
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

平行化系統虛擬機器設計與實作

PQEMU: Parallelizing System Virtual Machines based on

QEMU

研 究 生：張柏駿

指導教授： 徐慰中 教授

中 華 民 國 九 十 九 年 七 月

 - i -

平行化系統虛擬機器設計與實作

PQEMU: Parallelizing System Virtual Machines based on

QEMU

研 究 生：張柏駿 Student：Po-Chun Chang

指導教授：徐慰中 Advisor：Prof. Wei Chung Hsu

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Department of Computer and Information Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer and Information Science

July 26, 2010
Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

 - ii -

平行化系統虛擬機器設計與實作

學生：張柏駿 指導教授：徐慰中

國立交通大學資訊科學與工程研究所

摘 要

系統模擬器是一種快速評估、調整和驗證軟體原型的重要工具，其實用性取

決於其速度和準確性。現今流行的 QEMU 系統模擬器採用動態二進制翻譯來實現高

效能之系統模擬。然而其設計並無法有效利用潛在於軟體和底層硬體中的平行性。

本論文提出一個增強型設計 PQEMU，可有效地將多個虛擬 CPU 對應至實體多核心

上。實驗結果顯示此方法能有效提昇系統模擬器之平行性和擴展性。透過測試程

式 SPLASH-2 我們發現到在模擬一個四核心的 ARM11MPCore 系統於四核心 x86 i7

機器上時，PQEMU 最高可達到相對於原本 3.98 倍的效能增進。

 - iii -

PQEMU: Parallelizing System Virtual Machines based on

QEMU

Student: Po-Chun Chang Advisors: Prof. Wei Chung Hsu

Department of Computer and Information Science
College of Electrical Engineering and Computer Science

National Chiao Tung University

ABSTRACT

A system emulator is an important tool to evaluate, debug and verify software

developments before the real hardware systems become available. The key to a
successful system emulator lies in its speed and accuracy in the emulation of the real
machine. QEMU is a popular system emulator that adopts dynamic binary translation
techniques to achieve high emulation efficiency. However, its current design takes no
advantage of the parallelism available in guest applications and underlying hardware
resources. In the current QEMU, simulation activities are going in serial, with a
time-shared fashion. This thesis presents a parallelized QEMU, called PQEMU, which
can uniformly distribute emulating jobs to underlying multi-cores. Our experiment
results with PQEMU show that our design and implementation have significantly
improved QEMU’s emulation performance on multi-core machines. Using the
SPLASH-2 benchmark, PQEMU can be up to 3.98x faster than the original QEMU
when emulating a quad-core ARM11MPCore system on a quad-core x86 i7 machine.

 - iv -

誌 謝

由衷感謝所有人的幫助。

張柏駿

2010 年 7 月

 - v -

To my parents, and Prof. Hsu

 - vi -

Contents

1 Introduction .. 1
2 Overview .. 5

2.1 Structure of a System Virtual Machine ... 5
2.2 Case Study: QEMU ... 7

2.2.1 Internal Data Structures in QEMU ... 8
2.2.2 From Guest Instruction to Target Machine Code 11
2.2.3 Reconstruct the Guest PC Address ... 14
2.2.4 Translation Output of a Memory Instruction ... 15
2.2.5 Protection for Translated Code .. 16
2.2.6 Chaining and Unchaining ... 16

2.3 Multi-Core Awareness ... 17
2.4 Engineering Challenges .. 20

3 Design and Implementation ... 25
3.1 Environment .. 25
3.2 Realization .. 25
3.3 Practices and Enhancements ... 37

4 Experimental Results ... 42
5 Related Works .. 54
6 Conclusion and Future Work ... 56
References ... 58

 - vii -

List of Figures

Figure 1: Virtual CPU Architectural states in QEMU .. 8
Figure 2: Memory address translation in QEMU .. 9
Figure 3: Structure of a code cache ... 10
Figure 4: How a code fragment is invoked by the VM manager 12
Figure 5: Calling a helper function inside a code fragment 13
Figure 6: Deliver a guest exception in QEMU .. 14
Figure 7: Example output of a guest load instruction ... 15
Figure 8: Branch at the last part of a code fragment... 16
Figure 9: Patching a branch destination on x86 machine ... 21
Figure 10: From guest processor to physical core .. 23
Figure 11: State diagram of QEMU events ... 27
Figure 12: Software layout in QEMU ... 28
Figure 13: Lock scheme in current PQEMU .. 32
Figure 14: Lock protection scheme in current PQEMU ... 33
Figure 15: Revised software layout for a dual-core guest in PQEMU 36
Figure 16: Vulnerability of lock attribute switch ... 37
Figure 17: The closure of an entry code fragment A for unchaining 39
Figure 18: Speedup in total execution time on QEMU .. 43
Figure 19: Speedup in total execution time on PQEMUs .. 46
Figure 20: Ratio of rdtsc counts excluding initialization ... 50
Figure 21: Ratio of rdtsc counts including initialization .. 51
Figure 22: Speedup in total execution time on ARM11MPcore 52
Figure 23: Speedup in computation time on ARM11MPcore and

PQEMU-iolock-unserial-unchain .. 53

 - viii -

Table 1: Disposition of event combinations in PQEMU .. 30
Table 2: Experimental environment .. 42
Table 3: Total and computation time on QEMU ... 43
Table 4: Synchronization and total execution time on QEMU 43
Table 5: Total and computation time on PQEMU .. 44
Table 6: Total and computation time on PQEMU-iolock ... 44
Table 7: Total and computation time on PQEMU-iolock-unserial 45
Table 8: Total and computation time on PQEMU-iolock-unserial-unchain 45
Table 9: Synchronization and total execution time on

PQEMU-iolock-unserial-unchain .. 46
Table 10: Internal event counts excluding initialization .. 48
Table 11: Internal event counts including initialization .. 49
Table 12: rdtsc counts of events excluding initialization .. 50
Table 13: rdtsc counts of events including initialization .. 51
Table 14: Total and computation time on ARM11MPcore .. 52

- 1 -

1 Introduction
A multi-core processor is a processing system composed of two or more

independent cores. The general trend in processor development has moved from single

core to multi-core for several years. Nowadays it is difficult to find a server, a desktop,

or even a laptop with a single core processor. It is expected that embedded systems will

follow this trend soon [11]. Different from multi-processor in early days, such as the

SMP (Symmetric Multi-Processors), buses and shared caches are now integrated onto

the same chip with the multiple cores, thereby reducing the synchronization and

communication latency between different cores. Although this new technology offers

great potential for computing performance, such parallelism exists in hardware level

and it relies on software to make good use of it. Numerous parallel algorithms have

been developed, and the Operation Systems have exploited thread-level parallelism in

addition to process-level parallelism. Both are trying to effectively exploit more

parallelism of the underlying hardware computing resources. In practice, effective use

of the parallel cores requires delicate engineering expertise and programming skills. To

obtain an n-fold speedup of an application from an n-cores machine is a challenging

and daunting task, not a trivial exercise.

A system virtual machine can support a guest OS along with its many user

processes, and the guest architecture could have a different ISA (Instruction Set

- 2 -

Architecture). In this case, the virtualizing software must emulate the guest ISA on the

host machine. QEMU is one commonly used system virtual machine. For example, it

can be used to emulate an ARM MPCore system (guest) on an Intel x86-based system

(host). A system virtual machine creates a computer environment within one another by

one extra layer of software. Transparency of this layer determines how virtualization is

realized: either by para-virtualization if the upper layer software, usually the guest OS,

has a good knowledge of the existence of the virtualizing software, or it is called full-

virtualization. Cooperation from the guest OS, as in the former approach, is for

performance, but the guest OS must be modified to work with the virtualization layer.

On the contrary, full-virtualization requires no changes to existing guest OS. In this

thesis, we deal with full virtualization where an original Linux/ARM is emulated by

the QEMU on an x86-based system.

Future embedded systems are likely to be built on top of multi-cores, and so are

target systems to emulate. For example, we may like to study ARM based multi-core

systems on a modern x86 platform. In order to understand the benefit from the power of

multi-cores, the emulation in our system virtual machine must convey such parallelism

as much as possible from the guest to the host on the physical cores. In other words, it is

critical to arrange the emulation of each guest core as a thread executing on the host

machine. So the emulation of multiple virtual CPU on the guest machine will become

- 3 -

multiple threads running on the multi-cores of the host machine. This thesis proposes a

scheme that represents each guest core as a dedicated host thread which can be

scheduled by the host OS independently. Threads for virtualized CPU can be easily

identified by their strong computation demands, and a SMP-enabled host OS can

schedule those virtual CPU threads properly on the underlying physical cores. Ideally,

each process running on a virtual CPU could have its own parallelism to be exploited.

The host system might have sufficient number of cores to handle a larger volume of

emulation threads. For example, we might emulate an 8-core guest system on a four

core host machine. However, we restrict our discussion in level of the system virtual

machine, thereby less room will be given to the exploitation of further parallelism from

the perspective of a thread or process.

In this thesis, the parallelization work is based on the versatile and popular system

emulator QEMU [5]. QEMU adopts DBT (Dynamic Binary Translation) [16]

techniques for fast ISA emulation. The emulator is working around a data structure

called “code cache” which stores the translated code from the source ISA to target ISA

for fast native code execution. To parallelize QEMU, we break all emulation activities

into different events. The dependences between events are analyzed to determine how

such events are synchronized. This design methodology gives us an enhanced

thread-safe version of QEMU, named PQEMU. To mimic a more realistic design

- 4 -

scenario of a contemporary embedded system, we select ARM11MPCore as our guest

system, and latest x86 multi-core system is our host. Although this work is built on top

of QEMU, it is not specific to a particular design. Rationales for synchronization and

serialization between events are applicable to all system emulators using DBT

techniques. The experimental results using the well-known multi-threaded benchmark

SPLASH-2 show that a maximum of 3.98x speedup achieved with our current PQEMU

implementation running on the Intel quad-core i7 system. In addition, our PQEMU

outperforms the real ARM11MPCore hardware by 181% to 372% when running the

SPLASH-2 benchmark programs.

- 5 -

2 Overview

2.1 Structure of a System Virtual Machine

A System Virtual Machine (SVM) is a software layer capable of providing a virtual

environment for the guest software (usually the guest OS). It comprises CPU, memory

and IO modules in analogy to what a real computer has. In a hosted VM design, where

the SVM is a user program inside the host OS, a virtual CPU is treated as a thread with

additional memory for all guest architectural state, similar to the thread structure for OS

context switch. Guest code execution is carried out through either interpretation, or

dynamic binary translation, or the mixture of both. When the guest ISA is compatible

with the host ISA, direct execution of native code can also be used for fast emulation.

Interpretation is a straightforward approach to emulate a guest ISA, by mimicking the

real hardware actions of fetch, decode, and execute in instruction sequence. However,

interpretation is inefficient as most actions are redundant. To minimize redundancies,

DBT [16] translates those guest instructions on-the-fly to correspondent target codes.

The translation cost is high, but it is a one-time cost since the cost will be amortized

over repeated execution such as in common subroutines or loops. Those translated

codes are hold in a SVM-managed memory pool to prevent from re-translation. The

memory pool holding the translated code is usually called code cache and in size of

several megabyte. Emulation flows under such DBT-based framework can be separated

- 6 -

into several events such as: a) finding translated code fragment by the VM manager

(generate if not exist), b) executing the code inside the code cache, and c) going back to

the VM manager for next block of guest instructions. To decrease the frequency of

going back to the VM manager and jump to a target block again, the branch destination

at the end of a code fragment is often patched to what will be executed next in code

cache (if it has been translated). This process is called chaining. The links between

translated blocks will be gradually formed as time goes by, and eventually emulation

will spend most of its time in code cache.

Guest memory is mapped to the virtual space of SVM. Although the functionality is

preserved, their timing characteristics are lost. That means a FLASH memory access

could be as fast as DDR from the emulation perspective in this environment. Besides,

cache hierarchy on guest is often intentionally ignored, leaving the job of locality

exploitation to the host hardware caches.

IO emulation is achieved through emulation functions, either completely inside

SVM or in cooperation with the host. For instance, hardware timer is realized by the

SIGALARM-like timer facility and guest DMA requests are accomplished by memcpy()

calls. Different from real hardware, SVM could not properly deliver interrupts without

temporarily breaking the execution in code cache. One might argue this could be

emulated by intermixing such check-and-deliver code inside the translated code just

- 7 -

like what hardware exception mechanism will do, but that will end up in excessive

checking as interrupts come infrequently and irregularly. A more efficient

implementation is that SVM uses unchaining to break execution flow, which is a reverse

process of chaining that restores final branch destinations to the VM manager. Another

important issue for emulation is memory address translation, including conversion from

guest physical to host virtual address mapping and the detection of memory-mapped IO

(MMIO) accesses. A common solution is using software memory mapping, like a

software controlled TLB, which deploys extra checking and mapping to satisfy all

above requirements.

2.2 Case Study: QEMU

 QEMU [5] is a well-known emulator for its flexible guest to host machine

combinations and rich supports in IO devices. Though treated as a SVM in this work, it

could function in Process Virtual Machine (PVM) mode too. QEMU adopts a simple

compiler framework to do translation and apply some conservative optimizations.

Different from earlier versions that deeply depend on template code with fixed register

usage, today QEMU installs a register allocator to dynamically allocate host registers.

QEMU is widespread on almost all platforms, and porting to a new machine is merely

adding a guest frontend and/or a host backend. To reduce translation time during

emulation, optimization algorithms applied are crafted in linear time complexity.

- 8 -

Memory address mapping is totally accomplished inside QEMU without any hardware

intervention, i.e. using the access-trap-emulate scheme. To facilitate the conversion

process, every guest core is equipped with a software managed TLB-like table. This

implies the translation outcome of a guest memory instruction is consisted of a fast-hit

and a slow-miss helper-calling path along with table lookup code at beginning, an

approximately 20-fold increase in instruction count on the x86 machine. To distinguish

MMIO requests from ordinary memory access, entries in TLB for IO are always marked

invalid. Any read/write of such addresses will be redirected to the slow helper-calling

path, and dispatched to IO emulation function. The overhead is high, and it is

unsurprisingly poor in response time when compared to real hardware. The following

subsections explain QEMU internals in detail by an example of a guest ARM machine

on a generic x86 machine.

2.2.1 Internal Data Structures in QEMU

Figure 1: Virtual CPU Architectural states in QEMU

CPU0

Registers

Co-proce
ssor regs

VFP
registers

…

CPU2

Registers

Co-proce
ssor regs

VFP
registers

…

CPU1

Registers

Co-proce
ssor regs

VFP
registers

…

CPU3

Registers

Co-proce
ssor regs

VFP
registers

…

firstcpu

- 9 -

1. CPU State: A memory block in SVM stores entire guest architectural state of each

virtual CPU with additional bookkeeping information. QEMU initializes all VCPUs

as a linked list at startup time to reflect the cores in the guest machine. Example in

Figure 1 shows the CPU states for quad-core ARM11MPCore system, where VFP

stands for vector floating-point processor.

Figure 2: Memory address translation in QEMU

2. Memory and I/O: they are both initialized at guest machine peripheral setup phase.

Guest memory region is depicted by a malloced QEMU user space virtual memory.

If there are FLASH and SDRAM in the source address space, two virtual memory

chunks inside SVM will be allocated. IO devices are imitated through read and write

device emulation functions, and their function pointers are collected in array IOread

and IOwrite respectively. Address translation is illustrated in Figure 2, where the

mapping is kept by a two-level table similar to the page table in OS, except that it is

static after initialization. A bit field in second level entry is designated to distinguish

regular memory references from MMIO accesses. If it is a MMIO address, the

corresponded second-level entry would be an index to IOread and IOwrite; otherwise it

is a pointer to virtual memory (there is one more layer for regular memory access to

Host OS Guest Virtual
Address

Guest Physical
Address

Host Virtual
Address

Host Physical
Address

Guest OS QEMU

- 10 -

achieve efficient code invalidation against Self-Modify Code (SMC). We skip that

for simplicity). The TLB table deployed in every guest core accelerates the

translation from Guest Virtual Address (GVA) to Host Virtual Address (HVA).

3. Code Cache: it consists of an identification array tbs and a buffer codebuffer for

output code fragments. ID is comprised of guest physical address (how fragment

relates to guest machine code), flags (mainly for x86 segmentation), maintenance

fields and pointer to real code fragment in codebuffer, say TBptr. codebuffer is simply

a large byte array, usually in size of 16 or 32 Mega bytes.

Figure 3: Structure of a code cache

Forward lookup (finding translated code using guest PC address) is slow, as IDs

are not sorted in key of GPA. A hash table with a linked-list is utilized to avoid linear

search under this circumstance. In contrast, backward lookup (from pointer in

codebuffer to ID in tbs) is fast because code fragments are added to codebuffer one

codebuffer

…

tbs

…

- 11 -

by one and therefore tbs are sorted in TBptr key. We will see the importance of

backward lookup when reconstructing guest PC address.

Removing a code fragment is done by erasing TBptr and deleting ID from the

hash table. After these two actions no one can find the removed code through tbs

anymore. But target code still lives in codebuffer, and this ID entry is not recycled

for new fragment unless codebuffer is full or no ID is available. If code buffer does

overflow and no ID is available, then QEMU will trigger a flush and throw all code

fragments away.

2.2.2 From Guest Instruction to Target Machine Code

QEMU uses a source-machine dependent frontend to convert input guest binary to

internal IR, then it emits machine code through a target-specific backend. Before

version 0.11.0, it is highly template-based, implying a strong dependency to a specific

build of compiler. In later versions, it builds a simple compiler constructed into its code

base, which performs register allocation, liveness analysis and constant propagation at

runtime.

 The structure of a code fragment usually starts with loading guest register values,

then performs operations, and spills results back to its architectural state in SVM. Some

registers are reserved for special purpose while others are free to use for emulation

according to target ABI specification. For instance, %ebp on i386 target holds the

- 12 -

pointer to architectural state of guest core currently being emulated as a frame pointer;

while %esp points to stack and others are free for computation (or subset to some

peculiar instructions like ROtate-Right-register, which accepts only %ecx as its

legitimate count register).

 To preserve the C calling convention, common entry gate prologue and exit

epilogue are generated to buffer codegate at the QEMU translation engine startup stage.

This makes all code fragments look like leaf C functions to the VM manager, in which

the pointer to codegate will be casted to a function pointer first and invoked later using

call to a register, e.g. call *%eax on i386. Figure 4 portraits the execution flow from the

VM manager to the code cache.

 Figure 4: How a code fragment is invoked by the VM manager

 Some complex operations, particularly those interacting with QEMU internal data

structures, are much easier to be implemented in C than in the translator IR (although it

codebuffer

epilogue

…

Emulation
manager

call *%eax

codegate

prologue

- 13 -

is good in speed and code size). QEMU introduces a special IR class, IR_CALL, to deal

with the calling of a helper function inside a code fragment. Three segments of target

machine code will be generated from the output emitter: I) spill all guest registers

current on host registers (all caller-saved registers are included indeed), II) call helper

function next, III) and last copy the result if any of destination registers does not match

return registers (%eax and %edx by i386 ABI). Figure 5 illustrates a code fragment

calling another helper function.

Figure 5: Calling a helper function inside a code fragment

Furthermore, helper functions that may generate exceptions and faults on guest

machine might not move back to the calling code fragment. Precise architectural state is

maintained by spilling guest register contents before the helper call in step I, and all

intermediates within the helper are discarded (guest PC is the only exception that

requires recovery. We will discuss it shortly). The disruption of guest execution flow is

codebuffer

epilogue

…

spill registers

call helper

move registers

…

Emulation
manager

call *%eax Helper
function

codegate

prologue

- 14 -

realized through setjmp() and longjmp() library calls, similar to the exception handling

mechanism in C++. Note that the interrupt delivery will never step in this path, as it is

always synchronous to code fragment execution. Guest exception delivery in QEMU is

shown in Figure 6.

Figure 6: Deliver a guest exception in QEMU

2.2.3 Reconstruct the Guest PC Address

For performance reason, the guest PC is updated only once at the end of a code

fragment. For exceptions that disrupt normal execution flows, the guest PC may

become inconsistent. QEMU dedicates a function cpu_restore_state() to recover the

guest PC before calling longjmp(). Specifically, the return address of helper function

obtained via GCC extension is exercised to find the calling code fragment by a

backward search. QEMU retranslates this code fragment again with supplementary

codebuffer

prologue

epilogue

…

spill registers

call helper

move registers

…

Emulation
manager

call *%eax

Helper
function

setjmp() codegate

- 15 -

knowledge about the mapping from the guest PC to target instructions (a one-to-many

function). Then a trivial reverse range matching by the return address will reveal what

exactly the guest PC is, and guest architectural state is fully restored at this moment.

2.2.4 Translation Output of a Memory Instruction

QEMU uses a direct-mapped software managed TLB to check for memory

references. Three segments in the output code fragment will be generated for a normal

memory access instruction: I) check for TLB entry, II) do a fast access if hit in TLB, III)

call memory access helper function if miss in TLB. Figure 7 presents what the translated

code sequence is for an ordinary load instruction using a dump from GDB. As shown in

Figure 7, guest registers are saved first in case of page fault. The helper function in this

example code is __ldl_mmu.

Figure 7: Example output of a guest load instruction

0xf9e00c: mov $0x14,%ecx
0xf9e011: mov %eax,0x4(%ebp)
0xf9e014: xor %eax,%eax
0xf9e016: mov %eax,0x0(%ebp)
0xf9e019: mov %ecx,%edx
0xf9e01b: mov %ecx,%eax
0xf9e01d: shr $0x6,%edx
0xf9e020: and $0xfffffc03,%eax
0xf9e026: and $0xff0,%edx
0xf9e02c: lea 0x540(%edx,%ebp,1),%edx
0xf9e033: cmp (%edx),%eax
0xf9e035: mov %ecx,%eax
0xf9e037: je 0xf9e042
0xf9e039: xor %edx,%edx
0xf9e03b: call 0x81ea033 <__ldl_mmu>
0xf9e040: jmp 0xf9e047
0xf9e042: add 0xc(%edx),%eax
0xf9e045: mov (%eax),%eax
0xf9e047: …..

Compare if TLB hit

TLB miss (including
IO access)
TLB hit, use direct
memory access

Save VCPU registers

- 16 -

2.2.5 Protection for Translated Code

SMC (Self-Modifying Code) refers to writes to the memory of original guest

instructions. Handling SMC is particularly difficult since they might have already been

translated. In such a case, all translated codes in touch with the write address must be

invalidated. To identify those offending writes, QEMU replaces the write entry of the

two-level mapping table with an index to array IOwrite. The indexed write IO function

performs a regular guest memory write together with code fragment invalidation. The

write entry will restore to initial memory pointer if this page covers no translated guest

code.

2.2.6 Chaining and Unchaining

The last part of a code fragment is a branch, either direct or indirect. Chaining will

change the destination of a branch from exit to the VM manager to a code fragment to

be executed next; while unchaining undoes it. The destination to an indirect branch is

fed from a maintenance field of ID; whereas direct one embeds its target in itself. The

instruction modification process for direct branches is similar to what the ELF dynamic

loader resolves undefined symbols. Sample code is shown in Figure 8.

Indirect Jump # Direct jump
mov ($field_address), %eax jmp $0xb85231ed
jmp *%eax

Figure 8: Branch at the last part of a code fragment

Using indirect branch scheme is simple: just a regular access to the field of ID could

- 17 -

change the destination. Direct branch is faster (a single instruction instead of two as for

the indirect branch) but may suffer from limitations imposed by the host machine. For

example, some architectures have limited range for direct branches, and some

architectures lack atomic patches to branch instructions (due to variable length

instructions). Chaining is easy as it is initiated by the emulation thread itself; but

unchaining may originate from different treads, e.g. interrupt notification and exclusive

access. To accommodate this, unchaining is solely invoked via SIGUSR1 signal.

Sending a SIGUSR1 to a thread executing in the code cache will trigger the unchaining

process and cause all branch targets of code fragments in closure (all code fragments

can be reached from the current running code fragment) reverted to epilogue (leading

straight to the VM manager).

2.3 Multi-Core Awareness

 Multi-core is a trend that enables more efficient parallelism exploitation. To make

use of duplicated hardware, SVM must extracts and exposes the potential of parallelism

from guest directly to the target cores. On a parallelized SVM, target cores get better

utilization if greater parallelism is exposed, and the virtual platform resembles real

source machine better if host has many cores available. We discuss the impact to CPU,

memory and IO components in the following.

 A parallelized SVM has high memory overhead for storing additional copies of

- 18 -

architectural state for each virtual CPU. The design of the code cache is particularly

important for achieving good performance and scalability. A Unified code cache can

share all translated code fragments among all emulation threads; while a separate code

cache keeps private copies, even at the cost of re-translation and extra memory space

when some code blocks are shared between threads. The former is good in lower

translation cost and memory overhead, and is also easier to implement since it is the

current design in the sequential QEMU. However, the unified cache will suffer from

greater contention amongst all virtual processors. Imagine that a thread for CPU A

unchains itself for interrupts checking, but the same code fragment is being used by

another thread for CPU B. A eventually receives incoming interrupt, and B falls back to

the VM manager for unnecessary code fragment lookup that was originally chained. The

latter gives us the chance for local tuning and improved code locality by placing hot

code in clusters for a specific guest core. However, it is more complex to handle SMC,

and more duplicated copies of code. SMC has been considered an infrequent event in

applications. However, for SVM, SMC is not that uncommon. When guest OS needs to

reclaim some memory, the old content must be cleared. Such activities are handled as

SMC by the SVM.

Memory ordering is the key challenge when we move to address the issues of

memory emulation. Atomicity imposed by source ISA must be enforced on target as

- 19 -

well, or the serialization primitives built atop might not work. For a weakly-ordered

memory system, atomicity is enforced through a special kind of register-memory

instructions; while strongly-ordered one extends to all memory instructions. Even a

plain load-store instruction has to honor its program order. Because SVM has to insert

explicit barrier after each guest memory access to guarantee the required order, we

emphasize on weakly-ordered systems for the opportunity of optimization. These guest

atomicity enforcing instructions are realized by either explicit spinlocks or simply

exploit atomic instructions on target. The latter is preferred because of the brevity in

code size and short locking time, but it is only applicable to semantically transformable

guest atomic instructions. Those not suited for directly mapping to target atomic

instruction will take the general spinlock approach.

IO also has a high impact to guest performance due to code unchaining activities

for interrupt handling. One alternative for interrupt handling without unchaining is to

insert explicit checking instructions in a loop. The checking instructions check if there

are pending interrupts so that it can yield the execution control to the VM manager for

interrupt delivery. While this scheme speeds up interrupt delivery, it slows down the

normal program execution. After all, interrupts are supposed to be infrequent, and so

we would rather let interrupt delivery pay the price.

- 20 -

2.4 Engineering Challenges

In addition to pseudo hardware components, there are some engineering issues

deserve further discussion when parallelizing a SVM. First, the concurrency of chaining

and unchaining happens inside the code cache. Since they will modify the destination

bits of final branch instruction(s), concurrent execution of other threads in the code

cache should be prohibited. Modified instruction bytes will go to data cache first when

they are patched, and transfer to instruction cache later. For architectures that maintain

coherence by explicit user request and has fixed instruction length, e.g. ARM, the worst

case is out-of-dated I cache that branch still points to another code fragment when

unchaining. Once the patched instruction propagates in, the execution flow will quit

code cache and roll back to the emulation manager. The net effect is a late but functional

unlinking, which is harmless to emulation threads and invisible to human being. But

that is not the case if target is grounded on architecture with variable-length instruction

and hardware-based synchronization mechanisms. Branch destination bits are usually

not aligned on such machine, and partially-updated instruction may be seen by any

other thread leading to an abrupt termination of illegal instruction fault. Consider the

x86 target, for example, long jump instruction is expressed in a five byte sequence

starting with 0xe9 and followed by 32-bit PC-relative distance to target. If the

synchronization is carried out in unit of four bytes, two rounds of hardware-initiated

- 21 -

memory accesses will be used. If unfortunately the update is not atomic in respect to

other cores, the SVM might crash for a wrong branch destination. For that reason,

instructions in modification must be free of reference prior to (and in duration of)

chaining and unchaining. Figure 9 illustrates the situation described above that a SVM

turns the misaligned x86 branch destination bytes from 0xcafebabe to 0xdeadcafe,

assume synchronization between I and D caches starts from lower address in unit of four

bytes.

Figure 9: Patching a branch destination on x86 machine

 The second one is thread scheduling on the host OS. A SVM basically has no idea

about what the guest is doing now and whether a virtual core is busy or not.

 e9 de fe ba be

0x10 0x18

 e9 de ad ca fe

0x10 0x18

Original cache line

Synchronizing (should be

invisible to other cores)

Done

 e9 ca fe ba be

0x10 0x18

jmp REL

- 22 -

Consequently a SVM makes a conservative guess that all processors within guest

machine are busy all over the time, which causes an interesting phenomenon that

emulation threads are busy forever on host no matter in a busy calculation or an idle

loop. The only exception is when some source architectural requests that explicitly wait

for a hardware event or reveal clues about the current guest activity. For instance, wfi on

the ARM architecture halts for interrupt coming and pause in x86 says the guest is

waiting for a spinlock. But they are rarely used and some exist only in the guest kernel

booting code. A serial SVM creates one host emulation thread even for multi-core guest

for the sake of simplicity, on which the guest executions are carries out in a serial

fashion sharing the same thread as in Figure 10(a). This time-sharing property is

appreciated in early days where CPU chip has only one core. Multi-processor is indeed a

composition of those single-core chips, and communication between processors is

expensive due to the long path of onboard system bus. The idea of time-sharing is

similar to OS scheduling, except it is operated on emulations of guest cores instead of

thread contexts. These days the presence of multi-core on a die opens a door for extra

performance boost, driving the emergence of more SMP-aware OS. With careful

matching, paradigm that permits concurrent and evenly-dispatched thread executions on

all physical cores could be established. For SVM, multiple emulation threads are

spawned to act for guest multi-core. Host OS can identify these threads by their

- 23 -

computation-intensive signature (consume all allotted time slot), and bind them to every

real cores in one-to-one manner by host scheduler as anticipated in Figure 10(b).

However, that will incur a serious problem if parallelism in target is not sufficient to

guest. The host scheduler will dominate the performance under this circumstance as

less knowledge is attainable to guide computing resource sharing. Figure 10(c) shows a

situation emulating a quad-core guest machine on a dual-core target.

Figure 10: From guest processor to physical core

The third one is the thread-safety of common resources, by either local

duplication or lock deployment. The former tackles data structures that never removes

Guest processor Host thread Physical core

SVM
Host OS
scheduler

G0

G1

G2

G3

T0 P0G0

G1

G2

G3

T0 P0

G0

G1

G2

G3

T0 P0

T1

T2

T3

P1

P2

P3

G0

G1

G2

G3

T0 P0

T1

T2

T3

P1

P2

P3

G0

G1

G2

G3

T0 P0

T1

T2

T3

P1

G0

G1

G2

G3

T0 P0

T1

T2

T3

P1

?

a

b

c

- 24 -

its element after initialization (at most adjust its internal position); while the latter is

general to all shared objects. Fairness and waiting time of a lock are equally important

to SVMs, as guest performance is very susceptible to any pause during emulation.

- 25 -

3 Design and Implementation

3.1 Environment

 Our PQEMU is based on QEMU version 0.12.1. We choose ARM11MPCore [7]

as our guest in the first implementation of PQEMU. It is a popular quad-core SMP in the

embedded processor market and has been successfully integrated into Nvidia Tegra

chipset [11]. As an heir of RISC, ARM is simple in terms of ISA design and features

weakly-ordered memory system with few atomic instructions. Our host machine is a

generic multi-core x86 system for its prevalence and abundance in hardware cores. A

recent Intel i7 920 design equips with four independent cores and supports up to eight

threads, more than the number of cores of the ARM11MPCore (thus avoid the situation

portrayed in Figure 10(c)). In addition, x86 is (in)famous in diversity of instructions,

which gives us better control over the output code quality under a high-register-pressure

circumstance. For example, storing a constant value need not be a load immediate to

register followed by the actual store; instruction store immediate suffices.

3.2 Realization

 To get a systematic view of how QEMU works, we decompose it into a collection

of events that are sharing internal resources (enumerated with short description about

the activities and common objects involved):

Build: it is the process of source code translation where the common structures of

- 26 -

compiler framework will be shared with the Restore event if code conversion

engine is common to all emulation threads. A new code fragment, translated from

the source guest code, will be added to the code cache.

Restore: for performance reason, guest PC is only updated once at the end of a

code fragment. If a guest exception is generated in the middle of the code fragment,

for example, a page fault from a memory instruction, the guest PC must be

restored. This is done by means of table lookup or reconstruction to preserve

precise guest architectural state. In practice, a SVM does not generate PC

information in regular code fragments in order to reduce space overhead (QEMU

adopts this strategy), and reconstruction using identical compiler framework in

Build is used instead. See subsection 2.2.3 Reconstruct PC Address for detailed

explanation.

Chain / Unchain: these two events involve instruction modification to code

fragments. There are issues such as modify-when-use and synchronization

between I and D caches if the code cache is shared. Subsection 2.4 Engineering

Challenge has more discussions on these issues.

Flush: the code cache is out of space and all translated codes will be abandoned

immediately. This has been discussed in subsection 2.2.1 Internal Data Structures

in QEMU. After the flush, some old code fragments may still lives in the code

- 27 -

cache, but that does not mean other threads can stay within because the

subsequent Build will insert new blocks into code cache.

SMC: Self-Modifying-Code refers to changes made to existing guest code that has

been translated. See discussion in 2.3 Multi-Core Awareness.

Find: locate translated code fragment using the guest PC. If the target block is not

found, then invoke Build to translate and insert a new block to code cache.

Execute: emulation thread executes the code fragment found in Find or generated

at Build as express in 2.2.2 From Guest Instruction to Target Machine Code.

Figure 11: State diagram of QEMU events

The flow of events is illustrated as a state transition diagram in Figure 11. The

event Unchain (not shown in figure) is completely initiated by the SIGUSR1 signal

handler in an asynchronous fashion, so it will intervene with all other events. Special

treatments in lock acquiring for Unchain must be deployed, otherwise deadlock could

Find

Flush

Build

Chain

SMC

Execute

Restore

- 28 -

occur. The transition from SMC to Restore (dashed line) stands for self-invalidation that

would happen when a code fragment writes data to the guest address of the source

executable. It mimics the hardware synchronization mechanism between I and D cache

(write instruction bytes to where the next PC points to in x86 for example). ARM does

not support automatic I/D coherence enforcement. Therefore SMC to our guest ARM is

purely code invalidation that never reaches Restore, only ends in Execute.

Figure 12: Software layout in QEMU

The overall software layout of QEMU is illustrated in Figure 12. Internal events

are in green. QEMU allocated memories (code cache, SDRAM and Flash) are light

grey, and other boxes are helper functions. CPU, memory and IO modules are included

in emulation thread, and IO thread is responsible for interactions between QEMU and

Interrupt notification :
Unchain

RAM
Block

I/O Device Model

Build

Execute Restore

Find

Code
Cache

Soft MMUHelp Function

CPU Idle

Invalidate Flush

Chain

Exception/Interrupt Check

Emulation threadCPU

SDRAM

RAM
Block

FLASH

Memory

IO

IO thread

Alarm signal

Screen update

Keystroke
receive

- 29 -

host OS. These activities are mostly SVM interface update (keyboard, mouse and

screen) and guest hardware implemented using host system service (RTC timer).

 From the perspective of hardware replication, providing multi-cores is fairly

simple. QEMU has already reserved a memory pool for storing architectural states for

each VCPU; memory and IO elements are shared among all VCPUs. Everything seems

ready to go for parallel emulation. But QEMU still uses a sequential emulation model

similar to Figure 10(a), and all guest cores are running in a non-preemptive time-shared

fashion. This implementation simplifies the emulation of multi-cores in a lock-free

setting and can handle the increment of guest core with ease. Shared components

(mainly the code cache and derivatives) can be accessed without any contention; order

and atomicity is preserved by round-robin and exclusive access of guest memory

system. Likewise, core augmentation is merely additional memory allocation for new

architectural state with a little bit of personalization in CPU ID or marking a portion of

guest address space for core-private devices. However, target hardware resources are

poorly utilized. The time received for actual core emulation is reversely proportional to

the number of guest cores. Even worse, when all guest threads are evenly disturbed on

all virtual processors, QEMU will suffer from slow guest code execution as no way to

tell when and where a progress to guest code is.

PQEMU relaxes the emulation model used by QEMU that only one event is active

- 30 -

at a time. PQEMU allows all emulation threads free to go like in Figure 10(b). The code

cache and the translation engine are shared in the current PQEMU implementation.

Translated code can be reusable among all emulation threads as each VCPU has its

own architectural state in registers (the VM manager will do the setup before entering

the code cache). Although contentions on the code cache may be there among different

guest emulation threads, such incidences are relatively infrequent for many parallel

applications. Besides, this implementation incurs less engineering effort since it

requires no special effort to maintain the coherence of the code cache.

Write Event Read Event

Build Restore Chain Unchain Flush SMC Find Execute

Write
Event

Build S S X X S S S/X X

Restore S S X X S S X X

Chain X X S S S S X S

Unchain X X S S S S X S

Flush S S S S S S S S

SMC S S S S S S S S

Read
Event

Find S/X X X X S S X X

Execute X X S S S S X X

Table 1: Disposition of event combinations in PQEMU

With parallel emulation, many events from different VCPU threads will happen

simultaneously, serialization must be enforced for correct manipulation of the shared

and writable objects. We tabulate all event combinations and their possible disposition

- 31 -

in Table 1, where S indicates a serialization and X means don’t care (free run). The

following properties explain the reasons for serialized combination (marked S) in Table

1. Except read events (Find and Execute), all write events are in serialization with

themselves (S on diagonal boxes of Table 1).

 Build and Restore shares the same translation engine, a lock is required.

 Eliminating a code fragment (Flush and SMC) is permitted only when it is not

being referenced by another thread (Build, Restore, Chain, Unchain, Find and

Execute). Except Build, all other five events operate on code fragment(s) in the

code cache (even though it is for comparison in Restore to bring back fault guest

PC address). A sudden removal of a code fragment will ruin their functionalities.

Build is in the list because it will register identifiers for new code fragments and

pointer to free code cache space before translation begins. In addition, Flush and

SMC themselves are serialized to prevent incomplete code erasing.

 Execute and Chain / Unchain raise problems in target cache synchronization and

code modification as stated above. A lock is required.

 Build and Find prevents the recurrence of code translation for the same guest

address. This could be removed for better performance as such situations are rare

and serialization here is truly an overkill. If serialization is taken away, there

should be an extra check for validity of the code fragment during Restore, in case

- 32 -

at the same time another thread is in the Build state. No code invalidation will

take place between two successive Build as Flush and SMC are in serial with all

other events, and finally two code fragments to the same guest address will be.

Redundant code fragment will be used once by generating thread and live solitary

after without being reference anymore until die (Flush and SMC).

Figure 13: Lock scheme in current PQEMU

To effectively increase parallelism, performance, lock is applied in fine-grained

control with weak or strong attribute. Strong lock equals to exclusive access in QEMU

that keeps all other emulation threads out of the common code cache (equivalent to a

pause), whereas the weak one corresponds to an ordinary lock that only the relevant

access should get blocked. In another words, PQEMU effectively reduces the lock

strength from a big strong one in the original QEMU to a few small and dispersed ones.

Find

Build Restore

Execute

Chain Unchain

FlushSMC

RWlockA – read lock

RWlockA – write lock

Spinlock B Spinlock C

PQEMU

- 33 -

Figure 14: Lock protection scheme in current PQEMU

The lock scheme in PQEMU is illustrated in Figure 13, conforms to disposition in

Table 1 that aggressively turns S in Build and Find to X. To prevent code fragments

from being wiped out when they are in execution, RWlock A is used in read/write mode

as the only weak/strong lock in PQEMU. Whenever a thread moves to a state that will

refer to an existing code fragment, it must acquire the read-locked A beforehand. The

Flush and SMC are fulfilled at the meantime by acquiring the strong write-lock A,

indicating no threads are allowed to run at the same time. Read-locked A is acquired at

beginning of the VM manager (transition to state Find in Figure 11) and is released at

the end of emulation cycle (on way back to Find). Although theoretically they can be

guarded in finer granularity of code fragment, we treat the entire code cache as one unit

for engineering simplicity. Spinlock B protects common compiler related data

Legend
—Write lock A
— Read lock A
— Spinlock B
— Spinlock C
— No lock

Find

Flush

Build

Chain

SMC

Execute

RestoreUnchain

- 34 -

structures, and spinlock C serializes the requests of instruction modifications from

Chain and Unchain. Emulation thread must grab read-locked A prior to acquiring B or

C for Build / Restore or Chain / Unchain to keep the code fragment from being wiped

out, or simply transfer to write-lock A if it moves to Flush or SMC state. The whole

lock protection scheme is illustrated in Figure 14. With hierarchical lock layout, we are

free of deadlock and concurrency of shared objects is preserved across all emulation

threads.

Next, we discuss issues with memory. As to the weakly-ordered memory

architecture, the question would be how to effectively enforce atomicity source ISA

imposed on the target machine. ARM defines mainly two atomic instruction groups

based on swap and exclusive mechanisms. The swap instruction swp acts similar to

exchange instruction xchg in x86, except it could function on two distinct registers (one

source, and one destination register). That excludes the chance realizing swp using xchg

directly, unless both destination and source registers are identical. PQEMU realizes this

coalesced memory load and store by designating a common spinlock X (different from

those in CPU) at initial part of swp, analogous to the effect of #LOCK prefix in x86 and

#ASSERT on ARM. But it will occupy the whole system bus and could be a serious

limit to scalability. A more elaborated approach for exclusion in ARM is introduced

after ARMv5. The new approach is similar to load-linked and store-conditional pair on

- 35 -

MIPS (i.e. ldrex and strex). A common table is arranged to record any load-linked

address that is still waiting for a closing store-conditional instruction, and address will

be erased if it is in collision with a subsequent store address. Any store-conditional with

address not in table is regarded as a failed attempt that no data will be written to

memory, and the unsuccessful value will be returned. However, monitoring all store

instructions by software in PQEMU is inefficient and costly. A compromise is made

that appends content snapshot into the entry of a table. If strex operates on an address not

in the table or data in guest memory does not agree with snapshot made in time of ldrex,

this trial is unsuccessful. We defer the generations of such guest atomic instructions till

final code emitting stage to avoid the issues of larger code size and complex control if

code generation was performed with IR at earlier stages. Dedicated emitters are akin to

ones for ordinary memory access, except it will insert additional spinlock code for

common table at the start and end of output code fragment. Sequence of execution will

be determined by target hardware at run-time like what it is in real machine rather than

predefined by QEMU. This resemblance is a giving for emulator in testing of a multi-

thread program, a scene round-robin emulation model (Figure 10(a)) could never reach

(even if aggressively in random ordered, it is sequential from the scope of executing

guest instructions). PQEMU honors guest program order in translation, and there will

be no memory reordering in output code fragments as PQEMU knows nothing about

- 36 -

the aliasing.

Last, N-N interrupt delivery model is supported by ARM11 multi-core processor,

where all cores are informed simultaneously as soon as receiving an interrupt. Hardware

could achieve this by asserting a signal wire within one cycle, but QEMU can only

notify all emulation threads in sequential, which leads to an unbalanced utilization.

PQEMU fixes this by asserting all core-private interrupt-notification flags in a round-

robin order of guest cores, making request serving less unfair.

Figure 15 shows the revised software layout in PQEMU for a dual-core system

(we omit the detailed boxes for simplicity). Most modules are identical to unmodified

QEMU (Figure 12), except there are multiple emulation threads for system with multi-

core support and the code cache is shared among (denoted by unified to distinguish

with the separate alternative).

Figure 15: Revised software layout for a dual-core guest in PQEMU

Emulation thread #1

CPU 1

Memory

IO

IO thread

Emulation thread #0

CPU 0
Unified
Code
Cache

Emulation threads group

- 37 -

3.3 Practices and Enhancements

Special care must take to accommodate the transition from weak to strong lock

(currently Find to Flush and Execute to SMC). Other than basic read-release write-

acquire sequence (solely a write- acquire will result in deadlock). Such pattern has a

pitfall in lock coverage time that interval between release and acquire is empty of lock

protection. Any assumptions made in read stage should not be inherited in write phase.

Figure 16 demonstrates a destructive case that code fragment Z will be invalidated due

to SMC and read lock is released in thread 1. Thread 2 takes over immediately after a

long wait and delete Z for Flush. Thread 1 operates on identification of code fragment

Z later, but ends up in error as everything about code cache is gone. To fix it, thread

must check Z again right after write lock is grabbed. If Find is serialized with Build,

same problem will in transition from strong to weak lock (fortunately not in current

PQEMU implementation).

Figure 16: Vulnerability of lock attribute switch

Thread 1

Thread 2

Read releaseCheck code
fragment Z

Operate on code
fragment Z

Write acquire

Read release Delete code
fragment Z

Write releaseWrite acquire

Wait

WaitRead protected Write protected

Read protected Write protected Wait for read

X

- 38 -

To cut the waiting time for write lock A, SIGUSR1 will be sent to all other threads,

forcing them to leave the code cache and release the read lock. Spinlocks are furnished

with random wait (by pause instruction on x86) when busy to alleviate contentions.

Conventional strategy of spinlock locking under the assumption that pending time will

be short is simply waiting till it is vacant. But the time spent in the VM manager is

comparable to the time spent in the code cache by PQEMU, even when chaining is

activated (ignore the case of chained loop). Idle-waiting becomes less economic in

situation host cannot tell which emulation thread has a higher priority than others. All

available time slots for waiting threads will be consumed in useless lock trying, and

spinlock will be biased in favor of someone. To compensate for that, optional operations

in PQEMU will be bypassed by try-lock spinlock call instead. This strategy is

selectively applied to Chain and Unchain as both are performance-related events, not

for correctness of PQEMU. As to the only read-write lock, pthread will yield

voluntarily to the host scheduler if busy and starvation is evaded by flavor of preferring-

writer attribute. The whole locking facilities in PQEMU are rather efficient, especially

when booting up the guest Linux.

In general, events involving code removal must go with strong lock, while the rest

are left for the weak ones. Chain / Unchain, the major performance hurdle in shared

code cache design, are exceptions. Before shifting to Execute, the VM manager will try

- 39 -

to connect previously executed code fragments with the current one in Chain state. But

only the regular two-way branch might succeed in this block-based DBT system, where

each code fragment is ended in a guest branch instruction. To assure proper handling of

guest page faults, chaining across page boundary will be inhibited. Otherwise just one

thread, which usually the one triggers translation, will undergo guest page fault that

loads a portion of program in unit of page into the guest main memory. Unchain will

happen in any occasion as long as SIGUSR1 is received. It acts on a closure of code

fragments defined by the first entry the VM manager found, because locating exact

code fragment being executed is almost impossible once the thread dives into the code

cache (stack unwinding to filter out helper function callings for complex procedures is

a solution to normal program context, but it is inaccessible for signal handler context

and its descents). Figure 17 illustrates the unchaining on a closure of code fragments,

where all possible links within the closure will be restored to the VM manager during

event Unchain.

Figure 17: The closure of an entry code fragment A for unchaining

Entry point A

Closure of A

- 40 -

PQEMU conservatively halts all other in-code-cache emulation threads by an idle

waiting signal SIGURG for Chain and Unchain. SIGURG is registered with a signal

handler trying to grab spinlock C. However, spinlock C is already held by initiator of

Chain or Unchain at the time the handler is called. Thus, threads receiving SIGURG

will deviate themselves until Chain or Unchain is done, and the synchronization

problem between target I and D cache mentioned before is naturally avoided. Despite

reducing the emulation path, this break also helps minimizing the surge of coherence

invalidations from the x86 cache hierarchies if others are still executing in the code

cache (note that the unit for cache invalidation is a cache line). Sharing code cache also

makes Unchain easier as the effect of unchaining is visible to all emulation threads.

Chain and Unchain is expensive, and we address this problem in three directions.

First, unnecessary unchaining is avoided, especially the ones for IO interactions

between SVM and the host OS (boxes in IO thread of Figure 12). Original QEMU

aggregates those activities into a dedicated IO thread, which will disrupt active

emulation threads by endless unchaining requests until the emulation threads release

the token for execution (i.e. a common mutex lock). This serialization is not mandatory

since all tasks on IO thread are merely screen-update, keystroke-receive and

mouse-move. Second, we try to shrink the size of a closure at unchaining. On modern

POSIX-compliant OS, a signal handler has a new interface to obtain the additional

- 41 -

information about user context being interrupted. With the host PC value in context

structure, the code fragment being executed can be recognized through reverse

mapping. . Although not always accurate due to helper function calling (PC value is

definitely out of the range of code cache), it is noteworthy in reduction of closure size.

Third, the purpose of Unchain is to relinquish the usage of code cache instead of

annihilate a code fragment. As the branch destination modified by Chain and Unchain

is entirely bouncing between the VM manager and the next code fragment in PQEMU,

we alter only the branch destination (instruction itself) when unchaining. Linking

information for maintenance resided in the fields of code fragment identifier is kept in

chained-state if the code fragment is chained before. Although Unchain still needs

spinlock C in PQEMU, it is less expensive after the aforementioned optimizations.

- 42 -

4 Experimental Results

Experimental environment

Benchmark Splash‐2

Guest OS Linux 2.6.27 arm_v6

Guest machine ARM11MPCore (4 cores SMP processor)

Emulator PQEMU based on QEMU 0.12.1

Host OS Linux 2.6.31.12 x86_64 (Fedora 12)

Host machine Intel Core i7 920 (quad core with 8 SMT)

Table 2: Experimental environment

The experiment environment is shown in Table 2: a guest ARM11MPCore is

emulated on an Intel Core i7 920 host by PQEMU. 12 programs in the SPLASH2 [13]

benchmark suite are chosen for PQEMU performance evaluation. They are highly

parallelized programs, and we run them in configuration of one, two and four

computing threads (we use number to distinguish them in following tables). All

programs are compiled in ARMv6 ISA, and the time will be measured in unit of

microsecond. The standard in-package input test set and default arguments are used in

performance evaluation, except FFT with –m20, LU_NON with –n512 and RADIX with

-n1048576 to obtain a longer execution time (minimize the impact of initial

single-thread startup). We evaluate both unmodified QEMU and PQEMU in the

emulation of the quad-core ARM11MPCore system. There are two host threads in

QEMU and five in PQEMU (the additional one stands for IO thread in Figure 12 and

15). Since the IO thread is idle most of the time and there are eight hardware threads

- 43 -

(due to hyper threading in the i7 processor), the execution is not suffered from situation

depicted in Figure 10(c).

Computation 1 2 4 Total 1 2 4
LU 11,956,862 12,043,158 12,143,627 12,630,126 12,718,143 12,823,751
LU‐NON 13,440,032 13,507,292 13,578,076 13,864,701 13,941,957 14,014,652
OCEAN 17,890,290 17,873,450 18,129,541 29,415,089 29,566,996 30,202,861
OCEAN‐NON 18,123,181 18,019,329 18,405,727 29,184,820 29,189,187 30,020,996
FFT 20,480,395 20,563,329 20,589,159 36,293,727 36,367,771 36,394,870
BARNES 95,543,726 96,087,091 96,804,383 191,262,735 192,315,200 193,680,528
WATER‐NSQUARED 13,501,402 13,569,572 13,707,009 22,781,615 22,898,790 23,126,772
WATER‐SPATIAL 16,356,560 16,749,712 16,643,495 27,836,788 28,559,437 28,395,118
RADIX 282,711 314,175 353,454 13,547,863 13,640,176 13,764,655
CHOLESKY 55,980,108 95,437,327 429,674,981 57,399,516 97,025,885 431,139,936
RADIOSITY 21,803,196 22,333,340 49,516,787 21,803,343 22,333,997 49,518,255
FMM 82,653,099 84,083,341 86,096,993 138,454,181 139,577,817 144,116,090

Table 3: Total and computation time on QEMU

 Figure 18: Speedup in total execution time on QEMU
Synchronization 1 2 4 Total 1 2 4
LU 2,456 185,245 725,972 12,630,126 12,718,143 12,823,751
LU‐NON 2,574 229,860 630,794 13,864,701 13,941,957 14,014,652
WATER‐NSQUARED 1,185 1,575 12,659 22,781,615 22,898,790 23,126,772
WATER‐SPATIAL 975 1,600 4,463 27,836,788 28,559,437 28,395,118

Table 4: Synchronization and total execution time on QEMU

The measured execution time statistics from unmodified QEMU is listed in Table 3.

To avoid misleading test result from biased scheduling on the guest, we set parameter

lpj=2000000 at guest kernel boot up stage to enforce uniform task distribution. As

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Sp
ee
du

p

1

2

4

- 44 -

shown in Figure 18, CHOLESKY and RADIOSITY have suffered from QEMU’s

sequential emulation model. Others are less affected and have almost constant execution

time no matter how many computing threads are created. This is because the execution

sequence of emulation threads roughly matches the ideal case that these multi-threaded

programs have minimal lock contention (with the scheduler of the guest OS, the QEMU

time-sharing mechanism and the final physical core execution on the host). As a result,

lock waiting time is insignificant in total execution time (as shown in Table 4). The extra

execution time for those running with more threads is mainly coming from thread

initialization overhead.

Computation 1 2 4 Total 1 2 4
LU 11,830,511 8,205,100 5,655,866 12,507,229 8,884,373 6,322,780
LU‐NON 13,963,276 10,041,668 6,446,064 14,411,856 10,482,616 6,878,185
OCEAN 18,382,280 12,722,068 8,987,026 30,160,886 20,858,148 15,044,954
OCEAN‐NON 18,862,371 12,618,376 9,541,267 30,633,781 20,477,191 15,373,202
FFT 20,562,483 15,293,905 10,675,152 36,488,045 31,349,617 26,891,250
BARNES 99,129,935 72,824,301 198,074,502 146,146,038
WATER‐NSQUARED 14,126,427 9,751,503 6,881,044 23,785,635 16,448,005 11,746,993
WATER‐SPATIAL 16,572,641 11,683,360 8,122,711 28,224,361 19,925,711 13,808,741
RADIX 292,414 159,043 164,949 13,859,818 9,936,846 8,046,066
CHOLESKY 59,267,458 41,338,329 60,604,353 42,754,605
RADIOSITY 22,227,277 13,992,268 9,631,123 22,227,464 13,994,121 9,633,033
FMM 85,516,940 58,796,549 143,311,993 98,615,493

Table 5: Total and computation time on PQEMU
Computation 1 2 4 Total 1 2 4

LU 11,760,420 5,988,663 3,068,835 12,449,613 6,652,740 3,735,852
LU‐NON 13,669,770 6,948,221 3,564,376 14,108,368 7,371,654 3,988,843
OCEAN 23,629,428 12,204,000 6,697,438 37,748,856 19,622,351 11,185,271
OCEAN‐NON 17,914,326 9,264,574 5,119,124 28,885,215 15,077,676 8,767,502
FFT 20,489,448 10,689,639 5,895,719 36,270,786 26,051,935 21,439,224
BARNES 92,927,541 48,435,767 27,761,680 186,021,594 96,998,304 56,703,937
WATER‐NSQUARED 299,021 157,456 108,814 14,368,040 7,915,873 5,309,572
WATER‐SPATIAL 14,006,542 7,471,233 4,373,935 23,568,302 12,572,691 7,362,595
RADIX 16,826,744 9,071,578 5,544,072 28,613,229 15,433,753 9,506,497
CHOLESKY 59,294,197 33,764,046 20,845,400 60,614,085 35,137,801 22,274,504
RADIOSITY 21,709,082 11,797,529 7,883,881 21,709,244 11,799,251 7,884,979
FMM 82,161,912 43,300,616 24,473,332 137,688,317 73,398,298 42,741,388

Table 6: Total and computation time on PQEMU-iolock

- 45 -

Computation 1 2 4 Total 1 2 4
LU 12,491,388 6,266,915 3,282,426 13,167,277 6,919,032 3,944,870
LU‐NON 13,664,329 6,763,817 3,494,610 14,112,285 7,179,306 3,913,900
OCEAN 18,363,111 9,063,436 4,697,792 30,267,383 15,038,868 7,943,723
OCEAN‐NON 18,559,688 9,230,398 4,866,126 29,837,206 14,900,129 7,966,120
FFT 20,510,616 10,266,048 5,206,925 36,032,337 25,477,905 19,802,895
BARNES 94,568,358 47,238,365 23,761,224 189,563,707 94,616,131 48,511,206
WATER‐NSQUARED 14,669,021 7,541,933 3,907,758 24,653,111 12,702,050 6,599,917
WATER‐SPATIAL 17,251,937 8,853,185 4,309,220 29,390,879 15,097,609 7,344,492
RADIX 280,304 151,556 106,762 13,766,060 7,165,749 3,606,397
CHOLESKY 60,454,247 30,705,679 15,871,734 61,769,793 32,049,099 17,258,150
RADIOSITY 22,766,116 11,354,361 5,732,509 22,766,250 11,355,024 5,734,256
FMM 82,213,655 41,159,117 20,960,551 137,741,103 69,786,901 36,481,470

Table 7: Total and computation time on PQEMU-iolock-unserial
Computation 1 2 4 Total 1 2 4

LU 12,500,135 6,301,038 3,210,045 13,316,378 6,949,912 3,854,712
LU‐NON 13,711,884 6,873,013 3,534,041 14,156,232 7,298,518 3,950,252
OCEAN 18,158,421 9,005,135 4,674,463 29,795,077 14,885,872 7,833,963
OCEAN‐NON 17,950,226 9,022,857 4,644,418 28,970,921 14,624,015 7,659,490
FFT 20,417,101 10,182,911 5,167,499 36,090,657 25,137,358 20,003,613
BARNES 92,620,785 46,812,385 24,030,436 185,659,068 93,875,819 49,013,368
WATER‐NSQUARED 14,668,985 7,435,084 3,895,907 24,694,992 12,537,784 6,659,957
WATER‐SPATIAL 16,806,299 8,448,979 4,313,542 28,516,019 14,438,246 7,378,713
RADIX 279,179 151,432 79,629 13,576,245 6,878,522 3,537,965
CHOLESKY 58,005,811 29,785,002 15,848,168 59,353,382 31,132,625 17,234,117
RADIOSITY 21,547,176 10,930,511 5,571,064 21,547,335 10,934,197 5,572,033
FMM 82,121,934 40,980,407 20,991,860 137,554,903 69,547,083 36,644,874

Table 8: Total and computation time on PQEMU-iolock-unserial-unchain

0.00

0.50

1.00

1.50

2.00

2.50

Sp
ee
du

p

PQEMU

1

2

4

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Sp
ee
du

p

PQEMU‐iothread

1

2

4

- 46 -

Figure 19: Speedup in total execution time on PQEMUs
Synchronization 1 2 4 Total 1 2 4
LU 2,351 43,125 55,001 13,316,378 6,949,912 3,854,712
LU‐NON 2,411 57,960 120,121 14,156,232 7,298,518 3,950,252
WATER‐NSQUARED 774 1,126 1,439 24,694,992 12,537,784 6,659,957
WATER‐SPATIAL 943 1,120 1,218 28,516,019 14,438,246 7,378,713

Table 9: Synchronization and total execution time on

PQEMU-iolock-unserial-unchain

Now we evaluate the parallel execution of our PQEMU. Without the special lpj

setting, the execution of the four VCPU threads would correctly emulated the SMP

platform of the guest system (BogoMIPS in the range of 557 ± 10 MHz by our host

machine). Four PQEMU configurations are evaluated:

I. PQEMU: Parallel execution model for the VCPU threads (one thread per guest

core), but the IO thread activities are serialized. Find and Build events (see Table

1) are also in sequential order.

II. PQEMU-iolock: Same as configuration I, except no serialization for the IO

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Sp
ee
du

p

PQEMU‐iolock‐unserial

1

2

4

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Sp
ee
du

p

PQEMU‐iolock‐unserial‐unchain

1

2

4

- 47 -

thread.

III. PQEMU-iolock-unserial: In addition to configuration II, remove the serialization

for Find and Build.

IV. PQEMU-iolock-unserial-unchain: Same as configuration III, plus closure size

reduction and keep the internal linking information unchanged during unchaining.

Speedup and timing data are shown in Figure 19 and Table 5 to 8. The execution of

BARNES, CHLESKY and FMM on PQEMU do not terminate. However, the guest OS

does work correctly, including delivering SIGINT to those three programs. Other

programs have been sped up from parallel execution, but exhibit a performance ceiling

around two time speed-up with four computing threads. One problem of this limited

speed-up is due to the unnecessary locking of the IO thread. This became apparent

when we compare this configuration with PQEMU-iolock. All emulation threads are

suspended in the VM manger when IO between SVM and the host is active. They are

released later in a sequential order and the first thread is likely to get whatever it wants

and the other non-terminated threads may suffer from starvation and makes no

substantial movement on the guest platform. Serialization for Find and Build is a

severe performance limiter, even if the translation time is short. Parallelizes the Find

and the Build event will be very beneficial to performance for guest programs with

large execution footprint. Other enhancements to unchaining are less important

- 48 -

compared to the parallel execution of the IO thread with emulation threads, and the

parallel execution of the Find and the Build event. Although the total execution time

of PQEMU-iolock-unserial-unchain is lower, the speedup is less than

PQEMU-iolock-unserial.

Due to its lengthy single-thread initialization phase, FFT is the only one among

the 12 programs that does not yield linear speedup, even when the parameter –m20 is

set for extended computation time. In short, removing the IO thread locking and

serialization for Find and Build are critical in performance for parallel programs like

SPLASH2.

 Build Restore Chain (really in effect) Unchain Find Execute SMC Flush Indirect
jump

LU 0 0 2,491 589 151,522,256 151,522,253 0 0 84,128,412
LU‐NON 1 0 319 437 169,594,200 169,594,196 0 0 109,398,963
OCEAN 28 2,647 5,096 387 134,078,150 134,078,119 0 0 96,597,226
OCEAN‐NON 7 4,919 350 327 132,037,727 132,037,705 0 0 100,398,406
BARNES 23 43 573 484 126,125,113 126,125,113 0 0 62,621,591
FMM 0 0 5,439 423 165,117,575 165,117,570 0 0 55,258,028
FFT 0 0 319 321 164,720,653 164,720,650 0 0 31,463,482
WATER‐NSQUARED 0 0 638 464 169,991,573 169,991,571 0 0 100,262,823
WATER‐SPATIAL 6 7 255 349 169,439,610 169,439,604 0 0 117,123,685
CHOLESKY 165 0 4,931 412 154,457,906 154,457,897 0 0 59,004,723
RADIOSITY 1 0 916 471 199,227,633 199,227,629 0 0 119,847,556
RADIX 4 747 3,449 327 182,610,012 182,610,008 0 0 134,007,264

Table 10: Internal event counts excluding initialization

 Build Restore Chain (really
in effect) Unchain Find Execute SMC Flush Indirect jump

LU 48,591,355 10,484,591 2,056,190 261,918 779,004,197 11,952,104,747 0 0 151,519,295
LU‐NON 47,633,396 9,684,321 924,728 223,973 984,353,348 14,242,104,909 0 0 169,593,468
OCEAN 188,401,913 105,071,413 2,198,500 365,030 2,303,958,894 15,089,606,613 0 0 134,066,380
OCEAN‐NON 197,295,064 224,065,767 2,736,739 320,278 2,161,935,168 15,705,508,015 0 0 132,028,714
BARNES 80,146,863 23,898,896 599,462 161,774 1,879,347,302 10,413,655,692 0 0 126,123,698
FMM 54,081,941 83,013,795 2,720,374 306,095 1,486,963,312 7,321,189,524 0 0 165,111,967
FFT 17,084,215 41,720,348 294,390 205,971 744,816,516 3,443,569,072 0 0 164,720,301
WATER‐NSQUARED 149,562,633 310,502,497 1,992,802 315,380 1,868,673,548 10,869,443,058 0 0 169,990,717
WATER‐SPATIAL 72,639,593 30,407,718 1,636,526 272,683 2,435,319,812 12,966,436,716 0 0 169,439,226
CHOLESKY 47,817,089 164,655,141 2,887,746 327,035 1,755,196,376 8,487,668,173 0 0 154,452,785
RADIOSITY 72,363,810 150,262,137 1,746,179 226,722 2,938,046,563 10,356,750,559 0 0 199,226,551
RADIX 13,033,261 15,603,614 1,300,736 209,613 3,940,714,485 11,749,027,984 0 0 182,605,679

- 49 -

Table 11: Internal event counts including initialization

To look deeper into the behavior of PQEMU-iolock-unserial (after applying two

most effective optimizations), event counts accumulated from four VCPU threads of

the 12 SPLASH2 programs are listed in Table 10 and 11. No SMC and Flush events

have been observed from the SPLASH2 programs (no self-modification and the

translated code completely fit in the code cache). The Find and the Execute counts are

very high, as was expected. Based on the state transition diagram in Figure 14,

PQEMU goes to the Chain state after code fragment being executed is found. But this

event does not happen frequently since not many direct branches were executed in the

SPALSH2 code. Therefore, the emulation flow in PQEMU is often a repetition between

code lookup in the VM manager (Find) and the execution in code cache (Execute).

CHOLESKY has larger footprint because of its higher-than-average Build events (as

shown in Table 10), and OCEAN has bigger data set based on its higher data page fault

rate by the event count of Restore.

 We could probe further if we have elapse time of events measured. However,

the period of an event that the emulation thread stays in is usually quite short, using

gettimeofday() system call to measure can be misleading due to the excessively long

entry and exit path of the host kernels. Instead, we rely on the x86 non-privileged Read

Time-Stamp Counter (i.e. rdtsc). Since incremental rate is varied with physical core

- 50 -

frequency, the reading cannot convert to absolute time directly (i.e. it is in unit of cycle

count). As a consequence, time periods are counted in difference of rdtsc readings

before and after an event. The accumulated counts to all 12 programs are shown in

Table 12 (initialization excluded) and 13 (initialization included). The respective ratios

are shown in Figure 20 and 21. As expected, the most time consuming event is

Execute. The next top consumer is Find, taking 15% to 30% of total execution time.

This indicates that removing serialization of Find should have great value (also the

optimizations for preventing emulation thread from jumping out of code cache).

 Build Restore Chain (really
in effect) Unchain Find Execute SMC Flush

LU 0 0 1,420,087 266,306 4,748,893,395 26,571,988,692 0 0
LU‐NON 56,910 0 155,585 130,391 5,437,615,196 24,892,416,307 0 0
OCEAN 505,909 61,229,194 2,249,968 437,480 6,436,424,996 25,372,726,915 0 0
OCEAN‐NON 292,287 149,808,953 192,571 135,493 5,860,047,572 25,844,408,318 0 0
BARNES 796,103 1,681,863 324,995 208,303 6,876,772,730 24,914,365,292 0 0
FMM 0 0 2,147,201 451,216 6,502,271,218 24,735,054,346 0 0
FFT 0 0 121,467 121,880 6,461,215,397 24,446,760,697 0 0
WATER‐NSQUARED 0 0 431,250 215,487 6,698,778,525 21,345,822,838 0 0
WATER‐SPATIAL 80,744 238,426 189,833 129,085 7,263,955,253 23,386,911,963 0 0
CHOLESKY 3,638,164 0 2,151,544 308,060 7,520,796,294 24,285,955,782 0 0
RADIOSITY 51,105 0 1,689,531 272,999 8,828,159,300 20,398,966,143 0 0
RADIX 75,820 14,313,897 935,878 255,447 8,846,430,381 20,656,247,127 0 0

Table 12: rdtsc counts of events excluding initialization

Figure 20: Ratio of rdtsc counts excluding initialization

 Build Restore Chain (really
in effect) Unchain Find Execute SMC Flush

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Flush

SMC

Execute

Find

Unchain

Chain

Restore

Build

- 51 -

LU 48,591,355 10,484,591 2,056,190 261,918 779,004,197 11,952,104,747 0 0
LU‐NON 47,633,396 9,684,321 924,728 223,973 984,353,348 14,242,104,909 0 0
OCEAN 188,401,913 105,071,413 2,198,500 365,030 2,303,958,894 15,089,606,613 0 0
OCEAN‐NON 197,295,064 224,065,767 2,736,739 320,278 2,161,935,168 15,705,508,015 0 0
BARNES 80,146,863 23,898,896 599,462 161,774 1,879,347,302 10,413,655,692 0 0
FMM 54,081,941 83,013,795 2,720,374 306,095 1,486,963,312 7,321,189,524 0 0
FFT 17,084,215 41,720,348 294,390 205,971 744,816,516 3,443,569,072 0 0
WATER‐NSQUARED 149,562,633 310,502,497 1,992,802 315,380 1,868,673,548 10,869,443,058 0 0
WATER‐SPATIAL 72,639,593 30,407,718 1,636,526 272,683 2,435,319,812 12,966,436,716 0 0
CHOLESKY 47,817,089 164,655,141 2,887,746 327,035 1,755,196,376 8,487,668,173 0 0
RADIOSITY 72,363,810 150,262,137 1,746,179 226,722 2,938,046,563 10,356,750,559 0 0
RADIX 13,033,261 15,603,614 1,300,736 209,613 3,940,714,485 11,749,027,984 0 0

Table 13: rdtsc counts of events including initialization

Figure 21: Ratio of rdtsc counts including initialization

 Last, we compare our PQEMU design with real ARM11MPcore on the RealView-

EB evaluation board system in Table 14 and Figure 22. FMM is missing because it

requires the output file to be written to our read-only FLASH-based file system.

PQEMU on Intel i7 with quad-core typically runs faster than the real hardware of the

evaluation board even though the ARM11MPcore has less overhead for indirect

braches and hard-wired exception interrupt delivery circuit. For the

computation–intensive FFT, after translation and chaining, PQEMU will keep the

translated x86 code in code cache and the host can exploit ILP by advanced

out-of-order and superscalar execution. However, ARM uses traditional in-order

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Flush

SMC

Execute

Find

Unchain

Chain

Restore

Build

- 52 -

pipeline organization on this multi-core system, and bottleneck is the scarcity of

computing power (Figure 23). Plus, on-chip memory controller design of i7

significantly lower the page-fault cost for the OCEAN suites, which has only 3X

speedup on the ARM evaluation board.

Computation 1 2 4 Total 1 2 4
LU 33,616,819 16,719,281 8,428,542 35,644,072 18,359,981 10,086,721
LU‐NON 35,463,286 17,901,483 9,325,939 36,783,508 19,160,740 10,584,932
OCEAN 53,988,084 28,414,481 17,468,303 86,569,315 45,570,197 27,318,815
OCEAN‐NON 54,923,528 29,009,689 17,400,661 86,272,752 45,541,175 26,999,008
FFT 54,254,801 29,354,327 17,326,374 91,559,986 65,058,481 52,541,527
BARNES 199,361,933 100,518,349 50,380,536 399,100,008 201,153,644 103,333,950
WATER‐NSQUARED 32,228,654 16,658,914 8,649,881 54,142,938 27,974,766 14,545,012
WATER‐SPATIAL 37,446,669 18,771,448 9,416,547 63,390,658 31,781,328 15,963,576
RADIX 2,156,894 1,566,336 1,467,108 31,174,800 16,106,258 8,744,874
CHOLESKY 139,298,040 69,736,162 36,989,014 144,355,716 74,564,784 42,051,185
RADIOSITY 40,998,411 20,594,519 10,377,942 40,998,543 20,596,389 10,380,134
FMM

Table 14: Total and computation time on ARM11MPcore

Figure 22: Speedup in total execution time on ARM11MPcore

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Sp
ee
du

p

ARM11MPcore

1

2

4

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Sp
ee
du

p

ARM11MPcore

1

2

4

- 53 -

Figure 23: Speedup in computation time on ARM11MPcore and

PQEMU-iolock-unserial-unchain

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Sp
ee
du

p

PQEMU‐iolock‐unserial‐unchain

1

2

4

- 54 -

5 Related Works

 Traditionally, system simulators can be classified into two categories. In cycle-

accurate fashion, the goal is to discover the interactions between hardware and software.

It is usually rich in modeling micro-architectural details such as pipelined

implementation, function unit latency and memory hierarchies. SimpleScalar [3] is one

example that reads and interprets user input binary to get estimated execution cycle

count without optimizing the process of simulation. Its descendent includes Wattch [2]

for power consumption evaluation and RSIM [14] for multiprocessor environment

emulation. To understand the interaction between applications and the surrounding

system, including system peripherals, I/O, file systems and system services from OS, a

full-system level emulation is invented, such as SimOS [10] and Bosch [8]. Simics [12]

is famous in this group that relaxes timing details to functional level, but enables a view

to entire guest machine. To pursuit greater speed, the timing information is totally

abandoned in the field of instruction-accuracy. Emulator respects purely to the

semantics of guest instructions defined by source ISA, yet those time-consuming

architectural aspects are all bypassed. The purpose of emulation now turns into

providing a virtual platform rather than presence of hardware insight. Correct program

behavior is the only must for such instruction-accuracy SVM, and there is much room

for applying more elaborate emulation technique like Dynamic Binary Translation [1, 4

- 55 -

and 16]. Oppose to static alternative [9], DBT concentrates on run-time hot traces and

converts them into code fragments in target ISA format. A software code cache is

organized to prevent re-translations, and chaining will connect two consecutive code

fragments in avoidance of time-wasting code lookup by VM manager. Embra [16] is

renowned to the outstanding performance for MIPS R3000/R4000 system emulation,

but it is not re-targetable for different ISAs. QEMU [5] compensates this constraint by a

portable built-in compiler framework, which results in wide source/target architecture

combinations and rich peripheral support. QEMU translates all confronted guest code in

granularity of basic block terminated by all sorts of branches defined in source ISA.

Ultimately, there comes a native virtualization approach which allows guest program

running directly on target processor without any modification as VirtualPC [6] and

VMWARE [15]. It is the same ISA virtualization and guest execution is close to native

speed as instruction semantics and hardware features are similar or even identical

between source and target machines.

- 56 -

6 Conclusion and Future Work

In this thesis, we present a parallelized QEMU, called PQEMU, to support efficient

emulation of future multi-core processors on current multi-core machines. PQEMU

effectively exposes multiple virtual CPU parallelism in the guest machine and then

exploits the available multi-core parallelism of the underlying host machine. By a

one-to-one mapping from the guest CPU, to an emulation thread in PQEMU, to a real

hardware core, processor resources of the host machine could be effectively utilized,

and the emulation can enjoy large speed up. Making all components of PQEMU

thread-safe is not trivial, as they should operate efficiently and faithfully emulate the

behavior of real machines. Most components are shared among emulation threads in the

current PQEMU design for implementation simplicity and reusability for translated

code. We have introduced a set of locking schemes to protect all shared data structures

without sacrificing much performance from parallel execution. This set of locking

scheme comes from iterative tuning after we identified potential bottlenecks of earlier

implementations of PQEMU.

ARM features a weakly-ordered memory system. In PQEMU, a special code

emitter handles all guest atomic instructions. Lock primitives (i.e. spinlock) are

generated at a late code generation stage to minimize locking overhead. Using the

- 57 -

SPLASH2 benchmark, our experiments show that PQEMU is quite scalable on Intel

quad-core i7 processor and performance is even faster than the ARM11MPcore

evaluation board based system.

PQEMU meets the goal of system emulation in providing a high performance

platform for rapid prototyping. In the near future, we plan to extend the number of

available cores in PQEMU from four to sixteen and experiment with other less-parallel

but multi-threaded programs like database benchmarks to stress test PQEMU for its

ability to handle contentions on the shared code cache.

- 58 -

References

[1] Cmelik, R.F., and Keppel, D. Shade: a fast instruction set simulator for execution

profiling. Technical Report UWCSE-93-06-06, Department of Computer Science

and Engineering, University of Washington.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-

level power analysis and optimizations. Proceeding of the 27th Annual

International Symposium on Computer Architecture, page 83–94, June 2000.

[3] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Computer

Architecture News, 25(3):13–25, June 1997.

[4] E. Schnarr and J. Larus. Fast Out-of-Order Processor Simulation Using

Memoization. Proceeding of the 8th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-VIII), page

283-294.

[5] F. Bellard. QEMU, a fast and portable dynamic translator. Proceeding of the

USENIX Annual Technical Conference, page 41–46, April 2005.

[6] J. Honeycutt. Microsoft Virtual PC 2004 Technical Overview. Microsoft,

November 2003.

[7] K. Hirata and J. Goodacre. ARM mpcore: the streamlined and scalable arm11

- 59 -

processor core. ASP-DAC ’07, page 747–748, January 2007.

[8] K. P. Lawton. Bochs: A portable PC emulator for UNIX. Linux Journal, volume.

1996, number 29, page 7.

[9] M. Reshadi, P. Mishra, and N. Dutt. Instruction Set Compiled Simulation: A

Technique for Fast and Flexible Instruction Set Simulation. Proceeding of Design

and Automation Conference (DAC) 2003.

[10] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. The SimOS approach. IEEE

Parallel and Distributed Technology, volume 4, number 3, 1995.

[11] Nvidia Tegra Processor http://www.nvidia.com/page/handheld.html.

[12] Peter S. Magnusson et al. Simics: A Full System Simulation Platform. IEEE

Computer, 35(2):50–58, February 2002.

[13] S. C. Woo, M. Ohara, E.Torrie, J.P. Singh and A. Gupta. The SPLASH-2

Characterization and Methodological Considerations. Proceeding of the 22nd

Annual International Symposium on Computer Architecture, June 1995.

[14] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM: An Execution-

Driven Simulator for ILP-Based Shared-Memory Multiprocessors and

Uniprocessors. Proceeding of the Third Workshop on Computer Architecture

Education, February 1997.

[15] VMware, Inc http://www.vmware.com/.

- 60 -

[16] Witchel, E. and Rosenblum R. Embra: fast and flexible machine simulation.

Proceeding of the SIGMETRICS ’96 Conference on Measurement and Modeling of

Computer Systems, page 68-78.

