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影像之視覺式分享，權重式分享，修復與高品質資訊

隱藏 
 

研究生：林憲正                      指導教授：林志青 博士 

國立交通大學  資訊科學與工程研究所 

摘要 

本論文提出數種保護數位影像的安全性與正確性的方法。為了分散影像的機密，視

覺密碼學與影像分享是本論文首先討論的兩大主題。首先，我們提出可翻轉的視覺式分

享法。兩張機密影像會被編碼為兩張投影片。疊合兩張投影片可以顯示出第一張機密影

像，而翻轉第一張投影片並與第二張投影片疊合，則可顯示第二張機密影像。除此之外，

我們亦證明本方法在安全條件下能產生最佳對比值。 

在第二主題，我們提出一種權重式機密影像分享法。影像的每個分存會被賦予一個

權重值，此數值反映該分存的重要性。收到數份分存後，只要分存權重總和不小於設定

的門檻值，即可解碼回機密影像。此權重式分享方法是基於多項式除法而得，且傳統的

多項式機密影像分享法只是本方法的特例。另外，藉由觀察 GF(2k)的特性，我們提出本

方法的一套快速編碼演算法。 

在第三主題，為了藉由影像來傳輸隱藏的機密，我們提出一種基於權重加總的資訊

隱藏方法。比起其他已被提出的方法，本方法的優點為：i) 可調整的隱藏率，且範圍極

廣(例如從 0.5 到 4.0 位元/像素)。ii) 在各種不同的隱藏濾下，其結果像影像的 PSNR 值

有相當的競爭性。iii) 只要給予隱藏率，其結果影像的 PSNR 值可不須經由真正執行隱

藏過程來獲得，而是光藉由查表即可得預測值。 

在第四主題，為了保護影像的正確性，我們提出一種具有回復能力的半脆弱型浮水

印。其回復資料會編碼成許多分存，並各自隱藏至影像區塊的 DCT 域中。當浮水印影

像的某些部份被破壞，這些分存會從影像的未破壞區塊中抽出，然後回復資料會從這些

抽出的分存中解碼，並用於修復被破壞的區域。實驗顯示在合理程度下，本浮水印法可

以抵抗一些能保存內容的影像處理，像是 JPEG 壓縮，高斯模糊，與亮度調整。 
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Visual Cryptography, Weighted Sharing, Damage 

Repairing, and High Quality Hiding of Images 
 

Student : Sian-Jheng Lin               Advisor : Dr. Ja-Chen Lin 

Institute of Computer Science and Engineering 

National Chiao Tung University 

Abstract 

In the dissertation, several technologies to protect digital images are proposed. To diffuse 

the content of a secret image, Visual Cryptography and Sharing are both studied in the 

dissertation. First, a Flip Visual Cryptography system is proposed. Two secret images are 

encoded as two transparencies. Stacking the two transparencies can reveal one secret, and the 

second secret is revealed by stacking the second transparency with the flipped version of the 

first transparency. The proposed scheme is proved to have perfect security and 

conditionally-optimal contrast.  

In the second topic of the dissertation, a weighted secret image sharing method is 

proposed. Each shadow has a weight which indicates the shadow’s relative importance. The 

secret image can be decoded as long as the total sum of received weights reaches a specified 

threshold. The weighted sharing method is based on polynomial division, and the traditional 

polynomial-style secret image sharing is a sub-case of ours. Moreover, by observing the 

characteristics of GF(2k), a fast sharing algorithm is also proposed. 

In the third topic of the dissertation, in order to have confidential transmission, an 

image-hiding method based on weighted-sum function is proposed. Compared with previous 

works, the proposed method has following advantages: i) wide range of embedding rate (such 

as 0.5 to 4.0 bits per pixel); ii) competitive PSNR values over the whole wide range; iii) once 

an embedding rate is given, our look-up table can predict the PSNR value, even before the 

actual embedding. 

In the fourth topic of the dissertation, in order to protect the accuracy of an image, a 

semi-fragile watermarking method with recovery ability is proposed. The recovery data are 

shared among many shadows; then each shadow is embedded in the DCT domain of an image 

block. When the watermarked image is tampered with in some area, the non-damaged 
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shadows are extracted from image blocks; then the recovery data are decoded from those 

non-damaged shadows. The recovery data are then used to repair the damaged area. 

Experiments show that the proposed method can resist some content-preserving operations 

within certain degrees, such as JPEG compression, Gaussian noise, and brightness 

adjustment. 
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Chapter 1 

Introduction 

 
In this chapter, the motivation of the dissertation and background knowledge are 

presented in Sec. 1.1 and 1.2, respectively. The overview of the dissertation is given in 

Section 1.3. Finally, the organization of the remaining chapters is described in Section 1.4. 

 

1.1 Motivation 
With the explosive growth of internet services and improvements in hardware in recent 

years, network sharing of digital multimedia, such as images, audio, and video, has become 

extremely easy and increasingly commonplace. However, this expansion raises important 

issues on how to protect the accuracy of those digital media on a network. To discuss this 

problem, some of the chief aspects of digital image protection are considered in this 

dissertation. 

The first research topic of this dissertation is Visual Cryptography with double secrets. 

For Visual Cryptography, the most important issue is security. Most single-secret VC 

schemes (e.g. [1-3]) prevent any single transparency from leaking out any of the pixel values 

of the enclosed secret image. Restated, most VC schemes satisfy their single-secret security 

requirements. However, security issues concerning the relation of pixels between multiple 

input secret images have seldom been discussed. In Chapter 2, a multiple-secrets VC scheme 

with perfect security is defined as each single transparency leaking out neither pixel value nor 

the relation of the pixel values between multiple secret images. There are two possible 

branches in this design: 1) the stacking result representing black pixels in the secret image is 

restricted to being 100% opaque; 2) the stacking result representing black pixels in the secret 

image is not restricted to being 100% opaque. In the proposed scheme, the first branch is 

called opaque-oriented FVC, and the second is called non-opaque-oriented FVC. We will 

demonstrate that the contrast in our design here is conditionally optimal, no matter whether 1) 

or 2) is used. Throughout this chapter, the word “conditionally optimal” means that the 

contrast is optimal if the double-secrets non-expanded FVC scheme is required to have perfect 

security. 
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The second research topic of this dissertation is (t, n) weighted sharing. 

Polynomial-based secret sharing [4, 5] is a technique of protecting the secret message (e.g. 

encryption keys or important files). The secret message is dispersed among n shadows, where 

the size of each shadow is the same as the secret message. Any t of the n shadows can recover 

the secret message, but any t−1 or fewer shadows cannot obtain any information pertaining to 

the secret message. Based on the technology used, the secret message can be preserved in 

many places in order to disperse risk. On the other hand, if we do not persist on perfect 

security (i.e. any t−1 or less shadows cannot obtain any information about the secret message), 

there are other approaches, such as the Information Dispersal Algorithm (IDA)[6] and secret 

image sharing [7]. The size of each generated shadow is 1/t of the secret message. For 

practical exercises, we may assign a weight to each shadow, where the weight refers to the 

“information ratio” of the secret message. If the sum of obtained shadow weights is not less 

than a specific threshold t, the secret message can be decoded. When it comes to the issue of 

secret image sharing among weighted participants, this problem can be solved by simply 

applying Thien and Lin’s method [7]. However, to further improve the execution time in the 

weighted secret image sharing phase, a fast weighted secret image sharing method is proposed 

in this chapter. In Chapter 3, we propose a weighted scheme for secret image sharing, and 

propose an encoding algorithm that allows linear running time. 

The third research topic of this dissertation is weighted-sum function hiding for gray-scale 

images. With a data hiding method, a secret message can be embedded in a cover-media to 

generate a stego-media containing full information for the secret message. This stego-media is 

very similar to the cover-media, and is very hard for the human eye to distinguish. Using this 

technology, a secret channel is built privately between a sender and a receiver, and it is very 

difficult for others to detect any transmission between the two. For gray-scale images, 

modulus-based data hiding [8] and LSB matching [9, 10] are two good hiding methods which 

can achieve high PSNR values (a metrical formula of calculating the similarity of two images) 

under some embedding rates (bpp, bits per pixel). Here we try to generalize both the 

modulus-based embedding method [8] and the LSB matching method [9]. Our generalization 

will create two benefits: 1) giving better PSNR than [8], as shown in Tables 4.3 and 4.4 later, 

and 2) giving a wider range of embedding rates than [9] did, particularly non-integer 

embedding rates. Therefore, the new product will be an all-in-one method with competitive 

quality everywhere over a wide range of embedding rates (including, but not limited to, rates 

which are non-integer or smaller than one). In Chapter 4, we establish a generalized version of 
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the two hiding methods introduced above for gray-scale images. Our experiments show that 

our proposed method has a wide embedding rate (0.5-4.0 bpp) and competitive PSNR values. 

The final research topic of this dissertation is semi-fragile watermarking with recovery 

ability for single images. Semi-fragile watermarking is a watermarking approach for image 

authentication. The authentication data are embedded in the watermarked image by data 

hiding technology. When we examine the integrity of the image, the authentication data are 

extracted for checking. Some semi-fragile watermarking methods [11, 12] and recovery 

ability methods [13-17] have been proposed in recent years. In Chapter 5, we proposed a 

semi-fragile watermarking with recovery ability. By embedding the recovery data in DCT 

domain, the method can resist some operations, such as JPEG compression, Gaussian noise, 

or brightness adjustment, within a pre-defined degree. 

 

1.2 Related studies 
 

1.2.1 Visual Cryptography 

Introduced by Naor and Shamir[1], visual cryptography (VC) is an approach to decrypt 

secret images using the human visual system. Using VC, a secret image can be revealed by 

stacking the transparencies generated in the encryption process. Since the decoding process of 

VC depends on the inspection of stacked images using the naked eye, it has the potential to be 

utilized in critical environments without computer resources. We may use the simple example 

in Fig. 1.1 to describe VC. Fig. 1.1(a) shows the binary secret image. After using the encoding 

process proposed by Naor and Shamir [1], the generated transparencies are extremely noisy, 

as in (b) and (c). Fig. 1.1(d) shows the result of stacking the two transparencies (b) and (c) 

together. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 1.1. An example of VC. (a): a secret image; (b-c): the two transparencies generated for (a) 

using the VC scheme of Naor and Shamir [1]; (d) the result of stacking (b) and (c). 

 

Many VC related studies have been proposed. For example, [18-21] introduced 

multi-secret VC; [20, 22-25] proposed non-expanded VC so that the created transparency 

could be compact; and some other VC schemes [26-29] enabled VC to have more applications. 

The aforementioned Wu and Chang [3] proposed a method to generate two circle 

transparencies for sharing two secret images. When rotating one transparency by a 

pre-specified angle and then stacking it with another transparency, the second secret image 

could be revealed. With their method, the size of each transparency was four-fold larger than 

that of each secret image. Fang and Lin [18] used two rectangular transparencies to share two 

secret images. In their method, besides revealing one secret image by stacking the two 

transparencies, shifting one of the transparencies and then stacking them again could also 

reveal another secret image. The size of each transparency was also four-fold that of each 

secret image. Shyu et al. [19] extended the multi-secret VC scheme of Wu and Chang [3] 

from single rotation to several rotations so that they could encode # images in two 

transparencies. Nevertheless, the transparencies were still 2# times the size of each secret 

image.  

To optimize usage of the transparencies, reducing the size of the transparencies is also an 

topic for study. There are several non-expanded VC schemes. For example, Yang [20] 

introduced a probability-based method and Shyu [22] presented a random-grid-based method. 

In both methods, the size of each transparency is the same as that of the secret image. 

Therefore, their methods are particularly suitable for situations with storage restriction. 

However, in their methods, only one secret image is hidden when several transparencies are 

created. 
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1.2.2 Polynomial secret sharing, secret image sharing, information dispersal algorithm, 

and Reed-Solomon code 

In 1979, two independent researchers, Blakley [5] and Shamir [4] proposed a polynomial 

secret sharing scheme. In their (t, n) threshold scheme, a dealer distributes a secret number 

into n shadows, with each of n participants holding one shadow. The generated shadows have 

two properties: (1) any information about the secret message (except for the message size) 

cannot be extracted from any t−1 or less shadow. (2) the size of each shadow is the same as 

the size of the secret message. If a secret sharing scheme has property 1, the sharing scheme is 

called perfect security. Moreover, if the sharing scheme has property 1 and 2, the sharing 

scheme is called ideal. Shamir’s polynomial secret sharing[4] is an ideal secret sharing 

scheme. Later, Shamir [4] introduced the concept of weighted secret sharing in his seminal 

work. In Shamir’s weighted secret sharing with the (t, n) threshold scheme, each of the n 

participants is assigned with a positive integer weight wi where i=1, 2,..., n and 1 1iw t≤ ≤ − . 

Then the dealer would distribute a secret number into ∑=

n

i iw
1

 shadows, and the number of 

shadows that each participant held would be equal to their corresponding weight value. The 

secret could be reconstructed if the sum of the weights of the received participants is no less 

than the threshold t. 

When the secret data is a secret image rather than a secret number, using Blakley’s or 

Shamir’s (t, n) threshold scheme [4, 5] to share the secret image will waste much memory 

space because the size of the secret image is usually very large. To reduce memory space, 

Thien and Lin [7] proposed a secret image sharing method derived from Shamir’s scheme, 

and Tso [30] proposed a secret image sharing method based on Blakley’s scheme. In both 

methods, the size of each shadow is smaller than that of the secret image. In addition, based 

on Thien and Lin’s secret image sharing method, the progressive secret image sharing 

schemes [26, 27, 31] were proposed in succession. 

An Information Dispersal Algorithm (IDA) [6] was proposed by Rabin. Under this 

scheme, a file can be divided into n shadows, and any t of the n shadows can reconstruct the 

file. IDA does not care about the security of shadows, and the major advantage of IDA is that 

the size of each shadow is 1/t, which is smaller than Shamir’s method 1. P. Béguin and A. 

Cresti [32] prove that the size of each shadow 1/t is minimal, if the entropy of the file is 

maximal. Preparate [33] proposed a fast sharing method based on Fast Fourier Transform 

(FFT) over an finite field. 
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Reed-Solomon code (RS code) [34] utilizes error control coding proposed by Reed and 

Solomon. The t information digits are transformed into n digits to form a code, and if any 

 2/)( tn −  of the n digits are modified, the t information digits can also be precisely 

extracted. Preparate [33] later extended this method, proposing the concept of sharing RS 

code. 

 

1.2.3 Data hiding methods 

Data hiding is a technology which can embed data in images. The LSB (Least 

Significant Bits) substitution method is probably the simplest embedding method. For 

example, if two secret bits (11)2=3 are to be embedded in an 8-bit pixel value 

(10010100)2=148, the two least significant bits of 148 are replaced, and the stego-pixel value 

is (10010111)2=151, which can extract (11)2 easily. To improve the LSB substitution method, 

Thien and Lin [8] use (10010011)2=147 as the stego-pixel, since 147 is closer to 148 than 151 

is, and the last two bits of 147 can still extract (11)2 easily. Other papers have been published 

based on this or similar observations. For example, Lin et al. [35] introduced an embedding 

algorithm which extended the modified LSB substitution method by using a distortion 

tolerance. Yang [36] embedded data based on an inverted pattern approach to improve the 

stego-image’s quality in the LSB method, and Wang [37] used a threshold to decide the 

modulus base of the embedding function. 

Rather than using a pixel as the embedding unit, the LSB-matching method [9, 10] 

considers a block of several pixels simultaneously. Mielikainen [10] proposed an embedding 

method which embeds 2 bits in a block of 2 pixels. Li et al. [9] defined a generalized LSB 

matching (G-LSB-M) scheme to further reduce distortion. Zhang and Wang [38] embedded a 

digit which has (2z+1) possible values in each z-pixel block. When the secret data contains 

images, another type of research focuses on [39-41] the redundancy of the secret images to 

improve stego-image quality. For various media formats, Tseng et al. [42] embedded data in 

binary images, and Wu et al. [43] in palette-based images, whereas Liu and Liao [44] used 

JPEG images. Lee et al.’s method [45] was for binary images, and the embedding was based 

on Hamming codes to reduce the frequency of flipping pixels. Wang and Lu [46] used a 

Vector Quanization (VQ) index file as the host media. Tseng and Hsieh [47] even proposed a 

reversible method, so that the host images could be recovered from the stego-images without 

loss, but the price of being reversible was a smaller embedding rate (for example, it embedded 

only 0.22 bits per pixel to get a Lena stego-image of 47.31 dB PSNR). Some other kinds of 
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data embedding consider the content of the host image, i.e. embedding more bits in the coarse 

area of the host image. For example, Wu and Tsai [48] introduced a method based on pixel 

value differencing, whereby each block of the host image embeds a dynamic number of bits 

by altering the pixel value difference. Likewise, Wang et al. [49] used a pixel value 

differencing and modulus function to effectively reduce distortion. Zhang and Wang [50] 

dynamically changed the base of secret data to control the embedding rate of the stego pixels. 

Yang et al. [51] also proposed adaptive data embedding in edge areas, and then the use of a 

modified LSB substitution method to reduce distortion. Yang et al. [52] estimated the amount 

of the embedded data by exploiting the brightness, edges, and texture of the host image. 

 

1.2.4 Fragile watermarking and Semi-fragile watermarking 

An image authentication method generates some data which will be used to check the 

accuracy of the digital media in the future; the authentication data can be stored in another file 

(this is the so-called digital signature approach [53, 54]), or embedded in the digital media 

itself (i.e. watermarking approach [55-66]). In recent years, some watermarking studies have 

focused on image tampered-region detection and recovery [58-66]. 

Lin et al. [59] proposed a watermarking technique for tamper detection and recovery, 

based on a three-level hierarchical structure and block-mapping sequence. In the three-level 

hierarchical structure, a block is judged as “applicable” if the block passes three inspections. 

If a block is judged as “non-applicable”, then the recovery data is embedded in LSBs of 

another block whose address is determined by a block-mapping sequence. Lee and Lin [63] 

proposed a watermarking technique which embeds dual watermarks in an image. The 

detection algorithm is similar to Lin et al.’s method [59], but the block size is 2×2, rather than 

the 4×4 used in Lin’s method [59]. If a block is judged as “non-applicable”, then the copies of 

recovery data are embedded in LSBs of another two blocks, which are addressed by a 

block-mapping sequence. The two copies of recovery data (dual watermarks) are used to 

increase the chances for block recovery. In Wang and Tsai’s method [64], the image is 

divided into two regions; for the Region-of-Interest (ROI), the recovery data are encoded by 

fractal encoding, and embedded in other blocks which are selected by permutation. For 

remaining regions, no recovery data are embedded. If a damaged block is located in an ROI, 

then the fractal code is extracted for recovery; otherwise, the block is recovered by an 

image-inpainting technique. Chan and Chang [66] proposed an image authentication method 

based on Hamming code consisting of three components; the Hamming code, Torus 
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automorphism and bit rotation. The parity check bits for each pixel were generated by the 

Hamming code. The embedding locations for the parity check bits were decided by Torus 

automorphism, and the bit rotation was used to improve security. Zhang and Wang [67] 

proposed an elegant watermarking method, which can restore a tampered region without error. 

This method is based on reversible data hiding, which can extract the whole host image from 

the stego-image without error. 

In general, if a watermarked image is processed by some content-preserving operations 

(i.e., JPEG compression), verification ability should still exist within a certain level of the 

operation. This type of watermarking method is said to be semi-fragile, and in the semi-fragile 

watermarking method proposed by Ho and Li [11], users choose the lowest JPEG quality 

factor they can tolerate, and the verification data is generated and embedded in the quantized 

DCT domain. Their experiments demonstrated that their method could resist JPEG 

compression (up to a level of Quality factor QF). In the Lin et al. [12] method, users also 

choose the lowest JPEG quality factor they can tolerate, and the verification data is generated 

from the low/middle frequency of the DCT domain, followed by embedding in the high 

frequency domain. Their experiments showed that their method can also resist JPEG 

compression (up to a QF level). However, these two methods [11, 12] only embed verification 

data, and there is no recovery data. 

There are some semi-fragile watermarking techniques which also embed recovery data in 

the watermarked image, and the image itself can recover any tampered regions. Lin and 

Chang [13] proposed two approaches to semi-fragile watermarking, one of which has 

verification ability only, while the other has both verification and recovery ability. The 

verification data is generated from the DCT coefficients, and the recovery data is generated 

from a quarter-size shrunken sub-image of the host image (if recovery ability is required). 

Then all of the generated data is embedded in the DCT domain. Their method can resist both 

JPEG compression and brightness adjustment within a reasonable range. Hsieh et al. [14] also 

proposed a watermarking scheme with damage-recovery ability. The recovery data is 

calculated from the host image, and then three copies of the recovery data are embedded in 

the DCT domain of the host image. Their experiments showed that their method could resist 

JPEG compression, brightness adjustment and contrast adjustment. Jiang and Liu [15] 

proposed an authentication-recovery scheme. Their verification data is a random number 

sequence generated by a key, and their recovery data is generated from DCT coefficients of 

the host image. The two sets of data are embedded in the two-LSBs (the two least significant 
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bits) of the image. Their experiments showed that their method could resist JPEG 

compression and small-area replacement of the watermarked image. 

 

1.3 Overview of this dissertation 
In this dissertation, several techniques to protect digital images are proposed for various 

applications. The proposed methods contain a flip VC method, a fast weighted image sharing 

method, a data hiding method, and a semi-fragile watermarking method. Fig. 1.2 shows the 

framework of the dissertation, and the brief overview of each proposed method is given in the 

subsections below. 

 

 
Fig. 1.2. The framework of this dissertation. 

 

1.3.1 Flip Visual Cryptography (FVC) with perfect security, conditionally optimal 

contrast, and no expansion 

In Chapter 2, a flip visual cryptography (FVC) scheme is proposed. The proposed FVC 

scheme encodes two secret images into two dual-purpose transparencies. Sixteen basis 

matrices are designed to encode a pair of pixels of the two secret images, respectively. If the 

stacking result representing black pixels in the secret image is restricted (or not restricted, 

respectively) to be 100% opaque, we have two designs called opaque-oriented FVC and 

non-opaque-oriented FVC in the proposed scheme. We also prove that the contrast in our 

design here is conditionally optimal, no matter whether opaque-oriented FVC or 

non-opaque-oriented FVC is used. 

Image security 
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(Ch. 5) 
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1.3.2 Fast weighted secret image sharing 

Chapter 3 contains two topics. First, we bring up a weighted secret image sharing 

method. The method is based on polynomial division over a finite field. The size of each 

shadow depends on the weight choosen by the user. When an image has sufficient shadows 

where the sum of weights is larger than a pre-defined threshold, the secret image can be 

decoded by utilizing the extended Lagrange polynomial. When all weights are defined as 1, 

the proposed method is the same with Thien and Lin’s method [7]. Then, by observing 

characteristics of GF(2k), a fast encoding algorithm under GF(2k) is proposed. The encoding 

algorithm is a recursive function, and the running time depends only on the size of the secret 

image. 

 

1.3.3 Weighted-sum function (WSF) − a gray-scale image hiding method with 

competitive PSNR over a wide range of embedding rates 

In Chapter 4, a hiding method is proposed based on a weighted-sum function. With this 

method, m secret bits are embedded in z pixels, and the secret bits can be extracted by 

executing a weighted-sum function. To minimize distortion, two optimization patterns are 

proposed. First, to reduce the running time of obtaining the best values of stego-pixels, a table 

T is dynamically generated and the stego-pixels are calculated by looking up table T; second, 

to decide the weight values in weighted-sum functions with various embedding rates, some 

suggested weights based on exhaustive research are given in Table 3.2. The advantages of the 

proposed method include: (1) A wide range of embedding rates (such as 0.5 to 4 bits per 

pixel), (2) Competitive image quality over the whole wide range, (3) Once the embedding rate 

is given, our look-up table can predict the PSNR value, even before the actual embedding. 

 

1.3.4 Authentication and recovery of an Image by using sharing and lattice-embedding 

In Chapter 5, we propose a semi-fragile watermarking method based on secret sharing 

and lattice-embedding. Using this method, a host image is transformed into an 8×8 DCT 

domain, and the coefficients in each DCT block are shared among many shadows by 

two-layer sharing[68]. Each shadow is then embedded in a DCT block by lattice-embedding. 

Because the shadow is embedded in the DCT domain, shadow data that pass certain degree of 

JPEG compression remain intact. However, the repairing area is smaller than the fragile 

version, due to the smaller embedding capacity. As shown in experiments, the watermarked 
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image can resist some content-preserving operations such as JPEG compression, Gaussian 

noise, or brightness adjustment. 

 

1.4 Organization 
The organization of the rest chapters of the dissertation is listed below. Flip Visual 

Cryptography is addressed in Chapter 2. Fast weighted secret image sharing is addressed in 

Chapter 3. A hiding method based on a weighted-sum function is addressed in Chapter 4. An 

image authentication method using semi-fragile watermarking with recovery ability is 

addressed in Chapter 5. Finally, the conclusion and the future works of this dissertation are 

given in Chapter 6. 
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Chapter 2 

Flip Visual Cryptography (FVC) with perfect security, 

conditionally optimal contrast, and no expansion 
 

This chapter proposes a flip visual cryptography (FVC) scheme with perfect security, 

conditionally optimal contrast, and no expansion of size. The proposed FVC scheme encodes 

two secret images into two dual-purpose transparencies. Stacking the two transparencies can 

reveal one secret image. Flipping one of the two transparencies and then stacking with the 

other transparency can reveal the second secret image. The proposed scheme is proved to 

have conditionally optimal contrast: its contrast is optimal if the double-secrets non-expanded 

FVC scheme is required to have perfect security. The perfect security is also proved. 

The remainder of this chapter is organized as follows: The proposed opaque-oriented FVC 

scheme and non-opaque-oriented FVC scheme are stated in Sec. 2.1, respectively. 

Experimental results are shown in Sec. 2.2. Some discussions are shown in Sec. 2.3, and the 

conclusions are in Sec. 2.3. In Sec. 2.5, we prove that the contrast 1/6 (and 1/4, respectively) 

is conditionally optimal among the opaque-oriented FVC schemes (and non-opaque-oriented 

FVC schemes, respectively) that use basis-matrices design with perfect security.  

Notations in this chapter: 

ht The height of the secret image. 

wh The width of the secret image. 

S1, S2 Two binary secret images in which the size is ht×wh. 

B, W Black and white. 

T1, T2 Two generated transparencies. 

1S ′ , 2S ′  Two stacking results which are similar to S1 and S2, respectively. 

r The width of basis matrices. 

b the minimal luminance transmission to represent B in stacking results. 

w the minimal luminance transmission to represent W in stacking results. 

α The contrast which is w – b. 

⊗ Stacking operation. 
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2.1 Opaque-oriented FVC and Non-Opaque-oriented FVC 
In this section, we design two FVC methods which are opaque-oriented FVC and 

non-opaque-orient FVC. This section includes three subsections: (1). Definition of the 

problem; (2). The 16 basis matrices of opaque-oriented FVC; (3). The 16 basis matrices of 

non-opaque-oriented FVC. 

