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在未標號圖形資料中高效率的圖形探勘演算法 

研究生：李銘              指導教授：李素瑛 

國立交通大學資訊科學與工程研究所 

 

摘要 

 

近年來頻繁樣式探勘由頻繁項目集探勘及循序樣式探勘逐漸發展至探勘更

具結構性之資料，例如樹、絡及圖形等資料。圖形可用於表示許多複雜的資料及

資料間的關係，因此被廣泛應用於許多領域，如化學資訊學、生物資訊學及網路

探索等等。由於圖形資料的高複雜度，其子圖的個數呈指數成長，如何有效率的

探勘大型圖形樣式是一項重大的挑戰。在過去十年間，發展出了許多圖形探勘演

算法，我們研究目前已知最好的演算法 gSpan ，希望能更進一步改善其效率。

gSpan 採用 right-most 延伸法來產生候選圖形，與傳統方法比較，其產生之重

覆的候選圖形數目顯著減少。但由於 right-most 延伸法原本是用於有根樹的探

勘演算法，以此為基礎用於圖形探勘，仍會產生許多重覆的候選圖形。此情況造

成 gSpan 的效能降低，尤其在針對標記種類較少、或甚至未標號的圖形做處理

時，效能的降低更為顯著。因此我們修正此延伸法以進一步減少候選圖形個數，

並將之用於未標號圖形資料中。我們對合成資料以及實際之化學化合資料進行實

驗，驗證了所提演算法之正確性，並且有效的減少了候選圖形的個數。 
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An Efficient Algorithm for Mining Frequent Unlabeled Graphs 
 

Student: Ming Lee                          Advisor: Suh-Yin Lee 
 

Institute of Computer Science and Information Engineering 
National Chiao-Tung University 

 

Abstract 

 

In recent years, academic research on pattern discovery progressed from mining 

frequent itemsets and sequences to mining structured patterns including trees, lattices, 

and graphs. Among them, graphs serve as a general model to represent data and have 

consequently been widely and extensively used in many domains like 

cheminformatics, bioinformatics, web exploration, etc. However, mining large graph 

patterns effectively and efficiently is challenging due to the presence of an 

exponential number of frequent subgraphs and the complexity of graph data. In 

response to the dilemma, several graph miners, such as gSpan, have been published in 

the last decade and all of these newly developed graph miners work on undirected 

labeled simple graph. By examining the state-of-the-art pattern growth algorithm 

gSpan, which uses a right-most extension method, we learn that it dramatically 

reduces the number of candidate graphs, compared with traditional join method. 

Nevertheless, right-most extension was designed originally for rooted trees. It still 
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generates many duplicate graphs when being applied to a free graph. This problem 

causes remarkable performance degradation when the graphs are denser and with 

fewer labels available, especially when the graphs are unlabeled. We propose a 

modified extension method to further decrease the number of duplicate graphs, and 

apply it to unlabeled graph datasets, hoping to make gSpan an even better miner than 

it already is. We present the results on mining both synthetic datasets and a chemical 

compound dataset. 
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Chapter 1 

Introduction 

 

Over the past few decades, frequent pattern mining has been an active and 

prevalent research topic in data mining with many techniques. These techniques were 

developed for the purpose of mining association rules [1], frequent itemsets [6, 7, 13, 

27], sequential patterns [2, 17, 19], trees [3, 26], as well as graphs [10, 14, 15, 16, 28, 

30]. 

Among all these data types, graphs, as a general data structure, can be used to 

model more complicated relations among data. For instance, the chemical structure of 

a given chemical compound can be modeled by an undirected labeled graph in which 

each vertex corresponds to an atom and each edge corresponds to a chemical bond 

between atoms. In electronic transactions, the vertices of graphs represent the account 

owners and the edges of graphs indicate the occurrence of payments. Fig.1-1 shows a 

sample set of chemical structures and their related graphs. Graphs have been used in 

chemical informatics [4, 5, 22, 23], computer vision [25], video indexing [20], 

machine learning [14], and text retrieval [12], etc.  

The frequent subgraph mining problem is to find frequent subgraphs over a 

collection of graphs. It is to discover all the subgraphs whose occurrence frequency is 
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no less than a user-specified threshold. 

 

 

Fig. 1-1: A sample graph data set of chemical structures. 

 

The kernel of frequent subgraph mining lies in the subgraph isomorphism test. A 

number of isomorphism test algorithms were developed in the past three decades, 

such as Backtracking proposed by J. R. Ullmann[24] and Nauty proposed by B. D. 

McKay [18]. They solve the graph isomorphism problem by calculating the canonical 

labels [35] of graphs. The canonical label is one of the most generic and important 

graph invariants. The Nauty algorithm is known to be one of the fastest algorithm for 

graph isomorphism. We adopted this algorithm for the isomorphism test. However, the 
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isomorphism problem of a general graph has been proved to be NP-complete [31]. 

