[g}}l B %_élj[A :_'%
BRI B2HETEMRM

|+t @ X

ERR NS I RPN Sl 5 sl RV P R R

An Efficient Algorithm for Mining Frequent Unlabeled Graphs

ﬁ/’*
AR o

S .
BERE 3EE yo

FERBE Lt A& XA

EAELRI TR P R oon g R AR B
An Efficient Algorithm for Mining Frequent Unlabeled Graphs

Y N - & Student : Ming Lee
hERE F AW Advisor : Suh-Yin Lee

Bz i~ F
EANCUS S G- R A S S
FAder#m . ®
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2010

Hsinchu, Taiwan, Republic of China

PEARAY L4 ES

B AMRELIY TR B ek o240 R 5 2

Fiiie Ry 2 AW

TERMERRSFERS BRI FHELZ BAEENEL I EIHD L
S TR GlAclt s R R E TR BT P YA F AT SRR TR 2
TALE OB o FI AR LR T F SAB et E TS A F TSR R
FTrEZ o NEFTHAFAHRR > HFBOBEL s & o ol g 225 0
T AR A - T PR il S ER O FE DL B
B APETpw e kb dFayg 802 gSpan 0 A i LB e g Hoangoo
gSpan # * right-most #f ¥ jx kA 4 FERA; BB F bk HF 4 2 £
BeniziE B8P B F R0 o fed 3t right-most 2 # 2 e A E_% 3t A FeiE

PRI g

\\\

Wig B E o vt G ARH D R FER g AAF L E R iz E R
= gSpan vkt fE L 0 A H AR RS ~ A H T ARELOR) L
PrFoodi e O R AEE o B APRE PN 2 - HRC FERA B
Tz ® P XA TR A PHESFTRUE RN ETRERS

B BT R E R 2 B REE 0 5§ sk b i3 BB ik -

An Efficient Algorithm for Mining Frequent Unlabeled Graphs
Student: Ming Lee Advisor: Suh-Yin Lee

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

In recent years, academic research on pattern discovery progressed from mining
frequent itemsets and sequences to mining structured patterns including trees, lattices,
and graphs. Among them, graphs serve as-a general model to represent data and have
consequently been widely: and extensively used” in many domains like
cheminformatics, bioinformatics, web. exploration, etc..However, mining large graph
patterns effectively and efficiently “is’ challenging due to the presence of an
exponential number of frequent subgraphs and the complexity of graph data. In
response to the dilemma, several graph miners, such as gSpan, have been published in
the last decade and all of these newly developed graph miners work on undirected
labeled simple graph. By examining the state-of-the-art pattern growth algorithm
gSpan, which uses a right-most extension method, we learn that it dramatically
reduces the number of candidate graphs, compared with traditional join method.

Nevertheless, right-most extension was designed originally for rooted trees. It still

generates many duplicate graphs when being applied to a free graph. This problem

causes remarkable performance degradation when the graphs are denser and with

fewer labels available, especially when the graphs are unlabeled. We propose a

modified extension method to further decrease the number of duplicate graphs, and

apply it to unlabeled graph datasets, hoping to make gSpan an even better miner than

it already is. We present the results on mining both synthetic datasets and a chemical

compound dataset.

2+
[

FAo RSP L BRI AR S R AP A

BMAGEH JE oy AREREREEA DT B f o r R BT 5 FE o
HooF Ak oo

BOER s nf it S tpr g UEBELITE EHEY
LA R A e L B F i BE RS BR B RS
SR ARG i BRI RN E Y B AR A R
REB RS o s R ET Ul SHRE N AIRE S B SRR B
2REP BN TES (RRMHE AT AL 2 e 2 he BT LA

3 -

Ao F iR Eend S A 4 F 4P R o
-Q),E\,';Erj'rﬁ/\ %% > ’ér_ﬁbréﬂz'ﬁ—’ﬁ \la'%j‘géfbg,ci@}\;ﬁv,\ ’:f/__lﬁfs_,—i*fé’f‘lgij-ﬁ .

WL 2 BT B et

Table of Contents

ChiINESE ADSTIACTcuiiiiciiee e i
ENGLISH ADSTFACT........oiiiiie et ne s i
ACKNOWIBAGEMENT ... et nreas v
Table OF CONTENTSocuiiiiiiee e %
I TS o) T U USSR SSPRSR vi
LIST OF TADIES ... vii
Chapter 1 INtrodUCTION.ooiiiiee et saeeae e nns 1
Chapter 2 Related WOKKS.........ooveiiiie et saa e nns 7
2.1 The Apriori-Based APProachi. i cte o e neeneee e 7

2.2 The Pattern-Growth APProach. ..o i it e 10
Chapter 3 Problem Definitions..... oo i et ittt tans et 14
Chapter 4 The Graph Mining AlgorItRM (.o 17
4.1 LexicographiC OrUer . i i s i it s b ettt 19
4.1.1 DFS SUDSCHIPUING 4. it summmuasstianseane e seeesieeeesieesteseesseessesseessesssesneees 20

4.1 2 DFS COUR.....ociiiiiiiieeeie et 21

4.1.3 DFS LexicographiC Order..........ccovieieiiienieie e 24

4.2 RIght-MOSt EXTENSIONveivieiiieieeie e 26

L 0 Y o - ST P P PPRP PPN 28

4.4 The Proposed Enumeration Methodc.ccoooveiiiiiiiiine e 31
Chapter 5 Experimental RESUILS...........ccoiieiiiieiiece e 34
Chapter 6 Conclusion and FULUFe WOIKScccevviiieiieeie e 38
BiBHOGIapNY ..o s 39

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

List of Figures

1-1 A sample graph data set of chemical StruCtUrescccooceeieieniiie s 2
1-2 Free EXEENSION ..cviiiiiiieieeet ettt 4
1-3 RIgNt-MOSt EXTENSION ...ttt et 5
1-4 Three iSOMOrPhIC GraphS.....ccooiiiieiiie e 5
2-1 AGM: Two graphs joined by two pathscccoceireieiienieese e 8
2-2 FSG: Two graphs and their potential candidates............cccccevvvieviveresieiinennnns 9
2-3 Runtime of the four algorithmsccceiiiii e 13
2-4 Memory Usage of the four algorithms..........ccccocvvveiieciccc e 13
3-1 Alabeled graphc.oooe it iereesiinms et e ee e te e sae et 14
3-2 An example of subgraph isSomorphiSMcciteiriiiieie e 16
3-3 An Example of the supports of graphs ..o i 16
4-1 A naive graph mining algorithmo i 18
4-2 Four different ways t0 gENEIAte godeiriiurereerieriesieenieseesieesee e seeenee e 19
4-3 DFS SUDSCIIPIING ..ot 21
4-4 An example Of @dge OFUEroovi e 23
4-5 The graphs extended from the graph in Fig. 4-3(D)cccooveviiiiiiniiiie 27
4-6 An example of non-minimum DFS COdeccoovvevviie i 28
4-7 A DFS COUE IR ...ttt 29
4-8 The pseudo code of gSPan [28]......ccccveeriieriiieiiese e 29
4-9 The function ISMINIMUM ..o 30
4-10 The search space of gSPaNc.ccveiieie i 31
4-11 A right-mOSt @XTENSION........cciieieiiesieeie e se e e 32
5-1 Number of candidates (synthetic dataset)ccccooerierieniinieniiie e 36
5-2 Number of candidates (chemical compound dataset)ccecvevviierennnene 37