 

2.1.1 Problem definition 

Two ht×wh binary secret images, denoted by S1 and S2, are encoded to get two ht×wh 

transparencies T1 and T2, respectively. Without the loss of generality, the goal of the proposed 

FVC scheme is that the secret image S1 can be decoded by stacking T1 and T2 together; 

whereas the secret image S2 can be decoded by flipping T1 over and then stacking with T2. Fig. 

2.1 illustrates the operation to flip a transparency over. Notably, the transparency in Fig. 2.1(a) 

is not a transparency created by our method, because our transparency is completely 

noise-like. Fig. 2.1 is just to explain the flip-over operation; and the explanation would have 

been impossible to understand if Fig. 2.1(a), and hence Fig. 2.1(b), had been completely 

noise-like. 

 
(a) 

 
(b) 

Fig. 2.1. (a): A transparency; (b): The transparency after flipping. 

 

Let S1 = {s1(i, j) | i∈Zht, j∈ Zwh} and S2 = {s2(i, j) | i∈Zht, j∈Zwh} be the two given 

black-and-white secret images. Each pixel s1(i, j) and each pixel s2(i, j) are binary in value W 

(white) pixel or B (black) pixel. Let T1 = {t1(i, j)| i∈Zht, j∈ Zwh } and T2 = {t2(i, j)| i∈Zht, j∈ 

Zwh } be the two transparencies to be generated. In the design of transparencies T1 and T2, 

represent every “opaque” pixel of a transparency by 1, and represent every “transparent” 

pixel of a transparency by 0. (To distinguish between secret image and transparency image, 

the words “opaque and transparent”, rather than “Black and White”, are used when the image 

being talked about is a transparency, rather than an input secret image.) In Definition 2.1, the 
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stacking operation is symbolized by the symbol “⊗” which is in fact the OR operator. This 

coincides with the real world experience: in real world, if we stack two transparencies, the 

places where we can see through are the places where both transparencies are transparent 

(both are 0s). 

 

Definition 2.1 (Stacking operation ⊗)  

The stacking operation for transparencies is symbolized by “⊗”, where 0⊗0=0, 0⊗1=1, 

1⊗0=1, and 1⊗1=1.               

  ■ 

 

 
Fig. 2.2. Stacking transparencies T1 and T2 to decode secrets S1 and S2 of size ht×wh each. 

(Stacking T1 and T2 to decode secret S1; Flipping T1 over and then stacking with T2 to decode 

secret S2) 

 

Fig. 2.2 illustrates the effect of stacking two transparencies T1 and T2 and describes what 

will happen when people flip T1 over and then stack it with T2. The two pixel values [s1(i, j), 

s1(i, wh−1−j)] are called a symmetric pair, and so are [s2(i, j), s2(i, wh−1−j)]. To design a flip 

visual cryptography (FVC) scheme, possible values of the quadruple [s1(i, j), s1(i, width−1−j), 

s2(i, j), s2(i, wh−1−j)] should be considered simultaneously. For each quadruple [s1(i, j), s1(i, 

wh−1−j), s2(i, j), s2(i, wh−1−j)] of secret pixels, the quadruple [t1(i, j), t1(i, wh−1−j), t2(i, j), t2(i, 

⊗ 
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wh−1−j)] of transparency pixels must meet the following four requirements simultaneously:  

1) s1(i, j) is decoded by stacking t1(i, j) and t2(i, j); 

2) s1(i, wh−1−j) is decoded by stacking t1(i, wh−1−j) and t2(i, wh−1−j);  

3) s2(i, j) is decoded by stacking t1(i, wh−1−j) and t2(i, j);  

4) s2(i, wh−1−j) is decoded by stacking t1(i, j) and t2(i, wh−1−j); 

with the use of the symbol ⊗, the four requirements read: 

s'1(i, j)= t1(i, j)⊗t2(i, j); 

s'1(i, wh−1−j) = t1(i, wh−1−j)⊗t2(i, wh−1−j); 

s'2(i, j) = t1(i, wh−1−j)⊗t2(i, j); 

s'2(i, wh−1−j) = t1(i, j)⊗t2(i, wh−1−j). (2.1) 

Here, [s'1(i, j), s'1(i, wh−1−j), s'2(i, j), s'2(i, wh−1−j)] are the stacking results to show the 

quadruple [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)]. Since we are dealing with visual 

decoding, the stacking results [s'1(i, j), s'1(i, wh−1−j), s'2(i, j), s'2(i, wh−1−j)] do not need to be 

completely identical to the original secret values [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)].  

Therefore, a prime symbol has been added to s to denote the stacking result. 

 

Definition 2.2. The 16 basis matrices of a Flip VC (FVC) system are defined according to Fig. 

2.2. In detail, each FVC system is defined according to its 24 = 16 basis matrices {CWWWW, 

CWWWB, CWWBW, …., CBBBW, CBBBB} of 4-by-r each, and r is a constant. All 4-by-r elements of 

each basis matrix C[s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)] ∈ {CWWWW, CWWWB, CWWBW, …., CBBBW, CBBBB} 

are 1-bit in value. Notably, s1(i, j)∈{W, B}, and so are the values of s1(i, wh−1−j), s2(i, j), and 

s2(i, wh−1−j). Hence, there are 24=16 basis matrices to cover the 16 possible readings 

{WWWW, WWWB, … , BBBB} of the 4-dimensional input vector [s1(i, j), s1(i, wh−1−j), s2(i, 

j), s2(i, wh−1−j)].                

 ■ 

 

In the definition above, we stated that each FVC system is defined according to its 24=16 

basis matrices. This is because people can use the 16 basis matrices to encode any two secret 

images S1 and S2 to get two transparencies. In general, to encode four secret pixels [s1(i, j), s1(i, 

wh−1−j), s2(i, j), s2(i, wh−1−j)] grabbed from secret images S1 and S2, just choose randomly a 

column from the corresponding basis matrix C[s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)], then copy the 
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four elements of the chosen column to the four transparency pixels t1(i, j), t1(i, wh−1−j), t2(i, j), 

t2(i, wh−1−j) of T1 and T2, respectively. 

To make sure the generated transparencies are secure and useful in unveiling the input 

secret images, the 16 basis matrices must satisfy the following Security and Contrast 

constraints. If these two constraints are satisfied, then the FVC defined by these sixteen basis 

matrices is called a valid FVC. 

 

I. (Security constraint).

ra ×U
0

 In each 4-by-r basis matrix, the first and the second rows together 

consist of  columns of [0 0]T, ra ×U
1  columns of [0 1]T, ra ×U

2  columns of [1 0]T, 

ra ×U
3  columns of [1 1]T, where 

1U
3

U
2

U
1

U
0 =+++ aaaa . (2.2) 

The value of U
ia  used by any two basis matrices must be identical. Likewise, the third and 

the fourth rows together consist of ra ×L
0  columns of [0 0]T, ra ×L

1  columns of [0 1]T, 

ra ×L
2  columns of [1 0]T, and ra ×L

3  columns of [1 1]T, where 

1L
3

L
2

L
1

L
0 =+++ aaaa . (2.3) 

The value of L
ia used by any two basis matrices must be identical. 

 

II. (Contrast constraint).

 

 Get the contrast according to the contrast evaluation process stated 

below. The contrast constraint requires that the obtained value α must be positive. 

Contrast evaluation

1. the luminance transmission of s1(i, j), which is the percentage of 0s in the stacking 

result when the 1st and 3rd rows are stacked; 

: The contrast of a Flip VC is evaluated in the following manner. For 

each basis matrix, items 1-4 are evaluated below:  

2. the luminance transmission of s1(i, wh−1−j), which is the percentage of 0s in the 

stacking result when the 2nd and 4th rows are stacked; 

3. the luminance transmission of s2(i, j), which is the percentage of 0s in the stacking 

result when the 2nd and 3rd rows are stacked; 

4. the luminance transmission of s2(i, wh−1−j), which is the percentage of 0s in the 

stacking result when the 1st and 4th rows are stacked. 

Then, since each of the four pixels s1(i, j), s1(i, wh−1−j), s2(i, j), and s2(i, wh−1−j) only 
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have two possible values {W, B}, there are 24=16 basis matrices (e.g. Table 2.1). These 16 

matrices are distinguished from each other using a quadruple naming system. For example, if 

[s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)] is [B,W,B,B], then the corresponding basis matrix 

is called CBWBB. Now, for each of these 16 matrices, measure its luminance transmission of s1(i, 

j). If the first subscript in the matrix name is B, i.e., if s1(i, j)=B, then store its luminance 

transmission of s1(i, j) in a pool called Black-pool. Otherwise, store it in a so-called 

White-pool (Therefore, 16/2=8 of the 16 luminance transmission of s1(i, j) will be in 

Black-pool, and the remaining 16−8=8 will be in White-pool.). After that, for each of the 16 

basis matrices, measure its luminance transmission of s1(i, wh−1−j).  If the second subscript 

in the matrix name is B, then store its luminance transmission of s1(i, wh−1−j) in a pool called 

Black-pool. Otherwise, store it in a so-called White-pool. Repeat this process analogously for 

the 16 luminance transmissions of s2(i, j) according to the third subscript of the matrices’ 

names.  Also repeat this process analogously for the 16 luminance transmissions of s2(i, 

wh−1−j) according to the fourth subscript of the matrices’ names. Together, we have 

8+8+8+8=32 numbers in the Black-pool, and 8+8+8+8=32 numbers in the White-pool. The 

minimum of the 32 numbers in White-pool is called w (the minimal luminance transmission 

to represent W), and the maximum of the 32 numbers in Black-pool is called b (the maximal 

luminance transmission to represent B). Define contrast α as 

α = w – b>0. (2.4) 

Remark.

 

 In all VC methods, the stacking result is always with a contrast value smaller than 

100% –0%=100%=1, and this makes the stacking result always looks less clear than the input 

secret image (for example, compare Fig. 1.1(a) and Fig. 1.1(d)). In general, contrast is an 

important measure specifying the visual quality of the stacking result for a VC method. 

Roughly speaking, a decoded result with higher contrast is usually clearer. 

Theorem 2.1. When a FVC defined by 16 basis matrices satisfy the Security and the Contrast 

constraint addressed in Definition 2.2, then the generated transparencies are secure and useful 

in unveiling the input secret images. 

Proof: i) About the Security constraint, its purpose is that: no information about the two 

secret images can be extracted if someone only gets a transparency. Below we prove the 

security of the two secret images when someone only obtains transparency T1. (The proof is 

likewise if T1 is replaced by transparency T2). 
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The definition of Security constraint reads that “The value of U
ia  used by any two basis 

matrices must be identical (This cross-matrices requirement also holds for L
ia , 

respectively.)”. Hence, if a set of basis matrices do not satisfy the security constraint, then the 

value of U
ia  (or L

ia ) used by some basis matrices may be different. For example, if the 

matrix CBBBB in Table 2.1 is replaced by 



















−−

−−
=′

010111
100111
111110
111100

)1,(
),(

)1,(
),(

2

2

1

1

jmit
jit

jmit
jit

CBBBB , 

then the first and the second rows in C'BBBB are with [0 0]T×1, [0 1]T×1, [1 0]T×0, and [1 1]T×4, 

while the first and second rows in remaining 16−1=15 matrices of Table 2.1 are with [0 0]T×1, 

[0 1]T×1, [1 0]T×1, and [1 1]T×3. Since the first and second rows are used to encode t1(i, j) and 

t1(i, wh−1−j) in the same transparency T1, so if an intruder finds in T1 a pair of pixels [t1(i, j), 

t1(i, wh−1−j)]=[1, 1], then his best guess of the four corresponding secret pixels in secret 

images S1 and S2 should be [BBBB]. Likewise, if he finds in T1 a pair of pixels [t1(i, j), t1(i, 

wh−1−j)]=[1, 0], then he knows that the four corresponding secret pixels cannot be [BBBB]. 

In summary, the transparency T1 is not a secure transparency, because it has secret-leaking 

problem. 

The paragraph above shows the necessity of the security constraint (to ensure that no 

information about the secret images can be extracted). Below we show the sufficiency of the 

security constraint. Assume a set of sixteen basis matrices satisfies the security constraint. 

Therefore, in each 4-by-r basis matrix, the first and the second rows together consist of 

ra ×U
0  columns of [0 0]T, ra ×U

1  columns of [0 1]T, ra ×U
2  columns of [1 0]T, ra ×U

3  

columns of [1 1]T, where the value of u
ia used by any two basis matrices must be identical. 

Since the first and second rows are utilized to encode t1(i, j) and t1(i, wh−1−j) in the same 

transparency T1, so if an intruder gets a single transparency T1 and he finds in T1 a pair of 

pixels [t1(i, j), t1(i, wh−1−j)]=[0, 0], then he cannot know whether the four corresponding 

secret pixels in secret images S1 and S2 should be [WWWW] or [WWWB] or …. or [BBBB]. 

This is because each of the 24=16 basis matrices has the same number of columns ( ra ×U
0  

columns) read as [0 0]T when the first two rows of the matrix is grabbed. Therefore, there are 

1/16 chance that [0 0]T was from secret pixels [WWWW]. Similarly, there are 1/16 chance that 
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[0 0]T was from secret pixels [WWWB]. Similarly, there are 1/16 chance that [0 0]T was from 

secret pixels [WWBW]. In fact, the same 1/16 chance holds for each of the sixteen basis 

matrices.  

Therefore, the intruder cannot know whether the four corresponding secret pixels in 

secret images S1 and S2 should be [WWWW] or [WWWB] or …. or [BBBB]. The above 

analysis still holds if [0 0]T is replaced by [0 1]T or [1 0]T or [1 1]T. Therefore, no matter what 

the contents of two secret images S1 and S2 are, the transparency T1 is always of perfect 

security: no secret-leaking will occur. The perfect security of transparency T2 can be proved 

likewise using the third and fourth rows of the 16 basis matrices, as defined in the second half 

of the security constraint. 

ii)

Case 1. (α=0). In this case, we cannot see the information in the stacking result, because 

the luminance transmission of representing W and B are identical.  

 About the Contrast constraint, the definition is in Eq. (2.4) which reads α = w–b>0. If 

the value of α is not positive, then there are two possible cases: 

Case 2. (α<0). In this case, the luminance transmission to represent W is smaller than the 

luminance transmission to represent B. Then we will see that W is darker than B, and the 

stacking result will look like the negative film of a photo, an inappropriate view.   ■ 

 

2.1.2 The 16 basis matrices of opaque-oriented FVC 

In this section, we use 16 basis matrices of 6 columns each to encode the quadruple 

secret pixels [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)]. Each generated transparency will be 

of perfect security by using the 16 basis matrices to encode. The word “opaque-oriented” 

means the stacking result representing black pixels in the secret image is restricted to be 100% 

opaque. The security and contrast are addressed below. 

 

Property 2.1. The set of basis matrices shown in Table 2.1 is a valid FVC and it satisfies the 

security and the contrast of stacking result is 1/6. 

Proof:

):::( U
3

U
2

U
1

U
0 aaaa

 Table 2.1 shows a set of 16 basis matrices mentioned below Definition 2.2. In the 1st 

and 2nd Rows of each basis matrix shown in Table 2.1, there are (1/6)×6=1 column of [0 0]T, 

(1/6)×6=1 column of [0 1]T, (1/6)×6=1 column of [1 0]T, and (3/6)×6=3 columns of [1 1]T. 

Hence, the cross-matrices constant-ratio  requirement mentioned below 

Eq. (2.2) holds. In the 3rd and 4th Rows of each basis matrix, the cross-matrices constant-ratio 
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):::( L
3

L
2

L
1

L
0 aaaa  requirement mentioned below Eq. (2.3) also holds. The cross-matrices 

property required by the Security Constraint is thus satisfied. Moreover, after the computation 

stated below, it can be shown that w=1/6 and b=0, so the contrast α is 1/6−0=1/6 which is a 

positive number, and hence the Contrast Constraint is also satisfied by the Flip VC defined 

using Table 2.1.  

The detail computation of w and b for Table 2.1 is as follows. First, statements 1-4 below 

are true for each basis matrix in Table 2.1. Therefore, every element of the Black-pool is 0, 

and each element of the White-pool is 1/6. Because the maximum element of the Black-pool 

(i.e. b) is 0 and the minimum element of the White-pool (i.e. w) is 1/6, contrast α is thus 

1/6−0=1/6. 

1. When the 1st and 3rd rows are stacked, if the first subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%. 

2. When the 2nd and 4th rows are stacked, if the second subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%. 

3. When the 2nd and 3rd rows are stacked, if the third subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%. 

4. When the 1st and 4th rows are stacked, if the forth subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%. 

 ■ 

 

We explain below in more detail what the two ratios 0% and 16.7% stand for. According 

to Fig. 2.2, each of  the four secret-pixels in [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)] is 

recovered by tracing its two arrows in Fig. 2.2 back to two of the four transparency-pixels in 

[t1(i, j), t1(i, wh−1−j), t2(i, j), t2(i, wh−1−j)]. For example, the recovered version of secret pixel 

s1(i, j) is obtained by s'1(i, j)=t1(i, j)⊗t2(i, j); whereas the recovered version of secret pixel s2(i, 

j) is obtained by s'2(i, j)=t1(i, wh−1−j)⊗t2(i, j). As for the encoding to generate the two 

transparencies t1 and t2, note that each 4-by-6 basis matrix in Table 2.1 has 6 columns; so, in 

the encoding process, each time an input quadruple [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, 

wh−1−j)] is given, there are 6 possible ways to encode this quadruple. For example, if the 

input secret quadruple [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)] is [W,W,B,B], then [t1(i, j), 

t1(i, wh−1−j), t2(i, j), t2(i, wh−1−j)] is encoded as [1,0,1,0] if the third column of the basis 

matrix CWWWB in Table 2.1 is selected. Likewise, [t1(i, j), t1(i, wh−1−j), t2(i, j), t2(i, wh−1−j)] is 
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encoded as [1, 1, 0, 0] if the sixth column of matrix CWWWB is selected in the random-selection 

process. Notably, the index WWBB means that the input quadruple secret pixels are s1(i, j)=0, 

s1(i, wh−1−j)=0, s2(i, j)=1, s2(i, wh−1−j)=1. Now, no matter which of the six columns of 

matrix CWWBB is selected, the value s'2(i, wh−1−j) = t1(i, j)⊗t2(i, wh−1−j) obtained by stacking 

is always 1, because (1st Row)⊗(4th Row) = [1, 1, 1, 1, 1, 1] for matrix CWWWB of Table 2.1, 

and so is s'2(i, j). However, the value s'1(i, j) = t1(i, j)⊗t2(i, j) obtained by stacking is not 

always 0, because (1st Row)⊗(3rd Row) = [1, 0, 1, 1, 1, 1] for that matrix CWWBB. In other 

words, depending on which of the six columns is selected, the chance that t1(i, j)⊗t2(i, j) = 0 is 

only 1/6=16.7%. Similar argument also shows that the chance that t1(i, wh−1−j)⊗t2(i, wh−1−j) 

= 0 is only 1/6=16.7%, too. Moreover, for each of the 16 basis matrices in Table 2.1, the 

probability that the stacking result can recover a black secret pixel (i.e. a secret pixel with 

value 1) is always 100%; but the probability that the stacking result can recover a white secret 

pixel (i.e. a secret pixel with value 0) is always 1/6=16.7%, rather than 100%. As a result, the 

black area of the input secret images is still black after stacking the two transparencies; 

however, since the six columns of each basis matrix in Table 2.1 is randomly selected, the 

white area of the input secret images looks gray (rather than plain white). This is because in 

each white area, the area is formed of many pixels, and after stacking the two transparencies, 

16.7% of these pixels are white while 83.3% of these pixels are black. From the view of 

human vision (recalling that the decoder is human eyes rather than computers), since 83.3% 

of the pixels in a white area is black (opaque) and 16.7% of the pixels in the same white area 

is white (transparent), the whole white area looks like dark-gray in brightness, rather than 

plain white. Therefore, the white area of the original input image looks brighter than the 

corresponding area of the stacked output. Notably, darker output in white area is a very 

common phenomenon for any VC approach. For example, in Fig. 1.1, which shows the 

stacking result of the VC method proposed by Noar and Shamir [1], the input image’s white 

area also becomes darker after VC’s encoding-then-stacking. 

 

Table 2.1. The 16 basis matrices corresponding to the 24=16 combinations of [s1(i, j), s1(i, 

wh−1−j), s2(i, j), s2(i, wh−1−j)], respectively. Some basis matrices (CWWWB, CWWBW, CWBWW, 

and CBWWW) have two forms, but only one form is needed in encoding. The user has freedom 

to choose the form he wants. 
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2.1.3 The 16 basis matrices of non-opaque-oriented FVC 

This section presents the 16 basis matrices of 8 columns each (rather than 6 columns) to 

encode the quadruple secret pixels [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)]. The word 

“non-opaque-oriented” means the stacking result representing black pixels in the secret image 

is not restricted to be 100% opaque. The security and contrast are addressed below. 

 

Property 2.2. The set of basis matrices shown in Table 2.2 is a valid FVC and it satisfies the 

security and the contrast of stacking result is 1/4. 

Proof:

):::( U
3

U
2

U
1

U
0 aaaa

 Table 2.2 shows a set of 16 basis matrices mentioned in Definition 2.2. In Rows 1 and 

2 of each basis matrix shown in Table 2.2, there are (2/8)×8=2 column of [0 0]T, (2/8)×8=2 

column of [0 1]T, (2/8)×8=2 column of [1 0]T, and (2/8)×8=2 columns of [1 1]T. Hence, the 

cross-matrices constant-ratio  requirement mentioned below Eq. (2.2) 

holds. In Rows 3 and 4 of each basis matrix, the cross-matrices constant-ratio 

):::( L
3

L
2

L
1

L
0 aaaa  requirement mentioned below Eq. (2.3) also holds. The cross-matrices 

property required by the Security Constraint is thus satisfied. Moreover, after the computation 

stated below, it can be shown that w=3/8 and b=1/8, so the contrast α is 3/8－1/8=1/4 which 

is a positive number, and hence the Contrast Constraint is also satisfied by the FVC defined 

using Table 2.2.  

The detail computation of w and b for Table 2.2 is as follows. First, statements 1-4 below 

are true for each basis matrix in Table 2.2. Therefore, every element of the Black-pool is 1/8, 

and each element of the White-pool is 3/8. So the maximum element of the Black-pool (i.e. b) 

is 1/8, and the minimum element of the White-pool (i.e. w) is 3/8, and contrast α is thus 3/8－

1/8=1/4. 

1. When the 1st and 3rd rows are stacked, if the first subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 1/8=12.5%; otherwise, the ratio is 

3/8=37.5%. 

2. When the 2nd and 4th rows are stacked, if the second subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 1/8=12.5%; otherwise, the ratio is 

3/8=37.5%. 

3. When the 2nd and 3rd rows are stacked, if the third subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 1/8=12.5%; otherwise, the ratio is 

3/8=37.5%. 
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4. When the 1st and 4th rows are stacked, if the forth subscript in the matrix name is B, 

then the ratio of 0s in the stacking result is 1/8=12.5%; otherwise, the ratio is 3/8=37.5. 

■ 

 

Table 2.2. Encoding matrices of all combinations of [s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, 

wh−1−j)]. 
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2.2 Experimental results 
Experiments and comparisons are presented in this section. Sec. 2.2.1 presents the results 

of the proposed method. Sec. 2.2.2 gives the security testing of the transparencies. Sec. 2.2.3 

shows the comparisons with other studies. Sec. 2.2.4 shows the expanded version of our 

method. 

 

2.2.1 Experiments of proposed method 

This subsection presents experimental results for the proposed scheme which can 

generate non-expanded transparencies with perfect security and can decode one more secret 

image by flipping one of the transparencies. The opaque-oriented FVC experiment is shown 

in Fig. 2.3. The two secret images are displayed in Figs. 2.3(a-b); and the two generated 

non-expanded transparencies are shown in Figs. 2.3(c-d). Fig. 2.3(e) shows the result of 

flipping Fig. 2.3(c) over. Fig. 2.3(f) shows the result of stacking Fig. 2.3(c) and Fig. 2.3(d) 

together; Fig. 2.3(g) shows the result of stacking 2.3(c) and 2.3(e) together. The 

non-opaque-oriented FVC experiment is shown in Fig. 2.4. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

 
(g) 

  

Fig. 2.3. The experimental result of the opaque-oriented FVC: (a-b): the secret images; (c-d): 

the two generated transparencies; (e): flipping (c) over; (f): the result of stacking (c) and (d) 

together; (g): the result of stacking (d) and (e) together. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

  

Fig. 2.4. The experimental result of the non-opaque-oriented FVC: (a-b): the secret images; 

(c-d): the two generated transparencies; (e): flipping (c) over; (f): the result of stacking (c) 

and (d) together; (g): the result of stacking (d) and (e) together. 

 

2.2.2 Security test of proposed method 

In this subsection, we conduct two experiments for security testing. The first one is for 

scheme 1 and the second one is for scheme 2. Fig. 2.5 shows the first experiment. Figs. 

2.5(a-b) illustrate two secret images S1 and S2, which consist of 16 sub-regions from top to 

down, and in each sub-region, s1(i, j) and s1(i, wh−1−j) are at the left-hand and right-hand 

sides of S1, and s2(i, j) and s2(i, wh−1−j) are at the left-hand and right-hand sides of S2. Then 

the four sections (the left-hand and right-hand sides of S1 and the left-hand and right-hand 

sides of S2) in each sub-region are painted using all possible colors {WWWW, WWWB,…, 

BBBB}. In other words, each sub-region is encoded with a basis matrix being referred to. 

The generated transparencies T1 and T2 are shown in Figs. 2.5(c-d). The result of 

stacking T1 and T2 together is shown in Fig. 2.5(e). When T1 is flipped and then stacked with 

T2, the stacking result is shown in Fig. 2.5(f). To test security of T1, in each sub-region of T1, 

we count the probability distribution of symmetric pairs [t1(i, j),t1(i, wh−1−j)]∈{[0,0], [0,1], 

[1,0], [1,1]}. Fig. 2.5(g) shows the statistical result. The probability distributions are about 

[1/6, 1/6, 1/6, 3/6], no matter which basis matrix is used (the small variance is caused by 

randomly choosing a column in the basis matrix; so it is unrelated to the secret pixels, i.e. the 

intruder cannot judge the secret values by the small variance). Therefore, if an intruder only 

has T1 (e.g. Fig. 2.5(c)), then no information about the secret image is unveiled. Fig. 2.5(h) 

shows statistical analysis of the second transparency. The result is similar to Fig. 2.5(g), so it 

is also secure. Fig. 2.6 shows the second experiment. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Fig. 2.5. Security test of scheme 1. (a-b): The two secret images; (c-d): The two generated 

transparencies; (e-f): The two stacking results; (g): Statistical result of (c); (h): Statistical 

result of (d). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2.6. Security test of scheme 2. (a-b): The two generated transparencies; (c-d): The two 

stacking results; (e): Statistical result of (a); (f): Statistical result of (b). 

