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摘  要 

 
在生產排程問題中，工作或訂單順序代表其在機器上之處理先後順序，而排

程則是明確排定每一工作或訂單在各台機器上之開始與完工時間。對某些排程問

題而言，工作順序的給定並不直接等同排程結果。在這類型的問題中，除了排序

之外，尚有諸如批量、交織穿插、延後執行等決策問題需要考量。這類型的排程

問題即使固定其工作順序仍值得探究。在給定工作順序後，這類型的排程問題可

稱之為固定工作順序條件排程問題。本論文針對三個固定工作順序條件排程問題

進行研究。 

本論文首先探究之固定工作順序條件排程議題為兩階段組裝線流線型機組

批量排程問題。此問題考量的組裝線流線型機組環境為：階段一配置 m 台平行

指定機器、階段二配置一台批量處理機器。給定 n 筆工作或訂單順序，並考量總

完工時間最小化的目標下，本研究提出一個 O(mn+n5)時間複雜度之演算法。 

第二個研究主題為兩階段差異化流線型機組排程問題。此問題考慮的差異化

流線型機組環境為：階段一配置一台公用機器、階段二配置 m 台平行指定機器。

假設階段二的某平行指定機器 Ml擁有 nl筆工作或訂單待處理。在分別給定 m 台

平行指定機器個別之工作或訂單順序，並考量總完工時間最小化的目標下，本研

究提出一個 時間複雜度之動態規劃演算法。 2
1( m m

l lO m n +
=∏ 1)

第三個研究議題為單機器雙子作業排程問題。此問題的工作或訂單皆為雙子

作業，每個工作的兩個子作業間存在一個固定的延遲時間。本研究之目標為固定

工作順序條件下最大完工時間最小化。關於此議題下的固定工作順序條件排程問

題，其時間複雜度仍懸而未決，然本研究提出一個 O(n2)時間複雜度演算法解決

固定“子作業＂順序條件排程問題。此外，三個多項式時間可解的特例狀況亦在

 i



本文中被提出探討。 

 

關鍵字：固定工作順序排程問題；組裝線流線型機組；差異化流線型機組：雙子

作業排程；動態規劃。 
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Abstract 
 

In machine or shop scheduling, sequences of jobs or operations indicate the order 
of processing on machines while schedules explicitly specify the starting and 
completion times of activities on specific machines. For some problems, determining 
an optimal schedule from a given sequence may not be straightforward because 
another decision such as batching, interleaving, or idle time insertion is needed for 
optimality. In this study, three fixed-job-sequence problems are considered.  

The first addressed problem is a two-stage assembly-type flowshop scheduling 
problem with batching considerations subject to a fixed job sequence. The 
assembly-type flowshop consists of m parallel dedicated machines at stage 1 and a 
batch machine at stage 2. The objective is to minimize the total completion time. A 
two-phase algorithm is developed to solve the studied problem in O(mn+n5) time, 
where n is the number of jobs and m is the number of parallel dedicated machines 
arranged at stage 1.  

In the second problem, total completion time minimization in a two-stage 
differentiation flowshop subject to fixed sequences of jobs per type is studied. The 
two-stage differentiation flowshop comprises a stage-1 common machine and m 
stage-2 parallel dedicated machines. The goal is to determine an optimal interleaved 

processing sequence of all jobs at stage 1. This study presents an  

dynamic programming algorithm, where nl is the number of type-l jobs. The running 
time is polynomial when m is constant. 

2 1
1( )m m

l lO m n +
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In the third problem, the single-machine coupled-task scheduling, where the two 
tasks of each job are separated by an exact delay, is investigated. The aim is to 
schedule these coupled tasks to minimize the makespan subject to a given job 
sequence. Several intriguing properties of the studied problem are introduced. While 
the complexity status of the fixed-job-sequence problem remains open, an O(n2) 
algorithm is proposed to construct a feasible schedule attaining the minimum 
makespan for a given permutation of 2n tasks abiding by the fixed-job-sequence 

 iii



 iv

constraint. Three polynomially solvable cases and a complexity graph of the 
fixed-job-sequence problem are presented. 
 
Keywords: Fixed-job-sequence problem; Assembly-type flowshop; Differentiation 
flowshop; Coupled-task scheduling; Dynamic programming. 
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Chapter 1

Introduction

1.1 Background

Scheduling is a process of decision making about how to allocate the limited resources such

as funds, raw materials, manpower, machines, and energy to the processing of projects

or jobs for single- or multi-objective optimization. From the practical point of view, ef-

ficient scheduling plays a pivotal role in manufacturing and service industries owing to

its indication of enterprise competitiveness. The application of scheduling can be found

in production, transportation, communication, information processing, etc. In academic

aspect, the theory of scheduling develops into a foundation of knowledge about mathemat-

ical models, combinatorial optimization, algorithmic methodologies, heuristic techniques

and simulation approaches. Based on computational complexity theory, one significant

branch in scheduling theory is devoted to investigating the efficient solvability of schedul-

ing problems and the computing efforts required by their solution techniques (Baker &

Trietsch, 2009). This research stream aims to explore whether the studied scheduling

problems are intractable and determine their complexity statuses. The well-developed

complexity hierarchies of scheduling problems can provide valuable information about

the direction of effective problem-solving approaches and make a substantial contribution

to industrial enterprises in real-world situations.
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1.2 Motivation

Provided that a scheduling problem is proved to be intractable, i.e. NP-hard, it could be

tackled by several approaches. One might adopt meta-heuristic strategies to achieve satis-

factory near-optimal solutions in a reasonable time. Another might design approximation

algorithms or a polynomial time approximation scheme (PTAS) to guarantee provable so-

lution quality and run time bounds. A further approach is to investigate its various special

cases and determine their complexity statuses. For some NP-hard scheduling problems,

one of the special cases which are worthy of consideration could be the case with fixed

sequence(s) of jobs.

In machine or shop scheduling, sequences of jobs or operations indicate the order

of processing on machines while schedules explicitly specify the starting and completion

times of activities on specific machines. In some cases, schedules can be directly deter-

mined by sequences of jobs or operations on the machines involved in the problems. In

the other cases, extra information is needed to fully specify a schedule. The complicated

schedule structure where a permutation/sequence of jobs/operations does not imply a

schedule is paradigmatic of three major types of scheduling problems:

1. scheduling with batching;

2. scheduling with interleaving;

3. scheduling with inserted idle times.

In branch-and-bound, local search and meta-heuristic algorithms for tackling NP-hard

scheduling problems of these types, development of efficient procedures for computing the

incurred costs or objective values of complete or partial sequences of jobs is crucial to

the efficiency of the solution approaches. In other words, within the local search proce-

dure, the solution quality of candidate sequences of jobs needs to be assessed. Therefore,

efficient algorithms for the fixed-job-sequence problems, if exist, can facilitate the develop-

ment of meta-heuristics. Besides, the scheduling problems in which a specific optimal job

sequence is established analytically can be exactly regarded as fixed-job-sequence prob-

lems. In real-life industrial applications, job sequence(s) can be included in input instances

2



since the fist-come-first-served (FCFS) principle is commonly regarded fair by customers.

Additionally, a pre-assigned sequence of jobs could be retained on one of the machines

in manufacturing process owing to technological or managerial decisions (Shafransky &

Strusevich, 1998). Justification of the assumption of fixed job sequences can also be found

in previous studies (Cheng et al., 2009, 2000b; Cheng & Wang, 1999; Herrmann & Lee,

1992; Hwang et al., 2010a; Kanet & Sridharan, 2000; Lin & Cheng, 2006, 2010; Lin et al.,

2007; Ng & Kovalyov, 2007). The results conveyed in these previous works indicate that

constructing optimal schedules from given job/operation sequences is not trivial for some

scheduling problems.

1.3 State of the Art

Although several studies relative to “fixed-job-sequence scheduling” can be found in liter-

atures, those results are not well emphasized, reviewed and categorized. The main reason

that this research theme is not well explored seems to be a great diversity of these existing

research results. Making a well-structured categorization for the research theme could be

beneficial for its development. In the dissertation, three categories of fixed-job-sequence

scheduling problems, including the problem of batching, the problem of interleaving, and

the problem of idle time insertion, are proposed. The state of the art in the three cate-

gories of problems are briefly described as follows.

Batching decisions for a fixed job sequence in a flowshop were studied by Cheng

et al. (2000b) and Ng & Kovalyov (2007) for makespan minimization, and by Hwang

et al. (2010a) for total completion time minimization. Considering the fabrication and

assembly of components in a two-machine flow shop, Cheng & Wang (1999) studied the

makespan minimization problem of batching the jobs sequenced according to Johnson’s

rule or the agreeable processing time condition. Lin et al. (2007) investigated optimal

batching of a fixed job sequence in a three-machine assembly-type flowshop for makespan

minimization. Lin & Cheng (2010) also considered the objective function of maximum

lateness, weighted number of tardy jobs or total weighted completion time for a fixed job

sequence with centralized or decentralized batching decisions in concurrent open shops.

3



The problem commonly arising in the fixed-job-sequence scheduling where there exist

several individual fixed job sequences or one job consists of several components is the

interleaving issue. The first situation can be found in the differentiation flowshop envi-

ronment. In a two-stage differentiation flowshop with a common machine at stage 1 and

two parallel dedicated machines at stage 2, optimal interleaving of two fixed sequences per

job type on the stage-1 machine was studied by Herrmann & Lee (1992) for the makespan

minimization, and by Cheng et al. (2009) for the minimization of total weighted machine

completion time. The second situation comes from the coupled-task scheduling (Shapiro,

1980), where the fixed-job-sequence problem could be worthwhile to investigate.

Scheduling with inserted idle times stems from just-in-time (JIT) production in which

a non-regular performance measure such as the earliness-tardiness criterion is consid-

ered (Kanet & Sridharan, 2000). Algorithms for machine idle time insertion in a fixed

job sequence, also called timing or timetabling algorithms (Hendel & Sourd, 2007), were

applied for single machine (Bauman & Józefowska, 2006; Colina & Quinino, 2005; Davis &

Kanet, 1993; Garey et al., 1988; Pan & Shi, 2005; Sourd, 2005; Szwarc & Mukhopadhyay,

1995), parallel machines (Della Croce & Trubian, 2002) and flowshop (Hendel & Sourd,

2007). In addition to scheduling with non-regular objective functions, the problem of idle

time insertion also contains fixed-job-sequence scheduling with time-dependent process-

ing times. Optimally timing a fixed job sequence in a two-machine flowshop in which the

machine-2 processing time of each job depends on its waiting time between two machines

was considered by Lin & Cheng (2006) for the makespan minimization, and by Hwang et

al. (2010a) for the minimization of total completion time.

1.4 Research Issues

In this dissertation, three fixed-job-sequence problems are studied. The first addressed

issue is a two-stage assembly-type flowshop scheduling problem with batching considera-

tions subject to a fixed job sequence. There are m parallel dedicated machines arranged

at stage 1, and stage 2 is equipped with a batch machine. The objective is to minimize the

total completion time. In the second problem, total completion time minimization in a
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two-stage differentiation flowshop subject to fixed sequences per job type is studied. The

two-stage differentiation flowshop consists of a stage-1 common machine and m stage-2

parallel dedicated machines. The goal is to determine an optimal interleaved process-

ing sequence of all jobs at stage 1. The third considered problem is the single-machine

coupled-task scheduling where each job has two tasks separated by an exact delay. The

objective is to schedule the tasks for makespan minimization subject to a given job se-

quence. The classification of the three studied problems is illustrated in Figure 1.1. With

the common consideration of the fixed-job-sequence constraint, the linkage between the

three distinctive studied problems is their affiliation to the same research theme.

Problems of

Interleaving

Fixed-Job-Sequence

Scheduling Problems

The Two-Stage

Assembly-Type

FLowshop Batching

Problem

The Two-Stage

Differentiation

Flowshop Problem

The Single-Machine

Coupled-Task

Problem

Problems of

Batching

Figure 1.1: Categorization of the three studied problems.

1.5 Outline

This dissertation is organized into five chapters.

Chapter 2 describes the two-stage assembly-type flowshop batching problem subject

to a fixed job sequence. After the general statements are given, a two-phase algorithm is

described. Then a summary is provided.

In Chapter 3, the two-stage differentiation flowshop problem with fixed sequences per

job type is introduced. The problem statements, the proposed dynamic programming

5



algorithm, and a summary are contained.

Chapter 4 considers the single-machine coupled-task problem with a fixed job sequence.

Several intriguing properties of the problem are introduced. Then a polynomial time

algorithm is presented to construct a schedule with the minimum makespan for a given

task sequence abiding by the fixed-job-sequence constraint. Three polynomially solvable

cases for the fixed-job-sequence problem are investigated and its complexity graph is given.