Vi

List of Tables

Table 4-1 DFS codes for the graphs in Fig.4-3(D)-(d)ccoooveniniiiiieeeeeee

Table 5-1 Synthetic dataset parameters

vii

Chapter 1

Introduction

Over the past few decades, frequent pattern mining has been an active and
prevalent research topic in data mining with many techniques. These techniques were
developed for the purpose of mining association rules [1], frequent itemsets [6, 7, 13,
27], sequential patterns [2, 17, 19], trees [3, 26], as well as graphs [10, 14, 15, 16, 28,
30].

Among all these data types, graphs;-as a general data structure, can be used to
model more complicated relations among data. For instance, the chemical structure of
a given chemical compound can be modeled-by an undirected labeled graph in which
each vertex corresponds to an atom and each ‘edge corresponds to a chemical bond
between atoms. In electronic transactions, the vertices of graphs represent the account
owners and the edges of graphs indicate the occurrence of payments. Fig.1-1 shows a
sample set of chemical structures and their related graphs. Graphs have been used in
chemical informatics [4, 5, 22, 23], computer vision [25], video indexing [20],
machine learning [14], and text retrieval [12], etc.

The frequent subgraph mining problem is to find frequent subgraphs over a

collection of graphs. It is to discover all the subgraphs whose occurrence frequency is

no less than a user-specified threshold.

|
o

0 0 0
s—C—C—N O0—(0O)—(1)—©
g
0 0 0
c—s—c—c¢ O—0)—_()—0O)
| 0

Fig. 1-1: A sample graph data set of chemical structures.

The kernel of frequent subgraph mining lies in the subgraph isomorphism test. A
number of isomorphism test algorithms were developed in the past three decades,
such as Backtracking proposed by J. R. Ullmann[24] and Nauty proposed by B. D.
McKay [18]. They solve the graph isomorphism problem by calculating the canonical
labels [35] of graphs. The canonical label is one of the most generic and important
graph invariants. The Nauty algorithm is known to be one of the fastest algorithm for

graph isomorphism. We adopted this algorithm for the isomorphism test. However, the

isomorphism problem of a general graph has been proved to be NP-complete [31].

Therefore, no polynomial algorithm is able to solve it. The time-consuming process of

the isomorphism test leads to the fact that the candidate test cannot be done with ease.

Early implementations of graph miner generate huge candidate set which contains a

large number of duplicate graphs. For each candidate graph, lots of isomorphism tests

need to be performed to determine whether it is a duplicate graph. As a result, testing

of false candidates degrades the performance to a certain degree.

Recently, Yan and Han [28] proposed a pattern growth based graph pattern

mining algorithm, gSpan, which was inspired by PrefixSpan [19], TreeMinerV [26],

and FREQT [3]. gSpan adopts a canonical labeling system, i.e. DFS (depth-first

search) lexicographic order. Each graph is assigned a unique minimum DFS code. In

the mining process, a graph is a duplicate if and only if its DFS code is not minimum.

gSpan detects duplicate graphs by calculating their minimum DFS codes. gSpan also

adopts a right-most extension strategy, which generates fewer candidate graphs. The

right-most extension grows a graph pattern by adding a new edge to the vertices on

the right-most path, but not to an arbitrary vertex. A right-most path of a graph is the

path from the first vertex to the latest added vertex. Fig. 1-2 shows a result of

extending g which adds new edges to arbitrary positions. Fig. 1-3 shows all the

potential right-most extensions of a given graph g. The darkened edges indicate the

right-most path of g. The dotted line show the new edges added to g. In this example,
the number of candidate graphs is decreased from eleven to four. Consequently, a
huge number of isomorphism tests are avoided. As a result, the storage cost is reduced
and the performance is improved significantly. However, gSpan generates some
duplicate graphs since the right-most extension method is originally used for rooted
tree mining. For example, Fig.1-4 shows three isomorphic graphs. In the mining
process of gSpan, all of these three graphs will be generated, but two of them will be
discarded after the candidate tests. These two discarded graphs turn out to be a waste
of computing time and storage.space. This problem causes remarkable performance
degradation when gSpan deals with large and complex” graphs (denser graphs with

fewer labels available), especially when deals with unlabeled graphs.

g six possible backward five possible forward
extensions extensions

Fig. 1-2: Free extension.

\l i O
I O :
O |

-~
-

g one possible three possible forward extension
backward extension

Fig. 1-3 Right-most extension

Fig. 1-4: Three isomorphic graphs.

O—OO—0C—0©

In mining the rooted tree, the right-most extension method does not generate any

duplicate while in mining the free graph, it does. Therefore, in Fig. 1-3, we can see

one isomorphic duplicate, the result of mining the free graph. We modify the

right-most extension method to make it more suitable for general graphs, which

prevents some duplicate graphs from generating. We apply this method to unlabeled

graph datasets to evaluate the percentage of decreased duplicate graphs.

The rest of this thesis is organized as follows. Chapter 2 focuses on related works.

Chapter 3 provides the details of problem definitions. Chapter 4 introduces the

algorithm of gSpan and formulates our graph mining algorithm. Chapter 5 gives the

experimental results. Chapter 6 summarizes the entire work and proposes the future

prospect.

Chapter 2

Related Works

Recent studies have developed several graph-based data mining methods. The
pioneering work appeared in around 1994, when Holder et al. [14] proposed
SUBDUE to carry out approximate subgraph pattern discovery based on minimum
description length and background knowledge. Since SUBDUE uses a
computationally-constrained beam search, it cannot discover the complete set of
frequent patterns. The first system to try complete-search for the wider class of
frequent subgraph named WARMR was later proposed by Dehaspe et al. [32] in 1998.
It applied inductive logic programming to the prediction of chemical carcinogenicity
by mining subgraphs. Besides these studies, recent approaches of graph-based data
mining can be categorized into two groups, an Apriori-based approach and a
pattern-growth approach. In the following a brief recount of these approaches will be

introduced.

