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Complex Multiplication

Student: Pei-Chuan Tsai Advisor: Dr. Rong-Jaye Chen

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

From the use of elliptic curves in cryptosysStem first propiobg Koblitz and Miller in 1985,
elliptic curve cryptography had attracted-lots of crypsggiic researchers. The benefits, such as
shorter key size and efficient computation, make‘it becomapalpr and better solution to construct-
ing cryptosystems. It is an important, issue that-efficiegéyerating the suitable elliptic curves for
constructing the cryptosystem. One of the cryptosystentwipairing based cryptosystem. For the
pairing based cryptosystem, the smaller embedding degréeeimain requirement of the elliptic
curves. Currently, the only way to generate such curvesngpex multiplication.

The complex multiplication allows us to determine the nurmddgooints on the elliptic curves de-
fined over finite field first, then compute the curves with theirdel order. Comparing to the method
that selects random curves and uses point counting algotittgenerate secure elliptic curves, com-
plex multiplication is a deterministic algorithm. In thisgsis, we summarize the mathematical back-
grounds for complex multiplication and implement the aiton of computing the Weber class poly-
nomial which plays an important role in complex multiplicat

Keywords: elliptic curve, complex multiplication, class polynomial
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Chapter 1

Introduction

In 1985, Koblitz and Miller first proposed the crytosystenaséd on elliptic curves. The
advantages of the elliptic cryptography attract the redess to involve in the related area.
Since there does not exist efficient attacks,-e.g»indexibadattacks, in elliptic curve cryp-
tosystems (ECCs), the key size of ECCs-€an be much shortgrarorg to the traditional
cryptosystems based on the hardness of the discrete lngaoitthe factoring problem. Ta-
ble1.1shows the recommended key sizes provided by NIST (Natioséitlite of Standards
and Technology). Nowadays, more applications and syst@ply #he technology of the
elliptic curve cryptography as security solutions. A lotstdndards and protocols related to
elliptic curve cryptography are also proposed. For staig]ahere are IEEE 1363, ANSI
X9.62, X9.63, and ECDSA, ECMQYV, ECIES are for protocols.

The points of an elliptic curve would form an addition groungldt can define a variant of
discrete logarithm problem on it, called elliptic curvedite logarithm problem (ECDLP).
The ECCs can devide into two categories: one based on thedssaf ECDLP and the

other based on the bilinear pairing. The bilinear pairinfinéel on the elliptic curve makes



Symmetric Key Size | RSA and Diffie-Hellman Key Size| Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 1.1: NIST recommended key sizes

the identity based (ID-based) cryptosystem proposed byn8ha 1984 feasible. The first
ID-based encryption scheme proposed by Boneh.and Frasklising the pairings defined
over elliptic curve and finite field.

To setup a cryptosystem, the parameters‘mustbe chosenlbatefsatisfy the security
requirements. The generation of suitable'elliptic curgesdrucial problem. The best known
algorithm for generating the curves used in ECCs based on.lP@G£Schoof’s algorithm and
the improved version, SEA algorithm. These algorithms canlgt select curves and count
the number of points of the curves repeatedly until the cusatisfy the ssecurity properties.
In pairing based cryptosystem, the security requiremehtiseocurve are different and the
SEA algorithm can not be used. These elliptic curves swatailpairing cryptosystems are
called pairing-friendly curves. The complex multiplicatiis the only way to generate these
kind of curves.

In this thesis, we present a clear view of complex multiglamaand implement the algo-



rithm to show how it works. Observing that computation of thess polynomial takes the
most time of whole computing, we focus on this part and shomegperimental results. The
rest of the thesis was organized as following.

In Chapter 2, we review the related mathematical backgredodthis thesis. The al-
gebraic backgrounds were presented first, including thaitlefis of algebraic structures,
the properties of finite fields. Then review the elliptic cairmryptography by introducing
the general elliptic curves and the elliptic curves defineer dinite fields. For the theory of
complex multiplication involves the complex plane closelg describe the elliptic curves
defined over complex field more detailed.

In Chapter 3, we use examples to introduce the algorithmsgvkrio generating elliptic
curves. The first one is using subfield'curvesi The secon@iSthoof’s algorithm and the
SEA algorithm mentioned above; Thedastis the complex piidation. We also provide an
example for generating the pairing-friendly elliptic casv

In Chapter 4, each step of the’cemplex multiplication aredesd particularly. Besides
point out the relevant theorems and properties, we alsdagedtie algorithms may be used
in practical. Then in Chapter 5, the experimental resultt@implementation of computing

the class polynomial are presented. Finally, the conlusigiven in Chapter 6.



Chapter 2

Mathematical Backgrounds

The researches of elliptic curve cryptography are relatealgebraic theory closely. In this
chapter, we review the mathematical backgrounds of thikwoiSection2.1 And then

introduce the definition of elliptic Curves and its\propaestin SectiorR.2

2.1 Algebraic Backgrounds

In this section, we introduce the elementary algebraicctires and the algebraic back-
grounds of the material related to the complex multipl@atnethod (CM method), includ-

ing imaginary quadratic fields, homomorphisms, and modulactions.

2.1.1 Group, Ring, and Field

The elliptic curve cryptosystems are mainly based on thd pesblem of the elliptic curve
discrete logarithm problem. Since the points on an elliptiocve defined over a finite field

form a group, we introduce the elementary algebraic strastand some propositions, the-



orems related.

Definition 2.1 (Group) A group GG is a set with a composition law if it satisfies the

following conditions:

e x is associative, i.e. foralt,y, z € G, (xy) z = x (y=2)

e x has an identity element, i.e., for alle G, ze = ex =«

e For allz € G, there exists an elemente G such thatry = yx = e. y is called the

inverse ofz, usually denoteg = = !

If the composition law is commutative, the group is said t@bexmutative or abelian.
The cardinality of a group is also called its.order, denotet}, therefore, a group is finite

if its order is finite.

Definition 2.2 (Subgroup) Let & be a group. A grou@f is a subgroup of- if H satisfies:

e [1is a subset of/

e c € H, wheree is the identity of group

e forall z,y € H, zy must also be i

eifreH, v 'eH

Forx € G, denote(x) as the subgroup @F generated by:

(x) = {a"|n € Z}

Definition 2.3. A groupG is said cyclic if there is an elemente G such thatz) = G. If
such an element exists, it is called a generator 6f.

5



Theorem 2.4(Lagrange) Let GG be a finite group and/ be a subgroup af;. Then
|H| devides|G]|.

As a result, the order of every element also dividgs

Definition 2.5 (Ring). Aring R is a set together with two composition lawsand x such

that
e Ris a commutative group with respect+to

e x is associative and has an identity elementinde, # e, wheree, is the identity

of +

e x is distributive over+, i.e., forallx, y, 2 e Rex (y+ 2) = zy + xzzand(y + 2) x =

yxr + zx

Also, the ringR is commutativey.if the lawx_is‘commutative. A commutative ring

such thatry = 0 impliesz = 0 ory = 0 for all z, y € R is called an integral domain.

Definition 2.6. Let R be a ring. Define the idedlof R as a nonempty subset &fsuch that
e [ is a subgroup of: with respect to the law-

e forallze Randye I, zy e [ andyx e [

Remark 2.7. In a commutative ring? of prime characteristip, the binomial formula can

be simplified as

(o + ﬁ)pn — o 4+ " Va,Be Randn e N.



Theorem 2.8(Fermat’s little theorem)Let p be a prime integer; € N andged (z,p) = 1,
then

'=1 (modp)

Definition 2.9 ( Euler totient function) Let n» > 1 and define the Euler totient function

( Euler’s phi function) as

o (n) = [{z]l <x <n,ged(z,n) =1}

Theorem 2.10(Euler). Letn, z be integers angdcd (z,n) = 1, then

2™ =1 (modn)

Definition 2.11. Let R be a ring.5An element 1Said to be invertible if there exists an
unigue elemeny such thatry = 9a = e, =1, denotedy = . The set of all the

invertible elements of? forms a'group undermultiplication, denoted BY.

Definition 2.12 (Field). A field K is a commutative ring such that every nonzero element is

invertible.

Definition 2.13 (Extension field) Let K and L be fields. If there exists a field homomor-

phism fromK into L, thenL is an extension field ok, denoted byl./ K.

Definition 2.14 (Number field) A number fieldK is an algebraic extension @J of finite

degree. An element ot is called an algebraic number.



2.1.2 Imaginary Quadratic Field

Definition 2.15 (Quadratic field) A quadratic field is a number field of degree2 overQ.

A quadratic fieldQ (v/d) is said to be real ifl is positive, imaginary ifl is negative.
Proposition 2.16. The quadratic fields are precisely those of the f@M) for d a square-

free rational integer.

Proof. Express the quadratic field asQ (¢), thend is an algebraic integer argtlis a zero

of
2 +ar+b abeZ.
Thus
7 —a,t v a2 =4b
‘4 i )

Leta® — 4b = r%d for somer, d e Z andd bé squarefree, then

—air\/c_i

0 D

and soQ () = Q (V). O

Definition 2.17 (Algebraic integer) Let K /Q be a number field. An algebraic number
is called integral oveZ or an algebraic integer ik is a zero of a monic polynomial with
coefficients inZ.

The set of all the algebraic integers &funder the addition and multiplication &f is a

ring, called the integer ring ok and is denoted by .

Theorem 2.18. Let d be a squarefree rational integer. Then the intege @f/E) are:



(1) Z[Vd]ifd#1 (mod4),

) Z[L +1Vd]ifd=1 (mod4).

Proof. Given an element € Q (\/ﬁ) it can be expressed as= r + sv/d for somer, s € Q.

Then we can write

o= a—l—b\/g’ a,b,ce Z,c >0
c

and no prime divides all af, b, c. By Definition2.17, « is an algebraic integer if and only if

the minimal polynomial ofy

() (29 -2

has all the coefficients ifAi. Thus

7
A7 (2.1)
C

—= 1=
2

eZ. (2.2)

From EquatiorR.1, ¢ must divides eithe“ora,/Assumegcd (a, ¢) = p, then Equation
2.2implies thatp dividesb sinced is squarefree. That contradicts the assumption: no prime
divides all ofa, b, c. Hence we have divides2, = ¢ = 1 or2. If ¢ = 1, thena is an
algebraic integer in any case.

If ¢ = 2, by assumption, we have bothandb be odd integers. For the square of an odd

integer2k + 1is4k*> + 4k +1=1 (mod4), and for Equatior2.2

2 g2 2 12
a bd:a bdeZ,
c? 4

= a*—b*d=0 (mod4),
itimplies thata? = > =1 (mod4) andd =1 (mod4). Conversely, ifdi =1 (mod4),
then for oddz andb, o can still be an algebraic integer because Equaidémand2.2 hold.

9



So we proved that:
(1) Ifd#1 (mod4), thenc = 1. Hence the integers @ (v/d) is Z [Vd].

(2) Ifd =1 (mod4), we can have: = 2, a,b odd anda also be an algebraic integer.

Hence the integers @ (v/d) isZ [ + 1V4d|.
]

Definition 2.19 (Integral bases)If Oy is the ring of integers of an algebraic number field

K, then a basis fo© i overZ, or simply aZ-basis, is called an integral basis f@r

Definition 2.20 (Discriminant of a basis)Let K = Q («) be an algebraic number field of
degreel overQ. If

B = {O[l,O[Q,...,Oéd}

is aQ-basis forK, ando; (1 < »< d) are‘allofthe embeddings éfin C, then the discrim-

inant of the basis is given by
disc (B) = det (o, (a;))?,

wheredet denotes the determinant of the matrix with enty{a;) in the i"* row and ;™"

column.

Note: An embedding ok in C is a ring homomorphisnk™ — C.

