

國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

更多關於 Magnus-Derek Game 的研究

More on the Magnus-Derek Game

研 究 生：林進之

指導教授：蔡錫鈞 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 六六六六 月月月月

More on the Magnus-Derek Game

Jinn-Jy Lin

March 15, 2010

Abstract

We consider the so called Magnus-Derek game, which is a two-person game played on

a round table with n positions. The two players are called Magnus and Derek. Initially

there is a token placed at position 0. In each round Magnus chooses a positive integer

m ≤ n/2 as the distance of the targeted position from his current position for the token to

move, and Derek decides a direction, clockwise or counterclockwise, to move the token.

The goal of Magnus is to maximize the total number of positions visited, while Derek’s

is to minimize this number. If both players play optimally, we prove that Magnus, the

maximizer, can achieve his goal in O(n) rounds, which improves a previous result with

O(n logn) rounds. Then we consider a modified version of Magnus-Derek game, where

one of the players reveals his moves in advance and the other player plays optimally.

In this case we prove that Derek has an O(n3) algorithm to achieve his goal if Magnus

reveals his moves in advance. On the other hand, Magnus has an O(n) algorithm. We

also consider the circumstance that both players play randomly, and we show that the

expected time to visit all positions is O(n logn).

i

Acknowledgements

I want to give my thanks to my advisor, Dr. Shi-Chun Tsai, for his guidance and

encouragement. I thank my family for their spiritual support.

Also, I appreciate the support from all members in CCIS lab. They really help me a

lot during my graduate study.

Specially, I am thankful to the accompany of Tom Wang, Pei-Chi Tsai, Mon-Jang

Hsieh, Prof. Ting-Lu Huang, Fr. Jaime Valenciano, Fr. Rolly Sia, and all members in

Catholic Student Association. They are all my best friends.

ii

Contents

1 Introduction 1

2 Visit f∗(n) positions in O(n) rounds 3

3 When Derek knows the moves of Magnus 6

4 When Magnus knows Derek’s moves 10

4.1 Strategy for even n . 11

4.2 Strategy for the case of odd n with some relaxation 13

4.3 Strategy for odd n without any relaxation . 15

5 When Derek and Magnus play randomly 24

6 Conclusion 27

iii

List of Figures

3.1 Recursive algorithm for checking T [i, j, k, d]. 8

3.2 Recursive algorithm for printing the directions. 9

4.1 An example for 3-balanced with n = 8, where the gray nodes are visited. . 11

4.2 Generate the moves for Magnus with Derek’s revealed in advance. 12

4.3 An example for 2-skew-balanced with n = 9, where the gray nodes are

visited. 14

4.4 Case 1. 17

4.5 Case 2a. 18

4.6 Case 2b. 18

4.7 Case 3. 20

4.8 Case 4a. 21

4.9 Case 4b. 21

4.10 Case 4c. 22

4.11 Case 4d. 23

iv

List of Tables

4.1 The positions of the token during rounds 2ℓ and 2ℓ + 1, where p, p′ and p′′

are the positions of the token at round 2ℓ − 1,2ℓ and 2ℓ + 1, respectively. . 13

6.1 Table of results. 27

v

Chapter 1

Introduction

Magnus-Derek game was first introduced by Nedev and Muthukrishnan [5]. The game

is played on a round table with n positions and a token is placed at position 0 initially.

For convenience, we label the positions with elements in Zn = {0,1, . . . , n − 1}, clockwise

consecutively. Suppose the current position is i. In a round, Magnus chooses a positive

integer m, where m ≤ n
2

for the token to move, and Derek choose a direction, either +1

(clockwise) or −1 (counterclockwise) for the token to move. Then the token is moved to

position (i +m) mod n or (i −m) mod n according to Derek’s decision. In the game,

Magnus wants to visit as many positions as possible, while Derek wants to minimize

the number of positions visited. This game can be used to model a mobile agent for

distributed computing and network maintenance task. We refer to [5] for more related

references.

Nedev [4], and Nedev and Muthukrishnan [5] showed that Magnus could visit all

positions in n − 1 rounds if n = 2k for some nonnegative integer k, and for other cases,

Magnus could visit f∗(n) = (p− 1)n/p positions, where p is the smallest odd prime factor

for n. The number of rounds needed for these cases are listed as follows:� If n = 2kp, where p is a prime and k is a nonnegative integer, then Magnus needs

O(p2 + n) rounds.� If n is a prime, then Magnus needs O(n2) rounds.� Otherwise, Magnus needs O(n2

p
) rounds, where p is the smallest odd prime factor

1

for n.

Later, Hurkens et. al. [1] reduced the bound down to O(n logn) rounds and showed that

Derek could always limit the number of visited positions to f∗(n) = (p − 1)n/p. In this

paper, we improve the bound on the rounds further to O(n).

Consider the situation in a ring network, Derek plays the role of an adversary and tries

to reduce the visited positions in order to perform some malicious acts in the network,

and Magnus plays the role of an agent in the network and tries to visit as many positions

as possible to prevent malicious acts. We can modify the game in two ways: (1) Magnus

predetermines a sequence of magnitudes, and Derek tries to design appropriate responses

to minimize the number of positions that Magnus can visit. This is an open problem asked

by Nedev and Muthukrishnan [5]. (2) Derek predetermines a sequence of directions, and

Magnus tries to design appropriate response to visit as many positions as possible. In

the first case, we provide an O(n3) time algorithm for Derek to minimize the number of

positions that Magnus can visit and answer the above mentioned open question. For the

second case, we provide an O(n) time algorithm for Magnus to visit all of the positions.

Furthermore, we consider the case that both players play randomly, that is, they choose

their moves in every round uniformly at random. In this case, both players have no

effective strategy and just adopt the random strategy. This is somewhat like performing

a random walk on the n positions. We show that the expected number of rounds to visit

all of the n positions is O(n logn), which is similar to the Coupon collection problem[3].

Throughout this paper, we assume that both players know the factors of n and all of

the arithmetic operations are under Zn unless stated otherwise. We organize the rest of

the paper as follows. In chapter 2, we prove that Magnus can visit the maximum number

of possible positions in O(n) rounds. In chapter 3 and 4, we prove how a player can

achieve the best possible result when he knows his rival’s moves beforehand. In chapter

5, we consider both players play randomly.

2

Chapter 2

Visit f∗(n) positions in O(n) rounds

In this section we give a new strategy for Magnus to visit f∗(n) positions in O(n)

rounds. Previous results show that when n is prime this problem can be the hardest. For

this case, Nedev and Muthukrishnan [5] showed that Magnus could visit f∗(n) positions in

O(n2) rounds. Hurkens et. al. [1] reduced it to O(n logn) rounds. We show that Magnus

only needs O(n) rounds to visit f∗(n) positions. We adopt the idea of Hurkens et. al.

with some modification to obtain a better bound. We first focus on the case when n is

an odd prime and then extend it for general n.

