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摘 要       
 

 

系統模擬器是一種快速評估、調整和驗證軟體原型的重要工具，其實用性取

決於其速度和準確性。現今流行的 QEMU 系統模擬器採用動態二進制翻譯來實現高

效能之系統模擬。然而其設計並無法有效利用潛在於軟體和底層硬體中的平行性。

本論文提出一個增強型設計 PQEMU，可有效地將多個虛擬 CPU 對應至實體多核心

上。實驗結果顯示此方法能有效提昇系統模擬器之平行性和擴展性。透過測試程

式 SPLASH-2 我們發現到在模擬一個四核心的 ARM11MPCore 系統於四核心 x86 i7

機器上時，PQEMU 最高可達到相對於原本 3.98 倍的效能增進。  
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ABSTRACT 

 
A system emulator is an important tool to evaluate, debug and verify software 

developments before the real hardware systems become available. The key to a 
successful system emulator lies in its speed and accuracy in the emulation of the real 
machine. QEMU is a popular system emulator that adopts dynamic binary translation 
techniques to achieve high emulation efficiency. However, its current design takes no 
advantage of the parallelism available in guest applications and underlying hardware 
resources. In the current QEMU, simulation activities are going in serial, with a 
time-shared fashion. This thesis presents a parallelized QEMU, called PQEMU, which 
can uniformly distribute emulating jobs to underlying multi-cores. Our experiment 
results with PQEMU show that our design and implementation have significantly 
improved QEMU’s emulation performance on multi-core machines. Using the 
SPLASH-2 benchmark, PQEMU can be up to 3.98x faster than the original QEMU 
when emulating a quad-core ARM11MPCore system on a quad-core x86 i7 machine. 
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1 Introduction 
A multi-core processor is a processing system composed of two or more 

independent cores. The general trend in processor development has moved from single 

core to multi-core for several years. Nowadays it is difficult to find a server, a desktop, 

or even a laptop with a single core processor. It is expected that embedded systems will 

follow this trend soon [11]. Different from multi-processor in early days, such as the 

SMP (Symmetric Multi-Processors), buses and shared caches are now integrated onto 

the same chip with the multiple cores, thereby reducing the synchronization and 

communication latency between different cores. Although this new technology offers 

great potential for computing performance, such parallelism exists in hardware level 

and it relies on software to make good use of it. Numerous parallel algorithms have 

been developed, and the Operation Systems have exploited thread-level parallelism in 

addition to process-level parallelism. Both are trying to effectively exploit more 

parallelism of the underlying hardware computing resources. In practice, effective use 

of the parallel cores requires delicate engineering expertise and programming skills. To 

obtain an n-fold speedup of an application from an n-cores machine is a challenging 

and daunting task, not a trivial exercise. 

A system virtual machine can support a guest OS along with its many user 

processes, and the guest architecture could have a different ISA (Instruction Set 
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Architecture). In this case, the virtualizing software must emulate the guest ISA on the 

host machine. QEMU is one commonly used system virtual machine. For example, it 

can be used to emulate an ARM MPCore system (guest) on an Intel x86-based system 

(host). A system virtual machine creates a computer environment within one another by 

one extra layer of software. Transparency of this layer determines how virtualization is 

realized: either by para-virtualization if the upper layer software, usually the guest OS, 

has a good knowledge of the existence of the virtualizing software, or it is called full- 

virtualization. Cooperation from the guest OS, as in the former approach, is for 

performance, but the guest OS must be modified to work with the virtualization layer. 

On the contrary, full-virtualization requires no changes to existing guest OS. In this 

thesis, we deal with full virtualization where an original Linux/ARM is emulated by 

the QEMU on an x86-based system.  

Future embedded systems are likely to be built on top of multi-cores, and so are 

target systems to emulate. For example, we may like to study ARM based multi-core 

systems on a modern x86 platform. In order to understand the benefit from the power of 

multi-cores, the emulation in our system virtual machine must convey such parallelism 

as much as possible from the guest to the host on the physical cores. In other words, it is 

critical to arrange the emulation of each guest core as a thread executing on the host 

machine. So the emulation of multiple virtual CPU on the guest machine will become 
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multiple threads running on the multi-cores of the host machine. This thesis proposes a 

scheme that represents each guest core as a dedicated host thread which can be 

scheduled by the host OS independently. Threads for virtualized CPU can be easily 

identified by their strong computation demands, and a SMP-enabled host OS can 

schedule those virtual CPU threads properly on the underlying physical cores. Ideally, 

each process running on a virtual CPU could have its own parallelism to be exploited. 

The host system might have sufficient number of cores to handle a larger volume of 

emulation threads. For example, we might emulate an 8-core guest system on a four 

core host machine. However, we restrict our discussion in level of the system virtual 

machine, thereby less room will be given to the exploitation of further parallelism from 

the perspective of a thread or process. 

In this thesis, the parallelization work is based on the versatile and popular system 

emulator QEMU [5]. QEMU adopts DBT (Dynamic Binary Translation) [16] 

techniques for fast ISA emulation. The emulator is working around a data structure 

called “code cache” which stores the translated code from the source ISA to target ISA 

for fast native code execution. To parallelize QEMU, we break all emulation activities 

into different events. The dependences between events are analyzed to determine how 

such events are synchronized. This design methodology gives us an enhanced 

thread-safe version of QEMU, named PQEMU. To mimic a more realistic design 
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scenario of a contemporary embedded system, we select ARM11MPCore as our guest 

system, and latest x86 multi-core system is our host. Although this work is built on top 

of QEMU, it is not specific to a particular design. Rationales for synchronization and 

serialization between events are applicable to all system emulators using DBT 

techniques. The experimental results using the well-known multi-threaded benchmark 

SPLASH-2 show that a maximum of 3.98x speedup achieved with our current PQEMU 

implementation running on the Intel quad-core i7 system. In addition, our PQEMU 

outperforms the real ARM11MPCore hardware by 181% to 372% when running the 

SPLASH-2 benchmark programs.
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2 Overview 

2.1 Structure of a System Virtual Machine 

A System Virtual Machine (SVM) is a software layer capable of providing a virtual 

environment for the guest software (usually the guest OS). It comprises CPU, memory 

and IO modules in analogy to what a real computer has. In a hosted VM design, where 

the SVM is a user program inside the host OS, a virtual CPU is treated as a thread with 

additional memory for all guest architectural state, similar to the thread structure for OS 

context switch. Guest code execution is carried out through either interpretation, or 

dynamic binary translation, or the mixture of both. When the guest ISA is compatible 

with the host ISA, direct execution of native code can also be used for fast emulation. 

Interpretation is a straightforward approach to emulate a guest ISA, by mimicking the 

real hardware actions of fetch, decode, and execute in instruction sequence. However, 

interpretation is inefficient as most actions are redundant. To minimize redundancies, 

DBT [16] translates those guest instructions on-the-fly to correspondent target codes. 

The translation cost is high, but it is a one-time cost since the cost will be amortized 

over repeated execution such as in common subroutines or loops. Those translated 

codes are hold in a SVM-managed memory pool to prevent from re-translation. The 

memory pool holding the translated code is usually called code cache and in size of 

several megabyte. Emulation flows under such DBT-based framework can be separated 
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into several events such as: a) finding translated code fragment by the VM manager 

(generate if not exist), b) executing the code inside the code cache, and c) going back to 

the VM manager for next block of guest instructions. To decrease the frequency of 

going back to the VM manager and jump to a target block again, the branch destination 

at the end of a code fragment is often patched to what will be executed next in code 

cache (if it has been translated). This process is called chaining. The links between 

translated blocks will be gradually formed as time goes by, and eventually emulation 

will spend most of its time in code cache. 

Guest memory is mapped to the virtual space of SVM. Although the functionality is 

preserved, their timing characteristics are lost. That means a FLASH memory access 

could be as fast as DDR from the emulation perspective in this environment. Besides, 

cache hierarchy on guest is often intentionally ignored, leaving the job of locality 

exploitation to the host hardware caches. 

IO emulation is achieved through emulation functions, either completely inside 

SVM or in cooperation with the host. For instance, hardware timer is realized by the 

SIGALARM-like timer facility and guest DMA requests are accomplished by memcpy() 

calls. Different from real hardware, SVM could not properly deliver interrupts without 

temporarily breaking the execution in code cache. One might argue this could be 

emulated by intermixing such check-and-deliver code inside the translated code just 
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like what hardware exception mechanism will do, but that will end up in excessive 

checking as interrupts come infrequently and irregularly. A more efficient 

implementation is that SVM uses unchaining to break execution flow, which is a reverse 

process of chaining that restores final branch destinations to the VM manager. Another 

important issue for emulation is memory address translation, including conversion from 

guest physical to host virtual address mapping and the detection of memory-mapped IO 

(MMIO) accesses. A common solution is using software memory mapping, like a 

software controlled TLB, which deploys extra checking and mapping to satisfy all 

above requirements. 

