P ARENAT BES AT B4
BRI
Visual Cryptography, Weighted Sharing,
Damage Repairing, and High Quality
Hiding of Images

Visual Cryptography, Weighted Sharing, Damage
Repairing, and High Quality Hiding of Images

R R §) AL Student : Sian-Jheng Lin
ERE AT EL Advisor : Dr. Ja-Chen Lin

g
2

e

=H

2
et RS
R e

AN

e

A Dissertation
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in

Computer Science

November 2010
Hsinchu, Taiwan, Republic if China

g
%
(w.
AN
o
%
1
&
R
i
)
el
)2
el
W
?m\}
%
<k
A1
R
o)
-k
2

LN | TR HAF B

Wz~ F Rt R 2 s

#%éﬁﬂwﬁé B e 2B R RS E o 50 AT R R 0 AR
LGRS N R AHmA A AT F A AP NT i A
32 oA R RBG RGBS REEY PESERE VU TN - R
od iy - RIP T I H K - RRE LR TR S -k
AP RS R AT PERT N A e R

BHRZ AR APRIN - FRESPRENLS FZ B GIE B AT ERBRS - B
BEE > PHEFPREA GNE R o eI G PR A FRE R AR T
TE AT SRR S REN SIS A A PN a 7 2 B
SN R B, FE R AR o E%’ﬁdﬁAGHﬂm¢i’ﬂWﬁmi

2)

#
3
o
g
T
5
=
(w

H\
E)
i
5

A%z A% 20 F ﬁ 1%11@%‘%@:11%?,1\,?3 ‘Eﬁq"‘féé}& £ 4c mm'ﬁf;ﬂ»
R E o tAsE e RS 2 A NiREES D) TAFSERS > 2 FRE
R (54038 05 3] 4.0 =~ /HF) o i) 227 Fa'Efip™ > B 5% B e PSNR &

FARE IR o ii) FRLAERS > HEE PG PSNR BF 2 Figd B r TR
%@ﬂ%ﬁ?’a{%gﬁﬁi%??ﬁﬂﬁo

FRFFRERMBAFL A T EPERIBERFERDDCT B o FiFkER
o a0 AR B B A s § A A BUR R ALY BT RS w A TR 6 e
e Y R X B RBARDTE o FHRE T AEE/AET 0 AFREET

RS- A g T R R o 0 (A JPEG R4 Mo RATHRP O BHRADE -

Visual Cryptography, Weighted Sharing, Damage
Repairing, and High Quality Hiding of Images

Student : Sian-Jheng Lin Advisor : Dr. Ja-Chen Lin
Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

In the dissertation, several technologies to protect digital images are proposed. To diffuse
the content of a secret image, Visual Cryptography and Sharing are both studied in the
dissertation. First, a Flip Visual Cryptography system is proposed. Two secret images are
encoded as two transparencies. Stacking the two. transparencies can reveal one secret, and the
second secret is revealed by stacking the second transparency with the flipped version of the
first transparency. The proposed scheme- is proved to have perfect security and
conditionally-optimal contrast.

In the second topic of the dissertation, a weighted secret image sharing method is
proposed. Each shadow has a weight which indicates the shadow’s relative importance. The
secret image can be decoded as long as the total sum of received weights reaches a specified
threshold. The weighted sharing method is based on polynomial division, and the traditional
polynomial-style secret image sharing is a sub-case of ours. Moreover, by observing the
characteristics of GF(2), a fast sharing algorithm is also proposed.

In the third topic of the dissertation, in order to have confidential transmission, an
image-hiding method based on weighted-sum function is proposed. Compared with previous
works, the proposed method has following advantages: i) wide range of embedding rate (such
as 0.5 to 4.0 bits per pixel); ii) competitive PSNR values over the whole wide range; iii) once
an embedding rate is given, our look-up table can predict the PSNR value, even before the
actual embedding.

In the fourth topic of the dissertation, in order to protect the accuracy of an image, a
semi-fragile watermarking method with recovery ability is proposed. The recovery data are
shared among many shadows; then each shadow is embedded in the DCT domain of an image

block. When the watermarked image is tampered with in some area, the non-damaged
I

shadows are extracted from image blocks; then the recovery data are decoded from those
non-damaged shadows. The recovery data are then used to repair the damaged area.
Experiments show that the proposed method can resist some content-preserving operations
within certain degrees, such as JPEG compression, Gaussian noise, and brightness

adjustment.

A A B EAERH T FERT NIR AT i A
+
nNs

EAHm AR E R

BI e £ o 2T KA E R BN

ek e iR s e 4 B g

-_l_ y = QE%—TE—_I_) 1,¢;/FI”12;4-T§

FTHELLEF 2 o F %82 2 i

4
b4

AR RN

B

VA A EA:

,

T
A
&

f‘mfp %’fﬁf?" L

%/ vamf’a Q}'é\;

ﬂi@ﬁJ’m*—%ﬁ
Ll By ep el
,]ﬂ%f;{—\.,ﬁ[g’ T A b ATy

Table of Contents

B R e I
N 0L = Uod S PRSP PRT I
S TSP PRURSSUSRSRN IV
TaDIE OF CONLENTS ...ttt e e b e sbe et e nneenrs \%
LISt OF TaDIES ...t b e bt nte e e VI
LISE OF FIQUIES ...ttt ettt bttt b e b e st b et e ne e st e e beeneenbeenbeenee e X
(@F T o = g A [1 0 To o4 £ o] o USRS 1
1Y [0 Y=L (oo SRR 1
1.2 REIALEA STUAIES ...ttt ettt et ae e sre e b enes 3
1.2.1 Visual Cryptograpycceeieeieiiiiieie ettt nae e 3
1.2.2 Polynomial secret sharing, secret.image sharing, information dispersal algorithm,

and Reed-SOI0MON COUE. ... terii ettt et eshe et ee sttt sseesbeebesreesbeeneesneense e 5
1.2.3 Data hiding MethO0S. i e et et b ittt bt sne e e e 6
1.2.4 Fragile watermarking and Semi-fragile watermarkingc.ccocoonnininicieienn, 7

1.3 Overview Of this diSSErtatioN ...t it ee ettt 9
1.3.1 Flip Visual Cryptography (FVC) with perfect security, conditionally optimal
CONLrast, aNd NO EXPANSTON ... i iunsecenee e aasfonte et eeeeeeaseesseessesseesseessesseesseessessesssesssessesssenns 9
1.3.2 Fast weighted secret image SNAriNg........ccooceierrieienie e 10

1.3.3 Weighted-sum function (WSF) — a gray-scale image hiding method with
competitive PSNR over a wide range of embedding rates............cccocvevveieviveresinsvennene 10

1.3.4 Authentication and recovery of an Image by using sharing and lattice-embedding 10

A @ 0TV 2 A o] o PO USSP PSSR 11
Chapter 2 Flip Visual Cryptography (FVC) with perfect security, conditionally optimal
CONLrast, aNA NO EXPANSTON.......eiuiieeiteetieiesiee et st e ste et e sbe et e sse e beesbeeseesbeesbesseesbeebesseesreeeeenes 12

2.1 Opaque-oriented FVC and Non-Opaque-oriented FVC ... 13

2.1.1 Problem definitioN.o s 13
2.1.2 The 16 basis matrices of opaque-oriented FVCccooveiiiieieeie e 19
2.1.3 The 16 basis matrices of non-opaque-oriented FVC........ccccccevvevecieieene e 24

2.2 EXPErimMeNntal FESUILSccvviiiiieiecie ettt e e reeneenneas 27

2.2.1 Experiments of proposed Method............cecvvieiieiecie e 27

2.2.2 Security test of proposed Methodcccvevviiiieeie e 29

2.2.3 Comparison With Other STUdIES........c.ccveiieiieie e 31
2.2.4 The expanded version of our Method............cccoovveieiie i 37
2.3 DISCUSSIONS ...ttt sttt sttt ettt b e bbbttt e et e b e b et sb et b et ene et e e e 39
2.3.1 How to find the basis matrices of FVC ... 39
2.3.2 Discussion about CONrast VAIUEScccueriiiiiieiesie e 40
2.4 CONCIUSIONS ...ttt bttt b et e et b e s b e e besbeenbeenbesbeenbeeneenreas 41
2.5 APPENTIX .ttt ettt ettt b et bt b et e be e beeneenreas 41
2.5.1. The proof of conditionally optimal contrast in opaque-oriented FVC.................... 42
2.5.2 The proof of conditionally optimal contrast in non-opaque-oriented FVC 45
Chapter 3 Fast Weighted Secret Image Sharing.........ccccevveriiieiieie e 48
3.1 REIAIEA WOTKS ...ttt bbb e b re e b enes 49
3.1.1 Thien and Lin’s secret image sharing method[7].......ccccceririnnenneninnieneee e 49
I B T 1 (o] IS 1] (o PSR PRT 49
3.2 The proposed MELhOd. ...t i i e et 50
3.2.1 The weighted secret image Sharing PRASEoceooiiiiriiiiicee e, 50
3.2.2 The weighted secret.image revealing Phase......cc....coovririeieieneieieeseeeeeeee, 51
3.2.3 The fast weighted secret image sharing algorithm...............cccocoviniininiin e 52
3.3 Experimental results, comparisons, and security analysis............ccccovvervenieeneninieenennn 55
3.3.1 EXPErimental rESUILS..... .o i ivcmmmnssttinesetae teeseeeseeeeesseesseeseessessteessessessseeseessesssesssesses 55
3.3.2 Comparisons with Thien and Lin’s SCheME[7]ccoovvviieiiiiniiierieeee e 58
3.3.3 SECUNILY ANAIYSIS.....vreieieieiieie ettt et et esreeae e e nreeaeenes 60
34 CONCIUSIONS ...ttt bbbttt b e bt b ettt ne e e e 61
Chapter 4 Weighted-Sum Function (WSF) — A Gray-scale Image Hiding Method with
Competitive PSNR over a Wide Range of Embedding Rates...........cccceviiiiiniinieneiieenn 63
4.1 The propoSed MELNOM..........ccueiierieeiesi et esre e e naenne e 64
4.2 EXPErimMENtal FESUILSccvveeieeie ettt nne e 74
4.3 Comparison With Previous WOTKSc.civiieireieiiesie s sie e see e eee e eee e s 81
A8 ANAIYSES ...ttt ettt ettt et e e te Rt e Re e teeneenreenteeneeaneenneens 84
4.4.1 Running time of AIGOrithm L.ccooiiie e 84
4.4.2 Running time of main embedding algorithm (Algorithm 4.2).........ccccccovveveiiennen, 85
4.4.3 Expected value of MSE for our method..........c.ccovevveiiiiiii e 86
4.4.4 Application of the predicted PSNR ..o 87

A 4.5 WOISE CASE PSNR ...ttt ettt st e et ettt e e s s e eeeesees s b e rreeeeseeesrnes 88

4.5 CONCIUSTON <.ttt bbb bbbttt b et e bbbt ne e e 89
Chapter 5 Authentication and Recovery of an Image by Sharing and Lattice-embedding......90
5.1 INTFOAUCTION ...ttt bbbttt b e bbbt e e 90
5.2 REIAIE WOTKS ...ttt bbbttt 92
5.2.1 Secret image sharing[7] and RS code technique[34]cccoeverireninienisieeeee, 92
5.2.2 A (t, n) two-layer sharing technique modified from Chang et.al[68] 92
5.2.3 Lattice embedding[75]coererereiiseiisie et 95

5.3 The proposed MEtNOM.coiiiiiiiiiii e 97
5.3.1 Watermark GeNErationcooeviiiiiiiiinieiee et 97
5.3.1.1 Generating Data sets{P[i =1,2,....4096}ccccourvvveimmmrririsrrrieiann 98

5.3.1.2 Generating reCOVErY Gata..........ccerererieenierieseenieeee e 99

5.3.1.3 Generating the hashing code of a blocK...........ccccceviiiiiiiiiiiiin 99

5.3.1.4 Embedding shadow Ejin a block............ccoovvieiniiiiiiie e 99

5.3.2 Tampered image Verification and FECOVEIY .« v . .ueiveirerieieerie e siee et 100
5.3.3 TNE VAIUE OF (... ittt ettt bbbttt nreas 100

5.4 EXPEIIMENTAL FESUILS ...cttuereeeriiieeiteaisesasesaianseeneedseenastestaeseaseessaessasseessaessesssessenssenseessens 101
5.4.1 RODUSTNESS TEST ...t itte e it esmmsmmsmasssssssss e oo e et eseaseeneessessesseseessessessessesseessesenees 101
5.4.2 SECUNLY TEST ..euviiriese ciiie et ee st e e e s s abaan e e e eaeaneestaetaeneesteeteaneeaneeseeaneenrens 102
5.4.3 Image quality and our adVANTAGE it i 103

5.5 Comparison With Other STUdIEScocuoiiiiiiiiiiee e 110
5.6 CONCIUSIONS.....coiiiiieiii ettt sttt s et e bt e beenbeeneenreas 113
Chapter 6 Conclusions and FULUIE WOTKS..........ccviieiiereiieie e 115
8.1 CONCIUSIONS.oiiiiieiieiee ettt bbbttt e e 115
8.2 FULUIE WOTKS ...ttt bbb bbbt 116
RETEIBINCES ... ettt bbbt bbbt 117
PUBIICALION TIST ...t b e sr e e enes 122
[] ST PPPR 124

VIl

List of Tables

Table 2.1. The sixteen basis matrices corresponding to the 2=16 combinations of [sa(i, j), s1(i,
m-1-), sa(i, J), s2(i, m=1-)], respectively. Some basis matrices (Cwwws, Cwwew, Cweww, and
Ceswww) have two forms, but only one form is needed in encoding. The user has freedom to
ChOOSE the FOIM NE WANTS.ccueiiiiicc e 21

Table 2.2. Encoding matrices of all combinations of [s,(i, j),s1(i, m—14), s(i, j), S2(i, m—1)].

Table 4.1. The tables Q, L, and T for (m, n)=(4, 3) when n given weights are (1, ¢y, ¢2)=(1, 2,
6). (a): Table Q generated in the intermediate process of Algorithm 1. (b): Table L generated
in the intermediate process of Algorithm 1. (c): The final output table T of Algorithm 1....... 69
Table 4.2. Suggested weights (1, cy,:.., Cn-1) fOr certain embedding rate values. For the listed
(m, n), the estimated PSNR (i.e. value of Eq. (4.14)) is optimal if users adopt these suggested
LT T] £ S e TSR 70
Table 4.3. Comparison with.other papers. Host image-is Lena for all methods, and the
embedded data are random NUMBDETS. ... i e e 79
Table 4.4. Comparison with other papers. Host image is Baboon for all methods, and the
embedded data are random NUMDELS. ..o i i e 80
Table 4.5. PSNR values when secret data are also images. Each host image is 512x512, but
each secret image is resized to be 234x234. Here, (m,n)=(5,3), (1,c1,c2)=(1,4,10), so the
estimated PSNR is 49.09 dB according to Table 4.2..........ccooveieiieiieie e 80
Table 4.6. PSNR values when secret data are also images. Each host image is 512x512, but
each secret image is resized to be 339x339. Here, (m,n)=(7,2), (1,c1)=(1,12), so the estimated
PSNR is 38.00 dB according to TabIe 4.2.coveiiiieieiee e 80
Table 4.7. The running time for various (1, C1,..., Cno1). cereerieeireeriiesireeseesieesieesneesreesne e 84
Table 4.8. The worst-case PSNR values. ([6] did not have algorithm or experiment for bpp=1.
The worst-case PSNR value for [6] is also 51.14 dB if bpp=1.) ...ccccceviriiiiiiiiieiice e 88
Table 5.1. PSNR quality of watermarked image and attack-tolerance (for various quantization

step value M). The host images are Lena (L), Peppers (P), Jet (J), and Scenery (S). 109

VI

List of Figures

Fig. 1.1. An example of VVC. (a): a secret image; (b-c): the two transparencies generated for (a)

using the VC scheme of Naor and Shamir [1]; (d) the result of stacking (b) and (C)................. 4
Fig. 1.2. The framework of this diSSErtation.c.ccccveieiieiiiie e 9
Fig. 2.1. (a): A transparency; (b): The transparency after flipping.cccceveviviiviieiciciennn, 13

Fig. 2.2. Stacking transparencies T; and T, to decode secrets S; and S, of size nxm each.
(Stacking Ty and T, to decode secret S;; Flipping T over and then stacking with T, to decode
T cT0L =] S LSOO 14
Fig. 2.3. The experimental result of the opaque-oriented FVC: (a-b): the secret images; (c-d):
the two generated transparencies; (e): flipping (c) over; (f): the result of stacking (c) and (d)
together; (g): the result of stacking (d) and (&) together. ..., 28
Fig. 2.4. The experimental result of the non-opaque-oriented FVC: (a-b): the secret images;
(c-d): the two generated transparencies; (e): flipping.(c) over; (f): the result of stacking (c) and
(d) together; (g): the result of stacking (d) and (&) together.ccooeiiiiiieienece e, 29
Fig. 2.5. Security test of scheme 1. (a-b): The two secret images; (c-d): The two generated

transparencies; (e-f): The two stacking results; (g): Statistical result of (c); (h): Statistical

LSS0 o) (o) e e OSSPSR 30
Fig. 2.6. Security test of scheme 2. (a-b): The two generated transparencies; (c-d): The two
stacking results; (e): Statistical result of (2); (f): Statistical result of (b).ccccveviriiiinnnne 31

Fig. 2.7. Three “single-secret” (2, 2) VC methods. (a-c): Naor and Shamir’s method: (a-b) are
the two generated transparencies, and (c) is the stacking result. (d-f): Yang’s method: (d-e) are
the two generated transparencies, and (f) is the stacking result. (g-i): Shyu’s method: (g-h) are
the two generated transparencies, and (i) is the stacking result............cccoooeiiiiiiininiciennnen, 33
Fig. 2.8. About the method of Wu and Chang [3]. The expansion rate is 4. (a-b): Two
generated circular transparencies T; and T,. (c): The result of stacking T, and T,. (d): The
result of stacking rotational T; with T,. (e-f): Two new secret images S; and S,. (g-h): Two
new transparencies Ty and T, generated from S; and S,. (i): The result of stacking Ty with To.
(3): The result of stacking rotational Ty with T,. (K): The probability distribution of symmetric
pairs for all 16 sub-regions in T;. (I): The probability distribution of symmetric pairs for all 16
WO R =10 T[] YN [R 1 SO 35

Fig. 2.9. About the method of Shyu et. al [19]. The expansion rate is 4. (a-b): Two generated

X

circular transparencies T; and T,. (c): The result of stacking T; and T,. (d): The result of
stacking rotational T, with T,. (e-f): Two new secret images S; and S,. (g-h): Two new
transparencies T, and T, generated from S; and S,. (i): The result of stacking T; with T,. (j):
The result of stacking rotational T, with T,. (k): The probability distribution of symmetric
pairs for all 16 sub-regions in T;. (I): The probability distribution of symmetric pairs for all 16
S R £=To [To] L3N [I 1 SO R PR TRPP 37
Fig. 2.10. The expanded version (block-based rather than pixel-based) of our scheme 1. (a-b):
The two generated transparencies where the two secret images are Figs. 2.3(a-b). (c): The
result of stacking (a) and (b). (d): The result of stacking (b) with the flipped version of (a)...38
Fig. 2.11. The expanded version (block-based rather than pixel-based) of our scheme 2. (a-b):
The two generated transparencies where the two secret images are Figs. 2.3(a-b). (c): The
result of stacking (a) and (b). (d): The result of stacking (b) with the flipped version of (a)...39

Fig. 3.1. The 512x 512 SECret image LENQA.cccoveriiiieiiiie ettt 56
Fig. 3.2. The encrypted iMage Of LENA. ..o meeereiiiiieiiiie e 56
Fig. 3.3. The (t, n)=(256, 7) secret.:sharing scheme in-GF(2%). Each of the 7 shadow weight is
(@) 160; (b) 64; () 24; (d) 8; (8) A34; (F)-12; () 3. -t ee i ierteeee et 57
Fig. 3.4. The image revealed from Figs. 3(8-0). et ivrme e 57

Fig. 3.5. The execution time.in the weighted secret image sharing using Thien and Lin’s

(t=256, n=w;) threshold scheme® and our (t=256, n=1) threshold scheme.c.cccccvvvvuen.... 58

Fig. 4.1. The six Lena stego-images. with-various embedding rates. The embedding rates and
the values of PSNR of the stego-images are (a): 0.5 bpp, 57.45 dB. (b): 1.0 bpp, 53.33dB. (c):
2.0 bpp, 47.30dB. (d): 3.0 bpp, 41.22 dB. (e): 3.33 bpp, 39.11dB. (f): 4.0 bpp, 35.10dB......77
Fig. 4.2. The Baboon stego-images with various embedding rates. The embedding rates and
the values of PSNR of the stego-images are (a): 1.0 bpp, 53.33 dB. (b): 2.0 bpp, 47.30 dB. (c):
3.0 bpp, 41.21 dB. (d): 4.0 bpP, 35.11AB. ..ceeiieiiieieie e 78
Fig. 4.3. The PSNR of embedding random data in Lena, for (m, n)=(5, 3), c1€[1,2™)= [1,32),
and c;e[1,2™) = [1,32). The real maximal PSNR for all possible combination of weights is
49.094 which is very close to 49.087. (The eight blue points are the places that generate
49.087 [the maximum of PSNR., if Algorithm 4.1 is executed for each combination of

LT T | 01] 19 SRS 78
Fig. 5.1. Diagram of lattice embedding.cccoiveriiiiiieir e 95
Fig. 5.2. The diagram of watermarking StEPS.c.oovueiieririeiieiesie e 97

Fig. 5.3. DCT coefficients which are selected as data P; (dark gray) and embedded locations
Xl

(o] il =E (To] 01 e £ TSRO PORR 98
Fig. 5.4. Robustness test of the proposed method. (a-d): Our four watermarked images Lena,
Peppers, Jet, and Scenery. (e-f): The four cropped images. (i-1): The corresponding
verification results, after doing a JPEG compression on (e), adjusting brightness of (f), adding
noise to (g), and adding white bar to (h). (m-p): The recovered images. (g-t): Close-up
versions around the recover area of the recovered images (IM=P)......cccocererirrienrenennenienneens 105
Fig. 5.5. Cut-and-paste attack. (a): Watermarked image, (b):Tampered image, (c):Verification
result, (d): RECOVEIEA IMAJE.coiiieiieeiecie ettt sneesae e nreeneanes 105
Fig. 5.6. Collage attack. (a): First watermarked image Boat, (b): Second watermarked image
House, (c):Collaged image in which the car in (b) is copied-and-pasted to the same place as

(@), (d): Verification result, (€): ReCOVEred iMage.ccouerverierieeieeesee e e e e ee e 106
Fig. 5.7. Vector quantization (VQ) attack. (a): Original image, (b): VQ-attack result of (a), (c):
Verification result indicates that the whole image (b) is fake everywhere............c.ccocvenenee. 106

Fig. 5.8. Cropping test for Varsaki et al.’s[72] method. (a): Watermarked image Lena, (b):
Recovery data embedded in (a), (¢): When (a) is-cropped, (d): Recovery data extracted from
the support Of the NON-CrOPPEU.AIEA. 1o et et et rs e e e e e eenrees 107
Fig. 5.9. An experiment to compare our method with that of Tsai and Chien[16]. (a): Their
30.8 dB watermarked image Jet, (b): Their tampered image, (c): Their verification result, (d):
Their 29.3 dB recovered image, (e): Our 32.29 dB watermarked image, (f): Our tampered
image, (g): Our verification result; (h):-Our 31.89dB recovered image, (Notably, (d") and (h’)
show the details of (d) and (h) respectively. There are some artifacts in (d’) on the recovered
] 110,72 TSRS SRR 107
Fig. 5.10. Second experiment to compare our method with that of Tsai and Chien[16]. (a):
Their 30.6 dB watermarked image Peppers, (b): Tampering with (a), followed by JPEG
compression with QF=80, (c): Their verification result, (d): Their recovered image, (e): Our
32.24 dB watermarked image Peppers, (f): Tampering with (e), followed by a JPEG
compression with QF=80, (g): Our verification result, (h): Our recovered image. (Notably, (d")
and (h") show the details of (d) and (h), reSpectively.) ... 108
Fig. 5.11. The other experiment to compare our method with that of Tsai and Chien[16]. (a):
Their 30.6 dB watermarked image Peppers, (b): Tampering with (a), followed by adding
Gaussian noises with 6=12, (c): Their verification result, (d): Their recovered image, (e): Our
32.24 dB watermarked image Peppers, (f): Tampering with (e), followed by adding Gaussian

noises with ¢°=12, (g): Our verification result, (h): Our recovered image. (Notably, (d’) and
Xl

(h") show the details of (d) and (h), reSPeCtiVelY.).....c.ccvvieiieiiece e 109
Fig.5.12. Diagram of the 1-deimensional parity-check quantization used in many research
L0 USROS SPPRRPR 111
Fig. 5.13. Diagram to explain a two-dimensional case of parity-check quantization. Here, two
host pixel values (p1, p2) are replaced by one of the centers for the purpose of embedding a
EWO-DIE QALA. ...ttt b et e bt e et re e be e nrean 112

X1l

Chapter 1

Introduction

In this chapter, the motivation of the dissertation and background knowledge are
presented in Sec. 1.1 and 1.2, respectively. The overview of the dissertation is given in

Section 1.3. Finally, the organization of the remaining chapters is described in Section 1.4.

1.1 Motivation

With the explosive growth of internet services and improvements in hardware in recent
years, network sharing of digital multimedia, such as images, audio, and video, has become
extremely easy and increasingly commonplace. However, this expansion raises important
issues on how to protect the accuracy of those digital media on a network. To discuss this
problem, some of the chief “aspectsof -digital image protection are considered in this
dissertation.

The first research topic of this dissertation is Visual Cryptography with double secrets.
For Visual Cryptography, the most important issue 'is security. Most single-secret VC
schemes (e.g. [1-3]) prevent any single transparency from leaking out any of the pixel values
of the enclosed secret image. Restated, most VC schemes satisfy their single-secret security
requirements. However, security issues concerning the relation of pixels between multiple
input secret images have seldom been discussed. In Chapter 2, a multiple-secrets VC scheme
with perfect security is defined as each single transparency leaking out neither pixel value nor
the relation of the pixel values between multiple secret images. There are two possible
branches in this design: 1) the stacking result representing black pixels in the secret image is
restricted to being 100% opaque; 2) the stacking result representing black pixels in the secret
image is not restricted to being 100% opaque. In the proposed scheme, the first branch is
called opaque-oriented FVC, and the second is called non-opaque-oriented FVC. We will
demonstrate that the contrast in our design here is conditionally optimal, no matter whether 1)
or 2) is used. Throughout this chapter, the word *“conditionally optimal” means that the
contrast is optimal if the double-secrets non-expanded FVVC scheme is required to have perfect

security.

The second research topic of this dissertation is (t, n) weighted sharing.
Polynomial-based secret sharing [4, 5] is a technique of protecting the secret message (e.g.
encryption keys or important files). The secret message is dispersed among n shadows, where
the size of each shadow is the same as the secret message. Any t of the n shadows can recover
the secret message, but any t—1 or fewer shadows cannot obtain any information pertaining to
the secret message. Based on the technology used, the secret message can be preserved in
many places in order to disperse risk. On the other hand, if we do not persist on perfect
security (i.e. any t—1 or less shadows cannot obtain any information about the secret message),
there are other approaches, such as the Information Dispersal Algorithm (IDA)[6] and secret
image sharing [7]. The size of each generated shadow is 1/t of the secret message. For
practical exercises, we may assign a weight to each shadow, where the weight refers to the
“information ratio” of the secret message. If the sum of obtained shadow weights is not less
than a specific threshold t, the secret message can be decoded. When it comes to the issue of
secret image sharing among weighted. participants, this problem can be solved by simply
applying Thien and Lin’s method [7]. However, to further improve the execution time in the
weighted secret image sharing phase,-a fast-weighted secret image sharing method is proposed
in this chapter. In Chapter 3;-we propose a weighted scheme for secret image sharing, and
propose an encoding algorithm that allows linear running time.

The third research topic of this dissertation-is weighted-sum function hiding for gray-scale
images. With a data hiding method, a secret.-message can be embedded in a cover-media to
generate a stego-media containing full information for the secret message. This stego-media is
very similar to the cover-media, and is very hard for the human eye to distinguish. Using this
technology, a secret channel is built privately between a sender and a receiver, and it is very
difficult for others to detect any transmission between the two. For gray-scale images,
modulus-based data hiding [8] and LSB matching [9, 10] are two good hiding methods which
can achieve high PSNR values (a metrical formula of calculating the similarity of two images)
under some embedding rates (bpp, bits per pixel). Here we try to generalize both the
modulus-based embedding method [8] and the LSB matching method [9]. Our generalization
will create two benefits: 1) giving better PSNR than [8], as shown in Tables 4.3 and 4.4 later,
and 2) giving a wider range of embedding rates than [9] did, particularly non-integer
embedding rates. Therefore, the new product will be an all-in-one method with competitive
quality everywhere over a wide range of embedding rates (including, but not limited to, rates
which are non-integer or smaller than one). In Chapter 4, we establish a generalized version of

2

the two hiding methods introduced above for gray-scale images. Our experiments show that
our proposed method has a wide embedding rate (0.5-4.0 bpp) and competitive PSNR values.
The final research topic of this dissertation is semi-fragile watermarking with recovery
ability for single images. Semi-fragile watermarking is a watermarking approach for image
authentication. The authentication data are embedded in the watermarked image by data
hiding technology. When we examine the integrity of the image, the authentication data are
extracted for checking. Some semi-fragile watermarking methods [11, 12] and recovery
ability methods [13-17] have been proposed in recent years. In Chapter 5, we proposed a
semi-fragile watermarking with recovery ability. By embedding the recovery data in DCT
domain, the method can resist some operations, such as JPEG compression, Gaussian noise,

or brightness adjustment, within a pre-defined degree.

1.2 Related studies

1.2.1 Visual Cryptography

Introduced by Naor and Shamir[1], visual cryptography (VC) is an approach to decrypt
secret images using the human visual system. Using VVC, a secret image can be revealed by
stacking the transparencies generated. inthe encryption process. Since the decoding process of
VC depends on the inspection of stacked images using the naked eye, it has the potential to be
utilized in critical environments without computer resources. We may use the simple example
in Fig. 1.1 to describe VC. Fig. 1.1(a) shows the binary secret image. After using the encoding
process proposed by Naor and Shamir [1], the generated transparencies are extremely noisy,
as in (b) and (c). Fig. 1.1(d) shows the result of stacking the two transparencies (b) and (c)

together.

(a) (b)

(©) (d)
Fig. 1.1. An example of VC. (a): a secret image; (b-c): the two transparencies generated for (a)
using the VC scheme of Naor and Shamir [1]; (d) the result of stacking (b) and (c).

Many VC related studies have been proposed. For example, [18-21] introduced
multi-secret VC; [20, 22-25] proposed non-expanded VC so that the created transparency
could be compact; and some other VC schemes [26-29] enabled VVC to have more applications.
The aforementioned Wu and Chang [3] proposed a method to generate two circle
transparencies for sharing two _secret images.. When rotating one transparency by a
pre-specified angle and then stacking-it-with another transparency, the second secret image
could be revealed. With their -method, the size of each transparency was four-fold larger than
that of each secret image. Fang and Lin [18] used two rectangular transparencies to share two
secret images. In their method, besides revealing one- secret image by stacking the two
transparencies, shifting one of the transparencies and then stacking them again could also
reveal another secret image. The size of ‘each transparency was also four-fold that of each
secret image. Shyu et al. [19] extended the multi-secret VC scheme of Wu and Chang [3]
from single rotation to several rotations so that they could encode # images in two
transparencies. Nevertheless, the transparencies were still 2# times the size of each secret
image.

To optimize usage of the transparencies, reducing the size of the transparencies is also an
topic for study. There are several non-expanded VC schemes. For example, Yang [20]
introduced a probability-based method and Shyu [22] presented a random-grid-based method.
In both methods, the size of each transparency is the same as that of the secret image.
Therefore, their methods are particularly suitable for situations with storage restriction.
However, in their methods, only one secret image is hidden when several transparencies are

created.