Let A and B be two subsets of Zn, and define A +B = {a + b ∣ a ∈ A, b ∈ B}.

Definition 1. Let n ≥ 3 be an odd integer. For any two elements a, b ∈ Zn, the midpoint

of a and b, denoted as Mid(a, b), is (a + b)/2 if a + b is even; else (a + b + n)/2. If S

is a subset of Zn, define MID(S)={Mid(a, b) ∣ a, b ∈ S}, SUM(S)={a + b ∣ a, b ∈ S} and

SUM k(S) = {a + b ∣ a, b ∈ SUM k−1(S)}

By the definition we have the following immediate fact.

Fact 1. If S is a proper subset of Zn and SUM(S)=Zn, then any x ∈ Zn is the midpoint

of some elements a, b ∈ S, i.e., x =Mid(a, b).

The following theorem is a very useful tool in our proofs.

Theorem 1. (Cauchy-Davenport [2]) If p is a prime, and A, B are two non-empty subsets

of Zp, then

∣A +B∣ ≥ min{p, ∣A∣ + ∣B∣ − 1}.

3

Now we are ready to prove our result.

Lemma 1. Assume S0 is a subset of Zn and ⌈ n
2k−1 ⌉ ≥ ∣S0∣ > ⌈ n

2k ⌉ for some k, where n is a

prime and 1 ≤ k ≤ logn. Let Si=SUM(Si−1) for i ≥ 1. Then Sk = SUM k(S0) = Zn.

Proof. We prove the lemma by induction on k, where k satisfies ⌈ n
2k−1 ⌉ ≥ ∣S0∣ > ⌈ n

2k ⌉.

Basis: When k = 1, we have ∣S0∣ > ⌈n2 ⌉. By Theorem 1, we have ∣S0 + S0∣ ≥ min{n, ∣S0∣ +

∣S0∣ − 1} ≥ n, so S1=SUM(S0)=S0 + S0 = Zn.

Inductive Step: Assume the lemma is true for k = m − 1, that is, if S0 > ⌈ n
2k ⌉ = ⌈ n

2m−1 ⌉,

then Sm−1 = Zn. Now we consider the case for k = m. We have ∣S0∣ > ⌈ n
2m ⌉, which implies

∣S0∣ ≥ ⌈ n
2m ⌉ + 1. Then ∣S1∣= ∣SUM(S0)∣. If S1 = Zn, then we are done. Suppose not. By

Theorem 1, we have ∣S1∣ ≥ 2∣S0∣− 1 ≥ 2(⌈ n
2m ⌉+ 1)− 1 = 2⌈ n

2m ⌉+ 1 > ⌈ n
2m−1 ⌉. By the induction

hypothesis, we have Sm = SUM m−1(S1) = Zn. Thus, it holds for the case k =m.

Theorem 2. If n is a prime, then Magnus can visit f∗(n) = n−1 positions in 2n rounds.

Proof. Let C0 be the set of unvisited positions, which is Zn initially. By Lemma 1, we

know SUM(C0)=Zn if ∣C0∣ > n/2. By Fact 1, it implies that any position can be the middle

point of 2 unvisited positions in C0. Thus, as long as ∣C0∣ > n/2, Magnus can visit a new

position in each round.

In general for ⌈ n
2k−1 ⌉ ≥ ∣C0∣ > ⌈ n

2k ⌉, 1 ≤ k ≤ logn, we claim that Magnus can visit a new

position in C0 in every k rounds. The theorem follows by the claim, since

log n

∑
k=1

k⌊
n

2k
⌋ ≤ 2n.

We have shown the basis case (k=1) of the claim. Now assume the claim holds up

to k − 1. Now consider the case when ⌈ n
2k−1 ⌉ ≥ ∣C0∣ > ⌈ n

2k ⌉. Let C1 =MID(C0). Note that

∣C1∣ = ∣C0 + C0∣ > ⌈ n
2k−1 ⌉. It is clear that SUMk−1(C1)=Zn, by Lemma 1. By induction

hypothesis, we know Magnus can visit a new position in C1 in every k − 1 rounds. Then

from a position in C1, Magnus can visit a new position in C0 in another round, since every

element in C1 is the middle point of two elements a, b ∈ C0, where if a = b, then a, b ∈ C1,

which implies Magnus may visit a new position in C0 in at most k rounds. This completes

the proof of the claim. The remaining one unvisited position is not reachable for Magnus

when Derek plays optimally. Thus the theorem holds.

4

As in [5], we use C(l, d, s) = {s + i ⋅ d ∣ 0 ≤ i < l} to denote a set of l positions starting

from s and the distance between each pair of adjacent positions in the set is d.

Suppose that n = mp is an odd positive integer and p is the smallest prime factor of

n. Let Cj = C(m,p, j) ⊂ Zn, j ∈ Zp. We have the following general property.

Lemma 2. Let S0 = Ci ∪ R for some i ∈ Zp, where R ⊂ Zn and R ∩ Ci = ∅, and Si =

SUM(Si−1) for i ≥ 1. If ⌈ p

2k−1 ⌉ ≥ l > ⌈ p

2k ⌉ for some k, where 1 ≤ k ≤ log p and l is the

number of Cj, j ≠ i, intersecting with R, then Sk+1 = Zn.

Proof. For convenience, let C be the collection {Cj ∣j ≠ i,Cj ∩ R ≠ ∅} and ∣C∣ = l. Let

S′ = {j ∣ Cj ∈ C}. By Lemma 1, we have SUMk(S′) = Zp. Note that {a} + Ci =

C(a+i) mod p ⊆ SUM({a} ∪ Ci). SUMk(S′) = Zp implies that Zn ⊆ SUMk+1(S0). Thus

Sk+1=SUMk+1(S0)=Zn.

Let u be an odd integer. Hurkens et. al. [1] (Lemma 3.2) proved that: if Magnus has

a strategy to visit f∗(u) positions in g(u) rounds, then, for any integer n with u as its

largest odd factor, Magnus has a strategy to visit f∗(n) positions in g(u) + n − u rounds.

Thus to prove a linear upper bound on the round number, it suffices to focus on odd

integers.

Theorem 3. Let n = mp be an odd integer, where p is the smallest prime factor of n.

Then there is a strategy for Magnus to visit f∗(n) = (p − 1)n/p positions in at most 3n

rounds.

Proof. Let Ci = C(n/p, p, i), i ∈ Zp, and S0 be the unvisited positions, which is Zn initially.

