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A 型 H3N2 流行性感冒病毒之 

基因演化與抗原性演化之關聯性研究 
 

研究生:黃章維                                  指導教授: 楊進木博士 

國立交通大學 生物資訊與系統生物研究所 博士班 

摘   要 

流行性感冒病毒經常對人類造成大規模的感染與死亡。發生在病毒表面紅血球凝集素

(hemagglutinin 簡稱為 HA)上的胺基酸突變在逐漸累積之後會產生不同抗原特性的病毒株

(稱為抗原性變異株)，並且造成抗原性漂變(antigenic drift)，此時疫苗常常需要在下一波疫

情來臨前重新設計以提供足夠的保護力。目前人們對於流感病毒的基因演化(genetic 

evolution)與抗原性演化(antigenic evolution)間之關聯性尚未十分清楚，探究它們的關聯性對

於公共衛生與疫苗發展是一個重要且有高度急迫性的議題。 

在流感病毒中，A 型(H3N2)對人有高的致死率，且演化快速。本論文提供三個構面來

研究 A 型(H3N2)流感病毒之基因演化與抗原性演化之關聯性。在第一構面中，針對 HA 的

抗原性變異株提出一個以決策規則為主的方法用以挑選關鍵的胺基酸位置、建立規則並研

究共同改變的胺基酸位置。做法是使用資訊獲得量(information gain，IG)與亂度(entropy)來

量度一個胺基酸位置用於區分抗原性變異株與相似株的鑑別力高低。該規則根據紅血球凝

集素的胺基酸突變來描述一株流行病毒株是否能被疫苗株產生之抗體所抑制，而共同改變

的胺基酸位置常與逃脫抗體辨識以及抗原性漂變相關。 

在第二構面中，本研究加入抗原與抗體交互作用的概念，並且發展了一套抗原決定位

(epitope)為主的方法以鑑別抗原性漂變。首先定義一個「變異的抗原決定位」是一個具有

累積構形改變且逃脫抗體辨識的抗原決定位。實驗結果顯示，兩個關鍵胺基酸位置的改變

可以引起一個抗原決定位的構形改變。除此之外，鄰近受體結合區(receptor-binding site)的

兩個抗原決定位(A 與 B)在逃脫抗體辨識上扮演重要的角色。通常兩個改變的抗原決定位

可以造成抗原性漂變。 

在第三構面中，本研究探討胺基酸位置是否具有相同抗原性影響力，並且發展了一套

以貝式理論為基礎的方法用以鑑別抗原性漂變。做法是利用概率比(likelihood ratio，LR)量

度每個胺基酸位置所造成的抗原性變化大小。根據單純貝式網路與概率比，此方法定義

ADLR用於量度一對紅血球凝集素序列間的抗原性距離(antigenic distance)。實驗結果顯示，

位於抗原決定位與空間上鄰近受體結合區的位置對於抗原性漂變有決定性的影響。除此之

外，ADLR 與血球凝集抑制試驗(hemagglutination inhibition，HI)之血清測試值有高度的相關

性，且可以解釋自西元 1968 年至 2008 的 A 型(H3N2)疫苗株選擇。 

整體而言，此論文顯示了上述模型對於描述基因演化與抗原性演化之關聯性具有可行

性與穩健度。根據 HI 之血清測試值、紅血球凝集素與抗體之結晶結構，此研究發現 A 型

(H3N2)流感病毒抗原性變異株的關鍵胺基酸位置、共同演化位置、胺基酸位置規則與抗原

決定位規則；更重要的是這些模型可以有效反映流感疫苗株的選擇、預測抗原性變異株及
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對於抗原性漂變提供具有生物意義的新洞察角度。我們相信此研究有助於未來流感疫苗的

發展與了解流感病毒的演化，並能指引如何快速研發更有效的流感疫苗。未來可能的研究

方向包括研究季節性 H1N1 流行性感冒病毒以及抗原與抗體間的交互作用。 
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ABSTRACT 

 
Influenza viruses often cause significant human morbidity and mortality. Gradually accumulated 

mutations on the glycoprotein hemagglutinin (HA) occur immunologically distinct strains 

(named as antigenic variants), which lead to the antigenic drift. The emergence and spread of 

antigenic variants often require a new vaccine strain to be formulated before each annual 

epidemic. The relationship between the genetic and antigenic evolution remains unclear and to 

understand the relationship is an emergent issue to public health and vaccine development.  

Among the influenza viruses, the influenza A (H3N2) subtype causes high mortality rates and 

evolves rapidly. In this thesis, we study the relationship between the genetic and antigenic 

evolution of influenza A (H3N2) viruses focusing on the following three dimensions. In the first 

dimension, we proposed a rule-based method for identifying critical amino acid positions, rules, 

and co-mutated positions for antigenic variants. The information gain (IG) and the entropy are 

used to measure the score of an amino acid position on HA for discriminating between antigenic 

variants and similar viruses. Based on the IG, we identified the rules describing when one (e.g. 

circulating) strain will not be recognized by antibodies against another (e.g. vaccine) strain. In 

addition, our experimental results reveal that the co-mutated positions are often related to 

antibody recognition and the antigenic drift.  

In the second dimension, we incorporated the concept of antigen-antibody interactions and 

developed an epitope-based method to identify the antigenic drift of influenza A utilizing the 

conformation changes on antigenic sites (epitopes). A changed epitope, an antigenic site on HA 

with accumulated conformation changes to escape from neutralizing antibody, can be considered 

as a "key feature" for representing the antigenic drift. Our experimental results show that two 

critical position mutations can induce the conformation change of an epitope. The epitopes (A 

and B), which are near the receptor-binding site of HA, play key role for neutralizing antibodies. 

Two changed epitopes often drive the antigenic drift.  

In the third dimension, we addressed the issue of whether the amino acid positions are 
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antigenically equivalent and developed a Bayesian method to identify the antigenic drift of 

influenza A by quantifying the antigenic effect of each amino acid position on HA. We utilized 

the likelihood ratio (LR) to quantify the antigenic distance of an amino acid position. Based on 

naïve Bayesian network and LR, we developed an index, ADLR, to quantify the antigenic 

distance of a given pair of HA sequences. Our experimental results show that the positions 

locating on the epitopes and near the receptor-binding site are crucial to the antigenic drift. In 

addition, the ADLR values are highly correlated to the hemagglutination inhibition (HI) assays 

and can explain WHO vaccine strain selection from 1968 to 2008. 

In summary, this thesis demonstrates that our models are feasible and robust to describe the 

relationship between the genetic and antigenic evolution. According to the HI assays and 

HA/antibody complex structures, we statistically derived the critical amino acid positions, 

co-evolution positions, residue-based rules and epitope-based rules of the antigenic variants for 

influenza A (H3N2) viruses. More importantly, our models can reflect the WHO vaccine strain 

selection, predict antigenic variants and provide biological insights for the antigenic drift. We 

believe that our models are useful for the vaccine development and understanding the evolution 

of influenza A viruses. The future work includes the study of seasonal H1N1 viruses and 

antigen-antibody interactions. 
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Chapter 1 

Introduction 

1.1.  Background 

1.1.1.  Influenza and its impact 

Influenza is one of the most important infectious diseases occurring in humans. The annual 

epidemics cause an estimated 500,000 deaths in the world every year [1]. Moreover, the global 

pandemics can cause high mortality in humans with four pandemics occurring during the last 

100 years. Among the four pandemics, the 1918 H1N1 pandemic caused about 20-50 million 

deaths [2]. Recently, the 2009 H1N1 pandemic that originated from swine influenza virus 

presented new threats to public health worldwide [3].  

Influenza is a single-stranded, negative-sense RNA virus that infects humans and other 

animals including pigs, ferrets and many avian species. Three types (A, B and C) of influenza 

viruses circulate in human population. Type A virus has high genetic diversity and causes the 

highest rates of morbidity in humans [4]. There are eight genome segments that encode eleven 

proteins in the influenza A virus [5]. Among these eleven proteins, the two surface proteins 

hemagglutinin (HA) and neuraminidase (NA) are the main targets for the human immune system. 

In addition, the influenza A viruses are divided into subtypes based on major differences in HA 

and NA. Currently, 16 HA subtypes and 9 NA subtypes have been identified [6] and most of 

them are carried by the wild waterfowls [7].  

 

1.1.2.  Genetic and antigenic evolution of influenza viruses  

The high genetic diversity of influenza viruses comes from error-prone RNA polymerase, high 

replication rates and gene segments reassortment [8]. The mutations (substitutions, deletions and 

insertions) are one of the most important mechanisms for generating genetic variation in 

influenza viruses. 
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1.1.2.1.  Antigenic drift. 

Although both HA and NA are surface proteins that are targeted by the antibodies, the HA 

contains the highest proportion of antigenic sites that can be recognized by the immune system 

[9-11]. Frequent and accumulated mutations on the influenza genome can cause conformational 

changes in the HA. Since the human immune system is not fully cross-protected against viral 

infection [12], the new mutations of HA may cause antibodies to no longer recognize the variant 

viruses and let the viruses to escape recognition by the immune system. This gradual change in 

antigenic structure with time is called antigenic drift [13]. In addition, the global influenza 

surveillance network regularly screens the emerging antigenic variants by hemagglutination 

inhibition (HI) assay [14-15], which is a binding assay representing the binding affinity between 

one (e.g. circulating) strain and animal antisera against another (e.g. vaccine) strain. Moreover, 

the HA is the primary component of current influenza vaccines [15]. 

 

1.1.2.2.  Antigenic shift 

When a host is co-infected by two or more different subtypes of influenza viruses, the segmented 

genomes between them may reassort and generate a new subtype of virus having novel mixtures 

of the HA and NA. This event is called antigenic shift [16-17] and the new subtype of virus often 

causes significant damage to humans because the human population is immunologically native to 

the new virus. In the last 100 years, there were four pandemics, which originated from a 

reassortment among HA and NA: 1918 (H1N1 subtype) [18], 1957 (H2N2 subtype) [19], 1968 

(H3N2 subtype) [20] and recent 2009 pandemic (H1N1 subtype) [7] in which the genome of 

virus reassorted from swine [3, 21]. Moreover, the novel influenza virus is often the ancestor of 

circulating influenza viruses in the following years [22].  

 

1.1.3.  Annually reviewed vaccine and vaccine strain selection  

Currently, vaccination is the primary preventive measure against influenza [23-24]. The vaccines 

can provide effective protection when the HA between vaccine strain and circulating strains 

share highly similar antigenic properties [25]. The human immune system can provide lifelong 

immunity for the invading influenza strain with one single infection [26]; however, the variant 

influenza viruses undergoing antigenic drift may infect people in the coming years. To ensure 
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that efficacy of a vaccine is sufficient against the circulating strains. WHO established a global 

surveillance network to detect the emergence of novel influenza viruses [27]. Each influenza 

season, a panel of experts meets together to select a suitable strain from recent isolates as the 

vaccine strain to be used in the coming winter [14]. This method raises the problem of which of 

today's strain is judged to cause epidemic in the following winter [28]. 

Since the production of flu vaccine requires 6 or more months [29], the recommendation of 

vaccine strain is made about 9-12 months before the season in which the vaccine is used [22]. 

Because of long production time for vaccines, the mismatch between vaccine strain and 

circulating strains may arise when the emerging variants are not identified early enough. A good 

example is the mismatch between vaccine strain and pandemic strains (H1N1 subtype), which 

occurred in year 2009. 

 

1.2.  Previous works 

One of the emergent issues of influenza viruses is the vaccine strains selection. A suitable 

vaccine strain can provide sufficient vaccine efficacy against the circulating strains [30]. To 

address this issue, many methods have been proposed to study the evolution of HA and vaccine 

development [15, 25, 31-32]. We divided them into several types according to the materials that 

they analyze. 

 

1.2.1.  Phylogenic methods 

Many works focus on the genetic evolution of influenza viruses because a huge amount of 

sequence data is available in the public databases. Bush et al. proposed the first method to 

predict the evolution of influenza virus based on HA sequences [31]. They collected 357 HA 

sequences from 1983 to 1997 and constructed a phylogenetic tree. Based on the phylogenetic 

tree, they identified 18 codons under positive selection [33]. According to the retrospective tests, 

their study showed that, "Viral lineages undergoing the greatest number of mutations in the 

positively selected codons on phylogenic tree were the progenitors of future H3 lineages in 9 of 

11 recent influenza seasons." [31] Their study demonstrated that understanding the genetic 

evolution of HA is helpful for the vaccine strain selection. 
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1.2.2.  Clustering methods based on genetic data 

Plotkin et al. proposed a clustering method to predict the future dominant HA sequences and 

discussed its potential relevance to vaccine strain selection [34]. Based on the HA sequence 

clusters, their method select the most recent sequence in the current season's most dominant 

cluster as the future vaccine strain. Furthermore, they studied the spatio-temporal distribution of 

viral swarms and compared it to the influenza vaccines recommended by the WHO. Their study 

demonstrated that cluster structure analysis of HA sequences is helpful for the vaccine strain 

selection. 

 

1.2.3.  Clustering methods based on antigenic data 

The global influenza surveillance network regularly characterizes antigenic properties of 

circulating strains by HI assay [14-15]. Although antigenic data is one of the key criteria for 

vaccine strain selection, the antigenic data are largely unexplored due to difficulties in 

quantitative interpretation. Smith et al. proposed an antigenic map of influenza A virus and 

showed that how antigenic evolution is mapped to genetic evolution [15]. The punctuated nature 

of the antigenic evolution of HA has been visualized in the antigenic map. Their approach 

quantifies the antigenic distances among vaccine strains and circulating strains from 1968 to 

2003 and therefore helps with selection of vaccine strain. One of the most important discoveries 

in Smith el al's work is that, "Antigenic evolution was more punctuated than genetic evolution, 

and genetic change sometimes had a disproportionately large antigenic effect." [15] Their study 

demonstrated that both genetic and antigenic data provides valuable insights for the evolution of 

influenza viruses. 

 

1.2.4.  Hybrid method considering genetic and antigenic data 

Currently, the HI assay is the primary method to characterize the antigenic properties for 

circulating strains. However, the quantity of HI assay data in public databases is far less than 

sequence data [35-37]. Lee et al. proposed the first method to predict antigenic variants based on 

HA sequences [25]. This data set contained 181 pairs of HA sequences pairs and the results 

showed that the model based on 5 antigenic sites had the best accuracy for predicting variants. 
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1.3.  Challenges 

One of the key issues in the development of influenza vaccine is to improve the accuracy of 

vaccine strain selection: that is, to select which of today's strain is likely to be dominant in the 

coming year's epidemic [28]. Furthermore, a more comprehensive understanding the relationship 

between genetic and antigenic evolution is useful to predict the evolution of influenza virus in 

advance while the surveillance system is not able to detect the variants in early stages. Moreover, 

there are several thousands HA sequences in public database that lack antigenic information. If a 

method could link the genetic evolution (sequence data) to antigenic evolution (antigenic data), it 

could provide valuable insights for the understanding of antigenic drift and vaccine development. 

 

1.4.  Thesis organization  

In this thesis, we study the relationships between genetic and antigenic evolution focusing on 

three dimensions and the thesis is organized as follows (Fig. 1.1). In Chapter 2, we developed a 

method for identifying antigenic critical amino acid positions, rules, and co-mutated positions for 

antigenic variants. The rules describe when one (e.g. circulating) strain will not be recognized by 

antibodies against another (e.g. vaccine) strain based on HA sequences. The co-mutated positions 

are two positions that mutate simultaneously on HA. We first identified the co-mutated positions 

and discussed its relatedness to the antigenic drift. 