2.2 Case Study: QEMU 

 QEMU [5] is a well-known emulator for its flexible guest to host machine 

combinations and rich supports in IO devices. Though treated as a SVM in this work, it 

could function in Process Virtual Machine (PVM) mode too. QEMU adopts a simple 

compiler framework to do translation and apply some conservative optimizations. 

Different from earlier versions that deeply depend on template code with fixed register 

usage, today QEMU installs a register allocator to dynamically allocate host registers. 

QEMU is widespread on almost all platforms, and porting to a new machine is merely 

adding a guest frontend and/or a host backend. To reduce translation time during 

emulation, optimization algorithms applied are crafted in linear time complexity. 



- 8 - 

Memory address mapping is totally accomplished inside QEMU without any hardware 

intervention, i.e. using the access-trap-emulate scheme. To facilitate the conversion 

process, every guest core is equipped with a software managed TLB-like table. This 

implies the translation outcome of a guest memory instruction is consisted of a fast-hit 

and a slow-miss helper-calling path along with table lookup code at beginning, an 

approximately 20-fold increase in instruction count on the x86 machine. To distinguish 

MMIO requests from ordinary memory access, entries in TLB for IO are always marked 

invalid. Any read/write of such addresses will be redirected to the slow helper-calling 

path, and dispatched to IO emulation function. The overhead is high, and it is 

unsurprisingly poor in response time when compared to real hardware. The following 

subsections explain QEMU internals in detail by an example of a guest ARM machine 

on a generic x86 machine. 

2.2.1 Internal Data Structures in QEMU 

 

Figure 1: Virtual CPU Architectural states in QEMU 
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1. CPU State: A memory block in SVM stores entire guest architectural state of each 

virtual CPU with additional bookkeeping information. QEMU initializes all VCPUs 

as a linked list at startup time to reflect the cores in the guest machine. Example in 

Figure 1 shows the CPU states for quad-core ARM11MPCore system, where VFP 

stands for vector floating-point processor. 

 

Figure 2: Memory address translation in QEMU 
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achieve efficient code invalidation against Self-Modify Code (SMC). We skip that 

for simplicity). The TLB table deployed in every guest core accelerates the 

translation from Guest Virtual Address (GVA) to Host Virtual Address (HVA). 

3. Code Cache: it consists of an identification array tbs and a buffer codebuffer for 

output code fragments. ID is comprised of guest physical address (how fragment 

relates to guest machine code), flags (mainly for x86 segmentation), maintenance 

fields and pointer to real code fragment in codebuffer, say TBptr. codebuffer is simply 

a large byte array, usually in size of 16 or 32 Mega bytes. 

 

Figure 3: Structure of a code cache 
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by one and therefore tbs are sorted in TBptr key. We will see the importance of 

backward lookup when reconstructing guest PC address. 

Removing a code fragment is done by erasing TBptr and deleting ID from the 

hash table. After these two actions no one can find the removed code through tbs 

anymore. But target code still lives in codebuffer, and this ID entry is not recycled 

for new fragment unless codebuffer is full or no ID is available. If code buffer does 

overflow and no ID is available, then QEMU will trigger a flush and throw all code 

fragments away.  

2.2.2 From Guest Instruction to Target Machine Code 

QEMU uses a source-machine dependent frontend to convert input guest binary to 

internal IR, then it emits machine code through a target-specific backend. Before 

version 0.11.0, it is highly template-based, implying a strong dependency to a specific 

build of compiler. In later versions, it builds a simple compiler constructed into its code 

base, which performs register allocation, liveness analysis and constant propagation at 

runtime.  

 The structure of a code fragment usually starts with loading guest register values, 

then performs operations, and spills results back to its architectural state in SVM. Some 

registers are reserved for special purpose while others are free to use for emulation 

according to target ABI specification. For instance, %ebp on i386 target holds the 
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pointer to architectural state of guest core currently being emulated as a frame pointer; 

while %esp points to stack and others are free for computation (or subset to some 

peculiar instructions like ROtate-Right-register, which accepts only %ecx as its 

legitimate count register). 

 To preserve the C calling convention, common entry gate prologue and exit 

epilogue are generated to buffer codegate at the QEMU translation engine startup stage. 

This makes all code fragments look like leaf C functions to the VM manager, in which 

the pointer to codegate will be casted to a function pointer first and invoked later using 

call to a register, e.g. call *%eax on i386. Figure 4 portraits the execution flow from the 

VM manager to the code cache. 

 

 Figure 4: How a code fragment is invoked by the VM manager 

 Some complex operations, particularly those interacting with QEMU internal data 

structures, are much easier to be implemented in C than in the translator IR (although it 

codebuffer 

epilogue 

 

 

 

… 

Emulation 
manager 

call *%eax 

codegate 

prologue 



- 13 - 

is good in speed and code size). QEMU introduces a special IR class, IR_CALL, to deal 

with the calling of a helper function inside a code fragment. Three segments of target 

machine code will be generated from the output emitter: I) spill all guest registers 

current on host registers (all caller-saved registers are included indeed), II) call helper 

function next, III) and last copy the result if any of destination registers does not match 

return registers (%eax and %edx by i386 ABI). Figure 5 illustrates a code fragment 

calling another helper function. 

 

Figure 5: Calling a helper function inside a code fragment  
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realized through setjmp() and longjmp() library calls, similar to the exception handling 

mechanism in C++. Note that the interrupt delivery will never step in this path, as it is 

always synchronous to code fragment execution. Guest exception delivery in QEMU is 

shown in Figure 6. 

 

Figure 6: Deliver a guest exception in QEMU 
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knowledge about the mapping from the guest PC to target instructions (a one-to-many 

function). Then a trivial reverse range matching by the return address will reveal what 

exactly the guest PC is, and guest architectural state is fully restored at this moment. 

2.2.4 Translation Output of a Memory Instruction 

QEMU uses a direct-mapped software managed TLB to check for memory 

references. Three segments in the output code fragment will be generated for a normal 

memory access instruction: I) check for TLB entry, II) do a fast access if hit in TLB, III) 

call memory access helper function if miss in TLB. Figure 7 presents what the translated 

code sequence is for an ordinary load instruction using a dump from GDB. As shown in 

Figure 7, guest registers are saved first in case of page fault. The helper function in this 

example code is __ldl_mmu. 

 

Figure 7: Example output of a guest load instruction 
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2.2.5 Protection for Translated Code 

SMC (Self-Modifying Code) refers to writes to the memory of original guest 

instructions. Handling SMC is particularly difficult since they might have already been 

translated. In such a case, all translated codes in touch with the write address must be 

invalidated. To identify those offending writes, QEMU replaces the write entry of the 

two-level mapping table with an index to array IOwrite. The indexed write IO function 

performs a regular guest memory write together with code fragment invalidation. The 

write entry will restore to initial memory pointer if this page covers no translated guest 

code. 

2.2.6 Chaining and Unchaining 

The last part of a code fragment is a branch, either direct or indirect. Chaining will 

change the destination of a branch from exit to the VM manager to a code fragment to 

be executed next; while unchaining undoes it. The destination to an indirect branch is 

fed from a maintenance field of ID; whereas direct one embeds its target in itself. The 

instruction modification process for direct branches is similar to what the ELF dynamic 

loader resolves undefined symbols. Sample code is shown in Figure 8. 

# Indirect Jump # Direct jump 
mov ($field_address), %eax jmp $0xb85231ed 
jmp *%eax  

Figure 8: Branch at the last part of a code fragment 

Using indirect branch scheme is simple: just a regular access to the field of ID could 
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change the destination. Direct branch is faster (a single instruction instead of two as for 

the indirect branch) but may suffer from limitations imposed by the host machine. For 

example, some architectures have limited range for direct branches, and some 

architectures lack atomic patches to branch instructions (due to variable length 

instructions). Chaining is easy as it is initiated by the emulation thread itself; but 

unchaining may originate from different treads, e.g. interrupt notification and exclusive 

access. To accommodate this, unchaining is solely invoked via SIGUSR1 signal. 