Concluding remarks are given in Chapter 5. This chapter presents some conclusions

of this study. Finally, several recommendations for further research are also offered.
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Chapter 2

Two-Stage Assembly-Type Flowshop

Batch Scheduling

In this chapter, the minimization of total completion time in a two-stage assembly-type

flowshop with batching considerations subject to a fixed job sequence is addressed. The

goal is to obtain an optimal batching decision for the given job sequence at stage 2.

This study presents a two-phase algorithm, which is developed by coupling a problem-

transformation procedure with a dynamic program. The running time of the proposed

algorithm is O(mn+n5), where m is the number of parallel dedicated machines arranged

at stage 1 and n is the number of jobs.

The main contribution of the research is to demonstrate the polynomial solvability of

the performance measure of total completion time for the studied problem. Base upon the

proposed dynamic programming concept, the potential conflicts between the makespan

and the total completion time of the subschedule can be avoided. Our results are achieved

under the consideration of arbitrary m-machine case, and the proposed methodology can

be exploited for any specific machine configuration in the studied scheduling model.

2.1 Preliminaries

The scheduling model considered in this study is a two-stage assembly-type flowshop,

which is a generalization of Johnson’s two-machine flowshop. The typical example of
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the assembly-type flowshop scheduling is automobile assembly, such as the fire engine

production (Lee et al., 1993). A fire engine comprises three major component parts, i.e.

the body, the chassis and the engine. These three parts are produced by three parallel

dedicated machines and then delivered to an assembly line for final assembly operations,

as illustrated in Figure 2.1. Consider a set of n jobs or orders to be processed in a

two-stage flowshop equipped with m + 1 machines. At stage 1, there are m parallel

dedicated machines which independently produce component parts for jobs. Then these

component parts are transferred to the stage-2 assembly line for assembly operation.

Each job consists of m + 1 specific operations to be executed respectively on the m

stage-1 parallel dedicated machines and the stage-2 assembly machine. At stage 2, the

assembly operations are processed in batches, and the batch availability sum-batch (or

sequential-batch) model with a non-anticipatory constant setup time is assumed. The

batch availability indicates that jobs of the same batch complete at the same time, when

processing of the latest job in this batch has been finished. In the sum-batch model, the

processing time of a batch is defined as the sum of the setup time and the processing

times of all jobs belonging to this batch. The non-anticipatory setup implies that a setup

can start only after all the component parts of the jobs in the same batch are transferred

to stage 2 and the stage-2 assembly machine is not occupied. We also assumed that

the centralized decision making policy is adopted. Namely, all the m parallel dedicated

machines comply with the sequencing and batching decisions determined by the assembly

organization. Accordingly, they begin their first operation processing simultaneously and

process the jobs consecutively without inserted idle times. Under the centralized decision

making policy, the fixed job sequence considered in this study is predetermined by the

assembly organization and followed by the m parallel dedicated machines. The objective

is to minimize the total completion time. Following Lin et al. (2007), this study denotes

the considered problem by (m + 1)MAF|mδ → β, sum-batch, fixed seq|
∑

Cj, where

(m + 1)MAF stands for (m + 1)-machine assembly flowshop, mδ → β for a two-stage

system with m stage-1 discrete processors and a stage-2 batch processor, sum-batch for

sum-batch model, and fixed seq for fixed job sequence. Even for the base case m = 2, the
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3MAF|2δ → β, sum-batch|
∑

Cj problem is strongly NP-hard since it is a generalization

of the strongly NP-hard problem F2|δ → β, sum-batch|
∑

Cj.

Figure 2.1: Assembly operation for fire engine production.

Motivation for the studied problem comes from the supply chain management in which

the coordination of production scheduling between cooperative companies can be modelled

as an assembly-type production scheduling problem (Lin et al., 2007). The parallel dedi-

cated machines at stage 1 can be regarded as individual upstream suppliers which produce

component parts or materials for the downstream manufacturer. The downstream com-

pany works as the stage-2 assembly organization which performs its production in batches.

The studied scheduling model can be applied to the multi-product packing problem which

commonly exists in the snack-food industry (Portougal, 1997). Many snack-food manu-

facturing companies offer variety packs of several different flavors of snack products and

the content and size of the variety pack can be custom-made. Then the two-stage as-

sembly flowshop for the variety pack of m different flavors consists of m production lines

for different flavors of snack products at stage 1 and a batching machine for packing at

stage 2. Another similar application can be found in a multi-page invoice printing sys-

tem (Zhang et al., 2010). The production process between the page printing stage and the

invoice assembly stage in the simplified invoice production system can be regarded as the

assembly-type flowshop scheduling. For a three-page invoice, jobs are processed in three

parallel dedicated printing lines at stage 1 and then conveyed to the stage-2 assembly line

for invoice assembly.

Various models involving batching considerations have been proposed and investigated

in the scheduling literature. Allahverdi et al. (1999, 2008); Cheng et al. (2000a); Potts &

Kovalyov (2000) provided comprehensive surveys and reviews on this subject. Lee et al.
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(1992) proposed a so-called burn-in model for semiconductor manufacturing, describing

the processing time of a batch as the longest processing time of the jobs in the batch. This

batching with simultaneous job processing is known as max-batch (parallel-batch) type.

Following the sum-batch model, Cheng et al. (2000b) investigated a two-machine flowshop

batching model with both batch processors for makespan minimization. They presented

a strong NP-hardness proof, polynomial algorithms for several special cases, and some

heuristics. A similar model was considered by Glass et al. (2001), who assume that the

batch setup on machine 2 is anticipatory and that the setup time is machine-dependent.

The strong NP-hardness proof and a heuristic with a worst-case performance ratio of 4/3

were provided. Cheng & Wang (1998) studied the makespan minimization problem in

a two-machine flowshop comprising a discrete processor and a batch processor. In their

model, the jobs are processed individually on machine 1, and processed in batches on

machine 2. The authors proved ordinary NP-completeness of the problem and presented

algorithms for some polynomially solvable cases. Subsequently, a strong NP-hardness

result of the problem was proved by Lin & Cheng (2005). Problem (m + 1)MAF|mδ →

β|Cmax was previously studied by Kovalyov et al. (2004), who investigated both the max-

batch and sum-batch scenarios. A heuristic algorithm and a performance ratio analysis

were presented. Lin et al. (2007) studied the 3MAF|2δ → β, sum-batch|Cmax problem

and proved its strong NP-hardness.

Potts & Kovalyov (2000) indicated that dynamic programming is utile for the single-

machine batching problems where the sequencing and batching decisions can be decoupled.

However, for shop models the fixed job sequence is necessary to design dynamic programs.

Considering a given job sequence in a two-machine flowshop with both batch processors,

Cheng et al. (2000b) developed an O(n3) algorithm to minimize the makespan. An O(n5)

algorithm was proposed by Hwang et al. (2010a) for the same machine setting with the

minimization of total completion time. For the makespan minimization, an O(n5m−7) dy-

namic programming algorithm for the generalized m-machine environment was presented

by Ng & Kovalyov (2007). For the fabrication and assembly scheduling in a two-machine

flow shop, each job consists of three components: a common component and a unique
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component which are both executed on machine 1, and an assembly component which is

executed on machine 2 after the above two components are completed. Common com-

ponents of all jobs are executed in batches, each of which is preceded by the same setup

time. For the makespan minimization in the identical common component case, Cheng

& Wang (1999) proposed an O(n4) algorithm to optimally batch the jobs sequenced ac-

cording to Johnson’s rule. For the constant assembly time case, another O(n3) algorithm

was developed for optimally batching the jobs sequenced according to the agreeable pro-

cessing time condition. For the performance measure of total completion time, Hwang et

al. (2010b) designed an O(n7) dynamic program for the general case. As for the assem-

bly flowshop batching problem, Lin et al. (2007) proposed an O(n2) dynamic program

for problem 3MAF|2δ → β, sum-batch, fixed seq|Cmax. A brief summary of complexity

results of related fixed-job-sequence flowshop batching problems is given in Table 2.1.

Table 2.1: Complexity results of related fixed-job-sequence flowshop batching problems.

Problem Complexity Reference
F2|sum-batch, fixed seq|Cmax O(n3) Cheng et al. (2000b)
Fm|sum-batch, fixed seq|Cmax O(n5m−7) Ng & Kovalyov (2007)
F2|sum-batch, fixed seq|

∑
Cj O(n5) Hwang et al. (2010a)

F2|sum-batch, (c, uj, aj), f ixed seq|Cmax O(n4) Cheng & Wang (1999)
F2|sum-batch, (cj, uj, a), f ixed seq|Cmax O(n3) Cheng & Wang (1999)
F2|sum-batch, (cj, uj, aj), f ixed seq|

∑
Cj O(n7) Hwang et al. (2010b)

3MAF|2δ → β, sum-batch, fixed seq|Cmax O(n2) Lin et al. (2007)

2.2 Problem Definition

In this section, the formal problem definition is provided for the base case m = 2. A

demonstration that the case with arbitrary m parallel dedicated machines can be easily

generalized by the formulation of the base case will be given in the next section.

Assume without loss of generality that a given sequence of jobs (1, 2, . . . , n) is to be

processed in a two-stage assembly flowshop with two dedicated parallel machines, Ma and

Mb, at stage 1 and one assembly machine M2 at stage 2. Each job j consists of three

operations to be processed onMa, Mb andM2, respectively. The corresponding processing

times are pa,j, pb,j and p2,j, respectively. Denote pa,[i:j] =
∑j

h=i pa,h, pb,[i:j] =
∑j

h=i pb,h,
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and p2,[i:j] =
∑j

h=i p2,h. After both stage-1 operations of job j are completed, these

two produced component parts of job j are transferred to stage 2 for assembly. M2

processes the jobs in batches with a non-anticipatory constant setup time s. The k-th

batch formed in stage 2 is denoted by Bk. The objective is to optimally batch the given job

sequence for the minimization of total completion time. Consider the following instance for

illustration: (pa,1, pb,1, p2,1) = (2, 1, 1), (pa,2, pb,2, p2,2) = (1, 3, 3), (pa,3, pb,3, p2,3) = (4, 2, 2),

(pa,4, pb,4, p2,4) = (1, 3, 1), (pa,5, pb,5, p2,5) = (2, 2, 2), (pa,6, pb,6, p2,6) = (5, 3, 3), and s = 1.

Assume that the batching decision is to group jobs {1, 2} into B1, jobs {3, 4, 5} into B2,

and {6} into B3. The obtained schedule is illustrated in Figure 2.2 and
∑

Cj = 90.

Ma

Mb

M2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6

1 2 3 4 5 6

B1 B2 B3

s 1 2 s s3 4 5 6

!

Figure 2.2: Example schedule.

2.3 Two-Phase Algorithm

This section introduces a two-phase algorithm developed for the (m + 1)MAF|mδ →

β, sum-batch, fixed seq|
∑

Cj problem. The first phase is a preprocessing procedure

utilized to transform the studied problem to a two-machine flowshop batching prob-

lem subject to a fixed job sequence. Notice that given the instance data, the sched-

ule of jobs at stage 1 can be settled in the studied problem. Then problem (m +

1)MAF|mδ → β, sum-batch, fixed seq|
∑

Cj can be transformed to problem F2|δ →

β, sum-batch, fixed seq|
∑

Cj by mapping the stage-1 schedule of the original problem

to the stage-1 discrete processor in the transformed problem. Consider the case with

m = 2. As illustrated in Figure 2.3, the schedule of a dummy discrete processor M1 can

be mapped from that of the two parallel dedicated machines Ma and Mb by setting the
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completion time of job j on M1 as C1,j = max{pa,[1:j], pb,[1:j]}. Then the studied problem

is transformed to a two-machine flowshop problem with a discrete processor M1 at stage

1 and a batch machine M2 at stage 2. If m is constant, then O(n) time is needed in the

first phase. For the general case of arbitrary m, the first phase requires O(mn) time.

1 2 n-1 n

1 2 n-1 n

Ma

Mb

C1,1 C1,2 C1,n-1 C1,n

{ }1, ,[1: ] ,[1: ]
max ,j a j b jC p p=

0

M1

ß

1 2 n-1 n

i¢

i¢

Figure 2.3: Mapping of the schedule of Ma and Mb to that of M1.

In the second phase, problem F2|δ → β, sum-batch, fixed seq|
∑

Cj is coped with by

a dynamic program. The difficulty in the design of a polynomial time dynamic program

arises from the potential conflicts between the makespan and the total completion time.

A subschedule of the first j jobs that minimizes the total completion time may have

a comparatively large makespan, which will worsen the total completion time of the

remaining n − j jobs. To resolve the problem, a dynamic program incorporating one

state variable to specify possible makespans can be developed. Nevertheless, the time

complexity of the dynamic program designed by this approach will be pseudo-polynomial

time. The technique devised in this study is to introduce a fixed number of jobs or

positional indices to specify makespans.