2.1 The Apriori-based Approach

Algorithms in this category use a level-wise search scheme like Apriori. The

search starts with graphs of small size, and proceeds in a bottom-up manner. At each

iteration, the size of subgraphs is increased by one. These new subgraphs are first

generated by joining two similar frequent subgraphs that were discovered already.

Afterwards, the occurrence of the new graphs is checked. Typical Apriori-based

frequent subgraph mining algorithms include AGM by Inokuchi et al. [15], and FSG

by Kuramochi and Karypis [16].

AGM (Apriori-based Graph Mining) adopts a vertex-based candidate generation

strategy that increases the subgraph size by one vertex at each iteration. Two size-k

frequent graphs are joined only ‘when.the two ‘graphs have the same size-(k-1)

subgraph. Fig. 2-1 shows the two subgraphs joined by two paths. AGM actually forms

two candidates because it is-impossible to determine whether there is an edge

connecting the additional two vertices before the generation.

Fig. 2-1: AGM: Two graphs generated by joining two paths.

FSG (Frequent SubGraph discovery) uses an edge-based candidate generation
method that extends the subgraph by one edge at each iteration. Two size-k graphs are
joined if and only if they share the same subgraph having k-1 edges. An example of

the candidate generation of FSG is shown in Fig. 2-2.

[P —

Fig. 2-2: FSG: Two graphs and their potential candidates.

Comparatively speaking, AGM finds all frequent induced subgraphs in a graph
database while FSG finds all frequent connected subgraphs in a graph database. These
two pioneering Apriori-based frequent subgraph mining algorithms at the time when
they were proposed, however, both bear three problems, which are later modified and
fixed by newer and better ways. These problems include: (1) Huge candidate
generation. (2) Multiple scans of database. (3) Difficulties in mining long patterns.

Fortunately, non-Apriori-based algorithms have been developed; most adopt the

pattern-growth strategy to avoid these problems.

2.2 The Pattern-growth Approach

Pattern-growth-based graph mining algorithms include gSpan by Yan and Han.

[29], MoFa by Borgelt et al. [33], FFSM by J. Huan et al. [34], and Gaston by Nijssen

et al. [30] These algorithms are inspired by the sequence mining algorithm,

PrefixSpan [19], and the tree mining algorithms, TreeMinerV [26], FREQT [3]. All of

them use a depth-first search for finding candidate frequent subgraphs.

The pattern-growth-based mining algorithms extenda frequent graph by adding a

new edge in every possible position. A problem with.the edge extension is that the

same graph can be discovered many times.

MoFa (Molecule Fragment Miner) uses an embedding list to store the

information of vertices and the information of edges. Extension is restricted to those

graphs, which actually appear in the database. Isomorphism tests in the database can

cheaply be done by testing whether an embedding can be refined in the same way.

MoFa uses a graph local-numbering scheme to reduce the number of candidates

generated from a graph. MoFa sorts the vertices of a graph according to the sequence

in which they have been added. When a graph is extended at vertex v, later extension

10

may only occur at v or at vertices bigger than v. Moreover, all extensions that grow

from the same vertex v are ordered according to increasing vertex and edge labels.

Although this local ordering helps, MoFa still generates many isomorphic graphs and

then uses standard isomorphism testing to prune duplicates.

gSpan (graph-based Substructure pattern mining) uses a canonical representation

for graphs, called DFS code. A DFS traversal of a graph defines an order in which the

edges are visited. The concatenation of edge representations in that order is the

graph’s DFS code. Candidate generation is restricted by gSpan with the following rule:

graphs can only be extended at.vertices that lie-on the-rightmost path. This restriction

reduces the generation of isomorphic candidates, but it cannot fully prevent duplicates

from generating. Therefore, gSpan icomputes the canonical DFS-code for each graph.

Graphs with non-minimum DFS code can be pruned. Since instead of embeddings,

gSpan only stores appearance lists for each graph, subgraph isomorphism testing must

be done on all graphs in these appearance lists.

FFESM (East Fragment Subgraph Mining) represents graphs as triangle matrices

(vertex labels on the diagonal, edge labels on the other positions). The matrix code is

the concatenation of all its entries, left to right and row by row. Based on

lexicographic ordering, isomorphic graphs have the same canonical code, CAM

(Canonical Adjacency Matrix). FFSM joins two matrices of graphs to generate

11

candidates. The extension has a restriction: a new edge-vertex pair can only be added

to the last vertex of a CAM. After candidate generation, FFSM permutes matrix line

to check whether a generated matrix is canonical. If not, it can be pruned. FFSM

stores embeddings to avoid explicit subgraph isomorphism testing. However, FFSM

only stores the matching vertices, edges are ignored. This helps speeding up the

extension operations since the embedding lists of new graphs can be calculated by set

operations on the vertices.

Gaston (Graph/sequence/tree extraction) considers graphs that are paths or trees

first, and by only proceeding to.general graphs with cycles at the end, a large fraction

of the work can be done efficiently, since there are efficient ways to enumerate paths

and trees. Only in the last phase, Gaston faces the NP-completeness of the subgraph

isomorphism problem. Gaston defines a global order on cycle-closing edges and only

generates those cycles that are larger than the last one. A graph isomorphism test is

then performed on those general graphs with cycles for finding duplicates.

A comparison among these four algorithms of both runtime and memory usage

has been done by M. Worlein et al. [38]. The comparison results are shown in Fig. 2-3

and Fig. 2-4. Considering both the runtime and the memory usage, gSpan has the best

performance. Therefore, we focus our research on improving gSpan.

12

Run time per pattern (msec)

Memory usage (GB)

N
o

A}

—t
(&)

—h

O
o

-

1.6
1.4
1.2

0.8
0.6
0.4
0.2

| | | |
MoFa --{}--
B gSpan "'X"' "_...—"
FFSM —sp— -
Gaston =@ Pt

4 6 8 10 12 14 16 18 20

Minimum support (%o)

Fig. 2-3:.Runtime of the four algorithms. [38]

| I | | | | | 1
MoFa =--{z}--
gSpan ...X... =

Q. FFSM —p— _
'''' Gaston @

G r——.)

BE-&---g-ee.. S < REREERRRES £]

R.0 O TIr N e reqraanns pPodCeopenenn proves X

4 6 8 10 12 14 16 18 20

Minimum support (in %)

Fig. 2-4: Memory usage of the four algorithms. [38]
13

Chapter 3

Problem Definitions

In this chapter, some basic background knowledge with respect to graphs will be

described. And then the frequent subgraph mining problem will be defined.