Therefore, no polynomial algorithm is able to solve it. The time-consuming process of 

the isomorphism test leads to the fact that the candidate test cannot be done with ease. 

Early implementations of graph miner generate huge candidate set which contains a 

large number of duplicate graphs. For each candidate graph, lots of isomorphism tests 

need to be performed to determine whether it is a duplicate graph. As a result, testing 

of false candidates degrades the performance to a certain degree. 

    Recently, Yan and Han [28] proposed a pattern growth based graph pattern 

mining algorithm, gSpan, which was inspired by PrefixSpan [19], TreeMinerV [26], 

and FREQT [3]. gSpan adopts a canonical labeling system, i.e. DFS (depth-first 

search) lexicographic order. Each graph is assigned a unique minimum DFS code. In 

the mining process, a graph is a duplicate if and only if its DFS code is not minimum. 

gSpan detects duplicate graphs by calculating their minimum DFS codes. gSpan also 

adopts a right-most extension strategy, which generates fewer candidate graphs. The 

right-most extension grows a graph pattern by adding a new edge to the vertices on 

the right-most path, but not to an arbitrary vertex. A right-most path of a graph is the 

path from the first vertex to the latest added vertex. Fig. 1-2 shows a result of 

extending g which adds new edges to arbitrary positions. Fig. 1-3 shows all the 

potential right-most extensions of a given graph g. The darkened edges indicate the 
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right-most path of g. The dotted line show the new edges added to g. In this example, 

the number of candidate graphs is decreased from eleven to four. Consequently, a 

huge number of isomorphism tests are avoided. As a result, the storage cost is reduced 

and the performance is improved significantly. However, gSpan generates some 

duplicate graphs since the right-most extension method is originally used for rooted 

tree mining. For example, Fig.1-4 shows three isomorphic graphs. In the mining 

process of gSpan, all of these three graphs will be generated, but two of them will be 

discarded after the candidate tests. These two discarded graphs turn out to be a waste 

of computing time and storage space. This problem causes remarkable performance 

degradation when gSpan deals with large and complex graphs (denser graphs with 

fewer labels available), especially when deals with unlabeled graphs. 

 

 

Fig. 1-2: Free extension. 
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Fig. 1-3 Right-most extension 

 

 

Fig. 1-4: Three isomorphic graphs. 

 

In mining the rooted tree, the right-most extension method does not generate any 

duplicate while in mining the free graph, it does. Therefore, in Fig. 1-3, we can see 

one isomorphic duplicate, the result of mining the free graph. We modify the 
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right-most extension method to make it more suitable for general graphs, which 

prevents some duplicate graphs from generating. We apply this method to unlabeled 

graph datasets to evaluate the percentage of decreased duplicate graphs. 

The rest of this thesis is organized as follows. Chapter 2 focuses on related works. 

Chapter 3 provides the details of problem definitions. Chapter 4 introduces the 

algorithm of gSpan and formulates our graph mining algorithm. Chapter 5 gives the 

experimental results. Chapter 6 summarizes the entire work and proposes the future 

prospect. 
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Chapter 2 

Related Works 

 

Recent studies have developed several graph-based data mining methods. The 

pioneering work appeared in around 1994, when Holder et al. [14] proposed 

SUBDUE to carry out approximate subgraph pattern discovery based on minimum 

description length and background knowledge. Since SUBDUE uses a 

computationally-constrained beam search, it cannot discover the complete set of 

frequent patterns. The first system to try complete search for the wider class of 

frequent subgraph named WARMR was later proposed by Dehaspe et al. [32] in 1998. 

It applied inductive logic programming to the prediction of chemical carcinogenicity 

by mining subgraphs. Besides these studies, recent approaches of graph-based data 

mining can be categorized into two groups, an Apriori-based approach and a 

pattern-growth approach. In the following a brief recount of these approaches will be 

introduced. 

 

2.1 The Apriori-based Approach 

 

Algorithms in this category use a level-wise search scheme like Apriori. The 
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search starts with graphs of small size, and proceeds in a bottom-up manner. At each 

iteration, the size of subgraphs is increased by one. These new subgraphs are first 

generated by joining two similar frequent subgraphs that were discovered already. 

Afterwards, the occurrence of the new graphs is checked. Typical Apriori-based 

frequent subgraph mining algorithms include AGM by Inokuchi et al. [15], and FSG 

by Kuramochi and Karypis [16].  

AGM (Apriori-based Graph Mining) adopts a vertex-based candidate generation 

strategy that increases the subgraph size by one vertex at each iteration. Two size-k 

frequent graphs are joined only when the two graphs have the same size-(k-1) 

subgraph. Fig. 2-1 shows the two subgraphs joined by two paths. AGM actually forms 

two candidates because it is impossible to determine whether there is an edge 

connecting the additional two vertices before the generation. 