 

2.2.3 Comparison with other studies 

Table 2.3 lists the comparisons with previously reported VC methods [1, 3, 19, 20, 22]. 

Many reported methods had pixel expansion problem; and non-expanded methods often 

encoded only a single secret image. The proposed method encodes double secret images, and 

does not cause any pixel expansion. 

 

Table 2.3. Characterization of VC methods 

Methods 
Pixel-expansion 

factor 
Number of hidden secrets  
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Naor and Shamir [1] 4 

Single Yang’s [20] 1 

Shyu [22] 1 

Wu and Chang [3] 4 

double Shyu et al [19] 4 

The proposed method 1 

 

Previously reported VC methods [1, 3, 19, 20, 22] are implemented. First, single-secret 

VCs [1, 20, 22] are demonstrated in Fig. 2.7, and let the number of transparencies is two for 

each method. Figs. 2.7(a-c) show Naor and Shamir’s method [1]. The expansion rate is 4 

(ours is 1), and the contrast is 1/2 (ours is 1/6 or 1/4). Figs. 2.7(d-f) show Yang’s method [20]. 

The contrast is 1/2, and the stacking result (f) is also tumultuous and hence not as good as 

Naor and Shamir’s; but this is because there is no expansion (just like ours). Figs. 2.7(g-i) 

show Shyu’s method [22], and the result is similar to Yang’s. Notably, the three methods [1, 

20, 22] only encode a single secret image in two transparencies, but the proposed method 

encode two secret images; so [1, 20, 22] has better visual quality than ours. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 



33 

 

 
(g) 

 
(h) 

 
(i) 

Fig. 2.7. Three “single-secret” (2, 2) VC methods. (a-c): Naor and Shamir’s method: (a-b) are 

the two generated transparencies, and (c) is the stacking result. (d-f): Yang’s method: (d-e) are 

the two generated transparencies, and (f) is the stacking result. (g-i): Shyu’s method: (g-h) are 

the two generated transparencies, and (i) is the stacking result. 

 

Next, in Figs. 2.8 and 2.9, we demonstrate two circular VC methods [3, 19]. Both 

methods encode multiple secret images in two circular transparencies, and each secret image 

is revealed by stacking the two transparencies with a rotation of the first transparency using a 

pre-defined degree. To facilitate the comparison, let the number of secret images be two, and 

the rotational degrees be 0 degree and 180 degree.  

Figs. 2.8(a-b) are the two circular transparencies T1 and T2 generated by Wu and Chang 

[3] in which the expansion rate is 4 (each secret pixel is represented as a 2×2 block in two 

transparencies), and the contrast is 1/4. Fig. 2.8(c) is the results of stacking T1 and T2; and Fig. 

2.8(d) is the results in which T1 is rotated 180 degree and stacked with T2. Let wh denote the 

width of secret image, two pixels t1(i, j) and t1(i, j+wh/2) are at two opposite positions in T1, 

and so are t2(i, j) and t2(i, j+wh/2) in T2. In the stacking, the secret S1 is revealed by stacking 

t1(i, j) with t2(i, j) to decode s1(i, j), and stacking t1(i, j+wh/2) with t2(i, j+wh/2) to decode s1(i, 

j+wh/2); the second secret is revealed by stacking t1(i, j+wh/2) with t2(i, j) to decode s2(i, j), 

and stacking t1(i, j) with t2(i, j+wh/2) to decode s2(i, j+wh/2). Therefore, the two pixel values 

(t1(i, j), t1(i, j+wh/2)) form a symmetric pair, and so do (t2(i, j), t2(i, j+wh/2)). Since the four 

secret pixels [s1(i, j) , s1(i, j+wh/2) , s2(i, j), s2(i, j+wh/2)] have 24=16 possible colors 

{WWWW, WWWB,…, BBBB}, to test the security of 16 types of colors, an experiment is 

shown in Figs. 2.8(e-l). Figs. 2.8(e-f) illustrate two secret images S1 and S2, which consist of 

16 equal sub-regions from top to bottom, and in each sub-region, s1(i, j) and s1(i, j+wh/2) are 

at the left and right sides of S1, and s2(i, j) and s2(i, j+wh/2) are at the left and right sides of S2. 

Then those four sections (the left and right sides of S1 and the left and right sides of S2) in 

each sub-region are painted using all possible colors {WWWW, WWWB,…, BBBB}, 
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respectively. The generated transparencies are shown in Figs. 2.8(g-h). Fig. 2.8(i) shows the 

result of stacking T1 and T2, and Fig. 2.8(j) is the result of stacking the rotated T1 with T2. 

To inspect the security issue of transparency T1, Fig. 2.8(k) displays the probability 

distribution of symmetric pairs [t1(i, j), t1(i, j+wh/2)]∈{[0,0], [0,1], [1,0], [1,1]} in each 

sub-region, where the probabilities are [1/4, 1/4, 1/4, 1/4] for all types of colors. Therefore, 

the first transparency is secure, because the intruder cannot judge the values of secret pixels 

[s1(i, j), s1(i, j+wh/2), s2(i, j), s2(i, j+wh/2)] by observing the probability distribution of 

symmetric pairs. However, as shown in Fig. 2.8(l). The transparency T2 leaks some 

information; because in S1 and S2, when the four secret pixels [s1(i, j), s1(i, j+wh/2), s2(i, j), 

s2(i, j+wh/2)]∈{WWWW, WBBW, BWWB, BBBB}, then the probability distribution of 

symmetric pairs [t2(i, j),t2(i, j+wh/2)]∈{[0,0], [0,1], [1,0], [1,1]} is [1/4, 0, 0, 3/4]; when [s1(i, 

j), s1(i, j+wh/2), s2(i, j), s2(i, j+wh/2)]∉{WWWW, WBBW, BWWB, BBBB}, then the 

probabilities are [0, 1/4, 1/4, 2/4], respectively. Hence, the intruder can judge whether the four 

secret pixels [s1(i, j), s1(i, j+wh/2), s2(i, j), s2(i, j+wh/2)] are {WWWW, WBBW, BWWB, BBBB} 

or not. In other words, if [0,0] pair or [1,1] pair appear in second transparency T2, then we can 

claim that the corresponding position of secret images (S1 and S2) must be either [WWWW] or 

[WBBW] or [BWWB] or [BBBB]. Likewise, if [0,1] pair or [1,0] pair appear in second 

transparency T2, then we can claim that the corresponding position of input images (S1 and S2) 

cannot be [WWWW] or [WBBW] or [BWWB] or [BBBB]. In summary, secret leaking occurs in 

T2. 

 

 
(a) 

 
(b) 

 
(c) 

 
 

(e) 
 

(f) 
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(d) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Fig. 2.8. About the method of Wu and Chang [3]. The expansion rate is 4. (a-b): Two 

generated circular transparencies T1 and T2. (c): The result of stacking T1 and T2. (d): The 

result of stacking rotational T1 with T2. (e-f): Two new secret images S1 and S2. (g-h): Two 

new transparencies T1 and T2 generated from S1 and S2. (i): The result of stacking T1 with T2. 

(j): The result of stacking rotational T1 with T2. (k): The probability distribution of symmetric 

pairs for all 16 sub-regions in T1. (l): The probability distribution of symmetric pairs for all 16 

sub-regions in T2. 

 

Fig. 2.9 is a demonstration about the method of Shyu et al. [19]. Figs. 2.9(a-b) are the 

two generated circular transparencies in which the expansion rate is 4, and the contrast is 1/4. 

Fig. 2.9(c) is the results of stacking (a) with (b), and Fig. 2.9(d) is the results of stacking 

rotated (a) with (b). The security test is shown in Figs. 2.9(e-l). Figs. 2.9(e-f) are the two new 

secret images which are the same as Figs. 2.8(e-f). Figs. 2.9(g-h) are the two generated 

transparencies, and the stacking results are Figs. 2.9(i-j). The security of T1 is shown in Fig. 

2.9(k), where the probability distribution of symmetric pairs [t1(i, j),t1(i, j+wh/2)]∈{(0,0), 

(0,1), (1,0), (1,1)} is [0, 1/4, 1/4, 2/4] in all types of colors, so T1 is secure. On the other hand, 
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T2 may leaks some information. The security of T2 is shown in Fig. 2.9(l). When the four 

secret pixels [s1(i, j), s1(i, j+wh/2), s2(i, j), s2(i, j+wh/2)]∈{WWWW, WBBW, BWWB, BBBB}, 

the probability distribution of symmetric pairs is [1/2, 0, 0, 1/2]; when the four secret pixels 

are {WWBB, WBWB, BWBW, BBWW}, the probability distribution is [0, 1/2, 1/2, 0]. When 

the four secret pixels are in {BWWW, WBWW, WWBW, WWWB, WBBB, BWBB, BBWB, 

BBBW}, the probability distribution is [1/4, 1/4, 1/4, 1/4]. Therefore, the intruder can judge 

and divide the four secret pixels [s1(i, j), s1(i, j+wh/2), s2(i, j), s2(i, j+wh/2)] to 3 sets by 

observing the probability distribution of symmetric pairs in transparency T2. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 
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(j) 

 
(k) 

 
(l) 

Fig. 2.9. About the method of Shyu et. al [19]. The expansion rate is 4. (a-b): Two generated 

circular transparencies T1 and T2. (c): The result of stacking T1 and T2. (d): The result of 

stacking rotational T1 with T2. (e-f): Two new secret images S1 and S2. (g-h): Two new 

transparencies T1 and T2 generated from S1 and S2. (i): The result of stacking T1 with T2. (j): 

The result of stacking rotational T1 with T2. (k): The probability distribution of symmetric 

pairs for all 16 sub-regions in T1. (l): The probability distribution of symmetric pairs for all 16 

sub-regions in T2. 

 

Figs. 2.8 and 2.9 show two well-known circular VCs [3, 19]. Stacking results of the two 

methods [3, 19] are 100% opaque both, and their contrast β=1/4 is better than our 1/6. But, as 

shown in Fig. 2.8(l) and Fig. 2.9(l), Methods [3, 19] are not of perfect security: the second 

transparency generated by [3, 19] have secret-leaking problem. In summary, under the 

constraint of avoiding secret-leaking (the fundamental requirement of VC), the best contrast 

value can be achieved is 1/6 (or 1/4, if the block pixels in stacking results are not restricted to 

100% opaque), and ours already achieve this optimal contrast value 1/6 for scheme 1 (and 1/4 

for Scheme 2). So we may say that ours are with conditionally optimal contrast under 

perfect-security requirement. As for others (e.g. [3, 19]), they might have contrast values 

better than ours, but it is because their methods did not meet perfect-security requirement. 

 

2.2.4 The expanded version of our method 

In order to yield no expansion, we use probability model to encode the shares. The price is 

that it may cause non-harmonic disarray of stacking result. If we are not constrained by the 

no-expansion rule, then all columns of basis matrix are used to encode the secret pixels [s1(i, 
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j), s1(i, j+wh/2), s2(i, j), s2(i, j+wh/2)], therefore, the expansion rate is the value of r. The 

results are as shown in Figs. 2.10 and 2.11. Fig. 2.10 shows the expanded version of flip 

scheme 1, with the expansion rate being 6=3×2. (Notably, r=6 is the minimal r we can have 

for Scheme 1. On the other hand, r will also be the expansion rate for our expanded version. 

So, in the expanded version, our minimal expansion rate will be 6 for Scheme 1 [8 for 

Scheme 2 because minimal r is 8 for scheme 2].) Fig. 2.10(a-b) shows the two generated 

transparencies, and (c-d) shows the stacking results. Fig. 2.11 shows the expanded version of 

flip scheme 2, with the expansion rate being 8=4×2. Fig. 2.11(a-b) shows the two generated 

transparencies and (c-d) show the stacking results. We can see that the visual quality is 

competitive again. In summary, the disarray of stacking result is due to the requirement of 

no-expansion, along with the perfect security for double secret; but the major weakness of 

pixel-expansion VC is that the size of transparencies will expand several times and waste 

space for carrying or storage. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.10. The expanded version (block-based rather than pixel-based) of our scheme 1. (a-b): 

The two generated transparencies where the two secret images are Figs. 2.3(a-b). (c): The 

result of stacking (a) and (b). (d): The result of stacking (b) with the flipped version of (a). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.11. The expanded version (block-based rather than pixel-based) of our scheme 2. (a-b): 

The two generated transparencies where the two secret images are Figs. 2.3(a-b). (c): The 

result of stacking (a) and (b). (d): The result of stacking (b) with the flipped version of (a).  

 

2.3 Discussions 
In this section, some related topics are discussed in this section. Sec. 2.3.1 addresses the 

method of finding the basis matrices of FVC, and Sec. 2.3.2 shows the contrast values of the 

proposed method by other definition of contrast. 

 

2.3.1 How to find the basis matrices of FVC 

Basically, we may say that people can create these basis matrices by exhaustive search, 

as long as they meet the specified requirements. However, in reality, to save searching time, 

some basis matrices can be generated from others by exchanging rows. For instance, suppose 

the matrix CBWWW of scheme 1 is set to 



















=

110110
110011
111010
111100

BWWWC , 

where the B is represented by stacking the 1st and 3rd rows to obtain six 1s, and the three W are 

represented by stacking the 2nd and 4th rows, the 2nd and 3th rows, and the 1st and 4th rows, 

respectively, to obtain one 0 and five 1s. Then the 1st and 2nd rows can be exchanged to get  
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

















=

110110
110011
111100
111010

WWBWC , 

where the B is by stacking the 2nd and 3rd rows, and the three W are by stacking the 1st and 3rd 

rows, the 2nd and 4th rows, and the 1st and 4th rows. Using this method, we can generate four 

basis matrices CBWWW , CWBWW, CWWBW and CWWWB, as long as one of the four matrices is 

found.  

Actually, all the 16 basis matrices can be divided into 6 sets, namely, {CWWWW}, {CBWWW , 

CWBWW, CWWBW, CWWWB}, {CWBBW , CBWWB, CBWBW, CWBWB}, {CWWBB , CBBWW}, {CBBBW , CBBWB, 

CBWBB, CWBBB}, and {CBBBB}. In each set, only one matrix needs to be found, and the 

remaining is generated by exchanging the rows. Therefore, only 6 basis matrices are actually 

searched. 

Next, to search the basis matrices, we need decide the value of r. The factor to determine 

the value r is the contrast of the constructed basis matrices. For basis matrices whose width is 

r, the possible contrast is 1/r, 2/r, 3/r,…, r/r. In Sec. 2.1.2, we already proved that the upper 

bound of contrast of scheme 1 is 1/6. In symbols, the contrast is 

. 

To reach 1/6 (the upper bound of contrast for Scheme 1), the value r must be a multiple 

of 6. If r is not a multiple of 6, then the possible contrast i/r cannot equal to 1/6, so the 

contrast will be less than 1/6. 

Analogously, in Scheme 2, the width (i.e. value r) of basis matrices must be a multiple of 

4, because in Sec. 2.2.2 we already proved that 1/4 is the upper bound of the contrast for 

Scheme 2. Unfortunately, when r=4, we could not find the basis matrices even after 

exhaustive search. So we tried r=8 and obtained the basis matrices shown in Table 2.2 whose 

contrast reached the upper bound 1/4. 

 

2.3.2 Discussion about contrast values  

In our method, the two definitions follow the basis matrices definitions which are given 

by Naor and Shamir[1], but some details are modified to conform to the structure of FVC. 

The (t, n) Visual cryptography, which is defined by Naor and Shamir [1], needs two basis 

matrices to encode a secret pixel which has only two values {W, B} in a secret image; 

however, our method needs consider four secret pixels simultaneously (two pixels in S1 and 

{ }6/1/0,,/ ≤<∈ riZirri
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two pixels in S2), so it needs 24=16 basis matrices to encode four pixels. However, the 

contrast evaluation in [1] did not consider the fact that, in darker image, human eyes have 

higher sensitiveness about (real-life-sense) contrast (This fact was mentioned in Ref. [69] by 

Liu et al.). To overcome the drawback, we bring up two schemes in the proposed method, 

where Scheme 1 set the black color of stacking result is 100% opaque, and scheme 2 do not 

set the constraint. We let the readers choose the one they like. 

Liu et al. [69] gives a new definition of contrast for expanded VC (i.e. each secret pixel 

is encoded into many pixels in transparencies), but our design is a non-expanded VC (i.e. each 

secret pixel is encoded into a pixel in transparencies). For readers benefit, we also give the 

contrast value defined by Liu et al. [69], when the expanded VC version shown in Figs. 2.10 

and 2.11 are used. The expanded Scheme 1 has contrast 

, 

and the expanded Scheme 2 has contrast 

. 

 

2.4 Conclusions 
Opaque-oriented and non-opaque-oriented FVC schemes are both introduced in this 

chapter. We have proved that both schemes satisfy perfect security and they are conditionally 

optimal in contrast. The generated transparencies do not lead to any expansion of size. The 

experimental results show the revealing of double secrets via flipping and stacking the 

transparencies together.  

Just like other VC methods, the whole decoding process uses no computer or any 

computation; so the decoding is very fast, and can be used in environment where computer is 

not stable or available. Due to the double-secrets feature of the proposed method, one of the 

applications is the double checking of ownership for personality identification. Since the size 

is non-expanded, the space needed to carry a transparency to a meeting is economic (size is 

the same as the space needed to carry an original image). 

 

2.5 Appendix 
 In this section, the conditionally optimal contrast in opaque-oriented FVC and 

146.0
41
6
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Liu ≈=
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non-opaque-oriented FVC are proven, respectively. 

 

2.5.1. The proof of conditionally optimal contrast in opaque-oriented FVC  

In this subsection, the contrast in opaque-oriented FVC, which is no more than 1/6, is 

proven. To satisfy the security constraint, the constant-ratios ):::( U
3

U
2

U
1

U
0 aaaa  and 

):::( L
3

L
2

L
1

L
0 aaaa  in basis matrices C[s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j)] must meet 

Eq. (2.2-2.3). Moreover, in the first and second rows of each basis matrix, the occurrence of 

[0 0]T, [0 1]T, [1 0]T, [1 1]T must keep the constant ratio ):::( U
3

U
2

U
1

U
0 aaaa ; and in the third 

and the fourth rows of each basis matrix, the occurrence of [0 0]T, [0 1]T, [1 0]T, [1 1]T must 

keep the constant ratio ):::( L
3

L
2

L
1

L
0 aaaa . For each basis matrix, cu,v ≥ 0, where u =0,1,2,3 

and v=0,1,2,3, is defined as the percentage of column    [ ]T2mod2/2mod2/ vvuu

which appears in columns of the basis matrix.  

By the security constraint, we know 

3,2,1,0,
U

uuuuu cccca +++=  for u = 0,1,2,3; (2.5) 

vvvvv cccca ,3,2,1,0
L +++=  for v = 0,1,2,3. (2.6) 

By the definition of luminance transmission, the four stacking results s'1(i, j), s'1(i, wh−1−j), 

s'2(i, j), s'2(i, wh−1−j) are represented by stacking two specific rows in basis matrix, which 

consists of 16 possible columns    [ ]Tvvuu 2mod2/2mod2/ , where u, v∈{0,1,2,3}. 

Therefore, the luminance transmission of each stacking result s'1(i, j), s'1(i, wh−1−j), s'2(i, j), 

s'2(i, wh−1−j) can be represented by the sum of a subset {cu,v} which satisfies the result of 

stacking two specific rows defined in Definition 2.2.  

1. The luminance transmission of stacking result s1(i, j) is 

   ∑∑
= =

+++=⊗×
3

0

3

0
1,10,11,00,0, )2/2/(

u v
vu ccccvuc . (2.7) 

2. The luminance transmission of stacking result s1(i, wh−1−j) is 

   ∑∑
= =

+++=⊗×
3

0

3

0
2,20,22,00,0, )2mod2mod(

u v
vu ccccvuc . (2.8) 

3. The luminance transmission of stacking result s2(i, j) is 

   ∑∑
= =

+++=⊗×
3

0

3

0
1,20,21,00,0, )2/2mod(

u v
vu ccccvuc . (2.9) 

4. The luminance transmission of stacking result s2(i, wh−1−j) is 
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   ∑∑
= =

+++=⊗×
3

0

3

0
2,10,12,00,0, )2mod2/(

u v
vu ccccvuc . (2.10) 

where •  is the complement operator. The contrast α satisfies the Eq. (2.4). Notably, the 

luminance transmission of representing B is 0 and representing W is the contrast α by the 

definition of opaque-oriented FVC. Therefore, the complement operator is used in Eq. 

(2.7-2.10) for opposite definition between B(1)/W(0) pixels and luminance transmission. 

Some basis matrices are considered below to gain the upper bound of contrast α. 

I. Consider the basis matrix CBBBB. By Eq. (2.7-2.10), the luminance transmission of 

the four secret pixels s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j) are 

01,10,11,00,0 =+++ cccc ; 

02,20,22,00,0 =+++ cccc ; 

01,20,21,00,0 =+++ cccc ; 

02,10,12,00,0 =+++ cccc .
 

Due to cu,v ≥0, for all u, v. Therefore, c0,0=c0,1=c0,2=c1,0=c1,1=c1,2=c2,0=c2,1=c2,2=0. By Eq. 

(2.5), 

3,03,02,01,00,0
U
0 ccccca =+++= ; 

3,13,12,11,10,1
U
1 ccccca =+++= ; 

3,23,22,21,20,2
U
2 ccccca =+++= . 

By Eq. (2.6),  

0,30,30,20,10,0
L
0 ccccca =+++= ; 

1,31,31,21,11,0
L
1 ccccca =+++= ; 

2,32,32,22,12,0
L
2 ccccca =+++= . 

By Eq. (2.5), L
2

L
1

L
02,31,30,33,32,31,30,3

U
3 aaaccccccca ++=++≥+++= . Therefore, 

.1

1)1()1(

1)()(

1

L
3

U
3

L
3

U
3

L
2

L
1

L
0

U
2

U
1

U
0

L
2

L
1

L
0

U
2

U
1

U
0

L
2

L
1

L
0

U
3

≥+⇒

≤−+−⇒

≤+++++⇒

++≥−−−⇒

++≥

aa
aa

aaaaaa
aaaaaa

aaaa

 

(2.11) 

II. Consider the basis matrix CBWBB. By Eq. (2.7-2.10), the luminance transmission of 

the four secret pixels s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j) are 
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01,10,11,00,0 =+++ cccc ; 

α=+++ 2,20,22,00,0 cccc ; 

01,20,21,00,0 =+++ cccc ; 

02,10,12,00,0 =+++ cccc .
 

Therefore, c0,0=c0,1=c0,2=c1,0=c1,1=c1,2=c2,0=c2,1=0, and c2,2=α. By Eq. (2.5) and Eq. (2.6), 

2,23,22,21,20,2
U
2 ccccca ≥+++= , and 2,22,32,22,12,0

L
2 ccccca ≥+++= , so 

U
2a≤α  and L

2a≤α . (2.12) 

III. Consider the basis matrix CWBBW and CWBWB. When the basis matrices is CWBBW, by 

Eq. (2.7-2.10), the luminance transmission of the four secret pixels s1(i, j), s1(i, wh−1−j), s2(i, 

j), s2(i, wh−1−j) are 

α=+++ 1,10,11,00,0 cccc ; 

02,20,22,00,0 =+++ cccc ; 

01,20,21,00,0 =+++ cccc ; 

α=+++ 2,10,12,00,0 cccc .
 

Therefore, c0,0=c0,1=c0,2=c2,0=c2,1= c2,2=0, and  

2/])[(2/)( 0,12,11,10,12,10,11,10,1

2,10,11,10,1

cccccccc
cccc

+++=+++=⇒

+=+=

α

α
 

Because, by Eq. (2.5), 

2,11,10,13,12,11,10,1
U
1 ccccccca ++≥+++= , 

and by Eq. (2.6), 

0,10,30,20,10,0
L
0 ccccca ≥+++= , 

so the contrast 

.2/)(

2/])[(
L
0

U
1

0,12,11,10,1

aa

cccc

+≤

+++=α
 

(2.13) 

When stacking result is
 
CWBWB, by Eq. (2.6), the average luminance transmission of the four 

secret pixels s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j) are
 α=+++ 1,10,11,00,0 cccc ; 

02,20,22,00,0 =+++ cccc ; 

α=+++ 1,20,21,00,0 cccc ; 
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02,10,12,00,0 =+++ cccc .
 

Therefore, c0,0=c0,2=c1,0=c1,2=c2,0= c2,2=0, and 

2/])[(2/)( 1,01,21,11,01,21,01,11,0

1,21,01,11,0

cccccccc
cccc

+++=+++=⇒

+=+=

α

α
 

Because, by Eq. (2.5), 

1,03,02,01,00,0
U
0 ccccca ≥+++= , and by Eq. (2.6), 

1,01,31,21,11,0
L
1 ccccca ≥+++= , so the contrast 

.2/)(

2/])[(
U
0

L
1

1,01,21,11,0

aa

cccc

+≤

+++=α
 

(2.14) 

By Eq. (2.13) and (2.14), ,2/)( L
0

U
1 aa +≤α and 2/)( U

0
L
1 aa +≤α , we have 

2/)(2/)(2 U
0

L
1

L
0

U
1 aaaa +++≤α , so 

4/)( U
0

L
1

L
0

U
1 aaaa +++≤α . (2.15) 

.6/1
(2.12)) Eq.(By 4/)21(

)0,0(4/)](1[

)(2.3)andEqs.(2.2)By(4/)](1[

)(2.15) Eq.By (4/)(

33
L
2

U
2

L
3

L
2

U
3

U
2

U
0

L
1

L
0

U
1

≤⇒
−≤

≥≥+−≤

+++−=

+++≤

α
α

α

baaa
aaaa

aaaa

 

Therefore, the contrast of opaque-oriented FVC is no more than 1/6 if perfect security is 

required. The result also means that the encoding matrices shown in Table 2.1 are the optimal 

solution. 

 

2.5.2 The proof of conditionally optimal contrast in non-opaque-oriented FVC 

Non-opaque-oriented FVC also satisfies Eq. (2.2-2.10). In the following, w is the 

luminance transmission of stacking result to represent white pixel W, b is the luminance 

transmission of stacking result to represent black pixel B, and α=w−b is the contrast. Some 

basis matrices are considered below to gain the upper bound of contrast α. 

I. Consider the basis matrix CWWBB. By Eq. (2.7-2.10), the luminance transmission of 

the four secret pixels s1(i, j), s1(i, wh−1−j), s2(i, j), s2(i, wh−1−j) are 

wcccc =+++ 1,10,11,00,0 ; 

wcccc =+++ 2,20,22,00,0 ; 
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bcccc =+++ 1,20,21,00,0 ; 

bcccc =+++ 2,10,12,00,0 . 