For a partial schedule, a maximal (by inclusion) sequence of stage-2 batches processed

consecutively without inserted idle times is denoted by a block. The last block of a

considered partial schedule is called critical block. A partial schedule of jobs 1, 2, . . . , j is

defined by a state (i, i1, j, k), where

1) i and j are respectively the first and the last jobs of the critical block,

2) k is the number of batches in the critical block, and
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3) i1 is the last job of the first batch in the critical block.

The structure of a partial schedule (i, i1, j, k) is shown in Fig. 2.4. Notice that several

partial schedules can be associated with the same state. Let f(i, i1, j, k) denote the min-

imum total completion time in a partial schedule among those associated with the same

state (i, i1, j, k) for 1 ≤ i ≤ i1 ≤ j ≤ n and ⌈ j−i1
j
⌉+1 ≤ k ≤ j−i1+1. The development of

the proposed dynamic program is based upon forward recursions by batches, i.e. the last

batch of the partial schedule is removed for each recursion. The dynamic programming

formulation is given in a pseudocode-like fashion.

s i i1 s s jM2

M1 i i1 j1

s s1 s s i-1

i-1

no idle time

with k batches

#

#

Figure 2.4: Illustration of a partial schedule (i, i1, j, k).

Algorithm DP-Batch

Initialization:

For each feasible i, i1, j, k satisfying 1 ≤ i ≤ i1 ≤ j ≤ n, ⌈ j−i1
j
⌉+ 1 ≤ k ≤ j − i1 + 1,

f(i, i1, j, k) =

{
j(C1,j + s+ p2,[1:j]), if i = k = 1 and i1 = j;

∞, otherwise.

Recursion:

f(i, i1, j, k) is determined by two disjoint cases: k = 1 (Figure 2.5) and k > 1 (Figure 2.6).

For each feasible i, i1, j, k satisfying 2 ≤ i ≤ i1 ≤ j ≤ n, ⌈ j−i1
j
⌉+ 1 ≤ k ≤ j − i1 + 1 do

Case k = 1 (also implying i1 = j):

Set z = ∞;

For each feasible i′, i′1, k
′ satisfying 1 ≤ i′ ≤ i′1 ≤ i− 1, ⌈ i−i′1−1

i−1
⌉+ 1 ≤ k′ ≤ i− i′1 do

If C1,j − C1,i′1
> k′s+ p2,[i′:i−1]

then temp = f(i′, i′1, i− 1, k′) + (j − i+ 1)(C1,j + s+ p2,[i:j]);

else temp = ∞;
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z = min{z, temp}.

f(i, i1, j, k) = z.

Case k > 1:

Set z = ∞;

For each j′ from i1 + k − 2 up to j − 1 do

If C1,j − C1,i1 ≤ (k − 1)s+ p2,[i:j′]

then temp = f(i, i1, j
′, k − 1) + (j − j′)(C1,i1 + ks+ p2,[i:j]);

else temp = ∞;

z = min{z, temp}.

f(i, i1, j, k) = z.

Goal: Find min{f(i, i1, n, k) | 1 ≤ i ≤ i1 ≤ n, ⌈n−i1
n

⌉+ 1 ≤ k ≤ n− i1 + 1}.

s i jM2

M1 i j1

s s1

To be removed 

for recursion

s s s i-1i'
1
i#

no idle time

with k' batches

k=1

i'
1
i# i-1

Figure 2.5: Forward recursion of the case k = 1.

s i i1 s s j'M2

M1 i i1 j'1

s s1 s s i-1

i-1

no idle time

with k batches

s jj'+1

jj'+1

To be removed 

for recursion

Figure 2.6: Forward recursion of the case k > 1.

Algorithm DP-Batch consists of two cases: 1) For the case k = 1, there are O(n2) states

(i, j, j, 1), each of which requires O(n3) operations; 2) For the case k > 1, there are O(n4)

states (i, i1, j, k), each of which needs O(n) operations. The Goal step requires O(n3)

comparisons, each of which takes constant time. Hence, the running time of algorithm
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DP-Batch is O(n5). Since the first and second phases respectively require O(mn) and

O(n5) times, the running time of the proposed two-phase algorithm is O(mn+ n5).

Theorem 2.1. Problem (m+1)MAF|mδ → β, sum-batch, fixed seq|
∑

Cj can be solved

in O(mn+ n5) time.

Example. Consider the following instance with m = 2 and n = 4: (pa,1, pb,1, p2,1) =

(2, 1, 1), (pa,2, pb,2, p2,2) = (1, 3, 3), (pa,3, pb,3, p2,3) = (4, 2, 2), (pa,4, pb,4, p2,4) = (1, 3, 1),

and s = 1. The two-phase algorithm is demonstrated as follows:

Phase 1. (Problem-transformation procedure)

C1,1 = max{2, 1} = 2;

C1,2 = max{2 + 1, 1 + 3} = 4;

C1,3 = max{2 + 1 + 4, 1 + 3 + 2} = 7;

C1,4 = max{2 + 1 + 4 + 1, 1 + 3 + 2 + 3} = 9.

Phase 2. (Algorithm DP-Batch)

Initialization:

f(1, 1, 1, 1) = 1× (2 + 1 + 1) = 4;

f(1, 2, 2, 1) = 2× (4 + 1 + 4) = 18;

f(1, 3, 3, 1) = 3× (7 + 1 + 6) = 42;

f(1, 4, 4, 1) = 4× (9 + 1 + 7) = 68;

For other values of i, i1, j, k, we denote f(i, i1, j, k) = ∞.

Recursion:

f(2, 2, 2, 1) = ∞;

f(2, 2, 3, 2) = f(2, 2, 2, 1) + (3− 2)(C1,2 + 1× 1 + p2,[2:3]) = ∞;

f(2, 2, 4, 2) = min{∞, f(2, 2, 3, 1) + (4− 3)(C1,2 + 2× 1 + p2,[2:4])} = ∞;

f(2, 2, 4, 3) = f(2, 2, 3, 3) + (4− 3)(C1,2 + 3× 1 + p2,[2:4]) = ∞;

f(2, 3, 3, 1) = f(1, 1, 1, 1) + (3− 2 + 1)(7 + 1 + 5) = 30;

f(2, 3, 4, 2) = f(2, 3, 3, 1) + (4− 3)(7 + 2 + 6) = 30 + 15 = 45;

f(2, 4, 4, 1) = f(1, 1, 1, 1) + (4− 2 + 1)(9 + 1 + 6) = 4 + 48 = 52;

f(3, 3, 3, 1) = ∞;
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f(3, 3, 4, 2) = f(3, 3, 3, 1) + (4− 3)(C1,3 + 2× 1 + p2,[3:4]) = ∞;

f(3, 4, 4, 1) = min{f(1, 1, 2, 2) + (4 − 3 + 1)(9 + 1 + 3),∞, f(2, 2, 2, 1) + (4 − 3 +

1)(9 + 1 + 3)} = ∞;

f(4, 4, 4, 1) = ∞.

Goal:

min{f(i, i1, 4, k) | 1 ≤ i ≤ i1 ≤ 4, ⌈4−i1
4

⌉+ 1 ≤ k ≤ 4− i1 + 1}

= min{f(2, 3, 4, 2), f(2, 4, 4, 1)} = 45.

The optimal schedule (2, 3, 4, 2) can be constructed by backtracking the recursion,

as demonstrated in Figure 2.7.

Ma

Mb

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3

B1 B2

s 1 s 32

1 2 3

M2

4

4

4

14 15

s

B3

Figure 2.7: Optimal schedule (2, 3, 4, 2).

2.4 Summary

A two-stage assembly-type flowshop batching problem with a fixed job sequence has been

addressed in this study. For the minimization of total completion time, this study designed

an O(mn + n5)-time two-phase algorithm, where m is the number of parallel dedicated

machines arranged at stage 1 and n is the number of jobs. The running time will be O(n5)

if the number of dedicated machinesm is not a part of the input. Besides, problem F2|δ →

β, sum-batch, fixed seq|
∑

Cj was also solved in O(n5) time in this study. Furthermore,

the developed algorithm can be easily generalized for the weighted counterparts.

Further study could be conducted on the max-batch model, i.e. (m + 1)MAF|mδ →

β,max-batch, fixed seq|
∑

Cj. Other performance measures, such as the maximum late-

ness and the total tardiness could also be considered.
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Chapter 3

Two-Stage Differentiation Flowshop

Scheduling

This chapter addresses total completion time minimization in a two-stage differentiation

flowshop where the sequences of jobs per type are predetermined. The two-stage differen-

tiation flowshop consists of a stage-1 common machine and m stage-2 parallel dedicated

machines. The goal is to determine an optimal interleaved processing sequence of all

jobs at the first stage. This study presents an O(m2
∏m

l=1 n
m+1
l ) dynamic programming

algorithm, where nl is the number of type-l jobs. The running time is polynomial when

m is constant.

The main research contribution is to investigate the performance merit of total com-

pletion time, which had not been considered in literatures for the studied problem. The

uniqueness of the proposed dynamic programming algorithm is the design of matrix state

variables. With the consideration of arbitrarym-machine case, the presented methodology

can be utilized for any specific machine configuration in the studied problem.

3.1 Problem Statements

This chapter considers a two-stage differentiation flowshop scheduling problem to mini-

mize the total completion time, subject to the condition that job sequences per type are

known a priori. The two-stage differentiation flowshop consists of a stage-1 common ma-
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chine M0 and m stage-2 parallel dedicated machines, M1, . . . ,Mm. Jobs are categorized

into m types, and the number of type-l jobs is nl for 1 ≤ l ≤ m. All jobs are required to be

processed on machine M0 first, and then jobs of type l proceed to dedicated machine Ml

for their second-stage process. Since the processing sequence of each job type is given, the

goal is to find an interleaved processing sequence of all jobs on machine M0 so as to min-

imize the sum of job completion times at stage 2 of all jobs. The problem under study is

denoted by F (1,m)|fixed seq|
∑

Cj, where F (1,m) stands for a two-stage differentiation

flow shop with m parallel dedicated machines at stage 2, fixed seq for fixed sequences of

jobs per type, and
∑

Cj for the total completion time minimization criterion. To solve the

F (1,m)|fixed seq|
∑

Cj problem optimally, this study presents a dynamic programming

algorithm with a running time that is polynomial when the number of dedicated machines

m is constant.

The studied problem is motivated by a production-and-painting system (Mosheiov &

Sarig, 2010). All products are manufactured by the stage-1 common machine. Then each

fabricated product is delivered to its dedicated machine for the specific color painting at

stage 2. A practical application is furniture manufacturing, such as chairs (Cheng et al.,

2009). At stage 1, the main body of the chair is produced by a common production line.

At stage 2, m types of head-supports or armrests are assembled on the main bodies by

m parallel dedicated machines. Another example is the pottery shaping (Cheng et al.,

2009), as illustrated in Figure 3.1. The main glazing process of potteries is performed on

a common machine at stage 1. To possess distinct appearances or figures, the potteries

need to be processed with different heating treatments, e.g. low-temperature firing and

high-temperature firing. Potteries with various features are made with different firing

processes on the corresponding dedicated machines at stage 2.

Herrmann & Lee (1992) first studied the F (1, 2) model (two job types) and showed the

strong NP-hardness of three objectives, namely the makespan, the number of tardy jobs

and the total completion time. An interesting problem arising from the machine configu-

ration is to determine an optimal interleaved sequence on the stage-1 machine from fixed

sequences for the two types of jobs. This interleaving problem of makespan minimization
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Figure 3.1: Configuration of pottery production.

was reduced to the problem of minimizing the maximum lateness, which can be solved by

Jackson’s earliest due date (EDD) first rule (Jackson, 1955) in O((n1 + n2) log(n1 + n2))

time. Kyparisis & Koulamas (2000) and Mosheiov & Yovel (2004) proposed polynomial

time algorithms for the F (1,m) problem of makespan minimization subject to the block

assumption that jobs of the same type must be processed adjacently on the stage-1 ma-

chine. With the block assumption, Mosheiov & Sarig (2010) investigated the F (1,m)

model to minimize the weighted number of tardy jobs with a common due date and

proposed a pseudo-polynomial dynamic programming algorithm to establish the ordi-

nary NP-hardness. Cheng & Kovalyov (1998) considered the F (1, 2) model incorporat-

ing batching decisions on the common machine, where setup times occur whenever the

machine switches processing from a job of one type to a job of the other type. A poly-

nomial time dynamic programming algorithm for makespan minimization was presented.

Cheng et al. (2009) addressed a non-classical objective of minimizing the weighted sum

of stage-2 machine completion times, which is denoted by F (1, 2)||WMT. They proved

the strong NP-hardness and designed an O(n3) time algorithm for the special case with

given sequences of both types of jobs. The solution approach developed by Herrmann &

Lee (1992) for problem F (1, 2)|fixed seq|Cmax actually can be further extended for the

general problem F (1,m)|fixed seq|Cmax. A brief summary of complexity results of the

fixed-job-sequence differentiation flowshop problems is given in Table 3.1.