 

 

Fig. 2-1: AGM: Two graphs generated by joining two paths. 
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FSG (Frequent SubGraph discovery) uses an edge-based candidate generation 

method that extends the subgraph by one edge at each iteration. Two size-k graphs are 

joined if and only if they share the same subgraph having k-1 edges. An example of 

the candidate generation of FSG is shown in Fig. 2-2. 

 

 

Fig. 2-2: FSG: Two graphs and their potential candidates. 

 

Comparatively speaking, AGM finds all frequent induced subgraphs in a graph 

database while FSG finds all frequent connected subgraphs in a graph database. These 

two pioneering Apriori-based frequent subgraph mining algorithms at the time when 

they were proposed, however, both bear three problems, which are later modified and 

fixed by newer and better ways. These problems include:  (1) Huge candidate 

generation. (2) Multiple scans of database. (3) Difficulties in mining long patterns. 

Fortunately, non-Apriori-based algorithms have been developed; most adopt the 
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pattern-growth strategy to avoid these problems. 

 

2.2 The Pattern-growth Approach  

 

    Pattern-growth-based graph mining algorithms include gSpan by Yan and Han. 

[29], MoFa by Borgelt et al. [33], FFSM by J. Huan et al. [34], and Gaston by Nijssen 

et al. [30] These algorithms are inspired by the sequence mining algorithm, 

PrefixSpan [19], and the tree mining algorithms, TreeMinerV [26], FREQT [3]. All of 

them use a depth-first search for finding candidate frequent subgraphs.  

    The pattern-growth-based mining algorithms extend a frequent graph by adding a 

new edge in every possible position. A problem with the edge extension is that the 

same graph can be discovered many times.  

 MoFa (Molecule Fragment Miner) uses an embedding list to store the 

information of vertices and the information of edges. Extension is restricted to those 

graphs, which actually appear in the database. Isomorphism tests in the database can 

cheaply be done by testing whether an embedding can be refined in the same way. 

MoFa uses a graph local-numbering scheme to reduce the number of candidates 

generated from a graph. MoFa sorts the vertices of a graph according to the sequence 

in which they have been added. When a graph is extended at vertex v, later extension 
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may only occur at v or at vertices bigger than v. Moreover, all extensions that grow 

from the same vertex v are ordered according to increasing vertex and edge labels. 

Although this local ordering helps, MoFa still generates many isomorphic graphs and 

then uses standard isomorphism testing to prune duplicates. 

 gSpan (graph-based Substructure pattern mining) uses a canonical representation 

for graphs, called DFS code. A DFS traversal of a graph defines an order in which the 

edges are visited. The concatenation of edge representations in that order is the 

graph’s DFS code. Candidate generation is restricted by gSpan with the following rule: 

graphs can only be extended at vertices that lie on the rightmost path. This restriction 

reduces the generation of isomorphic candidates, but it cannot fully prevent duplicates 

from generating. Therefore, gSpan computes the canonical DFS-code for each graph. 

Graphs with non-minimum DFS code can be pruned. Since instead of embeddings, 

gSpan only stores appearance lists for each graph, subgraph isomorphism testing must 

be done on all graphs in these appearance lists. 

 FFSM (Fast Fragment Subgraph Mining) represents graphs as triangle matrices 

(vertex labels on the diagonal, edge labels on the other positions). The matrix code is 

the concatenation of all its entries, left to right and row by row. Based on 

lexicographic ordering, isomorphic graphs have the same canonical code, CAM 

(Canonical Adjacency Matrix). FFSM joins two matrices of graphs to generate 
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candidates. The extension has a restriction: a new edge-vertex pair can only be added 

to the last vertex of a CAM. After candidate generation, FFSM permutes matrix line 

to check whether a generated matrix is canonical. If not, it can be pruned. FFSM 

stores embeddings to avoid explicit subgraph isomorphism testing. However, FFSM 

only stores the matching vertices, edges are ignored. This helps speeding up the 

extension operations since the embedding lists of new graphs can be calculated by set 

operations on the vertices. 

 Gaston (Graph/sequence/tree extraction) considers graphs that are paths or trees 

first, and by only proceeding to general graphs with cycles at the end, a large fraction 

of the work can be done efficiently, since there are efficient ways to enumerate paths 

and trees. Only in the last phase, Gaston faces the NP-completeness of the subgraph 

isomorphism problem. Gaston defines a global order on cycle-closing edges and only 

generates those cycles that are larger than the last one. A graph isomorphism test is 

then performed on those general graphs with cycles for finding duplicates. 