By Eq. (2.5-2.6), 1,11,31,21,11,0
L
1 ccccca ≥+++= , and 2,22,32,22,12,0

L
2 ccccca ≥+++= . 

Therefore, 

.2/)(2/)(2/)]()[(

2/)]()(
)()[(

2/][

L
2

L
12,21,11,22,12,21,1

2,10,12,00,01,20,21,00,0

2,20,22,00,01,10,11,00,0

aacccccc

cccccccc
cccccccc

bbwwbw

+≤+≤+−+=

+++−+++

−+++++++=
−−+=−=α

 

(2.16) 

II. Consider the basis matrix CWWWW and CBBBB. For the basis matrix C[W, W, W, W], 

by Eq. (2.7-2.10), 

wcccc =+++ 1,10,11,00,0 ; 

wcccc =+++ 2,20,22,00,0 ; 

wcccc =+++ 1,20,21,00,0 ; 

wcccc =+++ 2,10,12,00,0 . 

By Eq. (2.5), 2,01,00,03,02,01,00,00 ccccccca ++≥+++= , and 

2,11,10,13,12,11,10,11 ccccccca ++≥+++= . 

By Eq. (2.6), 0,10,00,30,20,10,00 ccccccb +≥+++= . Therefore, 

2/)(

2/)]()()[(
2/)]()[(

L
0

U
1

U
0

0,10,02,11,10,12,01,00,0

2,10,12,00,01,10,11,00,0

aaa

cccccccc
ccccccccw

++≤

+++++++=

+++++++=

 

(2.17) 

For the basis matrix CBBBB, by Eq. (2.7-2.10), 

bcccc =+++ 1,10,11,00,0 ; 

bcccc =+++ 2,20,22,00,0 ; 

bcccc =+++ 1,20,21,00,0 ; 

bcccc =+++ 2,10,12,00,0 . 

By Eq. (2.12), 3,13,03,33,23,13,0
L
3 cccccca +≥+++= . Therefore, 
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2/)(
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2/)]()[(

2/)]()[(
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3
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1

U
0

3,13,03,12,11,10,13,02,01,00,0

2,11,10,12,01,00,0

2,10,12,00,01,10,11,00,0

aaa

cccccccccc
cccccc

ccccccccb
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(2.18) 

By Eq. (2.4), Eq.(2.17) and Eq.(2.18), 
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(2.19) 

By Eq. (2.16) and Eq.(2.19), 

(2.6)). Eq.(By 4/1
4/)(

2/]2/)(2/)[(
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1

=
+++=

+++≤

aaaa
aaaaα

 

Therefore, if non-opaque-oriented FVC is used, then the conditionally-optimal contrast is 1/4. 

The result is better than the conditionally-optimal contrast value 1/6 of the opaque-oriented 

FVC. The encoding matrices shown in Table 2.2 are conditionally optimal, because a) 

Property 2.2 shows that, for these matrices, the contrast of stacking result is 1/4; and b) the 

proof given above indicates that: under the perfect security constraint, no basis matrices can 

yield a contrast larger than 1/4. 
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Chapter 3 

Fast Weighted Secret Image Sharing 

 

Thien and Lin [Computers and Graphics 26(5), 2002, pp. 765−770] proposed a threshold 

scheme to share a secret image among n shadows: any t of the n shadows can recover the 

secret, whereas t−1 or fewer shadows cannot. However, in real life, certain managers probably 

play key roles to run a company, and thus need special authority to recover the secret in 

managers’ meeting. (Each manager’s shadow should be more powerful than an ordinary 

employee’s shadow.) In Thien and Lin's scheme, if a company has less than t managers, then 

manager’s meeting cannot recover the secret, unless some managers were given multiple 

shadows in advance. But this compromise causes managers inconvenience because too many 

shadows to be kept daily and carried to the meeting. To solve this dilemma, a weighted 

sharing method is proposed: each of our shadow has a weight. Secret is recovered if and only 

if the total weights (rather than the number) of received shadows is at least t. To accelerate 

sharing speed, properties of GF(2k) are utilized. Time-saving is shown. Besides, the method is 

also a more general approach to polynomial-based sharing. Moreover, for convenience, each 

person keeps only one shadow and only one shadow-index. 

The rest of the chapter is organized as follows. Sec. 3.1 reviews the related works. Sec. 

3.2 describes the details of the proposed fast weighted secret image sharing method. Sec. 3.3 

shows the experimental results, comparisons and security analysis. Finally, Sec. 3.4 draws the 

conclusions. 

Notations of this chapter: 

t The threshold of secret sharing. 

n The number of shadows of secret sharing. 

f(x) The sharing polynomial where f(x)=a0+a1+…+at−1xt−1 (mod p). 

p A prime number. 

wi The weight of the shadow hi. 

hi The ith generated shadow. 

)(xg iw
i  )(xg iw

i = f(x) (mod (x−i)
wi) is the ith shadow. 

GF(pk) Galois field which contains pk elements. 
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⊕ XOR operator 

 

3.1 Related works 
Sec. 3.1.1 introduces the Thien and Lin’s sharing method, and Section 3.1.2 introduces the 

Galois field which will be utilized in this chapter. 

 

3.1.1 Thien and Lin’s secret image sharing method[7] 

In the sharing phase of Thien and Lin’s (t, n) threshold method, for each non-overlapping 

t pixels of the secret image, the corresponding polynomial is defined as 
1

0 1 1( )  (mod )t
tf x a a x a x p−
−= + × + + ×  (3.1) 

where a0, a1,..., at-1 are the gray values of each t pixels, and p is a prime number. Then 

f(1), f(2),…, f(n) (3.2) 

are evaluated and assigned to the n shadows sequentially. After processing all pixels in the 

secret image, the n shadows are thus generated. Since each t pixels in secret image only 

contributes one pixel to each generated shadow, the size of which is 1/t of the secret image. 

As for the revealing phase, when any t of the n shadows are received, the first not-yet-used 

pixel from each of the t shadows is taken, and these t pixels can be used to solve the 

coefficients a0, a1, ..., at-1 in Eq. (3.1) by using Lagrange’s polynomial. After sequentially 

processing all pixels of the t shadows, the secret image can be obtained. 

 

3.1.2 Galois field 

Galois Field GF(pk) is a finite filed that contains pk elements, where p is a prime number, 

and k is a positive integer. (Thien and Lin used p=251 and k=1, but we use p = 2 and k=8 in 

our method.) A finite field also equips with two operators: addition(+) and multiplication(•). 

Both operators must satisfy the commutative, associative, and distributive laws. The 

manipulation of addition and multiplication under GF(2k) are introduced below. Before doing 

GF(2k) arithmetic, an k-degree binary-coefficient polynomial m(X), called primitive 

polynomial, have to be defined first. Primitive means that m(X) has a root α, and {0, 1, α, 

α2, ..., 22 −k

α } is the all elements in GF(2k) (the multiplication operator is defined below). 

About more details of the primitive polynomial m(X) and the root α, please see S. Lin and D. J. 

Costello[70]. Here, we will use k=8 and m(X)=1+X2+X3+X4+X8 in our experiments. 

Let A0 and A1 be any two elements in GF(2k). Then define the addition operator as 
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A0+A1= A0⊕A1, 

where ⊕ is the XOR operator. The multiplication operator × is somewhat more complicated. 

Before doing multiplication, convert the two elements A0 and A1 to two binary polynomials 
10

1
0
1

0
02

0
0

0
1

0
1

0 ...)...( −
−− +++→= k

kk XaxaaaaaA , 

11
1

1
1

1
02

1
0

1
1

1
1

1 ...)...( −
−− +++→= k

kk XaxaaaaaA . 

Then do the following polynomial multiplication and modulus operations 

,...

))((mod)^(...)^^()^(

))()(mod...)(...(

12
1

2
1

2
0

221
1

0
1

1
0

0
1

1
1

0
0

1
0

0
0

11
1

1
1

1
0

10
1

0
1

0
0

−
−

−
−−

−
−

−
−

+++⇒

++⊕+⇒

++++++

k
k

k
kk

k
k

k
k

Xaxaa
XmXaaXaaaaaa

XmXaxaaXaxaa
 

where ^ is the AND operator. Finally, the result for A0×A1 can be obtained by  

A0×A1=A2= 2
2
0

2
1

2
1 )...( aaak− . 

Remark: In general, there exist other definitions for addition and multiplication operators. 

(The details about GF(2k) can see be found in [70].) But we will use the above definition for 

addition and multiplication throughout the chapter.  

 

3.2 The proposed method 
This section has three subsections: 3.2.1 is for weighted secret image sharing; 3.2.2 is for 

weighted secret image revealing; 3.2.3 shows the improved weighted secret image sharing 

algorithm based on GF(2k). 

 

3.2.1 The weighted secret image sharing phase 

According to the Chinese Remainder Theorem for polynomials, when we divide  

f(x)=a0+a1x+…+at−1xt−1 

by a factor (x−i), the remainder is h(i). In symbols,  

h(i)= h(x) mod (x−i). 

Now, when we apply mod p on both sides, we have  

f(i) = h(i) mod p = [h(x) mod (x−i)] (mod p) 

where f(i) = h(i) (mod p) is due to the equation f(x) = a0+a1x+…+at−1xt−1 (mod p) = h(x) (mod 

p) defined in Eq. (3.2). Therefore, in Galois Field GF(p), i.e. in the field of mod p, we may 

say that f(i) and [h(x) mod (x−i)] are equal. In symbols, 

f(i) = h(x) mod (x−i) = a0+a1x+…+at−1xt−1 (mod (x−i)) (3.3) 
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in Galois Field GF(p). That is to say, if we divide that polynomial a0+a1x+…+at−1xt−1 by (x−i), 

then the remainder is a number. If we divide this number by p further, then we obtain f(i). In 

this chapter, to define our own formula of the weighted secret image sharing with the (t, n) 

threshold scheme, we extend Eq. (3.3) as 

)(xg iw
i = a0+a1x+…+at−1xt−1 (mod (x−i)

wi), (3.4) 

where iw  is the shadow weight and i=1, 2, ..., n. Also, rather than explaining Eq. (3.4) in the 

GF(251) that Thien and Lin used, we explain Eq. (3.4) in the Galois Field GF(2
k
). 

As stated in Sec. 3.1.2, k is a positive integer, and we will use GF(2
8
) in our experiments. 

Before sharing each non-overlapping t pixels of the secret image using weighted secret 

image sharing with (t, n) threshold scheme, the secret image is encrypted first. Next, 

)(),...,(),( 21
21 xgxgxg nw

n
ww  (3.5) 

are computed using Eq. (3.4). Then, the iw  coefficients of the polynomial )(xg iw
i  in order 

of decreasing power of x are sequentially assigned to the corresponding shadow hi. After 

processing all pixels in the secret image, the n shadows {(h1, w1), (h2, w2), ..., (hn, wn)} are 

generated. Since t pixels in secret image contribute wi pixels to the generated shadow hi, the 

size of which is wi/t of the secret image. 

In the proposed (t, n) threshold weighted secret image sharing scheme, the two values 

index i and weight wi of the generated shadow hi are needed for revealing the secret image 

where 1≤i≤n. Like Thien and Lin’s method[7], the value i can be attached to the head of the 

shadow hi. As for the value wi, it can be either simply attached to the head of the shadow hi or 

calculated by the size of the shadow. Let the size of secret image be |S| and the size of shadow 

be |hi|. Then, the weight wi can be calculated by the formula 

 tS
hw i

i /||
||

=  (3.6) 

 

3.2.2 The weighted secret image revealing phase 

If someone gets any t′ of the n shadows and the sum of the weights of the m shadows is 

greater than or equal to the threshold t, then the secret image can be recovered. Without loss 

of generality, let these t′ shadows be {( ]1[kh , ]1[kw ), ( ]2[kh , ]2[kw ), ..., ( ][tkh ′ , ][tkw ′ )} and 

tw
t

j
jk ≥∑

′

=1
][ . Then for each shadow ][ jkh , the first ][ jkw  not-yet-used pixels are sequentially 
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taken and then assigned to the coefficients of polynomial )(][
][ xg jkw

jk  in order of decreasing 

power of x. After obtaining )(][
][ xg jkw

jk , we have the following equation 

][][ ])[mod()()(][
jkjk ww

jk jkxxfxg −=  (3.7) 

where j=1, 2, ..., t′. Because the t′ divisors ]1[])1[( kwkx − , ]2[])2[( kwkx − , ..., ][])[( mkwmkx −  

in Eq. (3.7) are pair wised relatively prime, as stated in Sec. 1.4 of [71], )(xf  can be solved 

using extended Lagrange polynomial as 

( )

( ).])[(mod])[()( where

,])[(])[(mod)()()(

][][

][][][

1

1

1 1
][

jklk

lkjkjk
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lkxjkxxuxgxf
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


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


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
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






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


−×−=

−

′

≠
=

′

=

′

≠
=

∏

∑ ∏
 (3.8) 

In addition, according to Chinese Remainder Theorem for polynomials, the decoded f(x) is a 

unique polynomial with degree is less than∑
′

=

t

j
jkw

1
][ . Because tw

t

j
jk ≥∑

′

=1
][ , the polynomial f(x) 

is identical to the original polynomial, where the degree of f(x) is less than t. In other words, 

the t coefficients a0, a1, ..., at-1 in Eq. (3.4) can be obtained. 

After sequentially processing all pixels of the t′ shadows, the encrypted secret image can be 

reconstructed. The encrypted secret image is then decrypted to obtain the secret image. 

 

3.2.3 The fast weighted secret image sharing algorithm 

The computing time of Eq. (3.5) is improved by using the properties of GF(2k). The 

utilized property is that the additive inverse of an element under GF(2k) is the element. In 

other words, 

xx −= . (3.9) 

By Eq. (3.9), the following equation is derived: 
22222222 )()( uxuxuxuxuxuxuxuxux +=+−+=+++=+=− . (3.10) 

Then the Eq. (3.10) can be extended as 
qqqqqq

uxuxuxuxux 2224422222 ...)()()()(
21

+==+=+=+=−
−−

. (3.11) 

where q is a positive integer, and u is an element in GF(2k). A generalized form is addressed 
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in Sec. 2.3 of [70]. Let ∑
−

=

12

0

q

j

j
j xa  and ( ) 12 −

+
q

ux  be two polynomials. Then ∑
−

=

12
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q

j

j
j xa  is 

divided by ( ) 12 −
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q

ux  under GF(2k) to get the quotient 1
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(3.11), we have ( ) 111 222 −−−
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qqq

uxux . Therefore, ∑
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=
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. (3.12) 

However, if uses Eq. (3.12) for sharing directly, the weight wi is restricted as power of two 

(2q−1). In order to achieving a generalized version, a recursive algorithm is proposed below. 

Let ii ←ˆ , ii ww ←ˆ ,  tt 2log2ˆ ← , and )()(ˆ xfxf ← . Now, iwixxf ˆ)ˆmod()(ˆ +  is solved 

using the following recursive algorithm )ˆ,ˆ,ˆ),(ˆ( twixfA i . 

 

Algorithm 3.1. Fast weighted secret image sharing algorithm )ˆ,ˆ,ˆ),(ˆ( twixfA i . 

Input: a polynomial )(ˆ xf , three positive integers î (index), iŵ (weight), and t̂  (a 

value in {1, 2, 22, 23,…}, and t̂  is the number of polynomial coefficients for

)(ˆ xf ). 

Output: The shadow values with index î  and weight iŵ (The coefficients of 

iwixxf ˆ)ˆmod()(ˆ + ). 

1. According to Eq. (3.12), rewrite )(ˆ xf as )(ˆ)ˆ)((ˆ)(ˆ 2/ˆ xRixxQxf t ++= , where 

)(ˆ xQ  and )(ˆ xR  are, respectively, the quotient and the remainder on dividing 

)(ˆ xf  by 2/ˆ2/ˆ2/ˆ ˆ)ˆ( ttt ixix +=+ over )2( t̂GF .  

2. Compare iŵ  with 2/t̂ : 

Case 1: If 2/ˆˆ twi = , then  

 ( ).)ˆmod()(ˆ)(ˆ)ˆ)((ˆ
)(ˆ)ˆ)((ˆ)ˆmod()(ˆ

2/ˆ2/ˆ

2/ˆ2/ˆ

tt

tt

ixxRxRixxQ

xRixxQixxf

+=++=

++=+
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 Therefore, return )(ˆ xR . 
Case 2: If 2/ˆˆ twi < , then 

 ( ) ( )ii wtw ixxRxRixxQixxf ˆ2/ˆˆ )ˆmod()(ˆ)(ˆ)ˆ)((ˆ)ˆmod()(ˆ +=++=+ . 

 Then, iwixxR ˆ)ˆmod()(ˆ +  is recursively computed by )2/ˆ,ˆ,ˆ),(ˆ( twixRA i . 

 Finally, return iwixxR ˆ)ˆmod()(ˆ + . 

Case 3: If 2/ˆˆ twi > , then 

 
( )

( )
( ) )(3.11) Eq.By ()(ˆ)ˆ()ˆmod()(ˆ

)(ˆ)ˆ()ˆmod()(ˆ
)ˆmod()(ˆ)ˆ)((ˆ

)ˆmod()(ˆ

2/ˆ2/ˆ2/ˆˆ

2/ˆ2/ˆˆ

ˆ2/ˆ

ˆ

xRixixxQ

xRixixxQ

ixxRixxQ

ixxf

tttw

ttw

wt

w

i

i

i

i

+++=

+++=

+++=

+

−

−  

 Then, 2/ˆˆ)ˆmod()(ˆ twiixxQ −+  is recursively computed by

 )2/ˆ,2/ˆˆ,ˆ),(ˆ( ttwixQA i − . Finally, return 

 ( ) )(ˆ)ˆ()ˆmod()(ˆ 2/ˆ2/ˆ2/ˆˆ xRixixxQ tttwi +++ − . 

Notably, the above algorithm can be abbreviated as a recursive function. Let 

  ).(0)(ˆ and ,2ˆ,ˆ,ˆ
ˆ

log xfxxftwwii
t

ti

it
ii +==== ∑

=

 Then,  

)ˆ,ˆ,ˆ),(ˆ( twixfA i  

= )ˆ,ˆ,ˆ),(ˆ)ˆ)((ˆ( 2/ˆ twixRixxQA i
t ++  

=








>
<
=

++− 2/ˆˆ if
2/ˆˆ if
2/ˆˆ if

),(ˆ)ˆ)(2/ˆ,2/ˆˆ,ˆ),(ˆ( :3 Case
),2/ˆ,ˆ,ˆ),(ˆ( :2 Case

),(ˆ :1 Case

2/ˆ2/ˆ tw
tw
tw

xRixttwixQA
twixRA

xR

i

i

i

tt
i

i  

Now, for the recursive function above, an example is given below. 

 

Input of the demonstration: 

Example 3.1. An demonstration of fast weighted secret image sharing: 

i) A polynomial f(x)=2x5+5x4+2x3+6x2+3x+1 whose coefficients are all in GF(23=8), 

i.e. all in the range {0,1,2,3,4,5,6,7}. 

ii) A shadow index i=1, a shadow weight wi=5, and a threshold t=6. 

Demonstration purpose:  
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Show how to compute the corresponding shadow value iwixxfxg ˆ5
1 )ˆmod()(ˆ)( += =

( ) 5234567 )1mod(13625200 ++++++++ xxxxxxxx where 1ˆ == ii , 5ˆ == ii ww , and 

∑
=

=+=
t

ti

i xfxxf
ˆ

)(0)(ˆ 0x7+0x6+2x5+5x4+2x3+6x2+3x+1 is the whole-power-of-two version of 

f (by adding the missing zero coefficients to f so that all     822ˆ 6loglog 22 === tt  coefficients 

appear.) 

Demonstration detail: 

According to the recursive function of our sharing algorithm, we have 

 

= ( )8,5,1,13625200 234567 +++++++ xxxxxxxA  

= ( )8,5,1),4162()1)(5200( 23423 ++++++++ xxxxxxxA   ( Eq. (3.12)) 

= ( ) )1(4,1,1,5200 4423 ++++ xxxxA + )4162( 23 +++ xxx ( 42/ˆ5ˆ =>= twi , ∴Case 3) 

= ( ) )1(4,1,1),52()1)(00( 442 +++++ xxxxA + )4162( 23 +++ xxx   ( Eq. (3.12)) 

= ( ) )1(2,1,1,52 44 ++ xxA + )4162( 23 +++ xxx  ( 22/ˆ1ˆ =<= twi , ∴Case 2) 

= ( ) )1(2,1,1,7)1(2 441 +++ xxA + )4162( 23 +++ xxx    ( Eq. (3.12)) 

= )1(7 44 +x + )4162( 23 +++ xxx     ( 12/ˆ1ˆ === twi , ∴Case 1) 

= 31627 234 ++++ xxxx . 

Therefore, ( ) 523455
1 )1mod(136252)( ++++++= xxxxxxxg  

= ( )8,5,1,13625200 234567 +++++++ xxxxxxxA = 31627 234 ++++ xxxx . 

 

3.3 Experimental results, comparisons, and security analysis 
Sec. 3.3.1 shows the experimental results. Sec. 3.3.2 compares our method with Thien and 

Lin’s method. Sec. 3.3.3 is the discussion about the security of our method. 

 

3.3.1 Experimental results 

The standard 512×512 gray-level image Lena is shown in Fig. 3.1, which is used as the 

secret image in the experiments. Fig. 3.2 shows the encrypted image of Fig. 3.1; the 

encryption uses exclusive-OR operation between a random sequence and the gray values of 

the secret image. GF(28) is used in the sharing scheme. Then, the proposed fast weighted 

)ˆ,ˆ,ˆ),(ˆ( twixfA i
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secret image sharing with (t=256, n=7) threshold scheme is used to share the encrypted secret 

image Fig. 3.2, and n=7 shadows are thus generated shown in Figs. 3.3(a-g) with shadow 

weight 160, 64, 24, 8,134, 12, 3, respectively. Fig. 3.4 is the image revealed by Figs. 3.3(a-d), 

and the revealed image is identical to Fig. 3.1. 

Fig. 3.5 compares the execution time in the weighted secret image sharing phase using 

Thien and Lin’s (t, n)=(256, wi) threshold scheme[7] and our (t, n)=(256, 1) threshold scheme. 

Notably, the execution time of our sharing algorithm is 7±3 mille-seconds for each of these 

255 sets of weights; whereas the execution time increases linearly as the weight value 

increases in Thien and Lin’s direct and repeated application (using multiple shadows to 

simulate weighted feature). 

 
Fig. 3.1. The 512512×  secret image Lena. 

 

 
Fig. 3.2. The encrypted image of Lena. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 3.3. The (t, n)=(256, 7) secret sharing scheme in GF(28). Each of the 7 shadow weight is 

(a) 160; (b) 64; (c) 24; (d) 8; (e) 134; (f) 12; (g) 3. 

 

 
Fig. 3.4. The image revealed from Figs. 3(a-d). 
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Fig. 3.5. The execution time in the weighted secret image sharing using Thien and Lin’s 

(t=256, n= iw ) threshold scheme3 and our (t=256, n=1) threshold scheme. 

 

3.3.2 Comparisons with Thien and Lin’s scheme[7] 

Some advantages of our method are listed below (compared with Thien and Lin’s 

method). 

 

The time complexity of the weighted secret image sharing using Thien and Lin’s scheme3 

and our scheme is analyzed as follows. Let |S| denotes the size of the secret image. For Thien 

and Lin’s (t, n) threshold scheme3, when sharing each non-overlapping t pixels of the secret 

image to 

Time complexity: 
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1
( )

p

i
i

S wθ
=

×∑  = ( )O S nt . 

As for our scheme, when sharing each non-overlapping t pixels of the secret image to n 

shadows, f(x) = a0 + a1x + … + at−1xt−1 in Eq. (3.4) is expanded to f(x) = a0 + a1x + … + at−1xt−1 

+ 0xt + ... + 0  t

x 2log2  if the value of t is not power of two. Then, 1 2
1 2( ), ( ) , , ( )nww w

ng x g x g x  

in Eq. (3.5) are computed using our fast weighted secret image sharing algorithm. Suppose 

the time complexity of computing each ( )iw
ig x  in Eq. (3.5) is )ˆ(tT  where i=1, 2, …, n. 

Because the concept of the recursive function is applied in our algorithm, and there are 2/t̂  

multiplications and 2/t̂  additions in the step 1 of Algorithm 1, the recurrence relation 

)ˆ()2/ˆ()ˆ( ttTtT θ+=  can be derived. The recurrence relation is then solved by the 

substitution method to obtain )ˆ()ˆ( ttT θ= . Because  tt 2log2ˆ ← , the value of t̂  is at most two 

times of t. Therefore, we have )()ˆ()ˆ( tttT θθ == . So, the time complexity of sharing secret 

image with size |S| to n shadows using our scheme is ( ) ( ) ( / )n t S tθ θ θ× × = ( )S nθ . 

 

A more general scheme for polynomial-based sharing

In our weighted sharing scheme, according to the Chinese Remainder Theorem for 

polynomials, the n polynomials x−1, x−2, …, x−n in Eq. (3.3) can be replaced by n other 

sharing polynomials such as x2+x+1, x2+x+2, …, x2+x+n, as long as these n polynomials are 

pair-wise prime (i.e. no pair of polynomials has a non-trivial common factor). Notably, Thien 

and Lin’ method is only a special case of this generalized scheme (i.e. the n shadows of Thien 

and Lin’s are evaluated by f(i) = f(x) mod (x−i), for i=1, 2, ..., n. In other words, only {x−1, 

x−2, …, x−n} were used by Thien and Lin; whereas we can use all sharing polynomials which 

are pair-wise prime). 

: 

 

Better performance when pixel values are larger than 250:

The computations in Thien and Lin’s sharing process are in the field GF(251). All gray 

values 251~255 of the gray-level secret image have to be truncated to 250. Therefore, the 

recovered secret image is lossy. To recover the secret image without any loss, Thien and Lin 

introduce a pre-processing to decompose the gray value larger than 250, for example, 253 is 

separated as a pair of pixels {250 and 3}. This pre-processing will waste time and slightly 

increase the size of their shadows. However, since we use GF(256) in our weighted sharing 
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procedure, the secret image can be lossless reconstructed without additional post-processing. 

 

Each participant keeps only one index and only one shadow (hence more convenient and 

space-saving):

If a company wants to apply Thien and Lin’s (t, n) scheme directly to achieve the goal of 

weighted participants, then the company can let some participants hold multiple shadows. To 

be more specific, because each shadow generated by Thien and Lin’s scheme has weight 1, 

the participant i (1≤i≤n) whose weight is wi should be assigned wi shadows, and each of these 

wi shadows will be attached with an index value for the secret-recovery meeting in the future. 