Note that when Derek plays optimally, he can always keep one of Ci’s, say C0, from

Magnus’ visiting[5]. By Lemma 2, we know SUMk+1(S0) = Zn as long as S0 intersects

with t Ci’s other than C0 and ⌈ p

2k−1 ⌉ ≥ t > ⌈ p

2k ⌉. As in the proof of Theorem 2, it implies

Magnus can visit a new position in S0 within k +1 rounds. The smaller the t is, the more

rounds Magnus needs to visit a new position. The best strategy for Derek is to force

Magnus to visit Ci one after another in order to make t smaller.

Therefore, it takes at most

log p

∑
k=1

(k + 1)⌊
p

2k
⌋(n/p) ≤ ∑

k

(k + 1)(
n

2k
) ≤ 3n rounds.

5

Chapter 3

When Derek knows the moves of

Magnus

In this section we consider a variant of the game, where Magnus reveals all of his

moves m1,m2, . . . ,mr to Derek. The goal of Derek is to design a sequence of directions

d1, d2, . . . , dr such that the number of positions Magnus can visit is minimal. To derive

the algorithm, we define the predicate T [i, j, k, d] as follows.

Definition 2. T [i, j, k, d] is a predicate indicating whether the following conditions can

be satisfied simultaneously: (1) At the end of round i, the token can be moved to position

j; (2) During the i rounds, k distinct positions are visited; (3) The choice of direction in

round i is d, which is either +1 (clockwise) or -1 (counterclockwise).

For each T [i, j, k, d], we need an n-bit 0-1 vector to record the positions visited.

Definition 3. B[i, j, k, d] is an n-bit vector (b0, b1, . . . , bn−1), which records the k visited

positions in the first i rounds when T [i, j, k, d] is true. If position p has been visited, then

bp = 1. If T [i, j, k, d] is false, then bp = 0, for all p ∈ Zn.

Note that bk must be 1 when T [i, j, k, d] is true. For convenience, sometimes we use

B[i, j, k, d]l to indicate bl. Since we want to minimize the number of visited positions in r

rounds, the optimal solution must be the minimal k such that T [r, j, k, d] is true for some

j, d.

6

But how to compute T [i, j, k, d]? Since we start the game at position 0, we have

T [0,0,1,1] = T [0,0,1,−1] = true, and B[0,0,1,1]0 = B[0,0,1,−1]0 = 1. Moreover,

T [1,m1,2,1] and T [1, n −m1,2,−1] are also true, because after round 1, the token is

either moved to position m1 or n−m1 and there are two positions visited. It is also clear

that if k > i + 1, then T [i, j, k, d] must be false, since at most i + 1 different positions can

be visited in i rounds. Initially, set T [i, j, k, d] = � and B[i, j, k, d] = 0⃗ for all i, j, k, d,

except T [0,0,1,1] = T [0,0,1,−1] = true;B[0,0,1,1]0 = B[0,0,1,−1]0 = 1. Observe that if

T [i, j, k,1] is true, then at least one of T [i−1, j−mi, k,1], T [i−1, j−mi, k,−1], T [i−1, j−

mi, k − 1,1] and T [i − 1, j −mi, k − 1,−1] must be true. In general, we have the following

recursive formula:

T [i, j, k,1] = T [i − 1, j −mi, k,1] ∨ T [i − 1, j −mi, k,−1]

∨ T [i − 1, j −mi, k − 1,1] ∨ T [i − 1, j −mi, k − 1,−1].

T [i, j, k,−1] = T [i − 1, j +mi, k,1] ∨ T [i − 1, j +mi, k,−1]

∨ T [i − 1, j +mi, k − 1,1] ∨ T [i − 1, j +mi, k − 1,−1].

More concisely, we have

T [i, j, k, d] = T [i − 1, j − dmi, k,1] ∨ T [i − 1, j − dmi, k,−1]

∨ T [i − 1, j − dmi, k − 1,1] ∨ T [i − 1, j − dmi, k − 1,−1].

Let max be the maximum number of different positions that Magnus can visit by revealing

r moves in advance, then max is the smallest k such that T [r, j, k, d] is true for some j

and d, i.e.,

max = min {k ∣ ∃j∃d,T [r, j, k, d] = true}.

By the recursive formula, we give an algorithm for Derek to check T [r, j, k, d]. We can use

it to find max and the directions that lead to the minimum number of positions. Given

r and m1, . . . ,mr, we can query T [r, j, k, d] starting from k = 2. For each k, we try all

possible j, d and check if T [r, j, k, d] is true or not. Return the k, which is the max, when

T [r, j, k, d] is true; otherwise repeat the above by increasing k by 1 until k = r. Therefore,

checking T [r, j, k, d] is crucial and it will be carried out by Algorithm Derek, as shown

in Figure 3.1.

7

Algorithm Derek(M,N, I, J,K,D)

Input: M ∶ array of size I storing Magnus’ moves;

N ∶ the number of positions;

I ∶ the number of rounds;

J ∶ the final position of the token after I rounds;

K ∶ the number of visited positions so far, thus K ≤ I;

D ∶ the direction from the previous position to current position;

Output: return whether Magnus stops at position J and visit K positions in I rounds;

1 for i← 1 to I do

2 for j ← 0 to N − 1 do

3 for k ← 1 to K do

4 T [i, j, k,1] ← T [i, j, k,−1] ← �; B[i, j, k,1] ← B[i, j, k,−1] ← 0⃗;

5 for j ← 1 to N − 1 do

6 for k ← 2 to I do T [0, j, k,1] ← T [0, j, k,−1] ← false;

7 T [0,0,1,1] ← T [0,0,1,−1] ← true; B[0,0,1,1]0 ← B[0,0,1,−1]0 ← 1;

8 return LookUp(I, J,K,D);

Algorithm LookUp(i, j, k, d)

1 if (k = 0) then return false;

2 if (T [i, j, k, d] ≠ �) then return T [i, j, k, d];

3 if ((LookUp(i − 1, j − dM[i], k,1) = true) and (B[i − 1, j − dM[i], k,1]k = 1))

then {B[i, j, k, d] ← B[i − 1, j − dM[i], k,1]; return T [i, j, k, d] ← true;}

4 else if ((LookUp(i − 1, j − dM[i], k,−1) = true) and (B[i − 1, j − dM[i], k,−1]k = 1))

then {B[i, j, k, d] ← B[i − 1, j − dM[i], k,−1]; return T [i, j, k, d] ← true;}

5 else if ((LookUp(i − 1, j − dM[i], k − 1,1) = true) and (B[i − 1, j − dM[i], k,1]k = 0))

then {B[i, j, k, d] ← B[i − 1, j − dM[i], k − 1,1]; bk ← 1; return T [i, j, k, d] ← true;}

6 else if ((LookUp(i − 1, j − dM[i], k − 1,−1) = true) and (B[i − 1, j − dM[i], k,−1]k = 0))

then {B[i, j, k, d] ← B[i − 1, j − dM[i], k − 1,−1]; bk ← 1; return T [i, j, k, d] ← true;}

7 return T [i, j, k, d] ← false;

Figure 3.1: Recursive algorithm for checking T [i, j, k, d].