Example 2.21. Let B = {1,+/2} be an integral basis fdk, and

011\/§H\/§, 021\@'—’—\/57

10



be the embeddings df in C. Thus,

01 (1) g1 (ﬁ)
09 (1) g9 (ﬁ)

disc (B) = det (o, (a;))* = det

2

et | V2 =(—2\/§>2=8.

1 =2

Lemma 2.22. Let B; andB; be two integral bases for an algebraic number fi€ldThen
disc (By) = disc (B,) .

Definition 2.23. Let B be an integral basis for an algebraic number figld Then the dis-

criminant of K is disc (B), denoted by\ .

Theorem 2.24.Let d # 1 be asquarefree integer and $ét= Q (\/E) with discriminant

Ag. Then

{1.543Vd} if &&ZT  (mod4)
B = :

{1,vd} ifd#1 (mod4)
and

d ifd=1 (mod4)
A[( = ;

4d ifd#1 (mod4)

whered is called the radicand ok .

Proof. By Theorem2.18 the assertions regarding bases are clear. For the definitithe

discriminant of a field, we compute tl¥®y in both cases:

11



Q) fd=1 (mod4),

N [—=

Ak = disc (B) = det = (—\/8)2 =d.
RN
(2) Ifd#1 (mod4),
1 d 2
Ak = disc(B) = det v = (—2\@) = 4d.
1 —vd

0

An order in an imaginary quadratic field is a rilgsuch thaZ. = R < Ok andZ # R.

Therefore, an order has the form

LLiVd ifd=1 (mod4)
R=7Z+7Zf6, wherejf>0;{§=
Jd-  ifd#1 (mod4)
The integerf is called the conductor @k and:is the index oRz in Ok. As the result, a basis

of an order in an imaginary fiel& cane

Br = {1, fé}.

Use the same concept of the discriminant of a number field, M&mthe discriminant

of the order
1) fd=1 (mod4),

L f(5+5Vd 2
Ap = disc (Bg) = det FGrave) = (-rva) =

L f(3-3Vd)

12



Quadratic Field | Integer Ring | Integral Basis | Discriminant
K =Q(Vd) Ok B Ag

d=1 (mod4) | Z[3+3vd] | {1,1+1iVd} d

d#1 (mod4) Z (Vd) {1,Vd} 4d

Table 2.1: Properties related to the quadratic fi@lfh/d)

Quadratic Field | Order with Indexf Basis Discriminant
K =Q(Vd) R B Ag

d=1 (mods) | Z[f(+ Al |{LfG+IVDY|  pd

d#1 (mod4) Z (fvd) {1, fVd} 412d

Table 2.2: Properties related to anorder in the quadratit @ev/d)

(2) Ifd#1 (mod4),

2

1 Vd 2
Ag = disc (Bgr) = det I = (—Qf\/@ = 4f%d.

1 —fVd

We summarize the results related to a quadratic @(@l/ﬁ) ford # 0,1 an squarefree

integer, discussed above in TaRld.

And for an orderRin K = Q (\/E) with index f, the related results are also concluded

in Table2.2

13



2.1.3 Homomorphism

Definition 2.25(Group homomorphism)Let G; andG,, be two groups with respective com-

position lawsx and® and identities:; andes.

e A group homomorphisnyp betweenG; andGs is a map fromG; to G such that for

all 2,y € Gy

Y(rxy) =9 ()@Y (y).

e The kernel ofy is Ker () = {x € G1|¢ (x) = ea}.

Definition 2.26 (Ring homomorphism)Let R, and R, be two rings with the respective
operationst, x and®, ®. A ring homomarphismp is a map fromR; to R, such that for

allz,y e Ry
o Y(z+y) =1 () ®Y(y)
o Yz xy) =1 ()Y (y).

° @Z)(GX) = -

Definition 2.27 (Field homomorphism)Let K and L be fields. A homomorphism of fields

is a ring homomorphism betwedtiand L.

Definition 2.28. Let R be a ring and let) be the natural ring homomorphism frafto R.

(14+---4+1) ntimesifn >0

—(1+---+1) —ntimes otherwise

14



Definition 2.29 (Characteristic) Let R be a ring and) be a natural ring homomorphism
defined as above. The kernelwfs of the formmZ, for some nonnegative integer. Then

the nonnegative integen is called the characteristic @, denoted by-har (R).

2.1.4 Modular Functions

Definition 2.30. Let IV be a positive integer. The modular groLip(/V) is defined as

[y (N) = €SLy(Z):c=0 (modN)

The matrixSL,, (F'), or SL (n, F'), known as the special linear group of degreever
a field F' is the set of» x n matrices with determinarit with group operations of ordinary

matrix multiplication and matrix inyersion:

Definition 2.31 (Modular function) A complex functionf which is meromorphic on the
upper half plane

H = {r'eC|Sm(r) > 0}

and which satisfies

f(r)=f(M7), whereM €T, (N)

is called a modular function.

2.2 Elliptic Curves

Here we introduce the difinitions of elliptic curves and stitate some propoerties of elliptic

curves.

15



2.2.1 General Elliptic Curves

We illustrate the general definitions of elliptic curveshistsection and focus on the elliptic
curves defined over finite fields and the complex fi€ldh the Section2.2.2and Section

2.2.3

Definition 2.32. An elliptic curve E defined over a field<, denoted byF /K, is given by

theWeierstrass equation
E:y® +aiwy + azy = 2° + apx® + ayx + ag (2.3)

whereay, ay, asz, as, a6 € K.
The set of K-rational points of the elliptic curvel (K), is defined as the set of the

solutions to the elliptic curve equationi® and-the point at infinityo,

E(K) = {(ffa?/)‘yz + a2y Fagy = 374 asy +a4:p+a6,x,y€K} U 0.

Figure2.1shows some examples:of the elliptic curves defined Bver
For an elliptic curve given by Equatidh3, defining the following constants to be used

in later definition:

2 2
bg = a4 + 4&2, b4 = aia3 + 2&4, b6 = a3 + 4&6,
be = a2 A . 2 2

s = a10¢ + 40206 — A1a304 + G203 — Gy,

cy = b3 —24by, g = —b3 + 36byby — 216bg.
Definition 2.33 (Discriminant) Define the discriminant of the curve be

A = —bibg — 8b3 — 27b; + 9bybybg.

16
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y= S 4x Yy =x -

Figure 2.1: Examples of elliptic curves over

If the characteristic of(, char (K)#-2;:3ythe discriminant can be expressed as

EiSpo
- 1728

After defining the discriminant, we'say a'eurveis non-siagifland only if A # 0.

Definition 2.34 (j-invariant) For a non-singular curve, i.é\ # 0, define thej-invariant of

the curve as

3
) = 4

We focus on the properties of thié-rational points in the following.

Definition 2.35(Group law) Define the addition and doubling of points as below.
Addition:
Given two distincti -rational points off/, denoted as’, ). The straight line joining?
and (@ must intersect the curvE at one further points, saift’. Reflecting point®k’ in the
x-axis, we obtain the poink. DefineR = P + Q.

17



/pp
N

Figure 2.2: Point addition (chord process)

Doubling:

Given a rational poinf’ on £, define the doubling, or the addition éfto itself, as the
following proccess. Take the tangentto-the-cufvat P, the line would intersect the curve
in one other point, sai®’. Also,reflecting pointk4in the z-axis and obtaining the poirft,
Then the doubling of is defined\byR =P+ P.= 2P

Note that if the tangent of the paint is vertical; we say thantersect the curve at the

point at infinity, and defing” + P = 2P = oo.

The process of addition and doubling is often called the @ftangent process. Figure
2.2illustrates the proccess of addition and FigRrgof doubling.

According to the group law defined above, it can be shown taset of the rational
points of E including point ateo forms an additive abelian group with the pointas the

Z€ero.

Lemma 2.36. Let E be an elliptic curve given by

E:y* +ayzy + asy = 2% + a2 + aur + ag

18
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Figure 2.3: Point doubling (tangent process)

and letP, = (x1,y;) and P, = (z2, y2) be the points on the curve. Then

—P = (.Tl, —Yi —a1xry — CL3) .

Set
.
Y2—W :
A= T2 if 21 /7% 2o
31’% + 2@21’1 + a4 - a’lyl . v 9
\ 291 + a2 Aag , A=z, and P, # — Py
p
Y1y — Yoy -
=< Ty — X1 7 Ifxl?éﬂfz
B 3
—x] +aqr; + 2a6 — azy; B -
L 2y1 + a1 + as , fxy =xandP, # —P;
If

Py = (x3,y3) = P + P» # 0,

thenxs, y3 would be

.T3:)\2+CL1)\—CL2—ZC1—.T2,

ys =—(AN+ay)x3 — p—as.

Definition 2.37 (Multiplication-by-m map) For a positive integern, let mP denote the

19



map that takes a poirft to P + P + - - - + P (m summands). The notationP is extended

tom < 0 by defining0P = co and—mP = — (mP).

2.2.2 Elliptic Curves overF,, ¢ > 3

After introducing the general elliptic curves in Sectidr2.1, now we focus on the elliptic
curves defined over the finite fiel) for ¢ > 3.

Recall the general elliptic curve equation, ¥Meierstrass equation
E:y* + axy + asy = 2° + ax2”® + agx + ag.

If the characteristic of the field is n@f the equation can be wirtten as

2 2

ar  asg\?2 a aa a
(y+%+§3) =x3+(@—f—j)ﬁ%—(m—k%)x%—(f%—%)

2 ’ 1 ’
= Y = z? +a2m2 + ayr + ag,

2 2
wherey, = y + “* + % and neWw constanis, = a, A4 %, ay = ag + 98 ap = %3 + ag.

If the characteristic is also n6t letw, = 7z+ %2

2 !’ .2 ! l
y1=x3+a2x + ayx + ag

= 3’ =21+ Az, + B,

for some constantd, B.

In the following, since the elliptic curves we are interelstee defined over the fields
with characteristic neithexr nor 3, we use the simplified equation instead of the Weierstrass
equation.

We reduce the related definitions and the group law for thptigllcurve equation?' :

y? =23+ Ar + B.
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Definition 2.38. The discriminant of the curve can be reduced as

A =—16 (44% +27B%).

Definition 2.39. For a non-singular curve, i.eA # 0, the j-invariant of the curve can be
reduced as

(E) = —1728 4 g A
— X = X .
J A 443 + 272

We obtain that when # 0, 1728, it is the j-invariant of the elliptic curve

3J 2j
-T + -,
1728 — = 1728 —j

g2 = 2% 4

Therefore, we can construct an elliptic curve with a kngsinvariant. This would be

helpful in the construction of elliptic’curve with-complexuttiplication method.

Lemma 2.40. Let E be an elliptic curve definéd ovét. Assume the characteristic &f is

prime to6 and F is given by thezsimplified Weierstrass equation
E:y*=2""4% Az + B.
The j-invariantjz depends only on the isomorphism clasgof
e jp=0ifand onlyif A = 0.
e jp=1728ifand onlyif B = 0.
e If jp € Kisnotequal ta), 1728, thenE is a quadratic twist of the elliptic curve

2 9
n jE,J:Jr ]E- .
1728 — jg 1728 — jg

By o =
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Corollary 2.41. Assumegced (char (K'),6) = 1. The isomorphism classes of elliptic curves

E over K are, up to twists, uniquely determined by the absolute ianajj, and for every

j € K there exists an elliptic curve with absolute invariant

If K is algebraically closed then the isomorphism classes iptielicurves overk™ cor-

respond one-to-one to the elementdiirvia the mapE — jg.

Definition 2.42. Let E' be an elliptic curve given by

E:y>=2>+Az+ B

and |etP1 = (ZCl,yl), P, = (.TQ, yg) be pOintS onf’ with P17 Py # 0.

Then
=P = (21, Y1),
Set
| %, | S,
3%;;14, iz = 29, y1 #0

|fP3=(SCg,yg)Zpl—i-PQ?fOO,then
r3 = A\’ — 1y — 1y,

ys = (x1 —x3) A — y1.