The wi indices for the participant i will cause inconvenience than single index does, and the wi 

shadows (rather than a single shadow) also waste storage space of participant i. Moreover, if 

there are three participants whose weights are, respectively, 128, 122, and 99; then, Thien and 

Lin’s method will be in trouble. This is because the first participant will obtain 128 shadows 

with the 128 indices values being 1, 2, ..., 128; and the second participant will obtain 122 

shadows with the indices values being 129, 130, ..., 250. As for the third participant, there is 

“no” shadow left for him because GF(251) restricts the input index value be less than 251; so 

the system cannot generate more than 250 shadows. However, by using our method, the first 

participant will obtain only a shadow with the index value 1 and the weight value 128; the 

second participant will obtain a shadow with the index value 2 and the weight value 122; and 

the third participant will obtain a shadow with the index value 1 and the weight value 99. 

Hence, besides giving convenience to each participant, the proposed method also keeps 

storage space of each participant much more economic. 

  

 

3.3.3 Security analysis 

The security analysis is divided into two parts: 1) a group of shadows with total weights 

t-1 cannot reveal the secret image and 2) shadows of different weights are not equally secure. 

Firstly, suppose that the tʺ  obtained shadows are {( ]1[
~

kh , ]1[kw ), ( ]2[
~

kh , ]2[kw ), ..., ( ][
~

tkh ′′ , 

][tkw ′′ )} and the sum of their weights is tʺ −1 (i.e. 1
1

][ −=∑
′′

=

tw
t

j
jk ), then we analyze the 

probability of obtaining the secret image by guessing. According the Chinese Remainder 

Theorem for polynomials, we can construct a unique polynomial )(~ xf ′  with degree is less 
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than 1
1

][ −=∑
′′

=

tw
t

j
jk  from these m' shadows. After obtaining )(~ xf ′ , to reveal the )(~ xf  in 

Eq. (3.7) by )(~ xf ′ , we have 

)(~])[()(~
1

][ xfjkxxf
t

j

w jk ′+−= ∏
′′

=

α  

where α is a non-negative integer less than 28 =256 (because GF(28) is used in our 

experiments). Since there are 28 =256 possible values of α, the possibility of guessing the right 

solution )(~ xf  is 1/256. For a 512×512 secret image, because there are 512×512/t polynomials, 

the possibility of obtaining the right secret image is )/512512(256 t×− , which is a form similar to 

the )/512512(251 t×−  given in Thien and Lin’s chapter. 

Secondly, we analyze below the probability of obtaining the secret image by using only 

one shadow. Given a shadow
iwh of weight wi, then the polynomial )(xg iw

i  can be obtained 

using the shadow
iwh . Now, to use )(xg iw

i to reveal the )(~ xf in Eq. (3.7), we have

)())(()(~ xgixxQxf ii w
i

w +−′=  where )(xQ′ is an unknown polynomial with degree is less than 

t−wi. Therefore, there is 1/ iwt−256 chance to find out the polynomial )(xQ′  by guessing. On 

the other hand, there are 512×512/t polynomials for a given 512×512 secret image, so the 

possibility of obtaining finding out the secret image is ( ))/1512512(256 twi−××− . This shows that 

shadows of different weights are not equally secure, for the security of each shadow is 

weight-dependent. To find out the secret image by guessing, the owner of a larger-weight 

shadow has more chance than the owner of a smaller-weight has. This agrees with our 

daily-life experience: a higher-rank manager (having heavier weight) has more chance to 

uncover the company’s secret than a lower-rank employee has. 

 

3.4 Conclusions 
In this chapter, a fast weighted secret image sharing with (t, n) threshold method is 

proposed. The method shares the secret image among the weighted participants, and the secret 

image can be losslessly recovered if the sum of the weights of the participants is greater than 

or equal to the threshold t. Besides, the execution time in the weighted secret image sharing 

phase is improved by using the properties of GF(2k). As shown in Fig. 3.5, our execution time 

is better than that of Thien and Lin when 1iw > . The executives of a company can use our 
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method to share the secret image. 
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Chapter 4 

Weighted-Sum Function (WSF) − A Gray-scale Image 

Hiding Method with Competitive PSNR over a Wide 

Range of Embedding Rates 

 

This chapter proposes an embedding method based on a weighted-sum function. A 

gray-scale host image is divided into blocks of n pixels, and each block embeds m secret bits 

in it. The stego-pixel values in each block are obtained by calculating the weighted-sum 

function with minimal distortions. The advantages of this method include: (1) Wide range of 

embedding rate (such as 0.5 to 4 bits per pixel), (2) Competitive image quality over the whole 

wide range, (3) Once the embedding rate (bits per pixel) is given, our look-up table can 

predict the PSNR value, even before the actual embedding. 

The remainder of the chapter is organized as follows. The method is introduced in Sec. 

4.1. Experimental results are presented in Sec. 4.2. Sec. 4.3 compares our method with 

previous works. Sec. 4.4 provides a discussion, and. Sec. 4.5 is the summary. 

 

Notations in this chapter: 

H The gray-scale host image (After embedding, we obtain its 

stego-image H'.). 

z Number of pixels in each block of the host image. 

m Number of secret bits to be embedded in a block. 

Bm An m-bits binary value to be embedded in a block. 

pi The i-th pixel value in a block of host image H (After embedding, 

we obtain its stego-pixel ip′ .). 

pmax The upper bound of host pixels and stego-pixels (each pixel value is 

between 0 and pmax −1). 

ip∆  The distortion between the stego-pixel ip′  and the host pixel pi. 

(1=c0,c1,...,cz-1) The z weights repeatedly used by all blocks to extract their data Bm 

by the weighted-sum function 
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)2(mod...1),...,,( 11110110
m

nnn pcpcppppf −−− ′++′+′=′′′ . 

Rm Weighted error sum )2(mod...1 11110
m

nnm pcpcpR −− ∆++∆+∆=  

which is required to have the value 

)2(mod)...1( 11110
m

nnm pcpcpB −−+++− (the so-called 

Rm-constraint in optimization). 

mRzppp ),...,,( 110
∗
−

∗∗ ∆∆∆  The vector which has minimal sum of squares under the constraint

)2(mod
1

0

m
m

z

i
ii Rpc =∆∑

−

=

. 

T The vector which has minimal sum of squares under the constraint

)2(mod
1

0

m
m

z

i
ii Rpc =∆∑

−

=

. 

 

4.1 The proposed method 
 Divide the gray-scale host image H into blocks of z pixels each. Also divide the data to 

be embedded into sectors of m bits each. Without a loss of generality, focus on one block and 

one sector. In other words, we show below how to embed an m-bits binary value Bm in an 

z-pixels block (p0, p1,..., pz-1) of H. Let  
; i=0, 1, …, z−1, 

be the values of z stego-pixels, i.e. the pixel values after embedding Bm. Also assume that 

pixel values must be in the gray value range [0, pmax) where pmax −1 is the maximal possible 

gray value. For example, if each gray has 8 bits, then pmax =28=256. In the future, we want to 

extract Bm from the stego-pixels simply by a weighted-sum function 

)2(mod...1),...,,( 11110110
m

mzzz Bpcpcppppf =′++′+′=′′′ −−− , (4.1) 

where the given positive parameters (c0, c1,..., cz−1)=(1, c1,..., cz−1) are called the weights of 

),...,,( 110 −′′′ zpppf . In some studies for embedding, such as [8, 38], the base of modulus 

function is not necessarily a power of two. However, since the embedded data is often a 

binary stream, we set the modulus value to 2m. Now, Eq. (4.1) reads 

)2(mod)(...)()(1

...1

11111100

11110
m

zzz

zzm

ppcppcpp
pcpcpB

−−−

−−

∆+++∆++∆+=

′++′+′=
. (4.2) 

So, the weighted error sum 

iii ppp ∆+=′
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)2(mod...1 11110
m

zzm pcpcpR −− ∆++∆+∆=  (4.3) 

is 

)2(mod)...1( 11110
m

zzmm pcpcpBR −−+++−= . (4.4) 

Notably, Rm can be evaluated by Eq. (4.4) in the embedding phase whenever the weights 

(1,c1,...,cz-1) are given or determined, since the secret data Bm and host pixel values {p0, p1,..., 

pz-1} are both known. 

For n given weights (1, c1,..., cz-1), our purpose is to find optimal 
mRnppp ),...,,( 110

∗
−

∗∗ ∆∆∆

which minimizes the sum of squares under constraint (4.3). In symbols, 









=∆∆=∆∆∆ ∑∑
−

=

−

=
∆∆

∗
−

∗∗

−

)2(mod)(minarg),...,,(
1

0

1

0

2

...,,110
10

m
m

z

i
ii

z

i
ippRz Rpcpppp

z
m

. (4.5) 

This is a time-consuming combinatorial problem, and we use a dynamic programming skill to 

obtain a solution quickly. First, for the given (1, c1,..., cz-1), we generate table T based on Eq. 

(4.5). In other words, table T should list the suitable 
mRzppp ),...,,( 110

∗
−

∗∗ ∆∆∆  corresponding to 

each )2,0[ m
mR ∈  (An example is given in Example 1 later). Notably, table T is only used in 

encoding. (As for decoding, the z stego-pixels )...,,( 110 −′′′ zppp  are grabbed from the 

stego-image H' and then ),...,( 10 −′′= zm ppfB  is calculated by Eq. (4.1) to get the embedded 

m-bits secret value Bm). 

Some recursive formulas are used in the dynamic programming (Algorithm 4.1). For 
mk 20 <≤  and nj <≤0 , define Q[k, j] as the minimum of the partial sum of squares 

∑
=

∆
j

i
ip

0

2)( obtained under the (j+1)-terms constraint 

)2(modΔΔΔ1 110
m

jj kpc...pcp =+++ . (4.6) 

In symbols, 









∆=∆= ∑∑
==

∆∆
)2(mod)(min],[

00

2

,...,0

m
j

i
ii

j

i
ipp

pckpjkQ
j

. (4.7) 

Eq. (4.7) implies that our original minimization goal is equivalent to getting Q[k, z−1] for 

each )2,0[ mk ∈ . (The parameter values 
mRnppp ),...,,( 110

∗
−

∗∗ ∆∆∆  utilized to get Q[k, z−1] are 

also the parameter values utilized to solve Eq. (4.5).) Now, in order to get Q[k, z−1], we start 

from the 0th column Q[•,0]. Then we get the 1st column Q[•, 1] , and then the 2nd column Q[•, 

2]; ….; until we get the (z−1)th column Q [•, z−1] . In other words, we need a recursive 
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formula to evaluate Q [k, j]. By observation, the value of Q[k, 0] is 

{ }
,

otherwise)2(
20 if

})2(,min{

)2(mod)(min]0,[

2

12
22

0
2

0





−
≤≤

=−=

∆=∆=
−

m

m
m

m

k
kk

kk

pkpkQ
 (4.8) 

where we have used the (j+1)=(0+1)=1 term constraint )2(mod1 0
mip =∆  to know that 

either kp =∆ 0 or mkp 20 −=∆ . (It is impossible to have mkp 20 +=∆  because k2 <(k+2m)2.) 

 When 1≥j , the recursive formula for Q [k, j] can be derived as follows. Let l=Δpj, then 

the (j+1)-terms constraint Eq.(6) becomes )2(mod...1 110
m

jlcpcpk ++∆+∆= , so 

)2(mod...1 11110
m

jjj pcpcplck −− ∆++∆+∆=−  (4.9) 

is equivalent to the (j+1)-terms constraint Eq. (4.6). 

 By definition Eq. (4.7), ]1),2(mod[ −− jlckQ m
j  is the minimal sum of squares 

∑
=

∆
j

i
ip

0

2)(  under the constraint Eq. (4.6), i.e. 









∆=−∆=−− ∑∑
−

=

−

=
∆∆ −

)2(mod)(min]1),2(mod[
1

0

1

0

2

... 10

m
j

i
iij

j

i
ipp

m
j pclckpjlckQ

j

. 

From this, we can express Q[k, j] as 

{ }]1),2(mod[min

)2(mod)(minmin

)2(mod)(min

)2(mod)()(min

)2(mod)(min],[

2

1

0

1

0

2

...

2

1

0
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0

22
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1

0

1

0

22
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0

0

0

0
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


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















∆=−∆+=









∆=−∆+=









∆=∆−∆+∆=









∆=∆=

∑∑

∑∑

∑∑

∑∑

−

=

−

=
∆∆
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=

−

=
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−

=

−

=
∆∆

==
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jlckQl

pclckpl

pclckpl

pcpckpp

pckpjkQ

m
jl

m
j

i
iij

j

i
ippl

m
j
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iij

j

i
ilpp

m
j

i
iijj

j

i
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m
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i
ipp

j

j

j

j

. 

More precisely, Q[k, j] can be obtained from 

{ })12(,...,1,0]1),2(mod[min],[ 2 −±±=+−−= mm
j lljlckQjkQ  (4.10) 

by inspecting all l throughout the range l ∈{0 , ±1, ±2,…, ±(2m−1)}. Notably, there is no need 

to consider those l not in the range (−2m, 2m), because l=Δpj and we want to minimize the sum 
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of squares ∑
=

∆
j

i
ip

0

2)(  subject to constraint )2(mod
0

m
j

i
ii pck ∑

=

∆= . If 

),,...,,( 110 jj pppp ∆∆∆∆ −  satisfies constraint )2(mod
0

m
j

i
ii pck ∑

=

∆= , and Δpj is larger than the 

2m−1, then the constraint is still satisfied by ))2(,,...,,( 110
m

jj pppp −∆∆∆∆ −  because 

)2(mod)2(...( 11110
mm

jjjj kpcpcpcp =−∆+∆++∆+∆ −− is also true. However, 

22
1

2
0 )2()(...)( m

jj ppp −∆+∆++∆ −  is smaller than 22
1

2
0 )()(...)( jj ppp ∆+∆++∆ − . 

Define table T as a matrix whose entries are 









∆=∆= ∑∑
−

=

−

=
∆

)2(mod)(minarg],[
1

0
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2 m
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i
ip

pckpjkT
j

. (4.11) 

To obtain T from table Q, the selected value l of Eq. (4.10) is recorded in an auxiliary table L. 

In symbols, record 

{ })12(,...,1,0]1),2(mod[minarg

)2(mod)(minarg],[

2

00

2

−±±=+−−=









∆=∆= ∑∑
==

∆

mm
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i
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i
ip

lljlckQ

pckpjkL
j . (4.12) 

The value of L[k, j] is simultaneously updated with Q[k, j], so table L is obtained once table Q 

is obtained. Then, table T is constructed by a loop function. Firstly, because of Eq. (4.11) and 

Eq. (4.12), we have  

T[k, z−1]=L[k, z−1] for each )2,0[ mk ∈ . 

Secondly, T[k, z−2]=L[k−cz−1T[k, z−1] (mod 2m), z−2] for each )2,0[ mk ∈ , because 

].2),2(mod]1,[[

)2(mod]1,[)(minarg
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Thirdly, T[k, z−3]=L[k−cz−1T[k, z−1]−cz−2T[k, z−2] (mod 2m), z−3]  for each )2,0[ mk ∈ , and 

the proof is similar, and hence, it is omitted. These steps are repeated until table T is complete. 
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Algorithm 4.1 below describes the details. 

 

Algorithm 4.1. An auxiliary algorithm to construct table T by dynamic-programming. 

Input: Two positive integers m and z, and z weights (1, c1,..., cz−1). 

Output: A table T containing 2m vectors (each vector is of the form ),...,,( 110
∗
−

∗∗ ∆∆∆ nppp ), and 

an predicted PSNR value PSNRest. 

Remark: The Q, L and T in the algorithm are tables of size 2m×z each. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

for k = 0 to 2m−1 do 

if 22 )2( mkk −≤  then 

kkL ⇐]0,[  
2]0,[ kkQ ⇐  

  else 

    mkkL 2]0,[ −⇐  
2)2(]0,[ mkkQ −⇐  

end if 

end for 

for j = 1 to z−1 do 

for k = 0 to 2m−1 do 

]1,[],[ −⇐ jkQjkQ  

0],[ ⇐jkL  

1⇐l  

while ],[2 jkQl <  do 

if 2]1),2(mod[],[ ljlckQjkQ m
j +−+≥  do 

2]1),2(mod[],[ ljlckQjkQ m
j +−+⇐  

ljkL −⇐],[  

end if 

if 2]1),2(mod[],[ ljlckQjkQ m
j +−−≥  do 

2]1),2(mod[],[ ljlckQjkQ m
j +−−⇐  

ljkL ⇐],[  

end if 

1+⇐ ll  

    end while 

  end for 
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27 

28 

29 

30 

31 

32 

33 

34 

35 

end for 

for k = 0 to 2m−1 do 

kl ⇐  

for j = z−1 to 0 do 

],[],[ jlLjkT ⇐  

)2(mod],[ m
j jlLcll −⇐  

  end for 

end for 

Calculate MSEest (the expected value of MSE) and PSNRest (the predicted PSNR) by 

∑
−

=

−=
12

0
]1,[

2
1 m

k
mest zkQ

n
MSE , (4.13) 

est
est MSE

XPSNR
2

10
)1(log10 −= . (4.14) 

 Remarks: In Lines 15−25 above, the condition of the while loop is ],[2 jkQl < , rather than 

ml 2< , because if ],[2 jkQl ≥ , then the two “if” conditions in Lines 16−19 and Lines 20−23, 

i.e. 2]1),2(mod[],[ ljlckQjkQ m
j +−+≥  and 2]1),2(mod[],[ ljlckQjkQ m

j +−−≥ , 

will never be satisfied. 

 

Example 4.1: Assume (m, z)= (4, 3), and the z weights are (1, c1, c2)=(1, 2, 6). Table 4.1 is 

the three tables Q, L and the table T generated by Algorithm 4.1 above. The predicted PSNR 

provided by Algorithm 4.1 is 14.51255log10
2

==
est

est MSEPSNR dB where 

∑
−

=

−=
12

0
]1,[

2
1 m

k
mest zkQ

n
MSE =0.5 is evaluated at Step 4 of Algorithm 4.1. 

 

Table 4.1. The tables Q, L, and T for (m, z)=(4, 3) when z given weights are (1, c1, c2)=(1, 2, 

6). (a): Table Q generated in the intermediate process of Algorithm 1. (b): Table L generated 

in the intermediate process of Algorithm 1. (c): The final output table T of Algorithm 1. 



70 

 

(a) 
i table Q 
0 0 0 0 
1 1 1 1 
2 4 1 1 
3 9 2 2 
4 16 4 2 
5 25 5 2 
6 36 8 1 
7 49 10 2 
8 64 13 2 
9 49 10 2 
10 36 8 1 
11 25 5 2 
12 16 4 2 
13 9 2 2 
14 4 1 1 
15 1 1 1 

 

(b) 
i table L 
0 0 0 0 
1 1 0 0 
2 2 1 0 
3 3 1 0 
4 4 2 1 
5 5 2 1 
6 6 2 1 
7 7 3 1 
8 8 3 1 
9 −7 −3 −1 
10 −6 −2 −1 
11 −5 −2 −1 
12 −4 −2 −1 
13 −3 −1 0 
14 −2 −1 0 
15 −1 0 0 

 

(c) table T 
Rm ∗∆ 0p  ∗∆ 1p  ∗∆ 2p  
0 0 0 0 
1 1 0 0 
2 0 1 0 
3 1 1 0 
4 0 −1 1 
5 −1 0 1 
6 0 0 1 
7 1 0 1 
8 0 1 1 
9 −1 0 −1 
10 0 0 −1 
11 1 0 −1 
12 0 1 −1 
13 −1 −1 0 
14 0 −1 0 
15 −1 0 0 

 

 

Table 4.2. Suggested weights (1, c1,..., cz−1) for certain embedding rate values. For the listed 

(m, z), the estimated PSNR (i.e. value of Eq. (4.14)) is optimal if users adopt these suggested 

weights. 

No. Embedding rate  m, z Estimated PSNR 1, c1,..., cz−1 
0 0.500 bpp 4, 8 57.44 dB 1, 2, 3, 4, 5, 6, 7, 8 
1 0.571 4, 7 56.58 1, 2, 3, 4, 5, 6, 7 
2 0.667 4, 6 55.40 1, 2, 3, 4, 5, 6 
3 0.750 6, 8 54.81 1, 2, 3, 4, 5, 6, 13, 26 
4 0.875 7, 8 54.25 1, 2, 8, 12, 24, 29, 47, 62 
5 1.000 6, 6 53.33 1, 2, 5, 12, 20, 28 
6 1.167 7, 6 52.26 1, 3, 8, 18, 42, 54 
7 1.200 6, 5 52.04 1, 6, 10, 18, 31 
8 1.250 5, 4 51.64 1, 2, 6, 11 
9 1.333 8, 6 51.40 1, 3, 9, 27, 50, 93 
10 1.400 7, 5 50.97 1, 3, 9, 28, 52 
11 1.500 6, 4 50.34 1, 3, 8, 22 
12 1.600 8, 5 49.75 1, 3, 58, 87, 124 
13 1.667 5, 3 49.09 1, 4, 10 
14 1.750 7, 4 48.65 1, 4, 40, 58 
15 1.800 9, 5 48.46 1, 36, 86, 146, 215 
16 2.000 10, 5 47.31 1, 9, 23, 243, 324 
17 2.250 9, 4 45.73 1, 13, 149, 232 
18 2.500 10, 4 44.23 1, 26, 33, 221 
19 2.750 11, 4 42.72 1, 364, 559, 986 
20 3.000 12, 4 41.22 1, 9, 350, 491 
21 3.333 10, 3 39.10 1, 20, 195 
22 3.500 7, 2 38.00 1, 12 
23 3.667 11, 3 37.10 1, 61, 597 
24 4.000 12, 3 35.10 1, 1210, 2026 

 

Algorithm 4.1 above needs the user to provide z weights (1, c1,..., cz-1). For the reader’s 

benefit, some suggested weights for different combinations of (m, z) are provided in Table 4.2. 
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Notably, the value of bpp (bits per pixel) is always  

bpp= m/z, 

which is the number of embedded bits in each pixel of each block. The weights shown in 

Table 4.2 yield the optimal expected value of MSE for each pair of (m, z) specified there. 

These weights are found by an exhaustive search (i.e. all possible (1, c1,..., cz-1) in the 

searching domain (each ci∈[0,2m)) has been tested for the specified (m, z)). Notably, there is 

no need to test other values )2,0[ m
ic ∉ , because they will be normalized to the scope )2,0[ m  

by the modulus operator (mod 2m). 

Table 4.2 enables the readers to easily decide the weights (1, c1,..., cz-1). For example, if 

the host image is 512×512, and the size of embedded data is 500000 bits, then the embedding 

rate is 500000/(512×512)=1.91 bpp, which is between the 1.8 bpp and 2.0 bpp of Table 5.2. 

To get enough embedding space, the embedding rate cannot be smaller than 1.91, so we use 

2.0 bpp. Therefore, from Table 4.2, use (m, z)=(10, 5), and choose 

)2(mod3242432391),,,,( 10
4321043210 ppppppppppf ′+′+′+′+′=′′′′′  as the desired 

weighted-sum function Eq. (4.1) to extract embedded data from each stego-block 

),...,,( 410 ppp ′′′ . Of course, since (1, c1,...,cz-1)=(1, 9, 23, 243, 324) are known, the 

corresponding table T can be constructed by Algorithm 4.1, and the data-embedding can be 

done by Algorithm 4.2 below. The optimal weights {1, c1,...,cz-1} in Table 4.2 may not be 

unique for each pair of m and z. For example, when m=z=6, to obtain PSNR = 53.33 dB, the 

readers can either use the weights (1, 2, 4, 12, 21, 28) or (1, 2, 5, 12, 20, 28) or (1, 3, 6, 12, 20, 

28) or …; these optimal weights all give the predicted PSNR = 53.33 dB. Notably, there are 

two layers of optimization to construct Table 4.2, as listed below. 

1. Inner layer: Given the z weights (c0=1, c1,…,cz−1); then, for each integer )2,0[ m
mR ∈ , 

find the vector 
mRzppp ),...,,( 110

∗
−

∗∗ ∆∆∆  that yields the minimal sum of squares ∑
−

=

∗∆
1

0

2)(
n

i
ip  

under the constraint )2(mod
1

0

m
m

n

i
ii Rpc =∆∑

−

=

 (see Eq. (4.5)). This is resolved by dynamic 

programming (Algorithm 4.1). 

2. Outer layer: Given a pair of values (m, z), find the z weights (1, c1,…,cz−1) which have a 

minimal expected value of MSE. This is resolved by an exhaustive search, and the results are 

listed in Table 4.2. 

The details of the embedding algorithm are listed in Algorithm 4.2, which uses Algorithms 
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4.1 and 4.3 (Algorithm 4.3 is an auxiliary algorithm to handle the overflow/underflow case). 

 

Algorithm 4.2. Main embedding algorithm. 

Input: The embedded data S and host image H. 

Output: A gray stego-image H'; the two values m, z and the z weights (1, c1,..., cz−1). 

1. Calculate the embedding rate er= |S|/|H|, where |S| is the bit-length of S and |H| is the 

number of pixels of H. 

2. Use the embedding rate er to look up the “Embedding rate” column in Table 4.2. Find an 

embedding rate er′ which is the one closest to er, but still not less than er. For er′, grab its 

corresponding (m, z) and the corresponding z weights (1, c1,..., cz−1) from Table 4.2. 

3. For the z weights (1, c1,..., cz−1), if its table T was recorded earlier in the off-line process 

when Table 4.2 was constructed, then go to Step 4. Otherwise construct table T by Algorithm 

4.1. 

4. Let the z pixels (p0,..., pz−1) be the z not-yet-processed pixels taken from the host image 

H. Then let the m-bits value Bm be the m not-yet-processed bits taken from the bit stream S. 

5. Calculate )2(mod)...1( 11110
m

zzmm pcpcpBR −−+++−= . 

6. Grab the Rm-th row 
mRzppp ),...,,( 110

∗
−

∗∗ ∆∆∆ of the table T. Calculate the z stego-pixels of 

the stego-image H′ by ),...,,(),...,,( 111100110
∗
−−

∗∗
− ∆+∆+∆+=′′′ zzz ppppppppp . 

7. If any stego-pixel ip′  is out of boundary (<0 or ≥pmax), then re-calculate the z 

stego-pixels by calling the out-of-bound algorithm (Algorithm 4.3). 

8. Go to step 4 if unprocessed data bits remain. Otherwise, output image H′, the values of 

m, z, and the z weights (1, c1,..., cz−1). 

In Algorithm 4.2 above, should some of the z generated stego-pixels ),...,,( 110 −′′′ zppp in 

Step 6 be out of bound (i.e. <0 or ≥pmax.), then Algorithm 4.3 below is called in Step 7 of 

Algorithm 4.2 to re-generate ),...,,( 110 −′′′ zppp  which always stay within the gray-level range 

[0, pmax). Here, for each pixel pi, to ensure ),0[ maxppp ii ∈∆+  after embedding; the formula 

{ })12(,...,1,0]1),2(mod[min],[ 2 −±±=+−−= mm
j lljlckQjkQ  in Eq. (4.10) is rewritten as 

{ }max2 0 with )12(,...,1,0]1),2(mod[min],[ ppllljlckQjkQ j
mm

j <+≤−±±=+−−=  

so that the new stego-values created by Algorithm 4.3 can stay in bound by dynamical 

modification according to the given host pixel values (p0, p1,..., pn−1). (In opposition, Table 4.2 
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and Algorithm 4.1 do not need any host pixel value.) 