8

Algorithm PrintDirection(i, j, k, d)

1 if ((T [i, j, k, d] = �) or (T [i, j, k, d] = false)) then return;

2 if (i = 0) return;

3 if ((T [i − 1, j − dM[i], k,1] = true) and (B[i − 1, j − dM[i], k,1]k = 1))

PrintDirection(i − 1, j − dM[i], k,1);

4 else if ((T [i − 1, j − dM[i], k,−1] = true) and (B[i − 1, j − dM[i], k,−1]k = 1))

PrintDirection(i − 1, j − dM[i], k,−1);

5 else if ((T [i − 1, j − dM[i], k − 1,1] = true) and (B[i − 1, j − dM[i], k − 1,1]k = 0))

PrintDirection(i − 1, j − dM[i], k − 1,1);

6 else if ((T [i − 1, j − dM[i], k − 1,−1] = true) and (B[i − 1, j − dM[i], k − 1,−1]k = 0))

PrintDirection(i − 1, j − dM[i], k − 1,−1);

7 Print (D[i] = d);

Figure 3.2: Recursive algorithm for printing the directions.

Theorem 4. Algorithm Derek is correct and has time complexity O(n3).

Proof. To compute the value of T [i, j, k, d], we simply apply the corresponding recursive

formula. The recursive call terminates when i reaches 0. Thus, the algorithm always

terminates and the correctness follows by the recursive formula.

The table for T [i, j, k, d] has 2n3 entries. For each entry, it checks at most four possible

sub-cases. Hence, the time complexity is O(n3).

9

Chapter 4

When Magnus knows Derek’s moves

Here Derek gives all his moves first, and Magnus will try to find a set of magnitudes

such that he can visit as many positions as possible. Assume there are n positions on the

round table. Let d1, d2, . . . , dk be the sequence given by Derek. For all 1 ≤ i ≤ k, di will be

either +1 (clockwise) or -1 (counterclockwise). The sequence of magnitudes from Magnus

is denoted as m1,m2, . . . ,mk. Here we show that Magnus actually has an advantage over

Derek. Let k = n − 1 and we obtain the following result.

Theorem 5.

(a) If n is even, Magnus can always visit all n positions regardless of d1, d2, . . . , dn−1.

(b) If n is odd and Magnus can choose any magnitude in the set {1, . . . , ⌈n
2
⌉}, then Magnus

can visit all n positions regardless of d1, d2, . . . , dn−1.

(c) If n is odd, by examining dn−5

2

, dn−3

2

, . . . , dn+3

2

, dn+5

2

in advance, Magnus can design ap-

propriate response to visit all n positions.

We give two different strategies for even n and odd n, respectively. We show the

strategy for the case when n is even first and then the odd case. Actually for odd n, we

can prove the case for magnitudes from the set {1, . . . , ⌊n
2
⌋}. However, the proof is lengthy

and we omit it.

10

4.1 Strategy for even n

We can determine the moves m1,m2, . . . ,mn−1 by observing the pattern of visited

positions.

Definition 4. We call the visited positions on the round table k-balanced, if the visited

positions consist of two disjoint sets of consecutive positions, i.e., S0 = {j, . . . , j + k − 1}

and S1 = {j + n/2, . . . , j + n/2 + k − 1} for some k and j ∈ Zn, and the token is sitting at

one of the four end positions: j, j + k − 1, j + n/2 and j + n/2 + k − 1.

0

1

2

3

4

5

6

7

Figure 4.1: An example for 3-balanced with n = 8, where the gray nodes are visited.

Without loss of generality, we assume position 0 is in S0. The following is a simple

algorithm that determines the magnitudes m1,m2, . . . ,mn−1. We prove that the algorithm

correctly generates the magnitudes with which Magnus can visit all positions.

Let m1,m2, . . . ,mn−1 be the moves generated by Algorithm Magnus. At round i, if i

is odd, then mi = n/2. Otherwise, if the position at (current position + di) is not visited

then mi = 1, else mi = i/2. During the even rounds, the set of visited positions holding the

token will be extended with a newly visited position. While during the odd rounds, the

set of visited positions without the token will be extended with a newly visited position.

We prove the correctness of the algorithm with the following lemma.

Lemma 3. For i = 2k − 1, k ∈ Zn and 1 ≤ k ≤ n
2
, right after round i, the visited positions

are in k-balanced form.

11

Algorithm Magnus(D,N,M)

Input: D ∶ array of size N − 1 storing Derek’s moves, D[i] ∈ {1,−1};

N ∶ the number of positions;

Output: M ∶ array of size N − 1 storing Magnus’ moves;

1 CurrentPos← 0; V isited[0] ← true; /* Initialize the current position */

2 for i← 1 to N − 1 do V isited[i] ← false; /* Initialize the other positions unvisited */

3 for i← 1 to N − 1 do

4 if (i is odd) then M[i] ← n/2;

5 else if ((CurrentPos +D[i]) is not visited) then M[i] ← 1;

6 else M[i] ← i/2;

7 CurrentPos← CurrentPos +D[i] ∗M[i];

8 V isited[CurrentPos]← true;

Figure 4.2: Generate the moves for Magnus with Derek’s revealed in advance.

Proof. We prove it by induction on k.

Basis: When k = 1, m1 = n
2
. After round 1, clearly, the visited positions are in 1-

balanced form and the token is at n/2.

Inductive hypothesis: Assume the statement is true for k = ℓ for some ℓ < n
2
, and the

visited positions are in ℓ-balanced form, i.e. the visited positions are in S0 = {j, . . . , j +

ℓ − 1} and S1 = {j + n
2
, . . . , j + n

2
+ ℓ − 1} for some j. Note that ∣S0∣ = ∣S1∣ = ℓ. Assume

the token’s current position is at p ∈ Si, where i is either 0 or 1 and p is one of the end

positions in Si.

Inductive step: Note that positions j − 1, j + ℓ, j + n
2
− 1 and j + n

2
+ ℓ are unvisited. If

p+d2ℓ is unvisited, then it implies that along the direction of d2ℓ there is a vacant position

next to p and we can set m2ℓ = 1. The token will be relocated to p′ = p + d2ℓ in round 2ℓ

and Si becomes S′i = Si ∪ {p+ d2ℓ}. While, if p+ d2ℓ is already visited, then it implies that

Si can be extended at the other end, i.e., we can move the token from p to p′ = p + d2ℓℓ

and Si becomes S′i = Si ∪ {p + d2ℓℓ}. After round 2ℓ, ∣S′i ∣ = ∣S1−i∣ + 1 = ℓ + 1.