The number of rational points on an elliptic curkedefined over a finite field', is finite,

we usally denote the quantity BYyE (F,).

Theorem 2.43( Hasse theorem)Let £ be an elliptic curve defined ovéy,. Then
#L(F,) =q+1—tand|t| <2,/4.
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Remark 2.44. The integer is equal to the trace of the Frobenius endomorphism.
For any integer € [—2\/13, 2\/33], there is at least one elliptic curve defined oveif,

such that¢E (F,) =p+1—t.

Now we introduce the Frobenius endomorphism.

Definition 2.45 ( Frobenius endomorphismYhe Frobenius endormorphisp on an ellip-

tic curve £’ overF, is a group endomorphism of defined by

-

E(F,) — E(F)

by () @)

0 — 0
\

The characteristic polynomial gfpis-o. =+d44; q.

Proposition 2.46. The endomorphisnﬁg 1o, #@is equal to the zero map an.

It means that for any poiritr, §)€ B (F,), we-have

02 (2,) — 1y (2.9) + a(v,y) = (+7,5"") =t @, y") + a (2,)

= 00.
Theorem 2.47. For the endomorphism of an elliptic cur¥eoverF, defined by
¢z — agy +q.
Then the Frobenius tra¢eds the unique integer such that
P2 —toy +q = 0.

I.e. makes the endomorphism to zero map.
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Figure 2.4: LatticL = Zw; + Zwy

2.2.3 Elliptic Curves overC

An elliptic curve defined over complex numb@ris isomorphic to a complex torus, denoted
by C/L. In this section, we introduce thejisomorphism and the piose

Letw;, ws be complex numbersithat are linearly independent BveX lattice L is of the
form
L = Zw + Zws S o nawa|ng, ny € Z} .
Figure2.4gives an illustration of a lattice. A torus ov&rcan be expressed Ify/L.

Definition 2.48. An elliptic function with period§w;, w»} is a meromorphic functiof (x)

on C such that

fle4+w)=f(x+w)=f(zr), YVreC

Definition 2.49 ( Weierstrasso-function). Given a latticel, the Weierstrasg-function is

defined by the series



Theorem 2.50. The Weierstrasg-function has the following properties

e The sum defining (z) converges absolutely and uniformly on compact sets not con-

taining elements of..

e ©(z) is meromorphicirC and has a double pole at eacle L.

e p(—2)=p(2),VzeC.

p(z+w)=p(),Ywe L.

The set of doubly periodic functions fdr is C (p, ¢’). It means that every doubly

periodic function is a rational function gf and its derivativey'.

Defferentiatingp (z) term by tefm-yields

a (Y= =2 :

weL (Z - w)?’ .
Definition 2.51 ( Eisenstein series)Define the Eisenstein seriés, := G,, (L) of weightn

for lattice L by

G, (L) = Z w "

weL\{0}
Proposition 2.52. The discriminant\ = g5 — 27g3 # 0.
Theorem 2.53. The elliptic functionsy andy’ satisfy the function

¢ (2)* = 4p (2)° — 60G4p (2) — 140G,

To show the isomorphism of a tor@/ L and an elliptic curve?, it is usually to set

gs = 60G4, gs = 140G6
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Theorem 2.54. Let L be a lattice and le&’ be the elliptic curve)? = 423 — g2 — g3. The

map
)

c/L —  E(C)

o 2z — (p(2),¢0 (2))

is an isomorphism of groups.

For now, given a toru€/L, it can be found the corresponding elliptic curiieover C
by the Weierstrasg-function. The following shows the converse, given an &llipurve £

overC, there is a lattice such that the todgL is isomorphic toF.

Definition 2.55. Two latticesL, L, are homothetic if there is ame C* suth thainL; = L.

Let L be a lattice inC with basis{@&»4 and let

w1
T = —
W

such that the imaginary part of Sm (7) =10 (switchingw; andws if necessary). Let

L. =7 + Zt, thenL. is homothetic tal.

Theorem 2.56. There is a canonical isomorphism between the s€tsfomorphism classes

of elliptic curves and the set of homothety classes of lestiaC.

Corollary 2.57. Let L = Zwy + Zws and L, = Z + Z7 with 7 = w;/w, such thatr is a

complex number witlsm (7) > 0. Then the elliptic curve”;, is isomorphic toF;, .

Theorem 2.58. There is a canonical isomorphism between the s€tsfomorphism classes

of elliptic curves and the set of homothety classes of lestiaC.
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Recall the definitions for latticé = Zw, + Zws,, NOW we restrictta., = Z + Zr.

The Eisenstein series defined for= Zw, + Zw-, by Definition2.51, define

Ge(r) =Gl = Y ———

(m,n)#(0,0) (mT + TL)
G2 (1) = g2 (L) = 60G4 (L,) ,

gs (7') = g3 (LT) = 140G6 (LT)
and let
27ri7'.

q=e

Calculation of the discriminamk will get

A (1) = g3 (1) a0 tde 2m) 2 (g + -+ ) .
Definition 2.59. Define

3
)
() = 1728% T 100844+ 2149576047 + -+
¢

Define the matrix

a b
SLy(Z) = a,b,c,d € Z,ad —bc =1

c d

and it performs on the upper half plakgby

a b
T=aT+b, VreH.
cT +d

C

The upper half plane of the complex plane is defined by

H={x+iyeCly > 0}.
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Figure 2.5: Fundamental domain 81, (Z)

()
Proposition 2.60. Let 7 € H and let €451, (Z). Then

c.d
faT +b &6
V cr4d A’ :

Definition 2.61 (Fundamental domainfa#L+(Z)).* Let F be the subset of € H such that

1 .
<%(2)<§, z;éewforg<9<z.

>1, -
4 .

Figure2.5is the illustration ofF.

Proposition 2.62. Givenrt € 'H, there exists

a b
ESLQ(Z)
c d
such that
aT—i_b—ze}“.
ct +d

Moreover,z € F is uniquely determined by.
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Corollary 2.63. If z € C, then there is exactly onee F such thatj (1) = z.

Now we can prove the theorem below.

Theorem 2.64. Let y?> = 423 — Az — B be an elliptic curvelZ overC. Then there exists a
lattice L such that

92 (L) =A and g3(L)=DB.
There is an isomorphism of groups

C/L ~ E(C).

Proof. Recall thej-invariant defined by Definitio2.34 then

3 3 2 A3
j(B) = CZ4 — 17284 n 6 _ 178,
4

By Corollary 2.63 there exists adlatticé.,, ‘=\7Z.% Zr such thatj (1) = j (L,) = j.

Consider the following cases:

1. g2 (LT) # 0

Thenyj (1) # 0 = A # 0. Choose\ € C* such that
92 (ALy) = X""gy (Ly) = A.
The equality; = j (L,) implies that
93 ()\LT)Q = B2,

S0gs (AL,) = £B. If g3 (\L,) = B, we prove the theorem. lf; (A\L,) = —B, then

set)’ =i\
[ ()\,LT) = {2 (Z)\LT) = i_4gg ()\LT) = A,

g3 (ML) = g3 (iAL,) =i %g3 (A\L,) = B.
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Hence, eitheA L, ori\L, would be the lattice isomorphic te.

2. g2 (L;) =0
Thenj (1) = 0 = A = 0. According to the assumption thaf — 27B8% = 0, and
g2 (Ly)* — 2795 (L.)* # 0 by Proposition2.52 we haveB # 0 andg; (L,) # 0.

Chooseu € C* such that
93 (uLr) = M_Gg?’ (L) = B.
Theng, (uL,) = u *go (L;) = 0 = A. The latticeu L is the one we want.

Let the latticeL be the one we get by the above, by Theo2b¥ the mapC/L — E (C)

is an isomorphism. O
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Chapter 3

Generate Elliptic Curves

After reveiwing the mathematical backgrounds, we sumredtiz approaches to generate
elliptic curves currently. One of thesé 'approaches is basetthe efficient point counting

algorithm because it can allowus ta-test random curves fimdiing a suitable one to use.

3.1 Subfield Curves

We describe the relation of the order of an elliptic curvertiiover a finite field, and the

one defined over the extesion fidlg.. We prove the thoerem bellow first.

Theorem 3.1. Let #F (F,) = ¢+ 1 —t. Write X? —tX + ¢ = (X —a) (X — 3). Then
#E Fgn) =q" +1—(a" + "),
foralln > 1.

Proof. To prove the theorem, we start with showing that + 5") is an integer.

Lemma 3.2. Let s, = (o + "). Thensy = 2,s; = t, ands, .1 = ts, — ¢s,_ for all
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Proof. Sincea is a root of the equatiorf (X) = X2 —tX +¢ = (X — ) (X — 3), then
f(a) = (a—a)(a—p8) =a®—ta+ q = 0. By multiplying both side witm™~!, we get
o™t = ta™ — g™ 1. This relation holds fop3, too. Adding these relations
" gt =5, =t — qa"T 4 1B — g3
— b ) g (0 )
=18, — (Sn_1-

For sy, s1,t, g are all integerss,, = (o™ + 4") will be integer for alln > 0. O

Let
9(X) = (X" — "X = BEEX NG (o + 5") X" + ¢,
for «, 3 are roots ofg (X), we=can writeg(X) = QX) (X% —tX +¢). Sinceg(X)

and(X? — tX + ¢) are both integer.polynomials/the quotiént X') would be with integer

coefficients. Hence

9(dg) = (88)° — (@™ + ™) ¢ + "
= (¢g)* — (" + B") ¢gn + "

= Q (¢q) (0] —tdg +q) =0

would be an endomorphism @&f. By Theorem2.47, there is an unique integérsuch that

¢on — kg + ¢* = 0, andk is determined by = ¢" + 1 — #E (F,»). Therefore,

Q"+ B =" + 1 — H#E (Fyn).
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According Theoren8.1, in order to compute the order of an elliptic curve definedrove
F,», we only need to count the points of the curve over a smallef figinstead couting the

points over .

Example 3.3. Assume we want to find out the order of the elliptic cuBe y> +y = 23+«

overlFyion.

We start from counting the points &f (F,). These points are
E (F2) = {OO, (07 0)7 (07 1)7 (17 0)7 (17 1)}

We get#FE (Fo) =5,t =q+1—#E (F;) =2 +1—5 = —2, and the relation

X2 tX+q=X>+2X+2= (X—_Q% ”4) (X—% ”4)

=X —(=lsti) (X = (=1 —19)).
By Theroem3.1, we can calculate
#E (Foon) = 28NF @ =(E1954087 + (-1 —0)™)
— 2101 + 1— 251 — 2101 o 251 + 1.
We also can compute the order by the recursive relation = ts,, — ¢s,, 1

50 =2, s =1(=-2,
sgztsl—q50=—2(81+80) =0,
S3 = 1S9 — @51 =—2(82+S1) =4,

Sy =183 — qso = —2 (83 + $9) = —8,

51
S101 = 277,
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hence we get the same resghE (F30) = 2101 — 251 4 1,

The properties of subfield curves let us compute the ordehefsame elliptic curve
equation defined over an extension field. However, the cainsthat the coefficients of the
equation must be defined over the subfield makes it rarely & tasgenerate elliptic curves

for cryptosystems in practice.

3.2 Schoof’s Algorithm and SEA Algorithm

Both Shcoof’s algorithm and SEA algorithm are designed teestihe point counting prob-
lem on elliptic curve. The point counting problem is to detere the number of the rational
points of a randomly chosen elliptic:curve over a finite figld To find the suitable ellip-
tic curves, one usually random: choeses:the parametersigticcturve and uses the point
counting algorithm to find the-order of‘the elliptic ‘curve.tlie curve does not satisfy the
requirement, then repeat the process.until obtaining arogpigte curve. In this section, we

introduce the Schoof’s idea first and the improvements me@dy Elkies and Atkin next.