 

Algorithm 4.3. The out-of-bound algorithm to deal with the case when the gray value 

generated in Step 6 of Embedding Algorithm 5.2 is <0 or ≥pmax. 

Input: Two positive integers m and z, the z weights (1, c1,..., cz−1), the z host pixels (p0, p1,..., 

pz−1), the value Rm, and an integer pmax indicating that all host pixels are less than pmax. 

Output: z stego-pixels ),...,,( 110 −′′′ nppp of which each pixel is in the gray-level range [0, pmax). 

Remark: The Q and L in the algorithm are tables of size 2m×z each. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

for k = 0 to 2m−1 do 

MAXkQ ⇐]0,[ , where MAX is a very big number such as (11…1)2. 

if max
0 pkp <+  and ]0,[2 kQk ≤  then 

kkL ⇐]0,[  
2]0,[ kkQ ⇐  

end if 

if 0)2(0 ≥−+ mkp  and ]0,[)2( 2 kQk m <−  then  
mkkL 2]0,[ −⇐  

2)2(]0,[ mkkQ −⇐  

end if 

end for 

for j = 1 to z−1 do 

for k = 0 to 2m−1 do 

]1,[],[ −⇐ jkQjkQ  

0],[ ⇐jkL  

1⇐l  

while ],[2 jkQl <  do 

if 0≥− lp j  and 2]1),2(mod[],[ ljlckQjkQ m
j +−+≥  do 

2]1),2(mod[],[ ljlckQjkQ m
j +−+⇐  

ljkL −⇐],[  

end if 

if maxplp j <+  and 2]1),2(mod[],[ ljlckQjkQ m
j +−−≥  do 

2]1),2(mod[],[ ljlckQjkQ m
j +−−⇐  

ljkL ⇐],[  

end if 



74 

 

26 

27 

28 

29 

30 

31 

32 

33 

34 

1+⇐ ll  

    end while 

  end for 

end for 

mRl ⇐  

for j = z−1 to 0 do 

],[ jlLpp jj +⇐′  

)2(mod],[ m
j jlLcll −⇐  

end for 
 

The extraction of the hidden data is easy; just use Algorithm 4.4 below. 

Algorithm 4.4. Extraction algorithm. 

Input: The stego-image H′, and the value d which indices the d-th row in Table 4.2. 

Output: The embedded data S. 

1. Grab z not-yet-processed pixels of the stego-image H', denote the z pixel values as

),...,,( 110 −′′′ zppp . 

2. Calculate )2(mod...1 11110
m

zzm pcpcpB −− ′++′+′= , and append the m-bits value Bm to 

the tail of data S. 

3. Go to step 1 until all pixels in stego-image H′ are processed. 

Example 4.2: If (m, z) = (4, 3), and the weights are (1, c1, c2) = (1, 2, 6), then use Algorithm 

4.1 to establish table T, which is shown in Table 4.1. Then use Table 4.1 throughout the 

embedding phase. Assume the z=3 pixels of a host block are (p0, p1, p2) = (128, 127, 125), and 

an m-bits secret value is Bm=(0111)2=7. Below we show how to embed 7 in the block. Firstly, 

calculate )2(mod11)125612721281(7 4=×+×+×−=mR  by Step 5 of Algorithm 4.2. 

Since Rm=11, take from Table 4.1 the row with Rm=11, which reads

)1,0,1(),,( 210 −=∆∆∆ ∗∗∗
mRppp . Finally, calculate the z=3 stego-pixels values as ),,( 210 ppp ′′′

=(128+1, 127+0, 125−1)=(129, 127, 124). In the future, secret data Bm is extracted by 

calculating mB =1×129+2×127+6×124 = 7 (mod 16). 

 

4.2 Experimental results 
This section presents the experimental results. When data is embedded in a ht×wh host 
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image H to get its stego-image H', a PSNR value is computed to measure the quality of H'. 

The definitions is 

MSE
pPSNR

2max )1(log10 −=  where ∑∑
−

=

−

=

′−
×

=
1

0

1

0

2)],(),([1 wh

i

ht

j
jiHjiH

htwh
MSE . 

In our first experiment, let the host image be the 512×512 gray image Lena. Let the data to be 

embedded be a string generated by a random number generator. Fig. 4.1 shows six 

stego-versions of Lena with various embedding rates. The PSNR of the experimental results is 

extremely close to the theoretically-predicted PSNRest values (listed in Table 4.2), which are 

predicted by Algorithm 4.1. Thus, the PSNR value before embedding can really be predicted 

by Table 4.2. The actual PSNR values are still very close to the predicted PSNR values (Table 

4.2) when the image Baboon in Fig. 4.2 is used as the host image. 

Table 4.3 compares ours with other papers [8-10, 35, 38, 48, 49, 51, 52]. The host image 

is Lena, which is a common image found in all referenced experiments. It can be seen from 

Table 4.3 that our method achieves competitive PSNR values for each embedding rate. When 

the image is Baboon, Table 4.4 again shows that ours are very competitive. Among many 

embedding methods, [8, 9, 35] are very competitive to ours. A comparison of the three 

methods [8, 9, 35] is discussed below. 

The LSB Matching method given by Li et al. [9] has very good stego-image quality, but 

the choice of the embedding rate (bits per pixel, i.e. bpp) is very limited. [9] uses 1 bpp as the 

embedding rate, and it has no algorithm or experiment to deal with the case when bpp≠1 (for 

example, when the embedding rate is 3.5 bpp). On the contrary, our new product is an 

all-in-one method with competitive quality everywhere over a wide range of embedding rates, 

for example, from 0.5 bpp to 4 bpp. (Our embedding rates include, but are not limited to, rates 

which are non-integer or smaller than one). In the embedding method given by Lin et al. [35], 

as shown in Tables 4.3 and 4.4, although [35] can almost keep up with ours when the 

embedding rate is 2, 3 or 4, the method cannot compete with ours when the bpp is 1 or 

non-integer. For example, we lead by a difference of about 2.2 dB when the embedding rate is 

1.5, and we lead by a difference of about 3.3 dB when the embedding rate is 0.5. (In fact, the 

method in [35] only deals with the integer embedding rate. Hence, if the specified embedding 

rate is a non-integer, for example, 1.5 bpp, then embed 1 bits per pixel in one half of the 

image, and then 2 bits per pixel in the remaining half of the image). In the embedding method 

of Thein and Lin [8], as shown in Tables 4.3 and 4.4, although [8] can almost keep up with 

ours when the embedding rate is larger than 1 bpp, the method cannot compete with ours 
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when the embedding rate is 1 or less than 1 (for example, we win by 2.2 dB when the 

embedding rate is 1, and we win by 3.3 dB when the bpp is 0.5). In summary, the embedding 

rates of our method can have a wide range of embedding rate (from 4.0 to, say, 0.5 bpp), 

including rates which are non-integer or even smaller than 1 bpp. For the whole range of 

embedding rates, our method provides competitive PSNR values. In the less-than-1-bpp case, 

our PSNR values are very competitive (see Tables 4.3 and 4.4). 

In Tables 4.5 and 4.6, some experiments are conducted to determine the PSNR values 

when the embedded data is real data rather than random. The host images are {Lena, Baboon, 

Jet, Sailboat, Peppers, Boat, Elaine, House}, all of which are 512×512, and the embedded data 

is the resized images decided by the embedding rate. In Tables 4.5-4.6, the real PSNRs (using 

real data) and the predicted values (PSNRest) are still very close; the difference is at most 0.02 

dB. 

The following two experiments were also conducted to test the PSNR values of all 

possible weights (1, c1,…, cz−1). The host image is Lena, and the embedded data is random 

data. Firstly, we selected (m, z)=(5, 3) and tested the weights (1, c1, c2) for c1∈[1,2m)=[1,32) 

and c2 ∈[1,2m)=[1,32). The other values of c1 and c2 need not be tested because they would be 

normalized to the range [0, 2m) by the modulus operation (mod 2m). The cases c1=0 or c2=0 

need not be considered, because they are equal to embedding m bits in z−1 pixels rather than z 

pixels (see Eq. (4.1), and the corresponding pixels p1 (when c1=0) or p2 (when c2=0) can be 

removed from Eq. (4.1)). The 31×31 PSNRest values (the 31×31 predicted PSNR values 

evaluated by Algorithm 4.1) were inspected for these 31×31 sets of (1, c1, c2), and the global 

maximum was found to have occurred eight times. More precisely, when (c1,c2) are 

respectively, (4,10), (4,22), (10,4), (10,28), (22,4), (22,28), (28,10), (28,22), the eight 

corresponding PSNRest values are all 49.087, and 49.087 is the maximum among all 31×31 

PSNRest values given by Algorithm 4.1 (it should be noted that 49.087 is also the 49.09 listed 

in Table 4.2 if it is rounded to 4 significant digits.) Then, in Fig. 4.3, the 31×31=961 “real” 

PSNR values were sketched when the random data was embedded in Lena. The maximum of 

the 312 =991 real PSNR values was 49.094, which occurred at the (1,c1,c2)= (1,4, 10). It 

should be noted that 49.094 is very close to the predicted value of 49.087. It should also be 

noted that (1,c1,c2)= (1,4, 10) happens to be the weights listed in Table 4.2. For the reader’s 

benefit, in Fig. 4.3, eight blue points are marked where (c1,c2) are, respectively, (4,10), (4,22), 

(10,4), (10,28), (22,4), (22,28), (28,10), (28,22). It can be seen that the real PSNR values at 

these eight theoretically-optimal points are also very high. Their actual PSNR values are at 
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least 49.081. 

In the other experiment, let (m, z)=(7, 2) and test the weights (1, c1) for c1∈[1,2m)= 

[1,128). The maximum of the 127 PSNRest values evaluated by Algorithm 4.1 is 37.999, 

which is also the 38.00 listed in Table 4.2 if it is rounded to 4 significant digits. Then, in Fig. 

4.4, the 127 “real” PSNR values were sketched when random data was embedded in Lena. 

The maximum of these 127 real PSNR values was 38.002, which occurred at the weight 

c1=116. Again, 38.002 is very close to 37.999. For the reader’s benefit, the two blue points 

(c1=12 and 116) were also marked in Fig. 4.4 which are the places which generate 37.999 (the 

maximum of PSNRest). It can be seen that the real PSNR values at these two points are also 

very high (one is 38.002 and the other is 37.995) From the two experiments above for real 

embedding, it was observed that the suggested weights listed in Table 4.2 can provide very 

high PSNR values (optimal or nearly optimal PSNR values, if they are compared with other 

weights). The real PSNR values are also very close to the predicted PSNR values listed in 

Table 4.2. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4.1. The six Lena stego-images with various embedding rates. The embedding 

rates and the values of PSNR of the stego-images are (a): 0.5 bpp, 57.45 dB. (b): 1.0 

bpp, 53.33dB. (c): 2.0 bpp, 47.30dB. (d): 3.0 bpp, 41.22 dB. (e): 3.33 bpp, 39.11dB. 

(f): 4.0 bpp, 35.10 dB. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  

Fig. 4.2. The Baboon stego-images with various embedding rates. The embedding 

rates and the values of PSNR of the stego-images are (a): 1.0 bpp, 53.33 dB. (b): 2.0 

bpp, 47.30 dB. (c): 3.0 bpp, 41.21 dB. (d): 4.0 bpp, 35.11dB. 

 

 
Fig. 4.3. The PSNR of embedding random data in Lena, for (m, z)=(5, 3), c1∈[1,2m)= [1,32), 

and c2∈[1,2m) = [1,32). The real maximal PSNR for all possible combination of weights is 
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49.094 which is very close to 49.087. (The eight blue points are the places that generate 

49.087 [the maximum of PSNRest, if Algorithm 4.1 is executed for each combination of 

weights].) 

 

 
Fig. 4.4. The PSNR of embedding random data in Lena, for (m, z)=(7,2) and c1∈[1,2m)= 

[1,128). The maximum of the real PSNR of all 127 possible weights is 38.002, very close to 

37.999. (The two blue points are the places that generate 37.999 [the maximum of PSNRest].) 

 

Table 4.3. Comparison with other papers. Host image is Lena for all methods, and the 

embedded data are random numbers. 

Embedding rate Methods PSNR 
0.50 bpp [8, 35] 54.14 dB 

0.50 ours 57.44 
0.75 [8, 35] 52.38 
0.75 ours 54.82 
1.00 [52] 51.14 
1.00 [8, 35] 51.14 
1.00 [10] (z=2) 52.39 
1.00 [9] (z=6) 53.33 
1.00 ours(m=z=6) 53.33 
1.16 [38] 52.11 
1.17 ours 52.26 
1.50 [35] 48.12 
1.50 [8] (mod 3) 49.89 
1.50 ours 50.34 

Embedding rate Methods PSNR 
2.19 bpp [51] 43.95 dB 

2.25 ours 45.73 
2.39 [51] 36.96 
2.50 [35] 42.69 
2.50 [8] (mod 6) 43.12 
2.50 ours 44.23 
2.89 [52] 39.31 
3.00 [8, 35] 40.73 
3.00 ours 41.22 
3.19 [51] 36.28 
3.33 ours 39.11 
3.50 [35] 36.82 
3.50 [8] (mod 12) 37.29 
3.50 ours 38.00 



80 

 

1.56 [48] 41.79 
1.56 [49] 44.10 
1.99 [52] 45.14 
2.00 [8, 35] 46.37 
2.00 ours 47.30 

 

3.53 [52] 34.54 
3.67 ours 37.10 
4.00 [8, 35] 34.80 
4.00 ours 35.10 

[9] did not have algorithm or experiment for 
bpp≠1. 

 

Table 4.4. Comparison with other papers. Host image is Baboon for all methods, and the 

embedded data are random numbers. 

Embedding rate Methods PSNR 
0.5 bpp [8, 35] 54.15 dB 

0.5 ours 57.45 
0.75 [8, 35] 52.41 
0.75 ours 54.81 
1.00 [8, 35] 51.13 
1.00 [10] (z=2) 52.39 
1.00 [9] (z=6) 53.33 
1.00 ours(m=z=6) 53.33 
1.10 [48] 44.10 
1.16 [38] 52.11 
1.17 ours 52.26 
1.50 [35] 48.12 
1.50 [8] (mod 3) 49.89 
1.50 ours 50.34 
1.74 [49] 40.3 
2.00 [8, 35] 46.38 
2.00 ours 47.30 

 

Embedding rate Methods PSNR 
2.49 [51] 42.08 
2.50 [35] 42.68 
2.50 [8] (mod 6) 43.13 
2.50 ours 44.23 
2.99 [51] 34.20 
3.00 [52] 39.16 
3.00 [8, 35] 40.72 
3.00 ours 41.21 
3.49 [51] 33.01 
3.50 [35] 36.82 
3.50 [8] (mod 12) 37.28 
3.50 ours 38.00 
4.00 [8, 35] 34.80 
4.00 ours 35.11 

[9] did not have algorithm or experiment for 
bpp≠1. 

 

Table 4.5. PSNR values when secret data are also images. Each host image is 512×512, but 

each secret image is resized to be 234×234. Here, (m, z)=(5,3), (1,c1,c2)=(1,4,10), so the 

estimated PSNR is 49.09 dB according to Table 4.2. 

secret  
host

 Lena Baboon Jet Sailboat Peppers Boat Elaine House 
Lena 49.09 49.09 49.09 49.08 49.09 49.10 49.09 49.08 

Baboon 49.09 49.08 49.09 49.09 49.09 49.09 49.10 49.09 
Jet 49.10 49.09 49.10 49.08 49.08 49.08 49.09 49.09 

Sailboat 49.07 49.09 49.08 49.09 49.09 49.09 49.10 49.09 
Peppers 49.08 49.09 49.09 49.09 49.09 49.10 49.08 49.08 

Boat 49.10 49.09 49.09 49.09 49.09 49.10 49.09 49.10 
Elaine 49.08 49.08 49.08 49.09 49.10 49.08 49.08 49.09 
House 49.08 49.09 49.09 49.10 49.08 49.08 49.09 49.09 

 

Table 4.6. PSNR values when secret data are also images. Each host image is 512×512, but 

each secret image is resized to be 339×339. Here, (m, z)=(7,2), (1,c1)=(1,12), so the estimated 
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PSNR is 38.00 dB according to Table 4.2. 

secret  
host

 Lena Baboon Jet Sailboat Peppers Boat Elaine House 
Lena 37.99 38.00 38.00 37.99 38.00 37.99 37.99 38.01 

Baboon 38.00 38.00 38.00 37.99 37.99 38.00 38.01 38.00 
Jet 38.00 37.99 38.00 38.01 38.01 38.00 37.99 38.01 

Sailboat 38.01 38.00 38.00 38.01 38.00 37.99 38.00 38.00 
Peppers 37.99 37.99 38.01 37.99 37.99 37.99 38.00 38.01 

Boat 37.99 38.00 38.00 37.99 38.00 38.00 38.01 38.00 
Elaine 37.98 37.98 37.99 38.00 38.00 38.01 38.00 37.99 
House 38.00 37.99 38.02 38.01 37.99 38.01 38.00 38.02 

 

4.3 Comparison with previous works 
Property 4.1 below indicates that the modulus-based method [8] coincides with our z=1 

case. The embedding scheme ),...,,( 110 −′′′ zpppf = )12(mod...21 110 +′++′+′ − zpzpp z  

proposed by Zhang and Wang [38] can relate to ours if we set our (1, c1, c2,..., cz−1) to (1, 2, 

3,…, z), and  )12(log 2 += zm . Of course, in this particular (1, c1, c2,..., cz−1)=(1, 2,…, z) 

situation, their embedding capacity and PSNR of [38] will be a little different from ours 

because their module base is of the form (mod 2z+1) while ours is of the form (mod 2m) 

where  )12(log 2 += zm . However, as stated earlier in a paragraph below Eq. (4.1) of Sec. 

4.1, the modulus base was set to 2m to reduce computation time, since the embedded data is 

often a binary stream. In a certain sense, [38] has more freedom to choose a module base, 

while ours has more freedom to choose weights (1, c1, c2,..., cz−1). 

 

Property 4.1. If z is set to 1, i.e. only one weight is used in the extraction function f (which 

means )2(mod)( 00
m

m ppfB ′=′= ), then our method coincides with the modulus-based 

embedding method m
m

m
m BBproundp +×





 −

=′ 2
2

0
0  of [1]. 

Proof: In [8], the embedding equation is m
m

m
m BBproundp +×





 −

=′ 2
2

0
0  where round(•) 

rounds the value • to the nearest integer. Their extraction equation is )2(mod0
m

m pB ′= , and 

it is proved [8] that their distortion 0p∆ = 0p′ −p0 is between −(2m−1−1) and 2m−1 . As for ours, 

if we set z as 1 in our method, then our extraction function Eq. (4.1) also reads Bm=

)2(mod1)( 00
mppf ′=′ . Since the given secret data Bm is fixed, the identical extraction 

formula means that the stego-values of the two methods are either identical or differ by a 
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whole multiple of 2m. However, by letting z=1 in Algorithm 1, the 0p∆  in table T becomes 





−
≤≤

=∆
−

otherwise2
20 if 1

0 m
m

m
mm

R
RR

p , 

which means our 0p∆ = 0p′ −p0 is also between −(2m−1−1) and 2m−1. Therefore, with the same 

given pixel value p0, it is impossible that our stego-value and their stego-value differ by a 

nonzero integer multiple of 2m. Therefore, the two stego-values must be the same.  ■ 

 

Property 4.2. If we let (1, c1, c2,..., cz−1)=(1, 2, 3,…,z) and  )12(log2 += zm , then at most 

one of the z pixels in the block is distorted, and the distortion at that pixel is, at most, 1. 

(Zhang and Wang’s method [38] neatly found this good property for distortion when module 

base is 2z+1 rather than 2m. Our proof below should be able to let the readers understand 

clearly why Property 4.2 holds.) 

Proof: We show below that for Rm from 0 through   nzm 21212 )12(log2 ≤−=− + , only a 

distortion in {−1, 0, 1} is added to a pixel value pi of the block to get its stego-pixel ip′ . 

Firstly, we evaluated the weighted error sum )2(mod)...21( 110
m

zmm zpppBR −+++−= . 

To minimize the sum of squares








∆∑
−

=

1
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zm zpppB −+++− =Rm, we 

analyzed the three cases as follows. It should be noted that the distortion is within ±1 in all 

three cases.  Case a): If Rm = 0, then the optimal solution is Δpi=0, for i=0,1,…, z−1. Case b):

zj ≤<0

 

If Rm = j where , then the optimal solution is Δpj−1=1 and Δpi=0, for any i≠j−1. 

Because 1Δp0+2Δp1+…+zΔpz−1 (mod 2m) =j and the sum of squares ∑
−

=

∆
1

0

2)(
z

i
ip  is 1 which is 

the minimal possible value. Case c).

112 −=∆
−− jmp

 If Rm=j=z+1,z+2,….,2m−1, the optimal solution is

 and Δpi=0, for any i≠2m−j−1. Because 1Δp0+2Δp1+…+zΔpz−1 (mod 2m) =2m−j 

(mod 2m) =j and ∑
−

=

∆
1

0

2)(
z

i
ip  is 1 which is the minimal possible value.     ■ 

Below we relate and compare ours with LSB matching methods [9, 10]. In [9], Li et al. 

elegantly generalize Mielikainen’s gorgeous scheme [10] (a LSB matching scheme using z=2) 

to get a so-called generalized LSB matching (G-LSB-M) scheme. As shown in Property 4, 

when the embedding ratio is 1 bpp, if z is small enough, then the optimal weights (1, c1, c2, ..., 
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cz−1) found by ours also solves the minimization problem of the LSB matching scheme of [9] 

(and [10], if z is 2), although our optimization goal (each ip∆  term is squared before 

summing up) is a little different from theirs. Notably, the two elegant LSB matching methods 

[9, 10] and ours are different in that (i). 9 [ ] has no algorithm or experiment to deal with the 

case when bpp≠1; but our embedding rates have a wide range from 0.5 bpp to 4.0 bpp. (ii).

ip∆

 

The distortion of each pixel is required to be ±1 or 0 in LSB matching, but ours does not 

use this requirement because we need to embed m-bits data in z pixels, rather than embedding 

z bits in z pixels. (iii).

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Property 4.3. When the embedding rate is as in [9, 10] (i.e. when m/z=1 bpp), if our optimal 

weights (1, c1, c2,..., cz−1) also yield (or require) ip∆ ∈ {0, ±1} for all i=0,1,…, z−1, then our 

optimal weights also resolve the optimization problem of LSB matching methods [9, 10].  

Proof: If the distortion of each pixel ip∆  is only {0, ±1}, then ∑
−

=
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Therefore, the goal of LSB matching
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the weights (1, c1,..., cz−1) , which are found by our exhaustive search are also a solution to 

LSB matching.               ■ 

 

Property 4.4. When the embedding rate m/z=1 is bpp, if each block unit contains z<4 pixels, 

then our optimal weights also resolve the optimization problem of LSBM (LSB matching) 

method [9] (and [10], if z=2.) 

Proof: z<4 means that the optimal solution (1, c1, c2,..., cz−1)LSBM given by the LSB matching 

method will yield (∑
−

=
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 above. 

As a result, the ( )ours obtained using our optimal weights (1, c1, c2,..., cz−1)ours also 

yields (∑
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ip )ours ≤ (∑
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ip )LSBM  41111 =+++< , since our optimization goal is to 
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minimize ∑
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=

∆
1

0

2)(
z

i
ip . Therefore, in our optimal solution, ∈{0, ±1} for all i. (None of our 

| ip∆ | can be 2 or more; otherwise, (∑
−

=

∆
1

0

2)(
z

i
ip )ours ≥22=4, a contradiction.)  Property 4.3 

above then ensures that our optimal weights (1, c1, c2,..., cz−1)ours also resolve the optimization 

problem of LSB matching methods [9, 10].          ■ 

 

4.4 Analyses 
Some factors about the proposed method are analyzed in this section. 

 

4.4.1 Running time of Algorithm 1. 

Lines 1−9 of Algorithm 1 compute the 0th column Q[•, 0] of table Q, its time complexity 

is Θ(2m). Lines 10−27 compute the j-th columns Q[•, j] for each ),1[ nj∈ ; Lines 11−26 

calculates Q[k, j], for each )2,0[ mk ∈ ; and Lines 15−25 repeat (e.g. e times) until 

],[2 jkQl ≥ . Therefore, Lines 10−27 needs Θ((z−1) 2me) seconds. Lines 28−34 generate table 

T; and it needs Θ(z2m) seconds. Line 35 calculates the predicted PSNRest and MSEest; and it 

needs Θ(2m) seconds. Therefore, the total running time of Algorithm 1 is Θ(2m) + Θ((z−1)2me) 

+ Θ(z2m) + Θ(2m) = Θ(z2me). The lower bound of running time is Ω(z2m) by plugging in e = 1. 

As for the upper bound, the loop condition of Lines 15−25 is ],[2 jkQl < , and the maximum 

of Q[k, j] is Q[2m−1, 0] = 2m−1, so 12 2],[ −≤< mjkQl , which implies that 2/)1(2 −≤ ml . Hence

2/)1(2 −≤ me ; so the upper bound of running time is O(z2m2(m−1)/2)=O(z2(3m−1)/2). 

Although the time complexity O(z2(3m−1)/2) increases exponentially as m increases 

(partially because the size of table T is 2m×z), the time is still acceptable, because the values of 

m listed in Table 4.2 are, at most, 12, and Table 4.2 has covered a practical range of 

embedding rates from 0.5 bpp to 4 bpp. To verify this, the running time of all embedding rates 

listed in Table 4.2 were tested. Our personal computer uses a Pentium D 2.80 GHz CPU, and 

the programming language is JAVA. As indicated in the fourth column of Table 4.7, the 

maximum CPU time to run Algorithm 1 was less than 0.016 seconds. 

 

Table 4.7. The running time for various (1, c1,..., cz−1). 

No. bpp m, z 1, c1,..., cz−1 The CPU Total CPU seconds 

ip∆
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seconds to 
generate table 
T by dynamic 
programming. 

to embed random 
data in 512×512 
Lena (including the 
time to generate 
table T) 

0 0.500 4, 8 1, 2, 3, 4, 5, 6, 7, 8 0.000032 
seconds 

0.438 seconds 

1 0.571 4, 7 1, 2, 3, 4, 5, 6, 7 0.000032 0.438 
2 0.667 4, 6 1, 2, 3, 4, 5, 6 0.000031 0.36 
3 0.750 6, 8 1, 2, 3, 4, 5, 6, 13, 26 0.000172 0.359 
4 0.875 7, 8 1, 2, 8, 12, 24, 29, 47, 62 0.000390 0.375 
5 1.000 6, 6 1, 2, 5, 12, 20, 28 0.000141 0.359 
6 1.167 7, 6 1, 3, 8, 18, 42, 54 0.000297 0.359 
7 1.200 6, 5 1, 6, 10, 18, 31 0.000093 0.359 
8 1.250 5, 4 1, 2, 6, 11 0.000047 0.375 
9 1.333 8, 6 1, 3, 9, 27, 50, 93 0.000907 0.375 
10 1.400 7, 5 1, 3, 9, 28, 52 0.000281 0.422 
11 1.500 6, 4 1, 3, 8, 22 0.000094 0.375 
12 1.600 8, 5 1, 3, 58, 87, 124 0.000797 0.375 
13 1.667 5, 3 1, 4, 10 0.000031 0.391 
14 1.750 7, 4 1, 4, 40, 58 0.000219 0.375 
15 1.800 9, 5 1, 36, 86, 146, 215 0.001219 0.375 
16 2.000 10, 5 1, 9, 23, 243, 324 0.004594 0.39 
17 2.250 9, 4 1, 13, 149, 232 0.001094 0.39 
18 2.500 10, 4 1, 26, 33, 221 0.002688 0.406 
19 2.750 11, 4 1, 364, 559, 986 0.006453 0.485 
20 3.000 12, 4 1, 9, 350, 491 0.015536 0.515 
21 3.333 10, 3 1, 20, 195 0.00225 0.406 
22 3.500 7, 2 1, 12 0.000125 0.406 
23 3.667 11, 3 1, 61, 597 0.005312 0.406 
24 4.000 12, 3 1, 1210, 2026 0.01486 0.5 
 

4.4.2 Running time of main embedding algorithm (Algorithm 4.2). 

In terms of the running time of Algorithm 4.2, the three major parts are: to generate table 

T (Step 3); to embed m bits data in n pixels (Step 4−6); and to process the overflow/underflow 

case (Step 7). The running time of generating table T is discussed in topic I. The embedding 

steps (Steps 4−6) need Θ(z) seconds to calculate the value of Rm, and Θ(z) seconds to 

calculate the z stego-pixels ),...,,( 110 −′′′ zppp , so processing the whole image of |H| pixels will 

need Θ(|H|) seconds. Should a stego-pixel ip′  be out of boundary, then the z stego-pixels are 

re-calculated by Algorithm 4.3. The time complexity of Algorithm 4.3 is the same as 

Algorithm 4.1. If a pixel value of the host image is close to 0 or pmax, then it has a higher 

probability to be an overflow or underflow. Suppose the probability is α, i.e., in the |H|/z 

blocks of the host image H, α|H|/z blocks have underflow/overflow, and hence, they need to 
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call Algorithm 4.3, then the total time needed by Algorithm 4.2 is between 

Ω(z2m)+Θ(|H|)+Ω(α|H|/z×z2m) = Θ(|H|)+Ω((z+α|H|)2m) and O(z2(3m−1)/2)+Θ(|H|)+ 

O(α|H|/z×z2(3m−1)/2) = Θ(|H|)+O((z+α|H|)2(3m−1)/2). 

We also tested the running time for each embedding rate listed in Table 4.2. The host 

image is the 512×512 Lena, and the embedding data is random. The results are listed in the 

final column of Table 4.7. For each bpp listed in Table 4.2, the total CPU time to embed 

random data in Lena was between 0.359 seconds and 0.515 seconds. 

 

4.4.3 Expected value of MSE for our method 

Theorem 1 below states that the MSEest evaluated by Eq. (4.13) of Algorithm 4.1 is, in 

fact, the expected value of MSE, as long as the embedded data is random, i.e. as long as the 

data can satisfy the following criteria: 

i. For each embedded digit Bm, we have P(Bm=0)=P(Bm=1)=….=P(Bm=2m−1)=1/2m. 

Here, P(•) is the probability of an event. 

ii. The value of embedded digit Bm and the z values of the host pixels {p0, 

p1,…,pz−1}are independent. 

Generally, the embedded data cannot completely satisfy (i), so the actual PSNR is only close 

to (but not identical to) the PSNRest. 

 

Theorem 4.1. Given the z weights (1, c1,…, cz−1), if the embedded data are random, then the 

expected value of MSE is 
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This value equals to the estMSE  obtained by Eq. (4.13) of the Algorithm 4.1. 

Proof:

)2,0[ m
mR ∈

 Consider z pixels {p0, p1,…, pz−1} in an image block. The embedding equations are Eq. 

(4.3) and (4.4); and for each , our goal in Eq. (4.5) is to find the 2m vectors 

mRzppp ),...,,( 110
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 . Since each 

vector 
mRzppp ),...,,( 110

∗
−

∗∗ ∆∆∆  has minimal sum of squares, to minimize MSE, there is no 

need to consider other vectors ),...,,( 110 −∆∆∆ zppp  that have larger sum of squares. 
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Given a value )2,0[ mk ∈ , the probability for the event Rm=k is 
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Therefore, in the embedding process, the 2m events Rm=0, Rm=1,…, Rm=2m−1 have uniform 

probability: 
mm

mmm RPRPRP 2/1)12(...)1()0( =−====== . (4.16) 

Therefore, the expected value of MSE is the average of all mean-squares of 

mRzppp ),...,,( 110
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∗∗ ∆∆∆ . By Eq. (4.5), the mean-squares of 
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4.4.4 Application of the predicted PSNR 

Given the desired embedding rate, our PSNR can be predicted in advance by Table 4.2. It 
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is observed that, to embed random or ordinary data, the predicted PSNR values are very close 

to the actual PSNR values (see Tables 4.5 and 4.6 for example). Thus, the embedding impact 

on the host image can be predicted even before the actual embedding. With this property of 

PSNR-prediction, if a customer tells us the minimal PSNR value he can tolerate, then we can 

look up Table 4.2 and find the embedding rate he needs. Then, for each natural or random 

secret data the customer gives us, we can use this embedding rate and data size to find the 

required size of host image. This determines a group of host images which are usually suitable 

for the secret data given by that customer. Without such an ability to predict PSNR, the above 

case must repeatedly be tested on several host images of different sizes. For example, firstly 

the customer’s secret data is embedded in a 256×256 host image. If the resulting PSNR value 

is too low, then a 300×300 host image is tried, etc. This embedding process should be 

repeated several times until the PSNR quality of the stego-image meets the customer’s 

requirement. Of course, if some people try to cut the trial-and-error time by using a 

super-large host image, the price they will pay is that the size of the stego-image is probably 

way too large for further processing, transmission, storage, or carriage. 

 

4.4.5 Worst case PSNR 

If people consider the worst case PSNR before using an embedding method (i.e. for that 

specified method, how bad can the resulting PSNR be if the user embeds a data set which is 

completely unsuitable for the host image), then our embedding method also performs better 

than the modulus-based embedding methods [8, 35], as indicated by Table 4.8, in which our 

gains are 2 dB or more. The worst case host image happens when the embedded data is 

specially designed according to the given host image, and the design of this data is in a 

pixel-by-pixel manner so that it gives the worst possible pixel-distortion at every pixel of the 

given host image. In our experiments for each method, since the theoretically worst possible 

pixel-distortion that the specified method could yield at a pixel did occur at every pixel of the 

stego-image we used, we already achieved the worst case PSNR, so there was no need to 

check all possible images. In other words, Table 8 not only gives the theoretically worst 

possible PSNR values for each method, but also the worst possible PSNR values in the real 

world for each method in the table. 

 

Table 4.8. The worst-case PSNR values. ([6] did not have algorithm or experiment for bpp≠1. 

The worst-case PSNR value for [6] is also 51.14 dB if bpp=1.) 
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Embedding rate Methods Embedded data type PSNR dB difference from ours 

1.00 bpp [1,2] Artificial data set 1a 48.13 dB 3.01 

1.00 ours Artificial data set 1b 51.14 - 

2.00 [1,2] Artificial data set 2a 42.11 2.6 

2.00 ours Artificial data set 2b 44.71 - 

3.00 [1,2] Artificial data set 3a 36.09 2.04 

3.00 ours Artificial data set 3b 38.13 - 

4.00 [1,2] Artificial data set 4a 30.07 2.00 

4.00 ours Artificial data set 4b 32.07 - 

 

4.5 Conclusion 
This chapter proposes an embedding method based on the weighted sum function. As 

shown in the figures and tables, our method has a wide range of embedding rates (0.5−4.0 

bpp), and has competitive PSNR over the whole range. The predicted PSNR values (PSNRest 

by Eq. (4.14)) are also extremely close to the actual PSNR values. Therefore, the embedding 

error can be predicted even before the actual embedding. With this PSNR-prediction property 

(Table 4.2), for each secret data the customer gives us, we can determine the necessary size of 

host image if the customer also specifies the minimal PSNR value he can tolerate. This 

determines a set of host images for that secret data. Sec. 4.3 proved that Modulus-based 

method [8] and LSB matching methods [9, 10] are special cases of ours. The worst-case 

PSNR discussed in Item V of Sec. 4.4 also shows that, even if some very strange data (data 

artificially made by picky users and quite unnatural) was to be embedded, our method can still 

compete. 
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Chapter 5 

Authentication and Recovery of an Image by Sharing 

and Lattice-embedding 

 
Based on sharing and lattice-embedding techniques, this chapter presents an 

authentication-recovery method for an image. The recovery data are shared among many 

shadows, then lattice-embedding is utilized to embed each shadow in the DCT domain of an 

8×8 block, respectively. The proposed method can resist certain content-preserving operations 

such as JPEG compression, Gaussian noise, and brightness adjustment, up to a tolerance level 

which is controlled by a quantization parameter value. The method can also resist certain 

security attacks such as cut-and-paste attack, collage attack, and VQ attack. Comparing with 

previous works, the proposed method have following major advantages and novelty: i) the 

method has no need to predict the trace of tampering, and the tampered blocks are always 

recovered as long as the number of valid blocks reaches a threshold; ii) Lattice-embedding 

yields smaller distortion than parity-check quantization does, and the latter was often used in 

reported works. 

 

5.1 Introduction 
It is easy for attackers to modify public digital media, and many authentication 

techniques, called watermarking, have been reported in recent years to protect the digital 

media. These techniques can check the correctness of the media content. Recently, some 

fragile watermarking schemes for tampered-region’s detection and recovery have also been 

introduced. Based on Pascal transform, Varsaki et al.[72] proposed a semi-fragile 

watermarking with the recovery ability to deal with color images. The host is a color image, 

but the recovery data is a 1/16-size gray-level version of the host. The data is embedded in the 

Pascal domain of R, G, and B color components, respectively. As a result, the recovered 

region of the tampered color image is gray-leveled, rather than colored. However, as 

demonstrated in Fig. 5.7 of Sec. 5.4.3, the recovery ability is not so good after cropping in the 

central area of the image. Tsai and Chien [16, 17] proposed a method based on discrete 



91 

 

wavelet transform. The verification data and the recovery data is generated from 

low-frequency bands and then embedded in high-frequency bands. This method can resist 

JPEG compression and Gaussian noise. 

 Based on (t, n) sharing and lattice embedding, a novel semi-fragile watermarking method 

with recovery ability is proposed. The motivation of the proposed method is based on the 

three observations as follows. First, the (t, n) two-layer sharing, which will be introduced in 

Sec. 5.2.2, can recover the embedded data, as long as no more than  2/)( tn −  of the n 

created shadows are damaged shadows. This is an important property for our design to 

recover the image. Since each of our generated shadows is embedded in a block, the 

watermarked image can still extract useful recovery data after tampering, as long as the 

percentage of validity blocks reaches a pre-defined threshold β. If sharing-related techniques 

were not used, and if, for example, traditional block-mapping sequence techniques were used 

instead, the recovery data of some tampered blocks would have been lost because it was hard 

to predict in advance which blocks would be tampered (More details are addressed in Part (a) 

of Sec. 5.5). Second, the generated shadows Ei have the ability to both verify and recover. 

Because both of these abilities are tied together in Ei, we only need to embed one shadow Ei 

(rather than two data sets) in an 8×8 host block. This simplifies the design. Finally, We use 

lattice embedding to replace the so-called parity-check embedding used by many methods[13, 

14, 16, 17] when data is to be embedded. The major reason for this is that lattice embedding 

has a smaller impact on the host image (More details are addressed in Part (b) of Sec. 5). 

 The remainder is organized as follows. Sec. 5.2 introduces the (t, n) two-layer sharing 

and lattice embedding which are utilized in our design. Sec. 5.3 describes our method, 

including a mathematical property. Sec. 5.4 shows the experimental results. Sec. 5.5 discusses 

the difference between the proposed method and other works, and Sec. 5.6 is the conclusion. 

Notations in this chapter: 

n Number of created shadows in a (t, n) secret sharing. 

t The threshold of (t, n) secret sharing. 

Pi The ith shadow of (t, n) two layer sharing. 

c The size of Pi. 

Ei The generated shadow which is attached to Pi by (t, n) two layer sharing. 

M The step size of lattice embedding. 

di The ith DCT value of a 8×8 image block. 
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ID The image’s identification number. 

Key A secret key. 

β A specified threshold for the percentage of valid blocks in a tampered image. 

 

5.2 Related works 
Secret image sharing[7] and RS code technique[34] are briefly reviewed in Sec. 5.2.1; 

the two-layer sharing technique is introduced in Sec. 5.2.2, and lattice embedding is reviewed 

in Sec. 5.2.3. These techniques will be used by the proposed method in Sec. 5.3. 

 

5.2.1 Secret image sharing[7] and RS code technique[34] 

In the sharing phase of Thien and Lin’s (t, n) threshold method[7], for each 

non-overlapping t pixel values of the secret image (secret message), a related polynomial is 

defined as 
1

0 1 1( )  (mod )t
tf x a a x a x p−
−= + × + + ×  (5.1) 

where a0, a1,..., at-1 are the gray values of the t pixels, and p is a prime constant. Then f(1), 

f(2),…, f(n) is evaluated and sequentially attached to the n shadows. Having processed all of 

the pixels in the secret image, the n shadows are generated. Since each t pixels in the secret 

image only contributes one pixel to each generated shadow, the size of each shadow is 1/t of 

the secret image. 

 As indicated by Preparata[33], from the mathematical viewpoint, the encoding phase of 

using the sharing equation (1) is isomorphic to the creation of a Reed-Solomon code (RS 

code)[34]. Therefore, by the error-correction property of the RS code, if  2/)( tn − of the n 

received shadows are contaminated and become malign shadows, people can still utilize the 

RS code decoder to decode the n received shadows, locate the malign shadows, and then 

extract the whole secret data correctly. Two commonly-used RS code decoders are the 

Berlekamp-Massey decoder[73] and the Euclidean algorithm[74]. In our method, we use 

Euclidean algorithm[74] to locate the position of the malign shadows, or the tampered blocks, 

because all of the shadows are embedded in image blocks. 

 

5.2.2 A (t, n) two-layer sharing technique modified from Chang et.al[68] 

This technique can share n given data sets },...,2,1,||{ nicPP ii == to produce n shadows

},...,2,1),{( niEP ii =  where constant c is the constant size of each Pi. The created file Ei is 
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attached to Pi, where the size of each Ei is )1( −× tnc  (the analysis is addressed later). In the 

original design by Chang et.al[68], the n data sets },...,2,1,||{ nicPP ii ==  can be decoded 

using any t received shadows. However, in our method, we always get all n shadows (but 

some of them may have been tampered). Therefore, certain steps of the algorithm in Chang 

et.al[68] are modified so that, for all n shadows, if the number of error shadows is not more 

than  2/)( tn − , then all n data sets },...,2,1,||{ nicPP ii ==  can be decoded by the modified 

decoder. Notably, in our method, the n data sets {Pi} are the DCT coefficients which will be 

used to recover the tampered blocks. Moreover, the location of the error shadows are also the 

location of error blocks in the tampered watermarked image. The encoder (sharing) and the 

decoder (inverse-sharing) are shown below. Notably, in our method, the calculations of 

Algorithms 5.1 and 5.2 are under GF(212). 

 

Algorithm 5.1: (t, n) two-layer sharing encoder 

Input: n data sets },...,2,1{ niPi =  in which each Pi has constant size c. 

Output: n shadows },...,2,1),{( niEP ii = . 

1. First-layer sharing: For each Pi, we calculate Bi (each Pi and Bi is treated as a vector, 

and |Pi|=|Bi|= c for each i ) by the following equation: 

n
iii

i PnPPPB ++++= ...32 321 . 

Then we collect and store the n−t vectors {B1, B2,…, Bn－t} in file B. 

2. Second-layer sharing: For each t digits in file B, we encode the t digits by (t, n) secret 

image sharing[7] (Sec. 5.2.1) to get an n-digits codeword. The n digits are dispersed, 

respectively, to n shadows },...,2,1{ niEi = . The construction of {Ei} is thus done when all of 

the digits of file B are shared. 

 

Algorithm 5.2: (t, n) two-layer sharing decoder 

Input: n received shadows },...,2,1)~,~{( niEP ii = , but some shadows within them may have 

been tampered. 

Output: If the number of tampered shadows is no more than  2/)( tn − , then we output the 

n error-corrected data sets },...,2,1{ niPi =  and the verification result. 
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1. Reconstruct the file B from },...,2,1~{ niEi = . Here, if the number of tampered iE~  is no 

more than  2/)( tn − , then the file B can be reconstructed by the RS code decoder, and 

we can also identify locations of the tampered shadows },...,2,1)~,~{( ][~][~ viEP ijij = .  We 

can mark the location of these tampered shadows as “tampered”, then output the 

verification result. (However, if the number of tampered iE~  is more than  2/)( tn − , 

the file B cannot be reconstructed, so we would stop the procedure in this case.) 

2. Let the un-tampered shadows be },...,2,1)~,~{( ][][ vniEP ijij −= where 

},...,2,1][{ vniij −= are indices of the un-tampered shadows. In other words, 

},...,2,1{},...,2,1][~{},...,2,1][{ nviijvniij ==−=  and 

Φ==−= },...,2,1][~{},...,2,1][{ viijvniij  . The tampered data },...,2,1~{ ][~ viP ij =  can be 

recovered by the equation 
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3. Output },...,2,1{ niPi = = },...,2,1~{ ][~ viP ij = ∪ },...,2,1~{ ][ vniP ij −= . 

Two size and time issues about the generated shadow Ei are discussed below. 

i). Size of Ei. 

We consider the two-layer sharing encoder, and in the First-layer sharing, since the Pi 

contains c digits, and the matrix in the multiplication has (n−t) rows, the generated matrix 
T

tnBBB ][ 21 −  contains (n−t)c digits, which is the size of file B. In the Second-layer 

sharing, the file B is divided into  tctn /)( −  sectors of t digits each, and each t digits are 

encoded into n digits by (n, t) RS code; and then a digit is assigned to each shadow Ei. So the 

size of each shadow Ei is   ctntctn )1/(/)( −≈− . 

 

ii). Running time of generating Ei. 

In the First-layer sharing, the size of the two matrices at the equation right are (n－t)n 

and nc, so it needs (n−t)nc operations to calculate T
tnBBB ][ 21 − . In the Second-layer 
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sharing, the file B is divided into  tctn /)( −  sectors of t digits each, and each t digits needs 

nt operations to generate the code, so it needs   nctnnttctn )(/)( −≈×−  operations. 

Therefore, all of the operations needed are ))(()(2 nctnnctn −=− θ . 

 

 
Fig. 5.1. Diagram of lattice embedding. 

 

5.2.3 Lattice embedding[75] 

Lattice embedding[75] is an embedding method in which a secret digit can be embedded 

into many signals. Fig. 5.1 is an example, in which a ternary value {0, 1, 2} is embedded in a 

pair of signals (p1, p2). As shown in Fig. 5.1, the space of host pair-values (p1, p2) is divided 

into many hexagonal regions, and each region corresponds to a ternary value 0, 1 or 2 

(squares, circles, and triangles are used to represent the three values). As shown in Fig. 5.1, in 

each one of the horizontal and vertical directions, the distance of contiguous hexagonal 

region’s centers is set to our step size M. If a ternary value is to be embedded in the pair (p1, 

p2), we find the nearest region’s center to (p1, p2) so that the nearest region corresponds to the 

ternary value to be embedded. Then the coordinate of the region’s center is output. Later, to 

decode the embedded value, the region which contains the stego-pair (p1, p2) is found, and the 

corresponding region-value 0, 1, or 2 of the region is output. In general, if the value of M is 

larger, then the image quality after embedding is lower, but the hidden data is more robust. 

The embedding and extracting algorithms are shown below. 

 

Algorithm 5.3: Embed a ternary value in a pair of signals 

Input: a ternary value s, a pair of host signals (p1, p2), and step size M. 

p1 

M 

p2 
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Output: a pair of stego-signals ( 1p′ , 2p′ ). 
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( ) )3(mod2 21 lqlqst +−=  

if t=1 or 2 then 

 1+= tt lqlq  

else if q1−lq1+q2−lq2>1 

  
111 += lqlq

 

  
122 += lqlq  

 end if 

end if 
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Algorithm 5.4: Extract a ternary value from a pair of signals 

Input: a pair of stego-signals ( 1p′ , 2p′ ), and step size M. 

Output: the ternary value s hidden in ( 1p′ , 2p′ ). 
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2
2

2
1 )()( ppmin ′∆+′∆=  

)3(mod2 21 lqlqb +=  

if 2
2

2
1 )()( pMpmin ′∆++′∆>  then 

 2
2

2
1 )()( pMpmin ′∆++′∆=  

 )3(mod1+= bs  

end if 
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if 2
2

2
1 )2/3()2/( MpMpmin +′∆++′∆>  then 

 2
2

2
1 )2/3()2/( MpMpmin +′∆++′∆=  

 )3(mod2+= bs  

end if 

if 2
2

2
1 )2/3()2/3( MpMpmin +′∆++′∆>  then 

 2
2

2
1 )2/3()2/3( MpMpmin +′∆++′∆=  

 bs =  

end if 

 

5.3 The proposed method 
The proposed method consists of two phases. 1) Watermark generation which generates 

the shadows {Ei}, followed by embedding {Ei} in the DCT domain of the host image. 2) 

Tampered block detection, together with the recovery achieved by a two-layer sharing 

decoder (then the decoded data set {Pi} is utilized to recover the tampered blocks). 

 

 
Fig. 5.2. The diagram of watermarking steps.  

 

5.3.1 Watermark generation 

Without the loss of generality, assuming that the host image is 512×512, so there are 

4096 blocks of 8×8 pixels each. Then the following four steps are taken. i) Data sets 

}4096,...,2,1{ =iPi are generated for all 4096 blocks in the host image. ii) Then these data sets 
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are used to generate 4096 shadows }4096,...,2,1{ =iEi . iii) To increase the security and 

protection, a 12-bit hashing code is generated for each block i, and then the shadow Ei is 

encrypted by an Exclusive-OR with the 12-bit code. iv) Finally, the (encrypted) shadow Ei is 

embedded in each block, and v) the DCT coefficients are converted into spatial domain to 

obtain the watermarked image. Fig. 5.2 shows the watermarking steps. The details of the steps 

i)-iv) are explained below. 

 

 

 
Fig. 5.3. DCT coefficients which are selected as data Pi (dark gray) and embedded locations 

of Ei (light gray). 

 

5.3.1.1 Generating Data sets }4096,...,2,1{ =iPi   

Each 8×8 block of the host image is converted to DCT domain, and then four 

low-frequency DCT coefficients are quantized by step size M (the value of M influences the 

robustness of the watermarked image). Fig. 5.3 shows the positions of the four DCT 

coefficients {d0, d1, d8, d9}, which are painted dark gray. Then for each DC coefficient d0 in 

8×8 block, the difference value Δ d0 is calculated by subtracting the DC coefficient of the 

previous block from d0. This step has two advantages. First, the contiguous blocks have 

similar DC values, so the bit length of d0 can be reduced by storing the difference Δd0. Second, 

when the brightness of the watermarked image is adjusted, all DC values will 

increase/decrease a constant value, but the difference of two DC values is unchanged, so the 
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integrity of difference Δd0 is preserved after the brightness is adjusted. Finally, for each 8×8 

block, the data Pi is calculated by 

9
MAX
98

MAX
81

MAX
10 ])[( dddddddPi +++×∆= . 

where MAX
id  is the maximal di of all blocks, and the three values { MAX

9
MAX
8

MAX
1 ,, ddd } are 

sent to the decoding side for the purpose of recovery. The size of Pi is

)(log MAX
9

MAX
8

MAX
1

MAX
02 ddddc ∆=  which is determined by the maximal coefficients in {Δd0, 

d1, d8, d9} among all blocks. 

 

5.3.1.2 Generating recovery data 

Generate 4096 couples }4096,,1,|),{( == icPEP iii  by the (t, n) = (4096(2β−1), 

4096) two-layer sharing encoder (Algorithm 5.1). Here, β is a specified threshold for the 

percentage of valid blocks in a tampered image. Due to embedding capacity limitation, each 

generated shadow Ei should have 12 bits at most. This will make )12(6 +≥ cα  a requirement 

when percentage value β is specified. The proof is given in Sec. 5.3.3. On the other hand, 

100%=1>β is a natural requirement. Together, the percentage value β must satisfy 

)12(61 +≥> cβ . 

 

5.3.1.3 Generating the hashing code of a block 

First, a 128-bit MD5 code of the block is calculated, and the formula is 

MD5(Pi, i, ID, Key), 

where ID is the image’s identification number, and Key is a secret key. Then the generated 

128-bit MD5 code is divided into 10 sectors of 12 bits each (the final 8 bits of the MD5 code 

are dropped), and the Exclusive-OR on the 10 sectors is used to get a 12-bit hashing code. 

 

5.3.1.4 Embedding shadow Ei in a block 

For each 8×8 block, the shadow Ei is converted into 8 ternary digits, and each digit is 

embedded in two DCT coefficients with lattice embedding (Algorithm 5.3). Fig. 5.3 shows all 

2×8 DCT coefficients which are painted light gray. A coefficient in the middle frequency and 

a coefficient in the low frequency are selected to form a pair of values (p1, p2). Here the eight 

pairs of values being used for (p1, p2) are {(d12, d2), (d40, d17), (d19, d10), (d4, d24), (d33, d16), 

(d26, d3), (d11, d18), (d32, d25)}. Then a ternary digit (0 or 1 or 2) grabbed from the shadow Ei is 

embedded in each (p1, p2) pair.  
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5.3.2 Tampered image verification and recovery 

When a tampered watermarked image is received, the following steps can generate the 

verification result and the recovered image. 

(1) Data sets }4096,...,2,1{ =′iPi are generated for all blocks in the tampered watermark 

image (this step is the same as Sec. 3.1.1). 

(2) All shadows }4096,...,2,1{ =′ iEi  are extracted from all blocks with Algorithm 5.4. 

(3) A 12-bit hashing code is generated from each block (this step is the same as Sec. 3.1.3). 

Then Ei is decrypted by applying Exclusive-OR to Ei and the 12-bit code. 