Table 3.1: Complexity results of fixed-job-sequence differentiation flowshop problems.

Problem Complexity Reference
F (1, 2)|fixed seq|Cmax O((n1 + n2) log(n1 + n2)) Herrmann & Lee (1992)
F (1,m)|fixed seq|Cmax O(

∑m
l=1 nl log

∑m
l=1 nl) §

F (1, 2)|fixed seq|WMT O(n3) Cheng et al. (2009)
§ The result is derived from Herrmann & Lee (1992).
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To the best of our knowledge, the objective of total completion time minimization was

not previously addressed in the differentiation flowshop problems. Due to the equivalence

of F (1, 1)||
∑

Cj and the strong NP-hard F2||
∑

Cj problem, the F (1,m)||
∑

Cj problem

is also intractable. Investigating problem F (1,m)|fixed seq|
∑

Cj is thus appropriate.

The preliminary study suggests that even the F (1, 2)|fixed seq|
∑

Cj problem cannot be

solved using the approach developed for problem F (1, 2)|fixed seq|Cmax (Herrmann &

Lee, 1992).

3.2 The Proposed Dynamic Program

Denote by Jl = {Jl,1, . . . , Jl,nl
} the set of type-l jobs, 1 ≤ l ≤ m. Job Jl,j requires a

processing time pl,j and ql,j on machine M0 and Ml, respectively. The processing sequence

of jobs per type is already predetermined. Assume without loss of generality that the fixed

sequence of type-l jobs is (Jl,1, Jl,2, . . . , Jl,nl
).

Let us first consider a special case where each type contains exactly one job, i.e. nl = 1

for all types l. In this case, we denote pl and ql the processing times of the type-l job.

Consider a particular sequence σ = (σ1, σ2, . . . , σm). The completion time of the j-th job

is given by

j∑
i=1

pσi
+ qσj

. The total completion time is thus given by

m∑
j=1

( j∑
i=1

pσi
+ qσj

)
=

m∑
j=1

j∑
i=1

pσi
+

m∑
j=1

qσj
.

The second term is fixed once the instance is given. Therefore, the problem is equivalent

to minimizing
∑m

j=1

∑j
i=1 pσi

, which can be solved in O(m logm) time by the shortest

processing time (SPT) first rule using pl.

For the general case, this study proposes a dynamic programming algorithm in which

two matrices, A and B are designed. Define matrix A1×m = [a1, a2, . . . , am] with 0 ≤

al ≤ nl for 1 ≤ l ≤ m, where the element al is the number of the type-l job(s) in the

considered subschedule. Given A, the objective is to find the optimal interleaved se-

quence of subsequences (J1,1, . . . , J1,a1), . . . , (Jm,1, . . . , Jm,am). In a given subschedule of
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this problem, the last job having an idle time on its machine at stage 2 inserted in prior

to its dedicated operation is called a critical job of its type. Matrix Bm×m is defined

with 0 ≤ bl,r ≤ ar for 1 ≤ l, r ≤ m, where the element bl,r is defined as the number

of the type-r job(s) arranged on machine M0 before the stage-1 completion time of the

critical job of type l. A subschedule is associated with a state (k,A,B) subject to the

following conditions: (a) Subsequences (J1,1, . . . , J1,a1), . . . , (Jm,1, . . . , Jm,am) are consid-

ered; (b) Job Jk,ak is the last job on machine M0 and ak ̸= 0; (c) Job Jl,bl,l is the critical

job of type l, 1 ≤ l ≤ m, and its completion on machine M0 is preceded by jobs of∪m
r=1{Jr,1, . . . , Jr,bl,r}; (d) If al ̸= 0, 1 ≤ bl,l ≤ al; otherwise bl,r = 0. As depicted in Fig-

ure 3.2, the configuration is aimed at determining the stage-2 completion time of the job

scheduled last on M0. With the parameter specifications, the completion time of job Jk,ak

is calculated as Ck,ak =
∑m

r=1

∑bk,r
j=1;bk,r ̸=0 pr,j+

∑ak
j=bk,k

qk,j. Consider an instance withm =

3: (p1,1, p1,2, p1,3) = (2, 5, 4), (q1,1, q1,2, q1,3) = (8, 4, 7), (p2,1, p2,2, p2,3, p2,4) = (4, 5, 5, 3),

(q2,1, q2,2, q2,3, q2,4) = (8, 4, 17, 3), (p3,1, p3,2, p3,3) = (3, 4, 6), (q3,1, q3,2, q3,3) = (8, 7, 4). A

schedule of the state with k = 2, A = [3, 4, 3], and B =


3 2 0

3 3 0

3 3 1

 is shown in Figure 3.3,

and we have C2,4 =
∑3

r=1

∑b2,r
j=1;b2,r ̸=0 pr,j +

∑a2
j=b2,2

q2,j = 25 + 20 = 45.
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Figure 3.2: Configuration of state (k,A,B).

The corresponding recursive function fk(A,B), 1 ≤ k ≤ m is defined as the minimum

total completion time among all schedules associated with the same state (k,A,B). From

the above definition, the recursive formulation of the proposed dynamic program is given
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Figure 3.3: Instance schedule of the state (2,A,B).

as follows. Note that given a matrix A, the range of possible vales of bl,r for 1 ≤ l, r ≤ m

can be obtained.

Algorithm DP-F1m

Initialization: For all k ∈ {1, . . . ,m}, all matrices A, and all matrices B,

fk(A,B) =

{
0, if A and B both are zero matrices;

∞, otherwise.

Recursion: For 1 ≤ k ≤ m, each matrix A satisfying 1 ≤ ak ≤ nk, and 0 ≤ al ≤ nl for

1 ≤ l ̸= k ≤ m, and each possible matrix B corresponding to A, perform the recursion by

removing the last job Jk,ak .

Define the updated matrix A’ by letting a′k = ak − 1, and a′l = al for 1 ≤ l ̸= k ≤ m.

Case 1 (bk,k = ak):

In this case, Jk,ak is the critical job of its type. After each recursive call, the critical job

of type k needs to be updated. Construct the updated matrix B’ by letting b′l,r = bl,r,

1 ≤ l ̸= k ≤ m and b′k,r denote the number of the type-r job(s) arranged on machine M0

before the stage-1 completion time of the updated critical job of type k for 1 ≤ r ≤ m.

Subcase 1-1 (bk,k = ak > 1):

Denote the set D = {[b′k,1, b′k,2, . . . , b′k,m] : 1 ≤ b′k,k < bk,k, and 0 ≤ b′k,r ≤ bk,r for 1 ≤

r ̸= k ≤ m}. In this subcase, we have the k-th row of B’, [b′k,1, b
′
k,2, . . . , b

′
k,m] ∈ D. The
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configuration of the subcase is presented in Figure 3.4.

fk(A,B) = min
1≤l≤m;D

{
fl(A’,B’) :

m∑
r=1

ar∑
j=b′k,r+1;b′k,r ̸=a′r

pr,j >

a′k∑
j=b′k,k

qk,j

}
+ Ck,ak .

Subcase 1-2 (bk,k = ak = 1):

In this subcase, Jk,ak is the unique job of its type as well. After removing Jk,ak for recursion,

there exists no critical job of type k, i.e. a′k = 0. By virtue of the aforementioned condition

(d), we have b′k,r = 0 for 1 ≤ r ≤ m. The configuration of the subcase is presented in

Figure 3.5.

fk(A,B) = min
1≤l≤m

{
fl(A’,B’)

}
+ Ck,ak .

Case 2 (bk,k < ak):

For this case, Jk,ak is not the critical job of its type. As illustrated in Figure 3.6, we

simply remove Jk,ak in the recursion.

fk(A,B) = min
1≤l≤m

{
fl(A’,B) :

m∑
r=1

ar∑
j=bk,r+1;bk,r ̸=a′r

pr,j ≤
a′k∑

j=bk,k

qk,j

}
+ Ck,ak .

Goal: Let al = nl for 1 ≤ l ≤ m. Find min
1≤k≤m

{
fk(A,B) : 0 ≤ bl,r ≤ nr and 1 ≤ bl,l ≤

nl for 1 ≤ l, r ≤ m, r ̸= l
}
.
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Figure 3.4: Recursion of the subcase bk,k = ak > 1.

As for the complexity of algorithm DP-F1m, the running times for Subcase 1-1, Sub-

case 1-2, Case 2, and the Goal phase are analyzed as follows. For Case 1, bk,k = ak implies
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Figure 3.5: Recursion of the subcase bk,k = ak = 1.
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Figure 3.6: Recursion of the case bk,k < ak.

that bk,r = ar, 1 ≤ r ≤ m. Hence, there are O(m
∏m

l=1 n
m
l ) states, each of which takes

O(m
∏m

l=1 nl) time in Subcase 1-1. The running time is O(m2
∏m

l=1 n
m+1
l ). In Subcase

1-2, ak = 1 implies that bl,k = 0, 1 ≤ l ̸= k ≤ m, and there are less than O(m
∏m

l=1 n
m
l )

states, each of which takes O(m) time. The running time is thus O(m2
∏m

l=1 n
m
l ). In Case

2, the size of the state space is O(m
∏m

l=1 n
m+1
l ) and the computation required for each

state takes O(m) time. It results in a total running time of O(m2
∏m

l=1 n
m+1
l ) for the Re-

cursion phase. When the Recursion phase is done, the Goal phase requires O(m
∏m

l=1 n
m
l )

comparisons, each of which takes constant time. Therefore, the overall running time of

algorithm DP-F1m is O(m2
∏m

l=1 n
m+1
l ), which is polynomial when m is not a part of the

input. For the specific case of m = 2, the complexity is O(n3
1n

3
2).

Theorem 3.1. Problem F (1,m)|fixed seq|
∑

Cj can be solved in O(m2
∏m

l=1 n
m+1
l ) time,

where nl is the number of type-l jobs.

Example. Consider the following instance with m = 2, n1 = 2 and n2 = 2: (p1,1, p1,2) =

(2, 5), (q1,1, q1,2) = (1, 4), (p2,1, p2,2) = (4, 3), and (q2,1, q2,2) = (3, 2). Algorithm DP-F1m
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is demonstrated as follows:

Initialization:

f1([0, 0],

[
0 0

0 0

]
) = f2([0, 0],

[
0 0

0 0

]
) = 0;

For other values of k,A,B, we denote fk(A,B) = ∞.

Recursion:

(1)k = 1, 1 ≤ a1 ≤ 2, a2 = 0:

f1([1, 0],

[
1 0

0 0

]
) = 3;

f1([2, 0],

[
1 0

0 0

]
) = ∞;

f1([2, 0],

[
2 0

0 0

]
) = f1([1, 0],

[
1 0

0 0

]
) + 11 = 14.

(2)k = 2, a1 = 0, 1 ≤ a2 ≤ 2:

f2([0, 1],

[
0 0

0 1

]
) = 7;

f2([0, 2],

[
0 0

0 1

]
) = f2([0, 1],

[
0 0

0 1

]
) + 9 = 16;

f2([0, 2],

[
0 0

0 2

]
) = ∞.

(3)k = 1, a1 = 1, a2 = 1:

f1([1, 1],

[
1 1

0 1

]
) = f2([0, 1],

[
0 0

0 1

]
) + 7 = 14;

(4)k = 2, a1 = 1, a2 = 1:

f2([1, 1],

[
1 0

1 1

]
) = f1([1, 0],

[
1 0

0 0

]
) + 9 = 12;

(5)k = 1, a1 = 2, a2 = 1:

f1([2, 1],

[
1 1

0 1

]
) = ∞;

f1([2, 1],

[
1 0

1 1

]
) = ∞.

f1([2, 1],

[
2 1

0 1

]
) = f1([1, 1],

[
1 1

0 1

]
) + 15 = 29;

f1([2, 1],

[
2 1

1 1

]
) = f2([1, 1],

[
1 0

1 1

]
) + 15 = 27.

(6)k = 1, a1 = 1, a2 = 2:
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f1([1, 2],

[
1 2

0 1

]
) = f2([0, 2],

[
0 0

0 1

]
) + 10 = 26;

f1([1, 2],

[
1 2

0 2

]
) = ∞.

(7)k = 2, a1 = 1, a2 = 2:

f2([1, 2],

[
1 0

1 1

]
) = f2([1, 1],

[
1 0

1 1

]
) + 11 = 23;

f2([1, 2],

[
1 1

0 1

]
) = ∞.

f2([1, 2],

[
1 0

1 2

]
) = ∞;

f2([1, 2],

[
1 1

1 2

]
) = f1([1, 1],

[
1 1

0 1

]
) + 11 = 25.