3.2.1 Schoof’s Algorithm

We focus on the elliptic curve over prime fielt). By Hasse theorem, Theore2¥3 the

order of an elliptic curve? defined oveff), is

#EF,) =p+1—t, [t]<2yp

wheret is called the Frobenius trace. The idea of Schoof is to deterthe Frobenius trace

t by findingt, = ¢t (mod!) for some small primes and using Chinese Remainder Theorem.
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According to the Hasse boun¢t| < 2,/p, as long as we compute enoughsuch that
[T! > 4/p, then the uniqueé e [—2,/p, 2,/p| can be determined.
For computing eack, we discuss the cage= 2 first. For determining, = ¢ (mod?2),

observing the order modulb
#E(F,) (mod2)=p+1—t (mod2)
=t (mod2) =t,, forodd prime fieldF,.

Hence,t, = #FE (F,) (mod 2). If there exists a subgroup of order thent, = 0,
otherwiset, = 1. Since thej-coordinate of the points with ordemwould be0, if the elliptic
curve equatiorF : y* = z* + Ax + B = 0 has a root irf,,, thent, = 0. Using the fact that
the product of all the irreducible polynomial of degrem F, would beg (z) = 2P — x, we
can determine, as below

0 if degi(ged (2 +Ax + Bsa? — 1)) > 0

ty =
1 otherwise

Now considering the case thiats"2:-Since-the Frobenius map is a zero map on elliptic

curve, for every poinf’ € E (F,)
9, (P) = td, (P) + pP = 0.

We can restrict to the non-trividltorsion pointsP € F [I]\ {co} to reduce the map
¢y (P) = tipp (P) + piP = 0

wheret, =t (mod/) andp; = p (mod/).

Definition 3.4 (Torsion points) Let E be an elliptic curve oveKk andn € Z. The kernel of

the multiplication-byn map, denoted by [n], is the set satisfies
E[n] ={Pe E(K)nP = x}.
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An elementP € E [n] is called an-torsion point.

And we introduce the concept of division polynomial. Forleaositive integen, there
exists a polynomiad,, such that the:-coordinates of.-torsion points are the roots o¢f,.
Lemma 3.5. Let n be a positive integer. There exists polynomials 0,,,w, € F, [z, y].

ForP = (z,y) € E (F,), whereq > 2 andnP # o,

o ()

Theorem 3.6. Let P = (z,y) € E (F,) where2P # oo, and letn > 3 be an odd integer.
The division polynomial),, (x, y) can be expressed dg (z), i.e. ¢, has noy terms. Then

P e E[n]ifand only if ¢, (x) = 0.
Therefore, a poinP = (xp, yp) € Efl| would satisfy the equations
yr — % —Aep =B =0 and> ¢ (zp) = 0

When dealing with thé-torsion points, the theorem allows us to reduce the contipata
modulo the polynomials), () and the elliptic curve equation.

For determing;, we then try all € {0, 1, --- ;[ — 1} to find the one that makes

¢ (P) +piP = i¢, (P)

holds modulay; (xp) and the elliptic curve equation, whefe= (zp,yp) € E [I].

We give the Schoof’s algorithm in the following.
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Algorithm : Schoof’s algorithm

INPUT: An elliptic curveE over a finite fieldF,.

OUTPUT: The order oF, #FE (F,).

1. findty =t (mod?2), store(ts, 2)
2. M<2 <3

3. whileM < 4,/p do

4. find pointP (z,y) € E [I]

5. compute) (X (z,y).Y (z,)) = ¢, (P) + pi.P

6. compute (X (z,y),Y (z,y)) = ¢, (P)

7. fort;=0,1,---, 51

8. if z-coordinates of, R and@-are equal

9. comparey-coordinates of, P and@

10. if the same, stor@\[)

11. else, stor¢l — ¢;,1)

12, M «— M x 1, 1< nextprimégl), and break

13. compute by using(t;,[) pairs and CRT

14. returmp+1—t¢

3.2.2 SEA Algorithm

Although Schoof proposed the polynomial time point cougpifgorithm in 1985, it remains
inefficient while dealing with curves with large group ordeAtkin and Elkies improved
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the Schoof’s work and makes the algorithm, SEA algorithnciieal.
The key observation is to consider the roots of the charattepolynomial of Frobenius
map,z? — tx + p. In Schoof’s algorithm, when computirig= ¢ (mod), it separates into

two cases:

(1) Ifthere is aroot of:? — t;z + p; = 0 in F, thenl is an Elkies prime.

(2) If there is no root ofc> — ;2 + p; = 0 in Iy, thenl is an Atkin prime.

We briefly list some definitions and properties related to SHgorithm below.

Definition 3.7 (Classical modular polynomial)Define the classical modular polynomial as

below

By 27 (1) = (& 514V (f—j (7k>> |

Then® (z,y) € Z [z, y].

i
[e=)

Definition 3.8 (Isogeny) A non<constant morphisarwhich maps the identity element of

E to the identity element of’; is called an-isogeny,

¢:E1—)E2.

Lemma 3.9. Let E;, F> be two elliptic curves. There is an isogeny of degré®m E; to

Esifand only if &, (j (E4y),j (Ey)) = 0.

Since the coefficients of the classical modular polynonmeatease significant whilein-
creases, we usually use the alternative modular polynanstdad. The alternative modular

polynomial was proposed by Muller in 1995. Let

12 s(l—1) C(nT)\*
cmmey o 10 ()
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wheren (7) is the Dedekind’s)-function

0
%11—[ 1_(] — p2miT

Definition 3.10. Define the canonical modular polynomial as

¥ (2, (1) = (& — f <r>>§ (x ~ (‘j)) |

According to [LO] we determine the type of the prime by following theorem.
Theorem 3.11.Let E' be a non-supersingular elliptic curve ov&y with j-invariant; #

0,1728. For an odd primé, &, (z, j) € F, [z] is an univariate polynomial. Then there are

three cases of the number of rootsigf(x, j) on the fieldF,

(1) 1rootorl + 1 roots.

[ is Elkies prime and? — 4p /= 0-(mod/).

(2) 2roots.

[ is Elkies prime and? — 4p has‘square foots iF,.

(3) Noroot.

[ is Atkin prime and all roots would lie ii,- for somer | [ + 1.

It can be shown that the splitting type of the canonical madpblynomial®§ (z, j) is
the same as the splitting type of classical modular polyabti(zx, j). Hence, to determine
which type the primé belongs to, we compute the degreezofl (9§ (z, j) , 2 — z). If the
degree is larger theh [ is Elkies prime, otherwisé,is Atkin prime. Following we introduce

the Elkies and Atkin’s improvements.
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Elkies’s Improvement
If [ is an Elkies prime, according to Theor&il, there exists an isogery and elliptic
curve E/; such that
I: E— B,

ki(z)  g1(,y)
(hy (2))* (ha (2))’

And the degree of; isi, hencd Ker (I;)| = [. By definition of isogeny/; (c0) = o0, we

I (P (2,y)) = ( ) e B, for P(x,y) € E.

havedeg (h, (z)) = 51. There is a crucial result thdf is a homomorphism and the kernel

of the isogeny; is a subgroup off. Moreover,Ker (I;) contains a subgroup df /] and
¢ (P)= AP, forPe Ker(l),

where ¢ is the Frobenius endomorphism-ands_.a root of the characteristic polynomial
of Frobenius endomorphism oy@ér. By-relation of reets and coefficients, we have the other
rootu = p;/X\ andt; = u + A (mod).

Using the same concept of ‘Schoof, since the'points we dehlawé Ker (1), while
finding the value\ € F, by testing the equality af (P) and\ P, we can take the computation
modulo the polynomiak; (). This will improve the efficiency becauseg (h; (z)) = 5t
is less thanleg (¢ (x)) = [2, the division polynomial. Following we simply list the pregs
of computingh, (x). Refer to [L1] for more details of the computation.

Given an elliptic curve? : y? = 2* + Az + B over field K wherechar (K) > 3, then
such an isogenous cunig : 42 = 2% + Az + B andh, (x) satisfied the above descriptions

can be derived from the root 6f¢ (x, j), ®¢ (x, y), and some invariants df. Letj = j (E)

and a rooy of the polynomiald{ (x, j). Set

—=3 —2
_ . - B E,—F
E4:__7 E6:__7 A= K 67
3 2 1728
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and
0 . : (0 .. :
Dy=g| 5% @y)) (9.7, Dj=j a—yfbl (2,9) ) (9,4) -

The notation means that the derivatives are to be evaluated 8. By this setting, we
denote the invariants of the desired curve tofﬁ@,ﬁél), AW, ThenA® = [712Aq1%/s,
wheres = 12/ (ged (12,1 — 1)).

If D; = 0then

N3
) (7))
Ey =17°E, jo:w

A=-30EY, B =22°/(j0 ~1728) A0, p, =0.

If D; # 0, then set

J— JR— _2_
7, - “12EsD; , i, U Sgr, i _EiEs
sE,D, oo 1227 A

whereE, = —12¢'/ (sg). And compute
D, =o' (-85 ) J 3

ralo (2501 ) 0.0) +5 (5001 ) (09|
D =1 (50 ) (0.1

+j lj’ (j—;q’f (x,y)) (9.7) + ¢ (aj; o7 (=, y)> (9, j)] ,

to determine

Then we have

—() 1 [ —
B =5 <E4 o




)

Let f = I5/g, f' = sE, f/12, the other mvananE( is computed as

0 0
D; = (oten) (%), 0; = (5 ota) (1.09).

then

® _(l) -
aw _ I'Py o BV

ipr’ 0 0

Therefore, we have the parameters of the cuiye

Now use these values to derive the polynomiglz). Recall the Weierstrags-function

of the elliptic curvel : y? = 23 + Az + B

1 1 I @ o
@():_2“‘ Z 2 Z;—Fchz
weL\{0} W) k=1
where

A B

C1 ===y G ==

1 57 2 7’

3 k—2

= 1 5, fork >3
* (k—2)(2k+3)j2=10]0k tg 10T

Let p (z) andg; (2) denote the Weierstragsfunction of E and E;, respectively,

1 0
=;+ch22k, o1 ( ——+chz
k=1

Then the polynomiak, (x) satisfies

0

1 ¢, — lc
. - 1, r— ek 2k+2
2 h (p(2)) = exp ( oP1% 2 (2k +1) (2k + Q)z ) .

k=1

For h, (x) is a monic polynomial with degre@ — 1) /2, we can derivé:, (z) by expanding
the series and comparing the coefficientss ofWe summarize the Elkies procedure in the

following.
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Algorithm : Elkies procedure

INPUT: An elliptic curveE' over a finite fieldF, and an Elkies primé

OUTPUT:t, = t (mod).

1. compute the polynomidl, (z)

2. calculate (X (z,y),Y (x,y)) = ¢, (P), whereP € E and satisfie®, (x)

3. forx=0,1,--- 5

4. if z-coordinates o P and() are equal

5. comparegy-coordinates oA P and@

6. if the same, thep = p;/\

7. if the sum ofy-coordinates oiP,and@ is 0, then\ =1 — A\, = p;/A
8. break

9. retuen\ + p mod!

Atkin’s Improvement
Now considering the case thiais an Atkin prime. From the Theoref1], the equation

2?2 — t;z + p; = 0 has no root irff;. The two roots will lie onF ..

Theorem 3.12. If the roots of®¢ (z, j) lie onF,- for the smallest, then the roots\ and

of the equationr®> — ;= + p; = 0 satisfy thatﬁ is an element of order exacthyin [F-

Hence, in the case thais an Atkin prime, we will get a set of possible valuetpt= ¢
(modi).
Let the value- of Theprem3.110f an Atkin primel ber;. It can be determined by com-
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puting the degree afcd (@f (x,7) v — x) for increasing | [ + 1. Oncer; determined,
we find the set of possible valuesiphext.