Sending a SIGUSR1 to a thread executing in the code cache will trigger the unchaining 

process and cause all branch targets of code fragments in closure (all code fragments 

can be reached from the current running code fragment) reverted to epilogue (leading 

straight to the VM manager). 

2.3 Multi-Core Awareness 

 Multi-core is a trend that enables more efficient parallelism exploitation. To make 

use of duplicated hardware, SVM must extracts and exposes the potential of parallelism 

from guest directly to the target cores. On a parallelized SVM, target cores get better 

utilization if greater parallelism is exposed, and the virtual platform resembles real 

source machine better if host has many cores available. We discuss the impact to CPU, 

memory and IO components in the following. 

 A parallelized SVM has high memory overhead for storing additional copies of 
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architectural state for each virtual CPU. The design of the code cache is particularly 

important for achieving good performance and scalability. A Unified code cache can 

share all translated code fragments among all emulation threads; while a separate code 

cache keeps private copies, even at the cost of re-translation and extra memory space 

when some code blocks are shared between threads. The former is good in lower 

translation cost and memory overhead, and is also easier to implement since it is the 

current design in the sequential QEMU. However, the unified cache will suffer from 

greater contention amongst all virtual processors. Imagine that a thread for CPU A 

unchains itself for interrupts checking, but the same code fragment is being used by 

another thread for CPU B. A eventually receives incoming interrupt, and B falls back to 

the VM manager for unnecessary code fragment lookup that was originally chained. The 

latter gives us the chance for local tuning and improved code locality by placing hot 

code in clusters for a specific guest core. However, it is more complex to handle SMC, 

and more duplicated copies of code. SMC has been considered an infrequent event in 

applications. However, for SVM, SMC is not that uncommon. When guest OS needs to 

reclaim some memory, the old content must be cleared. Such activities are handled as 

SMC by the SVM. 

Memory ordering is the key challenge when we move to address the issues of 

memory emulation. Atomicity imposed by source ISA must be enforced on target as 
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well, or the serialization primitives built atop might not work. For a weakly-ordered 

memory system, atomicity is enforced through a special kind of register-memory 

instructions; while strongly-ordered one extends to all memory instructions. Even a 

plain load-store instruction has to honor its program order. Because SVM has to insert 

explicit barrier after each guest memory access to guarantee the required order, we 

emphasize on weakly-ordered systems for the opportunity of optimization. These guest 

atomicity enforcing instructions are realized by either explicit spinlocks or simply 

exploit atomic instructions on target. The latter is preferred because of the brevity in 

code size and short locking time, but it is only applicable to semantically transformable 

guest atomic instructions. Those not suited for directly mapping to target atomic 

instruction will take the general spinlock approach.   

IO also has a high impact to guest performance due to code unchaining activities 

for interrupt handling. One alternative for interrupt handling without unchaining is to 

insert explicit checking instructions in a loop. The checking instructions check if there 

are pending interrupts so that it can yield the execution control to the VM manager for 

interrupt delivery. While this scheme speeds up interrupt delivery, it slows down the 

normal program execution. After all, interrupts are supposed to be infrequent, and so 

we would rather let interrupt delivery pay the price.  
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2.4 Engineering Challenges 

In addition to pseudo hardware components, there are some engineering issues 

deserve further discussion when parallelizing a SVM. First, the concurrency of chaining 

and unchaining happens inside the code cache. Since they will modify the destination 

bits of final branch instruction(s), concurrent execution of other threads in the code 

cache should be prohibited. Modified instruction bytes will go to data cache first when 

they are patched, and transfer to instruction cache later. For architectures that maintain 

coherence by explicit user request and has fixed instruction length, e.g. ARM, the worst 

case is out-of-dated I cache that branch still points to another code fragment when 

unchaining. Once the patched instruction propagates in, the execution flow will quit 

code cache and roll back to the emulation manager. The net effect is a late but functional 

unlinking, which is harmless to emulation threads and invisible to human being. But 

that is not the case if target is grounded on architecture with variable-length instruction 

and hardware-based synchronization mechanisms. Branch destination bits are usually 

not aligned on such machine, and partially-updated instruction may be seen by any 

other thread leading to an abrupt termination of illegal instruction fault. Consider the 

x86 target, for example, long jump instruction is expressed in a five byte sequence 

starting with 0xe9 and followed by 32-bit PC-relative distance to target. If the 

synchronization is carried out in unit of four bytes, two rounds of hardware-initiated 
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memory accesses will be used. If unfortunately the update is not atomic in respect to 

other cores, the SVM might crash for a wrong branch destination. For that reason, 

instructions in modification must be free of reference prior to (and in duration of) 

chaining and unchaining. Figure 9 illustrates the situation described above that a SVM 

turns the misaligned x86 branch destination bytes from 0xcafebabe to 0xdeadcafe, 

assume synchronization between I and D caches starts from lower address in unit of four 

bytes. 

 

Figure 9: Patching a branch destination on x86 machine 

 The second one is thread scheduling on the host OS. A SVM basically has no idea 

about what the guest is doing now and whether a virtual core is busy or not. 
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Consequently a SVM makes a conservative guess that all processors within guest 

machine are busy all over the time, which causes an interesting phenomenon that 

emulation threads are busy forever on host no matter in a busy calculation or an idle 

loop. The only exception is when some source architectural requests that explicitly wait 

for a hardware event or reveal clues about the current guest activity. For instance, wfi on 

the ARM architecture halts for interrupt coming and pause in x86 says the guest is 

waiting for a spinlock. But they are rarely used and some exist only in the guest kernel 

booting code. A serial SVM creates one host emulation thread even for multi-core guest 

for the sake of simplicity, on which the guest executions are carries out in a serial 

fashion sharing the same thread as in Figure 10(a). This time-sharing property is 

appreciated in early days where CPU chip has only one core. Multi-processor is indeed a 

composition of those single-core chips, and communication between processors is 

expensive due to the long path of onboard system bus. The idea of time-sharing is 

similar to OS scheduling, except it is operated on emulations of guest cores instead of 

thread contexts. These days the presence of multi-core on a die opens a door for extra 

performance boost, driving the emergence of more SMP-aware OS. With careful 

matching, paradigm that permits concurrent and evenly-dispatched thread executions on 

all physical cores could be established. For SVM, multiple emulation threads are 

spawned to act for guest multi-core. Host OS can identify these threads by their 
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computation-intensive signature (consume all allotted time slot), and bind them to every 

real cores in one-to-one manner by host scheduler as anticipated in Figure 10(b). 

However, that will incur a serious problem if parallelism in target is not sufficient to 

guest. The host scheduler will dominate the performance under this circumstance as 

less knowledge is attainable to guide computing resource sharing. Figure 10(c) shows a 

situation emulating a quad-core guest machine on a dual-core target. 

 

Figure 10: From guest processor to physical core 
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its element after initialization (at most adjust its internal position); while the latter is 

general to all shared objects. Fairness and waiting time of a lock are equally important 

to SVMs, as guest performance is very susceptible to any pause during emulation.
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3 Design and Implementation 

3.1 Environment 

 Our PQEMU is based on QEMU version 0.12.1. We choose ARM11MPCore [7] 

as our guest in the first implementation of PQEMU. It is a popular quad-core SMP in the 

embedded processor market and has been successfully integrated into Nvidia Tegra 

chipset [11]. As an heir of RISC, ARM is simple in terms of ISA design and features 

weakly-ordered memory system with few atomic instructions. Our host machine is a 

generic multi-core x86 system for its prevalence and abundance in hardware cores. A 

recent Intel i7 920 design equips with four independent cores and supports up to eight 

threads, more than the number of cores of the ARM11MPCore (thus avoid the situation 

portrayed in Figure 10(c)). In addition, x86 is (in)famous in diversity of instructions, 

which gives us better control over the output code quality under a high-register-pressure 

circumstance. For example, storing a constant value need not be a load immediate to 

register followed by the actual store; instruction store immediate suffices. 

3.2 Realization 

 To get a systematic view of how QEMU works, we decompose it into a collection 

of events that are sharing internal resources (enumerated with short description about 

the activities and common objects involved): 

Build: it is the process of source code translation where the common structures of 
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compiler framework will be shared with the Restore event if code conversion 

engine is common to all emulation threads. A new code fragment, translated from 

the source guest code, will be added to the code cache. 

Restore: for performance reason, guest PC is only updated once at the end of a 

code fragment. If a guest exception is generated in the middle of the code fragment, 

for example, a page fault from a memory instruction, the guest PC must be 

restored. This is done by means of table lookup or reconstruction to preserve 

precise guest architectural state. In practice, a SVM does not generate PC 

information in regular code fragments in order to reduce space overhead (QEMU 

adopts this strategy), and reconstruction using identical compiler framework in 

Build is used instead. See subsection 2.2.3 Reconstruct PC Address for detailed 

explanation. 