(8)k = 2, a1 = 2, a2 = 1:

f2([2, 1],

[
1 0

2 1

]
) = ∞;

f2([2, 1],

[
2 0

2 1

]
) = f1([2, 0],

[
2 0

0 0

]
) + 14 = 28.

(9)k = 1, a1 = 2, a2 = 2:

f1([2, 2],

[
1 2

0 1

]
) = ∞;

f1([2, 2],

[
1 2

0 2

]
) = ∞;

f1([2, 2],

[
2 2

0 1

]
) = f1([1, 2],

[
1 2

0 1

]
) + 18 = 44;

f1([2, 2],

[
2 2

0 2

]
) = ∞;

f1([2, 2],

[
1 1

0 1

]
) = ∞;

f1([2, 2],

[
1 1

1 2

]
) = ∞;

f1([2, 2],

[
1 0

1 1

]
) = ∞;

f1([2, 2],

[
1 0

1 2

]
) = ∞;

f1([2, 2],

[
2 2

1 1

]
) = f2([1, 2],

[
1 0

1 1

]
) + 18 = 41;
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f1([2, 2],

[
2 2

1 2

]
) = f2([1, 2],

[
1 1

1 2

]
) + 18 = 43;

(10)k = 2, a1 = 2, a2 = 2:

f2([2, 2],

[
1 0

2 1

]
) = ∞;

f2([2, 2],

[
2 0

2 1

]
) = f2([2, 1],

[
2 0

2 1

]
) + 16 = 44;

f2([2, 2],

[
1 0

2 2

]
) = ∞;

f2([2, 2],

[
2 0

2 2

]
) = ∞;

f2([2, 2],

[
1 0

1 1

]
) = ∞;

f2([2, 2],

[
2 1

1 1

]
) = ∞;

f2([2, 2],

[
1 1

0 1

]
) = ∞;

f2([2, 2],

[
2 1

0 1

]
) = ∞;

f2([2, 2],

[
1 1

2 2

]
) = ∞;

f2([2, 2],

[
2 1

2 2

]
) = f1([2, 1],

[
2 1

1 1

]
) + 16 = 43;

Goal:

min
1≤k≤2

{
fk([2, 2],B) : 0 ≤ bl,r ≤ 2 and 1 ≤ bl,l ≤ 2 for 1 ≤ l, r ≤ 2, r ̸= l

}
=

f1([2, 2],

[
2 2

1 1

]
) = 41.

The optimal schedule (1, [2, 2],

[
2 2

1 1

]
) can be constructed by backtracking the re-

cursion, as demonstrated in Figure 3.7.
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Figure 3.7: Optimal schedule for the example.

3.3 Summary

A two-stage differentiation flowshop scheduling problem with predetermined job sequences

per type has been addressed in this study. For the minimization of the total completion

time, we designed an O(m2
∏m

l=1 n
m+1
l )-time dynamic programming algorithm, where nl is

the number of type-l jobs. The running time is polynomial when the number of dedicated

machines m is constant.

Two directions are suggested for further extensions of our research. First, since the

stage-1 machine is common for all product types, in the aspect of mass customization the

processing is mostly carried out in batches. It would be interesting to consider different

batching modes, including max-batch (parallel-batch) and sum-batch (sequential-batch)

on the common machine. Second, we can consider the reverse model that has two dedi-

cated machines at stage 1 and a common machine at stage 2. The differentiation flowshop

and its reverse model are equivalent for makespan minimization, but exhibit different

characteristics for the total completion time minimization.
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Chapter 4

Single-Machine Coupled-Task

Scheduling

In this chapter, single-machine coupled-task scheduling where each job has two tasks

separated by an exact delay is investigated. The objective of this study is to schedule

the tasks to minimize the makespan subject to a given job sequence. Several intriguing

properties of the fixed-job-sequence problem under study are introduced. While the com-

plexity status of the studied problem remains open, an O(n2) algorithm is proposed to

construct a feasible schedule attaining the minimum makespan for a given permutation

of 2n tasks abiding by the fixed-job-sequence constraint. Several polynomially solvable

cases of the fixed-job-sequence problem are investigated and a complexity graph of the

problem is presented.

The contribution of the study is the consideration of the fixed-job-sequence assump-

tion, which could be suitable in practical applications, for the studied problem. Although

the considered problem is not solved, a polynomial time algorithm is presented for its

subproblem in which a task sequence abiding by the fixed-job-sequence constraint is pre-

determined. Furthermore, three polynomially solvable cases for the studied problem are

demonstrated.
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4.1 General Statements

This study considers the problem of scheduling coupled tasks with exact delays, i.e. each

job consists of two distinct tasks which are separated by a fixed time interval. Coupled-

task scheduling, also known as the two-phased job scheduling problem (Sherali & Smith,

2005), primarily stems from operations scheduling of pulsed radar systems (Orman et al.,

1998). A pulsed radar system is utilized to detect and locate objects. The typical example

is that the airplanes approaching a congested airport are tracked for the terminal-area air

traffic management. A radar transmits a pulse which will reflect back after reaching an

object, and then receives the echo signal after a specified time period. To track an aircraft,

a radar system repeats the transmission and reception operations. The pulse transmis-

sion and reception cannot occur at the same time. Neither can any two transmission or

reception operations overlap. For multi-target tracking, the pulse transmission and recep-

tion operations, which are regarded as coupled tasks, shall be scheduled to minimize the

idle time for the radar system. Another application is the command-and-control system

in the parallel computing environment (Sherali & Smith, 2005). To solve a large-scale

computational problem, a command unit divides the problem into several subproblems

and distributes them to several client units for numerical calculations. Each client unit

send back its calculation result to the command unit after the computation. The aim is

to obtain the solution of the original problem which is a combination of the solutions of

those subproblems in the minimum computational time.

Assume a set of n two-phased jobs {J1, J2, . . . , Jn} to be processed on a single machine.

Each two-phased job Jj consists of two separate tasks that require processing times aj

and bj, respectively. If no confusion would arise, aj and bj are also used to denote

the two tasks of job Jj. Under the constraint of exact delays, the starting time of the

second task bj of any job Jj must be exactly lj time units after the completion of its

first task aj. The problem, denoted as 1|Coup-Task|Cmax by Orman & Potts (1997)

and 1|exact lj|Cmax by Ageev & Kononov (2006), is to find a feasible schedule such that

the makespan is minimized. This problem is known to be strongly NP-hard even in

some special cases (Orman & Potts, 1997). This study aims to investigate coupled-
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task scheduling subject to a given job sequence. Herewith, given a fixed job sequence,

if job Ji precedes job Jj in the specified sequence, then it is required to schedule the

tasks such that ai precedes aj, and bi precedes bj. We denote the studied problem by

1|(aj, lj, bj), fjs|Cmax, where “fjs” in the second field dictates the assumption of a fixed

job sequence.

The first study on coupled-task scheduling with exact delays could be due to Shapiro

(1980), who established that problem 1|(aj, lj, bj)|Cmax is equivalent to the NP-hard job-

shop problem J2|no-wait,M2 non-bott|Cmax, where “no-wait” and “M2 non-bott” respec-

tively refer to the no-wait constraint and the infinite processing capacity of the second

machine. Three polynomial-bounded heuristics for numerical experiments were also pre-

sented. Orman & Potts (1997) investigated the complexity of several special cases of

problem 1|(aj, lj, bj)|Cmax. All the analyzed cases are classified to be strongly NP-hard

or polynomially solvable, except for the case with identical coupled tasks, 1|(a, l, b)|Cmax.

Ahr et al. (2004) proposed a dynamic programming algorithm based on a directed graph

model for this special case with time complexity O(nr2l), where r ≤ a−1
√
a. The algorithm

is linear in the number of jobs only for fixed l and is not polynomial in the input size

which is measured by log a + log l + log b + log n. Then Baptiste (2010) showed that the

case can be solved in O(log n) when a, l, b are fixed. To the best of our knowledge, the

complexity status of identical coupled-task scheduling problem remains open. Blazewicz

et al. (2010) studied problem 1|(1, l, 1), prec|Cmax with strict precedence constraints and

proved its NP-hardness in the strong sense. They also proposed an O(n) algorithm for

the special case where l = 2 and an in-tree or out-tree precedence constraints graph are

assumed. Ageev & Kononov (2006) designed a 3.5-approximation algorithms for problem

1|(aj, lj, bj)|Cmax and proved that a (2-ε) approximation algorithm does not exist unless

P=NP. Yu et al. (2004) implied the strong NP-hardness of problem 1|(1, lj, 1)|Cmax from

the strong NP-hardness proof of problem F2|(1, lj, 1)|Cmax. Ageev & Baburin (2007) de-

signed a 7/4-approximation algorithm for problem 1|(1, lj, 1)|Cmax. Subsequently, Békési

et al. (2009) improved the analysis of Ageev & Baburin (2007) to derive a better lower

bound of the approximation ratio. Furthermore, Li & Zhao (2007) designed approximation
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algorithms for some NP-hard special cases, and developed a tabu search meta-heuristic

for the general case.

To the best of our knowledge, the constraint of a fixed job sequence was not previously

addressed in the coupled-task problem. For the problem under study, a predetermined

job sequence defines a sequence of the first tasks of all jobs and the same sequence of

the second tasks of all jobs. To construct a feasible schedule subject to a fixed job

sequence, the decision is how to interleave the task-1 sequence and the task-2 sequence.

Due to the strong NP-hardness of problem 1|(aj, lj, bj)|Cmax, it is appropriate to study

the 1|(aj, lj, bj), fjs|Cmax problem. Besides the assumption of a fixed job sequence could

also be suitable for the practical application. A naval warship is commonly equipped with

a radar with the capacities of surveillance, tracking and weapon guidance, which is called

a multifunction radar (Orman et al., 1998). A multifunction radar system simultaneously

performs the missions of surveillance, tracking and weapon guidance. There exists a well-

defined priority structure with these three missions. The mission of weapon guidance

retains the highest priority. For the mission of tracking, an inbound target has higher

priority than the object moving away. If a precedence chain of the targets of all missions

is predetermined, then the assumption of a fixed job sequence in coupled-task scheduling

could be reasonable.

In the following section, several intriguing properties of the fixed-job-sequence problem

are expounded in detail. While the complexity status of the considered problem remains

open, a polynomial-time algorithm is presented to construct a schedule with the minimum

makespan for a given task sequence abiding by the fixed-job- sequence constraint. Three

polynomially solvable cases of the fixed-job-sequence problem are also investigated and a

complexity graph of the problem is presented.

4.2 Problem Description

Without loss of generality, this study assumes that the fixed job sequence is (J1, J2, . . . , Jn).

Subject to the constraint of a fixed job sequence and the definition of coupled tasks,

we thus have a directed ladder graph of precedence relationship with two long chains,
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a1 → a2 → · · · → an and b1 → b2 → · · · → bn, and n single-arc chains, aj → bj for all

j ∈ Nn, as illustrated in Figure 4.1. As a permutation of {aj | j ∈ Nn} ∪ {bj | j ∈ Nn}, a

task sequence is called plausible if it adheres to the precedence constraints given by the

ladder graph. An initial idea about how to generate a plausible task sequence is given

first. By virtue of the diagonal-avoiding paths (Davis, 2006), the following observation is

presented.

Observation 4.1. Given n jobs, all plausible task sequences can be generated by the

diagonal-avoiding paths along the edges of a grid with n× n square cells. Each diagonal-

avoiding path corresponds to exactly one plausible task sequence.

A diagonal-avoiding path is the one which leads from the top-left corner O to the

bottom-right corner D without backtracking, and stays on or above the diagonal without

passing below it. As shown in Figure 4.2 for the case n = 5, the illustrated diagonal-

avoiding path corresponds to the plausible task sequence (a1, a2, b1, a3, b2, b3, a4, a5, b4, b5).

The number of diagonal-avoiding paths in a grid of n × n squares is given by the well-

known Catalan number, Cn = 1
n+1

(
2n
n

)
, which grows in the order of Ω(4n/

√
n3).

1
a

2
a  n

a

1
b

2
b  n

b

Figure 4.1: A directed ladder graph of precedence relationship for the
1|(aj, lj, bj), fjs|Cmax problem.
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4
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Figure 4.2: The diagonal-avoiding path corresponding to the plausible task sequence
(a1, a2, b1, a3, b2, b3, a4, a5, b4, b5).
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Previous experience suggests that scheduling problems with fixed job sequences could

be resolved by dynamic programs for the objective of makespan or total completion time

minimization (Cheng et al., 2000b; Hwang et al., 2010a; Ng & Kovalyov, 2007). However,

it seems not to be the case for problem 1|(aj, lj, bj), fjs|Cmax. The intrigue could be

ascribed to the following two causes:

1. Although the job sequence is pre-assigned, the studied problem remains a problem

of sequencing in which there are 1
n+1

(
2n
n

)
plausible task sequences for n jobs.