1.2.2 Polynomial secret sharing, secret image sharing, information dispersal algorithm,
and Reed-Solomon code

In 1979, two independent researchers, Blakley [5] and Shamir [4] proposed a polynomial
secret sharing scheme. In their (t, n) threshold scheme, a dealer distributes a secret number
into n shadows, with each of n participants holding one shadow. The generated shadows have
two properties: (1) any information about the secret message (except for the message size)
cannot be extracted from any t—1 or less shadow. (2) the size of each shadow is the same as
the size of the secret message. If a secret sharing scheme has property 1, the sharing scheme is
called perfect security. Moreover, if the sharing scheme has property 1 and 2, the sharing
scheme is called ideal. Shamir’s polynomial secret sharing[4] is an ideal secret sharing
scheme. Later, Shamir [4] introduced the concept of weighted secret sharing in his seminal
work. In Shamir’s weighted secret sharing with the (t, n) threshold scheme, each of the n

participants is assigned with a positive integer weight w; where i=1, 2,..., nand 1<w <t-1.
Then the dealer would distribute a secret.number into Z:‘:lwi shadows, and the number of

shadows that each participant held would be equal to their corresponding weight value. The
secret could be reconstructed if the sum of the weights of the received participants is no less
than the threshold t.

When the secret data is a-secret image rather than.a secret number, using Blakley’s or
Shamir’s (t, n) threshold scheme [4;.5] to share the secret image will waste much memory
space because the size of the secret image is usually very large. To reduce memory space,
Thien and Lin [7] proposed a secret image sharing method derived from Shamir’s scheme,
and Tso [30] proposed a secret image sharing method based on Blakley’s scheme. In both
methods, the size of each shadow is smaller than that of the secret image. In addition, based
on Thien and Lin’s secret image sharing method, the progressive secret image sharing
schemes [26, 27, 31] were proposed in succession.

An Information Dispersal Algorithm (IDA) [6] was proposed by Rabin. Under this
scheme, a file can be divided into n shadows, and any t of the n shadows can reconstruct the
file. IDA does not care about the security of shadows, and the major advantage of IDA is that
the size of each shadow is 1/t, which is smaller than Shamir’s method 1. P. Béguinand A.
Cresti [32] prove that the size of each shadow 1/t is minimal, if the entropy of the file is
maximal. Preparate [33] proposed a fast sharing method based on Fast Fourier Transform
(FFT) over an finite field.

Reed-Solomon code (RS code) [34] utilizes error control coding proposed by Reed and
Solomon. The t information digits are transformed into n digits to form a code, and if any

[(n—t)/2] of the n digits are modified, the t information digits can also be precisely

extracted. Preparate [33] later extended this method, proposing the concept of sharing RS

code.

1.2.3 Data hiding methods

Data hiding is a technology which can embed data in images. The LSB (Least
Significant Bits) substitution method is probably the simplest embedding method. For
example, if two secret bits (11),=3 are to be embedded in an 8-bit pixel value
(10010100),=148, the two least significant bits of 148 are replaced, and the stego-pixel value
IS (10010111),=151, which can extract (11), easily. To improve the LSB substitution method,
Thien and Lin [8] use (10010011),=147 as the stego-pixel, since 147 is closer to 148 than 151
is, and the last two bits of 147 can still extract(11), easily. Other papers have been published
based on this or similar observations. For example, Lin et al. [35] introduced an embedding
algorithm which extended the modified LSB substitution method by using a distortion
tolerance. Yang [36] embedded data based on an inverted pattern approach to improve the
stego-image’s quality in the ‘LSB method, and Wang [37] used a threshold to decide the
modulus base of the embedding function.

Rather than using a pixel as‘'the embedding unit, the LSB-matching method [9, 10]
considers a block of several pixels simultaneously. Mielikainen [10] proposed an embedding
method which embeds 2 bits in a block of 2 pixels. Li et al. [9] defined a generalized LSB
matching (G-LSB-M) scheme to further reduce distortion. Zhang and Wang [38] embedded a
digit which has (2z+1) possible values in each z-pixel block. When the secret data contains
images, another type of research focuses on [39-41] the redundancy of the secret images to
improve stego-image quality. For various media formats, Tseng et al. [42] embedded data in
binary images, and Wu et al. [43] in palette-based images, whereas Liu and Liao [44] used
JPEG images. Lee et al.’s method [45] was for binary images, and the embedding was based
on Hamming codes to reduce the frequency of flipping pixels. Wang and Lu [46] used a
Vector Quanization (VQ) index file as the host media. Tseng and Hsieh [47] even proposed a
reversible method, so that the host images could be recovered from the stego-images without
loss, but the price of being reversible was a smaller embedding rate (for example, it embedded

only 0.22 bits per pixel to get a Lena stego-image of 47.31 dB PSNR). Some other kinds of
6

data embedding consider the content of the host image, i.e. embedding more bits in the coarse
area of the host image. For example, Wu and Tsai [48] introduced a method based on pixel
value differencing, whereby each block of the host image embeds a dynamic number of bits
by altering the pixel value difference. Likewise, Wang et al. [49] used a pixel value
differencing and modulus function to effectively reduce distortion. Zhang and Wang [50]
dynamically changed the base of secret data to control the embedding rate of the stego pixels.
Yang et al. [51] also proposed adaptive data embedding in edge areas, and then the use of a
modified LSB substitution method to reduce distortion. Yang et al. [52] estimated the amount

of the embedded data by exploiting the brightness, edges, and texture of the host image.

1.2.4 Fragile water marking and Semi-fragile water marking

An image authentication method generates some data which will be used to check the
accuracy of the digital media in the future; the authentication data can be stored in another file
(this is the so-called digital signature approach [53, 54]), or embedded in the digital media
itself (i.e. watermarking approach«[55-66]). In recent years, some watermarking studies have
focused on image tampered-region detection and recovery [58-66].

Lin et al. [59] proposed :a watermarking technique for tamper detection and recovery,
based on a three-level hierarchical structure and block-mapping sequence. In the three-level
hierarchical structure, a block is judged as *‘applicable”.if the block passes three inspections.
If a block is judged as “non-applicable”, then-the recovery data is embedded in LSBs of
another block whose address is determined by a block-mapping sequence. Lee and Lin [63]
proposed a watermarking technique which embeds dual watermarks in an image. The
detection algorithm is similar to Lin et al.’s method [59], but the block size is 2x2, rather than
the 4x4 used in Lin’s method [59]. If a block is judged as “non-applicable”, then the copies of
recovery data are embedded in LSBs of another two blocks, which are addressed by a
block-mapping sequence. The two copies of recovery data (dual watermarks) are used to
increase the chances for block recovery. In Wang and Tsai’s method [64], the image is
divided into two regions; for the Region-of-Interest (ROI), the recovery data are encoded by
fractal encoding, and embedded in other blocks which are selected by permutation. For
remaining regions, no recovery data are embedded. If a damaged block is located in an ROI,
then the fractal code is extracted for recovery; otherwise, the block is recovered by an
image-inpainting technique. Chan and Chang [66] proposed an image authentication method

based on Hamming code consisting of three components; the Hamming code, Torus

7

automorphism and bit rotation. The parity check bits for each pixel were generated by the
Hamming code. The embedding locations for the parity check bits were decided by Torus
automorphism, and the bit rotation was used to improve security. Zhang and Wang [67]
proposed an elegant watermarking method, which can restore a tampered region without error.
This method is based on reversible data hiding, which can extract the whole host image from
the stego-image without error.

In general, if a watermarked image is processed by some content-preserving operations
(i.e., JPEG compression), verification ability should still exist within a certain level of the
operation. This type of watermarking method is said to be semi-fragile, and in the semi-fragile
watermarking method proposed by Ho and Li [11], users choose the lowest JPEG quality
factor they can tolerate, and the verification data is generated and embedded in the quantized
DCT domain. Their experiments demonstrated that their method could resist JPEG
compression (up to a level of Quality factor QF). In the Lin et al. [12] method, users also
choose the lowest JPEG quality factor they can tolerate, and the verification data is generated
from the low/middle frequency of the DCT domain, followed by embedding in the high
frequency domain. Their experiments showed that their method can also resist JPEG
compression (up to a QF level). However, these two methods [11, 12] only embed verification
data, and there is no recovery data.

There are some semi-fragile watermarking techniques which also embed recovery data in
the watermarked image, and the“image.itself can recover any tampered regions. Lin and
Chang [13] proposed two approaches to semi-fragile watermarking, one of which has
verification ability only, while the other has both verification and recovery ability. The
verification data is generated from the DCT coefficients, and the recovery data is generated
from a quarter-size shrunken sub-image of the host image (if recovery ability is required).
Then all of the generated data is embedded in the DCT domain. Their method can resist both
JPEG compression and brightness adjustment within a reasonable range. Hsieh et al. [14] also
proposed a watermarking scheme with damage-recovery ability. The recovery data is
calculated from the host image, and then three copies of the recovery data are embedded in
the DCT domain of the host image. Their experiments showed that their method could resist
JPEG compression, brightness adjustment and contrast adjustment. Jiang and Liu [15]
proposed an authentication-recovery scheme. Their verification data is a random number
sequence generated by a key, and their recovery data is generated from DCT coefficients of

the host image. The two sets of data are embedded in the two-LSBs (the two least significant

8

bits) of the image. Their experiments showed that their method could resist JPEG

compression and small-area replacement of the watermarked image.

1.3 Overview of this dissertation

In this dissertation, several techniques to protect digital images are proposed for various
applications. The proposed methods contain a flip VC method, a fast weighted image sharing
method, a data hiding method, and a semi-fragile watermarking method. Fig. 1.2 shows the
framework of the dissertation, and the brief overview of each proposed method is given in the

subsections below.

Image security

To disperse secret images To protect content or
accuracy of images

N N

Flip Visual Fast weighted A hiding method Semi-fragile
Cryptography secret image based on a watermarking with
(Ch. 2) sharing Weighted-sum recovery ability
(Ch 3) function (Ch. 5)
(Ch. 4)

Fig. 1.2. The framework of this dissertation.

1.3.1 Flip Visual Cryptography (FVC) with perfect security, conditionally optimal
contrast, and no expansion

In Chapter 2, a flip visual cryptography (FVC) scheme is proposed. The proposed FVC
scheme encodes two secret images into two dual-purpose transparencies. Sixteen basis
matrices are designed to encode a pair of pixels of the two secret images, respectively. If the
stacking result representing black pixels in the secret image is restricted (or not restricted,
respectively) to be 100% opaque, we have two designs called opaque-oriented FVC and
non-opaque-oriented FVC in the proposed scheme. We also prove that the contrast in our
design here is conditionally optimal, no matter whether opaque-oriented FVC or
non-opaque-oriented FVC is used.

1.3.2 Fast weighted secr et image sharing

Chapter 3 contains two topics. First, we bring up a weighted secret image sharing
method. The method is based on polynomial division over a finite field. The size of each
shadow depends on the weight choosen by the user. When an image has sufficient shadows
where the sum of weights is larger than a pre-defined threshold, the secret image can be
decoded by utilizing the extended Lagrange polynomial. When all weights are defined as 1,
the proposed method is the same with Thien and Lin’s method [7]. Then, by observing
characteristics of GF(2"), a fast encoding algorithm under GF(2") is proposed. The encoding
algorithm is a recursive function, and the running time depends only on the size of the secret

image.

1.3.3 Weighted-sum function (WSF) — a gray-scale image hiding method with
competitive PSNR over a wide range of embedding rates

In Chapter 4, a hiding method is-proposed based.on a weighted-sum function. With this
method, m secret bits are embedded in z pixels, and the secret bits can be extracted by
executing a weighted-sum function. To minimize distortion, two optimization patterns are
proposed. First, to reduce the running time of obtaining the best values of stego-pixels, a table
T is dynamically generated and-the stego-pixels are calculated by looking up table T; second,
to decide the weight values in weighted-sum_functions with various embedding rates, some
suggested weights based on exhaustive research are given in Table 3.2. The advantages of the
proposed method include: (1) A wide range of embedding rates (such as 0.5 to 4 bits per
pixel), (2) Competitive image quality over the whole wide range, (3) Once the embedding rate
is given, our look-up table can predict the PSNR value, even before the actual embedding.

1.3.4 Authentication and recovery of an mage by using sharing and lattice-embedding
In Chapter 5, we propose a semi-fragile watermarking method based on secret sharing
and lattice-embedding. Using this method, a host image is transformed into an 8x8 DCT
domain, and the coefficients in each DCT block are shared among many shadows by
two-layer sharing[68]. Each shadow is then embedded in a DCT block by lattice-embedding.
Because the shadow is embedded in the DCT domain, shadow data that pass certain degree of
JPEG compression remain intact. However, the repairing area is smaller than the fragile
version, due to the smaller embedding capacity. As shown in experiments, the watermarked

10

image can resist some content-preserving operations such as JPEG compression, Gaussian

noise, or brightness adjustment.

1.4 Organization

The organization of the rest chapters of the dissertation is listed below. Flip Visual
Cryptography is addressed in Chapter 2. Fast weighted secret image sharing is addressed in
Chapter 3. A hiding method based on a weighted-sum function is addressed in Chapter 4. An
image authentication method using semi-fragile watermarking with recovery ability is
addressed in Chapter 5. Finally, the conclusion and the future works of this dissertation are

given in Chapter 6.

11

Chapter 2
Flip Visual Cryptography (FVC) with perfect security,

conditionally optimal contrast, and no expansion

This chapter proposes a flip visual cryptography (FVC) scheme with perfect security,
conditionally optimal contrast, and no expansion of size. The proposed FVC scheme encodes
two secret images into two dual-purpose transparencies. Stacking the two transparencies can
reveal one secret image. Flipping one of the two transparencies and then stacking with the
other transparency can reveal the second secret image. The proposed scheme is proved to
have conditionally optimal contrast: its contrast is optimal if the double-secrets non-expanded
FVC scheme is required to have perfect security. The perfect security is also proved.

The remainder of this chapter is organized as follows: The proposed opaque-oriented FVC
scheme and non-opaque-oriented FVC..scheme are stated in Sec. 2.1, respectively.
Experimental results are shown in Sec.-2.2. Some discussions are shown in Sec. 2.3, and the
conclusions are in Sec. 2.3. In-Sec. 2.5, we prove that the-contrast 1/6 (and 1/4, respectively)
is conditionally optimal among the opaque-oriented FVC schemes (and non-opaque-oriented

FVC schemes, respectively) that'use basis-matrices design with perfect security.

Notationsin this chapter:

ht The height of the secret image.

wh The width of the secret image.

S1,S2 Two binary secret images in which the size is htxwh.

B, W Black and white.

T1, T, Two generated transparencies.

S;,S;, Two stacking results which are similar to S; and Sy, respectively.

r The width of basis matrices.
b the minimal luminance transmission to represent B in stacking results.
W the minimal luminance transmission to represent W in stacking results.
a The contrast which isw —b.

Stacking operation.

12

2.1 Opaque-oriented FVC and Non-Opaque-oriented FVC

In this section, we design two FVC methods which are opaque-oriented FVC and
non-opaque-orient FVC. This section includes three subsections: (1). Definition of the
problem; (2). The 16 basis matrices of opaque-oriented FVC; (3). The 16 basis matrices of

non-opaque-oriented FVC.

2.1.1 Problem definition

Two htxwh binary secret images, denoted by S; and S,, are encoded to get two htxwh
transparencies Ty and T, respectively. Without the loss of generality, the goal of the proposed
FVC scheme is that the secret image S; can be decoded by stacking T; and T, together;
whereas the secret image S, can be decoded by flipping T; over and then stacking with T,. Fig.
2.1 illustrates the operation to flip a transparency over. Notably, the transparency in Fig. 2.1(a)
is not a transparency created by our method, because our transparency is completely
noise-like. Fig. 2.1 is just to explain the flip-over operation; and the explanation would have
been impossible to understand .if Fig. 2.1(a), and hence Fig. 2.1(b), had been completely

noise-like.

(a) (b)
Fig. 2.1. (a): A transparency; (b): The transparency after flipping.

Let Sy = {s1(i, j) | i€Zn, je Zw} and Sy = {s2(i, j) | i€Zn, jeZun} be the two given
black-and-white secret images. Each pixel si(i, j) and each pixel sy(i, j) are binary in value W
(white) pixel or B (black) pixel. Let Ty = {t1(i, j)| i€Znt, je Zwn } and To = {to(i,)| i€Zp, je
Zwn } be the two transparencies to be generated. In the design of transparencies Ty and To,
represent every “opaque” pixel of a transparency by 1, and represent every “transparent”
pixel of a transparency by 0. (To distinguish between secret image and transparency image,
the words “opaque and transparent”, rather than “Black and White”, are used when the image
being talked about is a transparency, rather than an input secret image.) In Definition 2.1, the

13

stacking operation is symbolized by the symbol “®” which is in fact the OR operator. This
coincides with the real world experience: in real world, if we stack two transparencies, the
places where we can see through are the places where both transparencies are transparent
(both are 0s).

Definition 2.1 (Stacking operation ®)
The stacking operation for transparencies is symbolized by “®”, where 0®0=0, 0®1=1,
1®0=1, and 1®1=1.

@i, j) i, wh-1-j) s1(i,) s1(i, wh-1-j)

® = The decoding

tzH) ta(i, vﬂ_l_j) version of S;

t1(i, wh=1-j) t.(i, J) s2(i, J) s'2(i, wh—1-j)

The decoding

version of S,

Fig. 2.2. Stacking transparencies T, and T, to decode secrets S; and S; of size htxwh each.
(Stacking Ty and T, to decode secret S;; Flipping Ty over and then stacking with T, to decode

secret Sy)

Fig. 2.2 illustrates the effect of stacking two transparencies T, and T, and describes what
will happen when people flip T, over and then stack it with T,. The two pixel values [s4(i, }),
s1(i, wh—1—))] are called a symmetric pair, and so are [sx(i, j), S2(i, wh—1—})]. To design a flip
visual cryptography (FVC) scheme, possible values of the quadruple [si(i, j), si(i, width—1—j),
o1,), S2(i, wh—1—j)] should be considered simultaneously. For each quadruple [si(i, J), sa(i,

wh—1-j), s(i, j), S2(i, wh—1—j)] of secret pixels, the quadruple [t.(i, }), t2(i, wh—=1—j), t2(i, }), t=(i,
14

wh—1-j)] of transparency pixels must meet the following four requirements simultaneously:
1) sq(i, J) is decoded by stacking t(i, j) and to(i, J);
2) si1(i, wh—1—j) is decoded by stacking t;(i, wh—1—j) and to(i, wh—1—j);
3) sai, J) is decoded by stacking t;(i, wh—1—j) and tu(i, j);
4) s,(i, wh—1—j) is decoded by stacking ti(i, j) and ta(i, wh—1—j);
with the use of the symbol ®, the four requirements read:
s, J)= (i, @i, j);
s'1(i, wh=1-j) = t1(i, wh=1-))®t,(i, wh—1-j);
s'a(i, J) = ta(i, wh—1-))®1ta(i, j);
s'a(i, wh=1—j) = ta(i, j)®to(i, wh—1-j). (2.1)
Here, [s'1(i, J), s'1(i, wh=1—)), s'2(i, J), s'2(i, wh=1—j)] are the stacking results to show the
quadruple [si(i, j), si(i, wh=1—j), s(i, j), S2(i, wh—1—j)]. Since we are dealing with visual
decoding, the stacking results [s'i(i, j), s'1(i, wh—=1—j), s'2(i, }), S"2(i, wh—1—j)] do not need to be
completely identical to the original-secret values [si(i, j), s1(i, wh—1—j), sa(i, J), s2(i, wh—1—j)].

Therefore, a prime symbol has been added to s to denote the stacking result.

Definition 2.2. The 16 basis matrices of a Flip VC (FVC)system are defined according to Fig.
2.2. In detail, each FVC system is defined according to its 2* = 16 basis matrices {Cuwwww,

Cwwwa, Cwwaw, ... Ceesw, Ceses} 0f 4-by-r each,.and.r is a constant. All 4-by-r elements of

each basis matrix Crs,,j), s, (i, wh-1-j), s, j). 5,0, wh-1-)] € {Cwwww, Cwwwe, Cwwew, ..., Cesew, Cesss}
are 1-bit in value. Notably, si(i, j)e{W, B}, and so are the values of s;(i, wh—1—j), su(i, j), and

so(i, wh—=1—j). Hence, there are 2°=16 basis matrices to cover the 16 possible readings

{WWWW, WWWB, ... , BBBB} of the 4-dimensional input vector [s(i, j), si(i, wh—1—j), sqi,

i), s2(i, wh=1-j)].

In the definition above, we stated that each FVC system is defined according to its 2=16
basis matrices. This is because people can use the 16 basis matrices to encode any two secret
images S; and S, to get two transparencies. In general, to encode four secret pixels [s4(i, j), si(i,
wh—1-j), sa(i, J), s2(i, wh—1—j)] grabbed from secret images S; and S, just choose randomly a

column from the corresponding basis matrix Crs, i, j, s,i, wh-1-j), sy(i, j), s,(i, wh-1-j)], then copy the

15

four elements of the chosen column to the four transparency pixels t(i, j), t1(i, wh—=1-j), to(i, j),
to(i, wh—1—j) of Ty and T, respectively.

To make sure the generated transparencies are secure and useful in unveiling the input
secret images, the 16 basis matrices must satisfy the following Security and Contrast
constraints. If these two constraints are satisfied, then the FVC defined by these sixteen basis

matrices is called a valid FVC.

I. (Security constraint). In each 4-by-r basis matrix, the first and the second rows together

consist of aY xr columns of [00]", a’xr columns of [01]", a) xr columns of [10]",
aY xr columns of [1 1]7, where

a, +a,° +a; +ay =1. (2.2)
The value of a” used by any two basis matrices must be identical. Likewise, the third and
the fourth rows together consist of atxmn rcolumns of [0 0]", a"xr columns of [0 1],
ar xr columnsof [10]",and atxr columnsof[11]", where

as +a, +ay +ay =1. (2.3)

The value of a| used by any two basis matrices must be identical.

Il. (Contrast constraint). Get the contrast according to the contrast evaluation process stated

below. The contrast constraint requires that the obtained value & must be positive.

Contrast evaluation: The contrast of a Flip VC is evaluated in the following manner. For

each basis matrix, items 1-4 are evaluated below:

1. the luminance transmission of si(i, j), which is the percentage of Os in the stacking
result when the 1% and 3" rows are stacked:

2. the luminance transmission of si(i, wh—1—j), which is the percentage of Os in the
stacking result when the 2" and 4™ rows are stacked;

3. the luminance transmission of sy(i, j), which is the percentage of Os in the stacking
result when the 2" and 3" rows are stacked:

4. the luminance transmission of sy(i, wh—1—j), which is the percentage of Os in the
stacking result when the 1% and 4™ rows are stacked.

Then, since each of the four pixels si(i, j), si(i, wh—1-j), s(i, j), and sy(i, wh—1—j) only
16

have two possible values {W, B}, there are 2=16 basis matrices (e.g. Table 2.1). These 16
matrices are distinguished from each other using a quadruple naming system. For example, if
[s1(i,), si(i, wh—=1-), so(i, J), s2(i, wh—1-)] is [B,W,B,B], then the corresponding basis matrix
is called Cgwes. Now, for each of these 16 matrices, measure its luminance transmission of sy(i,
J). If the first subscript in the matrix name is B, i.e., if si(i, j)=B, then store its luminance
transmission of s;(i, j) in a pool called Black-pool. Otherwise, store it in a so-called
White-pool (Therefore, 16/2=8 of the 16 luminance transmission of si(i, j) will be in
Black-pool, and the remaining 16-8=8 will be in White-pool.). After that, for each of the 16
basis matrices, measure its luminance transmission of s;(i, wh—1—j). If the second subscript
in the matrix name is B, then store its luminance transmission of s;(i, wh—1-j) in a pool called
Black-pool. Otherwise, store it in a so-called White-pool. Repeat this process analogously for
the 16 luminance transmissions of sy(i, j) according to the third subscript of the matrices’
names. Also repeat this process analogously for the 16 luminance transmissions of su(i,
wh—-1-) according to the fourth subscript of .the matrices’ names. Together, we have
8+8+8+8=32 numbers in the Black-pool, and 8+8+8+8=32 numbers in the White-pool. The
minimum of the 32 numbers in White-pool is called w (the minimal luminance transmission
to represent W), and the maximum of the 32 numbers in Black-pool is called b (the maximal
luminance transmission to represent B). Define contrast eas

a=w —b>0. (2.4)
Remark. In all VC methods, the stacking result is always with a contrast value smaller than
100% —0%=100%=1, and this makes the stacking result always looks less clear than the input
secret image (for example, compare Fig. 1.1(a) and Fig. 1.1(d)). In general, contrast is an
important measure specifying the visual quality of the stacking result for a VC method.

Roughly speaking, a decoded result with higher contrast is usually clearer.

Theorem 2.1. When a FVC defined by 16 basis matrices satisfy the Security and the Contrast
constraint addressed in Definition 2.2, then the generated transparencies are secure and useful
in unveiling the input secret images.

Proof: 1) About the Security constraint, its purpose is that: no information about the two
secret images can be extracted if someone only gets a transparency. Below we prove the
security of the two secret images when someone only obtains transparency Ti. (The proof is

likewise if Ty is replaced by transparency T,).

17

The definition of Security constraint reads that “The value of a” used by any two basis

matrices must be identical (This cross-matrices requirement also holds for a' ,

respectively.)”. Hence, if a set of basis matrices do not satisfy the security constraint, then the

value of a” (or af) used by some basis matrices may be different. For example, if the

matrix Cgggg in Table 2.1 is replaced by

(i, j) 001111
o ot@im-1-)j0o 111 11
3% "t (i §) 11100 1/
t,G,m-1-j)|1 1 10 1 0

then the first and the second rows in C'gggg are with [0 0]"x1, [0 1]™x1, [1 0]'x0, and [1 1] x4,
while the first and second rows in remaining 16—1=15 matrices of Table 2.1 are with [0 0]"x1,
[0 1]"x1, [1 0]"x1, and [1 1] x3. Since the first and second rows are used to encode (i, j) and
t1(i, wh=1—j) in the same transparency Ti, so if an intruder finds in Ty a pair of pixels [ty(i, j),
t1(i, wh—=1-j)]=[1, 1], then his best ‘guess-of the four corresponding secret pixels in secret
images S; and S, should be [BBBB]. Likewise, if he finds in T, a pair of pixels [ti(i, j), ti(i,
wh—1-j)]=[1, 0], then he knows that the four corresponding secret pixels cannot be [BBBB].
In summary, the transparency T; is not a secure transparency, because it has secret-leaking
problem.

The paragraph above shows._the.necessity of the security constraint (to ensure that no
information about the secret images can'be extracted). Below we show the sufficiency of the
security constraint. Assume a set of sixteen basis matrices satisfies the security constraint.

Therefore, in each 4-by-r basis matrix, the first and the second rows together consist of

al xr columns of [0 0]", a’ xr columns of [0 1]", a xr columns of [1 0]", a) xr
columns of [1 1]", where the value of a;' used by any two basis matrices must be identical.

Since the first and second rows are utilized to encode ty(i, j) and t;(i, wh—1—j) in the same
transparency Ty, so if an intruder gets a single transparency T; and he finds in T, a pair of
pixels [ti(i, J), ta(i, wh—1—)]=[0, 0], then he cannot know whether the four corresponding
secret pixels in secret images S; and S, should be [WWWW] or [WWWB] or or [BBBB].
This is because each of the 2*=16 basis matrices has the same number of columns (aY xr

columns) read as [0 0]" when the first two rows of the matrix is grabbed. Therefore, there are
1/16 chance that [0 0]" was from secret pixels [WWWW]. Similarly, there are 1/16 chance that

18

[0 0]" was from secret pixels [WWWB]. Similarly, there are 1/16 chance that [0 0]" was from
secret pixels [WWBW]. In fact, the same 1/16 chance holds for each of the sixteen basis
matrices.

Therefore, the intruder cannot know whether the four corresponding secret pixels in
secret images S; and S, should be [WWWW] or [WWWB] or or [BBBB]. The above
analysis still holds if [0 0]" is replaced by [0 1]" or [1 0]" or [1 1]". Therefore, no matter what
the contents of two secret images S; and S, are, the transparency T; is always of perfect
security: no secret-leaking will occur. The perfect security of transparency T, can be proved
likewise using the third and fourth rows of the 16 basis matrices, as defined in the second half
of the security constraint.

i) About the Contrast constraint, the definition is in Eq. (2.4) which reads « = w-b>0. If
the value of « is not positive, then there are two possible cases:

Case 1. (a=0). In this case, we cannot see the information in the stacking result, because
the luminance transmission of representing W and B are identical.

Case 2. (a<0). In this case, the Juminance transmission to represent W is smaller than the
luminance transmission to represent-B. Then-we will see that W is darker than B, and the

stacking result will look like the negative film of a photo, an inappropriate view. .

2.1.2 The 16 basis matrices of opaque-oriented FV.C

In this section, we use 16 basis matrices of 6 columns each to encode the quadruple
secret pixels [si(i, J), s1(i, wh—1-), s(i, J), s2(i, wh—-1-)]. Each generated transparency will be
of perfect security by using the 16 basis matrices to encode. The word “opaque-oriented”
means the stacking result representing black pixels in the secret image is restricted to be 100%

opaque. The security and contrast are addressed below.

Property 2.1. The set of basis matrices shown in Table 2.1 is a valid FVC and it satisfies the
security and the contrast of stacking result is 1/6.

Proof: Table 2.1 shows a set of 16 basis matrices mentioned below Definition 2.2. In the 1
and 2" Rows of each basis matrix shown in Table 2.1, there are (1/6)x6=1 column of [0 0]",
(1/6)x6=1 column of [0 1]", (1/6)x6=1 column of [1 0], and (3/6)x6=3 columns of [1 1] .

Hence, the cross-matrices constant-ratio (a; :a,’ :a, :a;) requirement mentioned below

Eqg. (2.2) holds. In the 3 and 4™ Rows of each basis matrix, the cross-matrices constant-ratio

19

(ag :a; :a; :a;) requirement mentioned below Eg. (2.3) also holds. The cross-matrices

property required by the Security Constraint is thus satisfied. Moreover, after the computation
stated below, it can be shown that w=1/6 and b=0, so the contrast « is 1/6—0=1/6 which is a
positive number, and hence the Contrast Constraint is also satisfied by the Flip VC defined
using Table 2.1.
The detail computation of w and b for Table 2.1 is as follows. First, statements 1-4 below
are true for each basis matrix in Table 2.1. Therefore, every element of the Black-pool is 0,
and each element of the White-pool is 1/6. Because the maximum element of the Black-pool
(i.e. b) is 0 and the minimum element of the White-pool (i.e. w) is 1/6, contrast o is thus
1/6—0=1/6.
1. When the 1% and 3™ rows are stacked, if the first subscript in the matrix name is B,
then the ratio of Os in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%.
2. When the 2" and 4™ rows are stacked, if the second subscript in the matrix name is B,
then the ratio of Os in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%.
3. When the 2" and 3" rows are stacked, if the third subscript in the matrix name is B,
then the ratio of Os in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%.
4. When the 1% and 4™ rows are stacked, if the forth subscript in the matrix name is B,
then the ratio of Os in the stacking result is 0%; otherwise, the ratio is 1/6=16.7%.

We explain below in more detail what the two ratios 0% and 16.7% stand for. According
to Fig. 2.2, each of the four secret-pixels in [si(i, J), si(i, wh—=1-), sa(i, J), S2(i, wh—=1-)] is
recovered by tracing its two arrows in Fig. 2.2 back to two of the four transparency-pixels in
[ta(1, J), t2(i, wh=14), t(i, J), t2(i, wh—1—)]. For example, the recovered version of secret pixel
s1(i,) is obtained by s'1(i, j)=t1(i,))®ta(i, J); whereas the recovered version of secret pixel sy(i,
j) is obtained by s'5(i, j)=ti(i, wh-19)®t,(i, J). As for the encoding to generate the two
transparencies t; and t,, note that each 4-by-6 basis matrix in Table 2.1 has 6 columns; so, in
the encoding process, each time an input quadruple [si(i, j), si(i, wh=14), su(i, J), Sai,
wh—-1-)] is given, there are 6 possible ways to encode this quadruple. For example, if the
input secret quadruple [si(i, j), s1(i, wh=1-), sa(i, j), sz(i, wh-1-)] is [W,W,B,B], then [t.(i, j),
t1(i, wh=14), t(i, j), to(i, wh=1)] is encoded as [1,0,1,0] if the third column of the basis
matrix Cwwwe in Table 2.1 is selected. Likewise, [ti(i, J), t2(i, wh=1-), t(i, j), t2(i, wh-1)] is

20

encoded as [1, 1, 0, 0] if the sixth column of matrix Cwwws is selected in the random-selection
process. Notably, the index WWBB means that the input quadruple secret pixels are s4(i, j)=0,
s1(i, wh—14)=0, sy(i, J)=1, sz(i, wh—-1-)=1. Now, no matter which of the six columns of
matrix Cwwas IS selected, the value s'5(i, wh-1-) = t1(i,))®t,(i, wh—-1-) obtained by stacking
is always 1, because (1% Row)®(4™ Row) = [1, 1, 1, 1, 1, 1] for matrix Cwwwe Of Table 2.1,
and so is s',(i, j). However, the value s'i(i, j) = ti(i,))®t(i, j) obtained by stacking is not
always 0, because (1 Row)®(3™ Row) = [1, 0, 1, 1, 1, 1] for that matrix Cywes. In other
words, depending on which of the six columns is selected, the chance that t;(i, j)®t,(i, j) = 0 is
only 1/6=16.7%. Similar argument also shows that the chance that t;(i, wh—1—)®t,(i, wh-1-)
= 0 is only 1/6=16.7%, too. Moreover, for each of the 16 basis matrices in Table 2.1, the
probability that the stacking result can recover a black secret pixel (i.e. a secret pixel with
value 1) is always 100%; but the probability that the stacking result can recover a white secret
pixel (i.e. a secret pixel with value 0) is always 1/6=16.7%, rather than 100%. As a result, the
black area of the input secret images is still ‘black after stacking the two transparencies;
however, since the six columns.of each basis matrix in Table 2.1 is randomly selected, the
white area of the input secret amages looks gray (rather than plain white). This is because in
each white area, the area is formed of many pixels, and after stacking the two transparencies,
16.7% of these pixels are white while 83.3%. of these pixels are black. From the view of
human vision (recalling that the decoder is human_eyes rather than computers), since 83.3%
of the pixels in a white area is black’(opaque)-and 16.7% of the pixels in the same white area
is white (transparent), the whole white area looks like dark-gray in brightness, rather than
plain white. Therefore, the white area of the original input image looks brighter than the
corresponding area of the stacked output. Notably, darker output in white area is a very
common phenomenon for any VC approach. For example, in Fig. 1.1, which shows the
stacking result of the VC method proposed by Noar and Shamir [1], the input image’s white

area also becomes darker after VC’s encoding-then-stacking.

Table 2.1. The 16 basis matrices corresponding to the 2*=16 combinations of [si(i, j), S:(i,
wh—-14), sa(i, J), s2(i, wh—1-)], respectively. Some basis matrices (Cwwws, Cwwsw, Cweww,
and Cgwww) have two forms, but only one form is needed in encoding. The user has freedom

to choose the form he wants.

21

1
- 4 d O
- 4 O
S = A
- O «—
O 1 «—
o O O o
e — |
~—~ [y
o — o —
| |
— i
| |
h)h
== =3
SRR
4 <4 &N '«
) ded ded e

CWWWW

W 1
-1 1 4 O
o
— e
— O O O
O 1 O <l
O O 1
S — |
S
o
1
— < O O
o
— o
— O « O
O A A
o O O
S —— |
—~~ ~—
o — "—
| |
— i
| |
c ~ <
== =32
IR
— <« &N
) ded ed

CWWWB

}
}

001111
010111
101110
1 00111

001111
010111

, Or
101110
01 1110

t2(i’Wh_1_ J)
Gwh-1-j)1 1 0%21 0

t,(i,wh—1- j)
t, (i, J)

t, (1, j)

t.(, j)

c:WWBW

001111
010111
101110

t,(i,wh—1- j)
t, (i, J)

t

CWWBB

001111
010111
1 00111
1001110

Do EEEEE .a]
b
o
— N\ e
— 4 O O
L B e P |
= e
o O
Oied = O
o O O
e — |
~ —
o — —
_ [
— —
I |
h)h
Dt 2 E
SRR
— - N
= 42 4

CWBWW

1110J_1111_
a4 o o — dH dH O
— A A - — 1 O
— O «d - —A O d d
O A «d - O 4 O o
_0001_0011_
]

= = = =

| | I |
— — — ;I__

| | |

o ~ < < ~ <
i e A e
— = N @« — == N
4 ded ded = = =

CWBWB

CWBBW

1
- 4 d O
—
- +d4 o o
—A O d
O 1 O
© o A -
— |
—~ —
o — "—
[[
— |
| |
h)h
== = =
SRR
4 4 &N
) ed ed

CWBBB

22

t.(i, j) 001111 001111
t(i,wh-1-j)l0 1 0 1 1 1 010111
BTG) 110011' /110011
,Gwh-1-j)0 1 1 0 1 1] [1 00 1 11
t.(i, j) 00111 1]
t(i,wh-1-j)l0 1 0 1 1 1
BWE Ty (i §) 110101
t,bwh-1-j)[1 1 0 1 1 0
t.3i, J) 001111
t(iwh-1-))|0 1 0 1 1 1
BB TG) 111100
t,(bwh-1-)/0 1 1 1 1 0
t,(i, j) 00111 1]
t(iwh-1-))|0 1 0 1 1 1
BWeE Tt (i, §) 111 1.000
t,,wh-1-j)[1 1 0511 0]
t.(i,) 0 001 1 1 1]
t(iwh-1-j)|0 T 071 1 1
BTG) 110 011
t,,wh-1-j)[1 01 0 1 1
t.(i, j) 0 0 1 1 1-1]
t(i,wh-1-j)lo 1 0 1 1 1
BB Tt (i §) 1100011
t,bwh-1-j)|1 1 1 0 1 0]
t(i, j) 0 0 1 1 1 1
t(i,wh-1-j)l0 1 0 1 1 1
BTG) 111001
t,bwh-1-j)[1 0 1 0 1 1
t.(i j) 00111 1]
t(i,wh-1-j)l0 1 0 1 1 1
B ¢ (i,) 111001
t,G,wh-1-j){1 1 1 0 1 0

23

2.1.3 The 16 basis matrices of non-opaque-oriented FVC

This section presents the 16 basis matrices of 8 columns each (rather than 6 columns) to
encode the quadruple secret pixels [si(i, j), Si(i, wh-1-), sSa(i, j), S2(i, wh—1—)]. The word
“non-opaque-oriented” means the stacking result representing black pixels in the secret image

is not restricted to be 100% opaque. The security and contrast are addressed below.

Property 2.2. The set of basis matrices shown in Table 2.2 is a valid FVC and it satisfies the
security and the contrast of stacking result is 1/4.

Proof: Table 2.2 shows a set of 16 basis matrices mentioned in Definition 2.2. In Rows 1 and
2 of each basis matrix shown in Table 2.2, there are (2/8)x8=2 column of [0 0]", (2/8)x8=2
column of [0 1]7, (2/8)x8=2 column of [1 0]", and (2/8)x8=2 columns of [1 1]". Hence, the

cross-matrices constant-ratio (a, :a,’ :a, :a;) requirement mentioned below Eg. (2.2)

holds. In Rows 3 and 4 of each basis matrix, the cross-matrices constant-ratio

(ag :a,

:ar rar) requirement mentioned below Eq. (2.3) also holds. The cross-matrices
property required by the Security. Constraint is-thus satisfied. Moreover, after the computation
stated below, it can be shown that w=3/8 and b=1/8, so the contrast « is 3/8 —1/8=1/4 which

is a positive number, and hence the Contrast Constraint is also satisfied by the FVC defined
using Table 2.2.

The detail computation of wand.b for Table 2:21s as follows. First, statements 1-4 below
are true for each basis matrix in Table 2.2. Therefore, every element of the Black-pool is 1/8,
and each element of the White-pool is 3/8. So the maximum element of the Black-pool (i.e. b)

is 1/8, and the minimum element of the White-pool (i.e. w) is 3/8, and contrast « is thus 3/8 —

1/8=1/4.

1. When the 1% and 3" rows are stacked, if the first subscript in the matrix name is B,
then the ratio of Os in the stacking result is 1/8=12.5%; otherwise, the ratio is
3/8=37.5%.

2. When the 2" and 4™ rows are stacked, if the second subscript in the matrix name is B,
then the ratio of Os in the stacking result is 1/8=12.5%; otherwise, the ratio is
3/8=37.5%.

3. When the 2" and 3" rows are stacked, if the third subscript in the matrix name is B,
then the ratio of Os in the stacking result is 1/8=12.5%; otherwise, the ratio is
3/8=37.5%.

24

4. When the 1% and 4™ rows are stacked, if the forth subscript in the matrix name is B,
then the ratio of Os in the stacking result is 1/8=12.5%; otherwise, the ratio is 3/8=37.5.

Table 2.2. Encoding matrices of all combinations of [si(i, j), si(i, wh=1-), sa(i, j), s,

wh-1)].

t,Gi,) 0000O0T1T111
t,G,wh-1-j)|0 0 1 1 0 0 1 1
G 00010111
t,(iwh-1-j){0 0 1 0 1 0 1 1]
t.(i, j) 0000111 1]
. tl(i,whlj){o 0110011
WG) 00010111
t,(bwh-1-j){0 1 1 1 0 0 0 1
t, i, §) 00001111
t,;wh—-1-j)foc0 121 0 0 1 1
B) 01001101
t,(i,wh=1—-{0° 0 1 0 1 0 1 1
t, () 00 001111
t,(bwh-1-j)[0 0.4°1 0 0 1 1
EE e §) 61001101
t,bwh-1-j)/0 1 1 1 0 0 0 1
t,q, j) 00001111
o _twh-1-1)/0 0 1100 11
WEMT G) 000100111
t,(bwh-1-j)[0 1 0 0 1 1 0 1]
t,q, j) 0 000 1 1 1 1]
o _twh-1-j)j0 0 110011
A A (W) 00010111
t,(bwh-1-j)[1 1 0 1 0 1 0 0]
t.(i, j) 0000111 1]
t,G,wh-1-j)/0 0 1 1 0 0 1 1
Y TG,) 01001101
t,(iwh-1-j){1 0 0 0 1 1 1 0]

}

00001111
00110011
010011001

t,(i,wh—1- j)
,wh-1-j)|1 1 1 0 1 0 0 0

6 (1, J)

t(i)
t2

CWBBB

}
}

1

0000111
t,,wh-1-j)|0 0 1 1 0 0 1 1
01110001
G,wh-1-j)lo 0 1 0 1 0 1 1

£ (1, J)

6 (i)
t2

C BWWW

W 1
— 1 -« O
- = O
— O O O
— O O O
O A A
O A A
o O «+ O
o O O
S — |
—~~)
o — —
_ _
— —
| |
Ny =
2= =32
S
- —«< N N
R N

C BWWB

1 — O <«
- = O
- O I
— O O O
O 1 1
o +H4 O ©O
O O « O
o O +H O
[EEE——— | .
~~ N
o — " —
_ _
— —
_ |
N S5
2= =2
=T o
- « N
) e)

C BWBW

1 1 4 O
- 1 O O
— O O O
— O O i
O —+ 1 O
O I
O O i
o O O
— w0
—~ —
o — —
_ _
— |
_ _
~ <
2= =32
ST
— 4 N N
) ed d ed

C BWBB

{00001111

t(, 1)

00110011
011100001

01 001101

t,(i,wh-1-7j)

tZ(iv J)

CBBWW

t,(i,wh-1-j)

t(, j)

00001111

11010100

00001111

11010100

t,,wh-1-j)[0 0 1 1 0 0 1 1

RA)

C BBWB

t,,wh-1-j){0 1 0 0 1 1 0 1

t(, J)

t,G,wh-1-j){[0 0 1 1 0 0 1 1

A

C:BBBW

t,bwh-1-j){0 1 1 1 0 0 0 1

26

t(i, j) 00001111
t(i,wh-1-j)/0 0 1 1 0 0 1 1
B8 Tt (i, j) 11010100
t,G,bwh-1-))|1 1 1 0 1 0 0 0

2.2 Experimental results

Experiments and comparisons are presented in this section. Sec. 2.2.1 presents the results
of the proposed method. Sec. 2.2.2 gives the security testing of the transparencies. Sec. 2.2.3
shows the comparisons with other studies. Sec. 2.2.4 shows the expanded version of our

method.

2.2.1 Experiments of proposed method

This subsection presents experimental results for the proposed scheme which can
generate non-expanded transparencies with:perfect security and can decode one more secret
image by flipping one of the transparencies. The opaque-oriented FVC experiment is shown
in Fig. 2.3. The two secret images are displayed in Figs. 2.3(a-b); and the two generated
non-expanded transparencies-are shown in Figs. 2.3(c-d). Fig. 2.3(e) shows the result of
flipping Fig. 2.3(c) over. Fig:-2.3(f). shows the result of stacking Fig. 2.3(c) and Fig. 2.3(d)
together; Fig. 2.3(g) shows “the “result -of “stacking 2.3(c) and 2.3(e) together. The
non-opaque-oriented FVVC experiment is shown:in Fig. 2.4.

(@) (b)

27

Fig. 2.3. The experimental result of the opaque-oriented FVC: (a-b): the secret images; (c-d):
the two generated transparencies; (e):-flipping (c) over; (f): the result of stacking (c) and (d)

together; (g): the result of stacking (d) and (e) together.

28

@)
Fig. 2.4. The experimental result of the non-opaque-oriented FVC: (a-b): the secret images;

(c-d): the two generated transparencies; (e): flipping (c) over; (f): the result of stacking (c)
and (d) together; (g): the result of stacking (d) and (e) together.

2.2.2 Security test of proposed method

In this subsection, we conduct two experiments for security testing. The first one is for
scheme 1 and the second one is for scheme 2. Fig. 2.5 shows the first experiment. Figs.
2.5(a-b) illustrate two secret images S;. and Sy, which consist of 16 sub-regions from top to
down, and in each sub-region, sy(i, J) and s;(i, wh=1—j) are at the left-hand and right-hand
sides of Sy, and s,(i, j) and sy(i, wh—1=j) are at the left-hand and right-hand sides of S,. Then
the four sections (the left-hand and right-hand sides of S; and the left-hand and right-hand
sides of S;) in each sub-region are painted using all possible colors {WWWW, WWWB,...,
BBBB}. In other words, each sub-region is encoded with a basis matrix being referred to.

The generated transparencies T; and T, are shown in Figs. 2.5(c-d). The result of
stacking Ty and T, together is shown in Fig. 2.5(e). When T is flipped and then stacked with
T,, the stacking result is shown in Fig. 2.5(f). To test security of Ty, in each sub-region of Ty,
we count the probability distribution of symmetric pairs [ti(i, j),t1(i, wh—1-)]€{[0,0], [0,1],
[1,0], [1,1]}. Fig. 2.5(g) shows the statistical result. The probability distributions are about
[1/6, 1/6, 1/6, 3/6], no matter which basis matrix is used (the small variance is caused by
randomly choosing a column in the basis matrix; so it is unrelated to the secret pixels, i.e. the
intruder cannot judge the secret values by the small variance). Therefore, if an intruder only
has T; (e.g. Fig. 2.5(c)), then no information about the secret image is unveiled. Fig. 2.5(h)
shows statistical analysis of the second transparency. The result is similar to Fig. 2.5(g), so it
is also secure. Fig. 2.6 shows the second experiment.

29

d (e)

0% 50% 100% 0% 50% 100%
WY — — W jm—
= WIWHWE mmem— = WIFFE pm—
5 TUEW |mm— L WEW m—
£ TER s m— £ TWER i
= WEWW | — = FEWW | —
S WEWE | m— 4 WEWE e —
= WERW emem— S WBEW |jmem—
T TVEBE emem— 5 VBBB s
? BWIHH p—m——— -?" BWWEF s—
'T' BWTE mmwm— T BWWE pmep—
& EBWBW |pemem— & EBWEW |jpmp—
= BWEE mmvpm—— = EWEER pmwmmm——
A BEWT e m— A BEWW | m—
o BEWE o BEWE
@ BEEW | m— & BEBW | m—
BEBE e BRERR
=(0,0) m(0,1) ={1,0) m(1,1} =(0,0) m(0,1) m(1,0) m(1,1)
(9) (h)

Fig. 2.5. Security test of scheme 1. (a-b): The two secret images; (c-d): The two generated
transparencies; (e-f): The two stacking results; (g): Statistical result of (c); (h): Statistical
result of (d).

30

(©

0% 50% 100% 0% 50% 100%
. T ——
= I = R e
- I - WIWEW
g8 . & WWEE pmmvamm
= e . = WEFT |
5 wEWE | 2 PEWE
; WBRW | ; FFEBT |l
& WEBER pmmminmm &' WEBEE mmmonmm
% BWFWE e '?" BEWFH
'T' BWWE mmeemm 'T' EWTWE e
£ EWEW e & EBWEW psees
2 BWEER |meemm = BWEE s
S BEUW | % BEWW |
-3 BEWE e = BEWE |jmmeemm
@ BEBW pemaemm & BERW e
EBEEER e BEER pmmwemm

W {0,0) m{0,1) W (1,0) W{1,1) W (0,0) W{0,1) m{1,0) WM(1,1)

(d) () ()

Fig. 2.6. Security test of scheme 2. (a-b): The two generated transparencies; (c-d): The two

stacking results; (e): Statistical result of (a); (f): Statistical result of (b).

2.2.3 Comparison with other studies

Table 2.3 lists the comparisons with previously reported VC methods [1, 3, 19, 20, 22].
Many reported methods had pixel expansion problem; and non-expanded methods often
encoded only a single secret image. The proposed method encodes double secret images, and

does not cause any pixel expansion.

Table 2.3. Characterization of VC methods

Pixel-expansion)
Methods Number of hidden secrets
factor

31

Naor and Shamir [1]
Yang’s [20]
Shyu [22]

Wu and Chang [3]
Shyu et al [19]
The proposed method

Single

double

[EEY I O I Y SN SN S

Previously reported VC methods [1, 3, 19, 20, 22] are implemented. First, single-secret
VCs [1, 20, 22] are demonstrated in Fig. 2.7, and let the number of transparencies is two for
each method. Figs. 2.7(a-c) show Naor and Shamir’s method [1]. The expansion rate is 4
(ours is 1), and the contrast is 1/2 (ours is 1/6 or 1/4). Figs. 2.7(d-f) show Yang’s method [20].
The contrast is 1/2, and the stacking result (f) is also tumultuous and hence not as good as
Naor and Shamir’s; but this is because there is no expansion (just like ours). Figs. 2.7(g-i)
show Shyu’s method [22], and the result. is;similar to Yang’s. Notably, the three methods [1,
20, 22] only encode a single secret 1mage in two transparencies, but the proposed method

encode two secret images; so [1, 20, 22] has better visual-quality than ours.

32

R e
(h)
Fig. 2.7. Three “single-secret” (2, 2) VC methods. (a-c): Naor and Shamir’s method: (a-b) are

the two generated transparencies, and (c) is the stacking result. (d-f): Yang’s method: (d-e) are
the two generated transparencies, and (f) is the stacking result. (g-i): Shyu’s method: (g-h) are

the two generated transparencies, and (i) is the stacking result.

Next, in Figs. 2.8 and 2.9, we demonstrate two circular VC methods [3, 19]. Both
methods encode multiple secret images in two circular transparencies, and each secret image
is revealed by stacking the two transparencies with a rotation of the first transparency using a
pre-defined degree. To facilitate the comparison, let.the number of secret images be two, and
the rotational degrees be 0 degree and-180 degree.

Figs. 2.8(a-b) are the two circular transparencies T,-and T, generated by Wu and Chang
[3] in which the expansion rate is 4 (each-secret pixel is represented as a 2x2 block in two
transparencies), and the contrast is 1/4. Fig. 2.8(c) is the results of stacking T, and T,; and Fig.
2.8(d) is the results in which T; is rotated-180-degree and stacked with T,. Let wh denote the
width of secret image, two pixels ti(i, j) and ty(i, j+wh/2) are at two opposite positions in Ty,
and so are to(i, j) and tx(i, j+wh/2) in T,. In the stacking, the secret S; is revealed by stacking
t1(i, J) with to(i, j) to decode si(i,), and stacking ti(i, j+wh/2) with t,(i, j+wh/2) to decode s;(i,
j+wh/2); the second secret is revealed by stacking ti(i, j+wh/2) with ty(i, j) to decode su(i, j),
and stacking ty(i, J) with to(i, j+wh/2) to decode s,(i, j+wh/2). Therefore, the two pixel values
(t2(1, J), ta(i, j+wh/2)) form a symmetric pair, and so do (to(i, j), t2(i, j+wh/2)). Since the four
secret pixels [s:(i, j) , si(i, j+wh/2) , so(i, j), so(i, j+wh/2)] have 2*=16 possible colors
{WWWW, WWWB,..., BBBB}, to test the security of 16 types of colors, an experiment is
shown in Figs. 2.8(e-l). Figs. 2.8(e-f) illustrate two secret images S; and S,, which consist of
16 equal sub-regions from top to bottom, and in each sub-region, s(i, j) and s;(i, j+wh/2) are
at the left and right sides of Sy, and s,(i, j) and sy(i, j+wh/2) are at the left and right sides of S,.
Then those four sections (the left and right sides of S; and the left and right sides of S,) in

each sub-region are painted using all possible colors {WWWW, WWWB,..., BBBB},
33

respectively. The generated transparencies are shown in Figs. 2.8(g-h). Fig. 2.8(i) shows the
result of stacking T, and T,, and Fig. 2.8(j) is the result of stacking the rotated T; with T».

To inspect the security issue of transparency Ti, Fig. 2.8(k) displays the probability
distribution of symmetric pairs [ti(i, j), t1(i, j+wh/2)]€{[0,0], [0,1], [1,0], [1,1]} in each
sub-region, where the probabilities are [1/4, 1/4, 1/4, 1/4] for all types of colors. Therefore,
the first transparency is secure, because the intruder cannot judge the values of secret pixels
[s1(i, J), sa(i, j+wh/2), s(i, J), S2(i, j+wh/2)] by observing the probability distribution of
symmetric pairs. However, as shown in Fig. 2.8(l). The transparency T, leaks some
information; because in S; and S;, when the four secret pixels [si(i, j), si(i, j+wh/2), su(i, j),
so(i, j+wh/2)]e{WWWW, WBBW, BWWB, BBBB}, then the probability distribution of
symmetric pairs [to(i, j),t2(i, j+wh/2)]€{[0,0], [0,1], [1,0], [1,1]} is [1/4, O, O, 3/4]; when [s(i,
1), si(i, j*rwh/2), sx(i, j), so(i, j+wh/2)]e{WWWW, WBBW, BWWB, BBBB}, then the
probabilities are [0, 1/4, 1/4, 2/4], respectively. Hence, the intruder can judge whether the four
secret pixels [s1(i, J), s1(i, jJ+wh/2), sy(i, §); S2(i, j+wh/2)] are {WWWW, WBBW, BWWB, BBBB}
or not. In other words, if [0,0] pair or[1,1] pair appearin second transparency T, then we can
claim that the corresponding position-of secret images (S1 and S;) must be either [WWWW] or
[WBBW] or [BWWB] or [BBBB]. Likewise, if [0,1] pair or [1,0] pair appear in second
transparency T,, then we can claim that the‘corresponding position of input images (S; and Sy)
cannot be [WWWW] or [WBBW/] or. [BWWB] or [BBBB]. In summary, secret leaking occurs in
To.

(b)

(f)

(9) (h) (1)
0% 50% 100% 0% 50% 100%

W W

o WWWE o~ WWWE

S wwew S wwew

i WWBB L WWBEB

2 WEWW L WEWW

% WBWE % WEBWEB

= wesw T wesw

5 IWEBBE F TWBBE

= BWWW & BWWW

E_ BWWE g. EWTWE

L mwew L swew

< BWEE % Bwes

s BEWW = BEWW

= BEWE 2 BEWE

& BBEW & BBEEW

BEBE BBBE

i W (0,0) M(0,1) ®(1,0) M(1,1) W(00) M(0,1) m(1,0) WM{1,1)
) (k))

Fig. 2.8. About the method ‘of Wu and-Chang [3]. The expansion rate is 4. (a-b): Two
generated circular transparencies T; and T,. (C): The result of stacking T, and T,. (d): The
result of stacking rotational T; with:T,. (e=f):"Two new secret images S; and S,. (g-h): Two
new transparencies T, and T, generated from S; and S,. (i): The result of stacking T, with To.
(3): The result of stacking rotational T; with T,. (K): The probability distribution of symmetric
pairs for all 16 sub-regions in Ty. (I): The probability distribution of symmetric pairs for all 16
sub-regions in To.

Fig. 2.9 is a demonstration about the method of Shyu et al. [19]. Figs. 2.9(a-b) are the
two generated circular transparencies in which the expansion rate is 4, and the contrast is 1/4.
Fig. 2.9(c) is the results of stacking (a) with (b), and Fig. 2.9(d) is the results of stacking
rotated (a) with (b). The security test is shown in Figs. 2.9(e-l). Figs. 2.9(e-f) are the two new
secret images which are the same as Figs. 2.8(e-f). Figs. 2.9(g-h) are the two generated
transparencies, and the stacking results are Figs. 2.9(i-j). The security of T; is shown in Fig.
2.9(k), where the probability distribution of symmetric pairs [ti(i, j),t:(i, j+wh/2)]€{(0,0),

0,1), (1,0), (1,1)}is [0, 1/4, 1/4, 2/4] in all types of colors, so T is secure. On the other hand,
35

T, may leaks some information. The security of T, is shown in Fig. 2.9(1). When the four
secret pixels [sa(i, j), si(i, j+wh/2), s(i, j), s2(i, j+wh/2)]e{WWWW, WBBW, BWWB, BBBB},
the probability distribution of symmetric pairs is [1/2, 0, 0, 1/2]; when the four secret pixels
are {WWBB, WBWB, BWBW, BBWW}, the probability distribution is [0, 1/2, 1/2, 0]. When
the four secret pixels are in {BWWW, WBWW, WWBW, WWWB, WBBB, BWBB, BBWB,
BBBW}, the probability distribution is [1/4, 1/4, 1/4, 1/4]. Therefore, the intruder can judge
and divide the four secret pixels [si(i, j), Si(i, J+wh/2), so(i, j), S2(i, jJ+wh/2)] to 3 sets by

observing the probability distribution of symmetric pairs in transparency To.

@) (h)

36

0% 50% 100% 0% 50% 100%
W W
5 PWE & "B
T wwew S wwew
I Wws3B £, wwas
g WEEW g WERW
= WBWE s WBWE
= wesw T wesw
% WBEB % WBBB
& BWWW & BWWW
% BWWB % BWWB
T BEWEW . BWEW
< BWBB S BWBB
Z BaWW = BWW
= BEWE > BBWE
% BBRBW % BBEW
BEEE BBEE

®m(0,0) m{0,1) ®m{1,0) W(1,1) m(0,0) ®m{0,1) ®m{1,0) W{1,1)

() (k) (1)

Fig. 2.9. About the method of Shyu et. al [19]. The expansion rate is 4. (a-b): Two generated
circular transparencies Ty and T,. (c): The result of stacking T, and T,. (d): The result of
stacking rotational T; with T,. (e-f): Two new secret images S; and S,. (g-h): Two new
transparencies T; and T, generated from Sy and'S,. (i): The result of stacking T; with T,. (j):
The result of stacking rotational Ty with T,. (k): The probability distribution of symmetric
pairs for all 16 sub-regions in T4. (I): The probability distribution of symmetric pairs for all 16
sub-regions in To.

Figs. 2.8 and 2.9 show two'well-known circular V/Cs [3, 19]. Stacking results of the two
methods [3, 19] are 100% opaque both, and their contrast f=1/4 is better than our 1/6. But, as
shown in Fig. 2.8(l) and Fig. 2.9(1), Methods [3, 19] are not of perfect security: the second
transparency generated by [3, 19] have secret-leaking problem. In summary, under the
constraint of avoiding secret-leaking (the fundamental requirement of VC), the best contrast
value can be achieved is 1/6 (or 1/4, if the block pixels in stacking results are not restricted to
100% opaque), and ours already achieve this optimal contrast value 1/6 for scheme 1 (and 1/4
for Scheme 2). So we may say that ours are with conditionally optimal contrast under
perfect-security requirement. As for others (e.g. [3, 19]), they might have contrast values

better than ours, but it is because their methods did not meet perfect-security requirement.

2.2.4 The expanded version of our method
In order to yield no expansion, we use probability model to encode the shares. The price is
that it may cause non-harmonic disarray of stacking result. If we are not constrained by the

no-expansion rule, then all columns of basis matrix are used to encode the secret pixels [si(i,
37

D, su(i, j+wh/2), s(i, J), s2(i, j+wh/2)], therefore, the expansion rate is the value of r. The
results are as shown in Figs. 2.10 and 2.11. Fig. 2.10 shows the expanded version of flip
scheme 1, with the expansion rate being 6=3x2. (Notably, r=6 is the minimal r we can have
for Scheme 1. On the other hand, r will also be the expansion rate for our expanded version.
So, in the expanded version, our minimal expansion rate will be 6 for Scheme 1 [8 for
Scheme 2 because minimal r is 8 for scheme 2].) Fig. 2.10(a-b) shows the two generated
transparencies, and (c-d) shows the stacking results. Fig. 2.11 shows the expanded version of
flip scheme 2, with the expansion rate being 8=4x2. Fig. 2.11(a-b) shows the two generated
transparencies and (c-d) show the stacking results. We can see that the visual quality is
competitive again. In summary, the disarray of stacking result is due to the requirement of
no-expansion, along with the perfect security for double secret; but the major weakness of
pixel-expansion VC is that the size of transparencies will expand several times and waste

space for carrying or storage.

©) (d)

Fig. 2.10. The expanded version (block-based rather than pixel-based) of our scheme 1. (a-b):

The two generated transparencies where the two secret images are Figs. 2.3(a-b). (c): The
result of stacking (a) and (b). (d): The result of stacking (b) with the flipped version of (a).

38

©) (d)

Fig. 2.11. The expanded version (block-based rather than pixel-based) of our scheme 2. (a-b):

The two generated transparencies where the two secret images are Figs. 2.3(a-b). (c): The

result of stacking (a) and (b). (d):“The result of stacking.(b) with the flipped version of (a).

2.3 Discussions

In this section, some related topics are discussed in this section. Sec. 2.3.1 addresses the
method of finding the basis matrices.of FVC, and.Sec. 2.3.2 shows the contrast values of the

proposed method by other definition of‘contrast.

2.3.1 How to find the basis matrices of FVC

Basically, we may say that people can create these basis matrices by exhaustive search,
as long as they meet the specified requirements. However, in reality, to save searching time,
some basis matrices can be generated from others by exchanging rows. For instance, suppose

the matrix Cewww Of scheme 1 is set to

CBWWW =

=)
S =)
o o K
o O R K
N Tl
e

0

where the B is represented by stacking the 1% and 3™ rows to obtain six 1s, and the three W are
represented by stacking the 2" and 4™ rows, the 2" and 3" rows, and the 1% and 4™ rows,

respectively, to obtain one 0 and five 1s. Then the 1% and 2™ rows can be exchanged to get
39

CWWBW =

o O O
N =
o R Bk

0
1
0
1

N
i

0

where the B is by stacking the 2™ and 3™ rows, and the three W are by stacking the 1% and 3"
rows, the 2" and 4™ rows, and the 1% and 4™ rows. Using this method, we can generate four
basis matrices Cagwww , Cweww, Cwwew and Cwwwe, as long as one of the four matrices is
found.

Actually, all the 16 basis matrices can be divided into 6 sets, namely, {Cwwww}, {Cawww ,
Cweww, Cwwaw, Cwwwa}, {Cwssw , Cewwa, Cewsw, Cwewe}, {Cwwes , Cesww}, {Cssew , Caawe,
Cswes, Cwsess}, and {Cgggs}. In each set, only one matrix needs to be found, and the
remaining is generated by exchanging the rows. Therefore, only 6 basis matrices are actually
searched.

Next, to search the basis matrices, we need decide the value of r. The factor to determine
the value r is the contrast of the constructed basis matrices. For basis matrices whose width is
r, the possible contrast is 1/r, 2/r, 3/r,...; rir. In Sec. 2.1.2, we already proved that the upper

bound of contrast of scheme 1-is 1/6. In symbols; the contrast is
lilrlriez,0<i/r <1/6}.

To reach 1/6 (the upper bound of contrast for Scheme 1), the value r must be a multiple
of 6. If r is not a multiple of 6, then: the.possible contrast i/r cannot equal to 1/6, so the
contrast will be less than 1/6.

Analogously, in Scheme 2, the width (i.e. value r) of basis matrices must be a multiple of
4, because in Sec. 2.2.2 we already proved that 1/4 is the upper bound of the contrast for
Scheme 2. Unfortunately, when r=4, we could not find the basis matrices even after
exhaustive search. So we tried r=8 and obtained the basis matrices shown in Table 2.2 whose

contrast reached the upper bound 1/4.

2.3.2 Discussion about contrast values
In our method, the two definitions follow the basis matrices definitions which are given
by Naor and Shamir[1], but some details are modified to conform to the structure of FVC.
The (t, n) Visual cryptography, which is defined by Naor and Shamir [1], needs two basis
matrices to encode a secret pixel which has only two values {W, B} in a secret image;
however, our method needs consider four secret pixels simultaneously (two pixels in S; and
40

two pixels in S,), so it needs 2*=16 basis matrices to encode four pixels. However, the
contrast evaluation in [1] did not consider the fact that, in darker image, human eyes have
higher sensitiveness about (real-life-sense) contrast (This fact was mentioned in Ref. [69] by
Liu et al.). To overcome the drawback, we bring up two schemes in the proposed method,
where Scheme 1 set the black color of stacking result is 100% opaque, and scheme 2 do not
set the constraint. We let the readers choose the one they like.

Liu et al. [69] gives a new definition of contrast for expanded VC (i.e. each secret pixel
is encoded into many pixels in transparencies), but our design is a non-expanded VC (i.e. each
secret pixel is encoded into a pixel in transparencies). For readers benefit, we also give the
contrast value defined by Liu et al. [69], when the expanded VC version shown in Figs. 2.10
and 2.11 are used. The expanded Scheme 1 has contrast

Liu _ (h—1)m h=61=5m=6 —£~0146
hm—h)+l(m=-D+m ————"41

and the expanded Scheme 2 has contrast

LiU: (h—l)m h=71=5m=8 :£~0186
h(m—h)+hm=l)+m ——"x"43

2.4 Conclusions

Opaque-oriented and non-opaque-oriented F\VC'schemes are both introduced in this
chapter. We have proved that both schemes.satisfy perfect security and they are conditionally
optimal in contrast. The generated transparencies do not lead to any expansion of size. The
experimental results show the revealing of double secrets via flipping and stacking the
transparencies together.

Just like other VC methods, the whole decoding process uses no computer or any
computation; so the decoding is very fast, and can be used in environment where computer is
not stable or available. Due to the double-secrets feature of the proposed method, one of the
applications is the double checking of ownership for personality identification. Since the size
Is non-expanded, the space needed to carry a transparency to a meeting is economic (size is

the same as the space needed to carry an original image).

2.5 Appendix

In this section, the conditionally optimal contrast in opaque-oriented FVC and

41

non-opaque-oriented FVVC are proven, respectively.

2.5.1. The proof of conditionally optimal contrast in opaque-oriented FVC
In this subsection, the contrast in opaque-oriented FVC, which is no more than 1/6, is
proven. To satisfy the security constraint, the constant-ratios (a, :a,’:a, :a;) and

(ag :a, :ay :ar) in basis matrices C[si(i, j), s1(i, wh—1-), s2(i, j), S2(i, wh—1—j)] must meet

Eq. (2.2-2.3). Moreover, in the first and second rows of each basis matrix, the occurrence of
[00]7, [01]7, [10]", [1 1]" must keep the constant ratio (ay :a’ :ay :a.); and in the third
and the fourth rows of each basis matrix, the occurrence of [0 0]", [0 1]7, [1 0]", [1 1]" must

keep the constant ratio (a; :a, :aj :as). For each basis matrix, ¢,y > 0, where u =0,1,2,3

and v=0,1,2,3, is defined as the percentage of column [u/2| umod2 |v/2] vmod2]

which appears in columns of the basis matrix.
By the security constraint, we know

U
u

a, =C,o+ € +C,,+Cyyforu=0,123; (2.5)

a, =Coy +Cpy +C,, 4¢3, fOrv=0123. (2.6)

By the definition of luminance transmission, the four stacking results s'y(i, j), s'1(i, wh—-1-),

s'>(i, J), s'2(i, wh—1—) are represented by stacking two.specific rows in basis matrix, which
consists of 16 possible columns [{u#2)--umed?2 |v/2] vmod2] , where u, ve{0,1,2,3}.

Therefore, the luminance transmission of each stacking result s'1(i, j), s'1(i, wh=14), s™(i, J),
s'>(i, wh—1-) can be represented by the sum of a subset {c,,} which satisfies the result of
stacking two specific rows defined in Definition 2.2.

1. The luminance transmission of stacking result s,(i, j) is

3

3
ZZCU’V x((U/2]®|V/2))=Cyy+Coy+Cip+Cpy - (2.7)

u=0v=0

2. The luminance transmission of stacking result s;(i, wh—-1-) is

3

3
ZZCU’V x((umod2 |®[vmod2]) =Cy o +Cop +Cop +Cyy - (2.8)

u=0v=0

3. The luminance transmission of stacking result sy(i, j) is

3

3
ZZCU’V x((umod2 [®[V/2]) =y +Cop +Cpp +Cpy - (2.9)

u=0v=0

4. The luminance transmission of stacking result s,(i, wh—1-j) is
42

3

3
chu,v x(u/2]®[vmod2])=c,,+Cy, +Cro+Cp,- (2.10)

u=0v=0

where o is the complement operator. The contrast a satisfies the Eq. (2.4). Notably, the
luminance transmission of representing B is 0 and representing W is the contrast a by the
definition of opaque-oriented FVC. Therefore, the complement operator is used in Eq.
(2.7-2.10) for opposite definition between B(1)/W(0) pixels and luminance transmission.
Some basis matrices are considered below to gain the upper bound of contrast a.

I. Consider the basis matrix Cgggs. By EQ. (2.7-2.10), the luminance transmission of
the four secret pixels si(i, j), s1(i, wh—=1-), su(i, J), S2(i, wh-1-) are

Coo +Coy +Crp+Cy =0;
Coo +Coz +Cho +Cp, =0;
Coo +Cpy +Cop +Cyy =0
Coo +Cop +Crg +Cp, =0.

Due to cyy >0, for all u, v. Therefore, coo=Cy1=Cq2=C10=C11=C12=C20=C21=C2,=0. By EQa.
(2.5),
U .
Ay =Cgo tCo1 +Co5 +Co3 =Cp3;
U .
A =0+ Cp+Ci, +C5 =Co3;
U
Ay =Cy0+Cyy £C55+Cy3=0Cy3.
By Eg. (2.6),
L .
8y =Cpg +Cp+Cy+Cy0=Csgp;
L .
a, =Cpy +C; +Cyy +C5y =Cgy;,
L
a; =Cpp +Cp +Cyy +C5, =Cy,.
By Eq. (2.5), @; =Cyq+Cyy +C5, +Cyq 2Cqg +Cyy +C5, =8y +a, +4, . Therefore,
ay >a; +a, +a,
=1-a) —a’—a, >a; +a, +a,
= (a; +a, +a;)+(a; +a +a;)<1
=(l-a))+(@1-a;)<1
U L
=ay; +ag =1 (2.11)
Il. Consider the basis matrix Cgwgs. By EQ. (2.7-2.10), the luminance transmission of

the four secret pixels si(i, j), s1(i, wh—=1-), su(i, J), S2(i, wh-1-) are
43

Coo +Co1 +C1o+Cy =0
Coo +Cop +Cpo+Cpp =X
Coo +Cpy +Cpp +Cpy =0
Coo +Cpp +Crg+C, =0.
Therefore, C€o0=Co1=Co2=C10=C11=C12=C20=C1=0, and cp,=a. By Eg. (2.5) and Eq. (2.6),
@, =Cpq+Cpy +C,p, +Cyy 2C,,,and @y =Cy, +Cy, +Cy, +C5, 2C, 5, SO
a<ay and a<a;. (2.12)
I1l. Consider the basis matrix Cygsw and Cwsws. When the basis matrices is Cwggw, by
Eq. (2.7-2.10), the luminance transmission of the four secret pixels s,(i, j), s1(i, wh=1-), sx(i,
1, s2(i, wh-1-) are
Coo +Coy +Cro+Cyy =t
Coo +Cpp.+Chp +Cyp =0;
Coo +Coy +Co5%C,, =0;
Coot CarClhCNG= o -
Therefore, ¢y 0=Co1=Co2=C2,0=€2,1= C22=0, and

X=C+C 1 =C o +C5

= a=(Co+Cy+C,+C,)/2=[(Cy+Cy+C,)+C]/2
Because, by Eqg. (2.5),
& =Co+Cpy+C,+Cy2C o +Cy +Cpyp,
and by Eq. (2.6),
8y =Coo+Co+Cphy+Cyg 2Cpy,
so the contrast
a=[(C+Cyy +Cp,)+C]/2
<(a, +ag)/2. (2.13)
When stacking result is Cwsws, by EQ. (2.6), the average luminance transmission of the four
secret pixels si(i, J), s1(i, wh—=1-), su(i,), s2(i, wh—1-) are
Coo +Coy +Cro+Cyy =t
Coo T Cop +Cpo +Cy, =0;

Coo TCoy +Cpo+Cyy =0,

44

Coo +Cpo tCrg+Cip= 0.

Therefore, ¢y 0=Co2=C1,0=C12=Cz0= C22=0, and

@ =Coq +Cyy =Coy +Cyy

= a= (CO,l +C +Cop + C2,1) 12= [(Co,l +Cp t Cz,l) + 00,1]/2
Because, by Eq. (2.5),

ay =Cyq +Coy +Cy, +Cyq 2Cyy, and by Eq. (2.6),
&, =Cg; +Cy; +Cy,y +Cyy 2Cy,, SO the contrast

a=[(Co; +C;y +Cp1) +C;,1/2
<(a, +ay)/2. (2.14)
By Eg. (213) and (214), «a<(a +a;)/2, and a<(a, +a;)/2 , we have
20 < (8 +ag)/2+(a; +a,)/2,s0
a<(a’ +ay+a, +a;)/4. (2.15)
a<(a’ +a;+a; +a;)/4 (ByEq.(2.15))
=[1-(a; +a; +a; +a})]/4 (By Egs.(2.2)and (2.3))
<[l-(aj+a5)l/4 (a,>0,b, >0)
<(1-2a)l4 (ByEg.(2:12))
= a<1/6.
Therefore, the contrast of opaque-oriented FVC.is 'no more than 1/6 if perfect security is

required. The result also means that the encoding matrices shown in Table 2.1 are the optimal

solution.

2.5.2 The proof of conditionally optimal contrast in non-opaque-oriented FVC
Non-opaque-oriented FVC also satisfies Eq. (2.2-2.10). In the following, w is the
luminance transmission of stacking result to represent white pixel W, b is the luminance
transmission of stacking result to represent black pixel B, and a=w-b is the contrast. Some
basis matrices are considered below to gain the upper bound of contrast «.
I. Consider the basis matrix Cywes. By EQ. (2.7-2.10), the luminance transmission of
the four secret pixels si(i, j), s1(i, wh—=1-), su(i, J), S2(i, wh-1-) are

Coo TCog +Cip+Cyy =W,

Coo TCpptChg+Chy =W,

45

Coo +Co1 +Cpo+Cpy =h;
Coo +Cop +Cro+Cyp =h.
By Eg. (25-2.6), a =Cy, +C; +Cypy +C;, 2Cy,, and @, =Cy, +Cp, +C,, +Cy, €,y .

Therefore,
a=w-b=[w+w-b-Db]/2
=[(Coo +Co1 +Cio+C1) +(Cop +Cop +Cyp+Cyp) —
(Co,o TCoy +Cyo + C2,1) - (Co,o TCop +Co + Cl,z)]/z

=[(c +C,,)—(Crp +C,)1/ 2<(Cyy +C,,) 1 2< () +ay)/ 2. (2.16)

Il. Consider the basis matrix Cywww and Cgggs. For the basis matrix C[W, W, W, W],
by Eq. (2.7-2.10),

Coo+Co1+Cig+Cpy =W,
Coo+Cop+Cpg+Cpp =W,
Co0 ¥ Coq+Cyp+Cpy =W,
Coo T . NE,= V.
By Eq. (2.5), AR ML P B S > C +Co, +Cy 5 and
& =Co+Cyy+C,+0C32C0+EyH +C 5.
By Eq. (2.6), by =Cyq+Cpo+Cop+Cy0 = Cy,+Cy . Fherefore,

W= [(Co,o +Cp1 +Cp + C1,1) + (Co,o +Cp, +Cp + C1,2)]/2

= [(Co,o +Cop + Co,z) +(Cpp +Cpy +Cpp) + (Co,o + Cl,o)]/ 2

<(ay +a +ag)/2 (2.17)
For the basis matrix Cgggs, by EQ. (2.7-2.10),

Coo+Cos +Cro+Cy =D;
Coo+Cop+Cog+Cyp=D;
Coo+Cos+Cpp+Cyy =D
Coo+Cop+Co+C,=D.

By Eq. (2.12), @y =Cys+Cy3 +Cp5+Cy5 2 Coy +Cy,. Therefore,

46

b=[(Cyy +Cpy +Cpg+Cpy)+(Cop+Cyp+Cpg+Ciy)l/2
2 [(Co,o +Co1 t Co,z) + (Cl,o +Cpy t+ Cl,z)]/ 2
=[(Coo +Coy +Cpp +Cos) +(Cro+Cpy +Cppy +Crg) —(Cos +Cy3)]/2

>(a, +a, —as)/2 (2.18)
By Eq. (2.4), Eq.(2.17) and Eq.(2.18),
a=wW-Db
<(a; +a, +ag)/2—(a;, +a, —ay)/2
=(ay +2a5)/2 (2.19)

By Eq. (2.16) and Eq.(2.19),

a<[(a +ay)/2+(ay +ar)/2]/2

=(ag +a, +a; +ar)/4

=1/4 (ByEq.(2.6)).
Therefore, if non-opaque-oriented FVVC is used, then the conditionally-optimal contrast is 1/4.
The result is better than the conditionally-optimal contrast value 1/6 of the opaque-oriented
FVC. The encoding matrices shown in Table 2.2 are conditionally optimal, because a)
Property 2.2 shows that, for these matrices, the contrast of stacking result is 1/4; and b) the
proof given above indicates that: ‘under the perfect security constraint, no basis matrices can

yield a contrast larger than 1/4.

47

Chapter 3
Fast Weighted Secret Image Sharing

Thien and Lin [Computers and Graphics 26(5), 2002, pp. 765—770] proposed a threshold
scheme to share a secret image among n shadows: any t of the n shadows can recover the
secret, whereas t—1 or fewer shadows cannot. However, in real life, certain managers probably
play key roles to run a company, and thus need special authority to recover the secret in
managers’ meeting. (Each manager’s shadow should be more powerful than an ordinary
employee’s shadow.) In Thien and Lin's scheme, if a company has less than t managers, then
manager’s meeting cannot recover the secret, unless some managers were given multiple
shadows in advance. But this compromise causes managers inconvenience because too many
shadows to be kept daily and carried:to’ the' meeting. To solve this dilemma, a weighted
sharing method is proposed: each.of our shadow has a weight. Secret is recovered if and only
if the total weights (rather than the number) of received shadows is at least t. To accelerate
sharing speed, properties of GF(2") are utilized. Time-saving is shown. Besides, the method is
also a more general approach'to polynomial-based sharing. Moreover, for convenience, each
person keeps only one shadow and only one shadow-index.

The rest of the chapter is organized as follows. Sec. 3.1 reviews the related works. Sec.
3.2 describes the details of the proposed fast weighted secret image sharing method. Sec. 3.3
shows the experimental results, comparisons and security analysis. Finally, Sec. 3.4 draws the

conclusions.

Notations of this chapter:

t The threshold of secret sharing.

n The number of shadows of secret sharing.

f(x) The sharing polynomial where f(x)=ag+a;+...+a.1x"* (mod p).
p A prime number.

Wi The weight of the shadow h;.

hi The i" generated shadow.

9" (X)) g"(x)=f(x) (mod (x=i)" is the i" shadow.

GF(p") Galois field which contains p* elements.

48

&) XOR operator

3.1 Related works

Sec. 3.1.1 introduces the Thien and Lin’s sharing method, and Section 3.1.2 introduces the
Galois field which will be utilized in this chapter.

3.1.1 Thien and Lin’s secret image sharing method[7]
In the sharing phase of Thien and Lin’s (t, n) threshold method, for each non-overlapping
t pixels of the secret image, the corresponding polynomial is defined as
f(x)=a,+a,xX+---+a,_ xx" (mod p) (3.1)
where ay, ai,..., ar1 are the gray values of each t pixels, and p is a prime number. Then
f(2), f(2),..., f(n) (3.2)
are evaluated and assigned to the n shadows sequentially. After processing all pixels in the
secret image, the n shadows are thus generated. Since each t pixels in secret image only
contributes one pixel to each generated shadow, the size of which is 1/t of the secret image.
As for the revealing phase, when any t of the n-shadows are received, the first not-yet-used
pixel from each of the t shadows Is taken, and these .t pixels can be used to solve the
coefficients ag, ay, ..., ar1 in EQ. (3.1) by using-Lagrange’s polynomial. After sequentially

processing all pixels of the t shadows;.the secret image can be obtained.

3.1.2 Galoisfield

Galois Field GF(p") is a finite filed that contains p* elements, where p is a prime number,
and Kk is a positive integer. (Thien and Lin used p=251 and k=1, but we use p = 2 and k=8 in
our method.) A finite field also equips with two operators: addition(+) and multiplication(e).
Both operators must satisfy the commutative, associative, and distributive laws. The
manipulation of addition and multiplication under GF(2") are introduced below. Before doing
GF(2Y) arithmetic, an k-degree binary-coefficient polynomial m(X), called primitive
polynomial, have to be defined first. Primitive means that m(X) has a root «, and {0, 1, «,

o, .., azk’z} is the all elements in GF(2") (the multiplication operator is defined below).

About more details of the primitive polynomial m(X) and the root a, please see S. Lin and D. J.
Costello[70]. Here, we will use k=8 and m(X)=1+X*+X3+X*+X®in our experiments.

Let A® and A® be any two elements in GF(2). Then define the addition operator as

49

A%+A= A" AT,
where & is the XOR operator. The multiplication operator x is somewhat more complicated.
Before doing multiplication, convert the two elements A° and A* to two binary polynomials
A’ =(al,..a'al), »al +a’x+..+a) X T,
A" =(a; ,..a;ap), = ag +ajx+...+a; X,
Then do the following polynomial multiplication and modulus operations
(@ +alx+..+a) X ") (a} +alx+..+a._, X “")(modm(X))
= (aJ”a)) +(@la @a’”al)X +..+(a Mar_)X *?(modm(X))
= a2 +a’x+..+a’ X,
where " is the AND operator. Finally, the result for A’<A’ can be obtained by
A’XA'=A’= (a2 ,a’..a2),.
Remark: In general, there exist other definitions for addition and multiplication operators.
(The details about GF(2¥) can see be found:in:[70].) But we will use the above definition for

addition and multiplication throughout the chapter.

3.2 The proposed method

This section has three subsections: 3.2.1 is for-weighted secret image sharing; 3.2.2 is for
weighted secret image revealing; 3.2.3 shows the- improved weighted secret image sharing
algorithm based on GF(2Y).

3.2.1 Theweighted secret image sharing phase
According to the Chinese Remainder Theorem for polynomials, when we divide
f(x)=ap+ax+...+a. X!
by a factor (x—), the remainder is h(i). In symbols,
h(i)= h(x) mod (x—).
Now, when we apply mod p on both sides, we have
f(i) = h(i) mod p = [h(x) mod (x—)] (mod p)

where f(i) = h(i) (mod p) is due to the equation f(x) = ag+ax+...+a;..x"* (mod p) = h(x) (mod
p) defined in Eq. (3.2). Therefore, in Galois Field GF(p), i.e. in the field of mod p, we may
say that f(i) and [h(x) mod (x—)] are equal. In symbols,

f(i) = h(x) mod (x—) = ag+a;x+...+a.1x"* (mod (x—i)) (3.3)

50

in Galois Field GF(p). That is to say, if we divide that polynomial ag+ax+...+a.1x"* by (x-),
then the remainder is a number. If we divide this number by p further, then we obtain f(i). In
this chapter, to define our own formula of the weighted secret image sharing with the (t, n)

threshold scheme, we extend Eqg. (3.3) as
9" (X) = ap+ax+...+a X (mod (x—i)), (3.4)
where w, is the shadow weight and i=1, 2, ..., n. Also, rather than explaining Eq. (3.4) in the

GF(251) that Thien and Lin used, we explain Eq. (3.4) in the Galois Field GF(Zk).

As stated in Sec. 3.1.2, k is a positive integer, and we will use GF(28) in our experiments.
Before sharing each non-overlapping t pixels of the secret image using weighted secret

image sharing with (t, n) threshold scheme, the secret image is encrypted first. Next,
9" (X), 95" (X, " (X) (3.5)
are computed using Eq. (3.4). Then, the w;, coefficients of the polynomial g;"(x) in order

of decreasing power of x are sequentially assigned to the corresponding shadow h;. After
processing all pixels in the secret image, the n shadows {(h;, wi), (hz, wy), ..., (hn, Wy)} are
generated. Since t pixels in secret image contribute w; pixels to the generated shadow h;, the
size of which is wj/t of the secret image.

In the proposed (t, n) threshold weighted secret image sharing scheme, the two values
index i and weight w; of the generated shadow h; are needed for revealing the secret image
where 1<i<n. Like Thien and Lin’s method[7], the value i can be attached to the head of the
shadow h;. As for the value w;, it can be either simply attached to the head of the shadow h; or
calculated by the size of the shadow. Let the size of secret image be |S| and the size of shadow
be |hi|. Then, the weight w; can be calculated by the formula

LY .
s (3.6)

3.2.2 Theweighted secret image revealing phase

If someone gets any t”of the n shadows and the sum of the weights of the m shadows is
greater than or equal to the threshold t, then the secret image can be recovered. Without loss
of generality, let these t” shadows be {(hy;, Weu)s (s Wiz)s o (P W)} @nd

t

the first w,;;; not-yet-used pixels are sequentially

1wk“.] >t. Then for each shadow h,,

j=

51

taken and then assigned to the coefficients of polynomial gkw[kj[]” (x) in order of decreasing

power of x. After obtaining gkw[“j[]” (x) , we have the following equation

9yj () = T (x)mod(x —k[j])™" (3.7)

where j=1, 2, ..., t% Because the t”divisors (x—Kk[1])"®, (x—k[2])™?, ..., (x—k[m])"™™
in Eq. (3.7) are pair wised relatively prime, as stated in Sec. 1.4 of [71], f(x) can be solved

using extended Lagrange polynomial as

f(x)= i g:v[kj[]j] (X)Uj (x) (mOd (x— k[j])wk“])x lj (x— k[|])""k[l] 1

B3]

. (3.8)

where u; (x) = | [[(x—k[ID™™ (mod (x—k[j])"™)

1=1
1]

In addition, according to Chinese Remainder- Theorem for polynomials, the decoded f(x) is a

t' t'
unique polynomial with degree s less than Zwk[” \ BecauseZwk[j] >t, the polynomial f(x)

j=1 j=1

is identical to the original polynomial, where the degree of f(x) is less than t. In other words,
the t coefficients ay, as, ..., a.in Eq..(3.4) can be obtained.

After sequentially processing all pixels of the t“shadows, the encrypted secret image can be

reconstructed. The encrypted secret'image-is-then decrypted to obtain the secret image.

3.2.3 Thefast weighted secret image sharing algorithm
The computing time of Eq. (3.5) is improved by using the properties of GF(2"). The
utilized property is that the additive inverse of an element under GF(2") is the element. In
other words,
X=—X. (3.9
By Eg. (3.9), the following equation is derived:
(X—u)?=(X+u)?> =X+ XU+ Xu+u>=x*+xu—xu+u®=x>+u’. (3.10)
Then the Eq. (3.10) can be extended as
(x—u)? = (x+u)? = (X2 +u?)" = (x* +uH)?" = =x" +u?. (3.11)

where q is a positive integer, and u is an element in GF(2"). A generalized form is addressed

52

204 - 204
in Sec. 2.3 of [70]. Let Y a;x’ and (x+u) be two polynomials. Then » a;x’ is
j=0 =0
207 2912

divided by (x+u)" under GF(2") to get the quotient a, X* T+a, X C+..+a, and

29-2
; 207)| 20t g 20} 292 207t
the remainder (azq,171+a2qflu)x + (azq,172+a2q72u)x +...+(a0+a2q,1u) By Eq.
291

-1 .
+u®" . Therefore, ZajxJ can be expressed as

=0

20-1 20-1

(3.11), we have (x+u)" =x

q_
< 201 24" 20t

. 1
Zajsz(azq_lx +a, X Pt A [x+u) 4+
i=0

(3.12)
2071) o0l g 201 | 20l o 201
(azq,Ll +a, U)x + (azqt2 +a, U)x +...+ (ao +a,,U)
However, if uses Eq. (3.12) for sharing directly, the weight w; is restricted as power of two

(2%1). In order to achieving a generalized version, a recursive algorithm is proposed below.
Let 1< i, W«w, <2 and f(x)< f(x). Now, f(x)mod(x+i)* is solved

using the following recursive algorithm A(f(x), i, W) .

Algorithm 3.1. Fast weighted secret image sharing algorithm A(f(x), i, W,).

Input: a polynomial f(x), three positive-integers f(index), W, (weight), and t (a
value in {1, 2, 2% 23...},7and.f is the number of polynomial coefficients for
f(x)).

Output: The shadow values with index i and weight w. (The coefficients of

f (x)mod(x+1)™).

1. According to Eq. (3.12), rewrite f(x)as f(x)=Q(x)(x+1)"?+R(x), where
@(x) and ﬁ(x) are, respectively, the quotient and the remainder on dividing
f(x) by (x+1)"2=x"2+i"?0ver GF(2").

2. Compare W, with {/2:

Case 1: If W, =t/2, then

f (x)mod(x+1)"2 =Q(x)(x+1)? + R(x)
—Q()(x+1)"2+RX) =R(x) (mod(x+7)"2)

53

Therefore, return R(X).
Case 2: If W, <t/2, then
fx) (mod(x+1)™)=Q(x)(x+1)"2+R(x) = R(x) (mod(x+)").
Then, R(x)mod(x+1)" is recursively computed by A(R(X),i,W,,/2).
Finally, return R(x) mod(x +1)" .
Case 3: If W, >t /2, then
f (x) mod(x +1)"
=Q)(x+1)"? +R(x) (mod(x+i)*)
— (Gx) mod(x +)2 kx +)2 + R(x)
— (Gymod(x +)" x"2 +{¥2) 1 R(x) (- By Eq. (3.11))
Then, Q(x)mod(x +1)"2 IS recursively computed by

A(Q(x),l W —1/2,£/2) , Finally, return

((j(x) mod(x + iA)VA““‘A’Z)(xf’2 +172) + R

Notably, the above algorithm can be -abbreviated as a recursive function. Let

N ~ ~ f .
i =i, W =w,{=2"%",and f (x)= D 0x"4F(x). Then,

AT (x),1, W)
= AQ(X)(X+1)""2 + R(X),i,W,,f)

Casel:R(x), if W, =f/2
={Case 2: A(R(X),T,W,,f/2), if W, <f/2

/2
Case 3: A(Q(x),f —t12,812)(x"2 +172)+ R(x), if W, >f/2

Now, for the recursive function above, an example is given below.

Example 3.1. An demonstration of fast weighted secret image sharing:

Input of the demonstration:
i) A polynomial f(x)=2x>+5x*+2x>+6x?+3x+1 whose coefficients are all in GF(2°=8),
i.e. all in the range {0,1,2,3,4,5,6,7}.
i) A shadow index i=1, a shadow weight w;=5, and a threshold t=6.

Demonstration purpose:

54

Show how to compute the corresponding shadow value g;(x)= f(x) mod(x +1)% =

A

(0X™ +0x® + 2x° +5x* + 2x° + 6X* + 3x +1)mod(x +1)° where i =i=1, W =w =5, and

f(x) =D 0x" + f (x) = 0x"+0x’+2x°+5x"+2x°+6x°+3x+1 is the whole-power-of-two version of
i=t

f (by adding the missing zero coefficients to f so that all { = 2'%t1=2M:61_g coefficients

appear.)

Demonstration detail:

According to the recursive function of our sharing algorithm, we have

A

A(T (x),1,W,f)

(Ox7 +0x° +2x° +5x* + 2x% + 6x% + 3x +1,1,5,8)

A
A((0X® +0x% +2x +5)(X+1)* + (2X° +6X? +1x +4),1,5,8) (- Eq. (3.12))

A0X® +0x? +2x+5,1, 1, 4(x* +1%) + (2X° + 6x* + 1x+4) ("W, =5>{/2=4, .Case 3)

A(0x+0)(x+1)? + (2x+5),LL4Jx* +1) #2462 +1¢44) (- Eq. (3.12))

A(2x+5,1,1,2)(x* +1*) + (2x°#6x* +1x+4) . (=W =1<{/2=2, .Case 2)
= AR(X+1) + 7,11, 2(x* +1°)# (2% + 6X° + 1x +4) (- Eq. (3.12))
=7(x* +1)+ (2x® + 6x* +1x +4) (W =1=t/2=1, ..Case 1)
=7x" +2x% +6x° +1x +3.

Therefore, g;(x) = (Zx5 +5x* +2x3 +6x% +3x +1)mod(x +1)°

= A(0X" +0x° +2x° +5x* +2x° + 6X% +3X+1,1,5,8)= 7" + 2x° + 6X* +1x +3.

3.3 Experimental results, comparisons, and security analysis

Sec. 3.3.1 shows the experimental results. Sec. 3.3.2 compares our method with Thien and
Lin’s method. Sec. 3.3.3 is the discussion about the security of our method.

3.3.1 Experimental results

The standard 512x512 gray-level image Lena is shown in Fig. 3.1, which is used as the
secret image in the experiments. Fig. 3.2 shows the encrypted image of Fig. 3.1; the
encryption uses exclusive-OR operation between a random sequence and the gray values of

the secret image. GF(2%) is used in the sharing scheme. Then, the proposed fast weighted

55

secret image sharing with (=256, n=7) threshold scheme is used to share the encrypted secret
image Fig. 3.2, and n=7 shadows are thus generated shown in Figs. 3.3(a-g) with shadow
weight 160, 64, 24, 8,134, 12, 3, respectively. Fig. 3.4 is the image revealed by Figs. 3.3(a-d),
and the revealed image is identical to Fig. 3.1.

Fig. 3.5 compares the execution time in the weighted secret image sharing phase using
Thien and Lin’s (t, n)=(256, w;) threshold scheme[7] and our (t, n)=(256, 1) threshold scheme.
Notably, the execution time of our sharing algorithm is 7£3 mille-seconds for each of these
255 sets of weights; whereas the execution time increases linearly as the weight value
increases in Thien and Lin’s direct and repeated application (using multiple shadows to
simulate weighted feature).

Fig. 3.1. The 512x512 secret image Lena.

Fig. 3.2. The encrypted image of Lena.

56

(b) (© (d) () () (9)
Fig. 3.3. The (t, n)=(256, 7) secret sharing scheme in GF(2%). Each of the 7 shadow weight is

(a) 160; (b) 64; (c) 24; (d) 8; (e) 134; (f) 12; (9) 3.

Fig. 3.4. The image revealed from Figs. 3(a-d).

57

1000 /

900 /
800 /
700 /
600 /
500
/ e QuUrs
400

/ ==Thien and Lin's

300

Execution Time(ms)

200 . .
/ Slightly varied
100 around a horizontal
/ line of height = 7 ms.
0 - _— ——————

1 21 41 61 81 101 121 141 161 181 201 221 241

Weights

Fig. 3.5. The execution time in the weighted secret image sharing using Thien and Lin’s

(t=256, n=w,) threshold scheme® and our (t=256, n=1) threshold scheme.

3.3.2 Comparisonswith Thien and Lin’s scheme[7]
Some advantages of our method are listed below (compared with Thien and Lin’s
method).

Time complexity:

The time complexity of the weighted secret image sharing using Thien and Lin’s scheme®
and our scheme is analyzed as follows. Let |S| denotes the size of the secret image. For Thien
and Lin’s (t, n) threshold scheme®, when sharing each non-overlapping t pixels of the secret
image to Zwi shadows, based on Shamir’s seminal work, f(1), f(2), ..., f(Zwi) are

i=1 i=1

computed using Eq. (3.1). Because there are t multiplications and (t —1) additions in Eq. (3.1),

the time complexity of sharing secret image with size |S]| to Zwi shadows using Thien and
i=1

Lin’s scheme is H(Zn:wi)xe(t)x9(|s|/t) = 49(|S|><Zn:wi) . Since Zn:wi<nt , we have
i=1 i=1 i=1

58

0(s[x > w) =0(s|n).

As for our scheme, when sharing each non-overlapping t pixels of the secret image to n

shadows, f(x) = ag+ aix + ... + a1x" L in Eq. (3.4) is expanded to f(x) = ap+ aix + ... + arax"*

2“0921—\

+0x'+ ... + 0x if the value of t is not power of two. Then, g,"(x),95%(X),...,g,"(X)

in Eq. (3.5) are computed using our fast weighted secret image sharing algorithm. Suppose
the time complexity of computing each g (x) in Eq. (3.5) is T(f) where i=1, 2, ..., n.
Because the concept of the recursive function is applied in our algorithm, and there are /2
multiplications and /2 additions in the step 1 of Algorithm 1, the recurrence relation

T({)=T({/2)+0() can be derived. The recurrence relation is then solved by the
substitution method to obtainT (f) = &(f) . Because{ < 2M%'!, the value of f is at most two
times of t. Therefore, we have T(f)=60(t)=6(t). So, the time complexity of sharing secret

image with size |S| to n shadows using our schemeis 6(n)x9(t) x6(S|/t)=6(S|n).

A more general scheme for polynomial-based sharing:

In our weighted sharing scheme, according to the: Chinese Remainder Theorem for
polynomials, the n polynomials x—1, x=2, ..., x=n in Eq. (3.3) can be replaced by n other
sharing polynomials such as x*+x+1,;x*+x+2, ..., x’#x+n, as long as these n polynomials are
pair-wise prime (i.e. no pair of polynomials has a non-trivial common factor). Notably, Thien
and Lin” method is only a special case of this generalized scheme (i.e. the n shadows of Thien
and Lin’s are evaluated by f(i) = f(x) mod (x—i), for i=1, 2, ..., n. In other words, only {x—1,
Xx—2, ..., x—n} were used by Thien and Lin; whereas we can use all sharing polynomials which

are pair-wise prime).

Better performance when pixel values are larger than 250:

The computations in Thien and Lin’s sharing process are in the field GF(251). All gray
values 251~255 of the gray-level secret image have to be truncated to 250. Therefore, the
recovered secret image is lossy. To recover the secret image without any loss, Thien and Lin
introduce a pre-processing to decompose the gray value larger than 250, for example, 253 is
separated as a pair of pixels {250 and 3}. This pre-processing will waste time and slightly
increase the size of their shadows. However, since we use GF(256) in our weighted sharing

59

procedure, the secret image can be lossless reconstructed without additional post-processing.

Each participant keeps only one index and only one shadow (hence more convenient and

space-saving):

If a company wants to apply Thien and Lin’s (t, n) scheme directly to achieve the goal of

weighted participants, then the company can let some participants hold multiple shadows. To
be more specific, because each shadow generated by Thien and Lin’s scheme has weight 1,
the participant i (1<i<n) whose weight is w;should be assigned w; shadows, and each of these
w; shadows will be attached with an index value for the secret-recovery meeting in the future.
The w; indices for the participant i will cause inconvenience than single index does, and the w;
shadows (rather than a single shadow) also waste storage space of participant i. Moreover, if
there are three participants whose weights are, respectively, 128, 122, and 99; then, Thien and
Lin’s method will be in trouble. This is because the first participant will obtain 128 shadows
with the 128 indices values being 1, 2, ..., 128; and the second participant will obtain 122
shadows with the indices values being129, 130;-.., 250. As for the third participant, there is
“no” shadow left for him because GF(251) restricts the input index value be less than 251; so
the system cannot generate more than 250 shadows. However, by using our method, the first
participant will obtain only a shadow with the index value 1 and the weight value 128; the
second participant will obtain a-shadow with the index value 2 and the weight value 122; and
the third participant will obtain a shadow with-the index value 1 and the weight value 99.
Hence, besides giving convenience to each participant, the proposed method also keeps

storage space of each participant much more economic.

3.3.3 Security analysis
The security analysis is divided into two parts: 1) a group of shadows with total weights

t-1 cannot reveal the secret image and 2) shadows of different weights are not equally secure.

~

Firstly, suppose that the t ” obtained shadows are {(ﬁkm, Wi)» (ﬁkm, W) oo (Migery s

-
W)} and the sum of their weights is t”-1 (i.e. Zka =t-1), then we analyze the
j=1

probability of obtaining the secret image by guessing. According the Chinese Remainder

Theorem for polynomials, we can construct a unique polynomial f~'(x) with degree is less

60

t" ~ ~
than Zwk[” =t-1 from these m' shadows. After obtaining f'(x), to reveal the f(x) in
j=1
Eq. (3.7) by f'(x) , we have
~ v " ~
FO)=a JOx=KID ™ + f'(x)
j=1

where o is a non-negative integer less than 2® =256 (because GF(2%) is used in our

experiments). Since there are 22 =256 possible values of , the possibility of guessing the right
solution ?(x) is 1/256. For a 512x512 secret image, because there are 512x512/t polynomials,

the possibility of obtaining the right secret image is 256 '>*'*'Y 'which is a form similar to
the 251 ®»42/Y gjven in Thien and Lin’s chapter.

Secondly, we analyze below the probability of obtaining the secret image by using only
one shadow. Given a shadow h, of weight w;, then the polynomial g/ (x) can be obtained
using the shadow h, . Now, to use g/*(x) to reveal the f~(x) in Eq. (3.7), we have
f~(x) =Q'(X)(x—=1)" + g, (x) whereQ'(x)isan.unknown polynomial with degree is less than
t-w;. Therefore, there is 1/ 256" * chance to find out-the polynomial Q’(x) by guessing. On
the other hand, there are 512x512/t polynomials. for a given 512x512 secret image, so the
possibility of obtaining finding out the secret-image is 256 120w/ This shows that
shadows of different weights are<not equally secure, for the security of each shadow is
weight-dependent. To find out the secret image by guessing, the owner of a larger-weight
shadow has more chance than the owner of a smaller-weight has. This agrees with our

daily-life experience: a higher-rank manager (having heavier weight) has more chance to

uncover the company’s secret than a lower-rank employee has.

3.4 Conclusions

In this chapter, a fast weighted secret image sharing with (t, n) threshold method is
proposed. The method shares the secret image among the weighted participants, and the secret
image can be losslessly recovered if the sum of the weights of the participants is greater than
or equal to the threshold t. Besides, the execution time in the weighted secret image sharing
phase is improved by using the properties of GF(2¥). As shown in Fig. 3.5, our execution time

Is better than that of Thien and Lin whenw, >1. The executives of a company can use our

61

method to share the secret image.

62

Chapter 4

Weighted-Sum Function (WSF) — A Gray-scale Image
Hiding Method with Competitive PSNR over a Wide

Range of Embedding Rates

This chapter proposes an embedding method based on a weighted-sum function. A

gray-scale host image is divided into blocks of n pixels, and each block embeds m secret bits

in it. The stego-pixel values in each block are obtained by calculating the weighted-sum

function with minimal distortions. The advantages of this method include: (1) Wide range of

embedding rate (such as 0.5 to 4 bits per pixel), (2) Competitive image quality over the whole

wide range, (3) Once the embedding rate (bits per pixel) is given, our look-up table can

predict the PSNR value, even before the actual embedding.

The remainder of the chapter is organized as follows. The method is introduced in Sec.

4.1. Experimental results are presented in Sec. 4.2. Sec. 4.3 compares our method with

previous works. Sec. 4.4 provides a discussion, and. Sec..4.5 is the summary.

Notationsin this chapter:

H

Bm
Pi

max

Ap,

(1=CO)C].! e !CZ-l)

The gray-scale host image (After embedding, we obtain its
stego-image H'.).

Number of pixels in each block of the host image.

Number of secret bits to be embedded in a block.

An m-bits binary value to be embedded in a block.

The i-th pixel value in a block of host image H (After embedding,
we obtain its stego-pixel p!.).

The upper bound of host pixels and stego-pixels (each pixel value is
between 0 and p™ -1).

The distortion between the stego-pixel p; and the host pixel p;.

The z weights repeatedly used by all blocks to extract their data By,

by the weighted-sum function

63

f(po, PLrvs Phy) =1Pg +C Py +.4 €y Py (MoOd 27).

Rm Weighted error sum R, =1Ap, +CAp, +...+C,,Ap,, (mod2™)
which IS required to have the value
B,—(@p,+¢,p,+...+C,,P,4) (mod2™) (the so-called

Rm-constraint in optimization).

(Apy, AP ., AP) g The vector which has minimal sum of squares under the constraint
z-1
c.Ap, =R, (mod2™).

i=0
T The vector which has minimal sum of squares under the constraint

z-1
c,Ap, =R, (mod2™).
i=0

4.1 The proposed method

Divide the gray-scale host image H into blocks of z pixels each. Also divide the data to
be embedded into sectors of m.bits each. Without a loss of generality, focus on one block and
one sector. In other words, we show below how to embed an m-bits binary value By, in an
z-pixels block (po, p1,-..., 1) of H. Let

Pl =P+ AP i=0,1, .. -1,
be the values of z stego-pixels, i.e..the pixel values after embedding B,. Also assume that
pixel values must be in the gray value range [0, p™) where p™ —1 is the maximal possible
gray value. For example, if each gray has 8 bits, then p™ =28=256. In the future, we want to
extract By, from the stego-pixels simply by a weighted-sum function
F(pg, Pisvs Pry) =1Pg +Ci P+ Cy P,y = B, (Mod 27), (4.1)
where the given positive parameters (Co, Ci,..., C;-1)=(1, Cy,..., C;-1) are called the weights of
f(py, Piy-s Pyy)- In some studies for embedding, such as [8, 38], the base of modulus
function is not necessarily a power of two. However, since the embedded data is often a
binary stream, we set the modulus value to 2™. Now, Eq. (4.1) reads
B, =1py +C,p; +...+C,, P,
=1(p, + Ap,) +C, (P, +ApP;) +...+C, ,(P,, +Ap, ;) (mod2™)- (4.2)

So, the weighted error sum

64

R,, =1Ap, + C,Ap, +...+C,,Ap,, (mod2™) (4.3)

R, =B, —(p, +¢,p; +...+C, ,p,,) (mod2m). (4.4)

Notably, R, can be evaluated by Eq. (4.4) in the embedding phase whenever the weights
(1,cy,...,C;-1) are given or determined, since the secret data By, and host pixel values {po, pi,...,

pz-1} are both known.
For n given weights (1, C,..., C,-1), our purpose is to find optimal (Apg,Apf,...,Ap;‘_l)Rm

which minimizes the sum of squares under constraint (4.3). In symbols,

z-1
(Apg,Ap; ..., AP; 1), =arg min {Z(Api)z

[VRRAS) Apzfl i=0

iCiApi =R, (mod 2m)}- (4.5)

This is a time-consuming combinatorial problem, and we use a dynamic programming skill to

obtain a solution quickly. First, for the given (1, cs,..., C,.1), We generate table T based on Eq.
(4.5). In other words, table T should list the suitable (Ap;,Ap;,...,Ap, ;) corresponding to
each R €[0,2™) (An example.is given in.Example 1 later). Notably, table T is only used in
encoding. (As for decoding, the z stego-pixels (pg,p;..., p.,) are grabbed from the

stego-image H' and then B, = f(pg,..., P.4) IS calculated by Eq. (4.1) to get the embedded

m-bits secret value By,).

Some recursive formulas are used.in_the-dynamic programming (Algorithm 4.1). For

0<k<2"™ and 0< j<n, define Q[k, j] as the minimum of the partial sum of squares

i
Z(Api)2 obtained under the (j+1)-terms constraint

i=0
1Ap, +CAp, +...+C;Ap; =k (mod 2"). (4.6)

In symbols,

Po- AP} | 150 i=0

Qlk. j1= _min {X(Api)z

k = Zj:ciApi (mod 2”‘)}. (4.7)

Eq. (4.7) implies that our original minimization goal is equivalent to getting Q[k, z—1] for
each k €[0,2™). (The parameter values (Ap;,Ap;,...,Ap,,); utilized to get Q[k, z-1] are
also the parameter values utilized to solve Eq. (4.5).) Now, in order to get Q[k, z—1], we start

from the 0™ column Q[e,0]. Then we get the 1% column Q[e, 1] , and then the 2" column Q[e,

2];; until we get the (z=1)™ column Q [+, z-1] . In other words, we need a recursive
65

formula to evaluate Q [k, j]. By observation, the value of Q[Kk, 0] is

QIk.0] = min{(Ap,)2k = Ap, (mod 2™)]

- mingc?, (k~2")?} - {(kk oy e Y

where we have used the (j+1)=(0+1)=1 term constraint 1Ap, =i (mod2™) to know that

either Ap, =k or Ap, =k —2". (It is impossible to have Ap, =k +2" because k? <(k+2™)%)
When j >1, the recursive formula for Q [k, j] can be derived as follows. Let I=Ap;, then

the (j+1)-terms constraint Eq.(6) becomes k =1Ap, +¢,Ap, +...+¢;1 (mod 2™, so
k—c;l =1Ap, +CAp, +...+C; AP, , (mod 2™) (4.9)
is equivalent to the (j+1)-terms constraint Eq. (4.6).

By definition Eq. (4.7), Q[k—c;l (mod2"),j-1] is the minimal sum of squares

i
Z(Api)2 under the constraint Eq. (4.6), i.e.

i=0

QLk-c;l (mod2"),j-1]= m|n {Z(Ap)

k= cI—ZCApI (mod 2”‘)}

i=0

From this, we can express Q[k; j] as

Qlk, j]= min {Z(Ap)

i=0

k= ZCApl (mod 2")}

= Agp_?gp{(Ap) +2(Api)2

i1
k-c,Ap; = ZciApi (mod 2’")}

= min {IZ +Z(Ap)

Apo Ap]

= mln{l2 + m|n {Z(Ap)2

i=0

k — cI_ZCApI (mod2m)}

k — cI_ZcApI (mod 2")H

i=0

:qu+Qw—q|(mw2mJ-u}
More precisely, Q[k, j] can be obtained from
Q[k, j1= min{Q[k —c;l (mod 2"), j —1]+I2‘I =0,£1,...,.x(2" —1)} (4.10)

by inspecting all | throughout the range | €{0, +1, +2,..., +(2"-1)}. Notably, there is no need

to consider those | not in the range (—2", 2™), because I=Ap; and we want to minimize the sum

66

j j
of squares) (Ap)”® subject to constraint k=) cAp, (mod2") . If

i=0 i=0

j
(Apy, APy, AP 4, Ap;) satisfies constraintk = ZciApi (mod 2™), and Apj is larger than the

i=0
2"-1, then the constraint is still satisfied by (Apy,Ap,,...,Ap;,(Ap; —2")) because
(Apy +CAp, +...+C;Ap;, +¢;(Ap; —-2") =k (mod2™) is also true. However,
(AP)? +...+(Ap,)? +(Ap; —2™)? is smaller than (Ap,)? +...+ (AP,) + (Ap;)*.

Define table T as a matrix whose entries are

k = ZiciApi (mod 2’")}. (4.11)

i=0

TIk, 1= arg rgpi_n{zf, (4p.)

To obtain T from table Q, the selected value | of Eq. (4.10) is recorded in an auxiliary table L.

In symbols, record

k= Zj:ciApi (mod 2"‘)}

i=0

LIk,]1=arg rTAlpin{Zj: (40

(4.12)
_arg mlin{Q[k - el (mad 27, ~114 K[<0,41,... £(2" ~1)

The value of L[k, j] is simultaneously updated with Q[k, j]; so table L is obtained once table Q
is obtained. Then, table T is constructed by a loop function. Firstly, because of Eq. (4.11) and
Eq. (4.12), we have
T[k, z-1]=L[k, z=1] foreach k [0,2").
Secondly, T[k, z-2]=L[k—c,_1T[k, z-1] (mod 2™), z-2] for each k €[0,2"), because
z-1
k=>cAp; (mod 2’“)}

i=0

z-1
— — i . 2
T[k,z-2]=arg mw;{% (Ap,)

-2
k-c,,Ap, ;=Y .¢Ap; (mod 2“‘)}
i=0

-2
=arg g;jg{(Apz_l)z +2.(4m)°

c-c, Tz -1=3cap, (mod 2”’)} (- Ap,, =T[k,z—1])

i=0

-2
_ - 112 2
=arg TJZ'_T{T[k’ z-1]" + Z (Ap;)

i=0

-2 -2
_ H 2 _ _ —)) m
=arg g;lrz{;; (Ap,)’k —c, T[k,z—-1] iZO:CIAp, (mod 2)}

=L[k-c,,T[k,z-1] (mod2"),z-2].
Thirdly, T[Kk, z-3]=L[k-c,1T[K, z—1]-c, > T[k, z-2] (mod 2"), z-3] for each k €[0,2"), and

the proof is similar, and hence, it is omitted. These steps are repeated until table T is complete.

67

Algorithm 4.1 below describes the details.

Algorithm 4.1. An auxiliary algorithm to construct table T by dynamic-programming.

Input: Two positive integers m and z, and z weights (1, c1,..., C;-1).
Output: A table T containing 2" vectors (each vector is of the form (Ap;,Ap;,...,Ap;)), and

an predicted PSNR value PSNRgg:.
Remark: The Q, L and T in the algorithm are tables of size 2"xz each.

1 [fork=0to2"-1do

2 if k*<(k—2")? then

3 L[k,0] <k

4 Q[k,0] <= k?

5 else

6 L[k,0] <k -2"

7 Q[k,0] < (k —2™)?

8 end if

9 | endfor

10 | forj=1toz-1do

11| fork=0to2™-1do

12 QLk, j1<=QIlk, j-1]

13 L[k, j]<0

14 |l <1

15 while 17 <Q[k, j] do

16 if Q[k, j1=Q[k+c;l (mod 2™, j-11+1% do
17 Qlk, j]1<=Q[k +¢;l (mod 2™, j-1+1?
18 L[k, j]<-I

19 end if

20 if Q[k, j1=Q[k-c;l (mod 2™, j-11+1% do
21 QIK, j]<=Q[k —c;I (mod 2™), j-1+1?
22 L[k, j]<I

23 end if

24 l <I1+1

25 end while

26 end for

68

27 | end for
28 | fork=0to 2™1 do

29 | <k
30 forj=z-1to0do
31 Tk, j1< LI, j]
32 | <l—c,L[l,j] (mod2")
33 end for
34 | end for
35 | Calculate MSEest (the expected value of MSE) and PSNRest (the predicted PSNR) by
MSE,,, = — Zmle[k, z-1], (4.13)
n2" =
PSNR,, =10log,, (X ‘1%5% . (4.14)

Remarks: In Lines 15-25 above, the condition of the while loop isl? < Q[K, j], rather than
| <2™, because if I°>Q[k, j], thenthe two “if™ conditions in Lines 16—19 and Lines 20-23,
ie. Qk, jl1=Q[k+c;l (mod2"), j=1]+I* -and " Q[k,j]>Q[k—c;| (mod2"),j-1]+1°,

will never be satisfied.

Example 4.1: Assume (m, z)= (4, 3), and the z weights are (1, ci, C2)=(1, 2, 6). Table 4.1 is
the three tables Q, L and the table T generated by Algorithm 4.1 above. The predicted PSNR

provided by Algorithm 4.1 s PSNRestzlologZ5%SE =51.14 dB where
est

1 2"-1

MSE,, = o ZQ[k, z-1]=0.5is evaluated at Step 4 of Algorithm 4.1.
k=0

Table 4.1. The tables Q, L, and T for (m, z)=(4, 3) when z given weights are (1, ci, ¢2)=(1, 2,
6). (a): Table Q generated in the intermediate process of Algorithm 1. (b): Table L generated
in the intermediate process of Algorithm 1. (c): The final output table T of Algorithm 1.

69

@ (b) (c)table T
i table i table L Rm Ap. Ap, Ap,
0[0[0]0 0[(0]0]O 0|l O 0 0
1117111 111]01[0 1] 1 0 0
2 14111 2121110 21 0 1 0
31922 3131110 31 1 1 0
4 (16| 4 |2 4 1421 4 0 -1 1
51255 |2 51521 51110 1
6 |36 8|1 66|21 6 0 0 1
71491102 717|131 7 1 0 1
8 64132 81831 81 0 1 1
9 149102 9 |-7]-3]|-1 9| -1] 0 | 1
10{36| 8 |1 10{-6|-2]-1 101 0 0 | -1
11{25|5 |2 11[{-5[-2]-1 11 1 0 | -1
1216 4 |2 12(-4[-2]-1 121 0 1 | -1
13{9 122 13{-3]-1]0 13 -1] -1 0
14141111 14[-2]-1]0 141 0 | -1 0
1511711 15(-1] 0] 0 15/ -1 0 0

Table 4.2. Suggested weights (1, ¢s,..., ;1) for certain embedding rate values. For the listed

(m, z), the estimated PSNR (i.e. value of Eq. (4.14)) is optimal if users adopt these suggested

weights.
No. | Embedding rate | m,z | Estimated PSNR 1,¢cy,...,C1
0 0.500 bpp 4,8 157.44.dB 1,2,3,4,56,7,8
1 0.571 4,7 |56.58 1,2,3,4,56,7
2 0.667 4,6 | 5540 1,2,3,4,56
3 0.750 6,8 {5481 1,2,3,4,5,6,13, 26
4 0.875 7,8 |54.25 1,2,8,12, 24,29, 47,62
5 1.000 6,6 |53.33 1,2,5,12, 20,28
6 1.167 7,6 |52.26 1,3,8,18,42,54
7 1.200 6,5 152.04 1,6, 10, 18,31
8 1.250 54 |51.64 1,2,6,11
9 1.333 8,6 |51.40 1,3,9 27,50, 93
10 | 1.400 7,5 |50.97 1,3,9, 28,52
11 | 1.500 6,4 |50.34 1,3,8, 22
12 | 1.600 8,5 |49.75 1, 3,58, 87,124
13 | 1.667 5,3 |49.09 1,4,10
14 | 1.750 7,4 |48.65 1,4,40,58
15 | 1.800 9,5 |48.46 1, 36, 86, 146, 215
16 | 2.000 10,5 (47.31 1,9, 23,243, 324
17 | 2.250 9,4 |45.73 1, 13, 149, 232
18 | 2.500 10,4 | 44.23 1, 26, 33, 221
19 | 2.750 11,4 | 42.72 1, 364, 559, 986
20 | 3.000 12,4 |41.22 1,9, 350, 491
21 |3.333 10,3 | 39.10 1, 20, 195
22 | 3.500 7,2 |38.00 1,12
23 | 3.667 11,3 37.10 1,61, 597
24 | 4.000 12,3]35.10 1, 1210, 2026

Algorithm 4.1 above needs the user to provide z weights (1, c;,..., Cz-1). For the reader’s

benefit, some suggested weights for different combinations of (m, z) are provided in Table 4.2.
70

Notably, the value of bpp (bits per pixel) is always

bpp=m/z,
which is the number of embedded bits in each pixel of each block. The weights shown in
Table 4.2 yield the optimal expected value of MSE for each pair of (m, z) specified there.
These weights are found by an exhaustive search (i.e. all possible (1, ci,..., Cz.1) In the

searching domain (each c;e[0,2™)) has been tested for the specified (m, z)). Notably, there is
no need to test other values c, ¢[0,2™), because they will be normalized to the scope [0,2™)

by the modulus operator (mod 2™).

Table 4.2 enables the readers to easily decide the weights (1, cs,..., C,1). For example, if
the host image is 512x512, and the size of embedded data is 500000 bits, then the embedding
rate is 500000/(512x512)=1.91 bpp, which is between the 1.8 bpp and 2.0 bpp of Table 5.2.
To get enough embedding space, the embedding rate cannot be smaller than 1.91, so we use
2.0 bpp. Therefore, from Table 4.2, wuse (m, 2)=(10, 5), and choose
f(py, Pl Py, Par Py) =1p; +9p] +23ps+243p, +324p, (mod 2") as the desired
weighted-sum function Eq. (4.1) to extract embedded data from each stego-block

(P, Pyy-- Py) - Of course, since (1, Cqy..iCa)=(1, 9, 23, 243, 324) are known, the

corresponding table T can be-constructed by Algorithm 4.1, and the data-embedding can be
done by Algorithm 4.2 below. The optimal weights {1, c,...,C;.1} in Table 4.2 may not be
unique for each pair of m and z. For example, when ' m=z=6, to obtain PSNR = 53.33 dB, the
readers can either use the weights (1, 2, 4,12, 21, 28) or (1, 2, 5, 12, 20, 28) or (1, 3, 6, 12, 20,
28) or ...; these optimal weights all give the predicted PSNR = 53.33 dB. Notably, there are

two layers of optimization to construct Table 4.2, as listed below.

1. Inner layer: Given the z weights (co=1, Cs,...,C—1); then, for each integer R, €[0,2"),

n-1
find the vector (Apg,Ap;,...,Ap,,)g that yields the minimal sum of squares Z(Api")2

i=0

n-1
under the constraint » c¢,Ap, =R

i=0

(mod 2™) (see Eq. (4.5)). This is resolved by dynamic

m

programming (Algorithm 4.1).

2. Quter layer: Given a pair of values (m, z), find the z weights (1, cs,...,C;-1) which have a
minimal expected value of MSE. This is resolved by an exhaustive search, and the results are
listed in Table 4.2.

The details of the embedding algorithm are listed in Algorithm 4.2, which uses Algorithms

71

4.1 and 4.3 (Algorithm 4.3 is an auxiliary algorithm to handle the overflow/underflow case).

Algorithm 4.2. Main embedding algorithm.

Input: The embedded data S and host image H.

Output: A gray stego-image H'; the two values m, z and the z weights (1, cy,..., Cz-1).

1. Calculate the embedding rate er= |S|/|H|, where |S| is the bit-length of S and |H]| is the
number of pixels of H.

2. Use the embedding rate er to look up the “Embedding rate” column in Table 4.2. Find an
embedding rate er’ which is the one closest to er, but still not less than er. For er’, grab its
corresponding (m, z) and the corresponding z weights (1, cy,..., C;,-1) from Table 4.2.

3. For the z weights (1, cy,..., C;-1), if its table T was recorded earlier in the off-line process
when Table 4.2 was constructed, then go to Step 4. Otherwise construct table T by Algorithm
4.1.

4. Let the z pixels (po,..., p--1) be the .z not-yet-processed pixels taken from the host image

H. Then let the m-bits value By, be the'm not-yet-processed bits taken from the bit stream S.

5. Calculate R, =B, —(1ps+C, py++.+C,, p,;). (mod2™).

6. Grab the Ry-th row (Apg, Ap; ,...,Ap,4)g Of the table T. Calculate the z stego-pixels of

the stego-image H'by (P, P15 P7s) = (Po +ARg, Py AP, 1. P,y + AP, 1)

max

7. If any stego-pixel p/ is out of-boundary (<O or >p™), then re-calculate the z

stego-pixels by calling the out-of-bound algorithm (Algorithm 4.3).
8. Go to step 4 if unprocessed data bits remain. Otherwise, output image H’, the values of
m, z, and the z weights (1, cy,..., C;_1).

In Algorithm 4.2 above, should some of the z generated stego-pixels (pg, P;,-.., P;_1) N
Step 6 be out of bound (i.e. <0 or >p™*), then Algorithm 4.3 below is called in Step 7 of
Algorithm 4.2 to re-generate (pg, p;...., P;.;) Which always stay within the gray-level range
[0, p™). Here, for each pixel p;, to ensure p, +Ap, €[0, p™) after embedding; the formula
Qlk, j]=min{Qk —c;l (mod 2"), j~1]+1%1 = 0£1,...£(2" -1} in Eq. (4.10) is rewritten as

Qlk. jl=minfQlk—c,I (mod 2"), j ~1]+ 12| = 04L...£(2" ~hwith 0 <1+ p; < p™ |
so that the new stego-values created by Algorithm 4.3 can stay in bound by dynamical
modification according to the given host pixel values (po, p1,..., Pn-1)- (In opposition, Table 4.2

72

and Algorithm 4.1 do not need any host pixel value.)

Algorithm 4.3. The out-of-bound algorithm to deal with the case when the gray value

max

generated in Step 6 of Embedding Algorithm 5.2 is <0 or >p™".

Input: Two positive integers m and z, the z weights (1, cy,..., C;1), the z host pixels (po, p1,-..-,
p;-1), the value Ry, and an integer p™ indicating that all host pixels are less than p™.
max).

Output: z stego-pixels (py, p;,---, Pr,_;) Of which each pixel is in the gray-level range [0, p

Remark: The Q and L in the algorithm are tables of size 2™xz each.

1 fork=0to 2"™-1do

2 Q[k,0] < MAX , where MAX is a very big number such as (11...1),.
3 if and k*<Q[k,0] then

4 L[k,0] <k

5 Q[k,0] < k?

6 end if

7 if |p, +(k—2")>0] and " (k — 2)% < Q[K,0] - then

8 L[k,0] <=k —2"

9 Q[k,0] <= (k —2")?2

10 end if

11 end for

12 forj=1toz-1do

13 fork=0to 2"-1do

14 QLk, j1<=Qlk, j-1]

15 LK, j]<0

16 <1

17 while 12 <Q[k, j] do

18 if and Q[k, j]>Qlk+c;l (mod2"),j-1]+1? do
19 QLk, j]<=Qlk+c,l (mod2™), j—1]+1

20 L[k, j] < I

21 end if

22 if and Q[k, j1=Q[k—c,| (mod2"),j-1]+1? do
23 QLK. j1<=Qk—c,l (mod 2™, j—1]+1?

24 LK, j]< |

25 end if

73

26 l<I1+1

27 end while

28 end for

29 end for

30 | <R,

31 forj=z-1to0do

32 p) < p;+ L[l j]

33 | <l-cL[l,j] (mod2")
34 end for

The extraction of the hidden data is easy; just use Algorithm 4.4 below.

Algorithm 4.4. Extraction algorithm.

Input: The stego-image H’, and the value d which indices the d-th row in Table 4.2.

Output: The embedded data S.

1. Grab z not-yet-processed pixels of the stego<image H', denote the z pixel values as
(Po» Prreees Pry) -

2. Calculate B, =1py +c,pi=+...+C,,p;, (mod2™), and append the m-bits value By, to
the tail of data S.

3. Goto step 1 until all pixels.n stego-image H" are processed.

Example 4.2: If (m, z) = (4, 3), and the weights are (1, ¢, ¢) = (1, 2, 6), then use Algorithm
4.1 to establish table T, which is shown in Table 4.1. Then use Table 4.1 throughout the
embedding phase. Assume the z=3 pixels of a host block are (po, p1, p2) = (128, 127, 125), and

an m-bits secret value is B,=(0111),=7. Below we show how to embed 7 in the block. Firstly,

calculate R, =7 - (1x128+2x127+6x125) =11 (mod 2*) by Step 5 of Algorithm 4.2.
Since Ry,=11, take from Table 4.1 the row with Ry,=11, which reads

(Apy, Ap;,Ap;) =(10,~1). Finally, calculate the z=3 stego-pixels values as (pg, p;, p;)

=(128+1, 127+0, 125-1)=(129, 127, 124). In the future, secret data B, is extracted by
calculating B, =1x129+2x127+6x124 =7 (mod 16).

4.2 Experimental results

This section presents the experimental results. When data is embedded in a htxwh host

74

image H to get its stego-image H', a PSNR value is computed to measure the quality of H'.
The definitions is

1 wh-1h

max _12 -1 .. PP
PSNR =101log (P)KASE where MSE=WhXhtZJ§[H(I,J)—H (i,)1

i=0 j

In our first experiment, let the host image be the 512x512 gray image Lena. Let the data to be
embedded be a string generated by a random number generator. Fig. 4.1 shows six
stego-versions of Lena with various embedding rates. The PSNR of the experimental results is
extremely close to the theoretically-predicted PSNRes: values (listed in Table 4.2), which are
predicted by Algorithm 4.1. Thus, the PSNR value before embedding can really be predicted
by Table 4.2. The actual PSNR values are still very close to the predicted PSNR values (Table
4.2) when the image Baboon in Fig. 4.2 is used as the host image.

Table 4.3 compares ours with other papers [8-10, 35, 38, 48, 49, 51, 52]. The host image
is Lena, which is a common image found in all referenced experiments. It can be seen from
Table 4.3 that our method achieves competitive PSNR values for each embedding rate. When
the image is Baboon, Table 4.4 again shows that ours are very competitive. Among many
embedding methods, [8, 9, 35] are very competitive to ours. A comparison of the three
methods [8, 9, 35] is discussed below.

The LSB Matching method given by Li et al. [9] has very good stego-image quality, but
the choice of the embedding rate (bits per pixel, i.e. bpp) is very limited. [9] uses 1 bpp as the
embedding rate, and it has no algorithm.or experiment to deal with the case when bpp=1 (for
example, when the embedding rate is 3.5 bpp). On the contrary, our new product is an
all-in-one method with competitive quality everywhere over a wide range of embedding rates,
for example, from 0.5 bpp to 4 bpp. (Our embedding rates include, but are not limited to, rates
which are non-integer or smaller than one). In the embedding method given by Lin et al. [35],
as shown in Tables 4.3 and 4.4, although [35] can almost keep up with ours when the
embedding rate is 2, 3 or 4, the method cannot compete with ours when the bpp is 1 or
non-integer. For example, we lead by a difference of about 2.2 dB when the embedding rate is
1.5, and we lead by a difference of about 3.3 dB when the embedding rate is 0.5. (In fact, the
method in [35] only deals with the integer embedding rate. Hence, if the specified embedding
rate is a non-integer, for example, 1.5 bpp, then embed 1 bits per pixel in one half of the
image, and then 2 bits per pixel in the remaining half of the image). In the embedding method
of Thein and Lin [8], as shown in Tables 4.3 and 4.4, although [8] can almost keep up with
ours when the embedding rate is larger than 1 bpp, the method cannot compete with ours

75

when the embedding rate is 1 or less than 1 (for example, we win by 2.2 dB when the
embedding rate is 1, and we win by 3.3 dB when the bpp is 0.5). In summary, the embedding
rates of our method can have a wide range of embedding rate (from 4.0 to, say, 0.5 bpp),
including rates which are non-integer or even smaller than 1 bpp. For the whole range of
embedding rates, our method provides competitive PSNR values. In the less-than-1-bpp case,
our PSNR values are very competitive (see Tables 4.3 and 4.4).

In Tables 4.5 and 4.6, some experiments are conducted to determine the PSNR values
when the embedded data is real data rather than random. The host images are {Lena, Baboon,
Jet, Sailboat, Peppers, Boat, Elaine, House}, all of which are 512x512, and the embedded data
is the resized images decided by the embedding rate. In Tables 4.5-4.6, the real PSNRs (using
real data) and the predicted values (PSNRe) are still very close; the difference is at most 0.02
dB.

The following two experiments were also conducted to test the PSNR values of all
possible weights (1, cs,..., C;-1). The host image is Lena, and the embedded data is random
data. Firstly, we selected (m, z)=(5, 3) and tested-the weights (1, ¢, ¢,) for c;€[1,2™)=[1,32)
and ¢, €[1,2™=[1,32). The other values-of ¢, and ¢, need not be tested because they would be
normalized to the range [0, 2™) by the modulus operation (mod 2™). The cases ¢;=0 or ¢,=0
need not be considered, because they are equal to embedding m bits in z—1 pixels rather than z
pixels (see Eq. (4.1), and the corresponding pixels p; (when c;=0) or p, (when c,=0) can be
removed from Eq. (4.1)). The 31x31 PSNRes Values (the 31x31 predicted PSNR values
evaluated by Algorithm 4.1) were inspected for these 31x31 sets of (1, ci, C2), and the global
maximum was found to have occurred eight times. More precisely, when (ci,c;) are
respectively, (4,10), (4,22), (10,4), (10,28), (22,4), (22,28), (28,10), (28,22), the eight
corresponding PSNRgg: values are all 49.087, and 49.087 is the maximum among all 31x31
PSNRes: Values given by Algorithm 4.1 (it should be noted that 49.087 is also the 49.09 listed
in Table 4.2 if it is rounded to 4 significant digits.) Then, in Fig. 4.3, the 31x31=961 “real”
PSNR values were sketched when the random data was embedded in Lena. The maximum of
the 31% =991 real PSNR values was 49.094, which occurred at the (1,c1,c2)= (1,4, 10). It
should be noted that 49.094 is very close to the predicted value of 49.087. It should also be
noted that (1,c1,c2)= (1,4, 10) happens to be the weights listed in Table 4.2. For the reader’s
benefit, in Fig. 4.3, eight blue points are marked where (c;,c;) are, respectively, (4,10), (4,22),
(10,4), (10,28), (22,4), (22,28), (28,10), (28,22). It can be seen that the real PSNR values at

these eight theoretically-optimal points are also very high. Their actual PSNR values are at
76

least 49.081.

In the other experiment, let (m, z)=(7, 2) and test the weights (1, ¢;) for c;e[1,2™)=
[1,128). The maximum of the 127 PSNRes values evaluated by Algorithm 4.1 is 37.999,
which is also the 38.00 listed in Table 4.2 if it is rounded to 4 significant digits. Then, in Fig.
4.4, the 127 “real” PSNR values were sketched when random data was embedded in Lena.
The maximum of these 127 real PSNR values was 38.002, which occurred at the weight
€1=116. Again, 38.002 is very close to 37.999. For the reader’s benefit, the two blue points
(c1=12 and 116) were also marked in Fig. 4.4 which are the places which generate 37.999 (the
maximum of PSNRe). It can be seen that the real PSNR values at these two points are also
very high (one is 38.002 and the other is 37.995) From the two experiments above for real
embedding, it was observed that the suggested weights listed in Table 4.2 can provide very
high PSNR values (optimal or nearly optimal PSNR values, if they are compared with other
weights). The real PSNR values are also very close to the predicted PSNR values listed in
Table 4.2.

) | © : G

Fig. 4.1. The six Lena stego-images with various embedding rates. The embedding
rates and the values of PSNR of the stego-images are (a): 0.5 bpp, 57.45 dB. (b): 1.0
bpp, 53.33dB. (c): 2.0 bpp, 47.30dB. (d): 3.0 bpp, 41.22 dB. (e): 3.33 bpp, 39.11dB.
(f): 4.0 bpp, 35.10 dB.

77

(d)

Fig. 4.2. The Baboon stego-images with various embedding rates. The embedding
rates and the values of PSNR ‘of the stego-images are (a): 1.0 bpp, 53.33 dB. (b): 2.0
bpp, 47.30 dB. (c): 3.0 bpp, 41.21 dB. (d): 4.0 bpp, 35.11dB.

s w
B “M""\;«‘»

: o ,,
fr‘i‘?%':g, “(' Q‘"
aval ::c» *fa\ ,F» "‘-—-
[R e T

Vil ‘*"&"A \"’3@ RN
%%"‘\‘“\‘

PSMNR

c2 o1

Fig. 4.3. The PSNR of embedding random data in Lena, for (m, z)=(5, 3), c1€[1,2™)=[1,32),

and c,€[1,2™) = [1,32). The real maximal PSNR for all possible combination of weights is

78

49.094 which is very close to 49.087. (The eight blue points are the places that generate
49.087 [the maximum of PSNR, if Algorithm 4.1 is executed for each combination of

weights].)

40

3|/

36

M

32t

PSHR

30 h

28

26

24+

22 1 1 1 1 1 1
20 40 &0 a0 100 120

Fig. 4.4. The PSNR of embedding.random data in Lena; for (m, z)=(7,2) and c¢;€[1,2")=
[1,128). The maximum of the-real PSNR of all 127 possible weights is 38.002, very close to
37.999. (The two blue points are the places that generate 37.999 [the maximum of PSNRe].)

Table 4.3. Comparison with other papers. 'Host image is Lena for all methods, and the

embedded data are random numbers.

Embeddingrate Methods PSNR Embeddingrate Methods PSNR
0.50 bpp [8,35] 54.14dB 2.19 bpp [51] 43.95 dB
0.50 ours 57.44 2.25 ours 45.73
0.75 [8, 35] 52.38 2.39 [51] 36.96
0.75 ours 54.82 2.50 [35] 42.69
1.00 [52] 51.14 2.50 [8] (modsy 43.12
1.00 [8, 35] 51.14 2.50 ours 44.23
1.00 [10] =2 52.39 2.89 [52] 39.31
1.00 [9] (z=6) 53.33 3.00 [8, 35] 40.73
1.00 OUIS(m==6) ©3.33 3.00 ours 41.22
1.16 [38] 52.11 3.19 [51] 36.28
1.17 ours 52.26 3.33 ours 39.11
1.50 [35] 48.12 3.50 [35] 36.82
1.50 [8] (mod 3) 49.89 3.50 [8] (mod12y 37.29
1.50 ours 50.34 3.50 ours 38.00

79

156 [48] 41.79 3.53 [52] 34.54

1.56 [49] 44.10 3.67 ours 37.10

1.99 [52] 45.14 4.00 [8, 35] 34.80

2.00 [8, 35] 46.37 4.00 ours 35.10

2.00 ours 47.30 [9] did not have algorithm or experiment for
bpp=1.

Table 4.4. Comparison with other papers. Host image is Baboon for all methods, and the
embedded data are random numbers.

Embeddingrate Methods PSNR Embedding rate Methods PSNR
0.5 bpp [8,35] 54.15dB 2.49 [51] 42.08

0.5 ours 57.45 2.50 [35] 42.68
0.75 [8, 35] 52.41 2.50 [8] (mods) 43.13
0.75 ours 54.81 2.50 ours 44.23
1.00 [8, 35] 51.13 2.99 [51] 34.20
1.00 [10] =2 52.39 3.00 [52] 39.16
1.00 [9] (=6 53.33 3.00 [8,35] 40.72
1.00 OUrSm==6) ©3.33 3.00 ours 41.21
1.10 [48] 44.10 3.49 [51] 33.01
1.16 [38] 52.11 3.50 [35] 36.82
1.17 ours 52.26 3.50 [8] (mod12) 37.28
1.50 [35] 48.12 3.50 ours 38.00
1.50 [8] (mod 3) 49.89 4.00 [8,35] 34.80
1.50 ours 50.34 4.00 ours 35.11
1.74 [49] 40.3 [9] did not have algorithm or experiment for
2.00 [8, 35] 46.38 bpp#£1.
2.00 ours 47.30

Table 4.5. PSNR values when secret data are also images. Each host image is 512x512, but
each secret image is resized to be 234x234. Here, (m, z)=(5,3), (1,c1,¢2)=(1,4,10), so the
estimated PSNR is 49.09 dB according to Table 4.2.

wcet | Lena Baboon Jet Sailboat Peppers Boat Elaine House

Lena |49.09 49.09 49.09 49.08 49.09 49.10 49.09 49.08
Baboon | 49.09 49.08 49.09 49.09 49.09 49.09 49.10 49.09
Jet 49.10 49.09 49.10 49.08 49.08 49.08 49.09 49.09
Sailboat | 49.07 49.09 49.08 49.09 49.09 49.09 49.10 49.09
Peppers | 49.08 49.09 49.09 49.09 49.09 49.10 49.08 49.08
Boat [49.10 49.09 49.09 49.09 49.09 49.10 49.09 49.10
Elaine | 49.08 49.08 49.08 49.09 49.10 49.08 49.08 49.09
House |49.08 49.09 49.09 49.10 49.08 49.08 49.09 49.09

Table 4.6. PSNR values when secret data are also images. Each host image is 512x512, but

each secret image is resized to be 339%339. Here, (m, 2)=(7,2), (1,c1)=(1,12), so the estimated
80

PSNR is 38.00 dB according to Table 4.2.

et | Lena Baboon Jet Sailboat Peppers Boat Elaine House

Lena |[37.99 38.00 38.00 37.99 38.00 3799 3799 38.01
Baboon | 38.00 38.00 38.00 37.99 37.99 38.00 38.01 38.00
Jet 38.00 3799 38.00 38.01 38.01 38.00 37.99 38.01
Sailboat | 38.01 38.00 38.00 38.01 38.00 37.99 38.00 38.00
Peppers | 37.99 37.99 38.01 37.99 3799 3799 38.00 38.01
Boat |37.99 38.00 38.00 37.99 38.00 38.00 38.01 38.00
Elaine | 37.98 3798 37.99 38.00 38.00 38.01 38.00 37.99
House |[38.00 37.99 38.02 38.01 37.99 38.01 38.00 38.02

4.3 Comparison with previous works

Property 4.1 below indicates that the modulus-based method [8] coincides with our z=1
case. The embedding scheme f(pg,p;,., Py) = 1pg+2p; +...+2zp,, (mod2z+1)
proposed by Zhang and Wang [38] can relate to ours if we set our (1, ¢y, Ca,..., C.-1) to (1, 2,
3,..., z), and m=|log,(2z+1)|. Of course, in this particular (1, c1, Ca,..., Cz1)=(L, 2,..., 2)
situation, their embedding capacity and PSNRof [38] will be a little different from ours
because their module base is .0f the form (mod 2z+1) while ours is of the form (mod 2™)

where m :_Iogz(ZZ +1)J. However, as stated earlier in a paragraph below Eg. (4.1) of Sec.

4.1, the modulus base was set'to 2".to reduce computation time, since the embedded data is
often a binary stream. In a certain _sense, [38] has more freedom to choose a module base,

while ours has more freedom to choose weights (1, ci, Ca,..., C;-1).

Property 4.1. If z is set to 1, i.e. only one weight is used in the extraction function f (which

means B, = f(py) =p;, (mod2™)), then our method coincides with the modulus-based

embedding method p; = round(poz;mBm)x 2" +B,_ of [1].

Proof: In [8], the embedding equation is pgzround(p"z—mijme+Bm where round(e)

rounds the value « to the nearest integer. Their extraction equationis B, =p; (mod2™),and
it is proved [8] that their distortion Ap,= p,—po is between —(2™*-1) and 2™ . As for ours,
if we set z as 1 in our method, then our extraction function Eqg. (4.1) also reads By=
f(py)=1p, (mod2™). Since the given secret data By is fixed, the identical extraction

formula means that the stego-values of the two methods are either identical or differ by a
81

whole multiple of 2™. However, by letting z=1 in Algorithm 1, the Ap, in table T becomes

m

R ifO<R, <2™*
Ap, = m . '
R,—2" otherwise

which means our Ap, = p,—Po is also between —(2™1-1) and 2™ . Therefore, with the same

given pixel value po, it is impossible that our stego-value and their stego-value differ by a

nonzero integer multiple of 2™. Therefore, the two stego-values must be the same. .

Property 4.2. If we let (1, ¢i, Co,..., ¢z.1)=(4, 2, 3,...,2) and m =|log,(2z +1) |, then at most

one of the z pixels in the block is distorted, and the distortion at that pixel is, at most, 1.
(Zhang and Wang’s method [38] neatly found this good property for distortion when module
base is 2z+1 rather than 2™. Our proof below should be able to let the readers understand
clearly why Property 4.2 holds.)

Proof: We show below that for Ry from O through 2™ —1=2:?2b]_1<2n only a
distortion in {-1, 0, 1} is added to a pixel value p; of the block to get its stego-pixel p/.

Firstly, we evaluated the weighted error sum R, =B, = (1p, +2p, +...+2zp,,) (mod2™).
z-1

To minimize the sum of squares {ZApf} under the constraint
i=0

1p, +2p, +...+2zp,, (mod2™) = B, —(1p, +#2p, +...+2p,,) (mod2"™) =Rn, we

analyzed the three cases as follows. It'should be noted that the distortion is within +1 in all

three cases. Case a): If R, = 0, then the optimal solution is Ap;=0, for i=0,1,..., z-1. Case b):

If Rm = J whereO< j<z, then the optimal solution is Apj1=1 and Ap;=0, for any i#j—-1.
z-1

Because 1Apg+2Ap1+...42Ap; 1 (mod 2™) =j and the sum of squares Z(Api)2 is 1 which is
i=0

the minimal possible value. Case ¢). If Ry=j=z+1,z+2,....,2"-1, the optimal solution is

Ap,,_;,=-1 and Api=0, for any i#2™—j—1. Because 1Apo+2Aps1+...+ZAp,-1 (mod 2™) =2"—j

LN

(mod 2™ =jand y (Ap;)? is 1 which is the minimal possible value. .

Il
o

Below we relate and compare ours with LSB matching methods [9, 10]. In [9], Li et al.
elegantly generalize Mielikainen’s gorgeous scheme [10] (a LSB matching scheme using z=2)
to get a so-called generalized LSB matching (G-LSB-M) scheme. As shown in Property 4,

when the embedding ratio is 1 bpp, if z is small enough, then the optimal weights (1, ¢4, Co, ...,
82

c,-1) found by ours also solves the minimization problem of the LSB matching scheme of [9]
(and [10], if z is 2), although our optimization goal (each Ap, term is squared before
summing up) is a little different from theirs. Notably, the two elegant LSB matching methods
[9, 10] and ours are different in that (i). [9] has no algorithm or experiment to deal with the
case when bpp=1; but our embedding rates have a wide range from 0.5 bpp to 4.0 bpp. (ii).

The distortion Ap, of each pixel is required to be +1 or 0 in LSB matching, but ours does not

use this requirement because we need to embed m-bits data in z pixels, rather than embedding

z-1
z bits in z pixels. (iii). The goal of LSB matching ismin{Z|Api|}; whereas our goal is
i=0

min{zzl: (Ap,)2}.

i=0

Property 4.3. When the embedding rate is as in [9, 10] (i.e. when m/z=1 bpp), if our optimal
weights (1, ¢1, Cy,..., C,-1) also yield (or require) “Ap; € {0, £1} for all i=0,1,..., z-1, then our

optimal weights also resolve the optimization problem of LSB matching methods [9, 10].

z-1 z-1
Proof: If the distortion of ‘each pixel Ap,is only {0, +1}, then > (Ap,)* =D |Ap,|.

i=0 i=0
z-1 7-1
Therefore, the goal of LSB matching min{Z|Api|} is-the same as our min{z (Api)z}, S0
i=0 i=0
the weights (1, c,..., C,-1), which are found by our exhaustive search are also a solution to

LSB matching. .

Property 4.4. When the embedding rate m/z=1 is bpp, if each block unit contains z<4 pixels,
then our optimal weights also resolve the optimization problem of LSBM (LSB matching)
method [9] (and [10], if z=2.)

Proof: z<4 means that the optimal solution (1, ci, Cs,..., C;.1)=>""

given by the LSB matching

z-1 z-1
method will yield (3" (Ap;)*)™ = (3_|Ap;|)"*B" <1xz<1+1+1+1=4 due to item (ii) above.
i=0 i=0

ours

z-1
As a result, the (D (Ap;)?)™ obtained using our optimal weights (1, ci, Ca,..., ¢,-1)™" also

i-0
z-1 z-1

yields (3" (Ap,)*)< (> (ap,)*)™ <1+1+1+1=4, since our optimization goal is to
i=0 i=0

83

z-1
minimize Z(Api)2 . Therefore, in our optimal solution, Ap, €{0, 1} for all i. (None of our
i=0

z-1
|Ap;| can be 2 or more; otherwise, (D" (Ap;)?)™"® >2°=4, a contradiction.) Property 4.3

i=0

ours

above then ensures that our optimal weights (1, ¢, Ca,..., C;-1)
problem of LSB matching methods [9, 10]. .

also resolve the optimization

4.4 Analyses

Some factors about the proposed method are analyzed in this section.

4.4.1 Running time of Algorithm 1.

Lines 1-9 of Algorithm 1 compute the 0™ column Q[e, 0] of table Q, its time complexity
is ®(2™). Lines 10-27 compute the j-th columns QI[e, j] for each je[in); Lines 11-26
calculates QI[k, j], for each k &[0,2™);-and Lines 15-25 repeat (e.g. e times) until
12 > Q[k, j]. Therefore, Lines 10-27 needs O((z—1) 2™e) seconds. Lines 28—34 generate table
T; and it needs ©(z2™) seconds. Line 35 calculates the predicted PSNRest and MSEe; and it
needs ®(2™) seconds. Therefore, the total tunning time of Algorithm 1 is ©(2") + ®((z-1)2"e)
+0(22™) + ©(2™) = O(z2"e). The lower bound of running time is Q(z2™) by plugging in e = 1.
As for the upper bound, the loop condition-of-Lines 15-25 is 1> < Q[k, j], and the maximum
of Q[k, j] is Q[2™*, 0] = 2™ %, so 12 <Q[k, j]<2™*, which implies that | <2™™%’2 Hence
e < 2(™D'2: 50 the upper bound of running time is O(z2"2™Y/2)=0(z2¢m-173),

Although the time complexity O(z2®™) increases exponentially as m increases
(partially because the size of table T is 2"xz), the time is still acceptable, because the values of
m listed in Table 4.2 are, at most, 12, and Table 4.2 has covered a practical range of
embedding rates from 0.5 bpp to 4 bpp. To verify this, the running time of all embedding rates
listed in Table 4.2 were tested. Our personal computer uses a Pentium D 2.80 GHz CPU, and

the programming language is JAVA. As indicated in the fourth column of Table 4.7, the

maximum CPU time to run Algorithm 1 was less than 0.016 seconds.

Table 4.7. The running time for various (1, ci,..., C;-1).

[No. | bpp | m,z | 1, Cy,..., Cot | The CPU | Total CPU seconds |

84

seconds to|to embed random
generate table | data in 512x512
T by dynamic | Lena (including the
programming. | time to generate
table T)

0O |(0500|4,8 |1,2,3,4,56,7,8 0.000032 0.438 seconds
seconds

1 |0571(4,7 |1,2,3,4,56,7 0.000032 0.438

2 |0667(4,6 |1,234,5,6 0.000031 0.36

3 |0.750(6,8 |1,2,3,4,5,6,13,26 0.000172 0.359

4 (0875|7,8 |1,2,8,12,24,29,47,62 |0.000390 0.375

5 1.000 (6,6 |1,2,5,12, 20,28 0.000141 0.359

6 1.167 (7,6 |1,3,8,18,42,54 0.000297 0.359

7 1.200 (6,5 |1,6,10,18,31 0.000093 0.359

8 1250 (5,4 |1,2,6,11 0.000047 0.375

9 1333 (8,6 |1,3,9,27, 50,93 0.000907 0.375

10 | 1400|7,5 |[1,3,9,6 28,52 0.000281 0.422

11 | 1500 (6,4 |1,3,8,22 0.000094 0.375

12 | 1600 (8,5 |1,3,58,87, 124 0.000797 0.375

13 | 1667 |53 |1,4,10 0.000031 0.391

14 | 1750 (7,4 |1,4,40,58 0.000219 0.375

15 | 180095 |1,36,86,146,215 0.001219 0.375

16 |2.000 | 10,5 |1,9, 23, 243,324 0.004594 0.39

17 | 2250 (9,4 |1,13,149,232 0.001094 0.39

18 | 2.500 | 10,4 |1, 26, 33,221 0.002688 0.406

19 | 2750 | 11,4 |1, 364, 559, 986 0.006453 0.485

20 |3.000| 12,4 | 1,9, 350,491 0.015536 0.515

21 |3.333|10,3 | 1,20, 195 0.00225 0.406

22 |3500(7,2 |1,12 0.000125 0.406

23 |3.667 | 11,3 | 1, 61, 597 0.005312 0.406

24 |14.000 | 12,3 |1, 1210, 2026 0.01486 0.5

4.4.2 Running time of main embedding algorithm (Algorithm 4.2).

In terms of the running time of Algorithm 4.2, the three major parts are: to generate table
T (Step 3); to embed m bits data in n pixels (Step 4—6); and to process the overflow/underflow
case (Step 7). The running time of generating table T is discussed in topic I. The embedding
steps (Steps 4-6) need ®(z) seconds to calculate the value of Ry, and ®(z) seconds to

calculate the z stego-pixels (pg, p;,---» P,;), SO processing the whole image of |H| pixels will
need O(|H|) seconds. Should a stego-pixel p; be out of boundary, then the z stego-pixels are

re-calculated by Algorithm 4.3. The time complexity of Algorithm 4.3 is the same as

Algorithm 4.1. If a pixel value of the host image is close to 0 or p™

, then it has a higher
probability to be an overflow or underflow. Suppose the probability is «, i.e., in the |H|/z

blocks of the host image H, a|H|/z blocks have underflow/overflow, and hence, they need to
85

call Algorithm 4.3, then the total time needed by Algorithm 4.2 is between
QZ2™+O(H)+Q(a|H|iz%x22™) = O(H)+Q((z+a/H)2™) and O2C™Y2)+@(|H|)+
O(a|H|/zxz2®™"2) = @(|H|)+O((z+a|H|)2C™D"?),

We also tested the running time for each embedding rate listed in Table 4.2. The host
image is the 512x512 Lena, and the embedding data is random. The results are listed in the
final column of Table 4.7. For each bpp listed in Table 4.2, the total CPU time to embed

random data in Lena was between 0.359 seconds and 0.515 seconds.

4.4.3 Expected value of M SE for our method
Theorem 1 below states that the MSE.; evaluated by Eq. (4.13) of Algorithm 4.1 is, in
fact, the expected value of MSE, as long as the embedded data is random, i.e. as long as the
data can satisfy the following criteria:
i. For each embedded digit By, we have P(B,=0)=P(Bn=1)=....=P(B,=2"-1)=1/2".
Here, P(*) is the probability of an event.
ii. The value of embedded digit B, and the z values of the host pixels {po,
P1,...,pz-1}are independent.
Generally, the embedded data cannot completely satisfy (i), so the actual PSNR is only close
to (but not identical to) the PSNRes:.

Theorem 4.1. Given the z weights‘(1, €y,.-:;,-C-1), If the embedded data are random, then the

expected value of MSE is

z-1 z-1
MSE,,, :ﬁz min {Z(Api)2
k

-0 ApO 1111 Apzfl i=0

k= _Zz_l:ciApi (mod 2”‘)}. (4.15)

This value equals to the MSE_, obtained by Eq. (4.13) of the Algorithm 4.1.

est
Proof: Consider z pixels {po, p1,-.-, P-—1} in an image block. The embedding equations are Eq.

.3) an 4); and for each R_<[0,2™), our goal In . (4.5) 1s to find the vectors
(4.3) and (4.4) df h R, el ™) goal in Eg. (4.5) i find the 2™

(Apg, Ap; ..., AP, ;) _satisfying

z-1
(Apo, APy ..., AP, 1), =8rg min {Z(Api)z
0 i=0

----- P71

z-1
D cAp, =R, (mod 2““)} . Since each
i=0

vector (Apy,Ap;,...,Ap, ;) has minimal sum of squares, to minimize MSE, there is no
need to consider other vectors (Ap,,Ap,,...,Ap, ;) that have larger sum of squares.

86

Given a valuek €[0,2™), the probability for the event Ry=k is

z-1
P(R, =k)=P(B, - > ¢;p; =k (mod2™))
i=0
2m-1

_ZP((B —|)ﬂ(Zc p =i—-k (mod2")))

= Z{P(B =i)x P(Zc p, =i—k (mod2"))} (" By the property (ii) of the random data)

= {1/2m X P(Zc p, =i—k (mod2"))} (.- By the property (i) of the random data)

2"-1 z-1

=1/2" > P c;p, =i—-k (mod2™))
i0 -0

=1/2".
Therefore, in the embedding process, the 2™ events Ry=0, Rn=1,..., Rn=2"-1 have uniform
probability:

P(R.=0)=P(R, =1)=1L=PR_ =2"-1)=1/2". (4.16)
Therefore, the expected value ‘of MSE is the- average of all mean-squares of
(Apg, Ap; -, AP,)¢ - By Eq.(4.5), the-mean-squares 0f " (Ap;, Ap; ..., Ap, ;)¢ IS

L8 o) -2y (S on

- Z Apg,--.AD,

z-1
R, =D cAp; (mod 2'“)},

=0

so the expected value of MSE is

MSEest:ZZ_l:{P(R —k)x— min {E(Ap 3

k=0 Z AP0zt | g

k= 'Zz_l:ciApi (mod 2"‘)}}

z-1 1 1 71 1
- om T A k = AD. danm
;{2”‘ * Z Aporf.‘.,'{lz 1{2 p ;C. p, (mo)H

p)lk = ZZ_llciApi (mod 2”‘)}.

i=0

7! z-1
Z —0 AP0 AP,y IZOZ
1 z-1

This value can be rewritten as MSE, =ZTZQ[k, z —1], which is Eq. (4.13) of Algorithm
Z =

k = ZC Ap, (mod 2")}

4.1, because Eq. (4.7) reads thatQ[k, z —1] = m|n {Z(Ap)

4.4.4 Application of the predicted PSNR
Given the desired embedding rate, our PSNR can be predicted in advance by Table 4.2. It
87

is observed that, to embed random or ordinary data, the predicted PSNR values are very close
to the actual PSNR values (see Tables 4.5 and 4.6 for example). Thus, the embedding impact
on the host image can be predicted even before the actual embedding. With this property of
PSNR-prediction, if a customer tells us the minimal PSNR value he can tolerate, then we can
look up Table 4.2 and find the embedding rate he needs. Then, for each natural or random
secret data the customer gives us, we can use this embedding rate and data size to find the
required size of host image. This determines a group of host images which are usually suitable
for the secret data given by that customer. Without such an ability to predict PSNR, the above
case must repeatedly be tested on several host images of different sizes. For example, firstly
the customer’s secret data is embedded in a 256x256 host image. If the resulting PSNR value
is too low, then a 300x300 host image is tried, etc. This embedding process should be
repeated several times until the PSNR quality of the stego-image meets the customer’s
requirement. Of course, if some people try to cut the trial-and-error time by using a
super-large host image, the price they will pay is that the size of the stego-image is probably

way too large for further processing, transmission, storage, or carriage.

4.4.5Worst case PSNR

If people consider the worst case PSNR before using an embedding method (i.e. for that
specified method, how bad can-the resulting PSNR be if the user embeds a data set which is
completely unsuitable for the host image), then-our.embedding method also performs better
than the modulus-based embedding methods [8, 35], as indicated by Table 4.8, in which our
gains are 2 dB or more. The worst case host image happens when the embedded data is
specially designed according to the given host image, and the design of this data is in a
pixel-by-pixel manner so that it gives the worst possible pixel-distortion at every pixel of the
given host image. In our experiments for each method, since the theoretically worst possible
pixel-distortion that the specified method could yield at a pixel did occur at every pixel of the
stego-image we used, we already achieved the worst case PSNR, so there was no need to
check all possible images. In other words, Table 8 not only gives the theoretically worst
possible PSNR values for each method, but also the worst possible PSNR values in the real

world for each method in the table.

Table 4.8. The worst-case PSNR values. ([6] did not have algorithm or experiment for bpp=1.
The worst-case PSNR value for [6] is also 51.14 dB if bpp=1.)
88

Embedding rate | Methods | Embedded data type | PSNR dB differencefrom ours
1.00 bpp [1,2] Artificial dataset 1a | 48.13dB | 3.01

1.00 ours Artificial dataset 1b | 51.14 -

2.00 [1,2] Artificial dataset2a | 42.11 2.6

2.00 ours Artificial dataset 2b | 44.71 -

3.00 [1,2] Artificial data set 3a | 36.09 2.04

3.00 ours Artificial data set 3b | 38.13 -

4.00 [1,2] Artificial data set4a | 30.07 2.00

4.00 ours Artificial data set 4b | 32.07 -

4.5 Conclusion

This chapter proposes an embedding method based on the weighted sum function. As
shown in the figures and tables, our method has a wide range of embedding rates (0.5-4.0
bpp), and has competitive PSNR over the whole range. The predicted PSNR values (PSNRest
by Eq. (4.14)) are also extremely close to the actual. PSNR values. Therefore, the embedding
error can be predicted even before the-actual embedding. ' With this PSNR-prediction property
(Table 4.2), for each secret data the customer gives us, we can determine the necessary size of
host image if the customer also specifies-the-minimal PSNR value he can tolerate. This
determines a set of host images for that secret data. Sec. 4.3 proved that Modulus-based
method [8] and LSB matching methods [9, 10] are special cases of ours. The worst-case
PSNR discussed in Item V of Sec. 4.4 also shows that, even if some very strange data (data
artificially made by picky users and quite unnatural) was to be embedded, our method can still

compete.

89

Chapter 5
Authentication and Recovery of an Image by Sharing

and Lattice-embedding

Based on sharing and lattice-embedding techniques, this chapter presents an
authentication-recovery method for an image. The recovery data are shared among many
shadows, then lattice-embedding is utilized to embed each shadow in the DCT domain of an
8x8 block, respectively. The proposed method can resist certain content-preserving operations
such as JPEG compression, Gaussian noise, and brightness adjustment, up to a tolerance level
which is controlled by a quantization parameter value. The method can also resist certain
security attacks such as cut-and-paste attack, collage attack, and VQ attack. Comparing with
previous works, the proposed method have following-major advantages and novelty: i) the
method has no need to predict the trace of tampering, and the tampered blocks are always
recovered as long as the number of valid blocks reaches a threshold; ii) Lattice-embedding
yields smaller distortion than parity-check quantization does, and the latter was often used in

reported works.

5.1 Introduction

It is easy for attackers to modify public digital media, and many authentication
techniques, called watermarking, have been reported in recent years to protect the digital
media. These techniques can check the correctness of the media content. Recently, some
fragile watermarking schemes for tampered-region’s detection and recovery have also been
introduced. Based on Pascal transform, Varsaki et al.[72] proposed a semi-fragile
watermarking with the recovery ability to deal with color images. The host is a color image,
but the recovery data is a 1/16-size gray-level version of the host. The data is embedded in the
Pascal domain of R, G, and B color components, respectively. As a result, the recovered
region of the tampered color image is gray-leveled, rather than colored. However, as
demonstrated in Fig. 5.7 of Sec. 5.4.3, the recovery ability is not so good after cropping in the

central area of the image. Tsai and Chien [16, 17] proposed a method based on discrete

90

wavelet transform. The verification data and the recovery data is generated from
low-frequency bands and then embedded in high-frequency bands. This method can resist
JPEG compression and Gaussian noise.

Based on (t, n) sharing and lattice embedding, a novel semi-fragile watermarking method
with recovery ability is proposed. The motivation of the proposed method is based on the
three observations as follows. First, the (t, n) two-layer sharing, which will be introduced in

Sec. 5.2.2, can recover the embedded data, as long as no more than |(n—t)/2] of the n

created shadows are damaged shadows. This is an important property for our design to
recover the image. Since each of our generated shadows is embedded in a block, the
watermarked image can still extract useful recovery data after tampering, as long as the
percentage of validity blocks reaches a pre-defined threshold g. If sharing-related techniques
were not used, and if, for example, traditional block-mapping sequence techniques were used
instead, the recovery data of some tampered blocks would have been lost because it was hard
to predict in advance which blocks would be tampered (More details are addressed in Part (a)
of Sec. 5.5). Second, the generated shadows E; have-the ability to both verify and recover.
Because both of these abilities-are tied together in E;, we only need to embed one shadow E;
(rather than two data sets) in-an 8x8 host block: This simplifies the design. Finally, We use
lattice embedding to replace the so-called parity-check embedding used by many methods[13,
14, 16, 17] when data is to be embedded. The 'major reason for this is that lattice embedding
has a smaller impact on the host image (More-details are addressed in Part (b) of Sec. 5).

The remainder is organized as follows. Sec. 5.2 introduces the (t, n) two-layer sharing
and lattice embedding which are utilized in our design. Sec. 5.3 describes our method,
including a mathematical property. Sec. 5.4 shows the experimental results. Sec. 5.5 discusses
the difference between the proposed method and other works, and Sec. 5.6 is the conclusion.

Notationsin this chapter:

n Number of created shadows in a (t, n) secret sharing.

t The threshold of (t, n) secret sharing.

P; The i" shadow of (t, n) two layer sharing.

C The size of P;.

Ei The generated shadow which is attached to P; by (t, n) two layer sharing.
M The step size of lattice embedding.

di Thei™ DCT value of a 8x8 image block.

91

ID The image’s identification number.
Key A secret key.

S A specified threshold for the percentage of valid blocks in a tampered image.

5.2 Related works

Secret image sharing[7] and RS code technique[34] are briefly reviewed in Sec. 5.2.1;
the two-layer sharing technique is introduced in Sec. 5.2.2, and lattice embedding is reviewed

in Sec. 5.2.3. These techniques will be used by the proposed method in Sec. 5.3.

5.2.1 Secret image sharing[7] and RS code technique[34]

In the sharing phase of Thien and Lin’s (t, n) threshold method[7], for each
non-overlapping t pixel values of the secret image (secret message), a related polynomial is
defined as

f(X) =a, +a, xX#+-+axx" (mod p) (5.1)
where ao, ai,..., a1 are the gray-values of the t pixels; and p is a prime constant. Then (1),
f(2),..., f(n) is evaluated and sequentially attached to the n shadows. Having processed all of
the pixels in the secret image, the n shadows are generated. Since each t pixels in the secret
image only contributes one pixel to each generated shadow, the size of each shadow is 1/t of
the secret image.

As indicated by Preparata[33], from the mathematical viewpoint, the encoding phase of
using the sharing equation (1) is isomorphic to the creation of a Reed-Solomon code (RS

code)[34]. Therefore, by the error-correction property of the RS code, if |(n—t)/2]of the n

received shadows are contaminated and become malign shadows, people can still utilize the
RS code decoder to decode the n received shadows, locate the malign shadows, and then
extract the whole secret data correctly. Two commonly-used RS code decoders are the
Berlekamp-Massey decoder[73] and the Euclidean algorithm[74]. In our method, we use
Euclidean algorithm[74] to locate the position of the malign shadows, or the tampered blocks,

because all of the shadows are embedded in image blocks.

5.2.2 A (t, n) two-layer sharing technique modified from Chang et.al[68]

This technique can share n given data sets {Pi|| P |=c,i=12,...,n}to produce n shadows

{(P, Ei)|i =12,...,n} where constant c is the constant size of each P;. The created file E; is
92

attached to Pj, where the size of each Ejis c¢x(n/t—1) (the analysis is addressed later). In the
original design by Chang et.al[68], the n data sets{R|| Pl=c,i=12,...,n} can be decoded

using any t received shadows. However, in our method, we always get all n shadows (but
some of them may have been tampered). Therefore, certain steps of the algorithm in Chang
et.al[68] are modified so that, for all n shadows, if the number of error shadows is not more

than| (n—t)/2], then all n data sets{P|| P, |=c,i=12,...,n} can be decoded by the modified

decoder. Notably, in our method, the n data sets {P;} are the DCT coefficients which will be
used to recover the tampered blocks. Moreover, the location of the error shadows are also the
location of error blocks in the tampered watermarked image. The encoder (sharing) and the
decoder (inverse-sharing) are shown below. Notably, in our method, the calculations of
Algorithms 5.1 and 5.2 are under GF(2*9).

Algorithm 5.1: (t, n) two-layer sharing encoder

Input: n data sets{Pi|i =12,...,n} dinwhich each P; has constant size c.
Output: n shadows{(P,, E;)fi £4,2,...,n}.
1. First-layer sharing: For each P;, we calculate B; (each P; and B; is treated as a vector,
and |P;j|=|Bi|= c for each i)by the following equation:
B'=P.+2'P, +3'P,4..+n'P,.
Then we collect and store the n—t vectors {B;, By, ..., B,—} in file B.

2. Second-layer sharing: For each t digits in file B, we encode the t digits by (t, n) secret

image sharing[7] (Sec. 5.2.1) to get an n-digits codeword. The n digits are dispersed,

respectively, to n shadows{Ei|i =1,2,...,n}. The construction of {E;} is thus done when all of

the digits of file B are shared.

Algorithm 5.2: (t, n) two-layer sharing decoder

Input: n received shadows{(l5i, Ei)|i =1,2,...,n}, but some shadows within them may have

been tampered.

Output: If the number of tampered shadows is no more than _(n —t)/2J, then we output the

n error-corrected data sets{Pi|i =1,2,...,n} and the verification result.

93

1. Reconstruct the file B from{Ei|i =12,...,n}. Here, if the number of tampered Ei IS no
more than _(n —t)/ Zj, then the file B can be reconstructed by the RS code decoder, and
we can also identify locations of the tampered shadows{(ﬁi[i],ﬁﬂi])h =12,..,v}. We
can mark the location of these tampered shadows as “tampered”, then output the
verification result. (However, if the number of tampered Ei is more than _(n—t)IZJ,

the file B cannot be reconstructed, so we would stop the procedure in this case.)

2. Let the un-tampered shadows be {(Isj[i],Ej[i])|i=1,2,...,n—v} where
{j[i]|i=1,2,...,n—v} are indices of the un-tampered shadows. In other words,
{ilifi=12,...n —V}U{jT[i]|i =12,...,v}={,2,...,n} and
{ilili =12....n—v}N{j[i]i=12....,v}=®. The tampered data {Isi[i]|i=1,2,...,v} can be
recovered by the equation

P | [T T2 - G TR 2 - i Py
Pry || JUF J[2F -V B I Jf2F - JIn=vE* | Py

1
l
l

!
l

~

Pog | LTI 121 = JIVYY B, LIl 2" - iln-vI"] Py

3. output {Rfi=12,...n}={P li £1,2,.. V}U{P i =12,...n—}.

Two size and time issues about the generated shadow E; are discussed below.
I). Size of E;.
We consider the two-layer sharing encoder, and in the First-layer sharing, since the P;

contains c¢ digits, and the matrix in the multiplication has (n—t) rows, the generated matrix

[B, B, ... B,,I contains (n—t)c digits, which is the size of file B. In the Second-layer

sharing, the file B is divided into [(n—t)c/t| sectors of t digits each, and each t digits are

encoded into n digits by (n, t) RS code; and then a digit is assigned to each shadow E;. So the
size of each shadow E; is[(n—t)c/t |~ (n/t-1)c.

ii). Running time of generating E;.

In the First-layer sharing, the size of the two matrices at the equation right are (n—t)n

and nc, so it needs (n—t)nc operations to calculate [B, B, ... B._] . Inthe Second-layer

94

sharing, the file B is divided into]_(n —t)c/t—\ sectors of t digits each, and each t digits needs
nt operations to generate the code, so it needs Rn—t)c/t—|>< nt ~ (n—t)nc operations.

Therefore, all of the operations needed are 2(n—t)nc =&((n—t)nc).

Fig. 5.1 Diagram of lattice embedding.

5.2.3 Lattice embedding[75]

Lattice embedding[75] is-an embedding method in which a secret digit can be embedded
into many signals. Fig. 5.1 is an example, in which a ternary value {0, 1, 2} is embedded in a
pair of signals (p1, p2). As shown.in Fig. 5.1, the-space of host pair-values (p1, p2) is divided
into many hexagonal regions, and each ‘region corresponds to a ternary value 0, 1 or 2
(squares, circles, and triangles are used to represent the three values). As shown in Fig. 5.1, in
each one of the horizontal and vertical directions, the distance of contiguous hexagonal
region’s centers is set to our step size M. If a ternary value is to be embedded in the pair (ps,
p2), we find the nearest region’s center to (p1, p2) So that the nearest region corresponds to the
ternary value to be embedded. Then the coordinate of the region’s center is output. Later, to
decode the embedded value, the region which contains the stego-pair (ps, p2) is found, and the
corresponding region-value 0, 1, or 2 of the region is output. In general, if the value of M is
larger, then the image quality after embedding is lower, but the hidden data is more robust.

The embedding and extracting algorithms are shown below.

Algorithm 5.3: Embed a ternary value in a pair of signals

Input: a ternary value s, a pair of host signals (p1, p2), and step size M.

95

Output: a pair of stego-signals (p;, p;).

MRS I
&) | 0 2+3M)* | p,+M/3
(10 1a,) = (Lo, J [0,)
t =s—(lg, +2Iq,) (mod 3)
if t=1 or 2 then
lg, =1g, +1
eseif g1—1g1+g2—1g2>1
lg, =g, +1
lg, =g, +1
end if

end if

R S

Algorithm 5.4: Extract a ternary value from a pair of signals

Input: a pair of stego-signals-(p,, p,); and step size M.

Output: the ternary value.s hidden'in (p;, p;).
{ql}z M —(\/§M)‘1{ p: }

d, 0 2(3M)* | p,+M/43
(Ig,.1a,) = (o, } Lo]

PRV N PR
Ap, | | 0 BMI72]|1lg,| | ps+M /A3
min = (Ap;)° +(Ap3)°
b=1q, +2lg, (mod 3)
if min>(Ap; +M)* +(Ap,)° then
min = (Ap; + M) + (Ap})®
s=b+1(mod3)

end if

96

if min> (Ap, +M /2)? +(Ap, +~/3M /2)? then
min = (Ap, + M /2)? + (Ap, +/3M /2)?
s=b+2(mod 3)

end if

if min> (Ap, +3M /2)? + (Ap, ++/3M /2)? then
min = (Ap, +3M /2) + (Ap,, +/3M /2)°
s=b

end if

5.3 The proposed method

The proposed method consists of two phases. 1) Watermark generation which generates
the shadows {E;}, followed by embedding {E;} in the DCT domain of the host image. 2)
Tampered block detection, together “with the recovery achieved by a two-layer sharing

decoder (then the decoded data set {P;} is utilized to recover the tampered blocks).

N 1.
(i) DCT (ii) Generate shadows | F1 E2
Host image > y :
using two-layer sharing
(iii) Encrypting
shadows
. H
Watermarked| (v) IDCT (iv) Lattice embedding E,E,
image

Fig. 5.2. The diagram of watermarking steps.

5.3.1 Water mark generation
Without the loss of generality, assuming that the host image is 512x512, so there are
4096 blocks of 8x8 pixels each. Then the following four steps are taken. i) Data sets

{Pi|i =1,2,...,4096} are generated for all 4096 blocks in the host image. ii) Then these data sets
97

are used to generate 4096 shadows{Ei|i=1,2,...,4096}. iii) To increase the security and

protection, a 12-bit hashing code is generated for each block i, and then the shadow E; is
encrypted by an Exclusive-OR with the 12-bit code. iv) Finally, the (encrypted) shadow E; is
embedded in each block, and v) the DCT coefficients are converted into spatial domain to
obtain the watermarked image. Fig. 5.2 shows the watermarking steps. The details of the steps

1)-iv) are explained below.

Fig. 5.3. DCT coefficients which are selected as data P; (dark gray) and embedded locations
of E; (light gray).

5.3.1.1 Generating Data sets{P[i =1,2,...,4096}

Each 8x8 block of the host image is converted to DCT domain, and then four
low-frequency DCT coefficients are quantized by step size M (the value of M influences the
robustness of the watermarked image). Fig. 5.3 shows the positions of the four DCT
coefficients {do, d1, dg, do}, which are painted dark gray. Then for each DC coefficient dy in
8x8 block, the difference valuAd dp is calculated by subtracting the DC coefficient of the
previous block from do. This step has two advantages. First, the contiguous blocks have
similar DC values, so the bit length of dy can be reduced by storing the difference Ady. Second,
when the brightness of the watermarked image is adjusted, all DC values will

increase/decrease a constant value, but the difference of two DC values is unchanged, so the

98

integrity of difference Adg is preserved after the brightness is adjusted. Finally, for each 8x8
block, the data P;is calculated by

P =[(Ad, xd" +d,)d"™ +d,]d"™* +d,.
where d"** is the maximal d; of all blocks, and the three values {d,"**,d"*,d"*} are
sent to the decoding side for the purpose of recovery. The size of P; is
¢ = log, (Ad)"™d " d "™ dg™*) which is determined by the maximal coefficients in {Ad,

ds, dg, do} among all blocks.

5.3.1.2 Generating recovery data
Generate 4096 couples {(Pi,Ei)||Pi|=c,i=1,...,4096} by the (t, n) = (4096(25-1),

4096) two-layer sharing encoder (Algorithm 5.1). Here, p is a specified threshold for the
percentage of valid blocks in a tampered image. Due to embedding capacity limitation, each

generated shadow E; should have 12 bits at most. This will make a >6/(c+12) a requirement

when percentage value £ is specified. The proof-is given in Sec. 5.3.3. On the other hand,
100%=1>p is a natural requirement. Together, the" percentage value g must satisfy

1> B>6/(c+12).

5.3.1.3 Generating the hashing code ofa block
First, a 128-bit MD5 code of the block:is calculated, and the formula is
MD5(P;, i, ID, Key),
where ID is the image’s identification number, and Key is a secret key. Then the generated
128-bit MD5 code is divided into 10 sectors of 12 bits each (the final 8 bits of the MD5 code

are dropped), and the Exclusive-OR on the 10 sectors is used to get a 12-bit hashing code.

5.3.1.4 Embedding shadow E; in a block

For each 8x8 block, the shadow E; is converted into 8 ternary digits, and each digit is
embedded in two DCT coefficients with lattice embedding (Algorithm 5.3). Fig. 5.3 shows all
2x8 DCT coefficients which are painted light gray. A coefficient in the middle frequency and
a coefficient in the low frequency are selected to form a pair of values (p1, p2). Here the eight
pairs of values being used for (p1, p2) are {(diz, d2), (dao, d17), (d19, d1o), (d4, d2s), (dzs, d16),
(d26, d3), (di1, dig), (dsz, d2s)}. Then a ternary digit (0 or 1 or 2) grabbed from the shadow E; is

embedded in each (p1, p2) pair.
99

5.3.2 Tampered image verification and recovery

When a tampered watermarked image is received, the following steps can generate the
verification result and the recovered image.
(1) Data sets {Pi1i =12,...,4096}are generated for all blocks in the tampered watermark
image (this step is the same as Sec. 3.1.1).

(2) All shadows {Ei’|i =1,2,...,4096} are extracted from all blocks with Algorithm 5.4.

(3) A 12-bit hashing code is generated from each block (this step is the same as Sec. 3.1.3).
Then E; is decrypted by applying Exclusive-OR to E; and the 12-bit code.

(4) Detect the tampered blocks of the coupled-shadows {(P’E))|i=12,...,4096} with (t, n)

= (4096(2p5-1), 4096) two-layer sharing decoder (Algorithm 5.2). If the percentage of
tampered blocks is less than 1-4, the data sets {Pi|i =12,...,4096} are decoded. Then output

the decoded data sets {P;} and the verification .result indicating locations of the tampered
blocks. (If the percentage of tampered blocks is more than 14, the warning-message is output:
“Too many blocks are tampered, and hence-no recovery can be done”, then the procedure

should be stopped without going to step (5).)
(5) For the data sets{Pi|i =1,2,...,4096} ; decode the four-values {Ado, di, dg, do} by division.

The step needs the three values {dM,d", dg"*}.Then the DC value dy is obtained by

calculating the sum of Ady and the DC coefficient of the previous block.

(6) In all tampered blocks, the four DCT coefficients {do, d;, dg, dg} should be replaced with
the de-quantized values in P;.

(7) For each block which passes the authentication tests, if its DCT coefficient dois too far
away from the de-quantized value do in P; (up to a threshold), then still replace the DCT
coefficient do by the de-quantized value dg extracted from P;; this is to recover back the whole
image after global adjustment of brightness.

(8) The DCT coefficients in each block should be converted to the spatial domain.

5.33Thevalueof a
The value of £ used in Sec. 5.3.1 is discussed here. In Sec. 5.3.1.2, we set (t, n) =
(4096(25-1), 4096) where 4096 is the number of 8x8 blocks in a 512x512 image. Due to the

use of the RS code, which can correct |(n—t)/2] error shadows in all n received shadows in
100

general applications, the tolerable percentage of tampered blocks equals

{n —tJ roge —4096(23 —1)J 4096 — 4096(28 —1)
2 J_ 2 ~ 2 =1-4.
n 4096 4096

In other words, if the percentage of tampered blocks exceeds 1-4, then our method loses the

ability to recover tampered blocks. Analogously, in a tampered image, £ is the minimal
percentage of valid blocks needed to keep the recovery ability active. In Sec. 5.3.1, the size of

each Pj is c. On the other hand, Sec. 5.3.1.4 states that shadow E; is converted into 8 ternary

digits. Hence, each E; has |E;|=19(3°) =8lg3>12 hits. So, by the equation |E, |~ (n/t-1)c

of Sec. 2.2, it can be derived thatl2<|E, |[<cx :
c+12

4096
—— 1| Hence, 2
4096(23 1) j d

Notably, <1 is required for a recovery system to be meaningful (=1 would require all
blocks to be valid blocks, which means that the recovery system is too weak to tolerate even
just one block being altered). Having .combined the two inequalities, a more integrated
inequity should be

1> p>6/(c+12).

5.4 Experimental results

In this section, some experiments are undertaken to check the performance of our

watermarked images.

5.4.1 Robustness test

With the step value M being 20, four watermarked images {Lena, Peppers, Jet, Scenery}
are generated and shown in Fig. 5.4(a-d). From (a) to (d), the PSNR values are 34.75 dB,
34.70 dB, 34.80 dB, and 34.65 dB, respectively. Then a cropping attack is applied to the four
watermarked images (we crop the central 192x192 pixels of each 512x512 image). Moreover,
some further distortion is made to the cropped images, as illustrated below. The cropped-Lena
shown in (e) is compressed by a JPEG with QF=65 and the compression ratio is 8.57. The
brightness of the cropped-Peppers shown in (f) is increased by 30; Gaussian noises (¢°=6) are
added to the cropped-Jet shown in (g); an 8-pixels-wide “white” horizontal bar is inserted to
the cropped-Scenery image shown in (h). Fig. 5.4(i-1) is the verification result of the four

tampered images. White blocks are the places which are marked as “tampered” blocks. (m-p)

101

are the four recovered images, and (g-t) are the close-up versions of the recovered images.
The PSNR values of four recovered images are, from left to right, 30.16 dB, 30.96 dB, 29.83
dB, and 31.75 dB, respectively. More experiments for various values of M are shown in Table
5.1. In each row, column 1 is the value of the user-specified step value M; and column 2 is the
PSNR of the corresponding watermarked image. The remaining columns are for different
kinds of attacks. Column 3 is the allowed tampered ratio of watermarked image; i.e. if the
tampered ratio is larger than the specified value, our method cannot recover the tampered
region. Column 4 is the tolerable bound of the qualify factor (QF) of JPEG compression; i.e.,
if the compression uses a QF below this bound, our method cannot recover the tampered
region. Column 5 is for Gaussian noise, it shows the maximal tolerable variance ¢° of
Gaussian noise. Column 6 is the tolerable range of brightness adjustment. In summary, if the
attack uses a parameter value worse than the threshold values specified in Tables 5.1, then our
method cannot recover the tampered region. Should this happen, switching to a larger value of
M in advance is necessary. (In general, using a larger value of M in advance can increase the
tolerable range of attack; but the watermarked image’s quality degenerates.) From Table 5.1,
we see that our method can resist certain levels of area-tampering (e.g. cropping or
replacement of some areas of image), JPEG compression, Gaussian noise, and brightness
adjustment.

5.4.2 Security test

Three kinds of attack are tested on our watermarked images, which are cut-and-paste
attack[76], collage attack[77], and VVQ attack[78].
Firstly, the so-called cut-and-paste attack [76] is tested. Fig. 5.5(a) is our watermarked image
and the PSNR value is 48.13 dB. Then a small-size pepper is copied and pasted to the
lower-left corner as shown in (b); (c) is the verification result, and (d) is the recovered image,
the PSNR value of which is 40.54 dB. Secondly, the so-called collage attack [77] is tested.
Fig. 5.6(a-b) shows our two watermarked images, Boat and House, and the PSNR values are
34.63 dB and 34.76 dB, respectively. Then the car in (b) is copied-and-pasted to the same
place in (a). This yields the image shown in (c). (d) is the verification result, and (e) is the
recovered image, the PSNR value of which is 31.88 dB. Finally, the so-called VQ (Vector
Quantization) attack is tested[78]. Twelve aerial images are downloaded from the USC-SIPI
Image Database[79]. Each image is 512x512, and is converted to a grayscale image. Then one

of them is assigned as the test image (the one shown in Fig. 5.7(a)); and the remaining eleven

102

images are watermarked by the proposed method (using M=4). Then, since our method is
based on 8x8 blocks, the eleven watermarked images are partitioned to get blocks of 8x8 each.
These blocks are collected together and treated as a VQ codebook with many code words.
With this VQ codebook, the VQ-compression-decompression version of Fig. 5.7(a) is shown

in (b). (c) is the verified result which shows that the whole (b) is a fake.

5.4.3 Image quality and our advantage

Firstly, the method of Varsaki et al.[72] was implemented, and the results are shown in

Fig. 5.8. Fig. 5.8(a) is the 512x512 watermarked color image Lena which is 40.88 dB. As
shown in (b) of the figure, the embedded recovery data is the size-reduced 128x128
gray-level version of the rotated host, the clockwise rotation is 180 degree, as suggested by
Varsaki et al.[72]. This 128x128 gray-level rotated version is embedded in the 128x128
blocks of the host image, and each block is 4x4. So, the recovery data of the rightmost bottom
4x4 block is embedded in the leftmost top 4x4 block, and the recovery data of the Southwest
quadrant is embedded in the Northeast quadrant,-and so on. Unfortunately, when the central
192x192 pixels of the watermarked Lena are cropped (the tampered image is shown in (c)),
the recovery data extracted from the non-cropped area is.as shown in (d). It can be seen that
the tampered region still cannot be recovered because the recovery data of the central
192x192-pixels box was embedded earlier in the box itself. In other words, the recovery data
of the cropped box is also cropped. This is very different from ours. As shown in Fig. 5.4,
when the central 192x192 pixels of our watermarked Lena are cropped, the cropped region
can still be recovered. This should come as no surprise because, according to Table 5.1, when
M=20, a moderate-size-area’s tampering can be tolerated (up to 16.7% of the whole image’s
blocks can be tampered).
Next, because Tsai and Chien’s method[16] used scaled versions of the originals as messages,
then embedded the messages in the frequency domain, and also because they provided
experimental results about the resistance to JPEG compression and Gaussian noise, we
compare their method with ours.

Fig. 5.9 shows the experiment. The results of Tsai and Chien[16] are shown in (a-d), and
ours are shown in (e-h). Notably, the PSNR value of their watermarked image Jet in (a) is
30.8 dB while ours in (e) is 32.29 dB. The PSNR value of the recovered image is 29.3 dB (Fig.
5.9(d)) for theirs, and 31.89dB (Fig. 5.9(h)) for ours. Notably, (d') and (h") show the details of
(d) and (h), respectively. It is observed that, between the lower-middle and lower-left of the

103

image, there are some artifacts in their recovered snow area below the mountains, as shown in
(d"). Therefore, our recovered image is better.

Fig. 5.10 shows the second experiment. The watermarked image Peppers are under both
tampered attack and JPEG compression. The results of Tsai and Chien’s[16] method are
shown in (a-d). Ours are shown in (e-h). (a) is their 30.6 dB watermarked image. (b) is their
tampered image (inserting a sub-image compressed-decompressed by JPEG (QF=80, and the
compression ratio is 4.3). (e) is our 32.24 dB watermarked image. (f) is our tampered image
(inserting a sub-image, then use JPEG (QF=80, and the compression ratio is 5.4) to
compress/decompress the mixed image). Having compared the two recovered images (d) and
(h), it can be seen that ours (Fig. 5.10(h)) has better visual quality (because Fig. 5.10(d) has
some noisy dots). Details are shown in (d’) and (h").

Fig. 5.11 shows the third experiment. The watermarked image Peppers is tampered with;
and then the damaged image is attacked by adding Gaussian noises. The results of Tsai and
Chien[16] are shown in (a-d), and ours are shown in (e-h). Having compared the two
recovered images (d) and (h), again, 1t can be seen that ours (Fig. 5.11(h)) still has a better

visual quality (because Fig. 5.11(d) has some noisy dots). Details are shown in (d") and (h’).

104

@ © G

Fig. 5.4. Robustness test of the proposed-method. (a-d): Qur four watermarked images Lena, Peppers,

Jet, and Scenery. (e-f): The four cropped images. (i-1): The corresponding verification results, after
doing a JPEG compression on (e), adjusting brightness of (f), adding noise to (g), and adding white
bar to (h). (m-p): The recovered images. (g-t): Close-up versions around the recover area of the

recovered images (m-p).

@ 0 () ' (d)

Fig. 5.5. Cut-and-paste attack. (a): Watermarked image, (b):Tampered image, (c):Verification result,

(d): Recovered image.

105

(d)

Fig. 5.6. Collage attack. (a): First watermarked image Boat, (b): Second watermarked image House,
(c):Collaged image in which the car in (b)_is copied-and-pasted to the same place as (a), (d):
Verification result, (e): Recovered.image.

() ©
Fig. 5.7. Vector quantization (VQ) attack. (a): Original image, (b): VQ-attack result of
(@), (c): Verification result indicates that the whole image (b) is fake everywhere.

106

Fig. 5.8. Cropping test for Varsaki et al.’s[72] method. (a): Watermarked image Lena, (b):
Recovery data embedded in (a), (c): When (a) is cropped, (d): Recovery data extracted from

the support of the non-cropped area.

Fig. 5.9. An experiment to compare our method with that of Tsai and Chien[16]. (a): Their 30.8 dB
watermarked image Jet, (b): Their tampered image, (c): Their verification result, (d): Their 29.3 dB
recovered image, (e): Our 32.29 dB watermarked image, (f): Our tampered image, (g): Our
verification result, (h): Our 31.89dB recovered image, (Notably, (d") and (h") show the details of (d)

and (h) respectively. There are some artifacts in (d") on the recovered snow.)

107

(d) (h)
Fig. 5.10. Second experiment to compare our-methed with that of Tsai and Chien[16]. (a): Their 30.6
dB watermarked image Peppers, (b): Tampering with (a), followed by JPEG compression with QF=80,
(c): Their verification result, (d): Their recovered image, (e): Our 32.24 dB watermarked image
Peppers, (f): Tampering with (e), followed by a JPEG compression with QF=80, (g): Our verification
result, (h): Our recovered image. (Notably, (d’) and (h") show the details of (d) and (h), respectively.)

108

respectively.).

(d)
Fig. 5.11. The other experiment to compare our method with that of Tsai and Chien[16]. (a): Their

(h)

30.6 dB watermarked image Peppers, (b): Tampering with (a), followed by adding Gaussian noises
with ¢°=12, (c): Their verification result, (d): Their recovered image, (e): Our 32.24 dB watermarked
image Peppers, (f): Tampering with (e), followed by adding Gaussian noises with ¢°=12, (g): Our
verification result, (h): Our recovered image. (Notably, (d’) and (h’) show the details of (d) and (h),

Table 5.1. PSNR quality of watermarked image and attack-tolerance (for various quantization

step value M). The host images are Lena (L), Peppers (P), Jet (J), and Scenery (S).

Water marked image

Attack-tolerance

Range of
: B : JPEG with “brightness
. o | PSNR (dB) " ﬂt)’ © | Quality adjustment”
(Mg) used of p?rcen age Factor (QF) | Gaussian
in our watermarked 8 area cag not less than | noise (%)
alaorithm image € cIroppde thresholds _ _
g or replace shown here Lena; Jet;
Pepper | Scene
_ [-35,40]; | [-55,30];
- = 0,
2 53.37-53.40 | 1/8=12.5% 100 0 [-1040] | [-20.25]
) [-40,50]; | [-70,35];
4 48.13-48.15 |1/8 94 0 [-1550] | [-30.30]

109

] [-40,50]; | [-70,35];
0-1
) (0 for J; | [-40,50]; | [-70,35];
8 42.40-42.48 | 1/8 86 1 for|[-1555] |[-30,30]
L&P&S)
2-3
) (2 for | [-40,50]; | [-70,35];
10 40.52-40.54 | 1/8 82 J&P&S; | [-1555] | [-30,30]
3forL)
_ [-40,50]; | [-75,35];
12 38.95-39.01 |1/8 78 4 [-2055] | [-30.30]
5-6
] (6 for | [-40,55]; | [-75,35];
14 37.67-37.72 |1/8 73 L&S; 6 |[-20,55] |[-30,30]
for J&P)
_ [-40,55]; | [-75,35];
16 36.56-36.61 | 1/8 71 7 [-2055] | [-30.30]
_ [-40,55]; | [-75,35];
18 35.55-35.62 | 1/8 67 10 [-2555] | [-30.30]
~ [-45,60]; | [-85,35];
_ - 0
20 34.63-34.80 | 1/6=16.7% 63 13 [-25.60] | [-35.35]
_ [-45,60]; | [-85,35];
22 33.84-33.97 | 1/6 59 16 [-25,60] | [-35,35]
_ [-45,60]; | [-85,40];
24 33.10-33.24 | 1/6 55 19 [-25,60] | [-40,40]
_ [-45,60]; | [-85,40];
26 32.43-32.60 |1/6 51 22 [-25.65] | [-40.40]
] [-45,60]; | [-85,40];
28 31.80-32.00 |1/6 48 26 [-25.65] | [-40.40]
] [-45,65]; | [-85,40];
30 31.24-31.42 | 1/6 45 30 [-25.65] | [-40.45]
_ [-45,65]; | [-85,40];
32 30.70-30.87 | 1/6 42 34 [-25.65] | [-40.45]

5.5 Comparison with other studies

In this section, the proposed method is compared with other studies. Firstly, the two
studies[11, 12] are authentication methods without considering the issue of recovery, but ours
is equipped with both authentication and recovery abilities. As for other semi-fragile
watermarking methods[13-17] with both authentication and recovery abilities, to describe the
difference between ours and those methods, each watermarking algorithm is divided into
major sub-steps (from the perspective of methodology and system design), and then a

comparison is made. The differences are described below.

110

a). Embedding location (i.e. where to embed?) and our advantage

In methods[13-15], the recovery data of each block is embedded in another block. For
example, the recovery data of block Ag is embedded in block Aj, the recovery data of block A;
is embedded in block A,, and so on. In the verification and recovery phase, if block Ay is
judged as “tampered”, then the recovery data in block A; is extracted to recover block A, and
so on. In this example, if blocks Ay and A; are both tampered, then block A, cannot be
recovered. In Tsai and Chien’s method[16, 17], although the processing domain is the discrete
wavelet domain, the recovery data in low-frequency bands still needs to find some other
location in high-frequency domain to undertake embedding. Therefore, if both locations are
attacked, a similar recovery-disabled problem exists, although it is less severe.

However, in our method, as long as the number of valid blocks reaches a threshold, our
inverse operation of the two-layer sharing can always decode the recovery data, so there is no
need to consider the case that a block Ap and the block A; storing its recovery data are
simultaneously tampered. We only have_to.consider the percentage of the damaged area
occupied in the whole image. As long as the damaged blocks occupy less than, say,
1/6=16.7% of the whole image’s blocks, recovery can always be undertaken. In general, it is
hard to predict in advance which part would be tampered. There is no way to predict the trace
of tampering, and worrying ‘about “the percentage of blocks (in the whole image) being
tampered” is simpler than worrying about “how: to predict the actual location of the tampered

area”.

__

Fig.5.12. Diagram of the 1-deimensional parity-check quantization used in many research

works.

111

X

Z
—
o)

=" r-——"""""r-—-"---
o | >

S SN N
o)

Fig. 5.13. Diagram to explain a two-dimensional case of parity-check quantization. Here,

two host pixel values (pi1, p2) are replaced by one of the centers for the purpose of
embedding a two-bit data.

b). Embedding method (i.e. how to embed?) and-our advantage

Parity-check quantization (or similar works) is used in a great many research works[13,
14, 16, 17]. (As for Ref. [15], it embeds the data in Least Significant Bits (LSB) of the host
image. Notably, 1-bit LSB embeds one bit per pixel, so two bits are embedded in two pixels,

and the largest distortion for a pair of stego-pixels “is V221414, but in our lattice

embedding, when M=2 in Fig:5.1, our largest distortion for two host pixels is

M /+/3 =2/+/3 ~1.155; hence smaller.) As shown in Fig. 5.12, in 1-dimensional parity-check
quantization, the host values are divided into many regions like [-3M/2, —M/2), [-M/2, M/2),
[M/2, 3M/2), [3M/2, 5M/2), and so on, with M is called the quantization level or step size.
Each region corresponds to a binary value 0 or 1. If a bit is to be embedded in a host value p,
then just find the nearest region of p so that the nearest region corresponds to the bit value to
be embedded. Then output the central coordinate (0, or £M, or £2M, or ...) of the picked
region as the stego-value that replaces p. To extract the hidden secret bit, just locate the region
which contains the stego-value, then output the corresponding bit value 0 or 1. Our method is
different, since we use lattice embedding as the embedding method. As shown in Fig. 5.1, the
space of the host pair-values (ps, p2) is divided into many hexagonal regions, and the center of
each region corresponds to a ternary value 0, 1 or 2. (In Fig. 5.1, small rectangles, triangles,
and circles are used to represent the three values, respectively.) If a ternary value is to be

embedded in the host pair (p1, p2), the nearest hexagon-center is found (i.e. small rectangle,

112

triangle, or circle) which corresponds to the ternary value to be embedded. Then the
2-dimensional coordinate of the hexagon-center is output. Later, to decode the embedded
value, just locate the hexagonal region which contains the stego-pair (ps1, p2), then output the
corresponding value 0, 1, or 2 of the region. The major reason for using lattice embedding is
that the distortion of the embedding is smaller, because the hexagon-centers are denser in the
plane than the square-centers. To see this, first let us inspect Fig. 5.13, which explains the
two-dimensional case of parity-check quantization, i.e. it explains what happens when two
pixels (p1, p2) are modified by parity-check quantization in order to embed two bits (00=0,
01=1, 10=2, or 11=3) of the data. According to the location of (p;, p.), the nearest
square-center, whose class-reading in {0, 1, 2, 3} must coincide with the given two-bit data,
is picked and the value of (p1, p2) is replaced by the coordinate of the square-center. The
quantization step size M in Fig. 5.13 is the same as in Fig. 5.1. Having compared Figs. 5.1 and
5.12, it can be seen that the distance between the hexagon-centers is smaller than the distance
between the square-centers (each hexagon can be contained by a square box of size M-by-M).
Therefore, when two host pixel values(p;, p2) are modified to embed the data, the distortion
of the Lattice embedding is smaller.-(As shown in Figs. 5.9-5.11, our watermarked images
have a better image quality.)

Of course, when Fig. 5.1 is adopted to replace Fig. 5.13, the price is that the data
embedded in a hexagon can only have a data value of 0,.1 or 2, but not 3. In other words, we
sacrifice the size of the embedding to.get a smaller distortion. However, this difficulty is
overcome because a sharing technique is used in the proposed method to reduce the amount of
data to be embedded, along with the second benefit of increasing the recovery ability from
scattered large—area tampering. In general, the size of each share is only a small portion of the
original size of the data. (As shown in Figs. 5.9-5.11, although our watermarked images have

a better image quality, our recovery ability is still very competitive.)

5.6 Conclusions

This chapter proposes an authentication-recovery method. The watermarked image can
be moderately altered by doing a JPEG compression, adding a Gaussian noise, or adjusting
the brightness. Certain security tests, such as a cut-and-paste attack, a collage attack, and a
VQ attack, are also tested. In our design, the recovery data is embedded in DCT coefficients
using lattice embedding to reduce distortion. The recovery data is dispersed into many blocks

by two-layer sharing. Compared with previously reported methods, our specialty is that the
113

tampered region can be recovered as long as the percentage of the tampered blocks does not
exceed a pre-defined threshold, say, 16.66%. Notably, as stated in Part (a) of Sec. 5.5, it is
hard to predict in advance which part of a watermarked image will be cropped or replaced by
attackers. The traditional mapping-sequence strategy for finding locations to hide recovery
data is not a suitable strategy. This dilemma is avoided in the proposed method by using
sharing. After all, worrying about “the percentage of blocks being tampered” is simpler than

worrying about “how to predict the actual locations of tampered area”.

114

Chapter 6

Conclusions and Future works

6.1 Conclusions

In this dissertation, some technologies are proposed to protect digital images. The
technologies are Flip Visual Cryptography (Ch. 2), weighted secret image sharing (Ch. 3),
data hiding (Ch. 4), and semi-fragile watermarking (Ch. 5).

In Chapter 2, Opaque-oriented FVC and non-opaque-oriented FVC schemes were
introduced. We proved that both schemes satisfy perfect security and they are conditionally
optimal in contrast. The generated transparencies do not lead to any expansion in size. The
experimental results show the revealing: of double secrets via flipping and stacking the
transparencies together. Due to the double secrets feature of the proposed method, one of the
applications is the double checking of ownership for personality identification. Since the size
is non-expanded, the space needed to carry a transparency to a meeting is economical (the
size is the same as the space needed to carry an original image).

In Chapter 3, a fast weighted. secret image sharing method with a (t, n) threshold was
proposed. This method shares the secret-image among weighted participants, and the secret
image can be losslessly recovered if the sum of the weights of the participants is greater than
or equal to the threshold t. Additionally, the execution time in the weighted secret image
sharing phase is improved by using properties of GF(2"). As shown in Fig. 2.5, our execution

time is better than that of Thien and Lin whenw, >1. The executives of a company can use

our method to share secret images.

In Chapter 4, an embedding method based on a weighted sum function was proposed. As
shown in our figures and tables, this method has a wide range of embedding rates (0.5-4.0
bpp), and has a competitive PSNR over the entire range. The predicted PSNR values (PSNRest
by Eq. (3.14)) are also extremely close to the actual PSNR values. Therefore, embedding
errors can be predicted even before the actual embedding. With this PSNR-prediction
property (Table 3.2), for each secret data the customer gives us, we can determine the
necessary size of a host image if the customer also specifies the minimal PSNR value he can

tolerate. This determines a set of host images for that secret data. Sec. 3.4 proved that
115

Modulus-based method [8] and LSB matching methods [9, 10] are special cases for us. The
worst-case PSNR discussed in Item V of Sec. 3.5 also shows that, even if some very strange
data (data artificially made by picky users and quite unnatural) was to be embedded, our
method is still competitive with others.

In Chapter 5, a semi-fragile method with recovery ability was proposed. The
watermarked image can be moderately altered by JPEG compression, adding Gaussian noise,
or adjusting the brightness. Certain security tests, such as a cut-and-paste attack, a collage
attack, and a VQ attack, were also tested. In our method, the recovery data is embedded in
DCT coefficients using lattice embedding to reduce distortion. The recovery data is dispersed
into many blocks by two-layer sharing. The defining characteristic of our method is that
unlike previously reported methods, tampered regions can be recovered as long as the

percentage of the tampered blocks does not exceed a pre-defined threshold, say, 16.66%.

6.2 Future works

Based on the proposed methodologies in this dissertation, some further works can be
studied.

1. Visual Cryptography with ‘multiple secrets is an interesting study issue (e.g. circular VC
methods [3, 19]). Based on the method proposed in Chapter 2, in the future we plan to
design a circular VC method for.multiple secrets (the number of secrets can be larger than
2), using perfect security (and optimal contrast, if possible).

2. A fast sharing algorithm under GF(2") is proposed in Chapter 3. However, in our method,
the calculation in the decoding uses an extended Lagrange polynomial equation (2.8),
which involves matrix multiplication. Therefore, it needs ®(t) to decode a secret digit a;.
Creation of a fast decoding algorithm is one of our future works.

3. The method proposed in Chapter 5 is processed under the DCT domain. In recent years,
wavelet transform has been widely used in image compression. In the future, we plan to

design a semi-fragile method in the wavelet domain.

116

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

References

M. Naor and A. Shamir, "Visual Cryptography,” in Proceedings of Advances in
Cryptology — EUROCRYPT'94, Perugia, Italy, vol. 950, pp. 1-12, May 1994.

C. N. Yang, "New visual secret sharing schemes using probabilistic method," Pattern
Recognition Letters, vol. 25, no. 4, pp. 481-494, 2004.

S. H. Shyu, "Image encryption by random grids,” Pattern Recognition, vol. 40, no. 3,
pp. 1014-1031, 2007.

A. Shamir, "How to Share a Secret,” Communications of the Acm, vol. 22, no. 11, pp.
612-613, 1979.

G. R. Blakley, "Safeguarding cryptographic keys,” in Proceedings of the National
Computer Conference, New York, vol. 48, pp. 313-317, 1979.

M. O. Rabin, "Efficient Dispersal of Information for Security, Load Balancing, and
Fault Tolerance," Journal of the ACM, vol. 36, no. 2, pp. 335-348, 1989.

C. C. Thien and J. C. Lin, "Secret image sharing,” Computers & Graphics, vol. 26, no.
5, pp. 766-770, 2002.

C. C. Thien and J. C. Lin, "A simple and high-hiding capacity method for hiding
digit-by-digit data in images based on modulus function,”" Pattern Recognition, vol. 36,
no. 12, pp. 2875-2881, 2003.

X. L. Li, B. Yang, D. F-Cheng;-and T. Y. Zeng, "A Generalization of LSB Matching,"
IEEE Signal Processing Letters,val. 16, no. 1-3, pp. 69-72, 20009.

J. Mielikainen, "LSB matching revisited,” IEEE Signal Processing Letters, vol. 13, no.
5, pp. 285-287, 2006.

C. K. Ho and C. T. Li, "Semi-Fragile Watermarking Scheme for Authentication of
JPEG Images,” in Proceedings of the “International Conference on Information
Technology: Coding and Computing, Las.Vegas, Nevada, vol. 1, pp. 7-11, April 2004.

C. H. Lin, T. S. Su, and W. S. Hsieh, "Semi-Fragile Watermarking Scheme for
Authentication of JPEG Images,” Tamkang Journal of Science and Engineering, vol.
10, no. 1, pp. 57-66, 2007.

C. Y. Linand S. F. Chang, "Semi-fragile watermarking for authenticating JPEG visual
content,” in SPIE International Conference on Security and Watermarking of
Multimedia Contents 11, San Jose CA, USA, vol. 3971, pp. 140-151, Jan 2000.

S. L. Hsieh, P. D. Wu, 1. J. Tsai, and B. Y. Huang, "A Recoverable Semi-fragile
Watermarking Scheme Using Cosine Transform and Adaptive Median Filter,” in
Proceedings of the 5th international conference on Autonomic and Trusted Computing,
Oslo, Norway, pp. 629-640, Jun 2008.

X. Jiang and Q. Liu, "Semi-fragile watermarking algorithm for image tampers
localization and recovery,” Journal of Electronics, no. pp. 343-51, 2008.

M. J. Tsai and C. C. Chien, "Authentication and recovery for wavelet-based
semifragile watermarking,” Optical Engineering, vol. 47, no. 6, p. 067005, 2008.

M. J. Tsai and C. C. Chien, "A wavelet-based semi-fragile watermarking with
recovery mechanism,” in Proceedings of IEEE International Symposium on Circuits
and Systems, Seattle, WA, vol. 1-10, pp. 3033-3036, May 2008.

S. K. Chen and S. J. Lin, "Non-expansible Flip-flop Visual Cryptography with Perfect
Security,” in Fifth International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, Kyoto, pp. 949-952, Sep 2009.

117

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]
[31]
[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

H. C. Wu and C. C. Chang, "Sharing visual multi-secrets using circle shares,”
Computer Standards & Interfaces, vol. 28, no. 1, pp. 123-135, 2005.

W. P. Fang and J. C. Lin, "Visual cryptography with extra ability of hiding
confidential data,”" Journal of Electronic Imaging, vol. 15, no. 2, p. 023020, 2006.

S. J. Shyu, S. Y. Huang, Y. K. Lee, R. Z. Wang, and K. Chen, "Sharing multiple
secrets in visual cryptography,” Pattern Recognition, vol. 40, no. 12, pp. 3633-3651,
2007.

A. De Bonis and A. De Santis, "Randomness in secret sharing and visual cryptography
schemes,"” Theoretical Computer Science, vol. 314, no. 3, pp. 351-374, 2004.

T. H. Chen and K. H. Tsao, "Visual secret sharing by random grids revisited," Pattern
Recognition, vol. 42, no. 9, pp. 2203-2217, 2009.

Y. F. Chen, Y. K. Chan, C. C. Huang, M. H. Tsai, and Y. P. Chu, "A multiple-level
visual secret-sharing scheme without image size expansion,” Information Sciences, vol.
177, no. 21, pp. 4696-4710, 2007.

R. Ito, H. Kuwakado, and H. Tanaka, "Image size invariant visual cryptography,”
IEICE Transactions on Fundamentals of Electronics Communications and Computer
Sciences, vol. E82a, no. 10, pp. 2172-2177, 1999.

R. Z. Wang and S. J. Shyu, "Scalable secret image sharing,"” Signal Processing: Image
Communication, vol. 22, no. 4, pp. 363-373, 2007.

W. P. Fang, "Friendly progressive visual secret sharing," Pattern Recognition, vol. 41,
no. 4, pp. 1410-1414, 2008.

S. J. Lin and J. C. Lin, "VCPSS: A two-in-one two-decoding-options image sharing
method combining visual cryptography (VC) and polynomial-style sharing (PSS)
approaches,” Pattern Recognition, vol. 40, ne. 12, pp. 3652-3666, 2007.

C. N. Yang and T. S. Chen, "Aspect ratio invariant visual secret sharing schemes with
minimum pixel expansion,” Pattern‘Recognition Letters, vol. 26, no. 2, pp. 193-206,
2005.

H. K. Tso, "Sharing secret.images using Blakley's concept," Optical Engineering, vol.
47,no. 7, p. 077001, 2008.

S. K. Chen and J. C. Lin, "Fault-tolerant and progressive transmission of images,"
Pattern Recognition, vol. 38, no. 12, pp. 2466-2471, 2005.

P. Beguin and A. Cresti, "General information dispersal algorithms,” Theoretical
Computer Science, vol. 209, no. 1-2, pp. 87-105, 1998.

F. P. Preparata, "Holographic Dispersal and Recovery of Information,” IEEE
Transactions on Information Theory, vol. 35, no. 5, pp. 1123-1124, 1989.

I. S. Reed and G. Solomon, "Polynomial Codes Over Certain Finite Fields," Journal of
the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300-304, 1960.

I. C. Lin, Y. B. Lin, and C. M. Wang, "Hiding data in spatial domain images with
distortion tolerance,"” Computer Standards & Interfaces, vol. 31, no. 2, pp. 458-464,
2009.

C. H. Yang, "Inverted pattern approach to improve image quality of information
hiding by LSB substitution,” Pattern Recognition, vol. 41, no. 8, pp. 2674-2683, 2008.

S. J. Wang, "Steganography of capacity required using modulo operator for
embedding secret image,"” Applied Mathematics and Computation, vol. 164, no. 1, pp.
99-116, 2005.

X. P. Zhang and S. Z. Wang, "Efficient steganographic embedding by exploiting
modification direction,” IEEE Communications Letters, vol. 10, no. 11, pp. 781-783,
2006.

S. L. Li, K. C. Leung, L. M. Cheng, and C. K. Chan, "A novel image-hiding scheme

118

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

based on block difference,” Pattern Recognition, vol. 39, no. 6, pp. 1168-1176, 2006.
S. S. Maniccam and N. Bourbakis, "Lossless compression and information hiding in
images,” Pattern Recognition, vol. 37, no. 3, pp. 475-486, 2004.

R. Z. Wang and Y. S. Chen, "High-payload image steganography using two-way
block matching,” IEEE Signal Processing Letters, vol. 13, no. 3, pp. 161-164, 2006.
Y. C. Tseng, Y. Y. Chen, and H. K. Pan, "A secure data hiding scheme for binary
images,” IEEE Transactions on Communications, vol. 50, no. 8, pp. 1227-1231, 2002.
M. Y. Wu, Y. K. Ho, and H. H. Lee, "An iterative method of palette-based image
steganography,” Pattern Recognition Letters, vol. 25, no. 3, pp. 301-309, 2004.

C. L. Liu and S. R. Liao, "High-performance JPEG steganography using
complementary embedding strategy,” Pattern Recognition, vol. 41, no. 9, pp.
2945-2955, 2008.

Y. Lee, H. Kim, and Y. Park, "A new data hiding scheme for binary image
authentication with small image distortion,” Information Sciences, vol. 179, no. 22, pp.
3866-3884, 2009.

J. X. Wang and Z. M. Lu, "A path optional lossless data hiding scheme based on VQ
joint neighboring coding,” Information Sciences, vol. 179, no. 19, pp. 3332-3348,
2009.

H. W. Tseng and C. P. Hsieh, "Prediction-based reversible data hiding,” Information
Sciences, vol. 179, no. 14, pp. 2460-2469, 2009.

D. C. Wu and W. H. Tsai, “Asteganographic method for images by pixel-value
differencing,” Pattern Recagnition Letters, vol. 24, no. 9-10, pp. 1613-1626, 2003.

C. M. Wang, N. I. Wu, C. S, Tsai, and M. S. Hwang, "A high quality steganographic
method with pixel-value differencing and modulus function,” Journal of Systems and
Software, vol. 81, no. 1, pp. 150-158, 2008.

X. P. Zhang and S. Z. Wang, "Steganography using multiple-base notational system
and human vision sensitivity," IEEE Signal Processing Letters, vol. 12, no. 1, pp.
67-70, 2005.

C. H. Yang, C. Y. Weng; S..J. Wang, and-H. M. Sun, "Adaptive data hiding in edge
areas of images with spatial LSB -domain systems," IEEE Transactions on Information
Forensics and Security, vol. 3, no. 3, pp. 488-497, Sep 2008.

H. F. Yang, X. M. Sun, and G. Sun, "A High-Capacity Image Data Hiding Scheme
Using Adaptive LSB Substitution,” Radioengineering, vol. 18, no. 4, pp. 509-516,
2009.

C. S. Luand H. Y. M. Liao, "Structural digital signature for image authentication: An
incidental distortion resistant scheme," IEEE Transactions on Multimedia, vol. 5, no. 2,
pp. 161-173, 2003.

D. C. Lou and J. L. Liu, "Fault resilient and compression tolerant digital signature for
image authentication,” IEEE Transactions on Consumer Electronics, vol. 46, no. 1, pp.
31-39, 2000.

C. T. Hsu and J. L. Wu, "Hidden digital watermarks in images," IEEE Transactions on
Image Processing, vol. 8, no. 1, pp. 58-68, 1999.

P. W. Wong and N. Memon, "Secret and public key image watermarking schemes for
image authentication and ownership verification,” IEEE Transactions on Image
Processing, vol. 10, no. 10, pp. 1593-1601, 2001.

M. Wu and B. D. Liu, "Data hiding in binary image for authentication and
annotation,” IEEE Transactions on Multimedia, vol. 6, no. 4, pp. 528-538, 2004.

H. Luo, Z. M. Lu, S. C. Chu, and J. S. Pan, "Self embedding watermarking scheme
using halftone image," IEICE Transactions on Information and Systems, vol. E91d, no.

119

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]

[74]

[75]

[76]

[77]

1, pp. 148-152, 2008.

P. L. Lin, C. K. Hsieh, and P. W. Huang, "A hierarchical digital watermarking method
for image tamper detection and recovery," Pattern Recognition, vol. 38, no. 12, pp.
2519-2529, 2005.

F. H. Yeh and G. C. Lee, "Content-based watermarking in image authentication
allowing remedying of tampered images," Optical Engineering, vol. 45, no. 7, p.
077004, 2006.

M. S. Wang and W. C. Chen, "A majority-voting based watermarking scheme for
color image tamper detection and recovery,” Computer Standards & Interfaces, vol.
29, no. 5, pp. 561-570, 2007.

Y. Park, H. Kang, K. Yamaguchi, and K. Kobayashi, "Watermarking for tamper
detection and recovery," IEICE Electronics Express, vol. 5, no. 17, pp. 689-696, 2008.
T. Y. Lee and S. F. D. Lin, "Dual watermark for image tamper detection and
recovery," Pattern Recognition, vol. 41, no. 11, pp. 3497-3506, 2008.

S. S. Wang and S. L. Tsai, "Automatic image authentication and recovery using fractal
code embedding and image inpainting,” Pattern Recognition, vol. 41, no. 2, pp.
701-712, 2008.

Y. J. Chang, Z. Wang, and J. C. Lin, "A Sharing-Based Fragile Watermarking Method
for Authentication and Self-Recovery of Image Tampering,” EURASIP Journal on
Advances in Signal Processing, vol. 2008, no. 200, 2008.

C. S. Chan and C. C. Chang, "An'efficient image authentication method based on
Hamming code," Pattern Recognition, vol. 40; no. 2, pp. 681-690, 2007.

X. P. Zhang and S. Z.‘Wang, "Fragile Watermarking With Error-Free Restoration
Capability," IEEE Transactions-on Multimedia, vol. 10, no. 8, pp. 1490-1499, 2008.
Y. J. Chang, S. J. Lin, and J. C. Lin, "Authentication and cross-recovery for multiple
images," Journal of Electronic Imaging, vol. 17, no. 4, p. 043007, 2008.

F. Liu, C. K. Wu, and X Jo Lin, "A new definition of the contrast of visual
cryptography scheme,™ Information Processing Letters, vol. 110, no. 7, pp. 241-246,
2010.

S. Linand D. J. C. Jr., Error Control-Coding, 2 ed.: Prentice Hall, 2004.

D. Bini and V. Y. Pan, Polynomial and matrix computations (vol. 1): fundamental
algorithms: Birkhauser Verlag, 1994.

E. E. Varsaki, V. Fotopoulos, and A. N. Skodras, "Self-authentication of natural color
images in Pascal Transform domain,” in 16th International Conference on Digital
Signal Processing, Santorini, Hellas, pp. 1-6, Jul 2009.

J. Massey, "Shift-register synthesis and BCH decoding,” IEEE Transactions on
Information Theory, vol. 15, no. 1, pp. 122-127, 19609.

T. K. Truong, I. S. Hsu, W. L. Eastman, and I. S. Reed, "Simplified procedure for
correcting both errors and erasures of Reed-Solomon code using Euclidean
algorithm,™ in IEE Proceedings-E of Computers and Digital Techniques, vol. 135, pp.
318-324, Nov 1988.

P. Moulin and R. Koetter, "Data-hiding codes,” in Proceedings of the IEEE, vol. 93,
pp. 2083-2126, Dec 2005.

P. S. L. M. Barreto, H. Y. Kim, and V. Rijmen, "Toward a secure public-key
blockwise fragile authentication watermarking,"” in IEEE International Conference on
Image Processing, Thessaloniki, Greece, vol. 2, pp. 494-497, 2001.

J. Fridrich, M. Goljan, and N. D. Memon, "Further attacks on Yeung-Mintzer fragile
watermarking scheme,” in Proceedings of the SPIE Security and Watermarking of
Multimedia Contents I, vol. 3971, pp. 428-437, 2000.

120

[78] M. Holliman and N. Memon, "Counterfeiting attacks on oblivious block-wise
independent invisible watermarking schemes,” IEEE Transactions on Image
Processing, vol. 9, no. 3, pp. 432-441, 2000.

[79] The USC-SIPI Image Database. Available: http://sipi.usc.edu/database/

121

http://sipi.usc.edu/database/�

Publication list

Journal papers
1. S.J. Lin, S. K. Chen, and J. C. Lin, "Flip Visual Cryptography (FVC) with perfect

security, conditionally optimal contrast, and no expansion™”, Journal of Visual

Communication and Image Representation, article in press. [SCI, EI] (Ch. 2).

2. S.J. Lin, L. S. T. Chen and J. C. Lin, "Fast weighted secret image sharing”, Optical
Engineering, vol. 48(7), Jul. 2009, pp. 077008. [SCI, EI] (Ch. 3).

3. S. J. Lin and J. C. Lin, "Authentication and Recovery of an Image by sharing and
lattice-embedding”, Journal of Electronic Imaging, vol. 19(4), Oct. 2010, article in
press. [SCI, EI] (Ch. 5).

4. S.J. Lin and J. C. Lin, "VCPSS: a two-in-one two-decoding-options image sharing
method combining visual cryptography (VC) and polynomial-style sharing (PSS)
approaches”, Pattern Recognition, vol. 40(12), Dec. 2007, pp. 3652-3666.[SCI, EI].

5. L. S. T. Chen, S. J. Lin and J. C. Lin, “Reversible JPEG-based hiding method with
high hiding-ratio”, International Journal of Pattern Recognition and Artificial
Intelligence, vol. 24(3), pp. 433-456, 2010. [SCI, El]

6. Y.J. Chang, S. J. Lin andJ. C. Lin, “Authentication and cross-recovery for multiple
images”, Journal of Electronic Imaging,vol. 17(4), Oct. 2008, pp. 043007. [SCI, EI]

Conference papers

1. S.J. Lin, J. C. Lin and W. P. Fang, "Visual cryptography (VC) with non-expanded
shadow images: a Hilbert-curve approach”, Proceedings on IEEE International
Conference on Intelligence and Security Informatics (1S12008), 2008.[El].

2. W. P. Fang and S. J. Lin, "Fast Secret Image Sharing Scheme in HPC, "Proceedings
on the 10th International Conference on High-Performance Computing in
Asia-Pacific Region(HPC ASIA 2009) joint WorkShop on PC-Grid, 2009.

3. S.K.Chenand S. J. Lin, "Non-expansible Flip-flop Visual Cryptography with perfect
security”, Proceedings on the Fifth International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, 2009.

Under Review

122

1. S.J.LinandJ. C. Lin, "Weighted-Sum Function (WSF) — A Gray-scale Image Hiding
Method with Competitive PSNR over a Wide Range of Embedding Rates®,
Information Sciences. (Ch. 4).

123

Vita

Sian-Jheng LIN was born in Taiwan, Republic of China. He received his B.S., M.S. and
Ph.D. degree in Computer Science from National Chiao Tung University in 2004, 2006 and
2010, respectively. His recent research interests include data hiding and secret sharing.

124

	cover.pdf
	dissertation
	摘要
	Abstract
	謝誌
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Related studies
	1.2.1 Visual Cryptography
	1.2.2 Polynomial secret sharing, secret image sharing, information dispersal algorithm, and Reed-Solomon code
	1.2.3 Data hiding methods
	1.2.4 Fragile watermarking and Semi-fragile watermarking

	1.3 Overview of this dissertation
	1.3.1 Flip Visual Cryptography (FVC) with perfect security, conditionally optimal contrast, and no expansion
	1.3.2 Fast weighted secret image sharing
	1.3.3 Weighted-sum function (WSF) (a gray-scale image hiding method with competitive PSNR over a wide range of embedding rates
	1.3.4 Authentication and recovery of an Image by using sharing and lattice-embedding

	1.4 Organization

	Chapter 2 Flip Visual Cryptography (FVC) with perfect security, conditionally optimal contrast, and no expansion
	2.1 Opaque-oriented FVC and Non-Opaque-oriented FVC
	2.1.1 Problem definition
	2.1.2 The 16 basis matrices of opaque-oriented FVC
	2.1.3 The 16 basis matrices of non-opaque-oriented FVC

	2.2 Experimental results
	2.2.1 Experiments of proposed method
	2.2.2 Security test of proposed method
	2.2.3 Comparison with other studies
	2.2.4 The expanded version of our method

	2.3 Discussions
	2.3.1 How to find the basis matrices of FVC
	2.3.2 Discussion about contrast values

	2.4 Conclusions
	2.5 Appendix
	2.5.1. The proof of conditionally optimal contrast in opaque-oriented FVC
	2.5.2 The proof of conditionally optimal contrast in non-opaque-oriented FVC

	Chapter 3 Fast Weighted Secret Image Sharing
	3.1 Related works
	3.1.1 Thien and Lin’s secret image sharing method[7]
	3.1.2 Galois field

	3.2 The proposed method
	3.2.1 The weighted secret image sharing phase
	3.2.2 The weighted secret image revealing phase
	3.2.3 The fast weighted secret image sharing algorithm

	3.3 Experimental results, comparisons, and security analysis
	3.3.1 Experimental results
	3.3.2 Comparisons with Thien and Lin’s scheme[7]
	3.3.3 Security analysis

	3.4 Conclusions

	Chapter 4 Weighted-Sum Function (WSF) (A Gray-scale Image Hiding Method with Competitive PSNR over a Wide Range of Embedding Rates
	4.1 The proposed method
	4.2 Experimental results
	4.3 Comparison with previous works
	4.4 Analyses
	4.4.1 Running time of Algorithm 1.
	4.4.2 Running time of main embedding algorithm (Algorithm 4.2).
	4.4.3 Expected value of MSE for our method
	4.4.4 Application of the predicted PSNR
	4.4.5 Worst case PSNR

	4.5 Conclusion

	Chapter 5 Authentication and Recovery of an Image by Sharing and Lattice-embedding
	5.1 Introduction
	5.2 Related works
	5.2.1 Secret image sharing[7] and RS code technique[34]
	5.2.2 A (t, n) two-layer sharing technique modified from Chang et.al[68]
	5.2.3 Lattice embedding[75]

	5.3 The proposed method
	5.3.1 Watermark generation
	5.3.1.1 Generating Data sets
	5.3.1.2 Generating recovery data
	5.3.1.3 Generating the hashing code of a block
	5.3.1.4 Embedding shadow Ei in a block

	5.3.2 Tampered image verification and recovery
	5.3.3 The value of (

	5.4 Experimental results
	5.4.1 Robustness test
	5.4.2 Security test
	5.4.3 Image quality and our advantage

	5.5 Comparison with other studies
	5.6 Conclusions

	Chapter 6 Conclusions and Future works
	6.1 Conclusions
	6.2 Future works

	References
	Publication list
	Vita