Definition 1 (Labeled Graph) A labeled graph can be represented by a six-tuple,
G=(,E LI, l¢), where

V is a set of vertices,

E <V xVis aset of edges,

L is a set of labels,

I 1V — L, lis a function assigning labels to the vertices,

le : E — L, lis a function assigning labels to the edges.

In the rest of this thesis; we denote the sets-and the functions corresponding to a
graph g as Vg, Egy, Lg, lyg,and lgg. Fig. 3-1 shows an example of a labeled graph g. In
this example, lyg(vo) = b, lyg(v1) =@, hg(va) =B, leg(Vo, V1) = X, leg(Vo, V2) =y, and
leg(V1, V2) = X.

Vg = {vp v Vo)

Eg — {(Vg, V_g)_., (vﬁ: v_?):' (vj,- V;})}
L,={a b x, y}

Fig. 3-1: A labeled graph

14

Definition 2 (Subgraph) Given a pair of labeled graphs G = (V, E, L, I, l¢) and G’ =
V', E’, L’ 1", Ig”), G is asubgraph of G’ if and only if

Vv,

vu eV, L,(u) =1,u),

EcF’,

H(u,v) € E, le(u,v) = I"¢(u,v).

Definition 3 (Isomorphism) A labeled graph G = (V, E, L, |y, l¢) is isomorphic to

another graph G* = (V’, E’, L’, I, I¢”) if and only if there exists a bijective function
f:V — V’, such that

vu eV, L(u) =1,(f(u)),
vuyv eV, (uVv) e E < (f(u),f(v)) e E’, and le(u,v) = I’ (f(u),f(v)).

Definition 4 (Subgraph isomorphism): A labeled graph G = (V, E, L, I, lg) is

subgraph isomorphic to another‘graph G’ = (V*, E’, L’, I’, I¢”) if and only if there
exists an injection f : V. — V’;such that

vu eV, f(u) eV’ and I,(u) = I, (f(u)),
vuyv eV, if (uyv) e E = (f(u),f(v)) ‘e E’; and-lg(u;v) = lg7(f(u),f(v)).

In other words, a subgraph isomorphism from G to G’ is an isomorphism from G

to H, which is a subgraph of G’.

Definition 5 (Frequent Subgraph Mining) Given a graph dataset, GD, and a
threshold min_sup, the support of graph G, denoted by supg is defined as cardinality
of graphs in GD to which G is subgraph isomorphic.

supg = | {G’| G’ eGD, G is subgraph isomorphic to G’} |.

G is frequent if and only if sups 2 min_sup. The frequent subgraph mining problem
is to find every frequent graph in GD.

An example of subgraph isomorphism is presented in Fig. 3-2. Graph P has four

15

vertices py1, P2, ps, and ps. Graph Q has three vertices g1, (2, and gs. The mapping
f: g1—ps, 02—=pP1, gs—pP2 represents a subgraph isomorphism from Q to P. Note that
the support of Q in GD = {P} is 1, even though there are four subgraph isomorphism

from Q to P.

Fig. 3-2: An‘example of subgraphiisomorphism.

Fig. 3-3 shows a sample graph data set, and some subgraphs with their supports.

In these subgraphs, g1, 92, g3, and g4 are frequent if the minimum support is 2.
o

GD: §8—C—C—N C—S—C—C C—g—N—C
Il I I
o) N=0 S
c € € C N
subgraphs: | | | Il Il
C N 8§ O O

(8) () (8) (8J (3

Supports: 3 3 3 2 1

Fig. 3-3: An example of the supports of graphs

16

Chapter 4

The Graph Mining Algorithm

The discovery of frequent subgraphs usually consists of two steps. In the first
step, we generate frequent subgraph candidates. The frequency of each candidate is
checked in the second step. Therefore, the core of any frequent subgraph mining
algorithm are two computationally challenging problem: (1) subgraph isomorphism:
determine whether a given graph occurs in another graph; and (2) efficient
enumeration of all frequent subgraphs. gSpan introduces two techniques to solve these
problems: The DFS lexicographic ordering and the right-most extension. In this
chapter, we will introduce the general frequent subgraph mining process, and then
describe the procedure of gSpan and those ‘techniques of gSapn. Finally, we will
formulate our proposed graph mining algorithm.

The general framework of a naive frequent graph mining algorithm is outlined in
Fig. 4-1. We refer to this algorithm as NaiveGraph. In the mining process, a graph g
can be extended by adding a new edge e. Let the new graph denoted by g ¢e. Edge e
may or may not introduce a new vertex to g. For each discovered graph g, it performs
the extension recursively until all the frequent graphs with g embedded are discovered.
Line 4 in Algorithm 1 shows the termination condition: When the support of a graph

17

is less than min_sup, it is unnecessary to extend it any more.

Algorithm 1: NaiveGraph(g, GD, min_sup, §)

Input: A graph g, a graph dataset GD, and min_sup
Output: The frequent graph set §

-if g exists in 5 then return;
- else insert gto §;
-scan D once, find everv edge e such that

Lbd P =

g can be extended to g ¢ e and it 1s frequent;
-if there is no such g ¢ e then return;

- for each frequent g ¢ 2 do

Call NaiveGraph(g ¢e, GD, min_sup, S
“refurn;

"-HJFJ_".'-.-"l-ll'-

Fig. 4-1: A naive graph mining algorithm. [29]

NaiveGraph is simple, -but not'efficient. The key-issue is the inefficiency of
extending g to g 0 e. The same graph-can be extended in different ways. For instance,
an n-edge graph may have n different ways to be formed from n different (n-1)-edge
graphs if we do not consider isomorphism. As a result, there may be n-1 duplicate
graphs. Fig. 4-2 shows a graph g and four different ways to generate it. Line 1 in
Algorithm 1 gets rid of duplicate graphs. The number of duplicate graphs may be huge.
It raises some severe problems. First, the generation and support computation of
duplicate graphs waste time. Second, it is nontrivial to tell whether a graph is a
duplicate. Third, should we extend g if we find g a duplicate? If there exists at least one

graph that can grow only from this duplicate graph, we still need to extent it. As we can
18

see, these three problems affect the efficiency of the algorithm. gSpan overcomes these

problems by using two techniques: (1) the DFS lexicographic ordering; and (2) the

right-most extension. It has the following salient properties: (1) it reduces the

generation of duplicate graphs; (2) it does not need to search previous discovered

frequent graphs in order to detect duplicates; and (3) it never extends any duplicate

graph but still guarantees the completeness.

Rk
87) » 870
e e

Fig. 4-2: Four different ways to generate g

004
Q0049

In the following two sections, we focus on the background knowledge of the DFS

code tree. It includes the two major techniques used in gSpan.