2. The time lag lj between tasks aj and bj can accommodate the processing of not only

tasks {aj+1, aj+2, . . . , an} but also tasks {b1, b2, . . . , bj−1}. Due to the distinctive

scheduling pattern, the principle of optimality fails. Thus, it becomes not clear

whether a dynamic programming approach will work. Take for example the following

instance with five jobs: (a1, l1, b1) = (3, 9, 1), (a2, l2, b2) = (1, 10, 2), (a3, l3, b3) =

(2, 11, 3), (a4, l4, b4) = (3, 10, 2), (a5, l5, b5) = (3, 9, 1). The optimal schedule for the

fixed-job-sequence problem is demonstrated in Figure 4.3. In the optimal schedule,

the subschedule of the subsequence (J1, J2) attains the time span equal to 18. But

the time span of the shortest subschedule constructed with the subsequence (J1, J2)

is 16. Thus, a subschedule within the shortest complete schedule is not necessarily

a shortest subschedule.

b1a1 a2 b2a3 a4 a5 b3 b4 b5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 4.3: Optimal schedule of the instance with (a1, l1, b1) = (3, 9, 1), (a2, l2, b2) =
(1, 10, 2), (a3, l3, b3) = (2, 11, 3), (a4, l4, b4) = (3, 10, 2), (a5, l5, b5) = (3, 9, 1).

Owing to the intrigue of the fixed-job-sequence problem, we turn to aim at scheduling

a given plausible task sequence in the next section. The notation that will be used later

is summarized as follows.

Notation:

π : a given plausible sequence of 2n tasks, π = (o1, o2, . . . , o2n);
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oh : the task assigned to the h-th position in π;

σ : a schedule of 2n tasks;

sj(σ) : the starting time of job Jj in a schedule σ;

Cj(σ) : the completion time of job Jj in a schedule σ;

k : the number of segments in the task sequence (a1, a2, . . . , an);

X : the sequence of subscripts (1, 2, . . . , n);

H : a k-subsequence partition of X corresponding to the partition of (a1, a2, . . . , an);

Xr : the r-th subsequence in X, Xr = (nr−1 + 1, . . . , nr), where n0 = 0 and nk = n;

X̃r : the set of elements in sequence Xr;

|Xr| : the length of Xr, |Xr| = nr − nr−1;

bn′
r
: the immediate predecessor of anr+1 in π;

πr : the r-th fundamental cluster in π, πr = (anr−1+1, . . . , anr , bnr−1+1, . . . , bnr);

χr : The subsequence obtained by eliminating the jobs of {Jj | j ∈ X̃r+1 ∪ · · · ∪ X̃k}

from π;

σr : the schedule of πr constructed by the developed recursive formula;

σπr : a feasible schedule whose permutation of tasks agrees with πr;

αr : the time span from the start of anr−1+1 to the completion of anr ;

γr : the idle time between anr and bnr−1+1;

Sr : a subschedule constructed by arranging the first r subschedules, σ1, . . . , σr;

β1
r : the idle time between bn′

r
and bn′

r+1 in subschedule Sr;

β2
r : the time span from the start of bn′

r+1 to the completion of bnr ;
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µ : the input task of Checking routine in Algorithm Plausible-Task-Sequence;

ν : the task preceded by µ in χI+1;

ν̃ : the corresponding first or second counterpart task of ν.

4.3 Scheduling of Plausible Task Sequences

Discussion in the previous section introduces the notion of 1
n+1

(
2n
n

)
plausible task sequence

for a given job sequence. This section is dedicated to the development of a polynomial

time algorithm for determining the makespan of a plausible task sequence, if it is feasible.

Given a plausible task sequence, it could be non-trivial to determine its feasibility and a

schedule with the minimum makespan, if feasible.

Denote a plausible task sequence by π = (o1, o2, . . . , o2n), where oh stands for the task

assigned to the h-th position in π. If no confusion would arise, hereafter this study simply

mentions sequences to indicate plausible task sequences. Notice that in any schedule

considered hereafter, the constraint of exact delays is satisfied. In other words, the interval

between each pair of coupled tasks aj and bj in any schedule is exactly lj, j ∈ Nn. Denote

the starting time and the completion time of job Jj in a schedule σ by sj(σ) and Cj(σ),

respectively. It is obvious that Cj(σ) = sj(σ) + aj + lj + bj. A schedule σ is feasible if

and only if at any time, at most one task is processed in σ, i.e. no overlap between tasks

occurs. Sequence π is called feasible if and only if there exists a feasible schedule whose

permutation of tasks agrees with π, i.e. a schedule in which the processing of any task oh

for h ∈ N2n−1 completes earlier than or exactly at the starting time of task oh+1.

Consider first how to determine the feasibility of a given sequence π. For any feasible

sequence π, the constraint of exact delays implies that the interval induced by the exact

delay lj of any job Jj must accommodate all the tasks arranged between aj and bj. Namely,

the following condition is necessary for the feasibility of a sequence π.

Condition (C): For any job Jj with oℓ = aj and og = bj, the inequality
∑g−1

h=ℓ+1 poh ≤ lj

must hold, where poh is the processing length of task oh.

Note that condition (C) is not sufficient to make sequence π feasible. Consider the
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following instance: (a1, l1, b1) = (1, 2, 1), (a2, l2, b2) = (2, 5, 1), (a3, l3, b3) = (2, 4, 2),

(a4, l4, b4) = (2, 3, 1). Condition (C) holds for sequence π = (a1, a2, b1, a3, a4, b2, b3, b4).

However, π is infeasible since an overlap between b3 and b4 (Figure 4.4(a)) or between a4

and b2 (Figure 4.4(b)) is inevitable in any attempt to create a feasible schedule of π.

0 1 2 3 4 5 6 7 8 9 10 11 12

a1 b3

a4 b4

b2a2 a3b1

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a1 b3

a4 b4

b2a2 a3b1

Figure 4.4: An inevitable task overlap happens (a) between b3 and b4 or (b) between a4
and b2.

Condition (C) only partially verifies the feasibility of π because in a schedule whether

an idle time or overlap exists between oh and oh+1 cannot be detected before assigning

each task a starting time. Therefore, we turn to develop a procedure for constructing

a schedule for sequence π and prove that the feasibility of π can be determined by the

constructed schedule. If sequence π is indeed feasible, it can be further proved that the

constructed schedule attains the minimum makespan among those of feasible schedules.

Consider the subsequences of a particular permutation pattern

(ai1 , ai1+1, . . . , ai2 , bi1 , bi1+1, . . . , bi2),

1 ≤ i1 ≤ i2 ≤ n, where all its first (respectively, second) tasks are consecutively se-

quenced without any second (respectively, first) task inserted. A given sequence π is

derived by merging several subsequences of this pattern. Consider the sequence π =

(a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8) as an example. As shown in Figure 4.5,

sequence π can be regarded as the outcome of four interleaved subsequences (a1, a2, b1, b2),

(a3, a4, a5, b3, b4, b5), (a6, b6) and (a7, a8, b7, b8). Such particular subsequences are regarded

as the maximal fundamental clusters of a given sequence π and these subsequences are

scheduled individually. Scheduling these fundamental clusters is the first attempt to ex-

amine the feasibility of sequence π. Later it will be elucidated that the infeasibility of
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any fundamental cluster leads to the infeasibility of π. If all these fundamental clusters

are feasible, then we proceed to schedule π by interleaving those obtained subschedules.

π = (a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8)

ß
(a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8)

(a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8)

(a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8)

(a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8)

( )

( )

( )

( )

Figure 4.5: Four subsequences of a particular pattern in sequence π.

Now some notations for collating fundamental clusters from sequence π are defined.

Given a sequence π, a segment is defined as a maximal, by inclusion, subsequence of tasks

{aj} without inserted tasks {bi}. Assume that the task sequence (a1, a2, . . . , an) is parti-

tioned into k disjoint segments for 1 ≤ k ≤ n. To facilitate discussion, we denote by X the

sequence of subscripts (1, 2, . . . , n) and byH a k-subsequence partition ofX corresponding

to the k-segment partition of (a1, a2, . . . , an). Partitioning X into k disjoint subsequences,

we haveH = {X1, X2, . . . , Xk} andX = X1⊕X2⊕· · ·⊕Xk, whereXr denotes the r-th sub-

sequence in X and ⊕ is a sequence concatenation operator. For r ∈ Nk, the last element

of subsequence Xr is denoted by nr, and we have Xr = (nr−1 + 1, . . . , nr), where n0 = 0

and nk = n. Denote by X̃r the set of elements in sequence Xr. |Xr| = nr −nr−1 indicates

the length of Xr. Denote by bn′
r
the immediate predecessor of anr+1 in π for r ∈ Nk−1 and

n′
r−1+1 ≤ n′

r ≤ nr, where n
′
0 = 0. Notice that any single task anr−1+1 = anr , which is sur-

rounded by two tasks bn′
r−1

and bn′
r−1+1 in π, forms a segment, i.e. |Xr| = 1. According to

the assumption of k segments, sequence π consists of k fundamental clusters in which the

r-th one contains jobs {Jj | j ∈ X̃r}, r ∈ Nk. Denote the r-th fundamental cluster in π by

πr = (anr−1+1, . . . , anr , bnr−1+1, . . . , bnr), r ∈ Nk. The subsequence obtained by eliminating

the jobs of {Jj | j ∈ X̃r+1∪· · ·∪X̃k} from π is denoted by χr, r ∈ Nk−1. Note that χk = π.

To construct a schedule of fundamental cluster πr, we proposes a recursive procedure

to augment the subschedule job by job, instead of task by task. Namely, coupled tasks aj
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and bj are simultaneously added into the subschedule of jobs (Jnr−1+1, Jnr−1+2, . . . , Jj−1),

j ∈ {nr−1 + 2, . . . , nr}, in each recursion step. In the proposed procedure, job Jj is

interleaved with job Jj−1 by conjoining two first tasks aj−1 and aj (Figure 4.6(a)) or two

second tasks bj−1 and bj (Figure 4.6(b)). The obtained schedule is denoted by σr, and

the recursive formula for the job starting times is given as follows:

sj(σr) =


0, j = nr−1 + 1;

sj−1(σr) + aj−1

+max{0, lj−1 + bj−1 − aj − lj}, nr−1 + 2 ≤ j ≤ nr.

(4.1)

aj-1 bj-1aj bj aj-1 bj-1aj bj

(a) (b)

lj-1

lj

lj-1

lj

Figure 4.6: Jj is interleaved with Jj−1 by conjoining (a) aj−1 and aj or (b) bj−1 and bj.

Eq. (4.1) implies that in σr task aj (respectively, bj) is started later than or exactly at

the completion of aj−1 (respectively, bj−1). Schedule σr is a feasible schedule of πr if task

anr completes earlier than or exactly at the start of task bnr−1+1. The following lemma

gives structural properties of fundamental clusters.

Lemma 4.1. Given a subsequence πr = (anr−1+1, . . . , anr , bnr−1+1, . . . , bnr), the following

three properties hold: (i) If snr(σr)+anr > Cnr−1+1(σr)−bnr−1+1, then πr is infeasible. (ii)

If snr(σr) + anr ≤ Cnr−1+1(σr) − bnr−1+1, then πr is feasible and σr is a feasible schedule

attaining the minimum makespan among those of all feasible schedules of πr. (iii) The

feasibility and the shortest schedule, if feasible, can be determined in O(|Xr|) time.

Proof. If snr(σr)+anr > Cnr−1+1(σr)−bnr−1+1, then task anr completes later than the start

of task bnr−1+1 in σr. The only possible way to find a feasible schedule of πr is to process

anr earlier or process bnr−1+1 later. In schedule σr, task aj starts exactly at the completion

of aj−1, or task bj starts exactly at the completion of bj−1, j ∈ {nr−1+2, . . . , nr}. Starting

Jnr earlier or Jnr−1+1 later finally results in the shifting of the whole schedule, which is
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futile. Therefore, a feasible schedule of πr does not exist and πr is infeasible. Property

(i) is proved.

Property (ii) is concerned about the feasibility of πr and the optimality of σr. As

for the feasibility of πr, the inequality snr(σr) + anr ≤ Cnr−1+1(σr) − bnr−1+1 indicates

that task anr completes earlier than or exactly at the starting time of task bnr−1+1 in σr.

Therefore, a feasible schedule of πr, i.e. σr, exists and πr is feasible. Next, we will show

that schedule σr attains the minimum makespan for sequence πr, i.e. Cnr(σr) ≤ Cnr(σπr),

where σπr denotes any feasible schedule of πr. This inequality can be proved by induction

on nr. We derive the following recursive equation for Cj(σr) by adapting Eq. (4.1).