Chain / Unchain: these two events involve instruction modification to code 

fragments. There are issues such as modify-when-use and synchronization 

between I and D caches if the code cache is shared. Subsection 2.4 Engineering 

Challenge has more discussions on these issues.  

Flush: the code cache is out of space and all translated codes will be abandoned 

immediately. This has been discussed in subsection 2.2.1 Internal Data Structures 

in QEMU. After the flush, some old code fragments may still lives in the code 
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cache, but that does not mean other threads can stay within because the 

subsequent Build will insert new blocks into code cache. 

SMC: Self-Modifying-Code refers to changes made to existing guest code that has 

been translated. See discussion in 2.3 Multi-Core Awareness. 

Find: locate translated code fragment using the guest PC. If the target block is not 

found, then invoke Build to translate and insert a new block to code cache. 

Execute: emulation thread executes the code fragment found in Find or generated 

at Build as express in 2.2.2 From Guest Instruction to Target Machine Code. 

 

Figure 11: State diagram of QEMU events 

The flow of events is illustrated as a state transition diagram in Figure 11. The 

event Unchain (not shown in figure) is completely initiated by the SIGUSR1 signal 

handler in an asynchronous fashion, so it will intervene with all other events. Special 

treatments in lock acquiring for Unchain must be deployed, otherwise deadlock could 
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occur. The transition from SMC to Restore (dashed line) stands for self-invalidation that 

would happen when a code fragment writes data to the guest address of the source 

executable. It mimics the hardware synchronization mechanism between I and D cache 

(write instruction bytes to where the next PC points to in x86 for example). ARM does 

not support automatic I/D coherence enforcement. Therefore SMC to our guest ARM is 

purely code invalidation that never reaches Restore, only ends in Execute. 

 

Figure 12: Software layout in QEMU 

The overall software layout of QEMU is illustrated in Figure 12. Internal events 

are in green. QEMU allocated memories (code cache, SDRAM and Flash) are light 

grey, and other boxes are helper functions. CPU, memory and IO modules are included 

in emulation thread, and IO thread is responsible for interactions between QEMU and 
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host OS. These activities are mostly SVM interface update (keyboard, mouse and 

screen) and guest hardware implemented using host system service (RTC timer). 

 From the perspective of hardware replication, providing multi-cores is fairly 

simple. QEMU has already reserved a memory pool for storing architectural states for 

each VCPU; memory and IO elements are shared among all VCPUs. Everything seems 

ready to go for parallel emulation. But QEMU still uses a sequential emulation model 

similar to Figure 10(a), and all guest cores are running in a non-preemptive time-shared 

fashion. This implementation simplifies the emulation of multi-cores in a lock-free 

setting and can handle the increment of guest core with ease. Shared components 

(mainly the code cache and derivatives) can be accessed without any contention; order 

and atomicity is preserved by round-robin and exclusive access of guest memory 

system. Likewise, core augmentation is merely additional memory allocation for new 

architectural state with a little bit of personalization in CPU ID or marking a portion of 

guest address space for core-private devices. However, target hardware resources are 

poorly utilized. The time received for actual core emulation is reversely proportional to 

the number of guest cores. Even worse, when all guest threads are evenly disturbed on 

all virtual processors, QEMU will suffer from slow guest code execution as no way to 

tell when and where a progress to guest code is. 

PQEMU relaxes the emulation model used by QEMU that only one event is active 
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at a time. PQEMU allows all emulation threads free to go like in Figure 10(b). The code 

cache and the translation engine are shared in the current PQEMU implementation. 

Translated code can be reusable among all emulation threads as each VCPU has its 

own architectural state in registers (the VM manager will do the setup before entering 

the code cache). Although contentions on the code cache may be there among different 

guest emulation threads, such incidences are relatively infrequent for many parallel 

applications. Besides, this implementation incurs less engineering effort since it 

requires no special effort to maintain the coherence of the code cache. 

 
Write Event Read Event 

Build Restore Chain Unchain Flush SMC Find Execute

Write 
Event 

Build S S X X S S S/X X 

Restore S S X X S S X X 

Chain X X S S S S X S 

Unchain X X S S S S X S 

Flush S S S S S S S S 

SMC S S S S S S S S 

Read 
Event 

Find S/X X X X S S X X 

Execute X X S S S S X X 

Table 1: Disposition of event combinations in PQEMU 

With parallel emulation, many events from different VCPU threads will happen 

simultaneously, serialization must be enforced for correct manipulation of the shared 

and writable objects. We tabulate all event combinations and their possible disposition 
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in Table 1, where S indicates a serialization and X means don’t care (free run). The 

following properties explain the reasons for serialized combination (marked S) in Table 

1. Except read events (Find and Execute), all write events are in serialization with 

themselves (S on diagonal boxes of Table 1). 

 Build and Restore shares the same translation engine, a lock is required. 

 Eliminating a code fragment (Flush and SMC) is permitted only when it is not 

being referenced by another thread (Build, Restore, Chain, Unchain, Find and 

Execute). Except Build, all other five events operate on code fragment(s) in the 

code cache (even though it is for comparison in Restore to bring back fault guest 

PC address). A sudden removal of a code fragment will ruin their functionalities. 

Build is in the list because it will register identifiers for new code fragments and 

pointer to free code cache space before translation begins. In addition, Flush and 

SMC themselves are serialized to prevent incomplete code erasing. 

 Execute and Chain / Unchain raise problems in target cache synchronization and 

code modification as stated above. A lock is required. 

 Build and Find prevents the recurrence of code translation for the same guest 

address. This could be removed for better performance as such situations are rare 

and serialization here is truly an overkill. If serialization is taken away, there 

should be an extra check for validity of the code fragment during Restore, in case 
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at the same time another thread is in the Build state. No code invalidation will 

take place between two successive Build as Flush and SMC are in serial with all 

other events, and finally two code fragments to the same guest address will be. 

Redundant code fragment will be used once by generating thread and live solitary 

after without being reference anymore until die (Flush and SMC). 

 

Figure 13: Lock scheme in current PQEMU 

To effectively increase parallelism, performance, lock is applied in fine-grained 

control with weak or strong attribute. Strong lock equals to exclusive access in QEMU 

that keeps all other emulation threads out of the common code cache (equivalent to a 

pause), whereas the weak one corresponds to an ordinary lock that only the relevant 

access should get blocked. In another words, PQEMU effectively reduces the lock 

strength from a big strong one in the original QEMU to a few small and dispersed ones.  

Find

Build Restore

Execute

Chain Unchain

FlushSMC

RWlockA – read lock

RWlockA – write lock

Spinlock B Spinlock C

PQEMU



- 33 - 

 

Figure 14: Lock protection scheme in current PQEMU 

The lock scheme in PQEMU is illustrated in Figure 13, conforms to disposition in 

Table 1 that aggressively turns S in Build and Find to X. To prevent code fragments 

from being wiped out when they are in execution, RWlock A is used in read/write mode 

as the only weak/strong lock in PQEMU. Whenever a thread moves to a state that will 

refer to an existing code fragment, it must acquire the read-locked A beforehand. The 

Flush and SMC are fulfilled at the meantime by acquiring the strong write-lock A, 

indicating no threads are allowed to run at the same time. Read-locked A is acquired at 

beginning of the VM manager (transition to state Find in Figure 11) and is released at 

the end of emulation cycle (on way back to Find). Although theoretically they can be 

guarded in finer granularity of code fragment, we treat the entire code cache as one unit 

for engineering simplicity. Spinlock B protects common compiler related data 
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structures, and spinlock C serializes the requests of instruction modifications from 

Chain and Unchain. Emulation thread must grab read-locked A prior to acquiring B or 

C for Build / Restore or Chain / Unchain to keep the code fragment from being wiped 

out, or simply transfer to write-lock A if it moves to Flush or SMC state. The whole 

lock protection scheme is illustrated in Figure 14. With hierarchical lock layout, we are 

free of deadlock and concurrency of shared objects is preserved across all emulation 

threads. 