The critical positions are widely distributed on HA structure; however the antibody 

recognition of HA is highly correlated to the conformation changes on the antigenic sites 

(epitopes). In Chapter 3, we developed an antigenic site based method to identify the antigenic 

drift of influenza A utilizing the conformation changes on epitopes. We address two issues in this 

chapter: first, how to quantify the degree of conformational change in a changed epitope; second, 

what are the relationships between changed epitopes and antigenic drift. 

From the previous two dimensions, we observed that some amino acid mutations can cause 

antigenic variants while other mutations have few effects for antigenic variants. In addition, we 

also noticed that mutations on epitope A and B seem more likely to cause antigenic variants. The 

above observations raise the question of whether the amino acid positions are antigenically 

equivalent or not. In Chapter 4, we developed a Bayesian method to identify the antigenic drift 

of influenza A by quantifying the antigenic effect of each amino acid position on HA. Based on 
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the accumulated HI assay during last 40 years, we utilized the likelihood ratio (LR) to quantify 

the antigenic distance of an amino acid position. We discuss the relationships between LR values 

of positions and antigenic drift. Moreover, we developed an index, ADLR, to quantify the 

antigenic distance of a given pair of HA sequences based on naïve Bayesian network and LR. We 

evaluated ADLR for predicting antigenic variants, explaining the vaccine-vaccine transitions and 

selection the WHO vaccines on 2,789 circulating strains. Finally, Chapter 5 presents the 

conclusions and the future work. 
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Figure 1.1 Overview of this thesis for studying the relationships between genetic and antigenic 

evolution. (A) The vaccine strain and circulating strains. (B) The Chapter 2, 3 and 4 in this thesis. 

(C) The applications for our methods. 
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Chapter 2 

Co-evolution Positions and Rules for 

Antigenic Variants of Influenza A (H3N2) 

Viruses 

 

2.1.  Introduction 

Pathogenic avian and influenza viruses often cause significant damage to human society and 

economics [23]. The influenza viruses are divided into subtypes based on differences in the 

surface proteins HA and NA, which are the main targets for the human immune system. In 

circulating influenza viruses, gradually accumulated mutations on HA occur immunologically 

distinct strains (named as antigenic variants), which lead to antigenic drift. The antigenic drift 

often implies that vaccines should be updated to correspond with the dominant epidemic strains 

[23]. Mapping the genetic evolution to the antigenic drift of influenza viruses is one of key issues 

to public health. Many methods have been proposed to study the antigenic drift and vaccine 

development [15, 33, 38-40]. 

Retrospective quantitative analyses of the genetic data have revealed important insights into 

the evolution of influenza viruses [31, 33, 41]. In the current global influenza surveillance 

system, the ferret serum HI assay is the primary method to define the antigenic variants. Several 

studies used statistical models to predict the antigenic variant of a given pair of HA sequences 

based on these known HI assays and their respective HA sequences [15, 40]. Furthermore, Smith 

et al. demonstrated that the antigenic evolution was more punctuated than the genetic evolution 

[15], and the genetic change sometimes has a disproportionately large antigenic effect. Recently, 

few studies discusses the relationship between evolution and co-mutated positions on influenza 

virus [39, 42].  
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2.2.  Motivation and aim 

The current trivalent vaccine contains seasonal H1N1, H3N2 and influenza B virus strains [23]. 

Among the influenza viruses, the H3N2 subtype causes higher mortality [43] and evolves more 

rapidly [44]. In addition to all of the above, the large amount of genetic and antigenic data for 

H3N2 virus provides valuable opportunity for us to understand the relationships between genetic 

and antigenic evolution of influenza A viruses. 

Here, we proposed a method to predict the antigenic variants of A (H3N2) viruses by 

identifying critical positions and rules which describe when one (e.g. circulating) strain will not 

be recognized by antibodies against another (e.g. vaccine) strain. Our method is also able to 

detect the co-mutated positions for predicting the antigenic variants. These critical positions and 

rules were evaluated on two datasets which consist of 181 and 31,878 pairs, respectively. The 

results demonstrate that our model is able to reflect the biological meanings and achieve high 

prediction accuracy. 

 

 
Figure 2.1 Overview of our method for predicting the antigenic variants of influenza A (H3N2) 

viruses. 
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2.3.  Materials and Methods  

Figure 2.1 shows the overview of our method for predicting the antigenic variants of influenza A 

(H3N2) viruses by identifying critical positions, rules and their co-evolution on the HA. 

 

2.3.1.  Data sets  

We collected an HI assay data set, which contains 181 pairs of HA sequences with 45 HA (H3N2 

viruses) sequences having 329 amino acids collected during the period, 1971 to 2002, from 

related work [40]. According to this data set, we applied the decision tree C4.5 [45] to predict the 

antigenic variants by identifying critical positions as well as discovering the rules and 

co-mutated positions. In this data set, the main samples (65%, 122 pairs among 181 pairs) 

consist of pairs of vaccine-circulating strains, and for each pair it is known whether there is 

inhibition of the circulating strain by antibodies against the vaccine strain ("antigenic variants" 

and "similar viruses"). Vaccine strains are selected by World Health Organization (WHO) and are 

often the dominant strains of influenza seasons. Each pair includes the HI assay value (i.e. 

antigenic distance) and a bit string of 329 binary bits by aligning a pair of HA sequences (329 

amino acids). For a specific position on a pair of HA sequences, the binary value is "1 (named as 

mutation)" if the residue types of the two sequences on this position are different; conversely, its 

binary value is "0 (named as no mutation)". In general, an influenza vaccine should be updated if 

an HI assay value is more than 4.0 between the current vaccine strain and the strains expected to 

circulate in next season [15]. The antigenic distance is defined as the reciprocal of the geometric 

mean of two ratios between the heterologous and homologous antibody titers [40]. Among 181 

pairs of HA sequences, 125 pairs with antigenic distance ≥ 4 are considered as "antigenic 

variants" and 56 pairs with antigenic distance < 4 are classified as "similar viruses". For example, 

the antigenic distance of the pair of HA sequences, A/Port_Chalmers/1/73 and A/Victoria/3/75, is 

16 and this pair is considered as "antigenic variants". Conversely, the antigenic distance of the 

pair of HA sequences, A/Wuhan/359/95 and A/Nanchang/933/95, is 1 and this pair is considered 

as "similar viruses". 

Furthermore, we prepared another HI assay data set proposed by Smith et al. to 

independently evaluate our model and compare with other methods for predicting the antigenic 

variants [15]. This data set consists of 253 H3N2 viruses which are clustered into 11 antigenic 

groups. We assume that a virus-pair in the same antigenic group is considered as a "similar 
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viruses" pair and a virus-pair in different groups is considered as a "antigenic variants" pair. 

Finally, we obtained 31,878 HI measurements and these sequences were extracted from 

supporting materials of publication [15]. 

 

2.3.2.  Identifying critical positions on HA 

 In this study, positions with a both highly antigenic discriminating score and highly genetic 

diversity are considered as critical positions. We first evaluate the genetic diversity, which 

commonly believed, relates to immune selection [33], of each amino acid position on HA. Here, 

Shannon entropy was used to measure the genetic diversity of an amino acid position i (i=1~329) 

with 20 amino acid types and is defined as  
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where P(Ai=T) is the probability of the position i with amino acid type T. The information gain 

[45] measures the score of an amino acid position on HA for discriminating between antigenic 

variants and similar viruses. An amino acid with high IG at a specific position implies that a 

mutation on this position is highly correlated to antigenic variants. The IG of the position i 

associates to antigenic type Y (i.e. antigenic variants (V) and similar viruses (S)) is defined as 
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H(Y) is the entropy of antigenic type Y and is defined as   
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H(Y| i) is the conditional entropy of Y when given the position i. Two states of the position i are 

mutation (M) and non-mutation (N). H(Y| i) is defined as  
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P(Ai=K) is the probability of the position i in state K.  H(Y|Ai=K) is the entropy of antigenic 

type Y when given the position i in state K. H(Y|Ai=K) is given as 
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For example, for the position 145, the numbers of the "mutation" and "non-mutation" are 62 and 

119, respectively, among 181 pair-wise HA sequences in the training data set. For 62 mutation 

pairs, the numbers of "antigenic variants" and "similar viruses" are 61 and 1, respectively. The 

numbers of "antigenic variants" and "similar viruses" are 55 and 64, respectively, for 119 

non-mutation pairs. According to these data, we can calculated that P(A145=M) is 0.34 and 

H(Y|A145=M) is 0.12 for the mutation state; P(A145=N) is 0.66 and H(Y|A145=N) is 1.0 for the 

non-mutation state. Finally, we obtained H(Y| i)=0.70. The values of information gain and 

entropy of 329 HA positions are normalized in the range from 0 to 1. 

 

2.3.3.  Discovering the rules of antigenic variants 

After identifying critical positions, we discovered the rules for predicting antigenic variants by 

applying the decision tree C4.5 [45]. These antigenic amino acid positions are considered as the 

attributors (features). An amino acid position with high IG was selected as an internal node in the 

tree to discriminate "antigenic variants" and "similar viruses". According to the selected 

positions and constructed tree, we can easily identify the rules according to the paths from the 

root to the leaves of the tree.  

 

2.3.4.  Predicting antigenic variants 

In order to evaluate and compare our model with other methods [9, 40] for predicting antigenic 

variants, we collected two data sets. The first data set consists of 181 pair-wise HI measurements 

and the second independent data set contains 31,878 HI measurements proposed by Smith et al. 

[15]. Wilson & Cox [9] suggested that a drift viral variant of epidemiologic importance usually 

contains more than 4 residues changes located on at least 2 of the five epitopes on the HA. Lee & 

Chen [40] proposed a model based on the hamming distance (HD) of 131 positions on all the 

five epitopes of HA to predict antigenic variants. Their model predicted a pair of HA sequences 

as the antigenic variants if there are more than 6 amino acid mutations between this pair of HA 

sequences. 
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2.3.5.  Identifying co-mutated positions for antigenic variants 

 Here, we used the decision tree hierarchy to identify co-mutation of two amino acid positions. 

In order to identify all potential co-mutated pairs on HA, the positions (i.e. 101 positions among 

329 positions), which occur mutations in 181 pairs of HA sequences, are sequentially selected to 

identify its co-mutated positions. Based on these 101 positions, the total number of two-position 

combinations is 10,100. For each amino acid positions (i), the co-mutation score (S(i,j)) between 

the position i and its partner position j is defined as 

),(),(),( YjIGYjIGjiS RiW   (6) 

where IGW(j,Y) is the IG value, which is derived from the whole data set (i.e. 181 pairs of HA 

sequences in the training set) using Equation (2), of the position j; IGRi(j,Y) is the IG value of the 

position j derived from the data set R by removing the pairs, in which the position i is mutated, 

from the whole data set. The z-score of the S(i,j) of a pair of co-mutated positions is derived from 

10,100 pairs and it is defined as 
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μ and σ are the mean and standard deviation of all 10,100 position pairs. For example, position 

145 (IG is 1.0) is selected as the first node in the tree. Among 181 pairs, 62 pairs are mutated on 

the position 145. The amino acid positions are considered as co-mutated positions of the position 

145 if their IG values significantly decrease after these 62 pairs are removed from the data set. 

For example, the z-score of the S(145, 137) of the pair-positions 145 and 137 is 3.58  

 

2.4.  Results  

2.4.1.  Critical positions on HA 

In this study, we used the information gain (IG) and Shannon entropy to measure the scores of an 

amino acid, which is located at a specific position on HA, for discriminating antigenic variants 

and similar viruses. The highest and lowest values of both IG and entropy are 1 and 0, 

respectively. An amino acid with high IG at a specific position implied that this position is highly 

correlated to the antigenic variants. An amino acid with high entropy means that this position is 
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often mutated in the data set. Figure 2.2 shows the relationship of IG values and entropies of HA 

positions. The summary of some amino acid positions are listed in Table 2.1. Of the 329 amino 

acids of HA, 131 positions are considered to lie in or near the five antibody combining sites 

(named as epitopes) which are labeled A through E [9]. The first rank (i.e. position 145-A) 

locates at the epitope A of HA. Its IG and entropy are 1.0 and 0.87, respectively. Among 181 

pairs of HA sequences in the training set, the position 145-A mutates on 62 pairs and 61 pairs are 

the antigenic variants. This result implies that a mutation on this position highly induces an 

antigenic drift. This observation is consistent to previous results [15], that is, the single amino 

acid substitution N145K can be responsible for antigenic cluster transition. We observed that the 

other positions with high IG values obtained the similar behaviors.  

The relationship between IG values and entropies of 101 positions in HA is shown in Fig. 2.2 

by excluding 228 positions which have zero for both IG and entropy. All positions can be 

classified into four groups according to the values of IG (antigenic degree) and entropy (i.e. 

genetic diversity). Those 19 positions with high IG and high entropy (i.e. Area I) are considered 

as critical positions in this work. According to the HA structure obtained from protein data bank 

(PDB code 1HGF [46]), 18 of the positions locate at all the five epitopes and 15 of them are on 

the surface (Fig. 2.3) by using PyMOL [47]. The positions in Area II (i.e. high entropy and low 

antigenic degree) imply that high genetic diversity may infer low antigenic discriminating score. 

For example, the positions (e.g. 226-D, 135-A, 121-D, 142-A and 186-B) have high entropies 

and low IG values (Table 2.1 and Fig. 2.2). Among 181 pairs of HA sequences, the position 

226-D mutates on 61 pairs and 34 of these pairs are the antigenic variant. A low IG position 

indicates that a mutation on this position less preferred to be an antigenic variant. Our method 

can avoid the disadvantage of considering only the genetic data, which was widely used in 

previous works. 
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Figure 2.2 The relationship between entropies and information gains of 329 amino acids on HA. 

The positions in area I (e.g. 145-A, 189-B and 278-C) with both high entropy and high IG values 

are highly correlated to the antigenic variants. 145-A denotes the amino acid position 145 located 

at the epitope A.  



 15

Table 2.1 The entropy, information gain, and co-mutated positions of 15 amino acid positions on 

HA sequences  

Position-e
pitope 

Entropy IG 
Number of 
co-mutate 
positions  

Co-mutated positions  
Positive 
selection 

Cluster 
Transition 

145-A1 0.87 1.00 12 9,31,63,78,83,126,137,160,193,197,242,278 + 2 + 3 

137-A 0.68 0.41 23 
9,31,53,54,62,63,83,126,143,145,146,158,160,164,174,189,

193,201,213,217,244,260,278 
 + 

193-B 0.86 0.23 17 
9,31,63,78,83,126,137,145,158,160,164,174,201,217,242,26

0,278 
+ + 

160-B 0.58 0.28 16 
2,31,54,62,126,137,143,146,156,158,164,197,217,244,260,2

78 
 + 

156-B 0.80 0.43 8 54,62,143,146,160,197,244,260 + + 
226-D 1.00 0.15 2 145,189 +  
135-A 0.83 0.07 1 165 +  
121-D 0.72 0.00 0  +  
142-A 0.47 0.00 0  +  
186-B 0.41 0.00 0  +  

164-B 0.24 0.46 6 126,137,158,174,201,217,  + 
201-D 0.27 0.36 4 137,164,174,217  + 
78-E 0.14 0.29 4 31,63,126,242   

174-D 0.32 0.47 4 137,164,201,217  + 
63-E 0.19 0.39 6 78,83,126,137,242,278   

1 The epitope of the position on HA sequence.  
2 the position is under positive selection defined by Bush et al. [33]. 
3 the position is a cluster-difference substitution defined by Smith et al. [15]. 