(4) Detect the tampered blocks of the coupled-shadows }4096,...,2,1),{( =′′ iEP ii  with (t, n) 

= (4096(2β−1), 4096) two-layer sharing decoder (Algorithm 5.2). If the percentage of 

tampered blocks is less than 1−β, the data sets }4096,...,2,1{ =iPi  are decoded. Then output 

the decoded data sets {Pi} and the verification result indicating locations of the tampered 

blocks. (If the percentage of tampered blocks is more than 1−β, the warning-message is output: 

“Too many blocks are tampered, and hence no recovery can be done”, then the procedure 

should be stopped without going to step (5).) 

(5) For the data sets }4096,...,2,1{ =iPi , decode the four values {Δd0, d1, d8, d9} by division. 

The step needs the three values { MAX
9

MAX
8

MAX
1 ,, ddd }.Then the DC value d0 is obtained by 

calculating the sum of Δd0 and the DC coefficient of the previous block. 

(6) In all tampered blocks, the four DCT coefficients {d0, d1, d8, d9} should be replaced with 

the de-quantized values in Pi. 

(7) For each block which passes the authentication tests, if its DCT coefficient d0 is too far 

away from the de-quantized value d0 in Pi (up to a threshold), then still replace the DCT 

coefficient d0 by the de-quantized value d0 extracted from Pi; this is to recover back the whole 

image after global adjustment of brightness. 

(8) The DCT coefficients in each block should be converted to the spatial domain.  

 

5.3.3 The value of α 

The value of β used in Sec. 5.3.1 is discussed here. In Sec. 5.3.1.2, we set (t, n) = 

(4096(2β−1), 4096) where 4096 is the number of 8×8 blocks in a 512×512 image. Due to the 

use of the RS code, which can correct  2/)( tn −  error shadows in all n received shadows in 
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general applications, the tolerable percentage of tampered blocks equals 

β

ββ
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In other words, if the percentage of tampered blocks exceeds 1−β, then our method loses the 

ability to recover tampered blocks. Analogously, in a tampered image, β is the minimal 

percentage of valid blocks needed to keep the recovery ability active. In Sec. 5.3.1, the size of 

each Pi is c. On the other hand, Sec. 5.3.1.4 states that shadow Ei is converted into 8 ternary 

digits. Hence, each Ei has 123lg8)3(lg 8 ≥==iE  bits. So, by the equation ctnEi )1/(|| −≈  

of Sec. 2.2, it can be derived that ( ) .1
124096

4096||12 







−

−
×≤≤

β
cEi  Hence, 

12
6
+

≥
c

β . 

Notably, β<1 is required for a recovery system to be meaningful (β=1 would require all 

blocks to be valid blocks, which means that the recovery system is too weak to tolerate even 

just one block being altered). Having combined the two inequalities, a more integrated 

inequity should be 

)12(61 +≥> cβ . 

 

5.4 Experimental results 
In this section, some experiments are undertaken to check the performance of our 

watermarked images. 

 

5.4.1 Robustness test 

With the step value M being 20, four watermarked images {Lena, Peppers, Jet, Scenery} 

are generated and shown in Fig. 5.4(a-d). From (a) to (d), the PSNR values are 34.75 dB, 

34.70 dB, 34.80 dB, and 34.65 dB, respectively. Then a cropping attack is applied to the four 

watermarked images (we crop the central 192×192 pixels of each 512×512 image). Moreover, 

some further distortion is made to the cropped images, as illustrated below. The cropped-Lena 

shown in (e) is compressed by a JPEG with QF=65 and the compression ratio is 8.57. The 

brightness of the cropped-Peppers shown in (f) is increased by 30; Gaussian noises (σ2=6) are 

added to the cropped-Jet shown in (g); an 8-pixels-wide “white” horizontal bar is inserted to 

the cropped-Scenery image shown in (h). Fig. 5.4(i-l) is the verification result of the four 

tampered images. White blocks are the places which are marked as “tampered” blocks. (m-p) 
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are the four recovered images, and (q-t) are the close-up versions of the recovered images. 

The PSNR values of four recovered images are, from left to right, 30.16 dB, 30.96 dB, 29.83 

dB, and 31.75 dB, respectively. More experiments for various values of M are shown in Table 

5.1. In each row, column 1 is the value of the user-specified step value M; and column 2 is the 

PSNR of the corresponding watermarked image. The remaining columns are for different 

kinds of attacks. Column 3 is the allowed tampered ratio of watermarked image; i.e. if the 

tampered ratio is larger than the specified value, our method cannot recover the tampered 

region. Column 4 is the tolerable bound of the qualify factor (QF) of JPEG compression; i.e., 

if the compression uses a QF below this bound, our method cannot recover the tampered 

region. Column 5 is for Gaussian noise, it shows the maximal tolerable variance σ2 of 

Gaussian noise. Column 6 is the tolerable range of brightness adjustment. In summary, if the 

attack uses a parameter value worse than the threshold values specified in Tables 5.1, then our 

method cannot recover the tampered region. Should this happen, switching to a larger value of 

M in advance is necessary. (In general, using a larger value of M in advance can increase the 

tolerable range of attack; but the watermarked image’s quality degenerates.) From Table 5.1, 

we see that our method can resist certain levels of area-tampering (e.g. cropping or 

replacement of some areas of image), JPEG compression, Gaussian noise, and brightness 

adjustment. 

 

5.4.2 Security test 

Three kinds of attack are tested on our watermarked images, which are cut-and-paste 

attack[76], collage attack[77], and VQ attack[78]. 

Firstly, the so-called cut-and-paste attack [76] is tested. Fig. 5.5(a) is our watermarked image 

and the PSNR value is 48.13 dB. Then a small-size pepper is copied and pasted to the 

lower-left corner as shown in (b); (c) is the verification result, and (d) is the recovered image, 

the PSNR value of which is 40.54 dB. Secondly, the so-called collage attack [77] is tested. 

Fig. 5.6(a-b) shows our two watermarked images, Boat and House, and the PSNR values are 

34.63 dB and 34.76 dB, respectively. Then the car in (b) is copied-and-pasted to the same 

place in (a). This yields the image shown in (c). (d) is the verification result, and (e) is the 

recovered image, the PSNR value of which is 31.88 dB. Finally, the so-called VQ (Vector 

Quantization) attack is tested[78]. Twelve aerial images are downloaded from the USC-SIPI 

Image Database[79]. Each image is 512×512, and is converted to a grayscale image. Then one 

of them is assigned as the test image (the one shown in Fig. 5.7(a)); and the remaining eleven 
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images are watermarked by the proposed method (using M=4). Then, since our method is 

based on 8×8 blocks, the eleven watermarked images are partitioned to get blocks of 8×8 each. 

These blocks are collected together and treated as a VQ codebook with many code words. 

With this VQ codebook, the VQ-compression-decompression version of Fig. 5.7(a) is shown 

in (b). (c) is the verified result which shows that the whole (b) is a fake.  

 

5.4.3 Image quality and our advantage 

Firstly, the method of Varsaki et al.[72] was implemented, and the results are shown in 

Fig. 5.8. Fig. 5.8(a) is the 512×512 watermarked color image Lena which is 40.88 dB. As 

shown in (b) of the figure, the embedded recovery data is the size-reduced 128×128 

gray-level version of the rotated host, the clockwise rotation is 180 degree, as suggested by 

Varsaki et al.[72]. This 128×128 gray-level rotated version is embedded in the 128×128 

blocks of the host image, and each block is 4×4. So, the recovery data of the rightmost bottom 

4×4 block is embedded in the leftmost top 4×4 block, and the recovery data of the Southwest 

quadrant is embedded in the Northeast quadrant, and so on. Unfortunately, when the central 

192×192 pixels of the watermarked Lena are cropped (the tampered image is shown in (c)), 

the recovery data extracted from the non-cropped area is as shown in (d). It can be seen that 

the tampered region still cannot be recovered because the recovery data of the central 

192×192-pixels box was embedded earlier in the box itself. In other words, the recovery data 

of the cropped box is also cropped. This is very different from ours. As shown in Fig. 5.4, 

when the central 192×192 pixels of our watermarked Lena are cropped, the cropped region 

can still be recovered. This should come as no surprise because, according to Table 5.1, when 

M=20, a moderate-size-area’s tampering can be tolerated (up to 16.7% of the whole image’s 

blocks can be tampered). 

Next, because Tsai and Chien’s method[16] used scaled versions of the originals as messages, 

then embedded the messages in the frequency domain, and also because they provided 

experimental results about the resistance to JPEG compression and Gaussian noise, we 

compare their method with ours.   

Fig. 5.9 shows the experiment. The results of Tsai and Chien[16] are shown in (a-d), and 

ours are shown in (e-h). Notably, the PSNR value of their watermarked image Jet in (a) is 

30.8 dB while ours in (e) is 32.29 dB. The PSNR value of the recovered image is 29.3 dB (Fig. 

5.9(d)) for theirs, and 31.89dB (Fig. 5.9(h)) for ours. Notably, (d′) and (h′) show the details of 

(d) and (h), respectively. It is observed that, between the lower-middle and lower-left of the 
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image, there are some artifacts in their recovered snow area below the mountains, as shown in 

(d′). Therefore, our recovered image is better.  

Fig. 5.10 shows the second experiment. The watermarked image Peppers are under both 

tampered attack and JPEG compression. The results of Tsai and Chien’s[16] method are 

shown in (a-d). Ours are shown in (e-h). (a) is their 30.6 dB watermarked image. (b) is their 

tampered image (inserting a sub-image compressed-decompressed by JPEG (QF=80, and the 

compression ratio is 4.3). (e) is our 32.24 dB watermarked image. (f) is our tampered image 

(inserting a sub-image, then use JPEG (QF=80, and the compression ratio is 5.4) to 

compress/decompress the mixed image). Having compared the two recovered images (d) and 

(h), it can be seen that ours (Fig. 5.10(h)) has better visual quality (because Fig. 5.10(d) has 

some noisy dots). Details are shown in (d′) and (h′).  

Fig. 5.11 shows the third experiment. The watermarked image Peppers is tampered with; 

and then the damaged image is attacked by adding Gaussian noises. The results of Tsai and 

Chien[16] are shown in (a-d), and ours are shown in (e-h). Having compared the two 

recovered images (d) and (h), again, it can be seen that ours (Fig. 5.11(h)) still has a better 

visual quality (because Fig. 5.11(d) has some noisy dots). Details are shown in (d′) and (h′). 
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Fig. 5.4. Robustness test of the proposed method. (a-d): Our four watermarked images Lena, Peppers, 

Jet, and Scenery. (e-f): The four cropped images. (i-l): The corresponding verification results, after 

doing a JPEG compression on (e), adjusting brightness of (f), adding noise to (g), and adding white 

bar to (h). (m-p): The recovered images. (q-t): Close-up versions around the recover area of the 

recovered images (m-p). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.5. Cut-and-paste attack. (a): Watermarked image, (b):Tampered image, (c):Verification result, 

(d): Recovered image. 
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(b) 

 
(c) 

 
(d) 

 
(e) 

   

Fig. 5.6. Collage attack. (a): First watermarked image Boat, (b): Second watermarked image House, 

(c):Collaged image in which the car in (b) is copied-and-pasted to the same place as (a), (d): 

Verification result, (e): Recovered image. 

 

 
(a) 

 
(b)  

(c) 
Fig. 5.7. Vector quantization (VQ) attack. (a): Original image, (b): VQ-attack result of 

(a), (c): Verification result indicates that the whole image (b) is fake everywhere. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Fig. 5.8. Cropping test for Varsaki et al.’s[72] method. (a): Watermarked image Lena, (b): 

Recovery data embedded in (a), (c): When (a) is cropped, (d): Recovery data extracted from 

the support of the non-cropped area. 

 

 
(a) 

 
(b)  

(c) 
 

(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(d′) 

 
(h′) 

Fig. 5.9. An experiment to compare our method with that of Tsai and Chien[16]. (a): Their 30.8 dB 

watermarked image Jet, (b): Their tampered image, (c): Their verification result, (d): Their 29.3 dB 

recovered image, (e): Our 32.29 dB watermarked image, (f): Our tampered image, (g): Our 

verification result, (h): Our 31.89dB recovered image, (Notably, (d′) and (h′) show the details of (d) 

and (h) respectively. There are some artifacts in (d′) on the recovered snow.) 
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(d) 
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(f) 

 
(g) 

 
(h) 

 
(d′) 

 
(h′) 

Fig. 5.10. Second experiment to compare our method with that of Tsai and Chien[16]. (a): Their 30.6 

dB watermarked image Peppers, (b): Tampering with (a), followed by JPEG compression with QF=80, 

(c): Their verification result, (d): Their recovered image, (e): Our 32.24 dB watermarked image 

Peppers, (f): Tampering with (e), followed by a JPEG compression with QF=80, (g): Our verification 

result, (h): Our recovered image. (Notably, (d′) and (h′) show the details of (d) and (h), respectively.) 
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(c) 
 

(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(d′) 

 
(h′) 

Fig. 5.11. The other experiment to compare our method with that of Tsai and Chien[16]. (a): Their 

30.6 dB watermarked image Peppers, (b): Tampering with (a), followed by adding Gaussian noises 

with σ2=12, (c): Their verification result, (d): Their recovered image, (e): Our 32.24 dB watermarked 

image Peppers, (f): Tampering with (e), followed by adding Gaussian noises with σ2=12, (g): Our 

verification result, (h): Our recovered image. (Notably, (d′) and (h′) show the details of (d) and (h), 

respectively.). 

 

Table 5.1. PSNR quality of watermarked image and attack-tolerance (for various quantization 

step value M). The host images are Lena (L), Peppers (P), Jet (J), and Scenery (S). 

Watermarked image Attack-tolerance 

Quantiz. 
step value 
(M) used 
in our 
algorithm 

PSNR (dB) 
of 
watermarked 
image 

(1 － β), i.e. 
percentage 
of area can 
be cropped 
or replaced  

JPEG with 
Quality 
Factor (QF) 
not less than 
thresholds 
shown here 

Gaussian 
noise (σ2) 

Range of 
“brightness 
adjustment” 

Lena;  
Pepper 

Jet;  
Scene 

2 53.37-53.40 1/8=12.5%  100 0 [-35,40]; 
[-10,40] 

[-55,30]; 
[-20,25] 

4 48.13-48.15 1/8 94 0 [-40,50]; 
[-15,50] 

[-70,35]; 
[-30,30] 
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6 44.83-44.85 1/8 90 0 [-40,50]; 
[-15,55] 

[-70,35]; 
[-30,30] 

8 42.40-42.48 1/8 86 

0-1  
(0 for J; 
1 for 
L&P&S) 

[-40,50]; 
[-15,55] 

[-70,35]; 
[-30,30] 

10 40.52-40.54 1/8 82 

2-3 
(2 for 
J&P&S; 
3 for L) 

[-40,50]; 
[-15,55] 

[-70,35]; 
[-30,30] 

12 38.95-39.01 1/8 78   4 [-40,50]; 
[-20,55] 

[-75,35]; 
[-30,30] 

14 37.67-37.72 1/8 75 

5-6 
(5 for 
L&S; 6 
for J&P) 

[-40,55]; 
[-20,55] 

[-75,35]; 
[-30,30] 

16 36.56-36.61 1/8 71 7 [-40,55]; 
[-20,55] 

[-75,35]; 
[-30,30] 

18 35.55-35.62 1/8 67 10 [-40,55]; 
[-25,55] 

[-75,35]; 
[-30,30] 

20 34.63-34.80 1/6=16.7% 63 13 [-45,60]; 
[-25,60] 

[-85,35]; 
[-35,35] 

22 33.84-33.97 1/6 59 16 [-45,60]; 
[-25,60] 

[-85,35]; 
[-35,35] 

24 33.10-33.24 1/6 55 19 [-45,60]; 
[-25,60] 

[-85,40]; 
[-40,40] 

26 32.43-32.60 1/6 51 22 [-45,60]; 
[-25,65] 

[-85,40]; 
[-40,40] 

28 31.80-32.00 1/6 48 26 [-45,60]; 
[-25,65] 

[-85,40]; 
[-40,40] 

30 31.24-31.42 1/6 45 30 [-45,65]; 
[-25,65] 

[-85,40]; 
[-40,45] 

32 30.70-30.87 1/6 42 34 [-45,65]; 
[-25,65] 

[-85,40]; 
[-40,45] 

 

5.5 Comparison with other studies 
 In this section, the proposed method is compared with other studies. Firstly, the two 

studies[11, 12] are authentication methods without considering the issue of recovery, but ours 

is equipped with both authentication and recovery abilities. As for other semi-fragile 

watermarking methods[13-17] with both authentication and recovery abilities, to describe the 

difference between ours and those methods, each watermarking algorithm is divided into 

major sub-steps (from the perspective of methodology and system design), and then a 

comparison is made. The differences are described below. 
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a). Embedding location (i.e. where to embed?) and our advantage 

In methods[13-15], the recovery data of each block is embedded in another block. For 

example, the recovery data of block A0 is embedded in block A1, the recovery data of block A1 

is embedded in block A2, and so on. In the verification and recovery phase, if block A0 is 

judged as “tampered”, then the recovery data in block A1 is extracted to recover block A0, and 

so on. In this example, if blocks A0 and A1 are both tampered, then block A0 cannot be 

recovered. In Tsai and Chien’s method[16, 17], although the processing domain is the discrete 

wavelet domain, the recovery data in low-frequency bands still needs to find some other 

location in high-frequency domain to undertake embedding. Therefore, if both locations are 

attacked, a similar recovery-disabled problem exists, although it is less severe. 

 However, in our method, as long as the number of valid blocks reaches a threshold, our 

inverse operation of the two-layer sharing can always decode the recovery data, so there is no 

need to consider the case that a block A0 and the block A1 storing its recovery data are 

simultaneously tampered. We only have to consider the percentage of the damaged area 

occupied in the whole image. As long as the damaged blocks occupy less than, say, 

1/6=16.7% of the whole image’s blocks, recovery can always be undertaken. In general, it is 

hard to predict in advance which part would be tampered. There is no way to predict the trace 

of tampering, and worrying about “the percentage of blocks (in the whole image) being 

tampered” is simpler than worrying about “how to predict the actual location of the tampered 

area”. 

 
Fig.5.12. Diagram of the 1-deimensional parity-check quantization used in many research 

works. 
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Fig. 5.13. Diagram to explain a two-dimensional case of parity-check quantization. Here, 

two host pixel values (p1, p2) are replaced by one of the centers for the purpose of 

embedding a two-bit data. 

 

b). Embedding method (i.e. how to embed?) and our advantage 

Parity-check quantization (or similar works) is used in a great many research works[13, 

14, 16, 17]. (As for Ref. [15], it embeds the data in Least Significant Bits (LSB) of the host 

image. Notably, 1-bit LSB embeds one bit per pixel, so two bits are embedded in two pixels, 

and the largest distortion for a pair of stego-pixels is 414.12 ≈ , but in our lattice 

embedding, when M=2 in Fig.5.1, our largest distortion for two host pixels is 

155.13/23/ ≈=M ; hence smaller.) As shown in Fig. 5.12, in 1-dimensional parity-check 

quantization, the host values are divided into many regions like [−3M/2, −M/2), [−M/2, M/2), 

[M/2, 3M/2), [3M/2, 5M/2), and so on, with M is called the quantization level or step size. 

Each region corresponds to a binary value 0 or 1. If a bit is to be embedded in a host value p, 

then just find the nearest region of p so that the nearest region corresponds to the bit value to 

be embedded. Then output the central coordinate (0, or ±M, or ±2M, or …) of the picked 

region as the stego-value that replaces p. To extract the hidden secret bit, just locate the region 

which contains the stego-value, then output the corresponding bit value 0 or 1. Our method is 

different, since we use lattice embedding as the embedding method. As shown in Fig. 5.1, the 

space of the host pair-values (p1, p2) is divided into many hexagonal regions, and the center of 

each region corresponds to a ternary value 0, 1 or 2. (In Fig. 5.1, small rectangles, triangles, 

and circles are used to represent the three values, respectively.) If a ternary value is to be 

embedded in the host pair (p1, p2), the nearest hexagon-center is found (i.e. small rectangle, 

p1 

p2 

M 

* 

M 

* 

* * 
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triangle, or circle) which corresponds to the ternary value to be embedded. Then the 

2-dimensional coordinate of the hexagon-center is output. Later, to decode the embedded 

value, just locate the hexagonal region which contains the stego-pair (p1, p2), then output the 

corresponding value 0, 1, or 2 of the region. The major reason for using lattice embedding is 

that the distortion of the embedding is smaller, because the hexagon-centers are denser in the 

plane than the square-centers. To see this, first let us inspect Fig. 5.13, which explains the 

two-dimensional case of parity-check quantization, i.e. it explains what happens when two 

pixels (p1, p2) are modified by parity-check quantization in order to embed two bits (00=0, 

01=1, 10=2, or 11=3) of the data. According to the location of (p1, p2), the nearest 

square-center, whose  class-reading in {0, 1, 2, 3} must coincide with the given two-bit data, 

is picked and the value of (p1, p2) is replaced by the coordinate of the square-center. The 

quantization step size M in Fig. 5.13 is the same as in Fig. 5.1. Having compared Figs. 5.1 and 

5.12, it can be seen that the distance between the hexagon-centers is smaller than the distance 

between the square-centers (each hexagon can be contained by a square box of size M-by-M). 

Therefore, when two host pixel values (p1, p2) are modified to embed the data, the distortion 

of the Lattice embedding is smaller. (As shown in Figs. 5.9-5.11, our watermarked images 

have a better image quality.)  

 Of course, when Fig. 5.1 is adopted to replace Fig. 5.13, the price is that the data 

embedded in a hexagon can only have a data value of 0, 1 or 2, but not 3. In other words, we 

sacrifice the size of the embedding to get a smaller distortion. However, this difficulty is 

overcome because a sharing technique is used in the proposed method to reduce the amount of 

data to be embedded, along with the second benefit of increasing the recovery ability from 

scattered large–area tampering. In general, the size of each share is only a small portion of the 

original size of the data. (As shown in Figs. 5.9-5.11, although our watermarked images have 

a better image quality, our recovery ability is still very competitive.) 

 

5.6 Conclusions 
 This chapter proposes an authentication-recovery method. The watermarked image can 

be moderately altered by doing a JPEG compression, adding a Gaussian noise, or adjusting 

the brightness. Certain security tests, such as a cut-and-paste attack, a collage attack, and a 

VQ attack, are also tested. In our design, the recovery data is embedded in DCT coefficients 

using lattice embedding to reduce distortion. The recovery data is dispersed into many blocks 

by two-layer sharing. Compared with previously reported methods, our specialty is that the 
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tampered region can be recovered as long as the percentage of the tampered blocks does not 

exceed a pre-defined threshold, say, 16.66%. Notably, as stated in Part (a) of Sec. 5.5, it is 

hard to predict in advance which part of a watermarked image will be cropped or replaced by 

attackers. The traditional mapping-sequence strategy for finding locations to hide recovery 

data is not a suitable strategy. This dilemma is avoided in the proposed method by using 

sharing. After all, worrying about “the percentage of blocks being tampered” is simpler than 

worrying about “how to predict the actual locations of tampered area”.  
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Chapter 6 

Conclusions and Future works 

 
6.1 Conclusions 

In this dissertation, some technologies are proposed to protect digital images. The 

technologies are Flip Visual Cryptography (Ch. 2), weighted secret image sharing (Ch. 3), 

data hiding (Ch. 4), and semi-fragile watermarking (Ch. 5). 

In Chapter 2, Opaque-oriented FVC and non-opaque-oriented FVC schemes were 

introduced. We proved that both schemes satisfy perfect security and they are conditionally 

optimal in contrast. The generated transparencies do not lead to any expansion in size. The 

experimental results show the revealing of double secrets via flipping and stacking the 

transparencies together. Due to the double secrets feature of the proposed method, one of the 

applications is the double checking of ownership for personality identification. Since the size 

is non-expanded, the space needed to carry a transparency to a meeting is economical (the 

size is the same as the space needed to carry an original image). 

In Chapter 3, a fast weighted secret image sharing method with a (t, n) threshold was 

proposed. This method shares the secret image among weighted participants, and the secret 

image can be losslessly recovered if the sum of the weights of the participants is greater than 

or equal to the threshold t. Additionally, the execution time in the weighted secret image 

sharing phase is improved by using properties of GF(2r). As shown in Fig. 2.5, our execution 

time is better than that of Thien and Lin when 1iw > . The executives of a company can use 

our method to share secret images. 

In Chapter 4, an embedding method based on a weighted sum function was proposed. As 

shown in our figures and tables, this method has a wide range of embedding rates (0.5−4.0 

bpp), and has a competitive PSNR over the entire range. The predicted PSNR values (PSNRest 

by Eq. (3.14)) are also extremely close to the actual PSNR values. Therefore, embedding 

errors can be predicted even before the actual embedding. With this PSNR-prediction 

property (Table 3.2), for each secret data the customer gives us, we can determine the 

necessary size of a host image if the customer also specifies the minimal PSNR value he can 

tolerate. This determines a set of host images for that secret data. Sec. 3.4 proved that 
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Modulus-based method [8] and LSB matching methods [9, 10] are special cases for us. The 

worst-case PSNR discussed in Item V of Sec. 3.5 also shows that, even if some very strange 

data (data artificially made by picky users and quite unnatural) was to be embedded, our 

method is still competitive with others. 

In Chapter 5, a semi-fragile method with recovery ability was proposed. The 

watermarked image can be moderately altered by JPEG compression, adding Gaussian noise, 

or adjusting the brightness. Certain security tests, such as a cut-and-paste attack, a collage 

attack, and a VQ attack, were also tested. In our method, the recovery data is embedded in 

DCT coefficients using lattice embedding to reduce distortion. The recovery data is dispersed 

into many blocks by two-layer sharing. The defining characteristic of our method is that 

unlike previously reported methods, tampered regions can be recovered as long as the 

percentage of the tampered blocks does not exceed a pre-defined threshold, say, 16.66%. 

 

6.2 Future works 
Based on the proposed methodologies in this dissertation, some further works can be 

studied. 

1. Visual Cryptography with multiple secrets is an interesting study issue (e.g. circular VC 

methods [3, 19]). Based on the method proposed in Chapter 2, in the future we plan to 

design a circular VC method for multiple secrets (the number of secrets can be larger than 

2), using perfect security (and optimal contrast, if possible). 

2. A fast sharing algorithm under GF(2k) is proposed in Chapter 3. However, in our method, 

the calculation in the decoding uses an extended Lagrange polynomial equation (2.8), 

which involves matrix multiplication. Therefore, it needs Θ(t) to decode a secret digit ai. 

Creation of a fast decoding algorithm is one of our future works. 

3. The method proposed in Chapter 5 is processed under the DCT domain. In recent years, 

wavelet transform has been widely used in image compression. In the future, we plan to 

design a semi-fragile method in the wavelet domain. 
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