Next, we discuss issues with memory. As to the weakly-ordered memory 

architecture, the question would be how to effectively enforce atomicity source ISA 

imposed on the target machine. ARM defines mainly two atomic instruction groups 

based on swap and exclusive mechanisms. The swap instruction swp acts similar to 

exchange instruction xchg in x86, except it could function on two distinct registers (one 

source, and one destination register). That excludes the chance realizing swp using xchg 

directly, unless both destination and source registers are identical. PQEMU realizes this 

coalesced memory load and store by designating a common spinlock X (different from 

those in CPU) at initial part of swp, analogous to the effect of #LOCK prefix in x86 and 

#ASSERT on ARM. But it will occupy the whole system bus and could be a serious 

limit to scalability. A more elaborated approach for exclusion in ARM is introduced 

after ARMv5. The new approach is similar to load-linked and store-conditional pair on 
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MIPS (i.e. ldrex and strex). A common table is arranged to record any load-linked 

address that is still waiting for a closing store-conditional instruction, and address will 

be erased if it is in collision with a subsequent store address. Any store-conditional with 

address not in table is regarded as a failed attempt that no data will be written to 

memory, and the unsuccessful value will be returned. However, monitoring all store 

instructions by software in PQEMU is inefficient and costly. A compromise is made 

that appends content snapshot into the entry of a table. If strex operates on an address not 

in the table or data in guest memory does not agree with snapshot made in time of ldrex, 

this trial is unsuccessful. We defer the generations of such guest atomic instructions till 

final code emitting stage to avoid the issues of larger code size and complex control if 

code generation was performed with IR at earlier stages. Dedicated emitters are akin to 

ones for ordinary memory access, except it will insert additional spinlock code for 

common table at the start and end of output code fragment. Sequence of execution will 

be determined by target hardware at run-time like what it is in real machine rather than 

predefined by QEMU. This resemblance is a giving for emulator in testing of a multi- 

thread program, a scene round-robin emulation model (Figure 10(a)) could never reach 

(even if aggressively in random ordered, it is sequential from the scope of executing 

guest instructions). PQEMU honors guest program order in translation, and there will 

be no memory reordering in output code fragments as PQEMU knows nothing about 
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the aliasing. 

Last, N-N interrupt delivery model is supported by ARM11 multi-core processor, 

where all cores are informed simultaneously as soon as receiving an interrupt. Hardware 

could achieve this by asserting a signal wire within one cycle, but QEMU can only 

notify all emulation threads in sequential, which leads to an unbalanced utilization. 

PQEMU fixes this by asserting all core-private interrupt-notification flags in a round- 

robin order of guest cores, making request serving less unfair. 

Figure 15 shows the revised software layout in PQEMU for a dual-core system 

(we omit the detailed boxes for simplicity). Most modules are identical to unmodified 

QEMU (Figure 12), except there are multiple emulation threads for system with multi- 

core support and the code cache is shared among (denoted by unified to distinguish 

with the separate alternative). 

 

Figure 15: Revised software layout for a dual-core guest in PQEMU 
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3.3 Practices and Enhancements 

Special care must take to accommodate the transition from weak to strong lock 

(currently Find to Flush and Execute to SMC). Other than basic read-release write- 

acquire sequence (solely a write- acquire will result in deadlock). Such pattern has a 

pitfall in lock coverage time that interval between release and acquire is empty of lock 

protection. Any assumptions made in read stage should not be inherited in write phase. 

Figure 16 demonstrates a destructive case that code fragment Z will be invalidated due 

to SMC and read lock is released in thread 1. Thread 2 takes over immediately after a 

long wait and delete Z for Flush. Thread 1 operates on identification of code fragment 

Z later, but ends up in error as everything about code cache is gone. To fix it, thread 

must check Z again right after write lock is grabbed. If Find is serialized with Build, 

same problem will in transition from strong to weak lock (fortunately not in current 

PQEMU implementation). 

 

Figure 16: Vulnerability of lock attribute switch 
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To cut the waiting time for write lock A, SIGUSR1 will be sent to all other threads, 

forcing them to leave the code cache and release the read lock. Spinlocks are furnished 

with random wait (by pause instruction on x86) when busy to alleviate contentions. 

Conventional strategy of spinlock locking under the assumption that pending time will 

be short is simply waiting till it is vacant. But the time spent in the VM manager is 

comparable to the time spent in the code cache by PQEMU, even when chaining is 

activated (ignore the case of chained loop). Idle-waiting becomes less economic in 

situation host cannot tell which emulation thread has a higher priority than others. All 

available time slots for waiting threads will be consumed in useless lock trying, and 

spinlock will be biased in favor of someone. To compensate for that, optional operations 

in PQEMU will be bypassed by try-lock spinlock call instead. This strategy is 

selectively applied to Chain and Unchain as both are performance-related events, not 

for correctness of PQEMU. As to the only read-write lock, pthread will yield 

voluntarily to the host scheduler if busy and starvation is evaded by flavor of preferring- 

writer attribute. The whole locking facilities in PQEMU are rather efficient, especially 

when booting up the guest Linux. 

In general, events involving code removal must go with strong lock, while the rest 

are left for the weak ones. Chain / Unchain, the major performance hurdle in shared 

code cache design, are exceptions. Before shifting to Execute, the VM manager will try 
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to connect previously executed code fragments with the current one in Chain state. But 

only the regular two-way branch might succeed in this block-based DBT system, where 

each code fragment is ended in a guest branch instruction. To assure proper handling of 

guest page faults, chaining across page boundary will be inhibited. Otherwise just one 

thread, which usually the one triggers translation, will undergo guest page fault that 

loads a portion of program in unit of page into the guest main memory. Unchain will 

happen in any occasion as long as SIGUSR1 is received. It acts on a closure of code 

fragments defined by the first entry the VM manager found, because locating exact 

code fragment being executed is almost impossible once the thread dives into the code 

cache (stack unwinding to filter out helper function callings for complex procedures is 

a solution to normal program context, but it is inaccessible for signal handler context 

and its descents). Figure 17 illustrates the unchaining on a closure of code fragments, 

where all possible links within the closure will be restored to the VM manager during 

event Unchain. 

 

Figure 17: The closure of an entry code fragment A for unchaining 
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PQEMU conservatively halts all other in-code-cache emulation threads by an idle 

waiting signal SIGURG for Chain and Unchain. SIGURG is registered with a signal 

handler trying to grab spinlock C. However, spinlock C is already held by initiator of 

Chain or Unchain at the time the handler is called. Thus, threads receiving SIGURG 

will deviate themselves until Chain or Unchain is done, and the synchronization 

problem between target I and D cache mentioned before is naturally avoided. Despite 

reducing the emulation path, this break also helps minimizing the surge of coherence 

invalidations from the x86 cache hierarchies if others are still executing in the code 

cache (note that the unit for cache invalidation is a cache line). Sharing code cache also 

makes Unchain easier as the effect of unchaining is visible to all emulation threads. 

Chain and Unchain is expensive, and we address this problem in three directions. 

First, unnecessary unchaining is avoided, especially the ones for IO interactions 

between SVM and the host OS (boxes in IO thread of Figure 12). Original QEMU 

aggregates those activities into a dedicated IO thread, which will disrupt active 

emulation threads by endless unchaining requests until the emulation threads release 

the token for execution (i.e. a common mutex lock). This serialization is not mandatory 

since all tasks on IO thread are merely screen-update, keystroke-receive and 

mouse-move. Second, we try to shrink the size of a closure at unchaining. On modern 

POSIX-compliant OS, a signal handler has a new interface to obtain the additional 
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information about user context being interrupted. With the host PC value in context 

structure, the code fragment being executed can be recognized through reverse 

mapping. . Although not always accurate due to helper function calling (PC value is 

definitely out of the range of code cache), it is noteworthy in reduction of closure size. 

Third, the purpose of Unchain is to relinquish the usage of code cache instead of 

annihilate a code fragment. As the branch destination modified by Chain and Unchain 

is entirely bouncing between the VM manager and the next code fragment in PQEMU, 

we alter only the branch destination (instruction itself) when unchaining. Linking 

information for maintenance resided in the fields of code fragment identifier is kept in 

chained-state if the code fragment is chained before. Although Unchain still needs 

spinlock C in PQEMU, it is less expensive after the aforementioned optimizations. 
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4 Experimental Results 

Experimental environment

Benchmark   Splash‐2

Guest OS   Linux 2.6.27 arm_v6

Guest machine   ARM11MPCore (4 cores SMP processor) 

Emulator   PQEMU based on QEMU 0.12.1

Host OS   Linux 2.6.31.12 x86_64 (Fedora 12)

Host machine   Intel Core i7 920 (quad core with 8 SMT) 

Table 2: Experimental environment 

The experiment environment is shown in Table 2: a guest ARM11MPCore is 

emulated on an Intel Core i7 920 host by PQEMU. 12 programs in the SPLASH2 [13] 

benchmark suite are chosen for PQEMU performance evaluation. They are highly 

parallelized programs, and we run them in configuration of one, two and four 

computing threads (we use number to distinguish them in following tables). All 

programs are compiled in ARMv6 ISA, and the time will be measured in unit of 

microsecond. The standard in-package input test set and default arguments are used in 

performance evaluation, except FFT with –m20, LU_NON with –n512 and RADIX with 

-n1048576 to obtain a longer execution time (minimize the impact of initial 

single-thread startup). We evaluate both unmodified QEMU and PQEMU in the 

emulation of the quad-core ARM11MPCore system. There are two host threads in 

QEMU and five in PQEMU (the additional one stands for IO thread in Figure 12 and 

15). Since the IO thread is idle most of the time and there are eight hardware threads 
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(due to hyper threading in the i7 processor), the execution is not suffered from situation 

depicted in Figure 10(c). 

Computation    1  2 4 Total  1 2  4
LU  11,956,862  12,043,158 12,143,627 12,630,126  12,718,143 12,823,751
LU‐NON  13,440,032  13,507,292 13,578,076 13,864,701  13,941,957 14,014,652
OCEAN  17,890,290  17,873,450 18,129,541 29,415,089  29,566,996 30,202,861
OCEAN‐NON  18,123,181  18,019,329 18,405,727 29,184,820  29,189,187 30,020,996
FFT  20,480,395  20,563,329 20,589,159 36,293,727  36,367,771 36,394,870
BARNES  95,543,726  96,087,091 96,804,383 191,262,735  192,315,200 193,680,528
WATER‐NSQUARED  13,501,402  13,569,572 13,707,009 22,781,615  22,898,790 23,126,772
WATER‐SPATIAL  16,356,560  16,749,712 16,643,495 27,836,788  28,559,437 28,395,118
RADIX  282,711  314,175 353,454 13,547,863  13,640,176 13,764,655
CHOLESKY  55,980,108  95,437,327 429,674,981 57,399,516  97,025,885 431,139,936
RADIOSITY  21,803,196  22,333,340 49,516,787 21,803,343  22,333,997 49,518,255
FMM  82,653,099  84,083,341 86,096,993 138,454,181  139,577,817 144,116,090

Table 3: Total and computation time on QEMU 

 

 Figure 18: Speedup in total execution time on QEMU 
Synchronization 1  2 4 Total  1 2  4
LU  2,456  185,245 725,972 12,630,126 12,718,143  12,823,751
LU‐NON  2,574  229,860 630,794 13,864,701 13,941,957  14,014,652
WATER‐NSQUARED  1,185  1,575 12,659 22,781,615 22,898,790  23,126,772
WATER‐SPATIAL 975  1,600 4,463 27,836,788 28,559,437  28,395,118

Table 4: Synchronization and total execution time on QEMU 

The measured execution time statistics from unmodified QEMU is listed in Table 3. 

To avoid misleading test result from biased scheduling on the guest, we set parameter 

lpj=2000000 at guest kernel boot up stage to enforce uniform task distribution. As 
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shown in Figure 18, CHOLESKY and RADIOSITY have suffered from QEMU’s 

sequential emulation model. Others are less affected and have almost constant execution 

time no matter how many computing threads are created. This is because the execution 

sequence of emulation threads roughly matches the ideal case that these multi-threaded 

programs have minimal lock contention (with the scheduler of the guest OS, the QEMU 

time-sharing mechanism and the final physical core execution on the host). As a result, 

lock waiting time is insignificant in total execution time (as shown in Table 4). The extra 

execution time for those running with more threads is mainly coming from thread 

initialization overhead. 

Computation    1  2 4 Total  1 2  4
LU  11,830,511  8,205,100 5,655,866 12,507,229  8,884,373 6,322,780
LU‐NON  13,963,276  10,041,668 6,446,064 14,411,856  10,482,616 6,878,185
OCEAN  18,382,280  12,722,068 8,987,026 30,160,886  20,858,148 15,044,954
OCEAN‐NON  18,862,371  12,618,376 9,541,267 30,633,781  20,477,191 15,373,202
FFT  20,562,483  15,293,905 10,675,152 36,488,045  31,349,617 26,891,250
BARNES  99,129,935  72,824,301 198,074,502  146,146,038
WATER‐NSQUARED  14,126,427  9,751,503 6,881,044 23,785,635  16,448,005 11,746,993
WATER‐SPATIAL  16,572,641  11,683,360 8,122,711 28,224,361  19,925,711 13,808,741
RADIX  292,414  159,043 164,949 13,859,818  9,936,846 8,046,066
CHOLESKY  59,267,458  41,338,329 60,604,353  42,754,605
RADIOSITY  22,227,277  13,992,268 9,631,123 22,227,464  13,994,121 9,633,033
FMM  85,516,940  58,796,549 143,311,993  98,615,493

Table 5: Total and computation time on PQEMU 
Computation    1  2 4 Total  1 2  4

LU  11,760,420  5,988,663 3,068,835 12,449,613  6,652,740 3,735,852
LU‐NON  13,669,770  6,948,221 3,564,376 14,108,368  7,371,654 3,988,843
OCEAN  23,629,428  12,204,000 6,697,438 37,748,856  19,622,351 11,185,271
OCEAN‐NON  17,914,326  9,264,574 5,119,124 28,885,215  15,077,676 8,767,502
FFT  20,489,448  10,689,639 5,895,719 36,270,786  26,051,935 21,439,224
BARNES  92,927,541  48,435,767 27,761,680 186,021,594  96,998,304 56,703,937
WATER‐NSQUARED  299,021  157,456 108,814 14,368,040  7,915,873 5,309,572
WATER‐SPATIAL  14,006,542  7,471,233 4,373,935 23,568,302  12,572,691 7,362,595
RADIX  16,826,744  9,071,578 5,544,072 28,613,229  15,433,753 9,506,497
CHOLESKY  59,294,197  33,764,046 20,845,400 60,614,085  35,137,801 22,274,504
RADIOSITY  21,709,082  11,797,529 7,883,881 21,709,244  11,799,251 7,884,979
FMM  82,161,912  43,300,616 24,473,332 137,688,317  73,398,298 42,741,388

Table 6: Total and computation time on PQEMU-iolock 
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Computation    1  2 4 Total  1 2  4
LU  12,491,388  6,266,915 3,282,426 13,167,277  6,919,032 3,944,870
LU‐NON  13,664,329  6,763,817 3,494,610 14,112,285  7,179,306 3,913,900
OCEAN  18,363,111  9,063,436 4,697,792 30,267,383  15,038,868 7,943,723
OCEAN‐NON  18,559,688  9,230,398 4,866,126 29,837,206  14,900,129 7,966,120
FFT  20,510,616  10,266,048 5,206,925 36,032,337  25,477,905 19,802,895
BARNES  94,568,358  47,238,365 23,761,224 189,563,707  94,616,131 48,511,206
WATER‐NSQUARED  14,669,021  7,541,933 3,907,758 24,653,111  12,702,050 6,599,917
WATER‐SPATIAL  17,251,937  8,853,185 4,309,220 29,390,879  15,097,609 7,344,492
RADIX  280,304  151,556 106,762 13,766,060  7,165,749 3,606,397
CHOLESKY  60,454,247  30,705,679 15,871,734 61,769,793  32,049,099 17,258,150
RADIOSITY  22,766,116  11,354,361 5,732,509 22,766,250  11,355,024 5,734,256
FMM  82,213,655  41,159,117 20,960,551 137,741,103  69,786,901 36,481,470

Table 7: Total and computation time on PQEMU-iolock-unserial 
Computation    1  2 4 Total  1 2  4

LU  12,500,135  6,301,038 3,210,045 13,316,378  6,949,912 3,854,712
LU‐NON  13,711,884  6,873,013 3,534,041 14,156,232  7,298,518 3,950,252
OCEAN  18,158,421  9,005,135 4,674,463 29,795,077  14,885,872 7,833,963
OCEAN‐NON  17,950,226  9,022,857 4,644,418 28,970,921  14,624,015 7,659,490
FFT  20,417,101  10,182,911 5,167,499 36,090,657  25,137,358 20,003,613
BARNES  92,620,785  46,812,385 24,030,436 185,659,068  93,875,819 49,013,368
WATER‐NSQUARED  14,668,985  7,435,084 3,895,907 24,694,992  12,537,784 6,659,957
WATER‐SPATIAL  16,806,299  8,448,979 4,313,542 28,516,019  14,438,246 7,378,713
RADIX  279,179  151,432 79,629 13,576,245  6,878,522 3,537,965
CHOLESKY  58,005,811  29,785,002 15,848,168 59,353,382  31,132,625 17,234,117
RADIOSITY  21,547,176  10,930,511 5,571,064 21,547,335  10,934,197 5,572,033
FMM  82,121,934  40,980,407 20,991,860 137,554,903  69,547,083 36,644,874

Table 8: Total and computation time on PQEMU-iolock-unserial-unchain 
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Figure 19: Speedup in total execution time on PQEMUs 
Synchronization 1  2 4 Total  1 2  4
LU  2,351  43,125 55,001 13,316,378 6,949,912  3,854,712
LU‐NON  2,411  57,960 120,121 14,156,232 7,298,518  3,950,252
WATER‐NSQUARED  774  1,126 1,439 24,694,992 12,537,784  6,659,957
WATER‐SPATIAL 943  1,120 1,218 28,516,019 14,438,246  7,378,713

Table 9: Synchronization and total execution time on 

PQEMU-iolock-unserial-unchain 

Now we evaluate the parallel execution of our PQEMU. Without the special lpj 

setting, the execution of the four VCPU threads would correctly emulated the SMP 

platform of the guest system (BogoMIPS in the range of 557 ± 10 MHz by our host 

machine). Four PQEMU configurations are evaluated: 

I. PQEMU: Parallel execution model for the VCPU threads (one thread per guest 

core), but the IO thread activities are serialized. Find and Build events (see Table 

1) are also in sequential order. 

II. PQEMU-iolock: Same as configuration I, except no serialization for the IO 
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thread. 

III. PQEMU-iolock-unserial: In addition to configuration II, remove the serialization 

for Find and Build. 

IV. PQEMU-iolock-unserial-unchain: Same as configuration III, plus closure size 

reduction and keep the internal linking information unchanged during unchaining. 

Speedup and timing data are shown in Figure 19 and Table 5 to 8. The execution of 

BARNES, CHLESKY and FMM on PQEMU do not terminate. However, the guest OS 

does work correctly, including delivering SIGINT to those three programs. Other 

programs have been sped up from parallel execution, but exhibit a performance ceiling 

around two time speed-up with four computing threads. One problem of this limited 

speed-up is due to the unnecessary locking of the IO thread. This became apparent 

when we compare this configuration with PQEMU-iolock. All emulation threads are 

suspended in the VM manger when IO between SVM and the host is active. They are 

released later in a sequential order and the first thread is likely to get whatever it wants 

and the other non-terminated threads may suffer from starvation and makes no 

substantial movement on the guest platform. Serialization for Find and Build is a 

severe performance limiter, even if the translation time is short. Parallelizes the Find 

and the Build event will be very beneficial to performance for guest programs with 

large execution footprint. Other enhancements to unchaining are less important 
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compared to the parallel execution of the IO thread with emulation threads, and the 

parallel execution of the Find and the Build event. Although the total execution time 

of PQEMU-iolock-unserial-unchain is lower, the speedup is less than 

PQEMU-iolock-unserial.  

Due to its lengthy single-thread initialization phase, FFT is the only one among 

the 12 programs that does not yield linear speedup, even when the parameter –m20 is 

set for extended computation time. In short, removing the IO thread locking and 

serialization for Find and Build are critical in performance for parallel programs like 

SPLASH2. 

  Build Restore Chain (really in effect) Unchain Find  Execute  SMC Flush  Indirect 
jump

LU  0  0  2,491 589 151,522,256 151,522,253  0  0  84,128,412
LU‐NON  1  0  319 437 169,594,200 169,594,196  0  0 109,398,963
OCEAN  28  2,647  5,096 387 134,078,150 134,078,119  0  0  96,597,226
OCEAN‐NON  7  4,919  350 327 132,037,727 132,037,705  0  0 100,398,406
BARNES  23  43  573 484 126,125,113 126,125,113  0  0  62,621,591
FMM  0  0  5,439 423 165,117,575 165,117,570  0  0  55,258,028
FFT  0  0  319 321 164,720,653 164,720,650  0  0  31,463,482
WATER‐NSQUARED 0  0  638 464 169,991,573 169,991,571  0  0 100,262,823
WATER‐SPATIAL  6  7  255 349 169,439,610 169,439,604  0  0 117,123,685
CHOLESKY  165  0  4,931 412 154,457,906 154,457,897  0  0  59,004,723
RADIOSITY  1  0  916 471 199,227,633 199,227,629  0  0 119,847,556
RADIX  4  747  3,449 327 182,610,012 182,610,008  0  0 134,007,264

Table 10: Internal event counts excluding initialization 

   Build  Restore  Chain (really 
in effect) Unchain Find  Execute  SMC Flush Indirect jump

LU  48,591,355  10,484,591 2,056,190 261,918 779,004,197 11,952,104,747  0  0 151,519,295
LU‐NON  47,633,396  9,684,321 924,728 223,973 984,353,348 14,242,104,909  0  0 169,593,468
OCEAN  188,401,913 105,071,413 2,198,500 365,030 2,303,958,894 15,089,606,613  0  0 134,066,380
OCEAN‐NON  197,295,064 224,065,767 2,736,739 320,278 2,161,935,168 15,705,508,015  0  0 132,028,714
BARNES  80,146,863  23,898,896 599,462 161,774 1,879,347,302 10,413,655,692  0  0 126,123,698
FMM  54,081,941  83,013,795 2,720,374 306,095 1,486,963,312 7,321,189,524  0  0 165,111,967
FFT  17,084,215  41,720,348 294,390 205,971 744,816,516 3,443,569,072  0  0 164,720,301
WATER‐NSQUARED 149,562,633 310,502,497 1,992,802 315,380 1,868,673,548 10,869,443,058  0  0 169,990,717
WATER‐SPATIAL  72,639,593  30,407,718 1,636,526 272,683 2,435,319,812 12,966,436,716  0  0 169,439,226
CHOLESKY  47,817,089 164,655,141 2,887,746 327,035 1,755,196,376 8,487,668,173  0  0 154,452,785
RADIOSITY  72,363,810 150,262,137 1,746,179 226,722 2,938,046,563 10,356,750,559  0  0 199,226,551
RADIX  13,033,261  15,603,614 1,300,736 209,613 3,940,714,485 11,749,027,984  0  0 182,605,679



- 49 - 

Table 11: Internal event counts including initialization 

To look deeper into the behavior of PQEMU-iolock-unserial (after applying two 

most effective optimizations), event counts accumulated from four VCPU threads of 

the 12 SPLASH2 programs are listed in Table 10 and 11. No SMC and Flush events 

have been observed from the SPLASH2 programs (no self-modification and the 

translated code completely fit in the code cache). The Find and the Execute counts are 

very high, as was expected. Based on the state transition diagram in Figure 14, 

PQEMU goes to the Chain state after code fragment being executed is found. But this 

event does not happen frequently since not many direct branches were executed in the 

SPALSH2 code. Therefore, the emulation flow in PQEMU is often a repetition between 

code lookup in the VM manager (Find) and the execution in code cache (Execute). 

CHOLESKY has larger footprint because of its higher-than-average Build events (as 

shown in Table 10), and OCEAN has bigger data set based on its higher data page fault 

rate by the event count of Restore. 

 We could probe further if we have elapse time of events measured. However, 

the period of an event that the emulation thread stays in is usually quite short, using 

gettimeofday() system call to measure can be misleading due to the excessively long 

entry and exit path of the host kernels. Instead, we rely on the x86 non-privileged Read 

Time-Stamp Counter (i.e. rdtsc). Since incremental rate is varied with physical core 
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frequency, the reading cannot convert to absolute time directly (i.e. it is in unit of cycle 

count). As a consequence, time periods are counted in difference of rdtsc readings 

before and after an event. The accumulated counts to all 12 programs are shown in 

Table 12 (initialization excluded) and 13 (initialization included). The respective ratios 

are shown in Figure 20 and 21. As expected, the most time consuming event is 

Execute. The next top consumer is Find, taking 15% to 30% of total execution time. 

This indicates that removing serialization of Find should have great value (also the 

optimizations for preventing emulation thread from jumping out of code cache). 