 A comparison among these four algorithms of both runtime and memory usage 

has been done by M. Worlein et al. [38]. The comparison results are shown in Fig. 2-3 

and Fig. 2-4. Considering both the runtime and the memory usage, gSpan has the best 

performance. Therefore, we focus our research on improving gSpan.  
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Fig. 2-3: Runtime of the four algorithms. [38] 

 

 

Fig. 2-4: Memory usage of the four algorithms. [38]
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Chapter 3 

Problem Definitions 

 

In this chapter, some basic background knowledge with respect to graphs will be 

described. And then the frequent subgraph mining problem will be defined.  

 

Definition 1 (Labeled Graph) A labeled graph can be represented by a six-tuple,   
G = (V, E, L, lv, le ), where  
 
V is a set of vertices, 
E ⊆ V × V is a set of edges, 
L is a set of labels, 
lv : V → L, l is a function assigning labels to the vertices, 
le : E → L, l is a function assigning labels to the edges. 
 
 In the rest of this thesis, we denote the sets and the functions corresponding to a 
graph g as Vg, Eg, Lg, lvg,and leg. Fig. 3-1 shows an example of a labeled graph g. In 
this example, lvg(v0) = b, lvg(v1) = a, lvg(v2) = b, leg(v0, v1) = x, leg(v0, v2) = y, and   
leg(v1, v2) = x. 
 

 

Fig. 3-1: A labeled graph 
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Definition 2 (Subgraph) Given a pair of labeled graphs G = (V, E, L, lv, le) and G’ = 
(V’, E’, L’, lv’, le’), G is a subgraph of G’ if and only if  
 
V ⊆ V’, 
∀ u ∈ V, lv(u) = l’v(u),  
E ⊆ E’, 
∀(u,v) ∈ E, le(u,v) = l’e(u,v). 
 
Definition 3 (Isomorphism) A labeled graph G = (V, E, L, lv, le) is isomorphic to 
another graph G’ = (V’, E’, L’, lv’, le’) if and only if there exists a bijective function  
f : V → V’, such that  
 
∀ u ∈ V, lv(u) = lv’(f(u)), 
∀ u,v ∈ V, (u,v) ∈ E ⇔ (f(u),f(v)) ∈ E’, and le(u,v) = le’(f(u),f(v)). 
 
Definition 4 (Subgraph isomorphism) A labeled graph G = (V, E, L, lv, le) is 
subgraph isomorphic to another graph G’ = (V’, E’, L’, lv’, le’) if and only if there 
exists an injection f : V → V’, such that 
 
∀ u ∈ V, f(u) ∈ V’ and lv(u) = lv’(f(u)), 
∀ u,v ∈ V, if (u,v)∈ E ⇒ (f(u),f(v)) ∈ E’, and le(u,v) = le’(f(u),f(v)). 
 

 In other words, a subgraph isomorphism from G to G’ is an isomorphism from G 

to H, which is a subgraph of G’. 

 
Definition 5 (Frequent Subgraph Mining) Given a graph dataset, GD, and a 
threshold min_sup, the support of graph G, denoted by supG is defined as cardinality 
of graphs in GD to which G is subgraph isomorphic. 
 
supG = | {G’| G’∈GD, G is subgraph isomorphic to G’} |. 
 
G is frequent if and only if supG ≥ min_sup. The frequent subgraph mining problem 
is to find every frequent graph in GD. 
 

An example of subgraph isomorphism is presented in Fig. 3-2. Graph P has four 
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vertices p1, p2, p3, and p4. Graph Q has three vertices q1, q2, and q3. The mapping     

f: q1→p3, q2→p1, q3→p2 represents a subgraph isomorphism from Q to P. Note that 

the support of Q in GD = {P} is 1, even though there are four subgraph isomorphism 

from Q to P. 

 

 
Fig. 3-2: An example of subgraph isomorphism. 

 Fig. 3-3 shows a sample graph data set, and some subgraphs with their supports. 

In these subgraphs, g1, g2, g3, and g4 are frequent if the minimum support is 2. 

 

Fig. 3-3: An example of the supports of graphs
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Chapter 4 

The Graph Mining Algorithm 

 

    The discovery of frequent subgraphs usually consists of two steps. In the first 

step, we generate frequent subgraph candidates. The frequency of each candidate is 

checked in the second step. Therefore, the core of any frequent subgraph mining 

algorithm are two computationally challenging problem: (1) subgraph isomorphism: 

determine whether a given graph occurs in another graph; and (2) efficient 

enumeration of all frequent subgraphs. gSpan introduces two techniques to solve these 

problems: The DFS lexicographic ordering and the right-most extension. In this 

chapter, we will introduce the general frequent subgraph mining process, and then 

describe the procedure of gSpan and those techniques of gSapn. Finally, we will 

formulate our proposed graph mining algorithm. 