 

The relationship between IG values and structural locations of 329 positions is shown in Fig. 

2.3A. The positions with four highest IG values (i.e. 145-A, 189-B, 278-C, and 158-B) are blue 

and other positions are near to gray based on the IG values. The positions with high IG values 

are located on the protein surface. Three (145-A 189-B and 158-B) of top four IG-value positions 

are located around the receptor-binding site, which is the key for neutralizing influenza virus. In 

addition, the high IG positions also prefer to locate on the top head, which are more exposed and 

preferable recognized by antibodies, of HA and on the interface between HA monomers.  
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Figure 2.3 The distribution of IG values and co-mutation scores on HA structure. (A) The 

distribution of IG values of 329 amino acids on HA structure (PDB code 1HGF [46]) and the R 

indicates the receptor-binding site. The blue and gray indicate the highest IG value and the 

lowest IG value, respectively. (B) The structural locations and scores of 12 co-mutation positions 

of the position 145. These structures are presented by using PyMOL [47]. 
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2.4.2.  The rules of antigenic variants and predicting accuracies 

We used the decision tree (Fig. 2.4) to build a model for predicting antigenic variants of 

influenza A (H3N2) virus. Based on the IG values of 329 amino acid positions derived from 181 

pairs in training data set, six amino acid positions are selected as internal nodes in this tree. The 

first rule of this tree is that the antigenic type is predicted as the antigenic variant if the position 

145 is mutated, that is, the residue types of a pair of sequences on the position 145 are different. 

Among 181 pairs of sequences in the training set, 62 pairs can apply this rule and 61 pairs can be 

predicted correctly. The last rule of this tree is that the antigenic type is predicted as the similar 

viruses if six positions (i.e. 145, 189, 62, 155, 213, and 214) are not mutated.  

 

 
Figure 2.4 The decision tree and rules for predicting antigenic variants. Each internal node 

(circle) is represented as an amino acid position. The leaf node (square) includes the predicted 

antigenic type (i.e. "antigenic variants" and "similar viruses"), the numbers of total pairs (the first 

value) and predicted error pairs (the second value) by applying this rule in this node. 
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Based on this model, we can derive seven rules and the predicted accuracies are 91.2% 

(165/181) for training data set and 96.2% (30,675/31,878) for independent data set, respectively. 

As shown in Fig. 2.5 and Table 2.2, our method outperformed two comparative methods, i.e. 

Wilson & Cox (89.7%) [9] and Lee & Chen (92.4%) [40], on the independent data set. For the 

independent data set, the accuracies of Wilson & Cox method on predicting the antigenic 

variants and the similar viruses are 99.71% and 32.74%, respectively. Conversely, our model 

performed well for predicting the antigenic variants (99.73%) and the similar viruses (76.34%). 

 

 
Figure 2.5 Comparison of our method with other two methods (Wilson & Cox [9]; Lee and Chen 

[25]) on predicting antigenic variants on two data sets 
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Table 2.2 Comparison of our method with other methods for predicting the antigenic variants on 

31,878 pairs 

Antigenic variants 
Wilson & 

Cox, 1990 [9] 

Lee & 
Chen, 2004 

[40] 

Our 
method

Similar viruses
Wilson & 
Cox, 1990 

[9] 

Lee & 
Chen, 2004 

[40] 

Our 
method

HK68-EN72 (210 1) 210 206 210 HK68 (91 1) 24 52 37 
EN72-VI75 (135) 135 135 135 EN72 (105) 36 79 48 
VI75-TX77 (27) 27 27 27 VI75 (36) 30 36 21 
TX77-BA79 (48) 48 48 45 TX77 (3) 1 2 1 
BA79-SI87 (400) 400 381 400 BA79 (120) 13 46 58 
SI87-BE89 (1600) 1577 863 1600 SI87 (300) 125 233 276 
BE89-BE92 (3648) 3648 3648 3648 BE89 (2016) 872 1725 2016 
BE92-WU95 (1596) 1542 1391 1562 BE92 (1596) 372 928 732 
WU95-SY97 (448) 448 448 448 WU95 (378) 53 156 325 
SY97-FU02 (96) 96 96 96 SY97 (120) 24 65 120 

Other inter clusters 
(18890) 

18889 18870 18855 FU02 (15) 15 15 15 

Number of predicted 
pairs 

27020 26113 27026
Number of 

predicted pairs
1565 3337 3649 

Accuracy 99.71% 96.37% 99.73% Accuracy 32.74% 69.81% 76.34%
1 the number of the pairs in the cluster. 

 

2.4.3.  Co-mutated positions for antigenic variants  

Two amino acid positions may mutate simultaneously to cause antigenic drift or highly 

co-evolution in H3N2 virus. Understanding the co-mutation of amino acid position-pairs is one 

of the key steps to recognizing the antigen-antibody interactions. Here, we used the co-mutation 

score, S(i,j), between the position i and its co-mutated position j to measure the co-mutated pair 

(i ,j) for predicting the antigenic variants. We calculated all of the co-mutated combinations (i.e. 

10,100 pairs) of 101 amino acid positions which mutated more than once on 181 pairs of HA 

sequences in the training data set.  

Table 1 show the co-mutated positions of some HA positions. In this work, the position (j) is 

considered as the co-mutation position of the position (i) when its co-mutation z-score (i.e. Z(i,j) 

defined as Equation (7)) is more than 2.3 because the score of the position i and j is significant 

(p-value is 0.01) derived from 10,100 pairs. Among 329 positions of HA sequences, 40 positions 

have co-mutated positions. The number of co-mutated positions for a position ranges from 0 to 

23 and the total number of the significant pairs are 308 among 10,100 pairs.  

In the tree model (Fig. 2.4), the position 145-A is selected as first node and has 12 significant 

co-mutated positions (Table 2.1 and Fig. 2.3B). The top three significant co-mutated positions of 
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145-A are (145-A, 126-A), (145-A, 278-C) and (145-A, 137-A). The 145-A, 278-C, and 137-A 

are the residues to cause the transition from cluster EN72 into cluster VI75 [15]. In addition to 

position 145-A, the residue 156-B has 8 significant co-mutated positions (Table 2.1). Seven 

(except position 260-E) of these 8 positions co-mutate with 156-B to cause the transition from 

the cluster TX77 into the cluster BK79 [15]. 

 

Table 2.3 The number of co-mutation positions of five epitopes and the other area on HA  

 Epitope A Epitope B Epitope C Epitope D Epitope E Other area sum 

Epitope A 15 24 8 11 16 8 82 
Epitope B 19 15 6 13 13 5 71 
Epitope C 15 11 3 5 9 4 47 
Epitope D 12 13 3 8 6 4 46 
Epitope E 13 11 4 6 7 3 44 
Other area 4 2 1 3 4 4 18 

 

Table 2.3 shows the numbers of significant co-mutation positions on six blocks, including 

five epitopes and the other area on the HA. The numbers (24 and 19 pairs, respectively) of the 

co-mutation pairs, which located at epitopes A and B, are significantly higher than other block. 

This result implies that the mutation on epitopes A and B could yield a high probability to cause 

the antigenic drift. Moreover, residues in epitopes A and B form 82 and 71, respectively, 

significant co-mutation pairs which are much higher than other blocks. On the other hand, the 

number (i.e. 18 pairs) of significant co-mutation pairs formed by the residues in non-epitope 

block is the smallest among 36 combinations of six blocks (Table 2.3). These observations 

demonstrate that epitopes A and B are more important than other blocks and the five epitopes are 

more important than the other area. Previous works shows that epitopes A and B are more 

antigenic important since they are around the receptor-binding site [9].  
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Figure 2.6 The co-mutation z-score distributions of six positions on the HA sequence. A position 

is considered as a co-evolution residue if its z-score is more than 2.3 (i.e. the blue line). 

 

Figure 2.6 shows the distributions of co-mutation z-scores of six HA positions. The positions 

(i.e. 145-A and 137-A located in Area I in Fig. 2.2) which have high IG values and high entropies, 

own 12 and 23 co-mutated positions (Fig. 2.6A and Table 2.1), respectively. On the other hand, 

Figure 2.6B shows two positions (i.e. 226-D and 135-A located in Area II in Fig. 2.2) , which 

have low IG values and high entropies, own 2 and 1 co-mutated positions (Table 2.1), 

respectively. Finally, the positions 164-B and 201-D have similar distributions (Fig. 2.6C) and 

their correlation coefficient is 0.73. To consider both IG values and entropies provide insight to 

the antigenic draft and co-evolution positions on influenza virus. These observations show our 

method is able to identify co-mutated positions that participate in the antigenic drift for influenza 

seasons. These significant co-mutated positions show biological meaning.  
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2.5.  Discussion  

Previous works using genetic data for identifying highly diverse positions which are exposed to 

immune selection have shown prospective [33]. However, Smith et al. demonstrated that 

antigenic evolution is more punctuated than genetic evolution [15], which implies that only 

genetic data may not be enough to detect critical positions. For example, the antigenic 

discriminating score (i.e. IG=0.15) of position 226-D is low, while its genetic diversity (i.e. 

entropy is 1.0) is largest. The position 226-D is also selected as a positive selection codon [33]. 

According to 181 pairs in the training set, position 226-D has 61 mutations, but 27 of them are 

"similar viruses" pairs. Therefore, its antigenic discriminating score is low and a mutation on this 

position does not cause the antigenic drift. The position 121-D, which is under positive selection, 

has similar behaviors.  

Although the HI assay can successfully detect antigenic drift, this assay is labour-intensive 

and time-consuming. Therefore, the quantity of HI data is far less than sequence data and 

sometimes the problem of bias sampling is encountered [34]. The position 164-B, which was 

identified by Smith et al. as a cluster-difference substitution from 253 sequences [15], has 28 

mutations in 181 pairs and all of them happen in "antigenic variants" pairs. Mutations on this 

position (i.e. IG is 0.46) have high preference to antigenic variant. But our method didn't select 

this position because the genetic diversity (i.e. entropy is 0.24) of this position is not high 

enough. 

In the independent data set (31,878 pairs), the accuracies of three methods are more than 

96% for the "antigenic variants", but their accuracies on the "similar viruses" pairs are 

significantly different (Table 2.2). The method proposed by Wilson and Cox [9] falsely predicts 

67% of "similar viruses" pairs, which implies this method is very sensitive in the same antigenic 

group. Comparing our model with the hamming distance (HD) model which is based on epitope 

positions proposed by Lee & Chen [40], our model has higher accuracies in three groups, i.e. 

BE89, WU95 and SY97 (Table 2.2). For example, for 2016 "similar viruses" pairs in the BE89 

group, the HD model falsely predicted 291 pairs, which are correctly predicted by our model, 

and the average HD of these 291 pairs is 7.3. Most of these 291 pairs mutate on seven positions 

(i.e. 50-D, 80-E, 137-A, 159-B, 167-D, 173-D and 197-B). Except positions 137-A and 197-B, 

the other five positions have low antigenic discriminating scores based on our model.  

For each of the position-pairs (i,j) and (j,i) in Fig. 2.6, their z-scores are different because the 
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position i and j have different antigenic discriminating scores. For example, the z-scores of 

position-pairs (133-A, 156-B) and (156-B, 133-A) are 5.03 and -1.13, respectively. Furthermore, 

the IG values of positions 156-B and 133-A are 0.43 and 0.11, respectively. The antigenic effect 

of the only mutation on position 133-A is not significant. On the other hand, the antigenic 

discriminating score is significant when position 133-A co-mutates with position 156-B. Among 

181 pairs in the training set, position 133-A has 38 mutations; 32 of them are "antigenic variants" 

pairs, and 31 pairs of them co-mutate with the position 156-B. This position pair is observed to 

cause the transitions from cluster TX77 into cluster BK79 and from the cluster BE89 into the 

cluster BE92 [15]. 

Among 329 positions of HA sequences, 137-A, 193-B, and 160-B are top three positions 

with the highest numbers of co-mutated positions. The position 137-A has 23 co-mutation 

positions and the top three pairs are (137-A, 158-B), (137-A, 260-E) and (137A, 164-B). These 

four positions are observed to cause the transitions from cluster EN72 into cluster VI75 and from 

cluster VI75 into cluster TX77 [15].  

There are total 308 significant position-pairs but only 142 pairs of them are observed in 

cluster-difference substitutions [15]. For example, 15 pairs with top 50 z-scores not identified as 

cluster-difference substitution are: (83-E, 126-A), (145-A,126-A), (193-B, 126-A), (126-A, 

63-E), (278-C, 126-A), (63-E, 126-A), (137-A, 126-A) (83-E, 278-C), (193-B, 63-E), (31,9), 

(83-E, 63-E), (126-A, 278-C), (9,31), (275-C, 145-A) and (126-A, 145-A). Nine pairs of them 

could be observed in the 1976 fixation [41] in which they analyzed large amount of HA protein 

sequences (2248 sequences from 1968 to 2005). These observations imply our method is able to 

detect potential co-mutated positions related to antigenic drift from limited HI-data. 

2.6.  Summary  

This study demonstrates our model is robust and feasible by considering both genetic and 

antigenic data. Based on decision tree, our method is able to identify critical amino acid positions 

of HA and the rules of antigenic variants for influenza H3N2 viruses. The accuracies of our 

method are 91.2% and 96.2% for the training set and independent data set, respectively, and our 

method is significantly better than the other two methods being compared on these two sets. The 

identified critical amino acid positions are similar to related works and the co-mutated positions 

are able to reflect the biological meanings. We believe that our method is useful for vaccine 

development and understanding the evolution of influenza A viruses. 
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Chapter 3 

Changed Epitopes Drive the Antigenic 

Drift for Influenza A (H3N2) Viruses 

 

3.1.  Introduction 

Influenza spreads around the world and causes significant morbidity and mortality [14]. The 

surface proteins HA and NA are the primary targets of the protective immune system. In 

circulating influenza viruses, gradually accumulated mutations on the HA, which interacts with 

infectivity-neutralizing antibodies, lead to the escape of immune system. 

Most of methods measuring the antigenic variances on HA focused on amino acid position 

mutations, such as hamming distance [34] or phylogenic distance [31]. Recently, few studies 

discuss the relationships between the antigenic sites (epitopes) and vaccine efficiency [48].  

 

3.2.  Motivation and aim 

We have identified critical positions and rules for antigenic variants in previous chapter. 

However, the critical positions are widely distributed on HA structure and the antibody 

recognition is highly correlated to the conformation change on the epitopes, which locate on HA 

surface. Moreover, an antibody often utilizes complementarily-determining regions (CDRs) to 

bind two epitopes on the antigen (HA) [49]. To quantify a changed epitope for escaping from 

neutralizing antibodies is the basis for the antigenic drift and vaccine development. 

Here, we have proposed a method to identify the antigenic drift of influenza A by quantifying 

the conformation change of an epitope. Our method is able to predict antigenic variants of a 

given pair of HA sequences which are often a vaccine strain and a circulating strain. Our model 

was evaluated to measure the antigenic drifts and vaccine updates on 2,789 circulating strains 
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(from year 1983 to 2008) and to predict the antigenic variants on two data sets (i.e. 343 and 

31,878 HI assays). These observations demonstrate that our model is able to reflect the biological 

meanings and can explain the WHO vaccine strain selection. 