  Build  Restore  Chain (really 
in effect) Unchain Find  Execute  SMC Flush

LU  0  0  1,420,087  266,306  4,748,893,395 26,571,988,692  0  0 
LU‐NON  56,910  0  155,585  130,391  5,437,615,196 24,892,416,307  0  0 
OCEAN  505,909  61,229,194  2,249,968  437,480  6,436,424,996 25,372,726,915  0  0 
OCEAN‐NON  292,287 149,808,953  192,571  135,493  5,860,047,572 25,844,408,318  0  0 
BARNES  796,103  1,681,863  324,995  208,303  6,876,772,730 24,914,365,292  0  0 
FMM  0  0  2,147,201  451,216  6,502,271,218 24,735,054,346  0  0 
FFT  0  0  121,467  121,880  6,461,215,397 24,446,760,697  0  0 
WATER‐NSQUARED 0  0  431,250  215,487  6,698,778,525 21,345,822,838  0  0 
WATER‐SPATIAL  80,744  238,426  189,833  129,085  7,263,955,253 23,386,911,963  0  0 
CHOLESKY  3,638,164  0  2,151,544  308,060  7,520,796,294 24,285,955,782  0  0 
RADIOSITY  51,105  0  1,689,531  272,999  8,828,159,300 20,398,966,143  0  0 
RADIX  75,820  14,313,897  935,878  255,447  8,846,430,381 20,656,247,127  0  0 

Table 12: rdtsc counts of events excluding initialization 

Figure 20: Ratio of rdtsc counts excluding initialization 
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LU  48,591,355  10,484,591  2,056,190  261,918  779,004,197 11,952,104,747  0  0 
LU‐NON  47,633,396  9,684,321  924,728  223,973  984,353,348 14,242,104,909  0  0 
OCEAN  188,401,913 105,071,413  2,198,500  365,030  2,303,958,894 15,089,606,613  0  0 
OCEAN‐NON  197,295,064 224,065,767  2,736,739  320,278  2,161,935,168 15,705,508,015  0  0 
BARNES  80,146,863  23,898,896  599,462  161,774  1,879,347,302 10,413,655,692  0  0 
FMM  54,081,941  83,013,795  2,720,374  306,095  1,486,963,312  7,321,189,524  0  0 
FFT  17,084,215  41,720,348  294,390  205,971  744,816,516  3,443,569,072  0  0 
WATER‐NSQUARED 149,562,633 310,502,497  1,992,802  315,380  1,868,673,548 10,869,443,058  0  0 
WATER‐SPATIAL  72,639,593  30,407,718  1,636,526  272,683  2,435,319,812 12,966,436,716  0  0 
CHOLESKY  47,817,089 164,655,141  2,887,746  327,035  1,755,196,376  8,487,668,173  0  0 
RADIOSITY  72,363,810 150,262,137  1,746,179  226,722  2,938,046,563 10,356,750,559  0  0 
RADIX  13,033,261  15,603,614  1,300,736  209,613  3,940,714,485 11,749,027,984  0  0 

Table 13: rdtsc counts of events including initialization 

Figure 21: Ratio of rdtsc counts including initialization 
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pipeline organization on this multi-core system, and bottleneck is the scarcity of 

computing power (Figure 23). Plus, on-chip memory controller design of i7 

significantly lower the page-fault cost for the OCEAN suites, which has only 3X 

speedup on the ARM evaluation board. 

Computation    1  2 4 Total  1  2  4
LU  33,616,819    16,719,281  8,428,542  35,644,072    18,359,981  10,086,721 
LU‐NON    35,463,286    17,901,483  9,325,939  36,783,508    19,160,740  10,584,932 
OCEAN  53,988,084    28,414,481  17,468,303  86,569,315    45,570,197  27,318,815 
OCEAN‐NON  54,923,528    29,009,689  17,400,661  86,272,752    45,541,175  26,999,008 
FFT  54,254,801    29,354,327  17,326,374  91,559,986    65,058,481  52,541,527 
BARNES  199,361,933    100,518,349  50,380,536  399,100,008    201,153,644  103,333,950 
WATER‐NSQUARED  32,228,654    16,658,914  8,649,881  54,142,938    27,974,766  14,545,012 
WATER‐SPATIAL  37,446,669    18,771,448  9,416,547  63,390,658    31,781,328  15,963,576 
RADIX  2,156,894    1,566,336  1,467,108  31,174,800    16,106,258  8,744,874 
CHOLESKY  139,298,040    69,736,162  36,989,014  144,355,716    74,564,784  42,051,185 
RADIOSITY  40,998,411    20,594,519  10,377,942  40,998,543    20,596,389  10,380,134 
FMM     

Table 14: Total and computation time on ARM11MPcore 

Figure 22: Speedup in total execution time on ARM11MPcore 
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Figure 23: Speedup in computation time on ARM11MPcore and 

PQEMU-iolock-unserial-unchain 
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5 Related Works 

 Traditionally, system simulators can be classified into two categories. In cycle- 

accurate fashion, the goal is to discover the interactions between hardware and software. 

It is usually rich in modeling micro-architectural details such as pipelined 

implementation, function unit latency and memory hierarchies. SimpleScalar [3] is one 

example that reads and interprets user input binary to get estimated execution cycle 

count without optimizing the process of simulation. Its descendent includes Wattch [2] 

for power consumption evaluation and RSIM [14] for multiprocessor environment 

emulation. To understand the interaction between applications and the surrounding 

system, including system peripherals, I/O, file systems and system services from OS, a 

full-system level emulation is invented, such as SimOS [10] and Bosch [8]. Simics [12] 

is famous in this group that relaxes timing details to functional level, but enables a view 

to entire guest machine. To pursuit greater speed, the timing information is totally 

abandoned in the field of instruction-accuracy. Emulator respects purely to the 

semantics of guest instructions defined by source ISA, yet those time-consuming 

architectural aspects are all bypassed. The purpose of emulation now turns into 

providing a virtual platform rather than presence of hardware insight. Correct program 

behavior is the only must for such instruction-accuracy SVM, and there is much room 

for applying more elaborate emulation technique like Dynamic Binary Translation [1, 4 
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and 16]. Oppose to static alternative [9], DBT concentrates on run-time hot traces and 

converts them into code fragments in target ISA format. A software code cache is 

organized to prevent re-translations, and chaining will connect two consecutive code 

fragments in avoidance of time-wasting code lookup by VM manager. Embra [16] is 

renowned to the outstanding performance for MIPS R3000/R4000 system emulation, 

but it is not re-targetable for different ISAs. QEMU [5] compensates this constraint by a 

portable built-in compiler framework, which results in wide source/target architecture 

combinations and rich peripheral support. QEMU translates all confronted guest code in 

granularity of basic block terminated by all sorts of branches defined in source ISA. 

Ultimately, there comes a native virtualization approach which allows guest program 

running directly on target processor without any modification as VirtualPC [6] and 

VMWARE [15]. It is the same ISA virtualization and guest execution is close to native 

speed as instruction semantics and hardware features are similar or even identical 

between source and target machines.  
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6 Conclusion and Future Work 

In this thesis, we present a parallelized QEMU, called PQEMU, to support efficient 

emulation of future multi-core processors on current multi-core machines. PQEMU 

effectively exposes multiple virtual CPU parallelism in the guest machine and then 

exploits the available multi-core parallelism of the underlying host machine. By a 

one-to-one mapping from the guest CPU, to an emulation thread in PQEMU, to a real 

hardware core, processor resources of the host machine could be effectively utilized, 

and the emulation can enjoy large speed up. Making all components of PQEMU 

thread-safe is not trivial, as they should operate efficiently and faithfully emulate the 

behavior of real machines. Most components are shared among emulation threads in the 

current PQEMU design for implementation simplicity and reusability for translated 

code. We have introduced a set of locking schemes to protect all shared data structures 

without sacrificing much performance from parallel execution. This set of locking 

scheme comes from iterative tuning after we identified potential bottlenecks of earlier 

implementations of PQEMU.  

ARM features a weakly-ordered memory system. In PQEMU, a special code 

emitter handles all guest atomic instructions. Lock primitives (i.e. spinlock) are 

generated at a late code generation stage to minimize locking overhead. Using the 



- 57 - 

SPLASH2 benchmark, our experiments show that PQEMU is quite scalable on Intel 

quad-core i7 processor and performance is even faster than the ARM11MPcore 

evaluation board based system. 

PQEMU meets the goal of system emulation in providing a high performance  

platform for rapid prototyping. In the near future, we plan to extend the number of 

available cores in PQEMU from four to sixteen and experiment with other less-parallel 

but multi-threaded programs like database benchmarks to stress test PQEMU for its 

ability to handle contentions on the shared code cache. 
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