4.1 Lexicographic Ordering

This section introduces several techniques developed to represent and extend

graphs efficiently. These techniques include mapping a graph to a DFS code, building

19

a lexicographic ordering among these codes, and mining DFS codes based on this

lexicographic order.

4.1.1 DFS Subscripting

When performing a depth-first search in a graph, a corresponding DFS tree can
be constructed. Fig. 4-3 shows a graph and three different DFS trees of it. The graph
has four vertices with labels x, x, y, z and four edges with labels a, a, b, b. The
subgraphs with darkened edges in" Fig. 4-3(b)-(d) show the DFS trees. For a given
graph, there are many ways to construct different DFS' trees by selecting different
starting points and different growing edges. When building a DFS tree for a graph G,
the depth-first discovery of the vertices forms a linear order. If there are n vertices in
G, each vertex is assigned a subscript from 0 to n-1 according to the discovery order.
I.e. Vo, V1, Va,..., Vo1 Vo IS called the root and vy.; is called the right-most vertex. The
straight path from the root to the right-most vertex is named the right-most path. In
Fig. 4-3(b)-(d), three different subscriptings are generated for the graph in Fig. 4-3(a).
The right-most path is (vo, v1, v3) in Fig 4-3(b) and (c), and (vo, V1, V2, V3) in Fig. 4-3(d).
Incidentally, the darkened edges are forward edges while the undarkened ones are
backward edges. From now on, (i, j) represents an edge from v; to v;. If i <j, itis a

20

forward edge; otherwise, a backward edge. The forward edges of v; means the forward
edges started from v;. The backward edges of v; means the backward edges started

from v;.

® v oN
a a a b
b b
) éi\@ -
b b b
Vo Vg V> Vi vV
¥ @ @
(a) (b) (c)

Fig. 4-3: DFS subscripting. [29]

4.1.2 DFS Code

Since there may be different DFS subscriptings for the same graph, gSpan wants

to select one from them as base subscripting. For this purpose, gSpan maps each

subscripted graph into an edge sequence. Afterwards, it builds an order among these

sequences and selects the subscripting that generates the minimum sequence as its

base subscripting. There are two kinds of orders in this process: (1) edge order, which

maps edges in a subscripted graph into a sequence; and (2) sequence order, which

builds the order among sequences. In the following these two orders will be
21

introduced.

The DFS tree has defined the discovery order of forward edges. For the graph
shown in Fig. 4-3(b), the forward edges are discovered in the order (0, 1), (1, 2),
(1, 3). Now consider the backward edges, for a given vertex v, all of its backward
edges should appear just before its forward edges. And its backward edges should
appear just after the forward edge where v is the second vertex. For vertex v, in
Fig.4-3(b), its backward edge (2, 0) should appear just after (1, 2). Among the
backward edges from the same vertex, gSpan enforces an order: Given v; and its two
backward edges, (i, j1), and (i,42), if j1 <o, then edge (i, j1) will appear before edge
(i, j2). The ordering of the edges in a graph is now completed. Based on this order, a
graph can be translated into a'sequence. A complete sequence for Fig. 4-3(b) is (0, 1),
(1, 2),(2,0), (1, 3).

gSpan represents an edge by a 5-tuple, (i, j, 1(i), I(i, j), 1(j)), where I(i) and I(j)
are the labels of v; and v; respectively and I(i, j) is the label of the edge (vi, v;). For
example, (vo, v1) in Fig. 4-3(b) is represented by (0, 1, X, a, X). For two edges e; = (iy,
ju, 1311), 1(i1,j1), 1(j1)), and e; = (iz, J2, 1(i2), 1(i2,j2), 1(j2)), gSpan defines a linear

order, <, in R®. e1 <t e, holds if one of the following statements is true:

(1) e;ande; are forward edges, and j; < joor ((j1 =j2) A (i1>12)).
(2) e;ande;are backward edges, and i; < iyor ((i1=12) A (J1<]2)).
(3) eyisbackward edge and e; is forward edge, and i; < j».

(4) eqis forward edge and e; is backward edge, and j; < i,.

22

(5) ii1=1iyandji=jo,and Iy <l or
lir = lizand Iy 1) < li2,j2) OF
i1 = lizjoy and ljz < .

Note that in (1), when j; = j, it is iy > i,. In (5), the two edges have the same
discovery order, so the labels are considered. Fig. 4-4 shows a graph g, and four ways
to extend g. These extensions add edge (2, 0), (2, 3), (1, 3), and (0, 3) to g respectively.

Therefore the order between these edges will be (2, 0) <t (2, 3) <r (1, 3) <7 (0, 3).

Adds Adds Adds Adds
(2, 0) (2, 3) (1, 3) (0, 3)
Vo Vo Vo Vo Vo
\1 \\V, _:"“’3
\ .
-vrj 1‘;}] 1/1} -Lrj -Lrj A
» | -
|'|l e "'3\
v v, ,”I V2 vV),
g I
VL N
Ir\ .-"'J

Fig. 4-4: An example of edge order.

Definition 5 (The DFS code) Given a DFS tree T for a graph G, an edge sequence
(o, €1, €2,..., €|) Can be constructed based on <y, such that e; <r ej+1, where i =
0,...,|E|-1. (eo, €1, €2,..., € is called a DFS code, denoted as code(G,T).

Table 4-1 shows three different DFS codes yo, y1, and y,, which are generated by

DFS subscriptings in Fig. 4-3(b)-(d). We can see that, for the same graph, different

23

DFS trees generate different DFS codes. It is a one-to-one mapping between a
subscripted graph and a DFS code. Thus, we can treat a subscripted graph and its DFS
code as the same. All the notations on subscripted graphs can also be applied to DFS
codes. For instance, for a given DFS code «, we can use o ¢ e to represent a possible

extension of a. The graph represented by a DFS code a is written as g,,.

Table 4-1: DFS codes for the graphs in Fig. 4-3(b)-(d). [29]

Edge Yo "1 72
e, 0.1,X,a.X) 0.1,X,a.X) (0.1,Z,b,X)
e, (1.2,X.a7) (1.2,Xb,2) (1.2, X.a.X)
e, (2.0,¥b.X) (13.Xa7) 2.3.X5,7)
e; (13.X.5,2) (3,0,7b.X) 3.1.¥aX)

4.1.3 DFS Lexicographic Order

gSpan wants to build an order among the DFS codes generated for a graph so
that a minimum DFS code can be defined for this graph. The edge order can be
extended to a sequence order, which is a linear order on DFS codes. The formal

definition of DFS code order is given as follows.