    The general framework of a naïve frequent graph mining algorithm is outlined in 

Fig. 4-1. We refer to this algorithm as NaïveGraph. In the mining process, a graph g 

can be extended by adding a new edge e. Let the new graph denoted by g ◊ e. Edge e 

may or may not introduce a new vertex to g. For each discovered graph g, it performs 

the extension recursively until all the frequent graphs with g embedded are discovered. 

Line 4 in Algorithm 1 shows the termination condition: When the support of a graph 
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is less than min_sup, it is unnecessary to extend it any more.  

 

 

Fig. 4-1: A naïve graph mining algorithm. [29] 

 

NaïveGraph is simple, but not efficient. The key issue is the inefficiency of 

extending g to g ◊ e. The same graph can be extended in different ways. For instance, 

an n-edge graph may have n different ways to be formed from n different (n-1)-edge 

graphs if we do not consider isomorphism. As a result, there may be n-1 duplicate 

graphs. Fig. 4-2 shows a graph g and four different ways to generate it. Line 1 in 

Algorithm 1 gets rid of duplicate graphs. The number of duplicate graphs may be huge. 

It raises some severe problems. First, the generation and support computation of 

duplicate graphs waste time. Second, it is nontrivial to tell whether a graph is a 

duplicate. Third, should we extend g if we find g a duplicate? If there exists at least one 

graph that can grow only from this duplicate graph, we still need to extent it. As we can 
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see, these three problems affect the efficiency of the algorithm. gSpan overcomes these 

problems by using two techniques: (1) the DFS lexicographic ordering; and (2) the 

right-most extension. It has the following salient properties: (1) it reduces the 

generation of duplicate graphs; (2) it does not need to search previous discovered 

frequent graphs in order to detect duplicates; and (3) it never extends any duplicate 

graph but still guarantees the completeness.  

 

Fig. 4-2: Four different ways to generate g 

In the following two sections, we focus on the background knowledge of the DFS 

code tree. It includes the two major techniques used in gSpan. 

 

4.1 Lexicographic Ordering 

 

    This section introduces several techniques developed to represent and extend 

graphs efficiently. These techniques include mapping a graph to a DFS code, building 
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a lexicographic ordering among these codes, and mining DFS codes based on this 

lexicographic order. 

 

4.1.1 DFS Subscripting 

 

    When performing a depth-first search in a graph, a corresponding DFS tree can 

be constructed. Fig. 4-3 shows a graph and three different DFS trees of it. The graph 

has four vertices with labels x, x, y, z and four edges with labels a, a, b, b. The 

subgraphs with darkened edges in Fig. 4-3(b)-(d) show the DFS trees. For a given 

graph, there are many ways to construct different DFS trees by selecting different 

starting points and different growing edges. When building a DFS tree for a graph G, 

the depth-first discovery of the vertices forms a linear order. If there are n vertices in 

G, each vertex is assigned a subscript from 0 to n-1 according to the discovery order. 

i.e.  v0, v1, v2,..., vn-1. v0 is called the root and vn-1 is called the right-most vertex. The 

straight path from the root to the right-most vertex is named the right-most path. In 

Fig. 4-3(b)-(d), three different subscriptings are generated for the graph in Fig. 4-3(a). 

The right-most path is (v0, v1, v3) in Fig 4-3(b) and (c), and (v0, v1, v2, v3) in Fig. 4-3(d). 

Incidentally, the darkened edges are forward edges while the undarkened ones are 

backward edges. From now on, (i, j) represents an edge from vi to vj. If i < j, it is a 
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forward edge; otherwise, a backward edge. The forward edges of vi means the forward 

edges started from vi. The backward edges of vi means the backward edges started 

from vi. 

 

 

Fig. 4-3: DFS subscripting. [29] 

 

4.1.2 DFS Code 

 

    Since there may be different DFS subscriptings for the same graph, gSpan wants 

to select one from them as base subscripting. For this purpose, gSpan maps each 

subscripted graph into an edge sequence. Afterwards, it builds an order among these 

sequences and selects the subscripting that generates the minimum sequence as its 

base subscripting. There are two kinds of orders in this process: (1) edge order, which 

maps edges in a subscripted graph into a sequence; and (2) sequence order, which 

builds the order among sequences. In the following these two orders will be 
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introduced. 