Cj(σr) =


anr−1+1 + lnr−1+1 + bnr−1+1, j = nr−1 + 1;

Cj−1(σr) + bj

+max{0, aj + lj − lj−1 − bj−1}, nr−1 + 2 ≤ j ≤ nr.

(4.2)

Consider the induction base nr = nr−1+2 and πr = (anr−1+1, anr−1+2, bnr−1+1, bnr−1+2).

If anr−1+2 + lnr−1+2 > lnr−1+1 + bnr−1+1, then it is impossible to interleave Jnr−1+1 and

Jnr−1+2 with a completion time less than anr−1+1 + anr−1+2 + lnr−1+2 + bnr−1+2. On the

other hand, if anr−1+2 + lnr−1+2 ≤ lnr−1+1 + bnr−1+1, then there exists no feasible schedule

σπr where Jnr−1+2 completes earlier than anr−1+1 + lnr−1+1 + bnr−1+1 + bnr−1+2. Since

Cnr−1+2(σr) = anr−1+1+anr−1+2+ lnr−1+2+ bnr−1+2 for anr−1+2+ lnr−1+2 > lnr−1+1+ bnr−1+1

and Cnr−1+2(σr) = anr−1+1 + lnr−1+1 + bnr−1+1 + bnr−1+2 for anr−1+2 + lnr−1+2 ≤ lnr−1+1 +

bnr−1+1 from Eq. (4.2), we have the induction base Cnr−1+2(σr) ≤ Cnr−1+2(σπr).

Assume, as the induction hypothesis, that the inequality holds for nr = i > nr−1 + 2,

i.e. Ci(σr) ≤ Ci(σπr). If ai+1 + li+1 > li + bi, then the minimum time span from the

completion time of Ji to that of Ji+1 is ai+1 + li+1 + bi+1 − li − bi. In case of ai+1 + li+1 ≤

li + bi, the minimum aforementioned time span is bi+1. By Eq. (4.2), we have Ci+1(σr) =

Ci(σr) + bi+1 + ai+1 + li+1 − li − bi for ai+1 + li+1 > li + bi and Ci+1(σr) = Ci(σr) + bi+1

for ai+1 + li+1 ≤ li + bi. Hence, Ci+1(σr) is less than or equal to the completion time of

Ji+1 in any feasible schedule σπr , i.e. Ci+1(σr) ≤ Ci+1(σπr). By induction, the inequality

Cnr(σr) ≤ Cnr(σπr) is established. The proof of property (ii) is done.
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For schedule πr, the feasibility and the shortest schedule, if feasible, can be obtained

by the values of sj(σr) for j = nr−1 + 1, . . . , nr. By virtue of Eq. (4.1), the calculation

involves |Xr| − 1 iterations, each of which requires constant time. Therefore, either a

feasible schedule with the minimum makespan or the infeasibility of sequence πr can be

determined in O(|Xr|) time.

The infeasibility of fundamental cluster πr implies that there exists no feasible sub-

schedule whose task permutation agrees with subsequence πr, r ∈ Nk. Since the sub-

sequence πr is a part of complete sequence π, no feasible complete schedule of π exists

either. We therefore have the following property.

Property 4.1. If any fundamental cluster πr, r ∈ Nk, is infeasible, then sequence π is

infeasible.

Before presenting a step-wise procedure for determining the infeasibility or the shortest

feasible schedule of sequence π, we define some notations. For each schedule σr (r ∈ Nk),

denote by αr the time span from the start of anr−1+1 to the completion of anr , and γr the

idle time between anr and bnr−1+1. Sr denotes a subschedule constructed by arranging

the first r subschedules, σ1, . . . , σr. Note that Sk is the constructed complete schedule of

sequence π, which consists of k clusters. Denote by β1
r the idle time between bn′

r
and bn′

r+1

in subschedule Sr, and by β2
r the time span from the start of bn′

r+1 to the completion of bnr .

Algorithm Plausible-Task-Sequence

Step 1. Scan π to obtain the partition H = (X1, . . . , Xk) and keep track of nr, n
′
r and

χr for each r = 1, . . . , k − 1.

Step 2. Schedule πr by Eq. (4.1) for each r = 1, . . . , k. If any πr is infeasible, then go

to Step 7. Otherwise, set I = 1 and SI = σ1.

Step 3. If n′
I = nI , then merge SI with σI+1 by appending anI+1 to the end of bnI

and

go to Step 6.
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Step 4. If β1
I ≥ αI+1 ∧β2

I ≤ γI+1, then go to Step 4(a). If β1
I < αI+1 ∧β2

I ≤ γI+1, then

go to Step 4(b). If β1
I ≥ αI+1 ∧ β2

I > γI+1, then go to Step 4(c). Otherwise, go

to Step 4(d).

Step 4(a). If β1
I + β2

I ≤ αI+1 + γI+1, then merge SI with σI+1 by appending anI+1 to

the end of bn′
I
. Otherwise, merge SI with σI+1 by appending bnI+1 to the end of bnI

.

Go to Step 6.

Step 4(b). Shift bn′
I+1 (and an′

I+1 will be simultaneously shifted, i.e. shift Jn′
I+1) to

extend β1
I such that β1

I = αI+1 and merge SI with σI+1 by appending anI+1 to the

end of bn′
I
. Go to Step 5.

Step 4(c). Shift Jn′
I+1 to shorten β2

I such that β2
I = γI+1 and merge SI with σI+1 by

appending bnI+1 to the end of bnI
. Go to Step 5.

Step 4(d). If β1
I + β2

I ≤ αI+1 + γI+1, then shift Jn′
I+1 to extend β1

I such that β1
I = αI+1

and merge SI with σI+1 by appending anI+1 to the end of bn′
I
. Otherwise, shift Jn′

I+1

to shorten β2
I such that β2

I = γI+1 and merge SI with σI+1 by appending bnI+1 to

the end of bnI
. Go to Step 5.

Step 5. Call Checking routine with input bn′
I+1. Call Checking routine with input

an′
I+1.

Step 6. Let SI+1 be the obtained schedule. If I = k− 1, then output the schedule SI+1

and stop. Otherwise, set I = I + 1 and go to Step 3.

Step 7. Report the infeasibility of π and stop.

Checking routine. Denote the input task as µ, the task preceded by µ in χI+1 as ν, and

the corresponding first or second counterpart task of ν as ν̃. If ν = b1∨anI+1∨bnI+1,

then go to Final checking. Otherwise, go to Checking and shifting.

Final checking: If the completion of µ is later than the start of ν, then go to Step 7.

Otherwise, terminate the subroutine.
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Checking and shifting: If the completion of µ is later than the start of ν, shift ν

(and ν̃ will be simultaneously shifted) such that the task ν starts at exactly the

completion of µ, call Checking routine with input ν, and call again Checking

routine with input ν̃. Otherwise, terminate the subroutine.

Example. Consider an instance of eight jobs with the following parameters (Figure 4.7(a)):

(a1, l1, b1) = (3, 4, 1), (a2, l2, b2) = (1, 7, 2), (a3, l3, b3) = (1, 8, 1), (a4, l4, b4) = (1, 10, 1),

(a5, l5, b5) = (2, 9, 1), (a6, l6, b6) = (1, 4, 3), (a7, l7, b7) = (1, 5, 2), (a8, l8, b8) = (1, 6, 1). The

sequence π = (a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, a7, a8, b5, b6, b7, b8) is given. Constructing a

feasible schedule σπ attaining the minimum makespan withAlgorithm Plausible-Task-

Sequence is demonstrated step by step as follows:

Step 1. We obtain k = 4, X1 = (1, 2), X2 = (3, 4, 5), X3 = (6), X4 = (7, 8),

n1 = 2, n2 = 5, n3 = 6, n′
1 = 1, n′

2 = 3, n′
3 = 4, χ1 = (a1, a2, b1, b2), χ2 =

(a1, a2, b1, a3, a4, a5, b2, b3, b4, b5), and χ3 = (a1, a2, b1, a3, a4, a5, b2, b3, a6, b4, b5, b6).

Step 2. Feasible subschedules σ1, σ2, σ3 and σ4 are derived as shown in Figure 4.7(b).

Set I = 1 and S1 = σ1.

Step 3. Since n′
1 = 1 < n1 = 2, we go to Step 4.

Step 4. Since β1
1 = 3 < α2 = 4 and β2

1 = 2 < γ2 = 5, we go to Step 4(b).

Step 4(b). Shift J2 such that β1
1 = α2 = 4 and merge S1 with σ2 by appending a3 to

the end of b1. Go to Step 5.

Step 5. Call Checking routine with input b2. Call Checking routine with input a2.

Checking routine. We have µ = b2, ν = b3, and ν̃ = a3. Go to Final checking.

Final checking: Task b2 completes (at 14) earlier than the start of b3 (at 17). Terminate

the subroutine.

Checking routine. We have µ = a2, ν = b1, and ν̃ = a1. Go to Final checking.

Final checking: Task a2 completes (at 5) earlier than the start of b1 (at 7). Terminate

the subroutine.
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Step 6. The obtained schedule is S2 (Figure 4.8). Set I = 2 and go to Step 3.

Step 3. Since n′
2 = 3 < n2 = 5, we go to Step 4.

Step 4. Since β1
2 = 2 > α3 = 1 and β2

2 = 2 < γ3 = 4, we go to Step 4(a).

Step 4(a). Since β1
2 + β2

2 = 4 < α3 + γ3 = 5, we merge S2 with σ3 by appending a6 to

the end of b3. Go to Step 6.

Step 6. The obtained schedule is S3 (Figure 4.9). Set I = 3 and go to Step 3.

Step 3. Since n′
3 = 4 < n3 = 6, we go to Step 4.

Step 4. Since β1
3 = 0 < α4 = 2 and β2

3 = 5 > γ4 = 4, we go to Step 4(d).

Step 4(d). Since β1
3 + β2

3 = 5 < α4 + γ4 = 6, we shift J5 such that β1
3 = α4 = 2 and

merge S3 with σ4 by appending a7 to the end of b4, as shown in Figure 4.10(a). Go

to Step 5.

Step 5. Call Checking routine with input b5. Call again Checking routine with

input a5.

Checking routine. We have µ = b5, ν = b6, and ν̃ = a6. Go to Checking and

shifting.

Checking and shifting: Task b5 completes (at 24) later than the start of b6 (at 23).

Shift J6 such that the start of b6 is exactly at 24, as shown in Figure 4.10(b). Call

Checking routine with input b6, and call again Checking routine with input a6.

Checking routine. We have µ = b6, ν = b7, and ν̃ = a7. Go to Final checking.

Final checking: Task b6 completes (at 27) exactly at the start of b7. Terminate

the subroutine.

Checking routine. We have µ = a6, ν = b4, and ν̃ = a4. Go to Checking and

shifting.

Checking and shifting: Task a6 completes (at 20) exactly at the start of b4.

Terminate the subroutine.
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Checking routine. We have µ = a5, ν = b2, and ν̃ = a2. Go to Checking and

shifting.

Checking and shifting: Task a5 completes (at 14) later than the start of b2 (at 12).

Shift J2 such that the start of b2 is exactly at 14, as shown in Figure 4.10(c). Call

Checking routine with input b2, and call again Checking routine with input a2.

Checking routine. We have µ = b2, ν = b3, and ν̃ = a3. Go to Checking and

shifting.

Checking and shifting: Task b2 completes (at 16) earlier than the start of b3 (at

17). Terminate the subroutine.

Checking routine. We have µ = a2, ν = b1, and ν̃ = a1. Go to Final checking.

Final checking: Task a2 completes (at 7) exactly at the start of b1. Terminate

the subroutine.

Step 6. The obtained schedule is S4. Since I = 3 = k − 1, we output the schedule S4

(Figure 4.10(c)) and stop.

a8 b8

b1a1 a2 b2

a3 b3a4 b4a5 b5

b6a6

a7 b7a8 b8

b1a1

a2 b2

a3 b3

a4 b4

a5 b5

b6a6

a7 b7

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) (b)

a1
s1
(S1)

g1

s2

s3

s4

a2 g2

a3 g3

a4 g4

1

1b
2

1b

Figure 4.7: Illustration of (a) the instance of eight jobs and (b) subschedules σ1(= S1),
σ2, σ3 and σ4.

Theorem 4.1. Given a sequence π, Algorithm Plausible-Task-Sequence either pro-

duces a feasible schedule attaining the minimum makespan or identifies the infeasibility of

π in O(n2) time.
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Figure 4.8: Subschedules S2, σ3 and σ4.
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Figure 4.9: Subschedules S3 and σ4.
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Figure 4.10: Step-by-step construction of optimal schedule S4.