24

Definition 6 (DFS Lexicographic Order) Given a graph dataset GD, suppose Z =
{code(G, T) | GeGD, T is a DFS subscripting of G }, i.e., Z is a set containing all
DFS codes of all graphs. DFS Lexicographic Order is a linear order defined as
follows.
If o = code(G,, T,) = (ao, a1,..., am) and p = code(Gg, Tg) = (o, b1,..., bn), @, f € Z,
then o < g if and only if either of the following is true.

(1) 3t, 0 <z <min{m, n},Vk <t, ax= by, and a; <t by,

(2) Vk,0 <k <m, ax =by, and m <n.

Definition 7 (Minimum DFS Code) Given a graph G, C(G) = {code(G,T) | VT, T is
a DFS tree for G}, based on DFS lexicographic order, the minimum one, min(C(G)),
is called Minimum DFS Code of G.

According to DFS lexicographic order, we can compare the three DFS codes
listed in Table 4-1. Code v, is less than codey;, which is less than code y,. Moreover,
Yo is the minimum DFS code-of the graph-in Fig. 4-3(a). Minimum DFS code can be

considered as canonical label.

Definition 8 (DFS Code Tree) In a DFS code tree, each vertex represents a DFS
code, the relation between siblings is consistent with the DFS lexicographic order.
That is, the pre-order search of DFs code tree follows the DFS lexicographic order.

DFS code and vertex in the DFS code tree are equivalent in the sense that one
can be derived from the other. Any valid DFS code has a unique corresponding vertex
in the DFS code tree, and any vertex in the DFS code tree contains a valid DFS code.

Some of the vertices contain a minimum DFS code while others do not.

25

4.2 Right-Most Extension

In Algorithm 1, NaiveGraph requires extending g in any possible position,

which will result in a huge number of duplicate graphs. gSpan adopts a more clever

way to extend graphs. The extension is restricted as follows: Given g and a DFS tree

T in g, e can be extended from the right-most vertex connecting to any other vertices

on the right-most path (backward extension); or e can be extended from vertices on

the right-most path and introduce a new vertex (forward extension). The extension

under these restrictions is named right-most.extension, and it is denoted by g ¢, e,

where r indicates that the extension is a right-most extension. For instance, Fig. 4-5

shows all the potential right-most extensions-of the graph of Fig.4-3(b). The darkened

edges show the right-most path. The dotted edges are the new edges extended and the

dotted vertices are the new vertices added. For simplicity, we omit labels here. The

backward extension candidates can be (vs, Vo). The forward extension candidates can

be edges extending from vs, vy, or Vo with a new vertex introduced.

26

AY
Backward (. Forward
extension extension

Fig. 4-5: The graphs extended from the graph in Fig.4-3(b).

Since a graph may have different DFS subscriptings, the right-most extension
may generate many duplicate graphs-if we need to extend all the subscriptings. The
following theorem shows that-we only need to conduct the right-most extension on the

base subscripting.

Theorem 1 (Completeness) Performing right-most extension in NaiveGraph
guarantees the completeness of the mining result. Furthermore, performing only the
right-most extension on the minimum DFS codes guarantees the completeness of the
mining result.

When performing the right-most extension in NaiveGraph, it is possible that a
DFS code a is minimum, but « O e is not. For instance, Fig. 4-6 shows a graph g with
a minimum DFS code, but one extension of g is not minimum. In this case, we do not

need to conduct the right-most extension on this non-minimum DFS code.

27

not minimum

g FOTTTTTTTTTS 5
Vo {(Vo : Vo
|
i . __1_';3 i
| OO
Vi » i Vi g i V;
|
| |
Vs i Vs I Vs V3
§)
(XY 0 (0.1)
DEScodes: () 5 12 > (1)
(0.3) (2,3)
Fig. 4-6 An example of non-minimum DFS code
4.3 gSpan

In this section, we formulate..the algorithm. of gSpan based on the DFS

lexicographic order and the right-most extension. gSpan uses a sparse adjacency list

representation to store graphs. The procedure of gSpan can be illustrated with a DFS

code tree. The mining process is equivalent to a pre-order traversal of the DFS code

tree, which enumerates all frequent subgraphs of a graph database. The pre-order

search of DFS code tree follows the DFS lexicographic order. Fig. 4-7 shows an

example of the search space of gSapn, where each vertex of the tree represents a DFS

code and each link of the tree represents a possible right-most extension. Fig. 4-8

shows the pseudo code of the framework.
28

1-edge

2-edge

3-edge

4-edge

Fig. 4-7: A DFS code tree.

Algorithm 2: gSpan(s, GD, min_sup, §)

Input: ADFS code s, a graph dataset GD, and min_sup
Output: The frequent graph set §

“if mot isMinimum (s, G.) then return; // G.is the graph represented bv s
-else insert 5to 5;

-set O to &,

-scan G once, find every edge such that

5 can be right-most extended to s ¥, e and it is frequent;

insert 5 ¢.e into C;

-if C= @ then return;

-sort C in DFS lexicographic order;

foreachs¢,ein C do

Call gSpan(s ¢,e, GD, min_sup, S);

s refurn;

R

e =

Fig. 4-8: The pseudo code of gSpan. [28]

The difference between gSpan and NaiveGraph is the right-most extension and
the termination on non-minimum DFS codes(Algorithm 2 line 1). gSpan replaces the

29

existence judgement in Algorithm 1 Line 1 by checking whether s is minimum.
Actually, the checking is more efficient to calculate. It prunes all DFS codes which
are not minimum. It significantly reduces unnecessary computation on duplicate
subgraphs and their descendants. Fig. 4-9 outlines an algorithm for checking whether
s is minimum. Fig. 4-10 shows the search space of gSpan, If we find two DFS codes s
and s’ representing the same graph and s < s’, by Theorem 1, we can completely stop

searching any descendant of s’.

Algorithm 3: isMinimum(s, g)

Input: ADFS code s, and a graph g
Output: A boolean

1: foreach edge sequence w = s do

2: foreach edgee = g do

3 if w = e then return false;

4 if w = e then do

3: s':=s5;g =g remove w from s and remove e from g’;
f: if not isMinimum(s°, g’} then return false;

7 end

8. end

9:end

8: return true;

Fig. 4-9: The function isMinimum.

30

0-edge

1-edge

2-edge

" Pruned

L]
1

Fig. 4-10: The search space of gSpan. [28]

4.4 The Proposed Enumeration Method

Given a graph g with n vertices, Vo, Vi,..., Vn, assume the length of its right-most

path is k. The right-most path of g can be represented by a sequence of (k+1) vertices

which starts from vy and ends at v,. For the sake of simplicity, we denote the vertices

of the right-most path as ro, ry, ..., rk. When performing right-most extension on g, we

denote the backward extensions as g Ono €, g Op1 €, ..., § Op-2) € , Where g Oy € means

a backward extension of g which adds a backward edge (r, ri). Similarly, we denote

the forward extension as g 01 €, g Or2 €, ..., g O e,where g 05 e means a forward

extension of g which adds a new edge (ri, Vn+1) t0 Ii,. Fig. 4-11 shows an example of a

31

graph g and the corresponding extensions. The right-most path of g is (ro , Iy, 2, I3).