At round 2ℓ+1, the algorithm sets m2ℓ+1 = n
2

and moves the token to position p′′ = p′+n
2
,

12

which is independent of d2ℓ+1. Now S1−i becomes S′1−i = S1−i∪{p′+
n
2
} and ∣S′i ∣ = ∣S

′
1−i∣ = ℓ+1.

We summarize the movement of the token in Table 4.1.

Table 4.1: The positions of the token during rounds 2ℓ and 2ℓ + 1, where p, p′ and p′′ are

the positions of the token at round 2ℓ − 1,2ℓ and 2ℓ + 1, respectively.

d2ℓ = 1 d2ℓ = −1

p = j p′ = j + ℓ; p′′ = j + ℓ + n/2 p′ = j − 1; p′′ = j − 1 + n/2

p = j + ℓ − 1 p′ = j + ℓ; p′′ = j + ℓ + n/2 p′ = j − 1; p′′ = j − 1 + n/2

p = j + n/2 p′ = j + ℓ + n/2; p′′ = j + ℓ p′ = j − 1 + n/2; p′′ = j − 1

p = j + n/2 + ℓ − 1 p′ = j + ℓ + n/2; p′′ = j + ℓ p′ = j − 1 + n/2; p′′ = j − 1

Note that, for d2ℓ = 1, we have S′0 = S0∪{j +ℓ} and S′1 = S1∪{j +n/2+ℓ}. For d2ℓ = −1,

we have S′0 = S0 ∪{j −1} and S′1 = S1 ∪{j +n/2−1}. Both are clearly in (ℓ+1)-balanced

form. ◻

From above, we prove the correctness of algorithm Magnus and part (a) of Theorem

5.

4.2 Strategy for the case of odd n with some relax-

ation

Since n
2

is not an integer, the strategy for even n does not work directly. Here Magnus

is allowed to choose magnitude from {1, . . . , ⌈n
2
⌉}. We can also determine the moves

m1,m2, . . . ,mn−1 by observing the pattern of visited positions. The pattern of visited

positions is slightly different from the case of even n.

Definition 5. We call the visited positions on the round table k-skew-balanced, if the

visited positions consist of two disjoint sets of consecutive positions, i.e., S0 = {j, . . . , j +

k−1} and S1 = {j +⌊n/2⌋, . . . , j +⌊n/2⌋+k} for some k and j ∈ Zn, and the token is sitting

at one of the four end positions: j, j + k − 1, j + ⌊n/2⌋ and j + ⌊n/2⌋ + k

13

0

1

2

3

45

6

7

8

Figure 4.3: An example for 2-skew-balanced with n = 9, where the gray nodes are

visited.

Let m1,m2, . . . ,mn−1 be the response of Magnus. At round i, if di = +1, then mi =

⌊n/2⌋; otherwise mi = ⌈n/2⌉. In every two rounds, each set of visited positions will be

extended with a newly visited position. We prove the correctness of the strategy with the

following lemma.

Lemma 4. For i = 2k, k ∈ Zn and 1 ≤ k ≤ ⌊n
2
⌋, right after round i, the visited positions

are in k-skew-balanced form for j = ⌊n
2
⌋−k+1 and the token is sitting at position n−k.

Proof. We prove it by induction on k.

Basis When k = 1, after round 1 and 2, the token will be moved to position ⌊n
2
⌋ and n−1,

respectively, since n = ⌊n
2
⌋ + ⌈n

2
⌉. Clearly, the visited positions are in 1-skew-balanced

form for j = ⌊n
2
⌋ and the token is at n − 1 = ⌊n

2
⌋ + ⌊n

2
⌋.

Inductive hypothesis: Assume the statement is true for k = ℓ for some ℓ < ⌊n
2
⌋, and the

visited positions are in ℓ-skew-balanced form for j = ⌊n
2
⌋− ℓ+1, i.e. the visited positions

are in S0 = {⌊n2 ⌋ − ℓ + 1, . . . , ⌊n
2
⌋} and S1 = {n − ℓ, n − ℓ + 1, . . . ,0}. Moreover, the token is

sitting at position n − ℓ.

Inductive step: Note that the two positions n− ℓ−1 and ⌊n
2
⌋− ℓ are unvisited. In round

2ℓ + 1, if d2ℓ+1 = +1, then we can set m2ℓ+1 = ⌊n2 ⌋ and the token will be moved to position

n−ℓ+⌊n
2
⌋ = ⌊n

2
⌋−ℓ. Otherwise, we set m2ℓ+1 = ⌈n2 ⌉ and the token will be moved to position

n − ℓ − ⌈n
2
⌉ = ⌊n

2
⌋ − ℓ. Similarly, at the end of round 2ℓ + 2, the token will be moved to

position n−ℓ−1. The visited positions become S′0 = S0∪{⌊
n
2
⌋−ℓ} and S′1 = S1∪{n−ℓ−1},

14

and they are in (ℓ + 1)-skew-balanced form for j = ⌊n
2
⌋ − (ℓ + 1) + 1.

From above, we complete the proof of part (b) of Theorem 5.

4.3 Strategy for odd n without any relaxation

In this case, we will use a different approach. The following lemma shows the strategy

we adapt in about first half of the steps.

Lemma 5. We can design m1,m2 . . . ,mi to visit i + 1 consecutive positions for i ≤ n
2

regardless of d1, d2, . . . , di, the position we visited in round i is either positive biased or

negative biased.

Proof. The proof is based on the mathematical induction, when i = 1, the token is at

position 0 and we can let m1 = 1 and the token will move to position 1 or position n − 1

and we can visit 2 consecutive positions. If we visit position 1 in round 1, position 1 is

positive biased ; otherwise, we visit position n − 1 and it is negative biased. Now assume

that the statement is still true when i = k. Now consider the situation i = k + 1, by

induction hypothesis , assume we have visited consecutive positions j, j + 1, . . . , j + k in

previous steps. Obviously, the token will be located on position j or j + k. Since k < n
2

and n is even, we have k + 1 ≤ n
2
. Hence, we can always choose a magnitude not larger

than n
2

to visit one of position j − 1 or j + k + 1, we can still visit consecutive positions

and the position we visit in round k + 1 is either positive biased or negative biased.