Proof. Assume a feasible schedule Sk is produced by the algorithm. At the end of Step 2,

we have the k subschedules, σ1, . . . , σk, each of which attains the minimum makespan with

respect to its corresponding fundamental cluster. In the recursive procedure from Step 3

to Step 6, Sk is obtained by tightly arranging all the k partial schedules, σ1, . . . , σk, one

by one. In Step 3, we can easily merge SI with σI+1 without shifting any task of SI

because bn′
I
, the task by which anI+1 should be preceded, is known to be bnI

. In case

of Step 4(a), σI+1 can also be greedily embedded in SI without shifting any task of SI

because β1
I ≥ αI+1 and β2

I ≤ γI+1. Notice that in Steps 4(b)-(d), it is required to defer

the processing of Jn′
I+1, but all jobs other than Jn′

I+1 are not yet shifted. Step 5 involves
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calling Checking routines with the two tasks bn′
I+1 and an′

I+1, respectively. Whenever

Checking routine is invoked, either Final checking or Checking and shifting will

be executed. Subroutine Final checking indicates that the infeasible result can be

concluded whenever task b1 (also, a1), anI+1 or bnI+1 needs to be shifted. In subroutine

Checking and shifting, we examine whether any job needs to be shifted due to the

shifting of the task passed to Checking routine. If the shifting of other tasks are made,

then Checking routine will be called again. Provided that a feasible schedule Sk is

obtained after the recursive procedure, either the first or second task of the job Jj in Sk

tightly adjoins the task preceding it in π, for each j = 2, . . . , n. No room is possible to

further condense Sk.

Consider the case of infeasibility. If the infeasibility of π arises from Step 2, then

it is due to the results of Property 4.1. If infeasible comes from the subroutine Final

checking, then some task completes later than the start of b1, anI+1 or bnI+1. It is

obvious that shifting J1 is futile and shifting JnI+1 causes an infinite shifting recursion.

Therefore, sequence π is infeasible if infeasibility is reported by the algorithm.

As for the running time of the algorithm, Step 1 requires O(n) time. Step 2 takes at

most O(|X1|+ |X2|+ · · ·+ |Xk|) = O(n) time, and the recursion from Step 3 to Step 6

involves assembling k partial schedules, each of which takes no more than O(n) time for

the checking processes in Step 5. Since k ≤ n, the overall running time is O(n2).

4.4 Polynomially Solvable Cases

This section discusses three polynomially solvable cases for the fixed-job-sequence prob-

lem. Notice that the complexity result in this section is presented subject to the assump-

tion of input size such that, for example, in the case of identical jobs, we have n copies of

processing times and delay times for the n jobs (Orman & Potts, 1997).
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4.4.1 1|(pj, pj, pj), fjs|Cmax

In this subsection, the case where aj= lj=bj=pj for all j ∈ Nn is considered. Despite the

strong NP-hardness of the 1|(pj, pj, pj)|Cmax problem (Orman & Potts, 1997), its fixed-

job-sequence counterpart is polynomially solvable. An optimal schedule can be obtained

by the following procedure.

Algorithm PSC1

Step 1. Set j = 1 and E = ∅.

Step 2. If pj = pj+1, then go to Step 4. Otherwise, append Jj+1 to the end of Jj, and

set j = j + 1.

Step 3. If j = n, then output the schedule and stop. Otherwise, go to Step 2.

Step 4. Interleave Jj and Jj+1. Append Jj+2 to the end of Jj+1. Set E = E ∪{j, j +1}

and j = j + 2. Go to Step 3.

Theorem 4.2. The 1|(pj, pj, pj), fjs|Cmax problem can be solved in O(n) by Algorithm

PSC1. The makespan of the optimal schedule is 2
∑

j∈E pj + 3
∑

j∈Nn\E pj, where E is

the set of jobs interleaving with each other.

Proof. It is obvious that no interleaving is possible for any two jobs other than two

adjacent identical jobs, Jj and Jj+1 with pj = pj+1. By examining each pair of adjacent

jobs, Algorithm PSC1 matches any un-interleaved Jj with Jj+1 if pj = pj+1. Since

no more interleaving is possible, Algorithm PSC1 produces an optimal schedule. In

the obtained optimal schedule, each interleaved pair of jobs, Jj and Jj+1 for {j, j + 1} ⊂

E, contributes 2(pj + pj+1) to the makespan. Any job Jh that cannot be interleaved

contributes 3ph to the makespan. Thus, Cmax = 2
∑

j∈E pj + 3
∑

j∈Nn\E pj. From Step 2

to Step 4, at most n iterations are required, each of which takes a constant time. The

overall running time of Algorithm PSC1 is O(n).
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4.4.2 1|(p, p, bj), fjs|Cmax

Without the assumption of a fixed job sequence, this special case can be solved in O(n)

time (Orman & Potts, 1997). Since aj = lj = p for j ∈ Nn, any job cannot be interleaved

with more than one job. Subject to a given job sequence, we have the following property

of this special case.

Property 4.2. If the interleaving of jobs exists in a feasible schedule for the problem

1|(p, p, bj), fjs|Cmax, then the interleaved pair are some two consecutive jobs Jj and Jj+1,

where bj ≤ p, j ∈ Nn−1.

With property 4.2, a forward dynamic program can be designed. A job is called iso-

lated if it is not interleaved with any other job. A subschedule of {J1, J2, . . . , Jj} can be

completely characterized by the 2-tuples (j, λ), where j and λ are the number of jobs in

the subschedule and the interleaving status of job Jj, respectively. If λ = 0, then job Jj

is isolated. If λ = 1, then job Jj is interleaved with job Jj−1. Denote the corresponding

minimum makespan as f(j, λ) for 1 ≤ j ≤ n and λ ∈ {0, 1}.

Algorithm PSC2

Initialization: f(1, 0) = 2p+ b1 and f(1, 1) = ∞.

Recursive function: For 2 ≤ j ≤ n,

f(j, 0) = min{f(j − 1, 0), f(j − 1, 1)}+ 2p+ bj. (4.3)

f(j, 1) =

{
f(j − 1, 0) + p+ bj − bj−1, bj−1 ≤ p;

∞, otherwise.
(4.4)

Goal: min
λ∈{0,1}

f(n, λ).

Theorem 4.3. An optimal schedule for the 1|(p, p, bj), fjs|Cmax problem can be produced

in O(n) by Algorithm PSC2.

Proof. Eq. (4.3) indicates that any isolated job Jj adjoins Jj−1 which is either isolated

or interleaved with Jj−2. In Eq. (4.4), job Jj can be interleaved with job Jj−1 if Jj−1 is
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isolated and bj−1 ≤ p. A subschedule in the state (j, λ) with value f(j, λ) dominates all

other subschedules in the same state in the sense that it contributes the minimum value

to the makespan among those of all subschedules in this state. The principle of optimality

holds and Algorithm PSC2 can generate an optimal schedule. To obtain minλ f(n, λ),

at most n−1 iterations are required, each of which takes a constant time. The overall

running time of Algorithm PSC2 is O(n).

Corollary 4.1. The 1|(aj, p, p), fjs|Cmax problem is solvable in O(n).

Proof. Orman & Potts (1997) proved that the coupled-task makespan problem and its

reverse are equivalent. Given the fixed-job-sequence constraint, the equivalence still holds.

By virtue of lemma 4.3, this corollary follows.

4.4.3 1|(p, l, p), fjs|Cmax

Since all jobs are identical, any feasible schedule for problem 1|(p, l, p)|Cmax satisfies

the fixed-job-sequence constraint. By the results of Orman & Potts (1997) for prob-

lem 1|(p, l, p)|Cmax, the fixed-job-sequence problem 1|(p, l, p), fjs|Cmax can be solved in

O(n).

By virtue of these three polynomially solvable cases, we can put the borderline between

polynomially solvable problems and open problems in the complexity graph. In corre-

spondence with the complexity graph of the coupled-task scheduling problems shown in

Figure 4.11, that of the fixed-job-sequence problems is given in Figure 4.12. The strongly

NP-hard problem 1|(pj, pj, pj)|Cmax becomes polynomially solvable when the fixed-job-

sequence assumption is imposed. For each polynomially solvable case of the prototypical

problem, the corresponding fixed-job-sequence problem is also solvable in O(n) time.

However, it cannot be concluded that a fixed-job-sequence problem is easier to deal with

than its counterpart problem without the fixed-job-sequence assumption.
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Figure 4.11: Complexity graph of prototypical problems (Orman & Potts, 1997).
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Figure 4.12: Complexity graph of fixed-job-sequence problems.

4.5 Summary

This chapter has studied a single machine coupled-task makespan minimization prob-

lem subject to a fixed job sequence. To schedule a given task sequence abiding by the

fixed-job-sequence constraint, this study designed an O(n2) algorithm for determining its

feasibility and a schedule with the minimum makespan, if such a feasible schedule exists.

Three polynomially solvable cases for the fixed-job-sequence problem were identified. A
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complexity graph was also presented to depict the complexity statuses of the studied

cases.

Although the complexity status of the 1|(aj, lj, bj), fjs|Cmax problem remains open,

the results presented in this study could inspire further research attention on this subject.

It is also interesting to investigate the complexity status of the open problems indicated in

the complexity graph of the fixed-job-sequence problems. Further research could also be

conducted in developing branch-and-bound procedures in which our proposed algorithm

for plausible task sequences could be exploited. In addition, other different fixed-sequence

constraints, e.g. given a fixed task-1 sequence or a fixed task-2 sequence, can be consid-

ered.
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Chapter 5

Concluding Remarks

5.1 Conclusions

In this dissertation, scheduling problems subject to fixed job sequences were studied. The

fixed-job-sequence scheduling problems can be categorized into three major types, i.e.

problems of batching, problems of interleaving, and problems of idle time insertion. Three

fixed-job-sequence scheduling problems, including the two-stage assembly-type flowshop

batching problem, the two-stage differentiation flowshop problem and the single-machine

coupled-task problem, were studied in this dissertation. The first is concerned with the

minimization of total completion time in the two-stage assembly-type flowshop batching

problem with a fixed job sequence. A two-phase algorithm equipped with a problem-

transformation procedure and a polynomial time dynamic program was developed to solve

the studied problem in O(mn + n5) time, where m is the number of parallel dedicated

machines arranged at stage 1 and n is the number of jobs. The second problem is to

minimize the total completion time in a two-stage differentiation flowshop subject to fixed

sequences of jobs per type. One stage-1 common machine andm stage-2 parallel dedicated

machines are arranged in the considered two-stage differentiation flowshop. To achieve

an optimal interleaved processing sequence of all jobs at the first stage, we presented

an O(m2
∏m

l=1 n
m+1
l ) dynamic programming algorithm, where nl is the number of type-l

jobs. In the third problem, the single-machine coupled-task scheduling with exact delays

was investigated. The aim is to schedule these coupled tasks to minimize the makespan
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subject to a given job sequence. Several intriguing properties of the studied problem were

introduced. While the complexity status of the fixed-job-sequence problem remains open,

an O(n2) algorithm was proposed to construct a feasible schedule attaining the minimum

makespan for a given permutation of 2n tasks abiding by the fixed-job-sequence constraint.

We identified three polynomially solvable cases of the fixed-job-sequence problem and

presented a complexity graph of the studied problem.

5.2 Suggestions for Further Studies

Several possible research issues could be developed for further research. Among the fixed-

job-sequence scheduling problems, there could be another type of problems except the

three categories presented in this study. Also, there could be numerous fixed-job-sequence

problems of the three categories which are worthy of consideration. A prime example

would be the scheduling problems with non-regular objective functions (Kanet & Sridha-

ran, 2000), which have drawn much attention. Some open problems in the three fixed-

job-sequence issues under study also remain to be solved in further work. In the assembly

flowshop batching problem with a fixed job sequence, the max-batch model and other

performance measures, such as the maximum lateness and the total tardiness could be

considered. For the two-stage differentiation flowshop problem with fixed job sequences,

the reverse production scheduling model could be investigated. As for the single-machine

coupled-task problem subject to a fixed job sequence, determining its complexity status

is very challenging.

Based upon the theoretical results of the studied problems subject to fixed job se-

quence(s), future works can be conducted on these prototypical problems for investigating

special cases in which an optimal job sequence can be derived by analytical approaches.

On the other hand, model generalization, e.g. general machine configuration, could also

be considered for the studied fixed-job-sequence problems.

55



Bibliography

Ageev, A.A., & Baburin, A.E. (2007). Approximation algorithms for UET scheduling

problems with exact delays. Operations Research Letters, 35(4), 533–540.

Ageev, A.A., & Kononov, A.V. (2006). Approximation algorithms for scheduling problems

with exact delays. Lecture Notes in Computer Sciences, 4368, 1–14.

Ahmadi, J.H., Ahmadi, R.H., Dasu, S., & Tang, C.S. (1992). Batching and scheduling

jobs on batch and discrete processors. Operations Research, 40(4), 750–763.
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