Vo

A

“u.____r" v)
Omitted "

g0y e g0 e 3%9 8%9 gof‘? 8%}‘3

4

4]

Fig. 4-11: A right-most extension.

There are two duplicate graphs in Fig. 4-11,/g 011 € and g O € . In this case, the

two extensions are redundant.. We want to shrink the search space by removing some

redundant extensions fromthe right-most extension.-We propose an additional

restriction to the right-most extension._In the following section we will introduce this

modified extension.

For a given graph g with a right-most path (ro, r1, ..., ry), in the forward

extensions, the operations 0, 011, ..., Ofk2) are redundant, that is, graphs generated

by these operations are duplicate. For instance, in Fig. 4-11, fy and f; are not necessary.

The backward extensions remain unchanged. In order to prove the completeness of

this modified right-most extension, we propose the following theorem.

32

Conjecture (Symmetry of Graph) Given a graph g, along its right-most path (ro,
ri ..., ry), we can find a graph g’, which is symmetric to g with respect to the center of
its right-most path.

According to this conjecture, for every graph g, there exists a graph g’, such that
g %ne =g Owxe. Thus, we can discard the operation f, and still guarantee the
completeness of the mining result. For the same reason, we can remove all the

operation f;, i=0,1,..., k/2| from the right-most extension.

By replacing the right-most extension of gSpan with this modified right-most

extension, the number of candidates is further.decreased. |

33

Chapter 5

Experimental Results

Since the complexity of graph mining is higher when mines unlabeled graph
datasets, we conduct a performance study on unlabeled datasets. On both synthetic
and real world datasets, the experiments are performed. We use a synthetic data
generator provided by Kuramochi and Karypis[16]. The real data set we tested is a
chemical compound dataset with the labels removed. All experiments are done on a
3.0GHz Intel Pentium D PC with 2GB memory, running Windows XP system. Our
performance tests show that the number of candidates generated by our algorithm is

about 10% less than that generated by gSpan.

We use the data generator provided-by Kuramochi. The parameter description of
the data generator is shown in Table 5-1. The synthetic datasets are generated using a
similar procedure described in [1]. Kuramochi et al. applied a simplified procedure in
their graph data synthesis. The details about how to generate the datasets were
described in [16]. The generator generates |D| graphs. The size of each graph is a
Poisson random variable whose mean is equal to |T|. In our experiments, some
parameters of the data generator are fixed value: |T|=10, |I|=6, and |S|=200. Since the
datasets are unlabeled graph datasets, which is equivalent to 1-labeled graph datasets,

we set |Lg| = |Lyv| = 1.
34

Table 5-1: Synthetic dataset parameters

Parameters Descriptions Value
|D| The total number of graphs 10000
|7 The average size of graphs 10(2~30)

(in terms of the number of edges)
7] The average size of potentially frequent subgraphs 6
(in terms of the number of edges)
N The number of potentially frequent subgraphs 200
|E| The number of edge labels 1
14 The number of vertex labels 1

We test the performance-of our algorithm on a synthetic dataset with |D| = 10k.

Fig. 5-1 shows the number of candidates generated by our proposed algorithm and

gSpan with different minimum supports.

35

1100

1000

200

800

Joo

Mumber of candidates

00

500

5 B

— =] .
R TP OEeEa e g o

A
\R

TR

5000 5200 5400 5600

5800 6000

The chemical compound dataset is-the same one used in [16,28], This was

originally provided for the Predictive Toxicology Evaluation Challenge [36], which

contains information on 340 chemical compounds. We set all the labels to a same

label to transform this dataset to a unlabeled dataset. There are 340 graphs in total.

The average graph size is 27.4 in terms of the number of edges and 27.0 in terms of

the number of vertices. There are 26 graphs that have more than 50 edges and vertices.

The largest graph contains 214 edges and 214 vertices. We test the performance on

this chemical compound dataset. Fig. 5-2 illustrates the number of candidates

Minimum support

Fig. 5-1: Number of candidates (synthetic dataset).

generated by our algorithm and gSpan with different minimum supports.

36

14000 ——ESpan

& | 12000 \ =H=proposed algorithm
?
o &,
= 10000
b e
5
© 8000 \\
[,
)
u 5000
@
O
E 4000
=
=
2000

150 160 170 180 190 200

Minimum support

Fig. 5-2: Number of candidates (chemical compound dataset).

The experimental results show that the number of candidates generated by our

proposed algorithm is about 5%~10% less than that generated by gSpan. In our

experiments, the mining result is correct, in other words, the completeness of our

proposed enumeration method is fulfilled. Unfortunately, we have not completed a

formal proof for the completeness. There is still a possibility that our proposed

algorithm works only on some special cases. We require further research and

experiment to ensure the completeness of our proposed enumeration method.

37

Chapter 6

Conclusion and Future Works

In this thesis, we analyzed the state-of-the-art graph mining algorithm gSpan and
addressed the possible inefficiencies in it. We found that when gSpan deals with large
and complex graphs (denser graphs with fewer labels available), especially when
deals with unlabeled graphs, the performance of gSpan degrades. Based on gSpan, we
proposed a new graph enumeration method, which reduces the candidate generation.

There are still some research issues of our proposed algorithm. First, we have to
prove the completeness of our proposed-algorithm. Second, there might be a better
algorithm to calculate the minimum. code when the graph is unlabeled. Third, in order
to extend our algorithm to mine labeled graphs, we might require a new lexicographic
order. Therefore, to develop a new lexicographic order for our proposed algorithm is a

research issue in our future work.

38

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

R. Agrawal and R. Srikant. “Fast algorithms for mining association rules”, in
Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94), pp.487-499, Santiago,
Chile, September 1994,

R. Agrawal and R. Srikant. “Mining sequential patterns”, in Proc. 1995 Int. Conf.
Data Engineering (ICDE’95), pp.3-14, Taipei, Taiwan, March 1995.

T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa.
“Efficient substructure discovery from largesemi-structured data”, in Proc. 2002
SIAM Int. Conf. Data Mining, Arlington, VA, April 2002.

R. Attias and J. E. Dubois. “Substructure systems: concepts and classifications”,
Journal of Chemical Information and Computer Sciences, Volume 30, pp.2-7
1990.

D. M. Bayada, R. W. Simpson; and A. P. Johnson.*An algorithm for the multiple
common subgraph problem”, Journal of Chemical Information and Computer
Science, Volume 32, pp.680-685, 1992.