  

3.3.  Materials and Methods 

Figure 3.1 presents the overview of our method for the antigenic drift of influenza A (H3N2) 

viruses by quantifying changed epitopes. We first identified the critical amino acid positions 

based on both the antigenic variant and genetic diversity. We then measured a changed epitope 

by calculating the accumulated conformation change based on critical amino acid mutations on 

an epitope. Finally, we evaluated our model for predicting antigenic variants and selecting the 

WHO vaccines. 
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Figure 3.1 Overview of our method for the antigenic drift. (A) The overview of our method. (B) 

The structural locations of selected 64 critical amino acid positions on all the five epitopes 

(Epitope A in red; B in purple; C in orange; D in cyan; E in green). The sialic acid is in green. All 

structures are presented by using PyMOL [47]. 
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3.3.1.  Changed epitopes 

The changed epitope is the core of our method. Here, we defined a changed epitope as follows: 

an antigenic site (epitope) on HA with accumulated amino acid mutations induces the 

conformation change to escape from the neutralizing antibody. The conformation change of a 

mutation depends on its position on HA structure and the mutation rate during 40 years. A 

changed epitope can be considered as a "key feature" for measuring antigenic variants of a pair 

of HA sequences. Here, a changed epitope can be used to predict antigenic variants and antigenic 

drifts for the selections of vaccine strains. 

 

3.3.2.  Data sets 

To describe and evaluate the ability of the changed epitopes for predicting antigenic variants, we 

collected HI assays, describing the antigenic variants and similar viruses of the current global 

influenza surveillance system. The HI assay describes whether one (e.g. circulating) strain will 

be recognized by an antibody against the vaccine strain. We collected 343 H3N2 virus HI assays 

with 125 HA sequences from Weekly Epidemiological Record (WER) [50] (Table 3.1), World 

Health Organization (WHO) collaborating center [51] and related publications [52-54]. Each pair 

includes an HI assay value (i.e. antigenic distance) and a pair of HA sequences (329 amino acids). 

In general, an influenza vaccine should be updated if an antigenic distance is more than 4.0 

between the current vaccine strain and the circulating strain in next season [15] [55]. Among 343 

pairs of HA sequences, 225 pairs with antigenic distance ≥ 4 are considered as "antigenic 

variants" and 118 pairs are considered as "similar viruses". For example, the antigenic distance 

of the pair of HA sequences, A/England/42/72 and A/PortChalmers/1/73, is 12 and this pair is 

considered as "antigenic variants". Conversely, the antigenic distance of the pair of HA 

sequences, A/Wuhan/359/95 and A/Nanchang/933/95, is 1 and this pair is considered as "similar 

viruses". In addition to the training set, we prepared another HI assay data set to independently 

evaluate our model for predicting antigenic variants proposed by Smith et al. [15]. We assume 

that a virus-pair in the same antigenic group is considered as a "similar viruses" pair and a 

virus-pair in different groups is considered as "antigenic variants" pair. Finally, we obtained 

31,878 HI measurements from the supporting materials [15]. 

To study the antigenic drifts and WHO vaccine updates, we collected 2789 HA sequences 

with influenza season assignment from influenza virus resource [36] and influenza sequence 



 27

database [35].  

Table 3.1 The number of HI assays, number of sequences in Smith's dataset and WER strains 

from 1968 to 2007 

Year HI assay data set Number of strains WER strains2 
1968 0 4 A/Hong Kong/1/68  
1969 0 3 A/Hong Kong/1/68  
1970 11 [50] 2 A/Hong Kong/1/68  
1971 2 [50] 4 A/Hong Kong/1/68  
1972 2 [50] 5 A/Hong Kong/1/68  
1973 2 [50] 4 A/England/42/72  
1974 3 [50] 5 A/Port Chalmers/1/73  
1975 6 [50] 3 A/Port Chalmers/1/73  
1976 7 [50] 6 A/Victoria/3/75  
1977 4 [50] 5 A/Victoria/3/75  
1978 0  0 A/Texas/1/77  
1979 0 0 A/Texas/1/77  
1980 6 [50] 2 A/Bangkok/1/79  
1981 0 1 A/Bangkok/1/79  
1982 3 [50] 4 A/Bangkok/1/79  
1983 5 [50], 23[53] 1 A/Phillipines/2/82  
1984 0 1 A/Phillipines/2/82  
1985 3 [50] 4 A/Phillipines/2/82  

1986 9 [50] 2 A/Christchruch/4/85, 
A/Mississippi/1/853  

1987 3 [50] 3 A/Leningrad/360/86  
1988 17 [50] 4 A/Sichuan/2/87  
1989 0 16 Si/87; Sh/873  
1990 10 [50] 5 A/Shanghai/11/87  
1991 5 [50] 17 A/Beijing/353/89  
1992 5 [50] 45 A/Beijing/353/89  
1993 21 [50] 43 A/Beijing/32/92  
1994 6 [50] 10 A/Shangdong/9/93  
1995 3 [50], 20 [52] 15 A/Johannesburg/33/94  
1996 12 [50] 10 A/Johannesburg/33/94  
1997 28 [56] 9 A/Wuhan/359/95  
1998 3 [50] 4 Wu/95; Sy/973  
1999 2 [50] 3 A/Sydney/5/97  
2000 0 1 A/Moscow/10/994  
2001 11 [54] 3 A/Moscow/10/99  
2002 0 3 A/Moscow/10/99  
2003 11[50], 20 [51] 6 A/Moscow/10/99  
2004 4 [50], 17 [51] 0 A/Fujian/411/2002  
2005 14 [50],1 [51] 0 A/Calfornia/7/2004  

2006 11 [50], 9 [51] 0 A/Calfornia/7/2004; 
A/Wisconsin/67/2005  

2007 3 [50], 31 [57] 0 A/Wisconsin/67/2005; 
A/Brisbane/10/2007  

Total 343 pairs 253 sequences  
1 the number of HI assays collected in the document. 
2 we followed Plotkin's definition [34], WER strains were the dominant recommended virus based on HI assays in 
influenza season, as reported by the WHO in Weekly Epidemiological Record (WER).  

3 for the purpose of detecting emerging variants, the later strain was selected to comparing with circulating strains. 
4 the wildly used vaccine strain A/Panama/2007/99 was used instead in following years. 
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3.3.3.  Identifying critical positions on HA 

Recently, we proposed a method to identify critical positions [32] by utilizing both antigenic 

variants and genetic diversity. The Shannon entropy and information gain (IG) were used to 

measure genetic diversity and antigenic discriminating score for amino acid positions on HA, 

respectively. Here, we based on these rules to select 64 amino acid positions as critical positions. 

 

Table 3.2 Summary of 4 models 

Model Regarding HA positions Changed epitope Antigenic variants 
Model one 329 positions ≥1 mutation ≥2 changed epitopes 
Model two 329 positions ≥2 mutations  ≥2 changed epitopes 
Model three 64  selected positions ≥2 mutations ≥2 changed epitopes 

Model four 64  selected positions
≥3 mutations (epitope B) ≥2 

mutations (others) 
≥1 (epitopes A or B) 

≥2 (others)  

 

3.3.4.  Models for antigenic variants based on changed epitopes  

To address the issue of measuring accumulated mutations on an epitope to escape from 

neutralizing antibody, we proposed 4 models considering the number of amino acid mutations  

on 329 amino acids and 64 selected critical positions of HA (Table 3.2). Models one and two 

regarded an epitope as "changed" if there are more than 1 and 2 mutations within an epitope, 

respectively, based on 329 amino acids. A changed epitope of Model three is defined as two 

amino acid mutations on 64 critical positions. Models one, two, and three regarded a pair of HA 

sequences as "antigenic variants" if there are more than two changed epitopes. Conversely, one 

changed epitope is viewed as "similar viruses". 

Model four treated one changed epitope (A or B) as "antigenic variants". Epitopes A and B, 

which are near the receptor-binding site, often play the key role for escaping from neutralizing 

antibody. Here, the epitopes A and B (denoted as "B+") were regarded as "changed" if there are 

more than 2 and 3 mutations, respectively. For the pair A/Mississippi/1/85 and 

A/Leningrad/360/86 (Table 3.3), the numbers of mutations were 1, 3, 0, 1, and 1 on epitopes A, 

B, C, D and E, respectively. The numbers of changed epitopes for Models one and two are 4 

(epitopes A, B, D, and E) and 1 (epitope B), respectively. Models three and four regarded the 

epitope B as a changed epitope because these three mutations (i.e. positions 156, 159 and 188) 

were the selected critical positions.  
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Finally, we compared our models with two related methods [9, 25] for predicting antigenic 

variants. Wilson & Cox [9] suggested that a viral variant usually contains more than 4 residue 

mutations located on ≥ two of the five epitopes. Lee & Chen [25] proposed a model based on the 

hamming distance (HD) of 131 positions on all the five epitopes to predict antigenic variants. 

Their models predicted a pair of HA sequences as "antigenic variants" if the number of mutation 

is more than 6.  

 

Table 3.3 The changed epitopes and mutations of 11 virus-pairs under 4 models 

Changed epitopes Mutation positions 
Virus A Virus B Type1 Model 

one 
Model 

two
Model 
three

Model 
four

 
HD2 Epitope 

A 
Epitope 

B 
Epitope 

C 
Epitope 

D 
Epitope 

E 

A/PortChalmers/1/73 A/Singapore/4/75 S ABCDE B B B 9 1263 160, 189 278 242 83 

A/Nanchang/933/95 A/NewYork/43/96 S ABCE E none none 6 122 190 275  
57, 92, 
262 

A/Alaska/10/95 A/France/75/97 S ABCDE BC none none 12 135 128, 165 275, 312 226 262 
A/Sydney/5/97 A/Ireland/10586/99 S ABDE ABD none none 7 137, 142192, 194  172,226 57 

A/Mississippi/1/85 A/Leningrad/360/86 V ABDE B B B+ 6 138 156, 
159, 188  226 88 

A/Guizhou/54/89 A/Beijing/353/89 V ABC A A A 5 135, 
144, 145159 44,   

A/Wellington/1/2004 A/Victoria/505/2004 S ABDE AD none none 10 138, 145 189  219, 226, 
227 

94 

A/Shangdong/9/93 A/Pennsylvania/9/93 S ABCD CD C C 12 135 164 53, 276 
214, 219, 
226, 229, 
238 

 

A/England/42/72 A/PortChalmers/1/73 V BDE B B B+ 6  160, 188, 
193  208 63 

A/NewYork/55/2004 A/Anhui/1239/2005 V ABD B B B+ 7 138, 156, 
160, 193 

 219, 138, 

A/Shanghai/16/89 A/Beijing/353/89 V AB A 'A' A 3 135, 145 159    
1V represents antigenic variant and S represents similar virus.  
2 denote hamming distance of a pair sequences 
3 Bold is the antigenic critical position. 

 

3.3.5.  Variant ratio for measuring the antigenic drift 

We used the variant ratio (VR) to measure the vaccine efficiency on year y. The VR is defined as 

y

y

N

V
yVR )(  , where Ny is total number of circulating strains in the year y and Vy is the number of 

circulating strains which are "antigenic variants" against the vaccine strain in the year. Here, we 

considered an influenza vaccine should be updated and the circulating strains are emerging if the 

VR value is more or equal than 0.5. 
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3.4.  Results  

3.4.1.  Antigenic critical positions 

In this study, we continued our previous work to select the critical positions [32] having high IGs, 

statistically derived from 343 HI assays, and high entropies, which were calculated using 2789 

HA sequences. 64 positions on HA were selected as critical positions (Table 3.4). Among these 

64 critical positions, 54 positions locate on the epitopes (54/64) and 53 positions locate on the 

HA surface (Fig. 3.1B). Additionally, 13 and 42 of these 64 critical positions were the positive 

selections [31] and cluster substitutions [15], respectively. 

 

Table 3.4 The list of 64 critical positions in the five different epitopes [9, 31] 

 List of critical positions 

Epitope A 122,124,126,131,133,135,137,140,143,144,145,146 
Epitope B 128,155,156,157,158,159,160,164,186,188,189,193,196,197,198 
Epitope C 50,53,54,275,276,278,307 
Epitope D 121,172,174,201,207,213,216,217,230,242,244,248 
Epitope E 62,63,75,78,82,83,260,262 
Other area 2,3,9,25,31,199,202,222,225,326 

 

3.4.2.  Changed epitopes for antigenic variants  

Currently, several methods measured a changed epitope to escape from neutralizing antibody [9]. 

Here, we utilized the degree of accumulated mutations within an epitope to evaluate a changed 

epitope according to 329 positions and 64 selected positions. Figures 3.2 and 3.3 show the 

relationships between changed epitopes and antigenic variants on 4 models. 
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Figure 3.2 The relationships between number of changed epitopes and antigenic variants based 

on four proposed models. (A) The first model considered an epitope as changed if there is at least 

one mutation within it. (B) The second model considered an epitope as changed if there are at 

least two mutations within it. (C) The third model considered an epitope as changed if there are 

at least two critical mutations within it. (D) The fourth model was derived from model three and 

further defined "1+" type if there are at least 2 and 3 critical mutations in epitope A and B. 

respectively. 
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Figure 3.3 The changed-epitope composition and antigenic variants on 4 models. (A) Model one. 

(B) Model two (C) Model three and (D) Model four. 
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Models one and two: Changed epitopes on 329 positions  

Figures 3.2A (Model one) and 3.2B (Model two) show the relationships between number of 

changed epitopes and "antigenic variants" on 343 pair of HA sequences with HI assays. Among 

these 343 pairs for Model one, the changed epitopes of 225 "antigenic variants" pairs range from 

1 to 5 and the changed epitopes of 118 "similar viruses" pairs range from 0 to 5. Among 34 

similar viruses with more than 4 changed epitopes for Model one, we observed the following 

results: (1) the average number of changed epitopes was 4.2; (2) the average number of changed 

epitopes with only one mutation was 2.02 and 33 pairs have more than one changed epitope with 

only one mutation. For example, the virus pair, A/PortChalmers/1/73 and A/Singapore/4/75, has 

four changed epitopes with one mutation (i.e. Epitopes A, C, D, and E) (Table 3.3). In general, 

these 34 similar viruses should be regarded as "antigenic variants" because there are more than 

four changed epitopes. This result shows that the Model one is not reasonable.  

For Model two, the average number of changed epitopes was 2.2 for these 34 similar viruses. 

According to the distribution (Fig. 3.2B), Model two achieved the highest accuracy if more than 

two changed epitopes was considered as "antigenic variants". The accuracies were 74.9% 

(257/343) and 92.2% (29410/31878) for predicting antigenic variants on the training set and 

independent set, respectively. This result was similar to the previous work [9]. 

 

Model three: Changed epitopes on 64 selected positions  

Model three considered a changed epitope when the number of mutations on the 64 selected 

critical positions is more than 2. In Model two, the numbers of "antigenic variants" and "similar 

viruses" with ≥ 3 changed epitopes were 119 and 16, respectively (Fig. 3.2B). The averages of 

changed epitopes with ≥ 2 mutations on 329 positions for "antigenic variants" and "similar 

viruses" were 3.8 and 3.2, respectively. The averages of changed epitopes with ≥ 2 mutations on 

64 selected critical positions for "antigenic variants" and "similar viruses" were 3.2 and 1.5, 

respectively (Fig. 3.2C). These observations show that Model three using mutations on 64 

critical positions is better than Model two to discriminate "antigenic variants" from "similar 

viruses". For the "similar viruses", A/Alaska/10/95 and A/France/75/97, there are 12 mutations to 

drive zero changed epitope because no epitope with ≥ 2 mutations on selected 64 positions 

(Table 3.3).  
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Three HA/antibody complex structures [10] can be used to provide structural evidences for 

the changed epitopes (Fig. 3.4). Among these complexes, two antibodies bind to epitopes A and 

B (PDB code 1KEN [58] and 2VIR [59]), while the third binds to epitopes C and E (PDB code 

1QFU [60]). The antibodies consistently bind to two epitopes and this result agrees to Models 

two and three. HA/antibody structures and Models two and three show that two position 

mutations often induce the conformational change of an epitope to escape from the antibody 

recognition. However, the numbers of changed epitopes of 48 "similar viruses" pairs are 2 (35 

pairs) and ≥ 3 (16 pair) for Model two (Fig. 3.2B). Conversely, 14 "similar viruses" pairs have 

more than 2 changed epitopes for Model three (Fig. 3.2C).   

 

A B C
 

Figure 3.4 The three HA-antibody complex structures. PDB codes are (A) 1KEN [58] (B) 2VIR 

[59] and (C) 1QFU [60]. All of the three structures of antibodies bind on two epitopes on HA by 

heavy chain (pink) and light chain (green). The five epitopes on HA are labelled (Epitope A in 

red; B in purple; C in orange; D in cyan; E in green). 
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Model four 

Among 72 "antigenic variants" pairs with one changed epitope based on Model three, 70 pairs 

change on epitopes A or B. The single changed epitope on A or B, which can cause "antigenic 

variants", agreed to HA/antibody complex structures and the experiments. The receptor-binding 

site, surrounded by epitopes A and B, is a basis for HA for the neutralizing mechanism [58, 61] 

(Fig. 3.1B). 

Based on this observation, the epitopes A and B play a key role for neutralizing antibodies. 

Model four based on Model three considered a pair of HA sequences as "antigenic variants" 

when ≥ 2 changed epitopes or ≥ 1 changed epitope on A or B. In Model 4, a pair of HA 

sequences with ≥ 3 mutations on 64 critical positions for the epitope B is regarded as "antigenic 

variants". Thus, we annotated a virus-pair with single changed epitope on A or B as "1+" type 

(Fig. 3.3D). For example, the pair, A/Guizhou/54/89 and A/Beijing/353/89, occurs the changed 

epitope on A (i.e. mutation positions 135, 144 and 145) (Table 3.3). The accuracies of Model 

four were 81.6% and 94.0% on the training set and independent set, respectively. This model 

outperformed two compared methods, i.e. Wilson & Cox (89.7%) [9] and Lee & Chen (92.4%) 

[40], on the independent data set (Fig. 3.5). 
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Figure 3.5 Comparison of our method with the other two methods (Wilson & Cox [9]; Lee and 

Chen [25]) on predicting antigenic variants on two data sets. 
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In the HA/antibody structure complex (PDB code 1KEN [58]), the antibody binds on 

epitopes A and B using two CDRs (i.e. CDR1 and CDR3) on the heavy chain and one CDR (i.e. 

CDR2) on the light chain (Fig. 3.6). The interface of antibody and HA consists of 13 and 5 

contacted residues locating on epitopes B and A, respectively. Among these 13 positions, 7 

positions were selected as critical positions. Based on Model four, 46 "antigenic variants" pairs 

have one changed epitope B with 3 mutations on epitope B, denoted as "B+". This result 

suggested a single changed epitope B can cause antigenic variants. For example, the pair virus 

strains, A/NewYork/55/2004 and A/Anhui/1239/2005, have three critical mutations on epitope B 

(i.e. positions 156, 160 and 193) (Table 3.3). According to the HA/antibody structure (Fig. 3.6), 

the residue 156 interacts to CDR2 (position 55 on the antibody) and the residue 193 interacts 

with three residues on CDR2 (positions 50, 55 and 57) and one residue on CDR3 (position 105). 

This structure suggested that mutations on residues 156, 160 and 193 can induce the 

conformation change on epitope B to escape from CDR2 and CDR3 of the neutralizing antibody. 

 

CDR1

CDR3

CDR2

189193156
159

Antibody

HA

 
Figure 3.6 The HA/antibody structure and interface. (A) The antibody and HA trimer (PDB code 

1KEN [58]). (B) The interface of the antibody and HA. The critical positions on epitope B and 

the CDRs of the antibody are labelled. 
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Figure 3.7 The epitope evolution and the antigenic drift from 1982-1983 to 2008 influenza 

season. (A) The distributions of variant ratios of WER strains from 1982-1983 to 2008 season. 

The match between Model four and WER are labelled (Match in red arrow; Not match in blue 

arrows). (B) The average hamming distances (HD) of 5 epitopes from 1982-1983 to 2008. 

 

 

Antigenic drift and epitope evolution 

We utilized the changed epitopes to study the antigenic drift on 2,789 circulating strains ranging 

from influenza season 1982-1983 to 2008 (36 influenza seasons). One of WHO surveillance 

network's purposes is to detect the emergence and spread of antigenic variants that may signal a 

need to update the composition of influenza vaccine [14-15]. Here, we considered an emerging 

antigenic variant according to WER strain, which was the dominant strain in each influenza 

season [34] (Table 3.1). For a selected season, we applied Model four, measuring changed 

epitopes for the pairs between the vaccine and circulating strains for "antigenic variants", and the 

variant ratio (VR) to detect the emerging antigenic variants.  
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Among 36 influenza seasons, our model detected 12 seasons with emerging antigenic 

variants (VR ≥ 0.5) and 10 of them followed by the update of WER strain in the next season (Fig. 

3.7A). For example, the 1885-1986 season, 80% of the circulating strains with changed epitope 

"B+" (Fig. 3.7B), is the first emerging antigenic variants and the WER strain updated in the next 

season (i.e. from A/Mississippi/1/85 to A/Leningrad/360/86). Moreover, among seven "emerging 

antigenic variants" seasons (matching WHO vaccine updates), four seasons (i.e. 1989-1990, 

1991-1992, 1995-1996 and 2002-2003) matched the antigenic cluster transitions proposed by 

Smith et al. [15]. The other three seasons, which were detected by one changed epitope on A or 

B, are consistent to the WER strain updates (i.e. 1985-1986, 1987-1988 and 1999). These 

observations suggested that "emerging antigenic variants" with ≥ 2 changed epitopes may cause 

the major antigenic drift while "emerging antigenic variants" with one changed epitope on A or B 

may cause the minor antigenic drift. 

To observe the epitope evolution, Figure 3.7B illustrates the hamming distance (HD) on 64 

critical positions of all the five epitopes. For example, the VR of the season 1985-1986 was 0.8 

(Fig. 3.7A) and the epitope with the largest HD was epitope B (HD is 3.4). For 15 seasons with 

WER strain updates, the average HD of epitopes A, B, C, D and E were 1.2, 2.1, 0.5, 0.4 and 0.4 

respectively. These observations showed that epitopes A and B change more frequently in 

vaccine update seasons and play a key role for the antigenic drift. 
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Figure 3.8 The comparison between our method and Wilson & Cox's model [9] in the antigenic 

drift from 1982-1983 to 2008 influenza season.  
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Table 3.5 Example of 13 antigenic variants without changed epitopes 

Virus A Virus B Type 
(A to B)1

Type 
 (B to A)2 HD Epitope 

A 
Epitope 

B 
Epitope 

C 
Epitope 

D 
Epitope 

E 
Alaska/10/95 Idaho/4/95 V S 3 145 165 312   
Alaska/10/95 Wuhan/359/95 V S 5 135 165, 194 275  262 
Alaska/10/95 Hongkong/55/95 V S 7 135, 138 165 275 167, 226 262 

Alaska/10/95 Shanghai/9/95 V S 7 135 165, 193, 
194 

275 226 262 

Anhui/1239/2005 Wisconsin/67/2005 V S 5 122, 138 160    

Fujian/140/2000 Chile/6416/2001 V S 12 144 186, 194 273 226, 246, 
247 

 

Hong_Kong/1/94 Guangdong/25/93 V S 8 124  47, 299 96, 216, 
219, 226 

92 

Panama/2007/99 Chile/6416/2001 V S 7 144 186  246  
Wellington/1/2004 Singapore/68/2004 V S 9 145 189 50 226, 227 94 
Wellington/1/2004 Victoria/513/2004 V S 5 145 186, 190  167, 226  
Wellington/1/2004 Wisconsin/19/2004 V S 5 138, 145 186 278 226  

Fujian/140/2000 NewYork/55/2001 V V 12 144 186, 194 273 226, 229, 
247 

 

Victoria/3/75 Victoria/112/76 V V 2    229  
1 the antigenic type of virus B relative to antisera against virus A. 
2 the antigenic type of virus A relative to antisera against virus B. 

 

3.5. Discussion  

Based on the accumulated HI assays from 1968 to 2008, we identified 64 critical positions on 

HA. Among the 64 critical positions, we observed that 10 positions are not located on all the five 

epitopes. Furthermore, 4 of the 10 positions were almost conserved from 1968 to 2000 and 

underwent frequency switch [41] after year 2000 (positions 25, 202, 222 and 225). These new 

emerging positions suggested that the previously conserved positions may become new antibody 

binding sites and IG can identify new emerging positions from HI assay. Moreover, the emerging 

mutations also revealed a need to update the epitope definition that proposed before 1999 [9, 31]. 

According to the distribution of antigenic variants of Model four (Fig. 3.3D), it is interesting 

that the main samples (209/225 pairs) of the antigenic variants have the changed epitope on 

epitopes A or B. In addition to this, among the 85 pairs of antigenic variants which had one or no 

changed epitopes, we observed that 56 pairs of them had ≥ 3 mutations in epitope A and B. These 

observations suggested that we may consider the epitopes A and B as one epitope and sum up the 

mutations in epitope A and B since these two epitopes were close to the receptor-binding site. 

Furthermore, many experiments suggested that the occlusion of the receptor-binding site by 

antibodies bound to the HA molecule forms the dominant neutralizing mechanism [58, 61]. 

Wilson & Cox [9] suggested that a viral variant usually contains more than 4 residue 

mutations located on ≥ two of the five epitopes. Among the 225 antigenic variants, we observed 
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that 215 of them match Wilson and Cox's model. However, we also observed that 83 of the 118 

similar viruses match their observation, which implied that their model had little ability to 

discriminate between antigenic variants and similar viruses. We also applied Wilson & Cox's 

model to detect the antigenic drift from seasons 1982-1983 to 2008 (Fig. 3.8). Among 36 

influenza seasons, their model could detect 25 seasons with emerging variants (VR ≥ 0.5) and 15 

of them followed by the update of WER strain in the next season. Furthermore, their model 

detected only one season without emerging antigenic variants from seasons 1982-1983 to 1999, 

which suggested that their model had less ability to discriminate between seasons with and 

without emerging variants. We further compared our model with Wilson & Cox's model and we 

found that the major difference was due to the critical positions. If we applied Wilson & Cox's 

model only to the 64 critical positions, the false positive decreased from 10 seasons to only 3 

seasons, which suggested that these critical positions were crucial for antigenic drift. 

Gupta et al. proposed an antigenic distance between vaccine strain and circulating strains 

[30]. The proposed distance quantitatively measured the degree of change in the "dominant 

epitope", which was the epitope having largest fractional change in protein sequence. They 

further correlated the antigenic distance with the vaccine efficacies of 19 influenza A (H3N2) 

vaccines from 1971 to 2004. Among the 19 comparisons of vaccine strain and circulating strain, 

13 of them were composed of different vaccine and circulating strain. It was interesting that all 

13 pairs of them had dominant epitopes A or B and this suggested that the epitopes adjacent to 

the receptor-binding site were crucial for the antigenic drift. In addition, our model had been 

validated on 2,789 circulating strains while the proposed antigenic distance had been only 

validated only on 19 circulating strains. 

Among 225 "antigenic variants" pairs, 13 pairs have no changed epitopes (Table 3.5). 11 of 

the 13 pairs have contradicting antigenic types by two antiseras, which suggested a more 

powerful experimental assay is required to verify the antigenic types. For example, the antibody 

against the A/Alaska/10/95 strain can't inhibit the A/Idaho/4/95 strain; while the antibody against 

the A/Idaho/4/95 strain inhibits the A/Alaska/10/95 strain. 

The HA is a trimer protein and each subunit includes two chains, HA1 and HA2 [62]. 

Recently, Ekiert et al. identified an antibody that bound a new epitope in the stem of HA1 and 

HA2 chains [63]. The antibody blocks the conformational changes which are required for the 

fusion of viral membrane. This new epitope consists of two chains on HA and it can be regarded 

as two epitopes, this also implies that two changed epitopes can escape the neutralizing antibody. 
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3.6. Summary  

This study demonstrates our model is robust and feasible for quantifying the changed epitopes. 

According to the distribution of antigenic variants in HI assays and HA/antibody complex 

structures, we found that two critical position mutations with high genetic diversity and antigenic 

scores can induce the conformation change of an epitope. Epitopes A and B, closing the 

receptor-binding site of HA, play a key role for neutralizing antibodies. Furthermore, two 

changed epitopes often drive the antigenic drift and can be used to explain the WHO vaccine 

strain selection. We believe that our method is useful for the vaccine development and 

understanding the evolution of influenza A viruses. 
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Chapter 4 

A Bayesian Approach for Quantifying the 

Antigenic Distance of Influenza A (H3N2) 

Viruses 

 

4.1.  Introduction 

Influenza viruses often cause significant human morbidity and mortality [23]. The viral surface 

glycoproteins, HA and NA are the primary targets of the protective immune system. The viruses 

are able to continual evade host immune system through the accumulated mutations on the HA to 

change its antigenic properties through the time. The degree to which immunity induced by one 

(e.g. vaccine) strain is effective against another (e.g. circulating) strain is mainly dependent on 

the antigenic difference between two strains [14]. Thus, studies of antigenic difference among 

strains are important for the vaccine strain selection and many methods have been proposed to 

study the antigenic drift and vaccine development [15, 25, 31-32]. 

Among the sequence-derived methods measuring the antigenic difference crossing strains, 

hamming distance (HD) is one of the well-known methods. It counts the number of mutations 

between pairs of sequences and considers all amino acid positions as antigenic equivalents. 

However, not all positions on HA are on surface or on antibody combining sites that are 

recognizable by antibodies [9]. Moreover, some functional sites are evolutionarily conserved (e.g. 

serine 136 and tyrosine 98 in receptor-binding site) [11]. Furthermore, Smith et al. demonstrated 

that, "Antigenic evolution was more punctuated than genetic evolution, and genetic change 

sometimes had a disproportionately large antigenic effect". [41]. 
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4.2.  Motivation and aim 

Based on the experimental results from previous two chapters, we observed that some positions 

were crucial for antigenic variants (e.g. position 145) while other positions had few effects for 

antigenic variants (e.g. position 226). We also noticed that mutations on epitope A and B seem 

more likely to cause antigenic variants. The above observations raise the question of whether the 

amino acid positions are antigenically equivalent or not. 

Here, we proposed a Bayesian approach [64-66] to identify the antigenic drift of influenza A 

by quantifying the antigenic effect of each amino acid position on HA. We utilized the likelihood 

ratio (LR) to quantify the antigenic distance of an amino acid position. Based on naïve Bayesian 

network and LR, we developed an index, ADLR, to quantify the antigenic distance of a given pair 

of HA sequences. Our experimental results show that the positions located on the epitopes and 

near the receptor-binding site are crucial to the antigenic drift. In addition to this, the ADLR 

values are highly correlated to the HI assays and can explain WHO vaccine strain selection from 

1968 to 2008. 
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Figure 4.1 Overview of our method for quantifying the antigenic distance for amino acid 

positions and a pair of HA sequences. (A) The flowchart of training set preparation (B) The 

calculation of LR for a amino acid position to quantify its antigenic distance (C) The calculation 

of ADLR for a pair of HA sequences to quantify their antigenic distance based on naïve Bayesian 

network [64-65]. 
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4.3.  Materials and methods  

Figure 4.1 show the overview of our method for quantifying the antigenic distance for amino 

acid positions and a pair of HA sequences by calculating the likelihood ratio (LR) and ADLR 

based on naïve Bayesian network [64-65]. 

 

4.3.1.  Data sets  

HI assays 

For H3N2 virus, the HI assay data have had accumulated almost 40 years since 1968, which 

were selected in this study to quantify the antigenic distance of amino acid positions. We first 

collected influenza H3N2 virus HI assays from Weekly Epidemiological Record (WER) [Table 

4.1], public documents from World Health Organization (WHO) collaborating center [Table 4.1] 

and publications [Table 4.1]. Then, we searched the H3N2 viruses with HI assays for their HA 

sequences in influenza virus resource [36] and influenza sequence database [35]. The number of 

collected HI assays with HA sequences available is 636 pairs and a subset of 343 pairs with 125 

HA sequences were selected as a training set. In the training set, 183 pairs and 106 pairs of them 

are collected from WER and WHO collaborating center, respectively. The main samples (72%, 

249 pairs among 343 pairs) consisted of pairs of vaccine-circulating strains and for each pair it 

was known whether there is inhibition of the circulating strain by antibodies against the vaccine 

strain ("antigenic variants" and "similar viruses"). Vaccine strains selected by WHO and are often 

the dominant strains of influenza seasons. Each pair includes a HI assay value (i.e. antigenic 

distance) and a bit string with 329 binary bits by aligning a pair of HA sequences (329 amino 

acids). For a specific position on a pair of HA sequences, the binary value is "1 (named as 

mutation)" if the residue types of the two sequences on this position are different; conversely, its 

binary value is "0 (named as no mutation)". In general, an influenza vaccine should be updated if 

an antigenic distance is more than 4.0 between the current vaccine strain and the strains expected 

to circulate in next season [15]. The antigenic distance between strains A and B is the reciprocal 

of the normalized HI assay of B relative to antisera raised against A [55]. Among 343 pairs of 

HA sequences, 225 pairs with antigenic distance ≥ 4 are considered as "antigenic variants" and 

118 pairs with antigenic distance < 4 are considered as "similar viruses". For example, the 

antigenic distance of the pair of HA sequences, A/England/42/72 and A/Port_Chalmers/1/73, is 

12 and this pair is considered as "antigenic variant". Conversely, the antigenic distance of the 
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pair of HA sequences, A/Wuhan/359/95 and A/Nanchang/933/95, is 1 and this pair is considered 

as "similar virus". 

 

HA sequences  

The HA sequences of the H3N2 virus were download from influenza virus resource [36] on April 

5, 2008. After removing the sequences whose nucleotide shorter than 981 or repeated strain 

name, the number of sequences was 5,959. 4,548 of them can be further partitioned into 

influenza seasons according to their date of isolation or Plotkin's study [34]. For the sequences in 

the same influenza season, identical strains from the same geographic area were removed. Then, 

the number of sequences became 2,789 (Table 4.2) that distributed in 36 seasons ranged from 

1983 to 2008. The influenza season is defined as 1 October through 30 September for the year 

before 1999. For example, the "1982-1983 season" refers to those sequences collected between 1 

October 1982 and 30 September 1983. After 1999, the influenza season for northern and 

southern winter was defined as 1 November through 30 April and 1 May through 31 October, 

respectively. For example, the "1998-1999 season" refers to those sequences collected between 1 

November 1998 and 30 April 1999 and the "1999 season" refers to those sequences collected 

between 1 May 1999 and 31 October 1999. 

In addition to the training set, we prepared another data set proposed by Smith et al. [15] to 

compare with our method. This data set consists of 253 H3N2 viruses (Table 4.3) which are 

clustered into 11 antigenic groups. The sequences were extracted from supporting materials of 

publication [15]. 
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Table 4.1 The data sources and composition of HI assay dataset from 1968 to 2007 

HI assay source Year Number of  
HI assays (636)

Number of  
HI assays (343) Reference 

WER 1970 1 1 [67] 
WER 1971 2 2 [68] 
WER 1972 2 2 [69] 
WER 1973 2 2 [70] 
WER 1974 3 3 [71] 
WER 1975 7 6 [72] 
WER 1976 7 7 [73] 
WER 1977 4 4 [74] 
WER 1980 6 6 [75] 
WER 1982 3 3 [76] 
WER 1983 5 5 [77] 
WER 1985 3 3 [78] 
WER 1986 9 9 [79] 
WER 1987 3 3 [80] 
WER 1988 19 17 [81] 
WER 1990 10 10 [82] 
WER 1991 5 5 [83] 
WER 1992 5 5 [84] 
WER 1993 21 21 [85] 
WER 1994 6 6 [86] 
WER 1995 3 3 [87] 
WER 1996 12 12 [88] 
WER 1998 3 3 [89] 
WER 1999 2 2 [90] 
WER 2003 11 11 [91] 
WER 2004 5 4 [92] 
WER 2005 14 14 [93] 
WER 2006 11 11 [94] 
WER 2007 3 3 [95] 

WHO collaborating center 1997 112 28 [56] 
WHO collaborating center 2003 82 20 [96] 
WHO collaborating center 2004 39 17 [97] 
WHO collaborating center 2005 28 1 [98] 
WHO collaborating center 2006 15 9 [99] 
WHO collaborating center 2007 78 31 [100] 

Publications 1983 46 23 [53] 
Publications 1995 38 20 [52] 
Publications 2001 11 11 [54] 

Total  636 343  



 47

Table 4.2 The number of sequences and WER strains from 1982-1983 to 2008 influenza season 

Influenza 
season 

Number of circulating 
strains 

Number of circulating 
strains (non-identical1) WER strains2 WER 

strain ref
1982-1983 3 3 A/Phillipines/2/82 [77] 
1983-1984 4 4 A/Phillipines/2/82 [101] 
1984-1985 17 17 A/Phillipines/2/82 [78] 

1985-1986 5 5 
A/Christchruch/4/85, 
A/Mississippi/1/853 

[79] 

1986-1987 7 7 A/Leningrad/360/86 [80] 
1987-1988 10 10 A/Sichuan/2/87 [81] 
1988-1989 9 9 Si/87; Sh/873 [102] 
1989-1990 6 6 A/Shanghai/11/87 [82] 
1990-1991 11 11 A/Beijing/353/89 [83] 
1991-1992 20 20 A/Beijing/353/89 [84] 
1992-1993 96 61 A/Beijing/32/92 [85] 
1993-1994 94 63 A/Shangdong/9/93 [86] 
1994-1995 103 76 A/Johannesburg/33/94 [87] 
1995-1996 89 73 A/Johannesburg/33/94 [88] 
1996-1997 143 106 A/Wuhan/359/95 [103] 
1997-1998 105 59 Wu/95; Sy/973 [89] 
1998-1999 99 47 A/Sydney/5/97 [90] 

1999 22 14 A/Sydney/5/97 [90] 
1999-2000 92 43 A/Moscow/10/994 [104] 

2000 90 43 A/Moscow/10/99 [104] 
2000-2001 18 13 A/Moscow/10/99 [105] 

2001 49 23 A/Moscow/10/99 [105] 
2001-2002 151 91 A/Moscow/10/99 [106] 

2002 173 105 A/Moscow/10/99 [106] 
2002-2003 175 136 A/Moscow/10/99 [91] 

2003 269 134 A/Fujian/411/2002 [91] 
2003-2004 336 209 A/Fujian/411/2002 [92] 

2004 274 159 A/Fujian/411/2002 [92] 
2004-2005 365 256 A/Calfornia/7/2004 [93] 

2005 225 130 A/Calfornia/7/2004 [93] 
2005-2006 369 284 A/Calfornia/7/2004 [94] 

2006 92 76 A/Wisconsin/67/2005 [94] 
2006-2007 278 181 A/Wisconsin/67/2005 [95] 

2007 71 48 A/Brisbane/10/2007 [95] 
2007-2008 670 261 A/Brisbane/10/2007 [107] 

2008 8 6 A/Brisbane/10/2007 [107] 
Total 4548 2789   

1 identical sequences in same season and same geographic area were removed. 
2 the dominant recommended virus based on HI assays, as reported by the WHO in WER 
3 for the purpose of detecting emerging variants, the later strain is selected to comparing with circulating strains. 
4 the wildly used vaccine strain A/Panama/2007/99 was used instead in following seasons.  
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Table 4.3 The number of sequences and WER strains in Smith's dataset from 1968 to 2003 

Year Number of strains WER strains1 WER strain ref 
1968 4 A/Hong Kong/1/68 [108] 

1969 3 A/Hong Kong/1/68 [109] 

1970 2 A/Hong Kong/1/68 [67] 

1971 4 A/Hong Kong/1/68 [68] 

1972 5 A/Hong Kong/1/68 [69] 

1973 4 A/England/42/72 [70] 

1974 5 A/Port Chalmers/1/73 [71] 

1975 3 A/Port Chalmers/1/73 [72] 

1976 6 A/Victoria/3/75 [73] 

1977 5 A/Victoria/3/75 [74] 

1978 0 A/Texas/1/77 [110] 

1979 0 A/Texas/1/77 [111] 

1980 2 A/Bangkok/1/79 [75] 

1981 1 A/Bangkok/1/79 [112] 

1982 4 A/Bangkok/1/79 [76] 

1983 1 A/Phillipines/2/82 [77] 

1984 1 A/Phillipines/2/82 [101] 

1985 4 A/Phillipines/2/82 [78] 

1986 2 
A/Christchruch/4/85, 
A/Mississippi/1/852 

[79] 

1987 3 A/Leningrad/360/86 [80] 

1988 4 A/Sichuan/2/87 [81] 

1989 16 Si/87; Sh/872 [102] 

1990 5 A/Shanghai/11/87 [82] 

1991 17 A/Beijing/353/89 [83] 

1992 45 A/Beijing/353/89 [84] 

1993 43 A/Beijing/32/92 [85] 

1994 10 A/Shangdong/9/93 [86] 

1995 15 A/Johannesburg/33/94 [87] 

1996 10 A/Johannesburg/33/94 [88] 

1997 9 A/Wuhan/359/95 [103] 

1998 4 Wu/95; Sy/972 [89] 

1999 3 A/Sydney/5/97 [90] 

2000 1 A/Moscow/10/993 [104] 

2001 3 A/Moscow/10/99 [105] 

2002 3 A/Moscow/10/99 [106] 

2003 6 A/Moscow/10/99 [91] 

Total 253   
1 the dominant recommended virus based on HI assays in influenza season, as reported by the WHO in WER. 
Because most of these sequences are without influenza season assignment, the isolation year are used instead. 
2 for the purpose of detecting emerging variants, the later strain is selected to comparing with circulating strains. 
3 the wildly used vaccine strain A/Panama/2007/99 was used instead in following seasons.
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4.3.2.  Quantifying the antigenic distance of amino acid positions 

We applied the likelihood ratio (LR) [64], which is derived from Bayesian theorem [64-65], to 

quantify the antigenic distances of amino acid positions on HA. For each binary position fi taking 

on a particular value (1 or 0; mutation or no mutation), the LR is the fraction of antigenic 

variants where the feature takes on the given value, divided by the fraction of similar viruses 

where the feature takes on the given value. The LR is then defined as follows: 
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where the true positives (TP) is the number of antigenic variants with feature takes on the given 

value and V is the total number of antigenic variant (V=225); false positive (FP) is the number of 

similar viruses with feature takes on the given value and S is the total number of similar viruses 

(S=118). For HI assays, the value of FP sometimes encounters zero probability and this difficulty 

may be surrounded when using Bayesian approach [113], here we added Kv and Ks as the pseudo 

counts to avoid of zero probability and we follow Lawrence's work [113], which selected Kv 

as V ( Kv=15) and Ks as S ( Ks =10.8). For example, for the position 145 is mutated, the 

number of "TP" and "FP" are 102 and 11, respectively, among 343 pair-wise HA sequences in 

the training set. According to these data, the )|( vfp i  is 0.49 and )|( sfp i  is 0.17. Finally, we 

obtained LR=2.87. Furthermore, when we called the "LR of a position", which means the LR for 

a position that is mutated. 

 

4.3.3.  Quantifying the antigenic distance of a pair of HA sequences  

Given a pair of HA sequences, we use the LR for combined positions from naïve Bayesian 

network [64-65] to quantify its antigenic distance and defined as ADLR. For each pair of 

sequences, the ADLR is based on the calculation of the posterior odds of antigenic variant given 

the mutated and LR>1 positions. The posterior odds for antigenic variant are defined by 

integrating mutated and LR>1 positions f1...fn can be written as follows using the Bayes' rule: 
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where V and S represents antigenic variants and similar virus, respectively. f1 through fn are 

different mutated and LR>1 positions. )...|( 1 nffVP  is the probability that the pair is antigenic 
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variant given these positions. )|...(/)|...( 11 SffPVffP nn  is the likelihood ratio for the 

combined positions and defined as ADLR. )(/)( SPVP  is the prior odds. We then assumed that 

the n positions are conditionally independent, the Bayesian network is so-called naïve Bayesian 

network and ADLR can be simplified to 


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
n

i
inLR fLRffAD

1
1 )()...(  

A pair of sequences is predicted as antigenic variant if the calculated ADLR is greater than a 

predetermined threshold.  

 

4.3.4.  Variant ratio for studying the antigenic drift 

We used the variant ratio (VR) to measure the vaccine efficiency on year y. The VR is defined as 

y

y

N

V
yVR )(  , where Ny is total number of circulating strains in the year y and Vy is the number of 

circulating strains which are "antigenic variants" against the vaccine strain in the year. Here, we 

considered an influenza vaccine should be updated and the circulating strains are emerging if the 

VR value is more or equal than 0.5. 

 

4.3.5.  Shannon entropy 

Shannon entropy was used to measure the genetic diversity of an amino acid position i (i=1 to 

329) with 20 amino acid types and is defined as 
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where P(Ai=T) is the probability of the position i with amino acid type T. 
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4.3.6.  Contact-pair distance on antigen-antibody interaction 

To gather the statistics of the contact-pair distance on antigen in antigen-antibody interaction, we 

selected 54 antigen-antibody protein complexes (Fig. 4.2B) from BEID [114] based on two 

criterions: the antigens are proteins and dimer whose chains are longer than 30 residues [115]. 

Based on these complexes, 8,261 contact residue pairs are identified among 949 contact residues 

on antigens, which are identified by 3D-partner [115]. The contact-pair distance between two 

contact residues i and j on the same antigen is defined as follows: 

222 )()()(),distance( zzyyxx jijijiji   

where (ix, iy , iz) and (jx, jy, jz) are the x, y, and z coordinates of C　 atom on residue i and j. For 

example, there are 15 contact residues on antigen in the HA/antibody complex (PDB code 2VIR 

[59]) and the longest distance among them is 27.13Å that between position 129 and position 226 

(Fig. 4.2A). 
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Figure 4.2 The statistics of 54 antigen-antibody complex structures. (A) The distribution of 

contact residues on antibody and HA (showed in spheres). (B) The distribution of contact 

residues among 54 complex structures. (C) The distribution of contact-residue distance. 
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4.3.7.  Amino acid distance to sialic acid  

The distance of an amino acid position i (i=1 to 329) to sialic acid on HA structure is defined as 

follows 

 

 

where Cαi is the Cα atom of amino acid i and atoms is one of the 21 heavy atoms on sialic acid. 

The PDB code of the selected HA structure is 4hmg. 

 

4.4.  Results  

4.4.1.  Antigenic distance of amino acid positions 

In this study, we used LR to quantify the antigenic distance of an amino acid position, which 

locates at the specific site on HA, for their different probability of antigenic variants in HI assay. 

An amino acid position with LR > 1 means that this position is more correlated to the antigenic 

variants than to similar viruses. The highest and lowest values of LR in this study are 2.87 and 

0.49, respectively. Among the 329 amino acids of HA, 131 positions and 166 positions are 

considered to lie in the five antibody-binding sites (named as epitopes), which are labeled A 

through E [9, 31] and on the surface, respectively. Table 4.4 summarizes the LR of amino acid 

positions on HA. The LR of 69 positions are larger than 1 and most of these 69 positions are on 

the epitope (60/69) or surface (57/69), which suggested that positions accessible to antibodies 

have higher antigenic distance. The summary of 10 amino acid positions are listed in Table 4.5 

and Figure 4.3 The first rank, position 145-A with LR=2.87, locates at the epitope A and surface 

of HA. Among 343 pairs of HA sequences in the training set, the position 145-A mutating on 113 

pairs and 102 pairs are the antigenic variants. This result implied that a mutation on this position 

highly induces an antigenic drift. This observation is consistent to the results of Smith et al. [15], 

that is, the position 145 participated in four of ten antigenic cluster transitions (EN72-VI75, 

SI87-BE89, BE89-BE92 and BE92-WU95) and the single amino acid substitution N145K can be 

responsible for antigenic cluster transition (BE92-WU95). The LR of another position (position 

140-A), which also locates on epitope A and surface of HA, is 1.16 and this position is not 

selected by any related works. The position 140-A is almost conserved at amino acid lysine (K) 

from 1968 to 2006 and suddenly mutated into isoleucine (I) at 2007 (Fig. 4.3). The K140I 

21

),distance(
),(

21

1

 s

si atomc
siaiD





 53

mutation is also observed between the two vaccine strains A/Wisconsin/67/2005 and 

A/Brisbane/10/2007 that was used in recent influenza seasons. The LR also identified potential 

antigenic sites that are not identified as epitope before, such as position 222 and 225 that are 

almost conserved from 1968 to 2000 and started to mutate after 2000 (Fig. 4.3) , which are also 

observed in antigenic cluster transition from SY97 to FU02 group [15]. The LR value can be 

smaller than 1 which means the mutation on these positions have smaller probability for 

antigenic variants than similar viruses, such as position 138 and 190, which are selected as 

positive selection codons. These observations suggested that not all frequently mutated positions 

have high antigenic distance [32]. 

 

Table 4.4 The summary of LR on 329 amino acid positions 

 
HA Epitope Surface1 

Positive 
selection2 

Smith et al3 Shih et al4 

LR>1 69 60 57 14 42 53 

≦LR 1 260 71 109 4 1 10 

Total 329 131 166 18 43 63 
1 the position with relative accessibility > 0.16 [116] in any one of two HA structures (PDB: 4hmg and 1hgf) 
2 the position is under positive selection defined by Bush et al.[31]. 
3 the position is a cluster-difference substitution defined by Smith et al.[15]. 
4 the position is a frequency switch sites defined by Shih et al.[41]. 

 

Table 4.5 The TP, FP, )|( Vfp i , )|( Sfp i , LR and distance to sialic acid of 10 amino acid 

positions on HA 

Position
-epitope 

TP FP )|( Vfp i
 )|( Sfp i LR 

Distance 
to sialic

Epitope Surface1 Positive 
selection2 

Smith et 
al3 

Shih et 
al4 

145-A 102 11 0.49  0.17  2.87 9.4 A + + + + 
278-C 48 4 0.26  0.12  2.28 48.9 C +  + + 
156-B 98 16 0.47  0.21  2.26 12.9 B + + + + 
137-A 43 3 0.24  0.11  2.25 7.3 A +  + + 
225- 35 4 0.21  0.12  1.81 10.3 - +  + + 

193-B 81 20 0.40  0.24  1.67 10.8 B + + + + 
222- 16 0 0.13  0.08  1.53 13.8 - +  + + 

140-A 17 4 0.13  0.12  1.16 12.1 A +    
138-A 49 27 0.27  0.29  0.91 8.9 A  +   
190-B 28 15 0.18  0.20  0.89 9.7 B + + + + 

1 the position with relative accessibility > 0.16 [116] in any one of two HA structures (PDB: 4hmg and 1hgf) 
2 the position is under positive selection defined by Bush et al.[31]. 
3 the position is a cluster-difference substitution defined by Smith et al.[15]. 
4 the position is a frequency switch sites defined by Shih et al.[41]. 
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Figure 4.3 The frequency diagram of 10 amino acid positions on HA [41] 

 

4.4.2.  Antigen-antibody interaction 

Most studies on the influenza virus mainly focused on the evolution of antigen, although the 

entry of the influenza virus is highly correlated to the escape of neutralizing antibodies. Here we 

proposed an antigen-antibody view to study the antigenic evolution on HA. It is suggested by 

many experiments that occlusion of the receptor-binding site (RBS) by antibodies bound to the 

HA molecule forms the dominant neutralizing mechanism [10, 59, 61]. From the view point of 

antigen-antibody interaction, we formulated the problem are as follows: on which distance to 

RBS may amino acid positions on HA affect the occlusion of RBS by antibodies and whether 

high LR positions are related to this event. Firstly, we collected 54 antigen-antibody complexes 

and gathered the statistics of contact pair distance on antigen. Figure 4.2 shows that the contact 

residues number on 54 antigens ranged from 11 to 27 and the contact residues number in 6 

HA-antibody complexes (PDB code 2VIR [59], 2VIS [59], 2VIT [59], 1EO8 [120], 1KEN [58] 

and 1QFU [60]) are also within this range. Then, the contact pair distance was applied to 

calculate the contact area on the antigen. Among the 8,261 contact residue pairs on 54 antigens 
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(Fig. 4.2C), the contact pair distance of 8091 pairs (98%) are within 30Å, which means that most 

of the contacted area on antigen are within 30Å. In other words, the mutations that have potential 

to affect antibody occluding RBS are suggested to locate within 30Å to RBS.  

The relationships between LR values and HA-antibody complexes are shown in Fig. 4.4 by 

using PyMOL [47]. Currently, there are two antibodies that mainly bind the RBS (Fig. 4.4A), 

and one of them prevents the HA transition that is required for fusion of the virus [58]. To model 

the occlusion of RBS by antibody, we selected the sialic acid as the center of RBS and calculated 

each position's distance to sialic acid as its distance to RBS. Figure 4.4B shows the relationship 

between LR values and structural locations of positions. These positions can be roughly divided 

into two groups according to they are surrounded the RBS (≤ 20Å to sialic acid) or not (> 20Å to 

sialic acid, such as position 122-A, 124-A and 126-A). The LR values at different distance to 

sialic acid is plot in Fig. 4.4D and the mean of LR value are larger than 1.33 for positions ≤ 20Å 

to sialic acid while the mean of LR is near 1 for positions located at 20Å to 30Å to sialic acid. 

The distribution of entropy value has similar behaviors as LR in Fig. 4.4C, which shows that the 

positions ≤ 20Å to sialic acid are frequently mutated. These result showed that the positions ≤ 

20Å to sialic acid have higher antigenic distance and are frequently mutated, which implies that 

mutations on these high LR positions are highly possible to let the HA to escape the occlusion of 

RBS by antibodies. For the LR > 1 positions within 20Å to sialic acid, we further divided them 

into 5 segments according to their epitope and secondary structure. The segment "I" and "II" 

include positions in two loops in epitope A (131-A, 133-A, 135-A and 137-A) and (140-A, 

142-A, 143-A, 144-A, 145-A and 146-A), respectively. The segment "III" and "IV" include 

positions in one loop and helix in epitope B (155-B, 156-B, 157-B, 158-B, 159-B and 160-B) 

and (186-B, 188-B, 189-B, 193-B and 196-B), respectively. The segment "V" includes positions 

in non-epitope region (222-other and 225-other). The segment II and III are considered as 

important antibody-binding site because the projected from HA surface and could accept 

mutations without affecting the framework of HA [11]. 

Figure 4.5 shows the LR of Smith's 43 positions [15] and the distribution shows that these 43 

positions have higher LR than other positions, which implies that positions in antigenic cluster 

transition have larger antigenic distance than other positions. 
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Figure 4.4 The relationships between LR and HA-antibody complexes. (A) The HA-antibody 

complexes and LR values distribution on HA structure. The red and gray indicate the highest LR 

value and the lowest LR value, respectively. The antibodies are shown in gray (PDB code 1KEN 

[58] and 2VIR [59] for left and right complex, respectively). (B) The structural locations and LR 

values of positions within 30Å to sialic acid (in green) (PDB code 4HMG [117]). The radius of 

the circle is roughly 20Å. (C) The distribution of entropy at different distance to sialic acid. (D) 

The distribution of LR values at different distance to sialic acid. The structure is presented by 

using PyMOL [47]. 
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Figure 4.5 The LR values distribution of Smith's 43 positions [15]. 
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Figure 4.6 The relationships between ADLR and HI assays. (A) The correlation between ADLR 

and antigenic distance from HI assay. (B) The relationships between accuracy of predicting 

antigenic variants and models based on amino acid positions at different distance to sialic acid 
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4.4.3.  Antigenic distance for a pair of HA sequences 

The antigenic distance from HI assay is the main tool for epidemiologists to quantify the 

antigenic difference of circulating strains [14]. Furthermore, antigenic distance is correlated to 

the antigenic evolution of influenza virus [15]. Here, we defined ADLR to quantify the antigenic 

distance for a pair of HA sequences by naïve Bayesian network [64-65], which based on the LR 

for each amino acid position. Based on the positions ≤ 20Å to sialic acid, the correlation between 

antigenic distance and ADLR is shown is Fig. 4.6A and the Pearson correlation is 0.66. 

 

4.4.4.  Predicting antigenic variants 

In the global surveillance system, the emerging of antigenic variants often implies that vaccines 

should be updated to correspond with the dominant epidemic strains [14], thus the predicting of 

antigenic variants is crucial for vaccine update. The relationships between the accuracy for 

predicting antigenic variant and the positions with different distance to sialic acid are shown in 

Fig. 4.6B. The accuracy for ADLR increased steadily from 10Å to 20Å positions, at which 

distance the accuracy reached a stable value at 81.3%. The threshold for log2(ADLR) to predict a 

pair of viruses as antigenic variant is 1.8. The minimum number of mutations observed to reach 

threshold is 2. For example, there are two mutations (135-A and 145-A) between the strains 

A/Shangdong/9/93 and A/Madrid/252/93 within 20Å to sialic acid and the value of log2(ADLR) is 

2.0. On the other hand, the accuracy for HD increased steadily from 10Å to 25Å positions and 

reaches a stable value at 79.3%. Based on the LR and entropy of positions that discussed in 

above section and the predicting accuracy, we selected ADLR and the positions ≤ 20Å to sialic 

acid as our model to predicting antigenic variants.  

 

4.4.5.  Vaccine-vaccine transitions 

The WHO have had updated the component for A (H3N2) influenza vaccine 23 times from the 

1968 to 2008 influenza season to ensure the vaccine effectiveness [14, 118]. Vaccine strains are 

often the dominant strains of influenza seasons, thus it is important to see whether ADLR can 

detect the transition between vaccine strains. The comparison between successive vaccine strains 

were listed in Table 4.6. Take the most recent transition for example, there are 6 mutations 

between the A/Wisconsin/67/2005 strain and A/Brisbane/10/2007 strain within 20Å to sialic acid 
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and the log2(ADLR) of three LR>1 positions is 1.88 (140-A, 156-B and 186-B), which is 

predicted as antigenic variant. Among the 23 transitions, the log2(ADLR) of 18 of them are larger 

than the threshold and are detectable by our method.  

These transitions can be further divided into two classes according to the antigenic type 

between two viruses. The first class includes 10 virus-pairs, in which the two viruses are both 

antigenic variants to the other, while the other 13 pairs have at least one antisera that could 

inhibit the other virus. The t-test of comparing these two groups of pairs are 0.04, 0.01 (two-tail) 

for HD and ADLR, respectively, which means that the pairs in which are antigenic variant to 

each other usually have higher antigenic distance. 

 

Table 4.6 The HD, ADLR and mutated positions of 23 vaccine-vaccine pairs 

  Mutated positions ≤ 20Å to sialic acid   

Vaccine A Vaccine B HD 
Log2 

(ADLR)
LR>1 mutations 

≦LR 1 
mutations 

Sera A 

to VB
1

Sera B 

to VA
2

Hong Kong/1/68 England/42/72 7 5.4 133, 144, 145, 146, 155, 199 139 V3 V 
England/42/72 Port Chalmers/1/73 3 2.1 160, 188, 193  V S 
Port Chalmers/1/73 Victoria/3/75 9 7.8 137, 145, 157, 160, 189, 193, 201, 21, 230  V V 
Victoria/3/75 Texas/1/77 6 4.8 137, 157, 158, 193, 201, 230  V V 
Texas/1/77 Bangkok/1/79 7 7.2 133, 143, 146, 156, 160, 197, 217  V S 
Bangkok/1/79 Philippines/2/82 5 1.2 144, 182, 196, 248 138 V S 
Philippines/2/82 Mississippi/1/85 6 2.1 144, 156, 182, 196 138, 226 S S 
Mississippi/1/85 Leningrad/360/86 5 2.0 156, 159, 188 138, 226 V S 
Leningrad/360/86 Sichuan/2/87 6 3.6 155, 156, 186, 188, 189 138 V V 
Sichuan/2/87 Shanghai/11/87 3 1.7 156, 186 247 V S 
Shanghai/11/87 Guizhou/54/89 5 2.1 131, 144, 159, 186 247 V S 
Guizhou/54/89 Beijing/353/89 4 3.1 135, 144, 145, 159  V V 
Beijing/353/89 Beijing/32/92 9 5.8 133, 135, 145, 156, 186, 193 190, 214, 226  V V 
Beijing/32/92 Shangdong/9/93 2 1.0 157, 189  V S 
Shangdong/9/93 Johannesburg/33/94 4 0.9 135, 216, 219 214 V V 
Johannesburg/33/94 Wuhan/359/95 7 3.6 135, 145, 197, 216, 219 194, 226 V V 
Wuhan/359/95 Sydney/5/97 6 4.5 133, 142, 144, 156, 158, 196  V V 
Sydney/5/97 Moscow/10/99 5 2.4 137, 142, 160, 196 194 S S 

Moscow/10/99 Fujian/411/2002 13 7.6 
75, 131, 144, 155, 156, 160, 186, 196, 

202, 222, 225 
192, 226 

V V 
Wyoming/3/20034 Wellington/1/2004 6 1.4 159, 186, 189, 219 226, 227 V S 
Wellington/1/2004 California/7/2004 5 2.2 145, 188, 196 138, 226 V S 
California/7/2004 Wisconsin/67/2005 7 3.9 156, 186, 188, 193, 196, 225 223 V S 
Wisconsin/67/2005 Brisbane/10/2007 6 1.9 140, 156, 186 138, 194, 223 S S 
1 the antigenic type of vaccine B relative to antisera against vaccine A. 
2 the antigenic type of vaccine A relative to antisera against vaccine B. 
3 the abbreviation of antigenic type, "V" is antigenic variant and "S" is similar virus. 
4 the HI assay of recommended virus (Fujian/411/2002) were not available, so the Fujian/411/2002 like virus was 
used instead. 
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4.4.6.  Antigenic cluster change 

We considered the ADLR together with the data on antigenic cluster change. Smith et al. [15] 

proposed 11 antigenic clusters of H3N2 virus based on 253 virus strains and HI assays. One of 

WHO surveillance network's purpose is to detect the emergence and spread of antigenic variant 

that may signal a need to update the formulation of the influenza vaccine [14-15]. We modeled 

the detection of emerging antigenic variants by measuring the match of WER strain and 253 

strains and the results are shown in Fig 4.7. The WER strains are the dominant antigenic type in 

each influenza season and the summary are listed in Table 4.3. The average change of ADLR from 

1968 to 2003 is shown in Fig. 4.7B, in which the ADLR captures the replacements between 

antigenic clusters. For example, the H3N2 virus first emerged in human population in 1968 

(HK68 cluster) and then the ADLR increased steadily from 1968 to 1972, in which year the 

second antigenic cluster (EN72) emerged. Unlike the steadily pattern, the third antigenic cluster 

(VI75) suddenly emerged in 1975. The two kinds of patterns agreed with Shih's observations 

[41], which suggested that positive selection has been ongoing most of the time and sometimes 

multiple mutations at antigenic sites cumulatively enhance antigenic drift.  

Figure 4.7B also illustrates the antigenic evolution of 5 segments surrounded the RBS. The 

first changed segments in 1968 were segment I and II that belongs to epitope A. Then the 

interactions between first 4 segments drove cluster change from 1968 to 2001, which suggested 

that the interactions between epitope A and B dominated the antigenic drift before 2001 in these 

segments. The segment V, that includes the two non-epitope positions (222 and 225) was 

conserved until 2002 in this dataset and interacted with segment IV in the SY97 to FU02 

antigenic cluster transition [15]. The variant ratio is shown in Fig. 4.7A, in which the ADLR 

detected the ratio of antigenic variants against the vaccine strain in each year. The variant ratio 

usually shows peaks between antigenic cluster transitions, moreover, there are several peaks 

within the cluster, such as the HK68, BA79 and SY97 clusters. For the HK68 cluster, in which 

the H3N2 virus first entered human population, the high variant ratio implies the virus underwent 

many changes for rapid adaptation to a new host. Although all the sequences during 1979 to 

1986 are clustered into BA79 cluster, the ADLR detected the variant ratio as 100% in 1984, in 

which year there was only one sequence (A/Caen/1/84) and virus-pair A/Philipine/2/82 and 

A/Caen/1/84 is an antigenic variant according to the HI assay, which shows that ADLR can 

detected the within cluster change. Again, within the SY97 cluster, the ADLR detected the 

emerging of A/Mowcow/1/99, which is the vaccine strain that replaced the vaccine strain 
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A/Sydney/5/97, in the year of 1999. The detail information of BA79 and SY97 cluster are shown 

in Fig. 4.8. 
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Figure 4.7 The distribution of ADLR and the antigenic drift from 1968 to 2003. (A) The 

distributions of variant ratios of antigenic clusters from 1968 to 2003. (B) The average ADLR 

from 1968 to 2003. 
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1 1 1 1 1 1 2 1 1 3 2 1

5 8 8 4 9 5 4 8 2 0 1 6

5 9 8 4 6 9 8 2 4 7 3 2 3

LR 1.9 1.5 1.4 1.6 1.1 1.3 1.2 1.0 1.3 1.0 2.0 1.5 0.8

Smith's et al * * * * * *

BK79 V PH/2/82 Y K D N I S T I G R V N V

BK79 NL/209/80    D V  N V S K I
BK79 RD/577/80    D V  N V  K I
BK79 BI/4791/81    D V  N V S K I
BK79 BI/10684/82    D V  N V S K
BK79 NL/233/82    D V   V   
BK79 NL/241/82    D V   V   
BK79 OS/13676/83    D V  N V S K
BK79 CE/1/84    V V   V   K
BK79 GF/V728/85    V V Y  V   K A
BK79 NL/330/85    V V   V   K A
BK79 ST/10/85   E V V Y  V   K A
BK79 WE/4/85    V V Y  V   K A
BK79 CO/2/86    V V Y  V D  K A
BK79 V LE/360/86   E V V Y  V   K A
BK79 CC/2/88   E V V Y  V   R K A

SI87 V SH/11/87 H R  V V Y  V D  K A
SI87 V SI/02/87 H R  V V Y  V D  K A
SI87 VI/7/87 H R  V V Y  V D  K A
SI87 EN/427/88 H R  V V Y  V D  K A
SI87 NL/450/88 H R  V V Y  V E  K A
SI87 ST/12/88 H R  V V Y  V D  K A
SI87 AT/211/89 H R  V V Y  V D  K A
SI87 GE/5007/89 H R  V V Y  V D  K A
SI87 V GU/54/89 H R  I V H  V D  K A
SI87 HK/1/89 H R  V V Y  V D  K A
SI87 NL/620/89 H R  V V Y  V D  K A
SI87 NL/650/89 H R  V V Y  V D  K A
SI87 NL/738/89 H R  V V Y  V D  K A
SI87 SP/34/89 H R  V V Y  V D  K A
SI87 SP/35/89 H R  V V Y  V D  K A
SI87 SP/36/89 H R  V V Y  V D  K A
SI87 SP/40/89 H R  V V Y  V D  K A
SI87 SP/53/89 H R  V V Y  V D  K A
SI87 VI/1/89 H R  V V Y  V D  K A
SI87 WE/5/89 H R  V V Y  V D  K A
SI87 ME/2/90 H R  V V Y  V D  K A
SI87 ME/5/90 H R  V V Y  V D  K A
SI87 SH/24/90 H R  V V Y  V D  K A
SI87 SU/1/90 H R  V V Y  V D  K A
SI87 CA/1/91 H R  V V Y  V D  K A

2 1 1 1 2 2 1 1 1 1 1 1
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Smith's et al * * * * * * * * * * * * *
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SY97 NL/427/98 S   R    L
SY97 NL/462/98 S   R P   L
SY97 MW/10/99 S   R    L Q
SY97 NL/301/99 S N  R    E L Q
SY97 V PM/2007/99 S N  R    E L Q
SY97 NL/3/00 S   R P   E L Q
SY97 NL/118/01 S N G R    E L Q
SY97 NL/124/01 D S N  R    E L Q
SY97 NL/126/01 S N  R P  G E L Q
SY97 NL/1/02 S N G R    E L Q
SY97 NL/120/02 S D G R    E L Q
SY97 NL/20/03 S D G R    E L Q

FU02 V FU/411/02 D T H T R Q I S N G R  K G I E L Q
FU02 FI/170/03 D T H T R Q I S N G R  K G I E L Q
FU02 NL/213/03 D T H T R Q I S N G R  K G I E L Q
FU02 NL/217/03 D T H T R Q I S N G R  K G I E L Q
FU02 NL/22/03 D T H T R Q I S N G R  K G I E L Q

A B

 
Figure 4.8 The comparison of vaccine strain and other strains in BK79 and SY97 cluster [15]. 

 

4.4.7.  Antigenic drift and vaccine strain selection 

We considered the ADLR together with the data on antigenic drift. The WHO has updated the 

component for A (H3N2) influenza vaccine 23 times from the 1968 to 2008 influenza season [14, 

118]. We detected the antigenic drift as well as to detect the emerging of antigenic variants, 

which measures the match of WER strain and circulating strains, and we judged the variants are 

emerging when the variant ratio ≥ 0.5. The WER strains are the dominant antigenic type in each 

influenza season and the summary are listed in Table 4.2. The average change of ADLR from 

1982-1983 to 2008 is shown in Fig. 4.9B, in which the ADLR shows that the antigenic variant 

usually emerges before the season that WER strain replacement. For example, the ADLR between 

circulating strains and WER strain (A/Sydney/5/97) increased from 1997-1998 to 1999, in which 

season the mean of ADLR is 2.10 and VR is 0.57, we judged the variants emerged in 1999. Indeed 

the next WER strain (A/Moscow/10/99) dominated at next influenza season.  

Figure 4.9B shows more details of the evolution of 5 segments than Fig. 4.8B. For example, 
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the segment V started to mutate in 1999-2000 season in 2,789 HA sequences, while the segment 

started to mutate in 2002 in Smith's 253 sequences. There are 7 remarkable peaks for ADLR 

before the season of 2004 (1987-87, 1989-90, 1991-92, 1995-1996, 1999, 2002-2003 and 2004) 

and 5 of them followed by the dominant of new WER strains that in different antigenic clusters. 

This result implies that antigenic cluster change have higher ADLR than the update of other WER 

strain. Furthermore, the variant ratio for 14 seasons are larger or equal to 0.5 and 12 of them 

followed by a WER strain replacement in next season, which suggested that ADLR can detected 

the emerging of antigenic variants. 
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Figure 4.9 The distribution of ADLR and the antigenic drift from 1982-1983 to 2008 influenza 

season. (A) The distributions of variant ratios of WER strains from 1982-1983 to 2008 season. 

The match between Model four and WER are labelled (Match in red arrow; Not match in blue 

arrows). (B) The average ADLR from 1982-1983 to 2008. 
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4.5. Discussion 

The LR quantify the antigenic distance of amino acid position from HI assays and identified 69 

positions that with LR larger than 1. Among these positions, there were 6 positions that are 

almost conserved from 1968 to 2000 and underwent frequency switch [41] after year 2000 

(position 25-Other, 75-E, 140-A, 202-Other, 222-Other and 225-Other). The new emerging 

positions suggest that the previously conserved positions may become new antibody binding 

sites and LR can identify these positions from HI assay. Due to the emerging of new mutations, 

the 131 positions that were previously identified as epitope in year before year 1999 [9, 31] are 

suggested to be updated to incorporate new positions. These new mutations also indicated that 

the Bayesian method similar to our method must incorporate new HI assay data to capture the 

emerging mutations. Recently, Lees et al. proposed 109 additional positions to extend the 

original 131 epitope positions [119], which also suggested the need of update the definition of 

epitope. 

We used the five identified segments, which are located within 20Å to the sialic acid, to 

model the antigenic evolution and the results showed some interesting patterns. The first pattern 

is the interactions among ≥ 3 positions in segment III and IV that both located on epitope B, 

which are observed in the seasons 1985-1986, 1986-87 and 1987-1988 and the 10 vaccine-pairs. 

In the training set, there are 129 virus-pairs match this pattern and 118 of them are antigenic 

variant (91%). For example, there are three mutations in the vaccine-pair A/Mississippi/1/85 and 

A/Leningrad/360/86 (156-B, 159-B and 188-B). The other pattern is the interactions among ≥ 3 

positions in three segments, which are observed in 12 vaccine-pairs. In the training set, there are 

158 virus-pairs matching this pattern and 138 of them are antigenic variants (87%). For example, 

there are three mutations in the vaccine-pair A/Wisconsin/67/2005 and A/Brisbane/10/2007 

(140-A, 156-B, 186-B). 

From the view of occlusion of BRS by antibodies, LR identified positions within 20Å to 

sialic acid have higher antigenic distance and ADLR correlated to antigenic distance well based 

on these positions. Most of the positions with LR > 1 within this distance are located on epitopes 

A, B and D (30/35), and previous studies suggest epitopes A and B are more antigenic important 

than other epitopes. Although the epitopes C and E that located more than 20Å to sialic acid 

were observed to be recognized by antibodies (PDB code 1EO8 [120] and 1QFU [60]), the 

neutralizing efficiency of them are lower than epitopes A and B [11]. Recently, Ndifon et al. 

studied the neutralization efficiency of epitopes and proposed that mutations on epitopes C and E 
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possibly increased the neutralization efficiency [61]. In other words, mutations on these two 

epitopes possibly increased the efficiency of antibodies neutralization. 

Recently, Ekiert et al. identified an antibody recognizing a highly conserved epitope among 

several subtypes of influenza viruses (Subtypes H1, H2, H5, H6, H8 and H9) [63]. This 

identified antibody presents a new prospective to design the influenza vaccines against diverse 

subtypes of influenza viruses [121]. The conserved epitope are composed of residues from HA1 

and HA2 chains. However, most studies focused on the evolution of HA1 domain and the HA 

sequences in database often lack the HA2 domain. The proposed index, LR, may provide new 

insights for the development of influenza vaccine when we consider both HA1 and HA2 

sequences. 

For the modeling of vaccine update, we proposed the variant ratio, which is an index to 

detect the emerging of antigenic variants. However, the variant ratio can only measure the degree 

of match between vaccine strains and circulating strains, but can not determine whether the 

variants will be dominant in future seasons or not. 

 

4.6.  Summary 

This study demonstrates our model is robust and feasible for quantifying the antigenic distance 

of amino acid positions by LR. Based on naïve Bayesian network and LR, we developed an 

index, ADLR, to quantify the antigenic distance of a given pair of HA sequences. According to 

the LR values and entropies of positions, we found that the positions locating on the epitopes and 

near the receptor-binding site are crucial to the antigenic variants. The accumulated critical 

mutations, which are near (≤ 20 Å) to the receptor-binding site, often drive the antigenic drift due 

to the conformation change to escape from neutralizing antibodies. The ADLR values are highly 

correlated to the HI assays and can explain the selection of WHO vaccine strains. 
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Chapter 5 

Conclusion 

5.1.  Summary 

In this thesis, we study the relationships between genetic evolution and antigenic evolution 

focusing on three dimensions. In short, the major contributions of this thesis can be summarized 

as follows: 

1. We identified critical amino acid positions, rules, and co-mutated positions for antigenic 

variants. The information gain (IG) and the entropy are used to select critical positions. The 

co-mutated positions can infer the co-evolution between amino acid positions on HA. The 

rules, which are derived from the decision tree, describe when one (e.g. circulating) strain 

will not be recognized by antibodies against another (e.g. vaccine) strain based on a given 

pair of HA sequences.  

2. We developed an epitope-based method for identifying the antigenic drift of influenza A 

utilizing the conformation changes on antigenic sites (epitopes). Our experimental results 

show that two critical mutations can induce the conformation change of an epitope. The 

epitopes (A and B), which are near the receptor-binding site of HA, play a key role for 

neutralizing antibodies. Two changed epitopes often drive the antigenic drift and can 

explain the WHO vaccine strain selection. 

3 We developed a Bayesian method for identifying the antigenic drift of influenza A by 

quantifying the antigenic effect of each amino acid position on HA. We utilized the 

likelihood ratio (LR) and a developed index, ADLR, to quantify the antigenic distance of an 

amino acid position and a given pair of HA sequences, respectively. Our experimental 

results show that accumulated critical mutations, which are near (≤ 20 Å) the 

receptor-binding site, often drive the antigenic drift due to the conformation change to 

evade the recognition by immune system. The ADLR can predict antigenic variants; detect 

vaccine-vaccine transitions and explain WHO vaccine strain selection. 
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5.2.  Future work 

There are several directions for the future work 

1. For the antigenic drift, which is related to the recognition between antigen (HA) and 

antibodies, the structural information should be incorporated to improve the current 

understanding of the structural change on HA for antigenic drift. 

2. Due to the high degree of structural similarity between HA of different subtypes of 

influenza viruses, our findings on the H3N2 virus can be mapped to other subtypes of 

influenza viruses (e.g. H1N1 and H5N1 viruses) for comparison. We expect the findings 

from H3N2 virus to provide new insights for the studies of other subtypes of influenza 

virus. 

3. For the vaccine strain selection, our models for predicting antigenic variants may provide 

new insights to select which of today's strain is likely to be dominant in the coming year's 

epidemic  

4. Based on our study of interactions between influenza viruses and antibodies, we are 

interested in the interactions between antigens and antibodies. We may extend our research 

to general antigen-antibody interactions in the future. 
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