The following lemma can be proved by similar method, the proof of the lemma reflects

the strategy

Lemma 6. Assume we have visited l + 1 consecutive positions in first l rounds, where

l ≥ n
2
. If the token is on the positive biased position and dl+1 = 1 or it is on the negative

biased position and dl+1 = −1, then we can visit the rest n− l−1 positions in n− l−1 steps.

Proof. Assume the locations we have visited is the set {j, j + 1, . . . , j + l}. Consider the

case that the token is on position j+l, and dl+1 = 1. Obviously, the position j+l is positive

biased.

15

Now we need to check the sequence dl+1, dl+2, . . . , dn−1, if there is consecutive appear-

ance of i 1’s in this sequence start from dl+1, i.e., dl+1 = dl+2 = . . . = dl+i = 1 and dl+i+1 = −1,

then in round l + 1 to l + i − 1, we choose ml+1 = ml + 2 = ml+i−1 = 1 to visit the positions

j + l + 1, j + l + 2, . . . , j + l + i − 1, and we pick ml+1 = n − l − i, which is smaller than n
2

to visit position j − 1. After round l + i finished, the set of visited positions becomes

{j − 1, j, . . . , j + l + i − 1}, and the position j − 1, on which the token is located, becomes

negative biased. We can repeat the same action to visit the rest positions. The argument

for the other case is symmetrical.◻

From the two lemmas above, we are able to prove that we can visit all n positions in

n−1 rounds easily if the sequence d1, d2, . . . , dn−1 satisfies the conditions mentioned in the

following corollary.

Corollary 1. If the sequence d1, d2, . . . , dn−1 satisfies dn−1

2

= dn+1

2

, then we can visit all

positions in n − 1 rounds.

Proof. Consider the case that dn−1

2

= dn+1

2

= 1. From lemma 7, we can design m1,m2, . . . ,mn−1

2

to visit n+1
2
≥ n

2
consecutive positions. Furthermore, at the end of round n−1

2
, the token is

on a positive biased location. Since dn+1

2

= 1, by using the strategy mentioned in lemma

6, we are able to visit the rest n−1
2

positions in n−1
2

rounds.

The argument for the case dn−1

2

= dn+1

2

= −1 is symmetrical.◻

Now we need to prove that, for the rest possible cases, we are still able to design the

magnitudes m1,m2, . . . ,mn−1 to visit all possible positions. The additional cost is that we

need to examine the sequence d1, d2, . . . , dn−1 carefully. The following lemma exhibits the

corresponding strategy and completes the proof of part (c) of Theorem 5.

Lemma 7. If the sequence d1, d2, . . . , dn−1 does not satisfy dn−1

2

= dn+1

2

, by examining

dn−5

2

, dn−3

2

, . . . , dn+3

2

, dn+5

2

in advance, Magnus is able to design magnitudes m1,m2, . . . ,mk

to visit all n positions.

Proof. First, we examine the value of dn−3

2

, dn−1

2

, dn+1

2

, dn+3

2

, since dn−1

2

≠ dn+1

2

, there are

eight possible cases, in here we only prove four of them, the rest cases are symmetrical to

the cases we proved.

16

Visited positions

Unvisited positions

i

i + 1

i + n−7
2

i + n−5
2

i + n−3
2

i + n−1
2

i + n+1
2

A1

A1 A2 A3

Figure 4.4: Case 1.

Case 1. dn−3

2

= dn−1

2

= dn+3

2

= 1 and dn+1

2

= −1. First, since n−5
2
≤ n

2
, from lemma 7, we

can visit n−3
2

consecutive positions in first n−5
2

rounds. Assume the consecutive positions

we have visited are {i, i+ 1, . . . , i+ n−5
2
}, from lemma 7, the location of the token is either

on position i or i + n−5
2

. For this case, we adapt the following actions:

A1. In round n−3
2

, move to position i + n−3
2

, since dn−3

2

= 1 and the distance between

position n−3
2

and current position of the token is at most n−3
2

in clockwise direction,

we are able to perform the action.

A2. In round n−1
2

, set mn−1

2

= 2 and move the token to position i + n+1
2

.

A3. In round n+1
2

, set mn+1

2

= 1 and move the token to position i+ n−1
2

. At the end of this

round, we have visited n+1
2

consecutive positions {i, i + 1, . . . , i + n−1
2
} and position

i + n+1
2

. Since position i + n−1
2

is positive biased related to the consecutive positions

{i, i + 1, . . . , i + n−1
2
}, and dn+3

2

= 1, from lemma 6, we are able to visit the rest n−3
2

positions in n−3
2

rounds.

The argument for proving the case dn−3

2

= dn−1

2

= dn+3

2

= −1 and dn+1

2

= 1 is symmetrical.

Case 2. dn−3

2

= dn−1

2

= 1 and dn+1

2

= dn+3

2

= −1. From lemma 7, we can visit n−3
2

consecutive positions in first n−5
2

rounds. Assume the consecutive positions we have visited

17

Visited positions

Unvisited positions

i − 2

i − 1

i

i + 1

i + n−7
2

i + n−5
2

i + n−1
2

A1

A2A3

Figure 4.5: Case 2a.

Visited positions

Unvisited positions

i-3

i-2

i-1

i

i+1

i+n−7
2

i+n−5
2

A1
A2

A3

Figure 4.6: Case 2b.

are {i, i+1, . . . , i+ n−5
2
}, from lemma 7, the location of the token is on position i or i+ n−5

2
.

We consider the two subcases separately:

(a) If the token is on position i, then we adapt the following actions:

A1. In round n−3
2

, set mn−3

2

= n−1
2

and move the token to position i + n−1
2

.

A2. In round n−1
2

, set mn−1

2

= n−1
2

and move the token to position (i+ n−1
2
+

n−1
2
) ≡ i−1.

18

A3. In round n+1
2

, set mn+1

2

= 1 and move the token to position i− 2. At the end of

the round, since we also visited position i−1 and i−2, the consecutive position

we have visited becomes {i − 2, i − 1, i, . . . , i + n−5
2
}, which contains n+1

2
≥ n

2

positions. Since the token is now on position i−2 which is negative biased and

we have dn+3

2

= −1. From lemma 6, we are able to visit the rest n−3
2

positions

in n−3
2

rounds.

(b) Otherwise, the token is on position i + n−5
2

, we adapt the following actions:

A1. In round n−3
2

, set mn−3

2

= n−1
2

and move the token to position (i+ n−5
2
+

n−1
2
)%n =

i − 3.

A2. In round n−1
2

, set mn−1

2

= 2 and move the token to position i − 1.

A3. In round n+1
2

, set mn+1

2

= 1 and move the token to position i− 2. At the end of

the round, since we also visited position i−1 and i−2, the consecutive position

we have visited becomes {i − 2, i − 1, i, . . . , i + n−5
2
}, which contains n+1

2
≥ n

2

positions. Since the token is now on position i−2 which is negative biased and

we have dn+3

2

= −1. From lemma 6, we are able to visit the rest n−3
2

positions

in n−3
2

rounds.