    The DFS tree has defined the discovery order of forward edges. For the graph 

shown in Fig. 4-3(b), the forward edges are discovered in the order (0, 1), (1, 2),    

(1, 3). Now consider the backward edges, for a given vertex v, all of its backward 

edges should appear just before its forward edges. And its backward edges should 

appear just after the forward edge where v is the second vertex. For vertex v2 in 

Fig.4-3(b), its backward edge (2, 0) should appear just after (1, 2). Among the 

backward edges from the same vertex, gSpan enforces an order: Given vi and its two 

backward edges, (i, j1), and (i, j2), if j1 < j2, then edge (i, j1) will appear before edge   

(i, j2). The ordering of the edges in a graph is now completed. Based on this order, a 

graph can be translated into a sequence. A complete sequence for Fig. 4-3(b) is (0, 1), 

(1, 2), (2, 0), (1, 3). 

    gSpan represents an edge by a 5-tuple, ( i, j, l(i), l(i, j), l(j) ), where l(i) and l(j) 

are the labels of vi and vj respectively and l(i, j) is the label of the edge (vi, vj). For 

example, (v0, v1) in Fig. 4-3(b) is represented by (0, 1, X, a, X). For two edges e1 = ( i1, 

j1, l(i1), l(i1,j1), l(j1)), and e2 = ( i2, j2, l(i2), l(i2,j2), l(j2)), gSpan defines a linear 

order, <T, in R5. e1 <T e2 holds if one of the following statements is true: 

(1)  e1 and e2 are forward edges, and j1 < j2 or ( (j1 = j2) ∧ (i1 > i2) ). 
(2)  e1 and e2 are backward edges, and i1 < i2 or ( (i1 = i2) ∧ ( j1 < j2) ). 
(3)  e1 is backward edge and e2 is forward edge, and i1 < j2. 
(4)  e1 is forward edge and e2 is backward edge, and j1 ≤ i2. 
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(5)  i1 = i2, and j1 = j2 , and li1 < li2 or  
                      li1 = li2 and l(i1,j1) < l(i2,j2) or 
                      l(i1,j1) = l(i1,j1) and lj1 < lj2. 
 

Note that in (1), when j1 = j2, it is i1 > i2. In (5), the two edges have the same 

discovery order, so the labels are considered. Fig. 4-4 shows a graph g, and four ways 

to extend g. These extensions add edge (2, 0), (2, 3), (1, 3), and (0, 3) to g respectively. 

Therefore the order between these edges will be (2, 0) <T (2, 3) <T (1, 3) <T (0, 3). 

 

 

Fig. 4-4: An example of edge order. 

 
Definition 5 (The DFS code) Given a DFS tree T for a graph G, an edge sequence 
(e0, e1, e2,…, e|E|) can be constructed based on <T, such that ei <T ei+1, where i = 
0,…,|E|-1. (e0, e1, e2,…, e|E|) is called a DFS code, denoted as code(G,T). 
 

Table 4-1 shows three different DFS codes γ0, γ1, and γ2, which are generated by 

DFS subscriptings in Fig. 4-3(b)-(d). We can see that, for the same graph, different 
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DFS trees generate different DFS codes. It is a one-to-one mapping between a 

subscripted graph and a DFS code. Thus, we can treat a subscripted graph and its DFS 

code as the same. All the notations on subscripted graphs can also be applied to DFS 

codes. For instance, for a given DFS code α, we can use α ◊ e to represent a possible 

extension of α. The graph represented by a DFS code α is written as gα. 

 

Table 4-1: DFS codes for the graphs in Fig. 4-3(b)-(d). [29] 

 

 

4.1.3 DFS Lexicographic Order 

 

 gSpan wants to build an order among the DFS codes generated for a graph so 

that a minimum DFS code can be defined for this graph. The edge order can be 

extended to a sequence order, which is a linear order on DFS codes. The formal 

definition of DFS code order is given as follows. 
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Definition 6 (DFS Lexicographic Order) Given a graph dataset GD, suppose Z = 
{code(G, T) | G∈GD, T is a DFS subscripting of G }, i.e., Z is a set containing all 
DFS codes of all graphs. DFS Lexicographic Order is a linear order defined as 
follows.  
If α = code(Gα, Tα) = (a0, a1,…, am) and β = code(Gβ, Tβ) = (b0, b1,…, bn), α, β ∈ Z, 
then α < β if and only if either of the following is true. 
 
  (1) ∃t, 0 ≤ t ≤ min{m, n},∀k < t, ak = bk, and at <T bt. 
  (2) ∀k, 0 ≤ k ≤ m , ak =bk, and m ≤ n. 

 

Definition 7 (Minimum DFS Code) Given a graph G, C(G) = {code(G,T) | ∀T, T is 
a DFS tree for G}, based on DFS lexicographic order, the minimum one, min(C(G)), 
is called Minimum DFS Code of G.  
 

According to DFS lexicographic order, we can compare the three DFS codes 

listed in Table 4-1. Code γ0 is less than code γ1, which is less than code γ2. Moreover, 

γ0 is the minimum DFS code of the graph in Fig. 4-3(a). Minimum DFS code can be 

considered as canonical label. 

 

Definition 8 (DFS Code Tree)  In a DFS code tree, each vertex represents a DFS 
code, the relation between siblings is consistent with the DFS lexicographic order. 
That is, the pre-order search of DFs code tree follows the DFS lexicographic order. 
 

 DFS code and vertex in the DFS code tree are equivalent in the sense that one 

can be derived from the other. Any valid DFS code has a unique corresponding vertex 

in the DFS code tree, and any vertex in the DFS code tree contains a valid DFS code. 

Some of the vertices contain a minimum DFS code while others do not. 
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4.2 Right-Most Extension 

 

    In Algorithm 1, NaïveGraph requires extending g in any possible position, 

which will result in a huge number of duplicate graphs. gSpan adopts a more clever 

way to extend graphs. The extension is restricted as follows: Given g and a DFS tree 

T in g, e can be extended from the right-most vertex connecting to any other vertices 

on the right-most path (backward extension); or e can be extended from vertices on 

the right-most path and introduce a new vertex (forward extension). The extension 

under these restrictions is named right-most extension, and it is denoted by g ◊r e, 

where r indicates that the extension is a right-most extension. For instance, Fig. 4-5 

shows all the potential right-most extensions of the graph of Fig.4-3(b). The darkened 

edges show the right-most path. The dotted edges are the new edges extended and the 

dotted vertices are the new vertices added. For simplicity, we omit labels here. The 

backward extension candidates can be (v3, v0). The forward extension candidates can 

be edges extending from v3, v1, or v0 with a new vertex introduced. 
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Fig. 4-5: The graphs extended from the graph in Fig.4-3(b). 

 

    Since a graph may have different DFS subscriptings, the right-most extension 

may generate many duplicate graphs if we need to extend all the subscriptings. The 

following theorem shows that we only need to conduct the right-most extension on the 

base subscripting. 

 
Theorem 1 (Completeness) Performing right-most extension in NaïveGraph 
guarantees the completeness of the mining result. Furthermore, performing only the 
right-most extension on the minimum DFS codes guarantees the completeness of the 
mining result. 
 

    When performing the right-most extension in NaïveGraph, it is possible that a 

DFS code α is minimum, but α ◊r e is not. For instance, Fig. 4-6 shows a graph g with 

a minimum DFS code, but one extension of g is not minimum. In this case, we do not 

need to conduct the right-most extension on this non-minimum DFS code. 
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Fig. 4-6 An example of non-minimum DFS code 

 

4.3 gSpan  

 

 In this section, we formulate the algorithm of gSpan based on the DFS 

lexicographic order and the right-most extension. gSpan uses a sparse adjacency list 

representation to store graphs. The procedure of gSpan can be illustrated with a DFS 

code tree. The mining process is equivalent to a pre-order traversal of the DFS code 

tree, which enumerates all frequent subgraphs of a graph database. The pre-order 

search of DFS code tree follows the DFS lexicographic order. Fig. 4-7 shows an 

example of the search space of gSapn, where each vertex of the tree represents a DFS 

code and each link of the tree represents a possible right-most extension. Fig. 4-8 

shows the pseudo code of the framework. 
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Fig. 4-7: A DFS code tree. 

 

 

Fig. 4-8: The pseudo code of gSpan. [28] 

 

    The difference between gSpan and NaïveGraph is the right-most extension and 

the termination on non-minimum DFS codes(Algorithm 2 line 1). gSpan replaces the 
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existence judgement in Algorithm 1 Line 1 by checking whether s is minimum. 

Actually, the checking is more efficient to calculate. It prunes all DFS codes which 

are not minimum. It significantly reduces unnecessary computation on duplicate 

subgraphs and their descendants. Fig. 4-9 outlines an algorithm for checking whether 

s is minimum. Fig. 4-10 shows the search space of gSpan, If we find two DFS codes s 

and s’ representing the same graph and s < s’, by Theorem 1, we can completely stop 

searching any descendant of s’. 

 

 

Fig. 4-9: The function isMinimum. 
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Fig. 4-10: The search space of gSpan. [28] 

 

4.4 The Proposed Enumeration Method 

 

 Given a graph g with n vertices, v0, v1,…, vn, assume the length of its right-most 

path is k. The right-most path of g can be represented by a sequence of (k+1) vertices 

which starts from v0 and ends at vn. For the sake of simplicity, we denote the vertices 

of the right-most path as r0, r1, …, rk. When performing right-most extension on g, we 

denote the backward extensions as g ◊b0 e, g ◊b1 e, …, g ◊b(k-2) e , where g ◊bi e means 

a backward extension of g which adds a backward edge (rk, ri). Similarly, we denote 

the forward extension as g ◊f1 e, g ◊f2 e, …, g ◊fk e,where g ◊fi e means a forward 

extension of g which adds a new edge (ri, vn+1) to ri,. Fig. 4-11 shows an example of a 
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graph g and the corresponding extensions. The right-most path of g is (r0 , r1, r2, r3). 

 

Fig. 4-11: A right-most extension. 

    There are two duplicate graphs in Fig. 4-11, g ◊f1 e and g ◊f0 e . In this case, the 

two extensions are redundant. We want to shrink the search space by removing some 

redundant extensions from the right-most extension. We propose an additional 

restriction to the right-most extension. In the following section we will introduce this 

modified extension. 

 For a given graph g with a right-most path (r0, r1, …, rk), in the forward 

extensions, the operations  ◊f0, ◊f1, …, ◊fk/2 are redundant, that is, graphs generated 

by these operations are duplicate. For instance, in Fig. 4-11, f0 and f1 are not necessary. 

The backward extensions remain unchanged. In order to prove the completeness of 

this modified right-most extension, we propose the following theorem. 
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Conjecture (Symmetry of Graph) Given a graph g, along its right-most path (r0, 
r1, …, rk), we can find a graph g’, which is symmetric to g with respect to the center of 
its right-most path. 

 

 According to this conjecture, for every graph g, there exists a graph g’, such that    

g ◊f0 e = g’ ◊fk e. Thus, we can discard the operation f0 and still guarantee the 

completeness of the mining result. For the same reason, we can remove all the 

operation fi, i=0,1,…,k/2 from the right-most extension. 

 By replacing the right-most extension of gSpan with this modified right-most 

extension, the number of candidates is further decreased. I  
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Chapter 5 

Experimental Results 

 Since the complexity of graph mining is higher when mines unlabeled graph 

datasets, we conduct a performance study on unlabeled datasets. On both synthetic 

and real world datasets, the experiments are performed. We use a synthetic data 

generator provided by Kuramochi and Karypis[16]. The real data set we tested is a 

chemical compound dataset with the labels removed. All experiments are done on a 

3.0GHz Intel Pentium D PC with 2GB memory, running Windows XP system. Our 

performance tests show that the number of candidates generated by our algorithm is 

about 10% less than that generated by gSpan. 

We use the data generator provided by Kuramochi. The parameter description of 

the data generator is shown in Table 5-1. The synthetic datasets are generated using a 

similar procedure described in [1]. Kuramochi et al. applied a simplified procedure in 

their graph data synthesis. The details about how to generate the datasets were 

described in [16]. The generator generates |D| graphs. The size of each graph is a 

Poisson random variable whose mean is equal to |T|. In our experiments, some 

parameters of the data generator are fixed value: |T|=10, |I|=6, and |S|=200. Since the 

datasets are unlabeled graph datasets, which is equivalent to 1-labeled graph datasets, 

we set |LE| = |LV| = 1.  
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Table 5-1: Synthetic dataset parameters 

 

   

 We test the performance of our algorithm on a synthetic dataset with |D| = 10k. 

Fig. 5-1 shows the number of candidates generated by our proposed algorithm and 

gSpan with different minimum supports.  
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Fig. 5-1: Number of candidates (synthetic dataset). 

 

 The chemical compound dataset is the same one used in [16,28], This was 

originally provided for the Predictive Toxicology Evaluation Challenge [36], which 

contains information on 340 chemical compounds. We set all the labels to a same 

label to transform this dataset to a unlabeled dataset. There are 340 graphs in total. 

The average graph size is 27.4 in terms of the number of edges and 27.0 in terms of 

the number of vertices. There are 26 graphs that have more than 50 edges and vertices. 

The largest graph contains 214 edges and 214 vertices. We test the performance on 

this chemical compound dataset. Fig. 5-2 illustrates the number of candidates 

generated by our algorithm and gSpan with different minimum supports. 
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Fig. 5-2: Number of candidates (chemical compound dataset). 

 

 The experimental results show that the number of candidates generated by our 

proposed algorithm is about 5%~10% less than that generated by gSpan. In our 

experiments, the mining result is correct, in other words, the completeness of our 

proposed enumeration method is fulfilled. Unfortunately, we have not completed a 

formal proof for the completeness. There is still a possibility that our proposed 

algorithm works only on some special cases. We require further research and 

experiment to ensure the completeness of our proposed enumeration method.  
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Chapter 6 

Conclusion and Future Works 

 

 In this thesis, we analyzed the state-of-the-art graph mining algorithm gSpan and 

addressed the possible inefficiencies in it. We found that when gSpan deals with large 

and complex graphs (denser graphs with fewer labels available), especially when 

deals with unlabeled graphs, the performance of gSpan degrades. Based on gSpan, we 

proposed a new graph enumeration method, which reduces the candidate generation.  

There are still some research issues of our proposed algorithm. First, we have to 

prove the completeness of our proposed algorithm. Second, there might be a better 

algorithm to calculate the minimum code when the graph is unlabeled. Third, in order 

to extend our algorithm to mine labeled graphs, we might require a new lexicographic 

order. Therefore, to develop a new lexicographic order for our proposed algorithm is a 

research issue in our future work. 
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