LetF2 = F, (v/d) for a quadratic non-residuge F,. Since\, y € Fj2\F;, denote
A=z + xQ\/E, W= — xQ\/E, for somex, x5 € Iy

Lety = ﬁ By Theoren3.12 the order ofy is r, and we can write

Y =0 + g2\/g, fOI’ Somegl7g2 € Fl'

Then

AN 2 add 4 2ma0Vd
Y=gt pVd="="= :
B Au P

Hence

g = xf + x%d (modl),
D92 = 21 e (modn)

p =X iETieirsd  (modl).

So we can get a possible valuetpby

p (g +1)

Lh=A+pu=2x = 5

All the possible values of, can then be determined by finding all the element®;in
i(12-1

with orderr;. It can be done by finding a generatoof F- andy =g = for0 <i <

andgced (i,7) = 1. The Atkin procedure is processed as below.
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Algorithm : Atkin procedure

INPUT: An elliptic curveE' over a finite fieldF, and an Atkin prime.

OUTPUT: A set of possible values ¢f= ¢ (mod!).

1. forr=2,3,---,1l+1wherer; | [ +1
2. if ged (9 (z,5), 2" —z) # 1

3. break

4. find a quadratic non-residue

5. find a generatag of F, (v/d)"

6. S {}

7. fori=1,2,---,r,—1andged (i,5n)s=11

i(12-1

computey =g = @A gav/d

o

9. find a square roat, of 4 [,
10. store{2xy, —2x1} in S

11. returnS

3.3 Complex Multiplication Method

The two ways to generate elliptic curve introduced in prasieections select parameters of
a curve and then count the rational points on it. These kihdsathods need to test several
elliptic curves until getting a desired one satisfied theuggc constraints. The complex

multiplication method (CM method) to be introduced makesletermine the order of the
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F, (¢=1p") | t =trace(E) | embedding degreke
1212 — 1 —1+6[ 3
P+i+1 —1,1+1 4
412 + 1 1+2] 6
Vg t=>3 k> s —e

Table 3.4: Conditions proposed by Miyaji, Nakabayashi, &khno

curves first and compute the curves with the exact order. eSivie explain each step of
CM method in next chapter, we use an example to show how the @W¥aod works in this
section.

We generate a MNT curve as an-example todemonstrate thesgrotke MNT curves
are curves used to construct the pairing-based cryptonydtbese curves satisfy the condi-
tions proposed by Miyaji, Nakabayashi, and-Takano. The itimmd ensure that the curves
will have small embedding degree, whichis important whealidg with the pairing com-
putation. Refer tod] for more details about the MNT curves.

Table 3.4 lists the MNT conditions, suppose we want an elliptic cuBr@ver F,, with

embedding degrele = 4. According to the Tabl8.4, we have

p=0P+1+1, t=Il+1lor —L
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Takel = 71, then

p=1*+1+1=>5113 € prime number
t=1l+1or =l =720r — 71

(F,) 5042 = 2 x 2521 fort =72
#E(F,) =p+1—-1t=

5185 =5x 17 x 61 fort = —71
We uset = [ + 1 = 72 to make the curve have larger subgroup order. Therefore; 1et
denote the discriminant of the endomorphism ring of th@tdicurve we want, i.e~D is a

discriminant of an order of an imaginary quadratic field. The
—D =t> —4p =72 — 4 x 5113 = —15268.

For constructing the Hilbert polynomialywedfind-out all redd binary quadratic forms

(a, b, c) with discriminant—D, itmé&ans that searching the triples b, c) satisfies
(1) ¥* — 4ac = —D
(2) b <a<c
) b=0ifa=1bjora=c
(4) ged (a,b,c) =1
For—D = —15268, the triples are:

(a,b,c) =(1,0,3817), (11,0, 347), (2,2, 1909), (23, +2, 166), (46, +2, 83),
(17,410, 226), (17, £10, 226), (34, +10, 113), (22, 22, 179), (43, +30, 94),

(47, 430, 86), (41, +36, 101), (53, +46, 82).
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Let

_ —bz + bZQ — 4CLZ'CZ‘ _ —bz + vV —-D

fori=1,2,---,20,
2a; 2a;

T; )

compute the Hilbert polynomial , ()

20
Hp=[[(x-3j(®)),
=1
where

(256K (1) +1)° e
](T)_ h(T) ) h() A(T)’

0
Afr)=q] =gV, q=e
n=1
Notice that while computing the Hilbert polynomial, the qmumations are under complex
plane. The fact is the coefficients of the Hilbert polynonwdl be integer, hence we must
calculate with appropriate precisionto approximate threemd coefficients. In this case, the

integer polynomial modulp is

Hp (z)p = Hp (xz) (modp) =Hy, (z) (Mod5143)
= 22° — 13842 — 50682 + 289727 + 430326 + 45152 + 96441
— 40232 + 348922 — 33582 + 1792210 + 48642° + 50262° + 457327

— 199225 — 7242° + 16252 + 6362 + 126422 + 26252 + 2987.

We can use the Cantor-Zassenhaus algorithm to factor tga@oial and find the roots over
IF,. These roots of thél; (), will be the j-invariants of the desired elliptic curves o&y.

The roots of the polynomial above are

Jp =1186, 50, 2556, 514, 3089, 3535, 3218, 263, 2799, 565,

2226, 3258, 3859, 1963, 2189, 2841, 2921, 1051, 1542, 2663.
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Selectj, = 1186 and get the elliptic curvé;:
p

37 27
2 3 p p
4 . 1728 — jpx 1728 — 3,

o2 3y 3 x 1186 N 2 x 1186
=X X
y 1728 — 1186° ' 1728 — 1186

= 2% 4+ 1365z + 910

Using Schoof’s algorithm to count the points of the cuBewill get the ordet# E; (F5113) =
5186 = 5113 + 1 + 72. Therefore, the curve with ordén42 we desired is the twist of’;.

For5 is a quadratic non-residue iy, 3, let £ be the quadratic twist of;

B! y? = 2® 41365 x 5%z + 910 x 5°

= gD 31AT 342264,
And the Schoof’s algorithm shewSithat the orgeF; (Fx,,5) = 5042. So we have
p=0113, =727 —D = 15268, j, = 1186,

B!y = 2P 4 34472 + 1264 (mod5113),  #E! (Fs113) = 5042 = 2 x 2521

and

2521 || 5113* — 1 = 683444370987360 = 2521 x 271100504160.

The notation 7. || p* — 1" denotesn | p* —1andn y p' —1for1 <i < k.

Assume we select anothgfinvarinatj, = 50, use the same process to find the desired

curve and we will get
p=>5113, t=72, —D=-15268, j,=>50,

By :y? = 2® 423892 + 3297, EL:y® = 2% + 34822 4 3085,
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and

#EQ (F5113) = 5186, #E; (F5113) = 5042.

We illustrate how the CM method can be used to generate gdiri@ndly elliptic curves,
next we use another example with larger discriminaitto show the process for generating
elliptic curves with prime order.

Suppose we want an elliptic curve with prime ordedi111, then we select a prime

p = 101359 in Hasse bound. The parameters of the elliptic cutwee desired will be

H#F (Fio1350) = 101111, ¢ = 249.

Set the input parameters for CM method as below

p = 101359y — D= t*—4p.— —343435.

The CM algorithm will find thesreduced binary quadratic forms

(a,b,c) =(1,1,85859), (23, +1, 3783).(19.44,4519), (5,5, 17173), (13, +5, 6605),
(65, +5,1321), (43, £7,1997), (157, +9, 547), (17, +13,5053),

(31, +13,2771), (163, £13, 527), (61, =19, 1409), - - - ,
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and the Hilbert polynomial modulpwill be

Hp (x), = 2* + 60672 + 462532 — 647612™ + 86362" + 705472
+ 1004042 — 779832%" 4 853362% — 808492 + 808802
— 967782 + 9530725 + 274542 + 50922 — 2320327
+ 132782 + 8966827 + 6917627 — 4826327 + 481762 ™
— 767262 + 148982™ + 9212527 + 468982 + 42889

+ 645922% — 199722°7 + 823902% + ... .
Therefore, we have4 roots modulol01359. Random select, = 59501, then we have
E :y* = 2% + 83394z + 555964 005" : y° = 2® + 833942 — 55596

and

#E (F101359) = 4 101609, #Et (F101359) = 101111.

Therefore, we get the desired elliptic cuire="1".
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Chapter 4

Complex Multiplication for Elliptic

Curve

In this chapter, we outline the comptex multiplication net(CM method) first, and then

describe each step in detail to;show how.it works.

4.1 Outline of the Complex Multiplication Method

First of all, by the property of thg-invariant of an elliptic curve over finite field,, where
Char (q) > 3, if we know thej-invariant, we can construct an elliptic curve with this
invariant.

Let j be thej-invariant and the equation of elliptic curyebe defined as

37 279
2 3
= 2% + T+ . 4.1
Y 1728 — 3 1728 — 3 (4.1)

Then elliptic curveE' will be an elliptic curve withj (E) = j.
Now we review the elliptic curves defined ovér
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From Section2.2.3 an elliptic curveE: defined overC is isomorphic toC/L, where
L = 7wy + Zwy,wr,wy € C, andwy,wy are linearly independent iR. We can rewrite
the lattice L as L. = 7Z + Zr such that the imaginary part of is positive, and we get
j(Ec) =7(7).

Furthermore, the endomorphism ring 6§ will be
End(Ec) ~ {8 eC|SL < L}

i.e. corresponds to an idedl of an orderO in an imaginary quadratic fiel&. It can be

shown that the minimal polynomial gf( E¢) is the Hilbert class polynomial
ho
Hp (z) = 11 (z = (4))
wherehp, is the order of the ideal class group©f:;CA; are representatives of elements of
the class group aDy, andj (A;)Is thej-invariant of the elliptic curve corresponding 1.
By Deuring’s Lifting Theorem,, \we can-obtain-an elliptic curve with complex mul-

tiplication over a finite field by reducingian elliptic curvativcomplex multiplication in

characteristic zero.

Theorem 4.1(Deuring’s Lifting Theorem) Let F be an elliptic curve defined over a finite
field and lete be an endomorphism df. Then there exists an elliptic cune defined over
a finite extensiorn’’ of Q and an endomorphisia of E such thatF is the reduction o2

mod some prime ideal of the ring of algebraic integer&adnd the reduction ak is «.

Thej-invariant of the elliptic curvé” over a finite fieldF, reduced from the elliptic curve
E¢ will be the root of the Hilbert polynomiali, () (modp).

The idea of generating elliptic curve with presribed ordgeM method is
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1. Determine the prime ordéY of the elliptic curve and the finite fielfi, over thatE
defined.
By the order)V, it determined the structure of the endomorphism tihg! (E) and

the Hilbert class field.
2. Compute the Hilbert polynomidf, (X') and find a rootj, of Hp (x),, (modp).

3. Compute the elliptic curv&'/F, and its twist£’/F,. Then check which one of and

E' has the order equal t, and it would be the elliptic curve we want.

According to the idea of the CM method, the algorithm of gatiag elliptic curves by
CM method can be designed as below. Since the Hilbert polyedsroan be computed in

advance, the algorithm takes the Hilbert-pelynemials astinp

Algorithm : Construct elliptic curve using CM method

INPUT: A squarefree integet # 1,3, parameters ando, Hilbert class polynomial/, (X),
desired size op and.
OUTPUT: A primep of the desired size, an elliptic curve/F, with [ | #F (F,), wherel is

a large prime.

1. do

2. do

3. choose prime of desired size

4. untilep = 22 + dy? for somez, y € Z

5. Letny =p+1—25, ny=p+1+2%

6. untiln; orn, has a large prime factar
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7.  find arootj, of Hp (x) (modp)

8.  compute the elliptic curve); /I, by 4.1and its twistE’ /IF,
9. do

10. find a pointP € E; (F,) and comput&) = n; P

11. if ) = co andny P # oo, returnp and E;

12. else if@ # oo, returnp and £}

4.2 Endomorphism Ring

In Section2.1.3 we formulate some definitions related to homomorphism.sikaalying the
details of the CM-method, we-start from introducing the endgohism ring of an elliptic

curve.

Definition 4.2 (Endomorphism) Let A{ and/A3 are abelian varieties ovéf andHom g (A1, As)
denote the set of homomorphisms frofn to .A,. Then the homomorphisnisndy (A;) :=

Homy (A1, Ay) are the endomorphisms gf; .

The setEndg (A;) is a ring with composition as multiplicative structure.

Given an elliptic curverl defined overk’, we say that the elliptic curv& hascomplex
multiplication if the endomorphismring of, Endy (E), is strickly larger tharZ. We now
utilize the elliptic curves defined ovér as examples to illustrate the endomorphism rings,
then show that all the elliptic curves defined over finite Bahdve complex multiplication.

We use the elliptic curvé : > = 42° — 42 defined overC as example.
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l'a)ll

\

L=Z(a)+Z(iw)

Figure 4.1: Square lattick = Zw + Ziw

As we had proved, we can find a lattiéfe= Zw; + Zw, such thatt (C) ~ C/L. In
this case, it can be computed that the-latticean‘’be written a$, = Zw + Ziw for a certain
w € R. Figure4.1shows an exampleof this:square lattice.

The square lattice was symmetic, i#:s'= L. Considering the endomorphism(z) =

iz acts on the Weierstragsfunction

)
~~
o~
N
SN—
I
~~
o~
N
SN—
(Y]
+
€
m
h
=
o
2
VRS
—
~.
N
[
&
N—"
[N}
|
EM| —_
N~

o' (iz) = i (2) .

Hence, we have the corresponding endomorphism on theieliytve £ given by

Z(l‘,y) = (-ZL‘,iy)
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i.e. we get the the corresponding map of the endomorphisweeetZ andC/L
C/L: Z iz
E(C): (z,y)=(p(2),9'(2) = (p(iz),p' (12)) = (—a,iy)
It shows that givew = a+bi € Z [i] and(x, y) € E (C), whereZ [i] = {a + bi|a,b € Z},

thena would be an endomorphism éf defined by

(z,y) = (a+bi) (z,y) = a(z) + b(=z,iy)

since point multiplication by integerandb can be expressed by rational functions.
Therefore, in this cases,
Z il € Endc (E) .
Figure 4.2 shows two examples afiade (1), one is multiplication by integer and the
other byi.

Now we deal with the endomorphism.rings of ithe arbitrarypélti curve overC. We

prove the following theorem.

Theorem 4.3. Let £ be an elliptic curve defined ovéf and L be the lattice such that
E(C) ~C/L. Then

Endc (E) ~{3eC|fL< L}.
Proof. Let £/ be an elliptic curve defined ovél and L = Zw, + Zws be the corresponding
lattice. To prove the theorem, we need to show the followings
1. All endomorphisms of? (C) can be expressed bysuch that3L. = L
2. All suchg’s define endomorphisms @f (C)

Here we start the proof.
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Zw)+Z(iw)
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Z(w)+Z(ia)
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~

Figure 4.2: Examples df'ndc (E)
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Py D)

E(C) =(R(x), yS(x))
- k o 1@ o
C/L
z  —————— > a)

Figure 4.3: The illustration of the morphisms proved of Tites4.3- (1)

1. Given an endomorphism of F (C), by definition of the endomorphism, it maps a
pointP = (z,y) € E(C)toaP = «a(z,y) € E(C) and can be expressed by rational
functions

a(r,y) = (R(x),yS ().

Since there exists an isomarghignbetweenC/L and £ (C)

O: CH — E(C@(2))=+(p(2),¢ (2)),

the map

would be an endomorphism &f/L. Figure4.3illustrates the relations of these mor-

phisms.

To show thaty (z) = 5z for someg e C, we focus on the action of the endomorphism
applying on a sufficiently small aréanearz = 0. Then we obtain the map frobi to

C such that

a(z1+2)=a(z)+a(z) modL, Vz,zelU

and we may assume that(0) = 0. By continuity,a (z) — 0 whenz — 0. If U is
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sufficiently small, we may assume that

a(z1+20) =a(z1) +a(z), Vz,20elU.

Therefore, forz € U,

., . a(z+h)—al(z)
& (2) = Jim h
_ hmd(z) +a(h)—al(z)
h—0 h
a(h)—a(0)
= fm h = (0.

Let 5 = &' (0), sinced’ (z) = 3,Yz € U, we haver (z) = fz,Vz e U.

Now let z € C be arbitrary. Since there exists an integesuch that:/n € U,

a(z) =nd(z/mp=nd62/e) = fz modL.

Hence, the endomorphisinis given’by multiplication bys.

For the definition of homomaerphsim,(L)-& L, it follows that

BLC L.

2. Givenp e C satisfies3L < L, then multiplication by3 is a homomorphism fror€/L
to C/L. Therefore, the functiong (3z) andy’ (5z) are doubly periodic with respect

to L. By Theoren2.5Q there exists rational functiorfg and.S such that

p(Bz) = R(p(2), ¢ (82) =¢'(2)S(p(2).

Hence, multiplication by? onC/L corresponds to the map di

(2, y) = (R(z),yS (x)).
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0G)0(2) p'=0(8:)0(5))

P = ROEND SO )
E(C) A "= (R() s (x)
************ (D#
C/L
z _— Bz
B

Figure 4.4: The illustration of the morphisms proved of Tiez4.3- (2)

Again, we use Figuré.4to show the illustration of the relation between the morptss

proved in this part.

By proving the above, we link the endomorphism rifigdc (F) and the latticd. corre-

sponding toF (C) together. O

Theorem4.3 shows that the' endomorphism ring-of an elliptic curve dies related
closely to the lattice it corresponds(to:.The next theorevagyus a precise structure of the

endomorphism ringEndc (E).

Theorem 4.4. Let E be an elliptic curve defined ovél. Then Endc (E) is isomorphic

either toZ or to an order in an imaginary quadratic field.

Proof. Let . = Zw, + Zw- be the lattice corresponding fo. By Thoerend.3, let

R = Endc (E) = {8eC|BLc L}.

Then we have, — R andR is aring sinceR is closed under the composition lawsand x.
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Giveng € R, for {w;,w-} is a basis of latticd., then

Bwi = jwi + kwa,  Pwy = mwy +nws,  Jk,m,n e Z
B-i —k || @
-m (B—-n wo

So the determinant of the matrix(s
ﬁQ—(j—i—n)ﬁ—i—(jn—km) = 0.

Hence,s lies in some quadratic field andj is an algebraic integer.( j, k, m,n € Z). We

deal with field K" in two cases.

1. Assumej € R.
Then the equation aboyku =" jw; Fkws(orBi. = mw, +nw.) gives a dependence
relation between; andwswith real coefficients:
ﬁwl = jw1 -+ ]{ZCL)Q = (ﬁ — j) w1 = sz
of fwy =mw; +nws = mw = (F—n)ws
Sincew; andw, are linearly independent ov&;, we have3 = j or § = n, means that
RnR=2Z.
2. Assumegde Candf¢ R. = 3¢ 7Z

Then § is an algebraic integer in a quadratic field and forz R, K must be an
imaginary quadratic field, denot€ by Q (v/—d). Let 3’ ¢ Z be another element of

R. By the same reasop, € K’ = Q (v/—d') for somed’.
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SinceR is aring,’ + (' must also be ik, implies thatX’ = K’ andR < K. For all

the elements of? are algebraic integers, we have

R < Ok.

Therefore, the endomorphism ridgndc (E) = R is isomorphic either t& or an order

in an imaginary quadratic field. 0

After studying the structure of the endomorphism ring ofeéhiptic curves defined over
C, next we discuss the endomorphism rings of elliptic cunefmed over finite field,.

Considering the Frobenius endomorphigpron an elliptic curve defined ovét,,

-

E(F,) ,— E(F,)
b0 S ey (e o)

o0 — oo

\

By Corollary2.46 the mapgbg —toy + glisazéro map on elliptic curve' overF,, theng,

would be a root of the polynomial
X? —tX +q¢=0.

By the Hasse theorem (Theored3, the unique integer satisfies|t| < 2,/g. It can be
shown that ift = +2,/g, then the endomorphism ring would be an order in a quaternion
algebra. For our application and in pratical, we restrietdiscussion on the case thdt<

2,/q. Since[t| < 2,/g, the polynomialX? — tX + ¢ = 0 would have only complex roots,
therefore

7 # Z[¢,) < End (E).
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From Theoremt.4, then the endomorphism ring of an elliptic curve defined divete field

would be an order in an imaginary quadratic field. Observinegdolynomial
X2 —tX +q=0,

the roots would lie in the imaginary quadratic fi@j( 1?2 — 4q> . Hence, for choosing the
parameters andg, we can then determine the imaginary quadratic fiéle- Q (\/—d) such
that

This is an important result that allows us to choose the désrder first and then find the
elliptic curve with the exactly order.

In this section, we link the relation ofthe-arder of an eltpturve and the structure of its
endomorphism ring. Following:we show hew to,use-the strigctarfind the desired elliptic

curve.

4.3 Ideal Class Group

We have showed that the endormorphism ring of an elliptiveus isomorphic tdZ or to
an order in an imaginary quadratic field in previous sectitircan be proved that for an
ordinary elliptic curveE' defined ovelF,, the endomorphism ring'nd (E) is an order in
an imaginary quadratic field. To connect the endomorphisig aind thej-invariant of an

elliptic curve together, we introduce the ideal class grioughis section.

Definition 4.5. Let R be aring,/ is an ideal ofR if it is a nonempty subset ak such that

e [ is a subgroup of: with respect to the lawr.
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e forallze Randally € I, zy € I andyzx € I.

We summarize some related definitions about ideal below.

Prime ideal:

Anideal/ < Risprimeifforallz,y € Rwithzy e I,thenxe I orye I.

e Maximal ideal:
Anideal < R is maximal if for any ideal/ of R the inclusion/ < J impliesJ = [

orJ = R.

e Finitely generated:
An ideal I of a ring R is finitely generated if there are elements- - - , a,, such that

everyx € I, we can Writer =)a1a, 4w st fnlsn With x1,--- 2, € R.

e Principal ideal:
Anideal ] is principal if I = aR+And RS a/principal ideal domain (PID) if it is an

integral domain and if every ideal @t is principal.

Definition 4.6 (Fractional ideal) Let K be a number field and let an ord@rbe a Dedekind

ring. A fractional ideal ofK" is a submodule o overO.

The Dedekind ring is defined as:

Definition 4.7 ( Dedekind ring) A Dedekind ringR is an integral domain satisfying the

following properties.

(1) Everyideal ofR is finitely generated.

(2) Every nonzero prime ideal @ is maximal.
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(3) Risintegrally closed in its quotient field
F={a/f:a,8€R,3+#0}.

From the definition, for a fractional idedll of R, we haveaM < R andalM is an
integral ideal ofR for some nonzerar € R. Hence for any fractional ideal @&, it can be
expressed in the form~'7, wherel is an integral ideal of?.

Now we state the following lemma:

Lemma 4.8(Group of fractional ideals)If R is a Dedekind ring, then the set of all fractional
ideals forms a multiplicative abelian group, denotedsty?). The setP (R) consisting of

all principal fractional ideals oR is a subgroup of (R).

Then we can define the classgroup of @an'integral fing

Definition 4.9 (Class group) Let-l? be'a Dedekind ring: Then the quotient grgR) /P (R)
is called the class group @i, denoted by r. - WhenR:'= Oy, we write €.

We say that two fractional ideals are equivalent if they bglto the same coset &f (R) in
§ (R). In other words, fractional ideals J are equivalent, denoted by~ .J, provided that

Y (I) =1 (J) under the natural map : §(R) — § (R) /P (R).

The cardinality of the class grou@i | is called the class number 6fx, denoted by .
It can be proved that is finite.
In our case, for an elliptic curv&, the endomorphism ringnd (E) will be an orderR
in an imaginary quadratic fiel@ (v/—d). Let A; be the representative of each equivalent

class of¢ s, thenj (A;) are conjugates under the action of the Galois group of thealass
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field overQ (v/—d). And we will get the polynomial

Hp () = [ [ (= (A)

i=1

is the Hilbert class polynomial. This will also be mentionedhe following sections.

4.4 j-invariant

We review the mathematical background relateg-bovariant and link it to the CM-method
in this section.
Recall that the definition of-invariant is defined as a function of a complex nhumber

on the upper half plane of complex numbers. In Definiabo,

93 g5
(1) = K082 =dq9g_J2
7 () A g5 — 2793

Given a matrixM € S L, (Z), thezaction-on the.upperhalf plane is

a b
Mt = T=aT+b Vre™H

cT A

Cc

We now proved Propositioh.6Q

Let 7 € H and let matrix\/ € SLs (Z), then

i) =5 () =),

ct +d

Proof. From the difinition of; (7)

g3
j(r) =17284=2—

95 — 27937

where

G2 = g2 (1) = g2 (L) = 60G4 (L)

93 = g3 (1) = g3 (L,) = 140G (L)
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Observing the serieS;, (L) = Gy (7):

Gy (1) = Z ;k

(m,n)#(0,0) (mT + n)

(CLT + b) 1
k f—
ertd) e (m(E8) +n)"

cT+d
1
= (cr+a) )] -
(mmz00) (M (a7 +b) +n(cr +d))

1

= (eT + d)/LC _
(m,n)#(0,0) ((ma + ne) T+ (mb + nd))

a b
Sincedet =1
c d
1
a.b de.—b
¢l .d -~c _a
for
a b
(m/,;n') = (ma ¥Fnegmb+nd) = (m,n) :
c d
we have
d —b
(m7 n) = (mlanl)
—c a

Hence there is a one-to-one mapping between:) and(m’,n’), so we can write

G <m+b> _ (CT—i—d)k Z 1

er +d ((ma + ne) 7 + (mb + nd))"

(m,n)#(0,0)
1
= (et + d)f —
(m’,n%(o,o) (m!'T +n')
= (et + d)k Gy (7).

68



Therefore

ar +b\ 4 ar +b\ 6
(T = 0t (D) = e )

Put these terms into the definition ffit follows that

ar+b)\3
j (aT +2> _ 1798 +b923(07+d) —
ot 92 (5754)" — 2795 (£557)

(e + al)12 Jo (7)3
(et + d)12 (gz (7)3 — 273 (7')2)

= 1728

=J (7).
0

Hence, thej-function is a modular_function. By the action on two spealtrices in

SL»(Z)

we have

: : 1 :

i =i i(-1) =i,
These two transformations generate a modular group andimplpgrtant roles in proving
Corollary2.63

If z € C, then there is exactly onee F such thaj (1) = z.

It means that given a specific valugwe can findr’ such that
i) =z

and for Propositio2.60and Propositio2.62 by choosing appropriatel € S L, (Z), we can
find a transformation belonging to the modular group to finchguwer in the fundamental
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domain such that

j(r)=jM7)y=45(r")Y=2 T€F.
Hence,j-function is a one-to-one mapping from the fundamental dortwathe entire com-
plex plane. Since each value p€orresponds to the field of elliptic functions with periads
andr, j-function is in a one-to-one relationship with isomorphisiasses of elliptic curves.

Now we conclude the material discussed as below:

Theorem 4.10. Assume that is defined ovefC and has complex multiplication. Letbe
its period. TherQ () is an imaginary quadratic field;ndg) (E) = Endc (E) is an order
Og in Q, and the absolute invariapt(7) is an algebraic integer that lies in the ring class

field Ho,, overQ (7).

For our case, th€®y; is the ring:of integers o, ThenH,, is the Hilbert class field! of
Q.. And there exists a monic polynomial with integer. coeffitsamwhose roots would be the
j-invariants of the isomorphism-classes of theelliptic estvIhe monic integer polynomial,

i.e. the minimal polynomial of thg-invariant, is the Hilbert class polynomial

hp

Hp () = | [ (@ —j(n)),

i=1

whered is the squarefree integer such that Q (\/E) hp is the Hilbert class number; are
the representatives of the elements of the class grodp,ofand; (7;) are thej-invariants
of corresponding; value.

By Theorem?2.64 for an elliptic curveE overC, there is a latticd., such thatt' (C) ~
C/L, andj (E) = j(L,) = j (7). Therefore, thg-invariants in above polynomial would
be thej-invariants of the elliptic curve correspondingto Since we have showed that
function is a function that maps the fundamental donfaito entire complex plane, we can
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focus on ther’s in F for computing the Hilbert polynomial.

4.5 Hilbert Polynomial

To connect the elliptic curves over number fields and edligtirves over finite field, we
discuss the properties of Hilbert polynomial.

According to Theoremd.1(Q restate the description of Hilbert polynomial first:

Corollary 4.11. Let K = Q (\/—d) be an imaginary quadratic field with ring of integers
Ok. Let E be an elliptic curve withEndc (E) = Og. Then the minimal polynomial of
is the Hilbert class polynomial

Hy (S ()

=1
wherej (7;) is thej-invariant of the'elliptic curve carrespondingtg i is the Hilbert class

number, and; are representatives of the elements of the class grodhof

We know that for gj-invariant; (7), the minimal polynomial of (7) is the Hilbert poly-
nomial. Since it can be proved thatnvariant is an algebraic integer, the Hilbert polynomial
has integer coefficients. Therefore, by taking all the iategpefficients modulo a prime

the Hilbert polynomial can be reduced to a polynonfia (x),, overF,.

hp

Hp(x),=[[(=—3j(m)) (modp)

r=1

h hp—1
=P +ap, 1P + -+ ax + ag,

whereq; € F,. Futhermore, ifp does not divideg/, the polynomial/p (), would have

simple roots inF,,.
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Let j, be a root of the polynomial/, (x),, then it is the reduction module of one of
the j-invariants; (7;). If j, is contained irif,:, for the j (7;) are conjugate, all the roots of
Hp (z), would be inF .

As mentioned in beginning, if we have thienvariantj, € IF,, j, # 0, 1728, then we can
find the elliptic curve oveF, with invariantj, by

37 27
Jp 2+ Jp _
1728 — j, 1728 — j,,

y? =%

Computing the Hilbert Polynomial

In order to find a root of Hilbert polynomial modulg we need to compute Hilbert
polynomial first. For computing the polynomial, it needs taifall ther;’s. Recall that each
7; represents an element of the ideal_class grouf of we use the equivalence between the
ideal classes of an algebraic numberfield with,diseriminlzamd the equivalence classes of
primitive, positive definite binary quadratic’ferms of discinantd to find all 7;’s.

A binary quadratic form is a quadratic form-in two variablesthe case of the ideal class
group of function fields, it can be proved'that there is eyaatle reduced binary quadratic

form in each equivalence class. The reduced binary quadaatn is defined as:

Definition 4.12. A quadratic formaaz? + bzy + cy? is called a reduced binary quadratic form

if it satisfies

e b<a<c

e b=0ifa=|bjora=c

e gcd (a,b,c) = 1.

Therefore, we search for all reduced binary quadratic fasfrdiscriminantd to obtain
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all ;’s. For each reduced binary quadratic foan? + bxy + cy?, it corresponds to the ideal

A =7 + Z7 where
b+ v—d

’ 2a

On the other hand, the conditions of the redeuced binaryrgtiadorm make the corre-
spondingr belonging to the fundamental domat Given ar;, one can computg(r;) by

following

Definition 4.13 (Dedekind’sn-function). Let 7 be a complex number with positive imagi-
nary part, i.er € H, defineq = €™ and they-function by

n(r)=q [

n=1

(1—¢") = qi (1 4 Z (=1)" (qn(3n—1)/2 + qn(3n+1)/2)> '

n=1

A(r)=n ()" =q ﬁ (1) =g (1 6 I CAER q”(?’”“)/Q))

h(r) = Neh j(r) = (256hh(Z'T))+ 1) .

Since the computations are ov@r the results would be the approximate value f@r;).

By the fact that the coefficients of the Hilbert polynomia aifl integers, we can obtain the

actual polynomial by using sufficient precision.

4.6 Weber Polynomial

Since the coefficients of the Hilbert polynomial grow fastemtthe degree of the polynomial
increases, the computation of the Hilbert polynomial waggested to be taken in advance.
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Another solution is to use other class invariant insteadiafariant. Different class invariant
leads different class polynomial. The Weber polynomialssdimost. The Weber functions

are defined as following, using the Dedekingtéunction (see Definitiod.13),

T (G V) N1 (/) BN 1¢%)
f(T)_C48 77(7_) ; fl( ) 77(7_) ) f2( ) \/577(7_)7
where(, = e, and
LSt (@018 (0 - ()
e ) |

For more details, refer t&’], [15]. The relation of these functions and tjidunction are

o O 16" (@ 16)° (B4 10)°
F@” fi ()" ()"

— 7o (7)? = 3 ()FF1T2R:

Then the Weber polynomidl’, ) is defined as
hl
Wipfa) = [ | (e Atm)

T

Atkin and Morain suggest a list of the choigér;) for different discriminantD in [2]:
e If D =3(mod6), usey (1) = /—Ds (7).

If D =7 (mod8), usey (1) = f (1) /V2.

If D=3 (mod8), useu (1) = f (7).

If d = +2 (mod8), useu (1) = f1 (1) /V2.

If d =5 (mod8), useyu (1) = f ().

If d =1 (mod8), usey (1) = f (1)° /2.
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where

D, if D=3 (mod4)
d =

D/4, if D=0 (mod4)

In the case whe® = 3 (mod8) andD = 3 (mod6), the degree of Weber polynomial will be
3hp, hp denotes the degree of the Hilbert polynomial. Thereforesitally avoid to choose

these values fob in practice.

4.7 Finding Roots of Polynomial overf,

After computing the Hilbert polynomial, next we want to findat j, in the finite fieldF,
to construct the corresponding elliptic curve. Before fmda root of the Hilbert polynomial
modulop, some criteria need to be ‘satisfied when choosing the priraeifie

Assume the prime numberis decomposed:ii) (3/—d), by the class field theory of

imaginary quadratic fields, we-have,following theorem.

Theorem 4.14. There is an integet’ £:Q.(v/=dJSuch thatr® = p and|p + 1 — (7 + )|

equals to# E (IF,) or its twists.

From the theorem above, we have = p andr +7 = #E (F,) — (p + 1) = t, then the

minimal polynomial ofr would be
x? —tx + P.
Recall the characteristic polynomial of Frobenius mgp

¢12) - tgbp +p7
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wheret is called the Frobenius trace. We can observe that in Thedrgéfthe algebraic
integerr is actually the Frobenius endomorphism actingfror its twist modulop.
Hence, we need to choopavhich can be decomposed @y . These primes would be

the ones such that there are integer solutions to the noratiequ

1 ifd=1,2 (mod4)
22+ dy? = ep, wheree = .
4 ifd=3 (mod4)
From the equation above, we obtain thad must be a square modujo To find such a

suitable primep, one usually uses the Cornacchia’s algorithm to get a swiuti

Algorithm : Cornacchia’s algorithm

INPUT: A squarefree integef > 0 andiaprimes'such that the Legendre symt(o@—ﬂ =1.

OUTPUT: (z, y) € Z2 such thate? # dg*== pif possible.

1. compute square roaf of =d with p/2< ay <'p,/t:e.a = —d (modp)
2. a<p, b<ay, c<|/P]

3.  whileb> cdo

4. r<—a (Modb), a<b ber

5  ifdfp—0v?orif 2 = (p—b?) /dis notasquare, return "no solution”

6. elsereturix,y) = (b, \/2)

Choosing the prime by the Cornacchia’s algorithm, now we can factor the Hilbert
polynomial inTF, to find rootsj, € F,. We introduce the general way to find roots of a

polynomial, then discuss the method to find roots of Hilbetypomial.
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For finding roots of a polynomigf (z), it usually needs to make the polynomial square-
free first. Due to the characteristic of the field we deal witle, discuss this step in two

cases.

(1) If the characteristic of the field &

We can obtain the squarefree version of the polynorhial) by computing

f (x)
ged (f (x), f' ()

(2) If the characteristic of the field js
Since a polynomiaf (x) satisfiesf’ (x) = 0 precisely whery () = w (x)" for some
polynomialw (x), we write f (z) = (%) w (z)” (if deg (f (x)) < p, thenw (x) = 1).

Then use the same processto-deal withuttre).

After reducing the square partof the polynomial, we-fadber polynomial such that

[ (x) =t@ta@)- - fn (z)

where f; (z) is the product of irreducible polynomials with degreeFor eachf; (z), ap-
plying the Cantor-Zassenhaus algorithm to find individaakdérs. The Cantor-Zassenhaus
algorithm can factor the polynomial with all irreduciblectars having the same degree.

Focus on finding roots of reduced Hilbert polynomial modulsincedeg (HD (x)p) <

p, reducing the square part can be done by computing Ho (@), . For the roots we

b @), Hp (),
interest are those lie in ground fiek),, we only process the polynomigl (z), i.e. the
product of the irreducible polynomials with degree

We also can use the fact thatz) = 2P — z is the product of all irreducible polynomial
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of degreel in IF,. The polynomialf; (x) then can be obtained by computing

fi (z) = ged (HD (2),,9 (x)) .

Finally, using the Cantor-Zassenhaus algorithm to find dloésrin[F,,.

Algorithm : Cantor-Zassenhaus algorithm

INPUT: A polynomial f (=) with all irreducible factors having the same degree. Assume

deg (f (2)) = n.

OUTPUT: All the factors off (x).

1. repeat

2. select a random polynomialx) with degree less tham

3. if ged (7 (x), f (x)) # 1, then returns(a)

4. computes (z) = r (z)P=V% (mod ()

5. thenged (s (z) + 1, f (z)) is afactorwith/probabilityt — 2- (1)
6. until factorf (x) successful

4.8 Twist Curves

After finding the roots of the Hilbert polynomial (or transfioing the roots of the Weber
polynomial) in the finite field¥,, we can compute the equations of the elliptic curves with

the prescribed order by taking the rootsjagvariants of the curves. Since we set the dis-
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criminant—D = t> — 4p, the order of the curve we get might be
#E(F,)=p+1—t or #E(F,)=p+1+t

The elliptic curveF is called a twist ofF. Here we introduce the twist curves.

Lemma 4.15. Let E be an elliptic curve defined ovéf. Assume the characteristic éf is

prime to6 and F is given by the simplified Weierstrass equation
E:y* =2+ Az + B.
The j-invariantj; depends only on the isomorphism classof
o jp=_0ifandonlyif A = 0.
e jp=1728ifand only if B = 0,

e If jp € K is not equal td) 1728, thenE is-a‘quadratic twist of the elliptic curve

3 3jE 2iE

E, Bxre + .
ip - SN o= A T 1728 —

Corollary 4.16. Let E be an elliptic curve defined ovéf. Assume the characteristic &f

is prime to6 and E is given by the simplified Weierstrass equation
E:y*=2"+ Az + B.
e If A =0, then for everyB’ € K* the curveF is isomorphic to

1/6
E':y>=2>+B over K((E)/>
TR o )

e If B =0, thenforeveryd’ e K* the curveF is isomorphic to

1/4
E =23+ Az over K <<é> />
Dy T .
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e If AB # 0, then for everyw € K* the curveE is isomorphic to

Eyiy?=a’+ Az + B with A'=4%4, B'=v’B over K (Vv).

The curves occuring in the Corollary above are called twist'o In the last case, the
curvesE, are called quadratic twists df. Note thatE is isomorphic toE, over K if and
only if v is a square k™.

In Corollary4.16 by takingv € K* a quadratic nonresidue, one can define the quadratic
twist of £’ as

E,:vy? =2+ Az + B

by dividing by v* and transforming, — y/v andz — xz/v. Then it can be seen that both
E and E, contain exactly two point&z;7,) for eachz € F,. Hence we have the following
proposition.

Proposition 4.17. Let E be a cutve tefined-ové, and letE be the quadratic twist of.
Then

#FE (Fp) + #E (Fp) =2p+2.

Hence, if#E (F,) = p + 1 — t then#E (F,) = p + 1 + t. Therefore, if the order of the
curve we get from the algorithm is not the one we want, thendiggiadratic nonresidue

and the twist curve by would be the actual curve with desired order.
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Chapter 5

Experimental Result

In this chapter, we present our experimental results of @mginting the CM method. The
implementation refers to IEEE P1363'and ther MIRACL (Multiprecision Integer and Ra-
tional Arithmetic C/C++ Library)library is.used: The contpg environment is Intel Xeon
E5520 processor with 2.27GHz, 4G RAM.on FreeBSD 7.2 with thRACL library version

5.4.

5.1 Distribution of Computation Time

First of all, we analyze the computation time of each stephh@ethod. Considering the

steps of the algorithm:

(1) Determine the desired parameters of the elliptic curve

= #E (Fp)7p7t

(2) Compute the discriminant

= —D=1>—4p
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99.96

100 -
80 -
60
X
40 -
20 A
0.01 0.03
0 .
Compute class Round to integer Factor class
polynomial coefficients polynomial (mod p)

Figure 5.1: Proportion of computing time of each step

(3) Compute the class polynomial

= HporWp

(4) Factor the class polynomial‘and get all root&jn

= use Cantor-Zassenhaus,algorithm

(5) Compute the desired elliptic curve equation

2 _ .3 37 27 2 _ .3 37 2 27 3
= Y=t g Ut g = O = g v g — v for

guadratic nonresidue

Since the steps (1), (2), and (5) are computed by the simplateqs, we ignore the
time for computing these steps. By examining some examplesybserve that the com-
putation of the class polynomial dominates the whole comgutHence we focus on the
results of computing the class polynomials in the followthgcussions. Figurb.1 shows

the proportion of computing time for each step.
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Hilbert polynomial| Weber polynomial

1 digit 1 1
2 digits 6 9
3 digits 37 70
4 digits 266 527
5 digits 457 3358
6 digits - 19058

Total 767 23023

Table 5.1: Number of class polynomials computed
5.2 Computation of ClassiPelynamial

The discriminants we used in=CM method are ranged from 2 tayfisdi Table5.1is the
number of actual computed disCriminants. Although therge i@ known attacks for the
small discriminants yet, it is suggeted that the discirmteaised should have class number
greater than 200 for the security consideration. Sincedbtle discrminants with 6 digits
satisfy the requirement, we also provide the observatiotisded on these discriminants.

Note: for simplifying the figures, we randomly select theadtt restrict the number of
points displayed under 1000.

The class polynomials most used in CM method are Hilbertipatyial and Weber poly-
nomial. Figure5.2acompares the computing time of each polynomials. The higleess
number means more invariants to be computed and would take tinte. therefore, we use

the class number as x-axis. By scaling the y-axis to 0 to 1rskdhbis trend can be observed
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in Figure5.2h
Considering the fact that the coefficients of Hilbert polgmal would much lager than
those of Weber polynomial, we use Weber polynomial instdddilbert polynomial in the

following experiments.

5.2.1 Class Number Distribution

We observe the relation between the class numbers and #radisants first. From some
related researches, it is claimed that the class numbegwall asO+/|D|. Therefore, we

plot Figure5.3to confirm the trend of the class number.

5.2.2 Precision of the Computation

In [7], [5], and [6], it mentioned:the bound of bit precision required to coneptiiie Hilbert

and Weber polynomials. The it precision required to coraploe Hilbert polynomial is

In10 /h VD «— 1

where the sum runs over the same values a6 the computation of the class polynomial,
i.e. runs over each reduced binary quadratic fand, ). And the bit precision required to

compute the Weber polynomial is

W-Prec(D) ~ c¢1h +

mv'D 3 ai (5.1)

cyIn2

where

3 if D =3 (modg)

C1 =

1 if D=3 (mod8)
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computation time (second)
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« Hilbert polynomial = Weber polynomial
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class number

computation time (second)

class number

(b) Scale to 0 — 1 second

Figure 5.2: Computing time of Hilbert and Weber polynomial
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e Class number ——linear approximation
1600
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$ 1200
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sqrt(D)

Figure 5.3: Trend of the class number

24 it D = 3,(mod8)and D # 0 (mod3)

8 if D=3, 7mod8)and*= 0 (mod3)

6 if D/4 =5 (mod8) and) = 0 (mod3)
Cy = <

2 if D/4=)5(mod8) andD = 0 (mod3)

12 ifD/4=1,2,6 (mod8) andD # 0 (mod3)

4 if D/4=1,2,6(mod8)andD = 0 (mod3)

"

And for the caseD = 7 (mod38), there exists a more accurate bound

In 10 %+5+71Tn11827a% 11
In2 47

We use the general bound in Equat®id to estimate the bit precision required in our
computation. In order to compare the accuracy of the bolnedniplementation also reports
the actual bits required of the maximal coefficient of the @repolynomial. We plot the

results in Figuré.4.
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» Maximum of coefficients + Extimated precision required
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class number

Figure 5.4: Estimated and actual precision required

5.2.3 Computation Time

In this section, we provide the results ofithesccomputatioretivhich reflect the efficiency
directly. First of all, the Figur®:5 shows the‘Computation time of all discriminants from 1
digit to 6 digits. Since the bits we,useto compute are 1024328nd 4096 bits, the results
in Figure5.5are separated into three parts:iTo show that the relatiaveleet class number
and the computing time is approximately linear, we also g®the result of each part in

Figure5.63 Figure5.6h and Figures.6¢
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e Computation time
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€
S 0 300 600 900 1200 1500

class number

Figure 5.5: Computation time of Weber polynomial
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(a) 1024 bits used

Figure 5.6: Computation time of Weber polynomials - pastigd by precision
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e Computation time
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Figure 5.6: Computation time of Weber polynomials - pastigd by precision

89



Chapter 6

Conclusion & Future Work

We state the mathematical backgrounds and describe egcbfdte complex complication
method in this thesis. For computing'the-elass_polynomiahis of the major part of CM
method, we focus on the computatien: of the class-polynompiakent the experimental re-
sults, and find some interesting differences between: tinegpaind composite discriminants.
It seems like that the computations ‘of the Weber*polynonoélsomposite discriminants
have the chance to be more efficient. To confirm this effeshauld take more experiments
and observe closely.

In our experiments, we compute the class polynomial of digsoants with at most 6
digits. Though the computation of class polynomial with endrgits would take more time,
there must exist more interesting properties to be diseavand may become the measure-
ment of evaluating the discriminants.

Lots of researches related to computing the class polyramgaproposed nowadays.
Andrew V. Sutherland achieve the record of computing thesctaolynomial with discirim-

inant D = 4058817012071 and has clas numbér, = 5000000 in April, 2009 [127]. For
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solving the large space requirement of the polynomial, A&ndy. Sutherland proposed the
computation using Chinese Remainder Theor&gh [

In the future, we will implement the algorithm with CRT to ageeme the difficult of
computing class polynomial with large digits. Besides, tbgearches of CM method on

hyperelliptic curves with genusare also ongoing.
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