The argument for proving the case dn−3

2

= dn−1

2

= −1 and dn+1

2

= dn+3

2

= 1 is symmetrical.

Case 3. dn−3

2

= dn+1

2

= dn+3

2

= −1 and dn−1

2

= 1. From lemma 7, we can visit n−3
2

consecutive positions in first n−5
2

rounds. Assume the consecutive positions we have visited

are {i, i + 1, . . . , i + +
n−52}, we adapt the following actions:

A1. In round n−3
2

, move the token to position i − 2. Since the token is on position i or

i + n−5
2

and dn−3

2

= −1. We can set mn−3

2

to 2 or n−1
2

to accomplish this action.

A2. In round n−1
2

, we set mn−1

2

= 1 and move the token to position i − 1.

A3. In round n+1
2

, set mn+1

2

= 2 and move the token to position i − 3. At the end of the

round, the consecutive position we have visited becomes {i−3, i−2, i−1, i, . . . , i+ n−5
2
},

which contains n+3
2
≥ n

2
positions. Since the token is now on position i − 3 which is

negative biased and we have dn+3

2

= −1. From lemma 6, we are able to visit the rest

n−3
2

positions in n−3
2

rounds.

19

Visited positions

Unvisited positions

i − 3

i − 2

i − 1

i

i + 1

i + n−7
2

i + n−5
2

A1 A1

A2

A3

Figure 4.7: Case 3.

The argument for proving the case dn−3

2

= dn+1

2

= dn+3

2

= 1 and dn−1

2

= −1 is symmetrical.

Case 4. dn−3

2

= dn+1

2

= −1 and dn−1

2

= dn+3

2

= 1. This case is more complex then

other cases, and we also consider the value of dn−5

2

and dn+5

2

. From lemma 7, we can visit

n−5
2

consecutive positions in first n−7
2

rounds. Assume the consecutive positions we have

visited are {i, i + 1, . . . , i + n−7
2
}, there are four possible cases:

(a) dn−5

2

= dn+5

2

= −1, we adapt the following actions:

A1. In round n−5
2

, move the token to position i− 1. Since the token is on position i

or i+ n−7
2

and dn−5

2

= −1. We can set mn−5

2

to 1 or n−5
2

to accomplish this action.

A2. In round n−3
2

, set mn−3

2

= 2 and move the token to position i − 3.

A3. In round n−1
2

, set mn−1

2

= 1 and move the token to position i − 2.

A4. In round n+1
2

, set mn+1

2

= 3 and move the token to position i − 5.

A5. In round n+3
2

, set mn−1

2

= 1 and move the token to position i − 4. At the end

of the round, since we visited position i − 1, i − 2, i − 3, i − 4 We have a set of

consecutive positions {i−4, i−3, i−2, i−1, i, . . . , i+ n−7
2
}, which contains n+3

2
≥ n

2

positions. Since the token is now on position i − 2 which is negative biased

related to these positions and we have dn+5

2

= −1. From lemma 6, we are able

to visit the rest n−5
2

positions in n−5
2

rounds.

20

Visited positions

Unvisited positions

i − 3

i − 4

i − 5

i − 2

i − 1

i

i + 1
i + n−7

2

A1
A1

A2

A3 A4

A5

Figure 4.8: Case 4a.

Visited positions

Unvisited positions

i

i + 1

i + n−7
2

i + n−5
2

i + n−3
2

i + n−1
2

i + n+1
2

i + n+3
2

A1

A1 A2

A3
A4

A5

Figure 4.9: Case 4b.

(b) dn−5

2

= dn+5

2

= 1, we adapt the following actions:

A1. In round n−5
2

, move the token to position i+ n−3
2

. Since the token is on position

i or i+ n−7
2

and dn−5

2

= 1. We can set mn−5

2

to 2 or n−3
2

to accomplish this action.

A2. In round n−3
2

, set mn−3

2

= 1 and move the token to position i + n−5
2

.

21

A3. In round n−1
2

, set mn−1

2

= 3 and move the token to position i + n+1
2

.

A4. In round n+1
2

, set mn+1

2

= 1 and move the token to position i + n−1
2

.

A5. In round n+3
2

, set mn−1

2

= 2 and move the token to position i+ n+3
2

. At the end of

the round, since we visited the five positions i+ n−5
2

, i+ n−3
2

, i+ n−1
2

, i+ n+1
2

, i+ n+3
2

.

We have a set of consecutive positions {i, i + 1, . . . , i + n+3
2
}, which contains

n+5
2
≥ n

2
positions. Since the token is now on position i + n+3

2
which is positive

biased related to these positions and we have dn+5

2

= 1. From lemma 6, we are

able to visit the rest n−5
2

positions in n−5
2

rounds.

Visited positions

Unvisited positions

i

i + 1

i − 3

i + n−7
2

i + n−5
2

i + n−3
2

i + n−1
2

i + n+1
2

A1A1 A2

A3

A4

A5

Figure 4.10: Case 4c.

(c) dn−5

2

= −1 and dn+5

2

= 1, we adapt the following actions:

A1. In round n−5
2

, move the token to position i− 3. Since the token is on position i

or i+ n−7
2

and dn−5

2

= 1. We can set mn−5

2

to 3 or n−1
2

to accomplish this action.

A2. In round n−3
2

, set mn−3

2

= n−3
2

and move the token to position i + n−3
2

.

A3. In round n−1
2

, set mn−1

2

= 1 and move the token to position i + n−1
2

.

A4. In round n+1
2

, set mn+1

2

= 2 and move the token to position i + n−5
2

.

A5. In round n+3
2

, set mn−1

2

= 3 and move the token to position i+ n+1
2

. At the end of

the round, since we visited the four positions i+ n−5
2

, i+ n−3
2

, i+ n−1
2

, i+ n+1
2

. We

22

have a set of consecutive positions {i, i+ 1, . . . , i+ n+1
2
}, which contains n+3

2
≥ n

2

positions. Since the token is now on position i + n+1
2

which is positive biased

related to these positions and we have dn+5

2

= 1. From lemma 6, we are able to

visit the rest n−5
2

positions in n−5
2

rounds.

Visited positions

Unvisited positions

i

i + 1

i − 1

i − 2

i − 3

i − 4

i + n−7
2

i + n−5
2

A1

A1

A2A3

A4
A5

Figure 4.11: Case 4d.

(d) dn−5

2

= 1 and dn+5

2

= −1, we adapt the following actions:

A1. In round n−5
2

, move the token to position i+ n−5
2

. Since the token is on position

i or i+ n−7
2

and dn−5

2

= 1. We can set mn−5

2

to n−5
2

or 1 to accomplish this action.

A2. In round n−3
2

, set mn−3

2

= n−1
2

and move the token to position i − 2.

A3. In round n−1
2

, set mn−1

2

= 1 and move the token to position i − 1.

A4. In round n+1
2

, set mn+1

2

= 3 and move the token to position i − 4.

A5. In round n+3
2

, set mn−1

2

= 1 and move the token to position i− 3. At the end of

the round, we have a set of consecutive positions {i−3, i−2, i−1, i, . . . , i+ n−5
2
},

which contains n+3
2
≥ n

2
positions. Since the token is now on position i−3 which

is negative biased related to these positions and we have dn+5

2

= −1. From

lemma 6, we are able to visit the rest n−5
2

positions in n−5
2

rounds.

The argument for proving the case dn−3

2

= dn+1

2

= 1 and dn−1

2

= dn+3

2

= −1 is symmetrical.◻

23

Chapter 5

When Derek and Magnus play

randomly

Here, we consider the case when both players play randomly. The token will visit

the positions on the circle randomly. Assume that the token is at position i, Magnus

chooses m uniformly from {0, . . . , ⌊n
2
⌋}, and Derek chooses the direction d uniformly from

{1,−1}. Let pi,j be the probability that the token is moved from position i to position

j. For any i, j ∈ Zn and i ≠ j, let ℓ ≤ ⌊n/2⌋ be the distance between i and j. Then

Pr[m = ℓ] = 1/⌊n
2
⌋ and Pr[d = the direction from i to j] = 1/2. If n is odd, then pi,j =

1/⌊n
2
⌋ × 1/2 = 1/n−1

2
× 1/2 = 1/(n − 1). Thus, for odd n, we have:

pi,j ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if i = j,

1
n−1 otherwise.

Similarly, for even n, we have:

pi,j ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j,

2
n

if j ≡ i + n
2

mod n,

1
n

otherwise.

We are interested in the cover time, which is the number of rounds needed to visit all

positions. We show that the number of rounds needed is Θ(n log n). Define c(i,i+1), i ∈ Zn,

to be the number of rounds needed to change from a state with i positions visited to a

24

state with i + 1 positions visited. Since the token is at position 0 initially, we denote the

cover time Cn as

Cn =
n−1

∑
i=1

c(i,i+1),

and the expected cover time is

E[Cn] =
n−1

∑
i=1

E[c(i,i+1)].

Lemma 8. (a) When n is odd, E[c(i,i+1)] = n−1
n−i ; (b) When n is even, n

n−i+1 ≤ E[c(i,i+1)] ≤
n

n−i.

Proof. (a) Suppose that there are n − i unvisited positions. The probability to visit

one of the unvisited positions is pi = n−i
n−1 . Note that c(i,i+1) is a geometric random

variable with parameter pi, and thus

E[c(i,i+1)] =
1

pi

=
n − 1

n − i
.

(b) Assume the token is at position x. For even n, position x + n
2

mod n has a greater

chance to be visited. If x + n
2

mod n has been visited, then the probability to visit

a new position is

pi =
n − i

n
.

If x + n
2

mod n hasn’t been visited, then the probability to visit a position is

pi =
1

n
× (n − i − 1) +

2

n
=

n − i + 1

n
.

To bound the value of E[c(i,i+1)], we know that the above cases can happen, and

we let p∗i be the probability to visit a new position, where n−i
n
≤ p∗i ≤

n−i+1
n

. Note

that pi∗ depends on the current position and is well bounded. Let c′ and c′′ be two

geometric random variables with parameter n−i
n

and n−i+1
n

, respectively. Then we

have
n

n − i + 1
= E[c′′] ≤ E[c(i,i+1)] ≤ E[c′] =

n

n − i
.

Since we know the range of E[ci,i+1] for all i ∈ {1, . . . , n−1}, we can bound the expected

cover time. We show that E[Cn] = Θ(n logn) with the following theorem.

25

Theorem 6. (a) When n is odd, E[Cn] = (n−1)Hn−1, where Hn = ∑n
i=1

1
i
; (b) When n is

even, nHn − n ≤ E[Cn] ≤ nHn − 1.

Proof. (a) From part (a) of Lemma 8, E[c(i,i+1)] = n−1
n−i . Hence,

E[Cn] =
n−1

∑
i=1

E[c(i,i+1)] =
n−1

∑
i=1

n − 1

n − i
= (n − 1)

n−1

∑
i=1

1

i
= (n − 1)Hn−1.

(b) From part (b) of Lemma 8, n
n−i+1 ≤ E[c(i,i+1)] ≤ n

n−i and c1,2 = 1. Hence,

n−1

∑
i=1

n

n − i + 1
≤ E[Cn] ≤

n−1

∑
i=1

n

n − i
.

We know that
n−1

∑
i=1

n

n − i + 1
= n

n

∑
i=2

1

i
= n(

n

∑
i=1

1

i
− 1) = nHn − n,

and
n−1

∑
i=1

n

n − i
=

n−1

∑
i=1

n

i
= n

n

∑
i=1

1

i
−

n

n
= nHn − 1.

Since Hn = Θ(logn), we know that the expected cover time is Θ(n logn).

26

Chapter 6

Conclusion

In here, we just state our conclusion in this paper.

In this paper we have answered two open questions in [5, 1], i.e. we prove that (1)

Magnus can visit the maximum number of positions in O(n) rounds; (2) Derek can find

an optimal strategy in O(n3) with Magnus’ moves revealed in advance.

Number of rounds to visit maximum number of positions

Nedev and Muthukrishnan[5] O(n2)

Hurkens et. al. [1] O(n logn)

This paper O(n)

Table 6.1: Table of results.

Moreover, we prove that Magnus always has full advantage with Derek’s moves re-

vealed in advance. We also proved that all positions will be visited in O(logn) rounds

when both players play randomly. Several other questions raised in [5] remain open.

27

Bibliography

[1] R. Pendavingh C. Hurkens and G. Woeginger. Magnus-derek game revisited. Infor-

mation Processing Letters, 109:38–40, 2008.

[2] S. Jukna. Extremal combinatorics with applications in computer science. Springer-

Verlag Berlin Heidelberg, 2001.

[3] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms

and probabilistic analysis. Cambridge University Press, 2005.

[4] Z. Nedev. Universal set and the vector game. INTEGERS: Electronic Journal of

Combinatorial number theory, 8, 2008.

[5] Z. Nedev and S. Muthukrishnan. The magnus–derek game. Theoretical Computer

Science, 393:124–132, 2008.

28

	封面
	thesis_jjlin

