job sequence, determining its complexity status
is very challenging.

Based upon the theoretical results of the studied problems subject to fixed job se-
quence(s), future works can be conducted on these prototypical problems for investigating
special cases in which an optimal job sequence can be derived by analytical approaches.
On the other hand, model generalization, e.g. general machine configuration, could also

be considered for the studied fixed-job-sequence problems.
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