R. J. Bayardo. “Efficiently mining long patterns from databases”, in Proc. 1998
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pp.85-93, Seattle,
WA, June 1998.

D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: “A maximal frequent itemset
algorithm for transactional databases”, in Proc. 2001 Int. Conf. Data
Engineering (ICDE’01), pp.443-452, Heidelberg, Germany, April 2001.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. “Graph matching: A fast
algorithm and its evaluation”, in Proceedings of the 14" Int. Conf. on Pattern
Recognition(ICPR-16), pp.1582-1584, August 1998.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, MIT Press, 2001 Second Edition.

[10] L. Dehaspe, H. Toivonen, and R. King. “Finding frequent substructures in

chemical compounds”, in Proc. 1998 Int. Conf. Knowledge Discovery and Data

39

Mining (KDD’98), pp.30-36, New York, August. 1998.

[11] S. Fortin. “The graph isomorphism problem”, Technical Report TR96-20,
Department of Computing Science, University of Alberta, July 1996.

[12] B. Liu, G. Cong, L. Yi, and K. Wang. “Discovering frequent substructures from
hierarchical semi-structured data”, in Proc. 2002 SIAM Int. Conf. Data Mining,
Arlington, VA, April 2002.

[13] J. Han, J. Pei, and Y. Yin. “Mining frequent patterns without candidate
generation”, in Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’00), pp.1-12, Dallas, TX, May 2000.

[14] L. B. Holder, D. J. Cook, and S. Djoko. “Substructure discovery in the subdue
system”, in Proc. AAAI’94 Workshop Knowledge Discovery in Database
(KDD’94), pp.169-180, Seattle, WA, July 1994.

[15] A. Inokuchi, T. Washio, and H.-Motoda. “An apriori-based algorithm for mining
frequent substructures from.graph data”, in Proc. of the 4™ European Conf. on
Principles and Practice of Knowledge Discovery.in Databases (PKDD’00),
pp.13-23, Lyon, France, September 2000.

[16] M. Kuramochi and G. Karypis. “Frequent subgraph discovery”, in Proc. 2001 Int.
Conf. Data Mining (ICDM’01), pp.313-320, San Jose, CA, November 2001.

[17] H. Mannila, H. Toivonen, and A. I. Verkamo. “Discovery of frequent episodes in
event sequences”, Data Mining and Knowledge Discovery, pp.259-289, 1997.

[18] B. D. McKay. “Practical graph isomorphism”, Congressus Numerantium,
pp.45-97, 1981

[19] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu.
“PrefixSapn: Mining sequential patterns efficiently by prefix-projected pattern
growth”, in Proc. 2001 Int. Conf. Data Engineering (ICDE’01), pp.215-224,
Heidelberg, Germany, April 2001.

[20] K. Shearer, H. Bunke, and S. Venkatesh. “Video indexing and similarity retrieval
by largest common subgraph detection using decision trees”, Pattern

40

Recognition, pp.1075-1091, 2001.

[21] P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah.
“Turbo-charging vertical mining of large databases”, in Proc. 2000
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00), pp.22-33, Dallas,
TX, May 2000.

[22] S. Su, D. J. Cook, and L. B. Holder. “Knowledge discovery in molecular biology:
Identifying structural regularities in proteins”, Intelligent Data Analysis,
pp.413-436, 1999.

[23] Y. Takahashi, Y. Satoh, and S. Sasaki. “Recognition of largest common fragment
among a variety of chemical structures”, Analytical Science, pp.23-28, 1987.

[24] J. R. Ullmann. “An algorithm for subgraph isomorphism”, Journal of the ACM,
pp.31-42, 1976.

[25] E. K. Wong. “Model matchingin robot vision by subgraph isomorphism”,
Pattern Recognition, pp:287-304, 1992.

[26] M. J. Zaki. “Efficiently mining frequent trees in aforest”, in Proc. of the 2002
Conf. on Knowledge Discovery and Data Mining (SIGKDD’02), 2002.

[27] M. J. Zaki and C. J. Hsiao. “CHARM: An efficient algorithm for closed itemset
mining”, in Proc. 2002 SIAM Int. Conf. Data Mining, pp.457-473, Arlington, VA,
April 2002.

[28] X. Yan and J. Han. “gSpan: Graph-based substructure pattern mining”, in Proc.
2002 Int. Conf. Data Mining (ICDM’02), pp.721-724, 2002 .

[29] X. Yan and J. Han. “Closegraph: Mining closed frequent graph patterns”, in Proc.
of the 2003 Conf. on Knowledge Discovery and Data Mining (SIGKDD’03),
2003.

[30] S. Nijssen, J. N. Kok. “A quickstart in frequent structure mining can make a

difference”, in Proc. of the 2004 Conf. on Knowledge Discovery in Databases
(KDD’04), pp.647-652, Seattle, WA, 2004.

41

[31] M. R. Garey and D. S. Johnson. “Computers and intractability: A guide to the
theory of NP-completeness”, New York: W. H. Freeman, 1979.

[32] L. Dehaspe and H. Toivonen . “Discovery of frequent datalog patterns”, Data
Mining and Knowledge Discovery, pp.7-36, 1999.

[33] C. Borgelt and M. R. Berhold. “Mining molecular fragments: Finding relevant
substructures of molecules”, in Proc. 2002 Int. Conf. Data Mining (ICDM’02),
pp.51-58, 2002.

[34] J. Huan, W. Wang, J. Prins. “Efficient mining of frequent subgraphs in the
presence of isomorphism”, in Proc. 2003 Int. Conf. Data Mining (ICDM’03),
pp.549-552, 2003.

[35] A. Inokuchi, T. Washio, and H. Motoda. “Complete mining of frequent patterns
from graphs: Mining graph data”;; Machine Learning, Volume 50, pp.321-354,
2003.

[36] A. Srinivasan, R. D. King, S..H. Muggleton, and M. Sternberg. “The predictive
toxicology evaluation challenge”, in Proc. of the 15th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pp. 1-6. Morgan-Kaufmann, 1997.

[37] J. Han, H. Cheng, D. Xin, and X. Yan.-“Frequent pattern mining: current status
and future directions.” Data Mining and Knowledge Discovery, pp.55-86, 2007.

[38] M. Worlein, T. Meinl, I. Fischer, and M. Philippsen. “A Quantitative
Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston”, in proc.
of the 9th European Conf. on Principles and Practice of Knowledge Discovery in
Databases (PKDD’05), pp.392-403, 2005.

42

http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=C7D9394CECAA8218D963F675043258F0?venueId=8495�
http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=C7D9394CECAA8218D963F675043258F0?venueId=8495�

