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網路導向式計算流行病學： 

整合疾病動態與人類社會網路的多層次傳染病模型架構 

 

學生：蔡宇軒 指導教授：孫春在博士 

國立交通大學資訊科學與工程研究所博士班 

摘摘摘摘                要要要要 
 

網路導向式計算流行病學利用電腦與理論或真實網路拓樸結構研究

人類疾病動態和社會趨勢。本論文的主旨在於探討網路導向式計算流

行病的重要性、研究現況、優勢與建模過程，並詳述三項原創研究。

首先，第一項研究以理論探討無尺度網路下個體資源和疾病傳播成本

對於疾病傳播關鍵門檻值的影響，並於流行病模型的基礎上提出解析

方程式來解釋關鍵門檻值在無尺度網路下的存在性。該研究指出個體

資源和疾病傳播成本的控管對於在無尺度網路下疫情擴散防治的可

行性。其次，第二項研究提出整合真實社會網路、個體觀點、國家觀

點的多層流行病學架構－多層流病動態模擬器（MEDSim），並以該

架構模擬 2009年 A 型 H1N1流感疫情在台灣爆發的情形，測試該架

構對於不同爆發地點和傳染阻絕方案的靈活性，希望藉此釐清複雜的

個體接觸行為對於疾病傳播動態的影響。最後，在第三項研究中分析

網路導向式計算流行病學的潛在優勢，並針對網路導向式計算流行病

學初學者給予建立網路導向式流行病模型的方法。該研究的目標在於
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協助擁有較低電腦技能者建立流行病學模型、決定合適的模擬參數與

建立操作流程。本論文期望透過上述三項研究，利用電腦模擬來分析

多層次的個體互動行為，進而協助傳染阻絕政策的制定。 



iii 
 

Network-based Computational Epidemiology: 

A Multilayer Framework Integrating Social Networks with 
Epidemic Dynamics 

 

Student：Yu-Shiuan Tsai Advisor：Dr. Chuen-Tsai Sun 

Institute of Computer Science and Engineering 

National Chiao Tung University 

ABSTRACT 
 

Network-based computational epidemiologists use computers and 

either theoretical or actual network topologies to study the transmission 

dynamics of human diseases and social trends. In this dissertation I 

discuss the importance, current status, advantages, and modeling 

procedures of network-based computational epidemiology, specifically 

presenting three original studies in detail. The first study is an 

investigation of how resources and transmission costs influence diffusion 

dynamics and tipping points in scale-free networks. An epidemic model 

based on an analytic equation is proposed to explain the existence of 

epidemic critical thresholds in scale-free networks. Study results suggest 

the possibility of controlling the spread of epidemics in scale-free 

networks by manipulating resources and costs associated with an 

infection event. In the second study, a proposal for a multilayer 

epidemiological framework that integrates realistic social networks, 

called the Multilayer Epidemic Dynamics Simulator (MEDSim), is 
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described from individual and national perspectives. Model flexibility 

and generalizability are tested using outbreak locations and intervention 

scenarios for the 2009 A/H1N1 influenza epidemic in Taiwan. The results 

coincide with the dynamic processes of epidemics under different 

intervention scenarios, thus clarifying the effects of complex contact 

structures on disease transmission dynamics. In the third study, the 

potential benefits of epidemic simulations and instructions for building 

network-based epidemic models by novices learning network-based 

computational epidemiology approaches is investigated. The goal is to 

help individuals with less advanced computing skills build 

epidemiological models, determine appropriate simulation parameters, 

and construct operational procedures. It is my hope that the studies 

presented in this dissertation can assist in efforts by public health 

organizations to correctly implement intervention strategies by using 

simulations to analyze multilayer interactions.  
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Chapter 1. Introduction 

Network-based computational epidemiologists use computers and either 

theoretical or realistic network topologies to study the reasons, conditions, and 

transmission dynamics of human diseases and social trends. In this chapter I will 

summarize several network-based computational epidemiological issues, and 

introduce some of the details of both computational and network-based computational 

epidemiology. After reviewing the history, current status, and importance of the 

subject, I will give a general overview of the dissertation. 
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1.1. Computational and Network-based 

Computational Epidemiology 

 Epidemiologists study the distribution of individuals who are healthy or infected 

during a contagious disease outbreak, as well as conditions and factors supporting the 

spread of a disease (Lloyd & May, 2001). The two most common research approaches 

are observation and experimentation. In the first, epidemic diseases are analyzed 

using empirical data collected from clinical cases, epidemic monitoring surveys, and 

other investigation tools to determine contagious patterns or disease properties. In the 

second, subjects are randomly divided into two groups, members of one group are 

treated with the experimental variable, and a comparison of the two groups 

determines the positive, negative, or null effects of the variable. 

Computational epidemiologists construct mathematical models and use 

computing techniques to obtain epidemic results. Researchers validate results by 

comparing them with observable empirical data, or use their results to explain 

experimental variable characteristics. The most commonly used mathematical tool for 

computational epidemiology studies is differential equations, in which individuals in a 

population are divided into finite states representing different health statuses. 

Relations among states are determined by differential equations using mathematical 
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symbols. A major advantage of a differential equation system is that the number of 

each state can be easily computed; a disadvantage is that they are weak in terms of 

describing social properties such as social distance. 

To compensate for the lack of social properties, epidemiologists are 

incorporating social networks into their mathematical models, reflecting the idea that 

there is no distance between individuals with the same health status—that is, there are 

no restrictions on any two individuals being in contact with each other. Social network 

structures consist of nodes (objects) and links (social relations). For example, in a 

friendship network, nodes represent individuals and links represent whether or not 

two nodes are friends. Due to its ability to represent social relations, network-based 

computational epidemiology has grown in popularity. However, since individual 

characteristics and their corresponding integrated mathematical models are so 

complex, powerful computers are required to solve equation systems. As the size and 

detail of a social network increases, so does the need for increased computation time 

and power. 
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1.2. Computational Epidemiology History 

The first approaches used in computational epidemiology were based on 

differential equation systems. One of the first contagious epidemiology models, 

proposed by Kermack and McKendrick (1927), is known as the compartmental SIR 

model. In this model, all individuals in a population are classified as Susceptible 

(vulnerable to infection but not yet infected), Infected (and capable of infecting others), 

or Removed (recovered, dead, or otherwise not posing any further threat). Differential 

equations mark the progress of each state. In the past 80 years, numerous 

compartmental models have been created and improved for research purposes (for 

examples, see Bailey, 1950; Bartlett, 1956; Diekmann, Heesterbeek & Metz, 1990; 

Hyman & Stanley, 1988; Rollett, 1945). Major progress was made in the 1990s, with 

the addition of other states and model revisions to emphasize cyclic characteristics 

(Ahmed & Agiza, 1998; Anderson & May, 1991; Wang, 2006). 

Describing epidemic dynamics using compartmental models based on 

differential equation systems is an easy method for representing the time dimension, 

but such approaches lack a spatial dimension. Individuals in the same compartment 

are modeled as one group, implying that any two group members are directly 

connected—a flawed concept, since it ignores a long list of potential real-world 
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differences among individuals. To overcome this flaw, Von Neumann (1966) 

introduced his cellular automata model (which considers spatial differences and the 

movement of individuals) to epidemic propagation research (Fuentes & Kuperman, 

1999; Sirakoulis, Karafyllidis & Thanailakis, 2000). Other researchers focused on 

integrating compartmental and cellular automata models to support epidemiological 

models (Liu & Jin, 2005; Mikler, Venkatachalam & Abbas, 2005; White, del Rey & 

Sánchez, 2007). 

In addition to using the cellular automata model to consider spatial effects, social 

network models are increasingly being used by mathematical epidemiologists. Watts 

and Strogatz (1998) have proposed the concept of a “small-world” phenomenon to 

explain why any two individuals in the world can be contacted via a small number of 

connecting individuals. Barabasi and Albert (1999) then proposed a “scale-free 

network” algorithm to explain the phenomenon of “the rich becoming richer.” Unlike 

theoretical random networks (Erdos & Renyi, 1960), social networks are much closer 

to the real world situation, and hence can be used to depict individual contacts in 

network-based epidemic model studies (Dezső & Barabási, 2002; Grais, Hugh Ellis & 

Glass, 2003; Meyers, Newman, Martin & Schrag, 2003; Newman, 2002; Pourbohloul 

et al., 2005; Parham & Ferguson, 2006; Handcock & Jones, 2006). Other researchers 

have focused on the influences of social network structure on compartmental models 
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(Barthelemy, Barrat, Pastor-Satorras & Vespignani, 2004, 2005; Draief, 2006; 

Pastor-Satorras & Vespignani, 2001b; Shirley & Rushton, 2005; Silva, Ferreira & 

Martins, 2007; Wang, 2002; Yang et al., 2007; Zhou, Yan & Wang, 2005;). 

Agent-based differential equation system approaches emphasize heterogeneity 

and interactions among individuals. In these approaches, individuals are represented 

as agents whose interactions can be modeled in the form of rules (Boguñá & 

Pastor-Satorras, 2002; Huang, Sun, Hsieh & Lin, 2004). The advantage of such an 

approach is that it supports simulations of the movement of individuals, which in turn 

supports an understanding of epidemic contagion routes. Using this kind of approach, 

Barrett et al. (2005) constructed a society of 1.6 million agents to simulate the daily 

behaviors of individuals in Portland, Oregon, and Epstein (2009) studied the 2009 

influenza A (H1N1) epidemic by constructing a model containing 6.5 billion agents to 

simulate international human contact and daily movement. Unlike compartmental 

models that focus on the behaviors of whole populations, agent-based models focus 

on individual behaviors. 

 A geometric structure has recently been integrated into epidemic models. Due to 

the limitations of standard cellular automata, in this study geographical cellular 

automata are used to simulate an environment (Liu, Xia, Yeh, Qiang & Jia, 2007; Zhou, 

Sun & Xie, 1999). An actual geographic area can be defined as cells to study epidemic 
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dynamics in social and geometric transformations (Flache & Hegselmann, 2001; 

Menard, 2008). Other kinds of cellular automata have been tied to epidemic 

contagious behaviors via network-based compartmental models (Zhong, Huang & 

Song, 2009). To visualize the dynamics of a regional epidemic, at least two research 

teams have integrated a geometric information system (GIS) into a mathematical 

epidemiological model (Xu, Zhang & Mendes, 2007; Zhou, 2008). 
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1.3. Current Status of Computational 

Epidemiology 

Epidemiologists are currently emphasizing temporal and spatial depictions of 

infectious disease occurrences and pathogenic mechanisms. Regarding the temporal 

aspect, researchers have focused on understanding spreading trends and dynamic 

changes in infectious diseases. The most common approach is to construct analytically 

systematic epidemiological models with differential equations, and then derive stable 

solutions (Feng, Huang & Castillo-Chavez, 2005; Inaba, 2007; Langlais & Naulin, 

2003; Li & Jin, 2005; Shim, Feng, Martcheva & Castillo-Chavez, 2006; Supriatna, 

Soewono & Van Gils, 2008; Wang & Zhao, 2005). Populations can be broken down 

into infection stages such as Susceptible, Latent, Infectious and Recovered, and changes 

in subpopulations over time can be modeled using system dynamic differential 

equations (Feng et al., 2005; Inaba, 2007; Langlais & Naulin, 2003; Li & Jin, 2005; 

Shim et al., 2006; Supriatna et al., 2008; Wang & Zhao, 2005). Using suitable 

parameter values (e.g., transmission rate, recovery rate), infectious dynamics and 

transmission thresholds that become endemic above and vanish below those values can 

be derived to acquire analytic solutions from equations (Huang, Tsai & Sun, 2009; 

Huang, Tsai, Sun, Hsieh & Cheng, 2010; Pastor-Satorras & Vespignani, 2001, 2002; 
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Tsai, Sun & Huang, 2008). According to the different transmission capabilities of 

epidemic diseases, basic reproduction numbers can be derived to estimate how many 

individuals will be infected from the first infected individual (Hethcote, 2000; Keeling 

& Grenfell, 2000). 

Regarding the spatial aspect, researchers have focused on understanding the 

distribution of infected individuals (which can be determined from medical case reports) 

to help in monitoring and immunization efforts. Because of the advantages of computer 

technology, GIS data on absolute distance and the properties of geographical regions 

are now commonly applied in research (Rae, 2009; Wylie, Shah & Jolly, 2007). Many 

researchers are also integrating GIS into epidemic disease monitoring and prevention 

efforts (Edwards & Clarke, 2009; Jeger, Pautasso, Holdenrieder & Shaw, 2007; Mao & 

Bian, 2010; Thakur & Sharma, 2009). By analyzing medical cases and collecting data 

on environmental factors, geographic spatial distribution information can be 

determined, and epidemic pathogenic mechanisms can be analyzed. For example, using 

spatial clustering analysis, it is possible to analyze abnormal clusters that exceed an 

expected number of infected cases, thus supporting efforts to understand the extent of 

disease clustering relative to increases in disease vectors (Kan et al., 2008). Kan et al. 

have used this approach to explain the smaller number of cases of dengue hemorrhagic 

fever in Taiwan compared to Southeast Asian countries. However, it is important to 
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take advantage of both temporal and spatial aspects when analyzing infectious disease 

propagation, therefore many researchers are trying to integrate both temporal and 

spatial factors into their epidemiological models (Barrett, Eubank & Marathe, 2006; 

González, Hidalgo & Barabási, 2008; Yang, Atkinson & Ettema, 2008). 
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1.4. Trends in Social Network Integration in 

Computational Epidemiology    

The past decade has witnessed significant advancements in social network 

research, ever since Watts and Strogatz (1998) first described small-world networks 

characterized by highly clustered connections and short paths between node pairs. 

Their work represents a fundamental change in our knowledge of human relationships, 

which has influenced research avenues in a wide range of disciplines such as 

epidemiology. (Diosan & Dumitrescu, 2007; Montoya & Solé, 2002; Vázquez, 

Flammini, Maritan & Vespignani, 2003).  

Complex networks can be used to model real-world complexity. A complex 

network is a structure containing numerous nodes and edges. Nodes can represent 

objects such as individuals, locations, organisms, or World Wide Web pages. 

Depending on node type, edges can represent relationships such as human friendships, 

food chains for non-human organisms, or links between web pages. Several network 

indexes have been developed to measure relationships (Boccaletti, Latora, Moreno, 

Chavez & Hwang, 2006). For example, degree of clustering has been used to determine 

why our friend’s friend is often also our friend, degree of separation has been used to 

measure how small the world is in terms of weak links, and connectivity distribution 
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has been used to explain the existence of super nodes (Huang, Tsai & Sun, 2010). Such 

topological characteristics have also been used as epidemiological indexes to measure 

the spreading speed of an epidemic disease (Edmunds, O'Callaghan & Nokes, 1997; 

Estrada & Hatano, 2008; Hwang, Kim, Ramanathan & Zhang, 2008). 

Infectious diseases spread through individual contact, and many epidemiologists 

are using social networks to model individual contact behavior. Social networks, one 

type of complex network that is also considered a social structure model, emphasize 

individual heterogeneity, individual interaction, and network topological structure 

(Boguñá & Pastor-Satorras, 2002; Huang et al., 2004). They are often used to model 

populations, with nodes representing individuals and links representing contacts. Social 

network topological structures have been used in many epidemic studies over the past 

decade. Based on human epidemic disease or computer virus features, different social 

network structures have been proposed to analyze epidemic spreading dynamics and 

transmission rate thresholds (see, for example, Huang, Sun, Hsieh, Chen & Lin, 2005; 

Langlais & Naulin, 2003; May & Lloyd, 2001; Pastor-Satorras & Vespignani, 2001b). 

In addition, traffic networks such as daily commuting routes have been used to analyze 

the spread of diseases via human transportation networks (Barrett et al., 2005, 2006). 

Social network studies comparing the efficiencies of various public health policies have 

been conducted by Huang et al. (2004), Huang, Sun & Lin (2005), and Pastor-Satorras 
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and Vespignani (2001b, 2002). 

New epidemiological models integrate spatial and social network factors. The 

most commonly used approach adds various network topologies (e.g., small-world 

network, scale-free network) to determine different epidemic spatial distributions 

(Huang et al., 2004; Pastor-Satorras & Vespignani, 2001b, 2002). After building social 

network models, parameters such as initial infected agent, and epidemic attributes such 

as transmission and recovery rates, are manipulated to calculate disease propagation 

within the defined network (Huang et al., 2004; Wang & Ruan, 2004). According to 

epidemic properties, different simulation scenarios (e.g., network topologies, contact 

patterns, agent attributes such as age or gender) can be studied using simulations in 

order to develop effective public health policies. For example, HIV research entails 

looking at how heterosexual sexual contact, homosexual sexual contact, or illegal drug 

use affects virus transmission and propagation in a social network (Morris, 1997; 

Sumodhee, Hsieh, Sun, Huang & Chen, 2005). 
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1.5. Advantages of Network-based 

Computational Epidemiology 

 Understanding the spreading dynamics of infectious diseases and the spatial 

distribution of infected individuals is the primary concern of agencies involved in 

infectious disease control and prevention (Hethcote, 2000; Moore & Newman, 2000; 

Pastor-Satorras & Vespignani, 2002). Efforts to understand social network 

associations among geographical characteristics such as coordinates, population size, 

and census data represent a current trend in computation epidemiology. The 

advantages of understanding these associations are as follows: 

1. Epidemic disease properties such as the transmission capability of a virus and 

recovery days among individuals are connected to geographical location (Barrett et al., 

2005; Larsen, Axhausen & Urry, 2006). For example, the transmission capability of 

influenza in urban areas is greater than in rural areas because of population density 

differences, therefore when setting epidemic parameters, transmission rate should be 

higher in urban areas. Network integration into compartmental models can be used to 

represent individual heterogeneity. Associating social networks with geographical 

characteristics has the advantage of accurately describing the topology of individual 

social relations in the real world (Barrett et al., 2005; Davis, Yoo & Baker, 2003). 
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2. Public transportation systems such as aircraft, subways, commuter trains, and 

buses support the spreading of a virus (Colizza, Barrat, Barthélemy & Vespignani, 

2006; Grais et al., 2003; Kaza, Xu, Marshall & Chen, 2009). Modern public 

transportation systems make it easy to move between distant locations, and pathogens 

can be carried long distance within a matter of hours or days. In 2009, the 

swine-origin H1N1 virus emerged in Mexico and rapidly spread throughout South 

America, Europe, and Asia within a few weeks; by mid-November of that year, 6,770 

deaths were reported in 206 geographic locations (Smith et al., 2009). This 

underscores the importance of considering such factors as the location of public 

transportation systems in epidemiological studies. 

3. During a contagious disease outbreak, medical officials and/or public health 

experts must consider balances among many factors when determining how to best 

use medical resources and enact prevention policies (Riley et al., 2003; Molinari et al., 

2007). In addition, differences in resources and population densities among 

administrative and geographical divisions must be considered (Sypsa, Pavlopoulou & 

Hatzakis, 2009; Wylie et al., 2007). From the perspective of medical system utility, a 

suitable mix of intervention policies is required to efficiently control a disease 

outbreak according to limitations of medical resources (Tsai & Huang, 2010; Huang 

et al., 2010). In addition, time of maximum number of infected individuals in each 
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division must be considered when planning the timing of interventions across 

administrative divisions. 

 4. GIS is a suitable tool for graphically representing epidemics. By using 

visualization tools, large bodies of complex data can be analyzed spatially. Based on 

experience with newly emerging viruses such as SARS, avian influenza (H5N1), and 

swine-adapted influenza (H1N1), public health officials must deal with the potential 

of one such virus becoming pandemic (Fraser et al., 2009; Kuiken, Rimmelzwaan, Van 

Amerongen & Osterhaus, 2003; Tomlinson & Cockram, 2003). However, traditional 

epidemic models cannot adequately work with geographic information due to 

limitations associated with equation size, therefore geographic network-based 

computation epidemiology with GIS has value in terms of studying virus spreading 

trends. 
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1.6. Dissertation Overview 

 The rest of this dissertation is organized as follows: in Chapter 2 I will present a 

brief overview of a preliminary study involving network-based computational 

epidemiology, especially a network topology proposal from an original study 

conducted by Huang, Tsai and Sun (2010). 

In Chapter 3 I will present details from an original research project conducted by 

Huang et al. (2010), Tsai & Huang (2010), and Tsai, Sun & Huang (2010) that used 

network-based computational epidemiology with a theoretically complex network 

topology. Based on considerations of resource limitations and transmission costs, I 

will propose an epidemic model that uses analytic equations to identify critical 

epidemic thresholds in scale-free networks. 

In Chapter 4 I will discuss the details of an original research project by Tsai et al. 

(2010) to integrate realistic social networks with standard epidemiological models, 

and then describe a multilayer epidemiological framework—Multilayer Epidemic 

Dynamics Simulator, or MEDSim—from national and individual perspectives. The 

framework was used to compute outbreak locations and intervention scenarios for the 

2009 A/H1N1 influenza epidemic as a means of testing model flexibility and 

generalizability. 
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 In Chapter 5 I will present details of an original research project on the potential 

benefits of epidemic simulations, and describe the building of a network-based 

epidemic model for epidemiology students with little computing experience who are 

interested in studying computational epidemiology and public health education (Hsieh, 

Huang, Sun & Tsai, 2009; Huang, Tsai & Wen, 2010a, 2010b). In Chapter 6 I will 

summarize my conclusions and give suggestions for future research. 
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Chapter 2. Preliminaries 

In this chapter, I will first introduce the most commonly used epidemiological 

models for network-based computational epidemiological studies, and then briefly 

explain network-based epidemiology and several social network structures. 
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2.1. Epidemiological Approaches Overview 

The two most commonly used approaches to modeling epidemic spreading 

dynamics are population-based and network-oriented. In population-based approaches, 

hosts that share the same symptoms are modeled or grouped in terms of a limited 

numbers of classes (also known as compartments); the main task of researchers is to 

study and compare their various dynamics (Feng et al., 2005; Inaba, 2007; Langlais & 

Naulin, 2003; Shim et al., 2006; Supriatna et al., 2008; Wang & Zhao, 2005). 

Combinations of classes are used to model and analyze population dynamics. For 

example, the SLIR model puts individuals into one of four infection 

statuses—Susceptible, Latent, Infectious, or Recovered (Li & Jin, 2005)—and 

differential equations are used to determine transitions between epidemiological phases. 

Depending on whether removed individuals can become susceptible a second time, 

diseases can be modeled as SLIR or SLIRS cycles. 

Population-based and network-oriented approaches respectively emphasize 

large-scale population-level and individual-level perspectives. Population-based 

approaches are suitable for discussing dynamic variation across individuals in the same 

compartment, but they are weak in terms of modeling individual heterogeneity and 

addressing human travel networks (Barrett et al., 2005; Huang et al., 2004). Since 
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individuals are modeled as groups, any two members of the same group are assumed as 

having a direct connection, which is not true in the real world. Furthermore, individual 

movement and activity are location-dependent, therefore phenomena cannot be 

simulated by a population-based approach that assumes a homogeneous population 

distribution. In contrast, network-oriented approaches may be appropriate for 

introducing individual heterogeneity, but they are computation-intensive and 

time-consuming when simulating the behaviors of individuals with multiple attributes 

in large-scale social environments (Barrett et al., 2005; Epstein, 2009). Many efforts 

have been made to match individual and population behaviors with heterogeneity and 

computation requirements when studying epidemic dynamics (Davis et al., 2003; Levin 

& Durrett, 1996; Sawyer, 2003). 

In contrast, network-oriented approaches emphasize individual heterogeneity, 

interactions among individuals, and network structure (Boguñá & Pastor-Satorras, 

2002; Huang et al., 2004). Individuals in a network are represented as nodes, and 

interactions between them as links. Network nodes can be used to represent the 

characteristics of individuals, locations, neighborhoods, or cities, and models can 

incorporate the temporal dynamics of these features. Time frames for links between two 

nodes can be preferentially defined (Ortiz-Pelaez, Pfeiffer, Soares-Magalhães & 

Guitian, 2006)—an approach commonly used to represent group structures for 
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individuals exhibiting interaction or relationship patterns (Barabási & Albert, 1999; 

Erdos & Renyi, 1960; Newman, 2003; Watts & Strogatz, 1998). Network-oriented 

approaches are suitable for capturing complex contact patterns among individuals, 

exploring epidemic dynamics, and assessing the efficacies of public health policies 

(Pastor-Satorras & Vespignani, 2001b, 2002; Huang et al., 2004, 2005). Lattice 

networks have been used to determine distance relationships between individuals. In 

contrast, random networks support features associated with casual contacts among 

mobile individuals and the low degree of separation commonly observed in social 

networks (Barrett et al., 2005). These approaches are viewed as reliable for 

investigating epidemics, with the transmission dynamics of specific network models 

being manipulated to investigate the spread of emerging infectious diseases (Liu, Lai & 

Ye, 2003; May & Lloyd, 2001). The topological features of social networks have 

recently been found to exert considerable influence on the transmission dynamics and 

critical thresholds of infectious diseases, thus supporting subtle analyses that 

network-oriented models are incapable of (Draief, Ganesh & Massoulié, 2008; Huang 

et al., 2005; Langlais & Naulin, 2003; Pastor-Satorras & Vespignani, 2001b). 
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2.2. Compartmental Models 

In standard epidemiological models, all individuals (nodes) in a population 

(complex network) can be roughly classified into a limited number of states, including 

Susceptible, Infected and Removed, as defined in Chapter 1. Epidemiologists use 

combinations of these states to represent orders of transition between different 

epidemiological phases, giving names such as “SIR” and “SIS” to their models. The 

most commonly used model is the SIR (usceptible nfected ecovery→ →S I R ) (Figure 2.1), 

which can be formulated using ordinary differential equations as follows: 

-
dS

SI
dt

β=   

-
dI

SI I
dt

β α=   

dR
I

dt
α=   

β , a constant transmission rate, represents the speed at which Susceptible individuals 

become infected, and α  is a constant recovery rate used to determine transformation 

speed from Infected to Recovered. 

 

 

Figure 2.1. Flowchart of the SIR epidemiologic model. 
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Figure 2.2. The compartment states, S, I, and R, as a function of t. 

 

When simulating epidemic dynamics in complex networks, epidemiologists 

usually assume that nodes run stochastically through an SIS cycle, which does not take 

into account the possibility of an individual’s removal due to death or acquired 

immunization. The SIS model has been widely adopted to study contagious diseases 

leading to endemic states with a stationary average density of infected individuals. It is 

worth noting that for many contagious diseases, analyses derived from the SIS model 

can be readily extended to the SIR and SIRS models (Pastor-Satorras & Vespignani, 

2002). During each time step, each susceptible node is subject to a ν  probability 

contagion rate if it is connected to one or more infected nodes. Infected nodes recover at 

a probability rate δ , and once again become susceptible. An effective spreading rate 
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λ  is defined asλ ν δ= . Recovery rate δ  can be assigned a value of 1, since it only 

affects the definition of the time scale of contagious disease propagation 

(Pastor-Satorras & Vespignani, 2003). Pastor-Satorras and Vespignani (2002) define 

( )ρ t  as the density of infected nodes at time step t . When time step t  becomes 

infinitely large, ρ  can be represented as a steady-state density of infected nodes. 

Using these definitions, they applied mean-field theory to a SIS epidemiological model, 

and used Anderson and May’s (1991) homogeneous mixing hypothesis according to the 

topological features of homogeneous networks to obtain (a) a steady-state density ρ  

of infected nodes during long time periods (Eq. 2.1), and (b) the critical threshold λc  

(Eq. 2.2): 

0 λ λ
ρ λ λ λ λ

λ

 <= − ≥

c

c
c

 (2.1) 

1λ =
< >c k

 (2.2) 

where =∑ kk
k kp  is the average vertex degree of the network, and kp  the fraction 

of nodes that have vertex degree k  in the network. According to Eqs. 2.1 and 2.2, a 

positive and nonzero critical threshold λc  exists in a homogeneous network based on 

the SIS epidemiological model. The contagion spreads and becomes epidemic if the 

effective spreading rate exceeds the critical threshold (λ ≥ λc ); otherwise, the contagion 

dies out. As shown in Figure 2.3, the SIS epidemiological model separates an infected 

state from a healthy state at critical threshold λc . In summary, the primary prediction of 
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an SIS epidemiological model in a homogeneous network is the presence of a positive 

critical threshold, proportional to the inverse of the average number of neighbors of 

each node, below which epidemics die and endemic states are impossible. 
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Figure 2.3. Phase transition diagram for epidemic simulations in homogeneous networks. 
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2.3. Social Network Models and 

Network-based Epidemiology 

 Complex networks are commonly used to represent structures for groups of 

individuals who exhibit interaction or relationship patterns (Barabási & Albert, 1999; 

Erdos & Renyi, 1960; Newman, 2003; Watts, 2003; Watts & Strogatz, 1998). As 

shown in Figure 2.4 and Table 2.1, complex networks can be categorized as small 

world, scale-free, or random according to basic statistical properties such as local 

clustering, the small world phenomenon, or power-law connectivity distribution. They 

are popular among researchers who construct computational simulations of virtual 

societies, contagious diseases, Internet viruses, and the spread of cultural beliefs and 

influences—all of which are affected by transmission routes. 

 

 

 

Figure 2.4. Three types of complex networks. 
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Table 2.1. Two Complex Networks Categories 

Category Network 
Type Model Clustering 

Coefficient 
Degree of 

Separation 
Connectivity 
Distribution 

Homogeneous 
networks 

Small-world Watts and Strogatz high low Normal 
Random Erdös and Renyi very low low Normal 

Heterogeneous 
network Scale-free Barabási and Albert very low low Power-law 

 

Generating a Watts and Strogatz (1998) small-world network begins with an 

n-dimension ordered network with periodic boundary conditions, in which each node is 

connected to a z  quantity of neighbors, usually 2≥z n  (Figure 2.5a) (Watts & 

Strogatz, 1998; Newman, 2003). Each link is randomly rewired to a new node with 

probability p  (Figure 2.5b). Under adverse circumstances, this construction method 

can break the original ordered network into several isolated subgraphs (Figure 2.5d). 

Newman and Watts (1999) introduced a variation of the original construction method 

that emphasizes the insertion of long-range shortcuts instead of rewiring links. In their 

version, two previously unconnected nodes are randomly selected and connected via a 

newly added link, with users determining the number of links to be added (Figure 2.5c). 

Newman and Watts’ small-world network thus avoids the problem of network breakage, 

while preserving the positive characteristic of connecting each node in an 

n-dimensional ordered network with 2n  neighboring nodes. Since both the original 

and new versions (Newman, 2003) exhibit small world and local clustering properties, 

they are considered similar to human daily contact networks. 
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Figure 2.5. (a) One-dimensional ordered network with each node connected to 

four adjacent nodes. (b) Watts and Strogatz’s (Duncan J. Watts & Strogatz, 1998) 

small world network with four rewired shortcuts. (c) Newman and Watts’ (M. E. 

J. Newman & D. J. Watts, 1999) improved small world network with five 

additional shortcuts. (d) Example of a broken network in Watts and Strogatz’s 

(Duncan J. Watts & Strogatz, 1998) small world network. 

 

Generating a Barabási and Albert (1999) scale-free network begins with a small 

number of nodes designated as 0z  (Newman, 2003). During each iteration, a new node 

is introduced and connected to 0≤z z  pre-existing nodes according to a probability 

based on each node’s vertex degree. New nodes are preferentially attached to existing 

nodes that have large numbers of connections. This type of network exhibits 

small-world and power-law connectivity distribution properties, implying the existence 

of a small number of nodes with very large vertex degrees—similar to World Wide Web 

hyperlinks and human sexual contact webs. 

Erdös and Renyi’s (1960; Newman, 2003) random networks are generated by 

adding links between pairs of randomly chosen nodes with certain probabilities. They 



30 
 

are capable of exhibiting small-world properties if sufficient numbers of links are added, 

but with little or no local clustering—an unusual situation in the real world. 

Huang, Tsai and Sun (2010) used three rules to generate friend-making 

networks—friend making, joining and leaving, and friendship updates—until each 

network reached a statistically stationary state. Taking a bottom-up, network-oriented 

simulation approach to modeling reflects the evolutionary mechanism of real-world 

social networks. They built on insights from previous studies (e.g., Davidsen, Ebel & 

Bornholdt, 2002) to apply local and interactive rules to acquaintance network 

evolution. Findings from this approach can be used to explore human activity in 

specific social networks—for example, rumor propagation and disease outbreaks 

(Figure 2.6). 
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( )a  ( )b  

 

( )c  ( )d  

Figure 2.6. Comparison of node degree distributions and network 

structures between Davidsen et al.’s two-rule model (a and b) and our proposed 

three-rule model (c and d). 

 

Communities, cities, and countries—even the entire planet—can be defined in 

terms of complex networks consisting of large-scale nodes and links. Each node 
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represents one individual with status-determining attributes (often referred to as 

node-related local information) such as epidemiological progress, contagiousness, and 

immunization (Huang et al., 2005; Xu et al., 2007). Connections between individuals 

are referred to as links, with different links representing different interpersonal 

relationships (Pastor-Satorras & Vespignani, 2001b). In HIV/AIDS epidemic 

simulations they represent sexual relationships, and in SARS epidemic simulations 

they represent close physical proximity (Huang et al., 2004, 2005). The states of all 

network nodes change simultaneously during each time step. The state of an individual 

node is determined by its original state, its linked neighbor’s state, and a set of 

interaction rules. 

Past epidemiological research has focused on the transmission dynamics and 

spreading situations of biologically contagious diseases. A growing number of research 

efforts are focusing on non-biological and intangible concepts such as computer viruses, 

cultural influences, rumors, ideas, and beliefs that exist in social networks and on the 

Internet. In these kinds of spreading scenarios, cultural influences move ideas and 

beliefs between transmitters and receivers, eventually making the majority of receivers 

behave in the same manner as transmitters (Huang et al., 2005; Lynch, 1996; Rogers, 

2003). Researchers have recently looked at epidemic dynamics and critical thresholds 

in homogeneous networks (e.g., Erdös and Renyi’s random and Watts and Strogatz’s 
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small-world) and heterogeneous networks (e.g., Barabási and Albert’s scale-free). 
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Chapter 3. Analysis of Epidemiological 

Transmission in Theoretical Complex 

Networks 

Avian influenza, a flu that originally spread only among birds but is now found 

among birds and humans, is a likely candidate to become an epidemic or pandemic 

disease. Another epidemic, the 1918 influenza outbreak in North America, is one of the 

most studied by epidemiologists. Nine decades later, Watts (1998) described his 

proposed small-world property in complex networks, which has strongly influenced 

research involving human networks. Later, Pastor-Satorras and Vespignani (2001a) 

combined epidemic dynamics and complex networks to propose an epidemic model 

indicating that according to a scale-free network created by Barabási and Albert (1999), 

an epidemic threshold tends toward 0 as long as the network is sufficiently large. Based 

on their model (which I will refer to as the P-V model in this dissertation), Huang and 

Tsai proposed a modified model containing resource limitations and transmission costs 

for analyzing epidemic thresholds (Huang et al., 2010; Tsai and Huang, 2010). We 

used computer simulations to verify the model, as well as to show its practical 

applications. 
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3.1. Motivation 

Researchers who take network-oriented approaches to analyzing contagious 

disease diffusion processes note that the topological features of social networks exert 

considerable influence on transmission dynamics and spreading situations associated 

with epidemics (Newman, 2003; Newman & Watts, 1999). Unlike non-network 

approaches, they support subtle analyses of epidemic dynamics (Pastor-Satorras & 

Vespignani, 2001a, 2001b, 2002, 2003; Huang et al., 2004, 2005). Researchers of 

epidemic dynamics and critical thresholds in scale-free networks consistently conclude 

that regardless of transmission capability, all contagious diseases have high 

probabilities of stable spreading and survival in scale-free networks (Xu et al., 2007). 

According to Pastor-Satorras and Vespignani (2001b), a positive critical 

transmission threshold does not exist for the spreading of contagious diseases in 

scale-free social networks. In other words, even contagious diseases with tiny 

transmission capabilities survive in such networks. Pastor-Satorras and Vespignani’s 

proposed spreading dynamic is expressed as follows:  

[ ] { }( )
( ) 1 ( ) ( )k

k k k

d t
t k t t

dt

ρ ρ λ ρ θ ρ= − + −     (3.1) 

where ( )k tρ  is the density of infected nodes with k connections, λ  a constant 

infection rate, and [ ]{ ( )}k tθ ρ  the probability that any given individual will become 
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linked to an infected individual, with θ  assumed to be a function of the partial 

densities of infected individuals { }( )k tρ . Eq. (3.1) states that during each time step, 

infected individuals who have k connections will recover, yet continue to infect other 

individuals according to four parameters: infection rate, connectivity, number of 

healthy individuals, and probability [ ]{ ( )}k tθ ρ . Pastor-Satorras and Vespignani 

defined kρ  as the steady state of ( )k tρ , and observed that kρ  is a function of λ  in 

a steady state, therefore θ  is a function of λ , such that 
1

( ) ( ) k
k

kP k
k

θ λ ρ= ∑ , with 

( )P k  representing connectivity distribution. Furthermore, when considering the 

stationary condition ( ) 0kd t dtρ =  within a scale-free network in which 

2 3( ) 2P k m k −=  with minimum degree m, the critical epidemic threshold cλ  has the 

property 2 0c k kλ = →  as k → ∞ . Accordingly, for infinite size networks, either 

no epidemic threshold exists, or the threshold approaches 0. 

New contagious diseases are constantly emerging in different parts of the world, 

but very few reach epidemic proportions or even survive in social networks; the 

majority of diseases die almost immediately following their appearance. This 

observation serves as our motivation to take a more detailed look at limitations in 

transmission and interaction processes rather than the topological features of social 

networks—the focus of many epidemiological studies published in the past decade. 

Two important factors associated with face-to-face interactions and daily contacts have 
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been understudied: resource limitations and transmission costs. The term resource in 

this situation is defined as what is consumed by individuals during the spreading 

process of a contagious disease. There are five properties associated with resources: (a) 

they can be visible (e.g., seminal fluid, physical power) or invisible (e.g., time, energy); 

(b) individual resources are finite and can be temporarily exhausted; (c) the use of one 

type of resource entails the consumption of smaller quantities of other types of 

resources, thereby reducing the total available resource amount; (d) individual 

resources can recover or regenerate after a period of time; and (e) they are 

non-reproducible. Contagious carriers who apply resources to specific recipients 

cannot reuse the same resources on other recipients; conversely, recipients cannot reuse 

resources spent on individual carriers. We acknowledge the importance of 

Pastor-Satorras and Vespignani’s (2001a) work on the topological power-law features 

of scale-free social networks, especially since their ideas have inspired numerous 

studies on critical thresholds and immunization strategies. However, such assumptions 

may be unrealistic and inaccurate when applied to biologically contagious diseases 

spread via face-to-face interactions and daily contacts. A closer inspection of their 

mathematical analyses and numerical simulations reveal what we believe to be 

incorrect assumptions that daily interaction processes are cost-free, and that the impacts 

of resource limitations and transmission costs are minimal. 
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3.2. A Contagious Epidemiological Model 

under Resource Limitations and 

Transmission Cost Considerations 

Our mathematical model is based on the epidemic simulation model shown in Eq. 

(3.1) as proposed by Pastor-Satorras and Vespignani (2001b). However, this model 

neglects individual access to energy, time, and other finite resources. Therefore, we 

propose a model under different infection rate-to-link degree assumptions. 

To incorporate individual access to energy, time, and other finite resources, we 

modified the model to consider resource limitations and transmission costs using two 

different approaches, as shown in Eq. (3.2). 

[ ] { }( )
( ) 1 ( ) ( ) ,  where min( , ).k

k k k k k

d t R
t S t t S k

dt c

ρ ρ λ ρ θ ρ= − + − =    (3.2) 

According to the term kS  (with R representing average resources and c 

transmission costs), the spreading of each infection is proportional to the minimum 

value of each active node’s available resources (R/c) and number of links.  

Using the mean field method, we let the stationary condition ( ) 0kd t dtρ = , 

obtaining 

( )

1 ( )
k

k
k

S

S

λ θ λρ
λ θ λ

=
+

 (3.3) 

where kρ  is the steady state of ( )k tρ . Substituting ( )θ λ  in Eq. (3.3), we get 
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1
( )

1
k

k k

S
kP k

k S

λ θθ
λ θ

=
+∑  (3.4) 

Note that the right side of Eq. (3.4) is concave at about θ  (i.e., the second 

derivative is no larger than zero), and that 0θ =  is considered a trivial solution. Since 

it is possible for θ  to have a non-singular solution, we derived the inequality 

0

1
( ) 1.

1
k

k k

Sd
kP k

d k S
θ

λ θ
θ λ θ

=

 
≥  + 

∑  (3.5) 

Differentiating Eq. (3.5) and substituting 0 for θ  we get 

1
( ) 1 or .

( )k
k k

k

k
kP k S

k kP k S
λ λ≥ ≤∑

∑
  (3.6) 

Accordingly, critical threshold cλ  is defined as the maximal λ , resulting in 

( )c
k

k

k

kP k S
λ =

∑
  (3.7) 

Since min( , )kS R c k= , the denominator can be divided into two parts, obtaining 

2
.

( ) ( )
c

R R
k k

c c

k
R

k P k kP k
c

λ

≤ >

=
+∑ ∑

  
(3.8) 

According to the first term in the Eq. (3.8) denominator, k is smaller than R/c, 

therefore substituting R/c for k makes the first term larger. Similarly, according to the 

second term, the summation is smaller than the entire scope of k, therefore substituting 

k for the entire scope also makes the second term larger. Thus, 



40 
 

2

( ) ( )
c

R kk
c

k

R R
P k kP k

c c

λ

≤

≥
  + 
 

∑ ∑
  

(3.9) 

Using the same method, another substitution on the left side of the Eq. (3.9) 

denominator results in 

2 .

( ) ( )
c

k k

k

R R
P k kP k

c c

λ ≥
  + 
 

∑ ∑
  

(3.10) 

Since ( ) 1
k

P k =∑ , we arrive at 

 
2 2

1
.c

k

R R Rk
c c Rc

k c

λ ≥ =
    +     

     +
 
 
 

  

(3.11) 

and observe that as k → ∞ , cλ  is at minimum equal to c R . 
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Figure 3.1. Critical Threshold λc  is a function of the ratio of transmission costs to 

individual resources (/c R ) in scale-free networks. We used it to analyze results from 

our simulation experiments and three mathematical analyses. 

As shown in Figure 3.1, the mathematical results are consistent with the 

simulation result. The results indicate that when resources and transmission costs are 

taken into consideration, a significant critical threshold (above which a contagious 

disease exceeds control and becomes epidemic, and below which a contagious disease 

disappears) exists when a contagion event occurs in a scale-free network—in short, a 

non-zero critical threshold exists in scale-free networks. Our results also indicate that 

the appearance of a critical threshold is tied to a ratio of transmission costs to available 

resources. In summary, the lower bound of cλ  becomes larger whether transmission 

cost c increases or the average resource R decreases. Accordingly, an individual’s 

available resources expand when c/R is large, thereby decreasing that individual’s 

ability to contact almost all other personal network nodes. Since cλ  represents the 

threshold at which a contagious disease exceeds control and become epidemic, 

managing the value of cλ  is the primary concern of epidemiologists and public health 

officials. The result supports what we know about immunization: appropriately 

restricting one’s resources increases the critical threshold. Neglecting one’s resources 

makes R infinitely large, meaning we can treat those resources as inexhaustible, and 
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that the critical threshold cλ  will approach 0 as long as the size of the average number 

of links is large enough. The model thus becomes identical to Pastor-Satorras and 

Vespignani’s model (Eq. 3.1), in which a disease has the potential to become epidemic 

even when the number of infected nodes is very small. 

 



43 
 

3.3. Epidemic Effect of Limited 

Resources/Transmission Cost Ratio 

One scenario to which Eq. (3.11) can be applied is a network attack spread via the 

Internet—an example of a scale-free network (Barabási et al., 2002). Although 

spreading time is short, affected areas can be very large, with disastrous results in terms 

of lost data, work time, and money. One suggested strategy for controlling computer 

network attacks is placing restrictions on downloads from web services (e.g., a 

maximum of one gigabyte per day)—in other words, a time resource limitation to raise 

the outbreak critical threshold cλ . Another potential strategy is charging downloading 

fees—that is, raising transmission costs to increase outbreak critical thresholds. The 

algorithm Barabási and Albert (1999) introduced to build their model (which I will 

refer to as the BA model in this dissertation) is based on a concept common to networks 

such as the Internet, the World Wide Web, and social networks—that is, for each node 

there is a large probability of connecting to other nodes that are already linked to still 

other nodes. According to the algorithm, we take 0m  disconnected nodes, steadily add 

new nodes, and connect the new nodes to existing m nodes at a probability of 

( ) i
i

j
j

k
P k

k
=
∑

, where ik  is the degree of the i-th node. The algorithm stops and a graph 

is created when the number of nodes reaches N. In this model it is easy to see that nodes 
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already having large numbers of links will gain even more—for instance, already 

popular web pages have high probabilities of becoming even more popular. 

We applied this logic to the BA model using a connectivity distribution of 

2 3( ) 2 −=P k m k , and an expected number of connecting degrees of 

( ) 2
∞

= =∫mk kP k dk m . Note that the probability of infected nodes can be expressed as 

2 31
 2

2 1

λ θθ
λ θ

∞ −=
+∫ k

m
k

S
k m k dk

m S
   

When k is smaller than R/c, then k can be used as a substitute for kS ; otherwise, 

R/c can serve as the substitute. As a result, 

2

1 1 1
 

1 1

λθθ λθ
λ θ λ θ

∞
= +

+ +
∫ ∫

R

c
R

m
c

mR
m dk dk

Rk k c k
c

  
(3.12) 

Eliminating θ  from both sides and reducing Eq. (3.12) produces 

1

 1 ln
1

λθ λλ
λθ λ θ

+
= +

+ +

mmm
c R

R c

  (3.13) 

Next, the expected density of infected nodes is given by ( )ρ ρ=∑ k
k

P k . By 

substituting 2 3( ) 2 −=P k m k  and ρk  into this equation, we get 

2 3 2
1

λ θρ
λ θ

∞ −=
+∫ k

m
k

S
m k dk

S
  (3.14) 

Similarly, by dividing Eq. (3.14) and integrating we obtain 

2
2 2 2 2 2 ln 2 2

1 1

λ θ λθρ λ θ λθ λθ
λ θ λθ

+
= − + +

+ +

mc
m c m cRm m m

Rm R R
c

  (3.15) 

Substituting Eq. (3.13) into Eq. (3.15),  
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2 2 1
1

λθ
ρ λθ θ

λθ

  +   = − − +  
  +
   

c
m m mcRm

R R
c

  (3.16) 

Note that whenever 
1

2

(1 )

θ
λ

θ θ

+ −
≤

−

mc

R
R

c

, the term within the braces of Eq. (3.16) is 

smaller than 0, therefore so is ρ. In other words, the numerator is a criterion for a 

threshold to occur; if larger, threshold λ  will be far from 0. We found that Eq. (3.17) is 

the upper bound of that epidemiological threshold:  

2(1 )θ
<

−
R m

c
  (3.17) 

Note that when R/c is smaller than [ ]/ 2 (1 )θ× −m , the density of ρ  infected 

nodes in the stationary state cannot be larger than 0. The distance of the critical 

threshold from 0 is decided by each node’s available resources. Furthermore, when the 

infection probability θ  or the minimum degree of each node m is fixed, the smaller R/c 

makes the difference between the two sides of Eq. (3.17) larger, and moves the critical 

threshold even further from 0. On the other hand, if R/c is fixed, the higher the infection 

probability θ  or the lower the minimum of each degree, the higher the network’s 

critical threshold. In other words, the critical threshold is simply determined by 

differences among available resources R/c, minimum degree m, and infection 

probability θ . The spreading of a disease in a BA network can be controlled by 

efficiently managing these differences. 
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Chapter 4. Effects of Individual 

Diversity on Epidemic Modeling in 

Realistic Social Networks 

In this chapter I will describe an innovative simulation framework that combines 

daily commuting network data with a commonly used population-based transmission 

model to assess the impacts of various interventions on epidemic dynamics in Taiwan. 

Called the Multilayer Epidemic Dynamics Simulator (MEDSim), the proposed 

framework has four contact structures: within age group, between age groups, daily 

commute, and nationwide interaction. To test model flexibility and generalizability, 

outbreak locations and intervention scenarios were simulated for the 2009 swine-origin 

influenza A (H1N1) epidemic. Results indicate that lower transmission rates and earlier 

intervention activation times did not reduce total numbers of infected cases, but did 

delay peak times. When transmission rate was decreased by a minimum of 70%, 

significant epidemic peak delays were observed when interventions were activated 

before new case number 50; no significant effects were noted when the transmission 

rate was decreased by less than 30%. Observed peaks occurred more quickly when 

initial outbreaks took place in urban rather than rural areas. MEDSim apparently 
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provides insights that reflect the dynamic processes of epidemics under different 

intervention scenarios, thus clarifying the effects of complex contact structures on 

disease transmission dynamics. 
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4.1 Motivation 

After emerging in Mexico in April of 2009, the swine-origin H1N1 influenza virus 

rapidly spread worldwide. In June of that year, the World Health Organization issued its 

highest possible pandemic alert—level 6 (Smith et al., 2009). Influenza researchers and 

epidemiologists have generally focused on two spreading factors: age group 

(determining post-infection symptoms) (Feng et al., 2005; Inaba, 2007; Langlais & 

Naulin, 2003; Shim et al., 2006; Supriatna et al., 2008; Wang & Zhao, 2005) and adult 

travel (determining routes by which viruses spread). Since individuals in the same age 

group tend to have similar epidemic characteristics, age group has been proposed as a 

distinguishing condition in terms of population compartmentalization (Feng et al., 2005; 

Inaba, 2007; Langlais & Naulin, 2003; Shim et al., 2006; Supriatna et al., 2008; Yang et 

al., 2009). Most children and adolescents have better resistance to contagious diseases 

than individuals age 65 and older. However, the Mexican population segment that was 

most affected by the H1N1 virus consisted of youth below the age of 15; of all 

individuals affected by the first infection wave, 61% were children and 29% adults 

(Fraser et al., 2009). Since novel influenza viruses are known to cause greater 

morbidity among children (Belshe et al., 1992), the youngest age group served as the 

main focus of H1N1 intervention efforts. 
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Many researchers have used age structure to capture heterogeneity when modeling 

epidemic dynamics (Inaba, 2007; Shim et al., 2006; Wang & Zhao, 2005), with some 

integrating compartmental models consisting of different age groups to identify the 

potential impacts of specific populations and temporal epidemic trends (Wang & Zhao, 

2005). Childhood diseases such as rotavirus infections have been used to assess the 

efficacy potential of various vaccination strategies (Shim et al., 2006), and transmission 

threshold and stability have been the focuses of epidemic simulations involving 

specific age structures (Inaba, 2007). 

Another important factor in modeling epidemic dynamics is population movement. 

Over the past three decades Taiwan has experienced a rapid increase in the number of 

commuters for work and other purposes, especially among young adults (Marsh, 

1996)—a phenomenon perceived as supporting the spread of viruses over long 

distances within the country (Yang et al., 2009). Commuting is marked by strong 

spatial-temporal regularity: regardless of travel distance or time, most commuters 

follow simple and repetitive patterns (González et al., 2008). These patterns are 

receiving considerable attention from researchers studying the spreading dynamics of 

diseases and viruses (Huang et al., 2005), the clustering characteristics of epidemic 

diseases at the beginning of an outbreak (Riley, 2007; Tomlinson & Cockram, 2003), 

and the targeting of vaccinations, quarantining, and other public health policies 
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(Epstein, 2009; Keeling & Rohani, 2007; Liu, Takeuchi & Iwami, 2008; 

Pastor-Satorras & Vespignani, 2002). 

A multi-layer simulation framework that combines daily commuting networks and 

a commonly used population-based transmission model for simulating epidemic 

dynamics was proposed, using the 2008-2009 seasonal influenza A and 2009 

swine-origin influenza A (H1N1) outbreaks to estimate model parameters. The 

potential impacts of different outbreak locations and interventions on the Taiwan-wide 

epidemic dynamics of swine-origin influenza A were assessed, including intervention 

timing and different combinations of public health responses. 
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4.2 A Multilayer Epidemiological Model 

Integrating Human Commuting Networks 

To analyze the spreading dynamics of epidemic diseases in detail, a top-down 

simulation framework was established, along with a prototype of the Multilayer 

Epidemic Dynamics Simulator (MEDSim), which integrates population-based and 

network-oriented approaches to capturing complex demographic, geographic, and 

biological properties, including human movement patterns and disease progression 

(Figure 4.1). Based on the observation that epidemic dynamics in large populations 

are similar to those found in deterministic systems (Keeling & Rohani, 2007), a 

deterministic framework was established for the MEDSim model. As shown in Figure 

4.2, layer 1 individuals within the same location are organized according to age group; 

a population-based approach was used to model the transmission dynamics of each 

group. The layer 2 focus is on contact patterns and interactions between different age 

groups within the same location. The effects of regional interactions on human travel 

networks are added to layer 3 by incorporating population density and commuting 

volume between any two locations. In layer 4, a network-oriented approach was used 

to incorporate a geographic information system (GIS) for constructing human travel 

networks on a national scale, with nodes representing locations on commuting routes, 
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and links representing movement between them. 

 

 

Figure 4.1. Multilayer Epidemic Dynamics Simulator (MEDSim) concept. 

Infection information usage is highest in Layer 1 and lowest in Layer 4, the 

opposite of location information. 

 

Due to its ability to comprehensively integrate multilayer structures to generate 

dynamic spatial and temporal processes, Mathworks MATLAB was used to implement 

the MEDSim framework as a numerical computation kernel. By using Microsoft Excel 

to organize census and transportation data, policy makers, health professionals, and 

others who have less experience with specialized computer software will be able to 

generate simulation scenarios with minimal assistance. 
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Figure 4.2. MEDSim framework. 

 

Layer 1: Within an age group 

A four-state SLIR epidemiological model was used to represent different infection 

stages among individuals in the same age group in the same location. Individual 

epidemic status was initially set at Susceptible, followed by Latent, Infectious, and 

Removed. The numbers of pathogens that Susceptible-to-Latent hosts carry are 

insufficient for active transmission to other Susceptible hosts, but these numbers 

eventually reach levels where hosts become Infectious, begin to infect other 

Susceptible hosts, and eventually move toward a Removed status. The dynamics of the 

four epidemic states over time are expressed as Eqs. 4.1a-d, which have the following 

features:  

1. At time t , the population of interest is divided into four compartments (( )S t , 

( )L t , ( )I t  and ( )R t ) that correspond to the SLIR model’s four epidemic states. Since 

the SLIR model is a closed system, ( ) ( ) ( ) ( )S t L t I t R t N+ + + = , with N  a constant 

representing the entire population. 
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2.  Transmission rate β  is a constant representing how fast Susceptible 

individuals become infected and acquire a Latent status. 

3.  Latent rate θ  is a constant used to determine transformation speed from 

Latent to Infected. 

4.  Removed rate α  is a constant used to determine transformation speed from 

Infected to Recovered. 

Ordinary differential equations can be used to express the SLIR model as 

β=( )
- ( ) ( ) /

dS t
S t I t N

dt
 (4.1a) 

θ β= +( )
- ( ) ( ) ( ) /

dL t
L t S t I t N

dt
 (4.1b) 

α θ= +( )
- ( ) ( )

dI t
I t L t

dt
 (4.1c) 

α=( )
( )

dR t
I t

dt
 (4.1d) 

Figure 4.3a and b illustrate the concept and flowchart of the model’s first layer, 

respectively. Note the modification to take self-motivated hospitalization into 

consideration (i.e., those individuals who visit hospitals or clinics during an influenza 

outbreak regardless of their infection status). Depending on diagnostic accuracy, some 

are confirmed as infectious and receive medical treatment in advance, thus altering 

transmission and removed rates for certain populations. To integrate this factor into the 

model, an additional three features are proposed: (a) an investigation constant s  

representing the percentage of a population that goes to a hospital or clinic in advance 
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of becoming ill; (b) a detection constant c , used to determine the percentage of a 

population confirmed as infectious; and (c) the time delay constant T , used to 

represent time between a patient with symptoms visiting a hospital or clinic and the 

time that his or her infection is confirmed. 
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Figure 4.3. (a) Modified SLIR model layer 1 concept. (b) Modified SLIR model 

layer 1 flowchart. 

 

Also in consideration of preventive health care actions among individuals, a 

feature was added in which individuals with an L  status are moved to either an 1I  or 

2I  status according to whether or not they visit a hospital or clinic (expressed as 

investigation proportion s ). 1I  individuals are identified as 11I  or 12I  depending on 
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whether or not they are correctly diagnosed as infectious (expressed as detection 

proportion c ). Note that regardless of positive or negative diagnosis, a period of time 

T  must elapse prior to confirmation. The difference between state 11I  and either 2I  

or 12I  is the transmission rate. 11I , 12I  and 2I  all eventually change to state R .  

This extended SLIR model is expressed as 

β β β= − + +2 2 11 11 12 12

( )
( )( ( ) ( ) ( )) /

dS t
S t I t I t I t N

dt
 (4.2a) 

θ β β β= − + + +2 2 11 11 12 12

( )
( ) ( )( ( ) ( ) ( )) /

dL t
L t S t I t I t I t N

dt
 (4.2b) 

θ= − +0
0

( )
( ) ( )

dI t
I t L t

dt
 (4.2c) 

= − − +1
1 0

( )
( ) ( )

dI t
I t T sI t

dt
 (4.2d) 

α= − + −2
2 2 0

( )
( ) (1 ) ( )

dI t
I t s I t

dt
 (4.2e) 

α= − + −11
11 11 1

( )
( ) ( )

dI t
I t cI t T

dt
 (4.2f) 

α= − + − −12
12 12 1

( )
( ) (1 ) ( )

dI t
I t c I t T

dt
 (4.2g) 

α α α= + +11 11 12 12 2 2

( )
( ) ( ) ( )

dR t
I t I t I t

dt
 (4.2h) 

Layer 2: Among age groups 

 Individuals in different age groups have different infection properties, expressed 

in terms of epidemic parameters such as transmission and removed rates. Two 

age-related features were considered: (a) the transmission rates β β β11 12 2, ,and pq pq pq , 

which represent cross-age group infections; and (b) the relative percentage χp  of age 

level, which affects the potential for cross-age infections. To distinguish among 
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parameters for individuals in different age groups, a subscript was added to each 

parameter in Eqs. 4.2a-h (with the exception of T )—for example, parameter ( )S t  

was changed to ( )pS t  for age level p . Three age levels were assumed when 

analyzing H1N1: children (birth to 14), adults (15 to 64), and seniors (65 and older). To 

capture the complexity of infections across age groups, transmission rates between 

different age levels were differentiated. Two transmission rate subscripts were added 

( ,p qµ ), the first for the age of an infectious individual, and the second for the age of the 

individual being infected (Figure 4.4). Epidemic parameters used in population-based 

compartmental models were also used to model infections across age groups. Three 

transmission rates and three removed rates were used, based on the number of 

individuals seeking medical attention. 

To construct the layer 2 model, Eqs. 4.2a and 4.2b were respectively revised to 

4.3a and 4.3b, without making any other changes to the Eq. (4.2) sub-equations. 

χ χ β β β

χ χ β β β
≠

= − + +

− + +∑

2 2 11 11 12 12

2 2 11 11 12 12

( ) /

       ( ) /

p

p p p pp p pp p pp p p

p q p qp p qp p qp p q
q p

dS
S I I I N

dt

S I I I N
 (4.3a) 

θ χ χ β β β

χ χ β β β
≠

= − + + +

+ + +∑

2 2 11 11 12 12

2 2 11 11 12 12

( ) /

       ( ) /

p

p p p p p pp p pp p pp p p

p q p qp p qp p qp p q
q p

dL
L S I I I N

dt

S I I I N
 (4.3b) 



58 
 

 

Figure 4.4. MEDSim layer 2 architecture flowchart. Thick solid lines indicate 

parameters for other (non-p and non-q) age groups. Thick dashed curves indicate 

relative percentages of each age group within the total population of each 

location. 

 

Layer 3: Commuting 

This study focused on the impacts of daily commuting networks on the spreading 

of an influenza virus. Since influenza viruses are transmitted via air-borne droplets, 

commuter hosts are capable of infecting other individuals along their standard routes. 

The layer 3 model reflects two assumptions regarding hosts with jobs: they commute 

over longer distances than individuals who stay at home or travel to local centers such 

as schools, and they tend to come into contact with individuals in the same age group 

along their routes and at their destinations. Higher contact frequencies among 
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individuals in more densely populated areas were assumed. Accordingly, the layer 3 

model considers four features associated with travel between population centers 

(locations): 

1. ( )pσ , a binary value representing whether age level p  is the commuter age 

level—that is, 
1 if commutable age level

( )
0 otherwise

p
pσ

=
= 


. It was assumed that children 

and seniors are less likely than adults to commute on a daily basis, making adults the 

most likely carriers of pathogens between locations. 

2. ,j iw , indicating how many individuals commute from location j to location i on 

a daily basis. 

3. iη , a weighting factor representing average contacts among individuals in 

location i on a daily basis. 

4. id , a normalized population density value for location i. 

For all i and j locations in a w commuting network, the following 

geodemographic weight was used to measure the effects of commuting on i and j 

population interactions. 

Geodemographic weight(j,i) =σ η

≠
∑

,

,

( ) j ii i

j k
k j

w
p d

w
  

As shown in Figure 4.5, the commuting population age level in this example is 15-64 

years. The ( )pσ  function represents whether age group p is a traveling population. 

For all i  locations in the commuting network, the term ( )N i  represents the set of 
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locations connected to location i within commuting network W . The term 

≠
∑, ,/j i j k
k j

w w  is the ratio of commuters between locations j and i to commuters 

between location j and all other locations. If location i is a large urban center, 

≠
∑, ,/j i j k
k j

w w  will be large; if i is a suburb or rural location, it will be small. Public 

health policies involving transportation can be tested by changing contact rates among 

population centers in the layer 3 model. 

,j iw

,j bw

,j cw

,j aw

 

Figure 4.5. Potential movement of infectivity between locations i  and j . 
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Figure 4.6. MEDSim layer 3 architecture flowchart. Properties associated with 

commuting between two locations are indicated by thick solid lines. Additional 

location properties are indicated by thick dashed lines. 

 

The layer 3 framework is presented in Figure 4.6. To construct the layer 3 model, 

Eqs. 4.3a and 4.3b were respectively revised to Eqs. 4.4a and 4.4b. Note the addition of 

the geodemographic weight on the third line of each equation. All other Eq. 2 

sub-equations are the same.  

χ χ β β β

χ χ β β β

σ η β β β

≠

∈
≠

= − + +

− + +

− + +

∑

∑
∑

2 2 11 11 12 12

2 2 11 11 12 12

,

2 2 11 11 12 12
( ) ,

( ) /

    ( ) /

    ( ) ( ) /

i
p i i i i i i i i i i i

p p p pp p pp p pp p p

i i i i i i i i i i i
p q p qp p qp p qp p q
q p

j ii i i j j j j j j j
p pp p pp p pp p p

j N i j k
k j

dS
S d I I I N

dt

S d I I I N

w
p d S I I I N

w

 
(4.4a) 
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θ χ χ β β β

χ χ β β β

σ η β β β

≠

∈
≠

= − + + +

+ + +

+ + +

∑

∑
∑

2 2 11 11 12 12

2 2 11 11 12 12

,

2 2 11 11 12 12
( ) ,

( ) /

    ( ) /

    ( ) ( ) /

i
p i i i i i i i i i i i i i

p p p p p pp p pp p pp p p

i i i i i i i i i i i
p q p qp q qp q qp q q
q p

j ii i i j j j j j j j
p pp p pp p pp p p

j N i j k
k j

dL
L S d I I I N

dt

S d I I I N

w
p d S I I I N

w

 
(4.4b) 

Layer 4: Nationwide interactions 

Taiwan’s national travel network and the commuting weight ,j iw  were used to 

simulate individual movement within regions (layer 3). Nodes represent locations, and 

edges represent commuting weights between locations. Once transportation data are 

obtained, nodes can represent any scale—for instance, a building for city simulations 

and a town for regional or national simulations. In this research, each node represents 

an individual town. Layer 4 of the model consists of 409 towns and 19,014 links 

(Figure 4.7) representing Taiwan’s national commuting network, which can be 

manipulated to determine the effects of various movement policies and commuting 

restrictions. 
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Figure 4.7. Taiwan’s nationwide commuting network. 

 

After combining the four layers, the complete MEDSim model is expressed as  

χ χ β β β

χ χ β β β

σ η β β β

≠

∈
≠

= − + +

− + +

− + +

∑

∑
∑

2 2 11 11 12 12

2 2 11 11 12 12

,

2 2 11 11 12 12
( ) ,

( ) /

    ( ) /

    ( ) ( ) /

i
p i i i i i i i i i i i

p p p pp p pp p pp p p

i i i i i i i i i i i
p q p qp q qp q qp q q
q p

j ii i i j j j j j j j
p pp p pp p pp p p
j N i j k

k j

dS
S d I I I N

dt

S d I I I N

w
p d S I I I N

w

 
(4.5a) 

θ χ χ β β β

χ χ β β β

σ η β β β

≠

∈
≠

= − + + +

+ + +

+ + +

∑

∑
∑

2 2 11 11 12 12

2 2 11 11 12 12

,

2 2 11 11 12 12
( ) ,

( ) /

    ( ) /

    ( ) ( ) /

i
p i i i i i i i i i i i i i

p p p p p pp p pp p pp p p

i i i i i i i i i i i
p q p qp q qp q qp q q
q p

j ii i i j j j j j j j
p pp p pp p pp p p
j N i j k

k j

dL
L S d I I I N

dt

S d I I I N

w
p d S I I I N

w

 
(4.5b) 

θ= − +0

0

i
p i i i

p p p

dI
I L

dt
 (4.5c) 

= − − +1

1 0( )
i
p i i i

p p p

dI
I t T s I

dt
 (4.5d) 

α= − + −2

2 2 0(1 )
i
p i i i i

p p p p

dI
I s I

dt
 (4.5e) 
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α= − + −11

11 11 1 ( )
i
p i i i i

p p p p

dI
I c I t T

dt
 (4.5f) 

α= − + − −12

12 12 1(1 ) ( )
i
p i i i i

p p p p

dI
I c I t T

dt
 (4.5g) 

α α α= + +11 11 12 12 2 2

i
p i i i i i i

p p p p p p

dR
I I I

dt
 (4.5h) 

The parameters used in Eqs. 4.5a-h are listed in Table 4.1. 

 

 

Table 4.1. MEDSim Parameters 
Category Layer Attribute Symbol Description 

Epidemic 

1 

Transmission 
rate 

β11

i
pp  Transmission rate from investigated/diagnosed/treated age 

group p to same age group in town i 

β12

i
pp  Transmission rate from investigated/misdiagnosed age 

group p to same age group in town i 

β2

i
pp  Transmission rate from non-investigated age group p to 

same age group in town i 

Latent rate θ i
p  Latent rate of age group p in town i 

Removed rate 

α11

i
p  Removed rate of investigated/diagnosed/treated age group 

p in town i 

α12

i
p  Removed rate of misdiagnosed age group p in town i 

α2

i
p  Removed rate of non-investigated age group p in town i 

Investigation 
ratio 

i
ps  Investigated proportion of age group p in town i 

(Default: 0.6) 
Detection 

ratio 
i
pc  Correctly diagnosed proportion of age group p in town i 

(Default: 0.6) 

Delay time T  Time between investigation and correct diagnosis 
(Default: 3) 

2 
Transmission 

rate 

β11

i
xy  Transmission rate from investigated/diagnosed/treated age 

group p and same age group q in town i 

β12

i
xy  Transmission rate from misdiagnosed age-group p and 

same age group q in town i 

β2

i
xy  Transmission rate from non-investigated age group p and 

same age group q in town i 

Location 

2 
Relative 

percentage 
i
pχ  Age group p as a percentage of town i population. 

 (Source: ROC Interior Ministry) 

3 

Determination σ( )p  Binary value for commutable age level 
(Default: adult) 

Relative 
density 

id  Population of town i as a percentage of the largest town’s 
population  

(Source: ROC Interior Ministry) 
Commuting 

weight ,j iw  Number of commuters from town j to town i  
(Source: ROC Institute of Transportation) 

4 Intercity rate 
ηi  Average number of daily contacts among individuals in 

location i 
(Default: 0.8) 
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Technological Framework 

Figure 4.8 shows the MEDSim technological framework, including a simulation 

flowchart, census databases, and the relationship between the four MEDSim layers and 

the databases. The first step is to manually create an Excel data set for the user’s chosen 

scenario—for example, determining breakout locations or public health policies. Most 

data sets consist of spatial locations and census information, which are used to establish 

geographic and demographic categories; each MEDSim parameter belongs to at least 

one of these. Since the layer 1 focus in this example is on disease progression on an 

individual level, standard expert-based parameters in compartmental models associated 

with epidemics were used instead of transportation or census databases (Keeling & 

Rohani, 2007). In layer 2, percentages of individuals in each age group were 

determined from census data, and the numbers of individuals in each location were 

gathered from transportation databases. In layer 3, transportation databases were used 

to gather information on the numbers of individuals traveling between towns on a daily 

basis. In layer 4, transportation data were used to establish the underlying national 

travel network. 
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Figure 4.8. MEDSim simulation tool framework. 

Figure 4.9 presents a screenshot of a MEDSim GUI. Multilayer epidemic model 

parameters are initialized at the beginning of each simulation. Model parameters 

requiring setup are (a) initial outbreak conditions, including the name of the town and 

number of infected persons in an age group identified by the surveillance system; (b) 

disease transmission parameters at different layers, including transmission, latent, and 

removed rates according to the SLIR process for each age group, contact rates between 

age groups, and regional contact probabilities between towns; and (c) output maps and 

charts of towns of interest and severity indicators to be monitored (e.g., daily infected 

cases, daily new cases, and epidemic velocity and acceleration). Daily epidemic 

progress can be monitored in terms of sizes and locations of red circles on maps 

(infected individuals), epidemic curves on time charts, and output panels (numbers of 
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infected individuals at different times in different locations). Regarding kernel 

execution, MEDSim models can be used for computing epidemic dynamics. 

Simulation results can be shown as graphical curves, or expressed and recorded as 

numerical files. Last, simulation results are evaluated by users, who can repeat steps as 

required. 

 

 

Figure 4.9. MEDSim implementation GUI. 

 

Statistical Analysis for Model Validation 

Two indices for comparing simulated and actual numbers of infected individuals 

were used to test the reliability and validity of time-series MEDSim data: correlation 

coefficient (CC) and coefficient of efficiency (CE), respectively expressed as Eqs. (4.6) 
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and (4.7) (Huang et al., 2004). { | 1,2,..., }tX t n=  represents the number of actual 

infected individuals, and { | 1,2,..., }tY t n=  the number calculated by MEDSim. In both 

sets, t denotes time step in 1-week units; a total of n weeks is represented by each set. 

X  and Y  denote the means of tX  and tY , respectively. The CC test measures data 

distance: higher positive values indicate positive correlations, and lower negative 

values indicate negative correlations. The CE test is used to measure the level of 

accuracy between two data sets; higher values indicate greater accuracy.  

1

2 2

1 1

( )( )
[ 1,1]

( ) ( )

n

t t
t

n n

t t
t t

X X Y Y
CC

X X Y Y

=

= =

− −
= ∈ −

− −

∑

∑ ∑
 (4.6) 

2

1

2

1

( )

1 [0,1]

( )

n

t t
t

n

t
t

X Y

CE

X X

=

=

 
− 

 = − ∈
 

− 
  

∑

∑
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4.3 Simulating the 2009 Novel H1N1 Influenza 

MEDSim reliability (in terms of parameter calibration and model fit) was tested 

using actual epidemic curves. Public health policies were tested and compared based on 

the above parameters, and MEDSim was used to simulate the influenza A (H1N1) virus 

and to determine the effects of various policies. Population data from the Republic of 

China (ROC) Ministry of the Interior and transportation data from the ROC 

Transportation Institute (2001) were used to establish simulation parameter settings. 

Parameterization  

The seasonal influenza A and swine-origin influenza A (H1N1) viruses were used 

to perform parameterization. Default parameter values are shown in Table 4.1. 

Parameters for both viruses were systematically calibrated to create a small range, 

based on parameters normally used with standard SLIR settings (Keeling & Rohani, 

2007). Summaries of MEDSim attribute settings and values are given in Table 4.2 and 

Table 4.3. The transmission rates 11
i

ppβ , 12
i

ppβ  and 2
i

ppβ  were directional between age 

groups. Individual age group targets are presented in the form of sub-columns. 

Experimental results from applying MEDSim using the Table 4.2 and Table 4.3 

parameter values for the two influenza viruses are shown in Figures 10a and b, 

respectively. Actual and simulated case data for both influenzas are shown in weekly 



70 
 

units. 

The CC and CE results for the two influenza epidemics are 0.86 and 0.74 for 

seasonal, and 0.77 and 0.36 for swine-origin H1N1, respectively. Figure 4.10a shows 

the plotting of fractions of new infected cases of seasonal influenza A in Taiwan 

between September 2008 and April 2009, normalized to total cases. Higher CC and CE 

values for seasonal influenza explain the similarities between the two curves. Figure 

4.10b shows the plotting of fractions of new infected cases for the swine-origin 

influenza A virus in Taiwan from week 25 to week 52 in 2009, also normalized to total 

cases. As shown, the number of actual cases decreased between weeks 37 and 48, 

followed by an increasing trend, resulting in a lower CE value. This two-wave pattern is 

very similar to global diffusion patterns associated with international travel. Since 

international travel was not incorporated at this stage, the swine-origin H1N1 model 

failed to capture the second wave; however, it did capture the peak time for the first 

(primary) wave (Figure 4.10b). 
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Table 4.2. MEDSim parameters used for fitting simulation curves with actual seasonal 

influenza A curves in Taiwan between September 2008 and April 2009 

Layer Attribute Value 

  Children Adults Seniors 

1 

β11

i
pp  1.3333 0.6667 0.6667 

β12

i
pp  3.3333 1.6667 1.6667 

β2

i
pp  3.3333 1.6667 1.6667 

θ i
p  0.0714 

α11

i
p  0.1429 

α12

i
p  0.2500 

α2

i
p  

0.1429 

 Target Adults Seniors Children Seniors Children Adults 

2 

β11

i
xy  0.6667 0.6667 1.3333 0.6667 1.3333 0.6667 

β12

i
xy  1.6667 1.6667 3.3333 1.6667 3.3333 1.6667 

β2

i
xy  1.6667 1.6667 3.3333 1.6667 3.3333 1.6667 

 

 

Table 4.3. MEDSim parameters used for fitting simulation curves to actual 

swine-origin influenza A (H1N1) curves in Taiwan from week 25 to week 52 

Layer Attribute Value 

  Children Adults Seniors 

1 

β11

i
pp  2.6667 1.3333 1.3333 

β12

i
pp  3.3333 1.6667 1.6667 

β2

i
pp  3.3333 1.6667 1.6667 

θ i
p  0.0714 

α11

i
p  0.3333 

α12

i
p  0.1429 

α2

i
p  

0.1667 

 Target Adults Seniors Children Seniors Children Adults 

2 

β11

i
xy  1.3333 1.3333 2.6667 1.3333 2.6667 1.3333 

β12

i
xy  1.6667 1.6667 3.3333 1.6667 3.3333 1.6667 

β2

i
xy  1.6667 1.6667 3.3333 1.6667 3.3333 1.6667 
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(b) 

Figure 4.10. Comparison of weekly new infected cases between actual and simulated 

results normalized for (a) seasonal influenza A and (b) swine-origin H1N1 influenza A.

Intervention Policy Evaluation 

Different public health policies were tested and compared using the 

above-described parameters. In addition, the effects of medical advice quality and 
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number of commuters were simulated, and original epidemic curves were compared 

with those following the implementation of the public health policies. Special 

emphases were placed on peak numbers of infected cases and peak infection days, since 

the goals of public health officials are to reduce the peak number (since it has a direct 

effect on social costs such as drugs and hospital beds), and to delay the peak day. 

Figure 4.11 has two parts, one addressing the impacts of transmission rate 

reduction, and one on the effects of various intervention policies. Results from 

simulated observation indices for different transmission rates are shown in Table 4.4 . 

According to the Figure 4.11 data for weekly fractions of new infected cases, both 

curve peak and height were negatively affected by decreased transmission rates. 

According to the Figure 4.12 data on the cumulative number of new infections at 

different transmission rates, that number decreased as transmission rate decreased. In 

Figure 4.13, two observation indices were used to distinguish between the epidemic 

curve produced by the highest transmission rate, and the curves shown in Figure 4.11. 

According to the first observation index (fraction of new infected cases at epidemic 

curve peak), the largest transmission intensity of an epidemic disease infects a 

population over a period of one week, which affects the quantity of available public 

health resources; a decreasing value reduces the burden on those resources. The second 

index (epidemic curve peak week number) indicates the severity and urgency of an 
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epidemic, which affects deadlines for initiating public health policies; a higher value 

indicates more time for making policy decisions. 
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Figure 4.11. New infected cases per week at different transmission rates. 
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Figure 4.12. Cumulative new infected cases at different transmission rates. 
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Figure 4.13. Basic epidemic curve at a 0% reduced transmission rate expressed 

according to two observation indexes. 
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Figure 4.14. Comparison of new infected cases at epidemic curve peak at 

different transmission rates. 
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Figure 4.15. Weekly new cases at curve peak at different transmission rates. 
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Figure 4.16. New infected cases at epidemic curve peak according to various 

intervention policy scenarios. 
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Figure 4.17. Numbers of infected cases according to various intervention policy 

scenarios. 

 

20
 

26
 

36
 

77
 

0.
00

%

20
 

2 4
 

30
 

51
 

0.
01

%

20
 

2 4
 

29
 

47
 

0.
02

%

20
 23

 

28
 

42
 

0.
05

%

20
 23

 

27
 

38
 

0.
09

%

0 

20 

40 

60 

80 

0% 30% 50% 70% 90%

E
p

id
em

ic
 p

ea
k 

ti
m

e 
(w

ee
k 

n
u

m
b

er
)

Transmission rate reduction

Intervention policy #1 activated before the spread of the pre-swine-origin influenza virus

Intervention policy #2 activated after 50 cumulative cases

Intervention policy #3 activated after 100 cumulative cases

Intervention policy #4 activated after 200 cumulative cases

Intervention policy #5 activated after 400 cumulative cases

Simulation initialization:
First identified case: adult resident of Taipei  

Figure 4.18. Week numbers of epidemic curve peaks according to various 

intervention policy scenarios. 
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Table 4.4 Observation index values according to different transmission rates. 

Observation Index 
Transmission Rate Reduction (%) 

0% 30% 50% 70% 90% 
Total cases. 1,784,044 1,407,752 1,108,520 485,761 8 
New infected cases at epidemic 
curve peak. 

171,329 113,898 64,926 12,231 8 

Week number of epidemic curve 
peak. 

20 26 36 77 ∞ 

Fraction of new infected cases at 
epidemic curve peak. 

9.6% 6.4% 3.6% 0.7% 0% 

Total cases of epidemic curve

Total cases of basic epidemic curve

 
 
 

 100% 78.9% 62.1% 27.2% 0.% 

 

Results from comparisons of epidemic curve peaks at different reduced 

transmission rates are shown in Figure 4.13. The basic fraction of new infected cases at 

curve peak (noted as 100%, with a transmission rate of 1.0) is shown in the leftmost part 

of the graph. The relative total number of cases (red line) consists of two line segments, 

one from 1.0 to 0.5, and the other from 0.5 to 0.1. According to this result, transmission 

rate should be reduced by at least 50% to obtain better peak number suppression. An 

obvious decrease in peak number occurs when the transmission rate is reduced to 70%. 

Curve peak week numbers at different transmission rates are shown in Figure 4.14. 

Note that week number increased as transmission rate decreased—a positive result for 

public health policy makers. Results from simulations of various long- and short-term 

intervention policy activation scenarios are shown in Figure 4.16,Figure 4.17 and 

Figure 4.18. No differences in numbers of infected cases were observed for different 

intervention policy activation times (Figure 4.16 and Figure 4.17). However, epidemic 

peak was delayed from week 55 to week 71 when intervention policy activation time 
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was set at 50 with a 70% reduction in transmission rate (Figure 4.18). Activation time 

exerted a much weaker effect on peak timing at a 30% transmission rate reduction. 

According to these results, while time of intervention policy activation did not 

significantly reduce the number of infected cases, it did exert an obvious effect in terms 

of delaying peak time—a positive result in terms of public health policy determination 

and preparation.  

Next, differences in swine-origin H1N1 influenza A starting locations in Taiwan 

were compared in terms of their effects on the subsequent spreading of the disease 

(Figure 4.19, Table 4.5 and Table 4.6). Taipei was labeled a high-density area and 

Taichung a low-density area. In the first (pre-swine origin virus) scenario, case number 

peaked much earlier in Taipei (20) than in Taichung (61). When the transmission rate 

was reduced to 30%, the Taichung peak was significantly delayed. When comparing 

numbers of infected cases at the curve peak, both locations had approximately the same 

number of new cases, but Taipei had a much larger number of total cases. After 

reducing the transmission rate from 50% to 30%, Taichung had a much later peak week 

compared to Taipei, with no effect of intervention policy activation time on total 

number of cases or newly infected cases in either location. The results suggest that less 

densely populated starting locations are more sensitive to intervention policy activation 

time—that is, the combination of early activation time and low transmission rate 



80 
 

significantly delays epidemic curve peaks in less densely populated locations. 
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Figure 4.19. Epidemic peak week numbers for urban and rural areas. 
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Table 4.5. Observation index values according to different policy activation scenarios 

during swine-origin influenza A (H1N1) outbreak in Taipei. 

Policy Activation Time Observation Index 
Transmission Rate Reduction 

0% 30% 50% 70% 90% 

Scenario #1 
 

Before the swine-origin influenza A 
(H1N1) virus emerges. 

Total cases. 1,784,044 1,407,752 1,108,520 485,761 8 
New infected cases at epidemic curve peak. 171,329 113,898 64,926 12,231 8 
Week number of epidemic curve peak. 20 26 36 77 0 
Fraction of new infected cases at epidemic curve 
peak. 

9.60% 6.38% 3.64% 0.69% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 78.90% 62.14% 27.23% 0.00% 

Scenario #2 
 

After 50 cumulative swine-origin 
influenza A (H1N1) infected cases 

are diagnosed. 

Total cases. 1,784,044 1,409,827 1,108,794 487,425 855 
New infected cases at epidemic curve peak. 171,329 114,120 65,235 12,468 155 
Week number of epidemic curve peak. 20 24 30 51 7 
Fraction of new infected cases at epidemic curve 
peak. 

9.60% 6.40% 3.66% 0.70% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 79.02% 62.15% 27.32% 0.05% 

Scenario #3 
 

After 100 cumulative swine-origin 
influenza A (H1N1) infected cases 

are diagnosed. 

Total cases. 1,784,044 1,410,263 1,108,993 488,900 1991 
New infected cases at epidemic curve peak. 171,329 113,532 65,314 12,604 349 
Week number of epidemic curve peak. 20 24 29 47 8 
Fraction of new infected cases at epidemic curve 
peak. 

9.60% 6.36% 3.66% 0.71% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 79.05% 62.16% 27.40% 0.11% 

Scenario #4 
 

After 200 cumulative swine-origin 
influenza A (H1N1) infected cases 

are diagnosed. 

Total cases. 1,784,044 1,410,782 1,109,355 491,563 4599 
New infected cases at epidemic curve peak. 171,329 114,191 65,442 12,883 818 
Week number of epidemic curve peak. 20 23 28 42 9 
Fraction of new infected cases at epidemic curve 
peak. 

9.60% 6.40% 3.67% 0.72% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 79.08% 62.18% 27.55% 0.26% 

Scenario #5 
 

After 400 cumulative swine-origin 
influenza A (H1N1) infected cases 

are diagnosed. 

Total cases. 1,784,044 1,411,273 1,109,893 496,246 10000 
New infected cases at epidemic curve peak. 171,329 114,185 65,669 13,408 1680 
Week number of epidemic curve peak. 20 23 27 38 10 
Fraction of new infected cases at epidemic curve 
peak. 

9.60% 6.40% 3.68% 0.75% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 79.11% 62.21% 27.82% 0.56% 
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Table 4.6. Observation index values according to different policy activation scenarios 

during swine-origin influenza A (H1N1) outbreak in Taichung. 

Policy Activation Time Observation Index 
Transmission Rate Reduction 

0% 30% 50% 70% 90% 

Scenario #1 
 

Before the swine-origin influenza A 
(H1N1) virus emerges. 

Total cases. 2,190,247 1,672,733 1,112,428 485,801 8 
New infected cases at epidemic curve peak. 172,083 114,556 64,551 12,186 8 
Week number of epidemic curve peak. 61 83 119 284 1 
Fraction of new infected cases at epidemic 
curve peak. 

7.86% 5.23% 2.95% 0.56% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 76.37% 50.79% 22.18% 0.00% 

Scenario #2 
 

After 50 cumulative swine-origin 
influenza A (H1N1) infected cases are 

diagnosed. 

Total cases. 2,190,247 1,672,266 1,117,265 487,030 767 
New infected cases at epidemic curve peak. 172,083 113,760 64,598 12,200 120 
Week number of epidemic curve peak. 61 73 93 180 28 
Fraction of new infected cases at epidemic 
curve peak. 

7.86% 5.19% 2.95% 0.56% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 76.35% 51.01% 22.24% 0.04% 

Scenario #3 
 

After 100 cumulative swine-origin 
influenza A (H1N1) infected cases are 

diagnosed. 

Total cases. 2,190,247 1,671,019 1,120,702 488,492 1723 
New infected cases at epidemic curve peak. 172,083 113,672 64,430 12,194 273 
Week number of epidemic curve peak. 61 72 90 169 29 
Fraction of new infected cases at epidemic 
curve peak. 

7.86% 5.19% 2.94% 0.56% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 76.29% 51.17% 22.30% 0.08% 

Scenario #4 
 

After 200 cumulative swine-origin 
influenza A (H1N1) infected cases are 

diagnosed. 

Total cases. 2,190,247 1,674,627 1,125,289 491,418 3668 
New infected cases at epidemic curve peak. 172,083 113,592 64,556 12,198 520 
Week number of epidemic curve peak. 61 71 88 158 32 
Fraction of new infected cases at epidemic 
curve peak. 

7.86% 5.19% 2.95% 0.56% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 76.46% 51.38% 22.44% 0.17% 

Scenario #5 
 

After 400 cumulative swine-origin 
influenza A (H1N1) infected cases are 

diagnosed. 

Total cases. 2,190,247 1,677,338 1,132,127 49,486 7424 
New infected cases at epidemic curve peak. 172,083 112,155 64,605 12,188 1057 
Week number of epidemic curve peak. 61 70 85 147 34 
Fraction of new infected cases at epidemic 
curve peak. 

7.86% 5.12% 2.95% 0.56% 0% 

 
 
 

Total cases of epidemic curve

Total cases of basic epidemic curve
 100% 76.58% 51.69% 22.67% 0.34% 
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The proposed model is capable of providing insights that reflect the dynamic 

processes of epidemics according to various intervention scenarios involving outbreak 

location, intervention timing, and different policy suites. I view this multilayer 

approach as both convenient and effective for public health practitioners and 

administrators responsible for initiating early responses to potential pandemics, and for 

assessing intervention strategies in outbreak locations.  

This particular part of this dissertation has several limitations, such as the lack of 

confirmed numbers of H1N1 influenza A cases in Taiwan—at this time it is not a 

notifiable disease in this country. The data used for model validation reflect severe and 

hospitalized cases, which were assumed as having the same proportions as non-severe 

cases per time unit. Differences between actual and simulated cases can be significantly 

reduced when using appropriate parameter values in terms of investigation and 

detection proportions. Second, since the SLIR model is imprecise in terms of its 

Removed designation, it was not possible to address the number of H1N1-related deaths 

in any discussion of peak time delay. In real-world scenarios involving pandemic 

diseases with high death rates, peak time delays are very important for disease 

prevention policy decisions. Third, due to the limited scope of this study, it was not 

possible to gather and organize the exceptionally large amounts of available data on all 

areas represented by network nodes (e.g., workplaces, houses and schools). Instead, 
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location and age were used for purposes of population grouping, due to their 

similarities in responses to epidemic-related factors. Furthermore, other attributes such 

as income level and number of social groups per individual were not addressed when 

determining transmission rate, removed rate, or other parameters. 
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Chapter 5. Simulation Architecture for 

Studying Network-based 

Computational Epidemiology Issues 

and for Public Health Education 

Purposes 

This chapter looks at issues tied to predicting epidemic outbreaks on a national 

scale, and testing the efficacies of different combinations of epidemic intervention 

policies. Network-based simulations have been proven as useful approaches for 

epidemiologists to address epidemic dynamics. In addition, investigations of complex 

public health issues are easy to simulate, therefore universities and research institutes 

are now using network-based simulations as teaching tools for epidemiology and 

public health students. However, instructors have reported that the process of 

constructing appropriate network-based epidemic models and running simulations is 

difficult, especially when the modeling of individual movement and contact patterns 

is involved.  

I worked with three other authors to establish a four-category framework based 
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on geodemographic properties for use by undergraduate students and novice 

researchers wanting to construct network-based simulation models. The framework 

was evaluated with two infectious disease scenarios in Taiwan—HIV and influenza. 

Results indicate that the framework significantly improved student efforts to learn 

epidemic transmission principles, and to analyze the efficacies of various public 

health policies. To construct a multi-scale contact network, the proposed framework 

can be used to build geodemographic commuting or travel networks. 
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5.1 Motivation 

 A wide variety of network-based simulations are currently being used to model 

epidemic dynamics and to evaluate combinations of epidemic intervention policies. 

Due to their capability of modeling the movement and contact behavior of individuals, 

network-based simulations are being used by a growing number of researchers to 

explore epidemic dynamics (see, for example, Alfonseca, Martinez-Bravo & Torrea, 

2000; Axelrod, 1997; Barrett et al., 2005; Boccara & Cheong, 1993; Ferguson et al., 

2005; Gilbert & Troitzsch, 2005; Hsieh, Huang, Sun & Chen, 2005; Hsieh, Sun, Kao & 

Huang, 2006; Huang et al., 2005; Schneeberger et al., 2004; Stroud, Del Valle, Sydoriak, 

Riese & Mniszewski, 2007; Sumodhee et al., 2005).  

To implement network-based simulations in the modeling of epidemic dynamics, 

we constructed social network simulations for modeling the transmission dynamics of 

HIV, SARS, and influenza in Taiwan (Hsieh et al., 2005; Hsieh et al., 2006; Huang et 

al., 2004, 2005; Sumodhee et al., 2005). For purposes of training students and novice 

epidemiologists, instructors from many disciplines are collaborating with simulation 

researchers to recreate the transmission dynamics of infectious diseases, and to 

improve general understanding of public health policy efficacies (Hsieh et al., 2006; 

Huang et al., 2005). However, computational epidemiology researchers and instructors 
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are still addressing individual problems involving movement and contact patterns 

among millions of people of different ages and with different professions, educational 

levels, marital/partner statuses, and levels of epidemiological resistance (Barrett et al., 

2005; Boccara & Cheong, 1993; Huang et al., 2004, 2005). In addition, emerging and 

re-emerging infectious disease outbreaks can develop randomly and unexpectedly, 

depending on the breadth of early stage outbreaks, numbers of randomly imported 

cases, the responses of infected individuals, and contacts with other susceptible 

individuals (Barrett et al., 2005; Huang et al., 2004, 2005). Public health policies 

executed by health authorities also directly and indirectly affect epidemic dynamics 

and spreading situations (Hsieh et al., 2005). Furthermore, improper implementation 

and the inappropriate timing of public health policy activation occasionally produce 

such secondary impacts as disease concealment and social discrimination against 

infected patients and the health care employees who provide their care (Huang et al., 

2004). In spite of these factors, most students and novice researchers in public health 

and related disciplines still use questionnaires or field investigation techniques when 

studying epidemic outbreaks—a process that prevents many from gaining a macro 

view of epidemic dynamics, or from assessing the potential efficacies of public health 

policies for prevention and control.  

 In this chapter I will discuss ways of applying network-based simulation 
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approaches to undergraduate and novice researcher education, and describe 

simulations of the transmission dynamics of two infectious disease scenarios in 

Taiwan—HIV and influenza. The goals are to clearly illustrate existing challenges to 

building network-based epidemic simulations, and to assist epidemiology students and 

novice researchers in their efforts to predict the transmission dynamics of emerging 

and re-emerging infectious diseases. 
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5.2 Potential Benefits in Learning Through 

Epidemic Simulations 

Hands-on learning through the use of epidemic simulations has at least three 

potential benefits: 

1. Operational. Epidemiology problems often require examinations of the 

influences of various public health policies in specific environments. Using the SARS 

outbreak of 2003 as an example, epidemiologists would be interested in measuring the 

potential impacts of public health policies, but running real-world experiments would 

be impossible in such a context. With simulation tools, epidemiology instructors and 

students can examine the influences of different public health policies in different 

regions, and execute “what-if” experiments to study the emerging behaviors of 

infections when irrelevant health policies are temporarily removed. In short, 

simulations can be optimized for learning (Bertsche, Crawford & Macadam, 1996). 

2. Observational. Users can take epidemic simulation processes and adjust their 

scales for observation purposes, slow them down, or speed them up (Sumodhee et al., 

2005). Epidemic simulations not only allow novice researchers to practice 

professional skills without having to invest large amounts of resources, but are also 

recognized as an efficient approach to reviewing or proving epidemiological concepts. 
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This protects learners from having to jump into high-risk situations. In classrooms, 

post-simulation reports allow teachers to determine which concepts their students 

have mastered (Hargrave & Kenton, 1999; Klein, Berlin, Kostolansky & Del Palacio, 

2004; Levy, Levy & Solomon, 1995). 

3. Construction. Epidemic simulations can be used to create or explore 

environments. Using public health policy assessments as an example, learners can 

practice predicting developments that might result from different combinations of 

public health policies. In classrooms, epidemiology instructors can exert relatively 

precise control over knowledge construction and accumulation (Hargrave & Kenton, 

1999). 

In response to a wide variety of geographic and demographic restrictions, we 

divided all network-based epidemic simulations into four categories. The first 

category reflects the use of real contact tracing for constructing small-scale 

individual-to-individual contact networks. Using the 2003 SARS outbreak as an 

example, health authorities in Taiwan and Singapore attempted to construct contact 

histories for all infected individuals in order to quarantine anyone who had come into 

contact with a carrier. The second category consists of individuals and locations. For 

example, saunas and bars frequented by homosexuals can be viewed as activity 

locations bridging susceptible individuals with HIV carriers; for illegal drug users, 
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infection locations include syringes and chemicals used for drug dilution. To construct 

social networks for illegal drug users, epidemiologists must determine how many 

times a user shares a syringe with other users during one week or month, or how 

many users share the same diluting agent in a single session.  

The third category reflects individual neighborhood concepts using statistical 

geographic properties. In the absence of real contact data, epidemiologists may need 

to build a specific and customized social network using well-constructed and 

appropriate interaction and contact assumptions. An example is social mirror 

identities that connect two layers in the Cellular Automata with Social Mirror Identity 

Model (CASMIM), a small-world social network that preserves the properties of 

individuals who interact with their neighbors within two-dimensional geographic 

spaces (Huang et al., 2004, 2005). The properties reflect such activities as 

long-distance movement and daily visits to fixed locations. The fourth category 

frequently requires significant support in the form of demographic or geographic data. 

For example, Ferguson et al.’s (2005) Southeast Asian influenza simulation used 

statistical data for group density, household size, age distribution, school and 

workplace size, and individual travel information. The spread of HIV among 

homosexuals serves as a negative example—that is, movement, location, and means 

of sexual contact are less obvious, making it more difficult to build a network-based 
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HIV epidemic simulation (Sumodhee et al., 2005).  

To build a network-based epidemic model, four properties are considered 

exceptionally important:  

1. Time scale. In the case of HIV diffusion via heterosexual contact, frequency 

distributions of sexual behaviors over one month or one year show power-law 

distribution features (Schneeberger et al., 2004), but the same is not true when the 

time scale is reduced to one day or one week. It is also important to remember that 

different diseases have different incubation periods (e.g., 5 days for SARS versus 6 

months to 20 years for HIV) and immunization time frames.  

2. Geographic scale. Care must be taken when selecting this scale. For example, 

a new form of influenza tends to be expressed as a large-scale epidemic, therefore 

models for countries that have multiple regions require the consideration of 

cross-border transportation networks. Building a social network for any modern city 

with an established mass transportation system must assume a strong and varied mix 

of human movement, which can affect considerations of inter-regional transportation. 

3. Data dependency. Data granularity determines the best method for building a 

network model. Using homosexual HIV diffusion as an example, any situation in 

which data are limited to frequency distributions of sexual contact restricts modelers 

to using abstract von Neumann and Moore neighborhood concepts (Huang et al., 
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2005). However, if movement within a high-risk contact group can be traced, 

modelers can create simulations capable of predicting further development. 

4. Extendability. Due to the diversity of data collected for epidemiology issues, 

simulations of specific infectious diseases often require modifications to existing 

network models. For example, the homogeneous mixing hypothesis used in random 

networks assumes that all members of a group are well-mixed (i.e., equal probabilities 

exist for contact between any two members), but data on sexual contact or needle 

sharing do not support this hypothesis. Therefore, extendibility is a major concern 

when applying an existing network model to new epidemic simulations.  

Using computer simulations as a pedagogical tool is now common in many 

technology training programs, as well as in the teaching of science concepts (Colpitts, 

2002; Hsieh et al., 2006; Liao & Sun, 2001). Computer simulations are also being used 

in epidemiology disciplines to support educational and training efforts based on 

constructivist learning principles. In addition to mitigating learner obsession with the 

minutiae of complex procedures described in epidemiology textbooks (Wenglinsky, 

1998), simulations provide multiple opportunities for “learning by doing” (Oehme & 

Seitzer, 2000). Constructivists believe that learners draw upon prior knowledge when 

forming new schema via discovery learning (Bruner, 1977). When confronted with a 

new stimulus, learners apply their own knowledge bases to accommodate new 
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information and to alter their existing schema (Piaget, 1977). When constructive 

learning processes are embedded in epidemic simulations, students can learn by doing, 

have more and better opportunities for discovering interesting primary and secondary 

epidemic issues, and gain hands-on experience for dealing with real-world public 

health issues.  

Originally developed for medical education in the early 1970s, problem-based 

learning is now considered a core teaching model in over 60 medical schools (Savery 

& Duffy, 1996). The use of simulations for learning and teaching has two 

characteristics that make it compatible with the theoretical foundations of 

problem-based learning: 

1. Engagement. Students often request epidemic simulations to assist with 

learning and to gain a sense of engagement with real-world epidemiology problems. 

This allows for the introduction of related concepts to the learning process. There is 

no “perfect” simulation, but simulations can still support meaningful learning 

experiences as long as scenario limitations are taken into account (Aldrich, 2003). 

2. Interaction flexibility. Epidemic simulations can be used with interaction and 

feedback methods to illustrate how infectious diseases are spread under different 

conditions and circumstances (Aldrich, 2003). Epidemiology problems are usually 

complex, and rarely have single “correct” answers, which encourages learners to 
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repeatedly manipulate parameters. With sufficient practice, learners or novice 

researchers can learn how to transfer their new knowledge to real-world infectious 

diseases. 
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5.3 Teaching Computational Modeling and 

Simulation 

Processes and goals associated with learning via epidemic simulations differ 

from those associated with traditional classroom and textbook-centered learning. 

Epidemic simulation scenarios are often open-ended and poorly defined (Hsieh et al., 

2005), and problems frequently arise after simulations are started. We therefore 

suggest that novices be required to use instruction-based manuals to run epidemic 

simulations and to create professional quality reports or presentations of their learning 

results. Teacher preparation time will vary depending on the required epidemiology 

background, scenario construction requirements, and necessary instruction to help 

learners formulate problem statements, collect data, run simulations, and create 

reports. Evaluative techniques for learning results also differ from those used in 

traditional classroom settings, and require some training on the part of instructors. In 

light of the amount of required background knowledge (Hargrave & Kenton, 1999), 

we suggest using pre-instructional time to teach public health policy assessment and 

epidemic outbreak prediction skills, and post-instructional time to teach skills in 

epidemic simulation construction and analysis. Both are appropriate for 

learning-by-doing experiences.  
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We designed a five-step epidemiology teaching process: (a) introducing 

epidemiology knowledge and background scenarios; (b) preparing a pre-test for 

guiding students to key properties of an epidemiological issue; (c) creating 

step-by-step instruction-based epidemic simulations with appropriate sample data, 

user manuals for operating epidemic simulations, and experiment design examples; (d) 

unrestrained operating time, which allows students to construct and develop their own 

experiments; and (e) post-tests or final presentations to evaluate student understanding. 

Since disease scenarios often have no single or absolute approach, it is difficult to 

evaluate how well novice learners understand the operational aspects of simulations. 

One potential solution is to design constructive pre-tests and post-tests. Using 

epidemic simulations associated with public health policies as an example, novice 

learners may be asked to compare the efficacies of different combinations of public 

health policies before and after an epidemic simulation is run. In addition, we have 

observed that novice learners exhibit wide differences in terms of controlling 

simulation parameters (Hsieh et al., 2006), and therefore suggest that parameters be 

used as an evaluation criterion. 

Developing appropriate prevention and control measures entails making and 

monitoring the results of multiple rules and decisions made at different points during 

an epidemic. Conflicts among decision criteria for different strategies are inevitable, 
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and our proposed multi-scale simulation framework can help decision makers test and 

refine different strategies at different layers. For example, Layer 1 can be used to 

simulate and evaluate a vaccination policy by changing transmission rates among 

groups at greater risk of infection (e.g., children or seniors). This would allow for the 

testing of social distance measures such as school closures. Layer 2 can be used to 

evaluate quarantine strategies by changing contact rates among different age groups, 

layer 3 can be used to evaluate travel restrictions by changing regional contact rates 

among cities, and layer 4 can be used for the same purpose by changing the structure 

of the commuting network. By analyzing multi-scale interactions, decision makers 

can prepare themselves for making rapid proactive intervention decisions in response 

to clearly identified outbreak transmission pathways. Furthermore, our simulation 

framework can provide additional geospatial insight into epidemiological processes 

underlying control measures. Spatial orientation and visualization are necessary when 

monitoring disease progression and generating potential control strategies. We 

incorporated a geographic information system (GIS) into our multi-scale simulation 

framework in order to capture spatial variation in disease transmission throughout 

Taiwan. GIS supports a visual analysis of the spatial impacts of individual control 

measures. Combining multi-scale simulations, spatial visualization, and geographic 

information can clarify spatial and temporal characteristics in support of potential 
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pandemic preparation and control measures.  
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Chapter 6. Conclusions 

The goal of this dissertation was to integrate realistic human social networks into a 

standard epidemiological disease transmission model. Toward that goal, I presented 

the potential benefits of network-based computational epidemiological simulations. 

Starting from theoretical complex network topology, I gave a possible explanation for 

why infectious diseases are extinguished at small transmission rates, even in 

scale-free networks. The study results suggest the possibility of controlling the spread 

of epidemics in scale-free networks by manipulating resources and costs associated 

with an infection event. I then proposed a multilayer network-based computational 

epidemiological framework called MEDSim, whose development I assisted with, to 

integrate realistic social networks into traditional epidemiological models. To 

demonstrate and test model flexibility and generalizability, the 2009 A/H1N1 influenza 

epidemic was used to compute outbreak locations and to simulate intervention 

scenarios. Results indicate that the proposed MEDSim framework can help public 

health organizations decide when to implement intervention strategies by 

simultaneously analyzing multilayer interactions. For novices studying computational 

epidemiology and public health principles, I worked with three other authors to 

describe an instruction program for building network-based epidemic models. The 
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goal is to help individuals with less advanced computing skills to build 

epidemiological models, determine appropriate simulation parameters, and construct 

operational procedures. 

To build on this positive beginning, in the future I will work with the researchers 

cited in this dissertation to expand the multilayer framework in order to make it suitable 

for other acute diseases, and to make it responsive to complex human contact structures. 

I have five goals: 

1. To model future disease spreading activity, I will work on modifying 

MEDSim parameters to include dynamic variables that change over time.  

2. To account for vaccinations—specifically among school-age children, but 

also among other age groups—I will add one more state to the first MEDSim 

layer.  

3. I will add transportation routes (e.g., highways, railways, air routes) to the 

fourth MEDSim layer.  

4. I will work on adding an “international layer” to MEDSim in order to model 

cross-border epidemic dynamics.  

5. I will work on extending MEDSim for use as a general purpose disease 

modeling framework—for example, modifying contact structures such as 

human-mosquito contact in order to model vector-borne diseases such as 
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dengue fever and malaria, and human-animal contact to model zoonotic 

diseases such as rabies and Japanese encephalitis. 
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Simulation

Integrating epidemic dynamics with daily
commuting networks: building a
multilayer framework to assess influenza
A (H1N1) intervention policies

Yu-Shiuan Tsai1, Chung-Yuan Huang2, Tzai-Hung Wen3,
Chuen-Tsai Sun1 and Muh-Yong Yen4

Abstract

We describe an innovative simulation framework that combines daily commuting network data with a commonly used

population-based transmission model to assess the impacts of various interventions on epidemic dynamics in Taiwan.

Called the Multilayer Epidemic Dynamics Simulator (MEDSim), our proposed framework has four contact structures: within

age group, between age groups, daily commute, and nationwide interaction. To test model flexibility and generalizability,

we simulated outbreak locations and intervention scenarios for the 2009 swine-origin influenza A (H1N1) epidemic. Our

results indicate that lower transmission rates and earlier intervention activation times did not reduce total numbers of

infected cases, but did delay peak times. When the transmission rate was decreased by a minimum of 70%, significant

epidemic peak delays were observed when interventions were activated before new case number 50; no significant

effects were noted when the transmission rate was decreased by less than 30%. Observed peaks occurred more quickly

when initial outbreaks took place in urban rather than rural areas. According to our results, the MEDSim provides

insights that reflect the dynamic processes of epidemics under different intervention scenarios, thus clarifying the effects

of complex contact structures on disease transmission dynamics.

Keywords

computer simulation, epidemic dynamics, geographic information system, multilayer model, travel network

1. Introduction

After emerging in Mexico in April of 2009, the swine-
origin H1N1 influenza virus rapidly spread worldwide.
In June of that year, the World Health Organization
issued its highest possible pandemic alert: level 6.1

Influenza researchers and epidemiologists have focused
on two spreading factors: age group (determining post-
infection symptoms)2–7 and adult travel (determining
routes by which viruses spread). Since individuals in
the same age group tend to have similar epidemic
characteristics, age group has been proposed as a dis-
tinguishing condition in terms of population compart-
mentalization.2–6,8 Children and adolescents generally
have better resistance to contagious diseases than indi-
viduals age 65 and older. However, the Mexican pop-
ulation segment that was most affected by the H1N1
virus consisted of youths below the age of 15; of all

individuals affected by the first infection wave, 61%
were children and 29% adults.9 Since novel influenza
viruses are known to cause greater morbidity among
children,10 the youngest age group served as the main
focus of H1N1 intervention efforts.
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Many researchers have used age structure to capture
heterogeneity when modeling epidemic dynamics,3,5,7

with some integrating compartmental models consist-
ing of different age groups to identify potential impacts
of specific populations and temporal epidemic trends.7

Childhood diseases, such as rotavirus infections, have
been used to assess the efficacy potential of various vac-
cination strategies,5 and transmission threshold and
stability have been the focuses of epidemic simulations
involving specific age structures.3

Another important factor in modeling epidemic
dynamics is population movement. Over the past three
decades Taiwan has experienced a rapid increase in the
number of commuters for work and other purposes, par-
ticularly among young adults11 – a phenomenon per-
ceived as supporting the spread of viruses over long
distances within the country.8 Commuting is marked
by strong spatial-temporal regularity: regardless of
travel distance or time, most commuters follow simple
and repetitive patterns.12 These patterns are receiving
considerable attention from researchers studying the
spreading dynamics of diseases and viruses,13 the clus-
tering characteristics of epidemic diseases at the begin-
ning of a breakout,14,15 and the targeting of vaccinations,
quarantining, and other public health policies.16–19

The two most commonly used approaches to model-
ing epidemic spreading dynamics are population based
and network oriented. In population-based approaches,
hosts sharing the same symptoms are modeled or
grouped in terms of limited numbers of classes (also
known as compartments) that researchers analyze and
compare.2–7 Combinations of classes are used to model
and analyze population dynamics. For example, the
Susceptible, Latent, Infectious, or Recovered (SLIR)20

model gives individuals one of four infection statuses
and differential equations are used to study system
dynamics in terms of transitions between epidemiolog-
ical phases. Depending on whether removed individuals
can become susceptible a second time, diseases can be
modeled as SLIR or SLIRS cycles.

Network-oriented approaches emphasize individual
heterogeneity, interactions among individuals, and net-
work structure.21,22,40 Individuals in a network are rep-
resented as nodes, and interactions between themas links.
Network nodes can be used to represent the characteris-
tics of individuals, locations, neighborhoods, or cities,
and models can incorporate the temporal dynamics of
these features. Time frames for links between two nodes
can be preferentially defined23 – an approach commonly
used to represent group structures for individuals exhibit-
ing interaction or relationship patterns.24–27 Network-
oriented approaches are suitable for capturing complex
contact patterns among individuals, exploring epidemic
dynamics, and assessing the efficacies of public health
policies.19,22,28,29 Lattice networks have been used to

determine distance relationships between individuals. In
contrast, random networks support features associated
with casual contacts among mobile individuals and the
low degree of separation commonly observed in social
networks.30–32 Some researchers incorporate more realis-
tic underlying networks (e.g. daily contact networks)
when modeling interaction behaviors.30–32 These
approaches are viewed as reliable for investigating epi-
demics, with the transmission dynamics of specific net-
work models being manipulated to investigate the
spread of emerging infectious diseases.33,39 The topolog-
ical features of social networks have recently been found
to exert considerable influence on the transmission
dynamics and critical thresholds of infectious diseases,
thus supporting the subtle analyses that network-oriented
models are incapable of.4,13,28,34

Population-based and network-oriented approaches
respectively emphasize large-scale population-level and
individual-level perspectives. Each has its own limita-
tions. Population-based approaches are suitable for
discussing dynamic variation across individuals in the
same compartment, but they are weak in terms of
modeling individual heterogeneity and addressing
human travel networks.22,30 Since individuals are mod-
eled as groups, any two group members are assumed to
have a direct connection, which is not true in the real
world. Furthermore, movement and activity are loca-
tion dependent; therefore, phenomena cannot be simu-
lated by a population-based approach that assumes a
homogeneous population distribution. In contrast, net-
work-oriented approaches may be appropriate for
introducing individual heterogeneity, but they are com-
putation intensive and time consuming when simulating
the behaviors of individuals with multiple attributes in
large-scale social environments.17,30 Many efforts have
been made to match individual and population behav-
iors with heterogeneity and computation requirements
when studying epidemic dynamics.35–37

Here we will propose a multilayer simulation
framework that combines daily commuting networks
and a commonly used population-based transmission
model for simulating epidemic dynamics. We used the
2008–2009 seasonal influenza A and 2009 swine-origin
influenza A (H1N1) outbreaks to estimate model
parameters. We then assessed the potential impacts of
different outbreak locations and interventions on the
Taiwan-wide epidemic dynamics of swine-origin influ-
enza A, including intervention timing and different
combinations of public health responses.

2. Multilayer epidemic dynamic
simulation

To analyze the spreading dynamics of epidemic dis-
eases in detail, we established a top-down simulation
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framework and implemented a prototype of our
Multilayer Epidemic Dynamics Simulator (MEDSim).
The MEDSim integrates population-based and net-
work-oriented approaches to capturing complex demo-
graphic, geographic, and biological properties,
including human movement patterns and disease

progression (Figure 1). Based on the observation that
epidemic dynamics in large populations are similar to
those found in deterministic systems,16 we established a
deterministic framework for our MEDSim model. As
shown in Figure 2, layer 1 individuals within the
same location are organized according to age group;

Figure 1. The MEDSim concept. Infection information usage is highest in layer 1 and lowest in layer 4, the opposite of location

information.

Figure 2. MEDSim framework.
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a population-based approach is used to model the
transmission dynamics of each group. The layer 2
focus is on contact patterns and interactions between
different age groups within the same location. The
effects of regional interactions on human travel net-
works are added to layer 3 by incorporating population
density and commuting volume between any two loca-
tions. In layer 4, a network-oriented approach is used
to incorporate a geographic information system (GIS)
for constructing human travel networks on a national
scale, with nodes representing locations on commuting
routes and links representing movement between them.

Due to its ability to comprehensively integrate
multilayer structures to generate dynamic spatial and
temporal processes, we used Mathworks MATLAB
to implement our MEDSim framework as a numerical
computation kernel. By using Microsoft Excel to
organize census and transportation data, policy
makers, health professionals, and others who have
less experience with specialized computer software
will be able to generate simulation scenarios with min-
imal assistance.

2.1. Layer 1: Within age groups

We used the four-state SLIR epidemiological model to
represent different infection stages among individuals in
the same age group in the same location. Individual
epidemic status is initially set at Susceptible (vulnerable
to infection but not yet infected), followed by Latent
(infected but unable to infect others), Infectious (capa-
ble of infecting other individuals), and Removed (i.e.
recovered, deceased, or otherwise not posing any further
threat). The numbers of pathogens that Susceptible-
to-Latent hosts carry are insufficient for active transmis-
sion to other Susceptible hosts, but these numbers
eventually reach levels where hosts become Infectious,
begin to infect other Susceptible hosts, and eventually
move toward a Removed status. The dynamics of the
four epidemic states over time are expressed as
Equations (1a)–(1d), which have the following features.

1. At time t, the population of interest is divided
into four compartments (SðtÞ, LðtÞ, IðtÞ, and RðtÞ)
corresponding to the SLIR model’s four epidemic
states. Since the SLIR model is a closed system,
SðtÞ þ LðtÞ þ IðtÞ þ RðtÞ ¼ N, with N a constant rep-
resenting the entire population.

2. Transmission rate � is a constant representing how
fast Susceptible individuals become Infected and
acquire a Latent status.

3. Latent rate � is a constant used to determine trans-
formation speed from Latent to Infected.

4. Removed rate � is a constant used to determine
transformation speed from Infected to Recovered.

Ordinary differential equations can be used to
express the SLIR model as follows:

dSðtÞ

dt
¼ ��SðtÞIðtÞ=N ð1aÞ

dLðtÞ

dt
¼ ��LðtÞ þ �SðtÞIðtÞ=N ð1bÞ

dIðtÞ

dt
¼ ��IðtÞ þ �LðtÞ ð1cÞ

dRðtÞ

dt
¼ �IðtÞ ð1dÞ

Figures 3(a) and (b) respectively present the concept
and a flowchart of our model’s first layer. Note our
modification in the interest of taking into consideration
self-motivated hospitalization (i.e. those individuals
who visit hospitals or clinics during an influenza out-
break regardless of their infection status). Depending
on diagnostic accuracy, some are confirmed as infec-
tious and receive medical treatment in advance, thus
altering transmission and removed rates for certain
populations. To integrate this factor into the model,
we propose adding three features: (a) an investigation
constant s representing the percentage of a population
that goes to a hospital or clinic in advance of becoming
ill; (b) a detection constant c, used to determine the
percentage of a population confirmed as infectious;
and (c) a time delay constant T, indicating the
amount of time between a patient with symptoms vis-
iting a hospital or clinic and the time his or her infec-
tion is confirmed. The default values of parameters
s and c are both 0.6 (Table 1), meaning that 60% of
the infected population is prone to visiting hospitals
and/or clinics for medical advice, and 60% of those
visitors are correctly diagnosed as carrying the patho-
gen. The default value of parameter T is 3 (Table 1),
meaning that it takes three days to confirm that a hos-
pital or clinic patient with symptoms is infected with
the pathogen. In simulations, correctly diagnosed
patients are equivalent to confirmed cases in real-
world influenza surveillance systems.

In consideration of preventive health care, we added
a feature in which individuals with an L status are
moved to either an I1 (infected and prone to visiting
hospitals and/or clinics for medical advice) or I2
(infected but not prone to visiting hospitals and/or
clinics) status, based on whether or not they actually
visit a hospital or clinic; this feature is expressed as
investigation proportion s. I1 individuals are identified
as either I11 (correctly diagnosed as carrying the path-
ogen) or I12 (incorrectly diagnosed as carrying the path-
ogen – in other words, false negatives); this is expressed
as detection proportion c. Note that regardless of
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positive or negative diagnoses, a T period of time must
elapse prior to confirmation. The difference between
state I11 and either I2 or I 12 is the transmission rate.
I11, I12, and I2 all eventually change to state R.

The extended SLIR model can be expressed as

dSðtÞ

dt
¼ �SðtÞð�2I2ðtÞ þ �11I 11ðtÞ þ �12I12ðtÞÞ=N ð2aÞ

dLðtÞ

dt
¼ ��LðtÞ þ SðtÞð�2I2ðtÞ þ �11I11ðtÞ þ �12I12ðtÞÞ=N

ð2bÞ

dI0ðtÞ

dt
¼ �I0ðtÞ þ �LðtÞ ð2cÞ

dI1ðtÞ

dt
¼ �I1ðt� TÞ þ sI0ðtÞ ð2dÞ

dI2ðtÞ

dt
¼ ��2I2ðtÞ þ ð1� sÞI0ðtÞ ð2eÞ

dI 11ðtÞ

dt
¼ ��11I11ðtÞ þ cI1ðt� TÞ ð2fÞ

dI 12ðtÞ

dt
¼ ��12I12ðtÞ þ ð1� cÞI1ðt� TÞ ð2gÞ

dRðtÞ

dt
¼ �11I11ðtÞ þ �12I12ðtÞ þ �2I2ðtÞ ð2hÞ

2.2. Layer 2: Among age groups

Depending on age range, individual infection properties
differ in terms of epidemic parameters such as transmis-
sion and removed rates. We considered two age-related
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features: the transmission rates �11pq, �12pq, and �2pq,
which represent cross-age group infections, and the rel-
ative percentage �p of age level, which affects the poten-
tial for cross-age infections. To distinguish among
parameters for individuals in different age groups,
we also added a subscript to each Equation (2) param-
eter (with the exception of T) – for example, we chan-
ged parameter SðtÞ to SpðtÞ for age level p. We
assumed three age levels when analyzing H1N1: chil-
dren (from birth to 14), adults (15–64), and seniors
(65 and older). Transmission rates between age levels
were differentiated to capture the complexity of infec-
tions across age groups. We added two subscripts
to transmission rate � to create �p,q: p for the age of
an infectious individual, and q for the age of the indi-
vidual being infected (Figure 4). Epidemic parameters
used in population-based compartmental models were
also used to model infections across age groups. We
used three transmission rates and three removed rates,
based on the number of individuals seeking medical
attention.

To construct the layer 2 model, we revised Equations
(2a) and (2b) to (3a) and (3b), respectively, without

making any other changes to the Equation (2) sub-
equations, as follows:

dSp

dt
¼ Sp�p�pð�2ppI 2p þ �11ppI 11p þ �12ppI 12pÞ=Np

� Sp

X
q 6¼p

�q�pð�2qpI 2q þ �11qpI 11q þ �12qpI 12qÞ=Np

ð3aÞ

dLp

dt
¼��pLpþSp�p�pð�2ppI2pþ�11ppI11pþ�12ppI12pÞ=Np

þSp

X
q6¼p

�q�pð�2qpI2qþ�11qpI11qþ�12qpI12qÞ=Np

ð3bÞ

2.3. Layer 3: Commuting

For the present research we focused on the impacts
of daily commuting networks on the spreading of an
influenza virus. Since influenza viruses are transmitted
via airborne droplets, commuter hosts are capable of

Table 1. MEDSim parameters

Category Layer Attribute Symbol Description

Epidemic 1 Transmission rate �i
11pp Transmission rate from investigated/diagnosed/treated age group p to same age

group in town i

�i
12pp Transmission rate from investigated/misdiagnosed age group p to same age group in

town i

�i
2pp Transmission rate from non-investigated age group p to same age group in town i

Latent rate �i
p Latent rate of age group p in town i

Removed rate �i
11p Removed rate of investigated/diagnosed/treated age group p in town i

�i
12p Removed rate of misdiagnosed age group p in town i

�i
2p Removed rate of non-investigated age group p in town i

Investigation ratio si
p Investigated proportion of age group p in town i (Default: 0.6)

Detection ratio ci
p Correctly diagnosed proportion of age group p in town i (Default: 0.6)

Delay time T Time between investigation and correct diagnosis (Default: 3)

2 Transmission rate �i
11xy Transmission rate from investigated/diagnosed/treated age group p and same age

group q in town i

�i
12xy Transmission rate from misdiagnosed age-group p and same age group q in town i

�i
2xy Transmission rate from the non-investigated age group p and same age group q in

town i

Location 2 Relative percentage �i
p Age group p as a percentage of town i population. (Source: ROC Interior Ministry)

3 Determination �ð pÞ Binary value for commuter age level (Default: adult)

Relative density di Population of town i as a percentage of the largest town’s population

(Source: ROC Interior Ministry)

Commuting weight wj,i Number of commuters from town i to town j (Source: ROC Institute of

Transportation)

4 Intercity rate �i Average number of daily contacts among individuals in location i

(Default: 0.8)
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infecting other individuals along their standard routes.
The layer 3 model reflects two assumptions regarding
hosts with jobs: they commute over longer distances
than individuals who stay at home or travel to local
centers such as schools, and they tend to come into
contact with individuals in the same age group along
their routes and at their destinations. We also assumed
higher contact frequencies among individuals in more
densely populated areas. Accordingly, the layer 3 model
considers four features associated with travel between
population centers (locations).

�ð pÞ, a binary value representing whether age level
p is the commuter age level – that is,

�ð pÞ ¼
1 if p ¼ commutable age level
0 otherwise

�
. We

assumed that children and seniors are less likely
than adults to commute on a daily basis, making
adults the most likely carriers of pathogens between
locations.

wj,i, indicating how many individuals commute from
location j to location i on a daily basis.

�i, a weighting factor representing the average number
of contacts among individuals in location i on a
daily basis.

d i, a normalized population density value for location i.

For all i and j locations in a w commuting network,
we used the geodemographic weight shown as
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Equation (4) to measure the effects of commuting on i
and j population interactions:

Geodemographic weiht ð j, iÞ ¼ �ð pÞd i�i
wj,iP

k6¼j

wj,k
ð4Þ

As shown in Figure 5, the commuting popula-
tion age level in this example is adult (15–64). The
�ð pÞ function represents whether age group p is a trav-
eling population. For all i locations in the commuting
network, the term NðiÞ represents the set of locations
connected to location i within commuting network w.
The term wj,i=

P
k 6¼j wj,k is the ratio of commuters

between locations j and i to commuters between j and
all other locations. If location i is a large urban center,
wj,i=

P
k6¼j wj,k will be large; if i is a suburb or rural

location, it will be small. Public health policies involv-
ing transportation can be tested by changing contact
rates among population centers in the layer 3 model.

The layer 3 framework is presented in Figure 6. To
construct the layer 3 model, we revised Equations (3a)
and (3b) to Equations (4a) and (4b), respectively.

Note the addition of a geodemographic weight on the
third line of each equation. All other Equation (2) sub-
equations are the same.
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2.4. Layer 4: Nationwide interactions

We used Taiwan’s national travel network and com-
muting weight wj,i to simulate individual movement
within regions (layer 3). Nodes represent locations,
and edges represent commuting weights between loca-
tions. Once transportation data are obtained, nodes can
represent any scale – for instance, a building for city
simulations and a town for regional or national simu-
lations. In the present study, each node represents an
individual town. Layer 4 of our model consists of 409
towns and 19,014 links (Figure 7) representing
Taiwan’s national commuting network, which can be
manipulated to determine the effects of various move-
ment policies and commuting restrictions.

After combining the four layers, the complete
MEDSim model can be expressed as

dSi
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dt
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j
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j
p

ð5bÞ

dI i0p
dt
¼ �I i0p þ �

i
pL

i
p ð5cÞ

dI i1p

dt
¼ �I i1pðt� TÞ þ sipI

i
0p ð5dÞ

dI i2p

dt
¼ ��i2pI

i
2p þ ð1� sipÞI

i
0p ð5eÞ

dI i11p
dt
¼ ��i11pI

i
11p þ cipI

i
1pðt� TÞ ð5fÞ

dI i12p

dt
¼ ��i12pI

i
12p þ ð1� cipÞI

i
1pðt� TÞ ð5gÞ

dRi
p

dt
¼ �i11pI

i
11p þ �

i
12pI

i
12p þ �

i
2pI

i
2p ð5hÞ

The parameters used in Equation (5) are listed in
Table 1.

2.5. Technological framework

Figure 8 shows the MEDSim technological framework,
including a simulation flowchart, census databases, and
relationships between the four MEDSim layers and the
databases. The first step is to manually create an Excel
data set for the scenario in question – for example,
determining breakout locations or public health poli-
cies. Most data sets consist of spatial locations and
census information, which are used to establish geo-
graphic and demographic categories; each MEDSim
parameter belongs to at least one of the two.

Figure 7. Taiwan’s nationwide commuting network.
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Since our layer 1 focus in this example is on disease
progression at an individual level, standard expert-
based parameters in compartmental models associated
with epidemics were used instead of transportation or
census databases.16 In layer 2, percentages of individ-
uals in each age group were determined from census
data, and the numbers of individuals in each location
were gathered from transportation databases. In layer
3, transportation databases were used to gather infor-
mation on the numbers of individuals traveling between
towns on a daily basis. In layer 4, transportation data
were used to establish the underlying national travel
network.

Figure 9 presents a screenshot of a MEDSim graph-
ical user interface (GUI). Multilayer epidemic model
parameters are initialized at the beginning of each sim-
ulation. Model parameters requiring setup are: (a) ini-
tial outbreak conditions, including the name of the
town and number of infected persons in an age group
identified by the surveillance system; (b) disease trans-
mission parameters at different layers, including trans-
mission, latent, and removed rates according to the
SLIR process for each age group, contact rates between

age groups, and regional contact probabilities between
towns; and (c) output maps and charts for the towns of
interest and severity indicators to be monitored (e.g.
daily infected cases, daily new cases, and epidemic
velocity and acceleration). Daily epidemic progress
can be monitored in terms of sizes and locations of
red dots on maps (infected individuals), epidemic
curves on time charts, and output panels (numbers of
infected individuals at different times in different loca-
tions). Regarding kernel execution, MEDSim models
can be used for computing epidemic dynamics.
Simulation results can be shown as graphical curves
or expressed and recorded as numerical files. Lastly,
simulation results are evaluated by users, who can
repeat steps as required.

2.6. Statistical analysis for parameterization

To test the reliability and validity of time-series
MEDSim data, we used two indices to compare
simulated and actual numbers of infected individ-
uals: correlation coefficient (CC) and coefficient of
efficiency (CE), respectively expressed as Equations

Scenario making Again?

Begin

End

Evaluation

GUI 
execution

Data 
setting

Simulation 
output

Census 
database

Transportation
database

Nationwide 
interactions

Commuting

Infections across

Infections within 
age groups 

Layer 4 

Layer 3 

Layer 2

Layer 1 

Yes NoDatabases

Population

Territory

Traffic

Distance upper and
weight lower thresholds

Location population,
size,and relative density 

Commuting weight

Relative age group 
percentage

Location name and 
coordinates

age groups 

Figure 8. MEDSim simulation tool framework.
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(6) and (7).22 Here fXtjt ¼ 1, 2, . . . , ng represents the
number of actual infected individuals and
fYtjt ¼ 1, 2, . . . , ng the number calculated by the
MEDSim. In both sets, t denotes the time step (in
1 week units); a total of n weeks is represented by
each set. We use X and Y to denote the means of Xt

and Yt, respectively. The CC test measures data dis-
tance: higher positive values indicate positive correla-
tions and lower negative values indicate negative
correlations. The CE test is used to measure the
level of accuracy between two data sets; higher
values indicate greater accuracy:

CC ¼

Pn
t¼1 ðXt � XÞðYt � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðXt � XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðYt � YÞ2
q 2 ½�1, 1� ð6Þ

CE ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðXt � YtÞ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðXt � XÞ2
q

2
64

3
75 2 ½0, 1� ð7Þ

3. Results and discussion

We tested MEDSim reliability (in terms of parameter
calibration and model fit) with actual epidemic curves,
tested and compared public health policies based on the
above parameters, and used MEDSim to simulate the
influenza A (H1N1) virus and to determine the effects of
the chosen policies. To establish simulation parameter
settings, we used population data from the Republic of
China (ROC) Ministry of the Interior and transporta-
tion data from the ROC Transportation Institute.38

3.1. Parameterization

We used the seasonal influenza A and swine-origin
influenza A (H1N1) viruses to perform parameteriza-
tion. The default parameter values are shown in
Table 1. We systematically calibrated parameters for
both viruses to create a small range, based on parame-
ters normally used with standard SLIR settings.16

Summaries of MEDSim attribute settings and values
are given in Tables 2 and 3. The transmission rates
�i11pp, �

i
12pp, and �i2pp were directional between age

groups. Individual age group targets are presented in

Figure 9. MEDSim implementation GUI.
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the form of sub-columns. Experimental results from
applying the MEDSim using the Table 2 and 3 param-
eter values for the two influenza viruses are shown in
Figures 10(a) and (b), respectively. Actual and simu-
lated case data for both influenzas are shown in
weekly units.

Our CC and CE results for the two influenza epi-
demics are 0.86 and 0.74 for seasonal and 0.77 and 0.36
for swine-origin H1N1. In Figure 10(a) we plotted the
fractions of new infected cases of seasonal influenza A
in Taiwan between September 2008 and April 2009,
normalized to total cases. Higher CC and CE values
for seasonal influenza explain the similarities between
the two curves. In Figure 10(b) we plotted fractions of
new infected cases for the swine-origin influenza A virus

in Taiwan from week 25 to week 52 in 2009, also nor-
malized to total cases. As shown, the number of actual
cases decreased between weeks 37 and 48, followed by
an increasing trend, resulting in a lower CE value. This
two-wave pattern is very similar to global diffusion pat-
terns associated with international travel. Because we
did not incorporate international travel at this stage,
our swine-origin H1N1 model failed to capture the
second wave; however, it did capture the peak time
for the first (primary) wave (Figure 10(b)).

3.2. Intervention policy evaluation

We tested and compared different public health policies
using the above-described parameters, simulated the

Table 3. MEDSim parameters used for fitting simulation curves to actual swine-origin influenza A (H1N1) curves in Taiwan from

week 25 to week 52

Layer Attribute

Value

Children Adults Seniors

1 �i
11pp 2.6667 1.3333 1.3333

�i
12pp 3.3333 1.6667 1.6667

�i
2pp 3.3333 1.6667 1.6667

�i
p 0.0714

�i
11p 0.3333

�i
12p 0.1429

�i
2p 0.1667

Target Adults Seniors Children Seniors Children Adults

2 �i
11xy 1.3333 1.3333 2.6667 1.3333 2.6667 1.3333

�i
12xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

�i
2xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

Table 2. MEDSim parameters used for fitting simulation curves with actual seasonal influenza A curves in Taiwan between

September 2008 and April 2009

Layer Attribute

Value

Children Adults Seniors

1 �i
11pp 1.3333 0.6667 0.6667

�i
12pp 3.3333 1.6667 1.6667

�i
2pp 3.3333 1.6667 1.6667

�i
p 0.0714

�i
11p 0.1429

�i
12p 0.2500

�i
2p 0.1429

Target Adults Seniors Children Seniors Children Adults

2 �i
11xy 0.6667 0.6667 1.3333 0.6667 1.3333 0.6667

�i
12xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

�i
2xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667
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Figure 10. Comparison of weekly new infected cases between actual and simulated results normalized for (a) seasonal influenza A

and (b) swine-origin H1N1 influenza A.

Table 4. Observation index values according to different transmission rates

Observation index
Transmission rate reduction (%)

0% 30% 50% 70% 90%

Total cases. 1,784,044 1,407,752 1,108,520 485,761 8

New infected cases at epidemic curve peak 171,329 113,898 64,926 12,231 8

Week number of epidemic curve peak 20 26 36 77 1

Percentage of new infected cases at epidemic curve peak 9.6% 6.4% 3.6% 0.7% 0%
Total cases of epidemic curve

Total cases of basic epidemic curve

� �
100% 78.9% 62.1% 27.2% 0.%
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effects of medical advice quality and number of com-
muters, and compared original epidemic curves with
those following public health policy implementation.
Special emphases were placed on peak numbers of
infected cases and peak infection days. The goals of
public health officials include reducing the peak
number (since it has a direct effect on social costs,
such as drugs and hospital beds) and delaying peak
day.

Figure 11 has two parts, one addressing the impacts
of transmission rate reduction and one the effects of
various intervention policies. The results from simu-
lated observation indices for different transmission
rates are shown in Table 4. According to the Figure
11(a) data for weekly fractions of new infected cases,
both curve peak and height were negatively affected by
decreased transmission rate. According to the Figure
11(b) data on the cumulative number of new infections
at different transmission rates, that number decreased
as transmission rate decreased. In Figure 11(c) we used
two observation indices to distinguish between the epi-
demic curve produced by the highest transmission rate
and the curves shown in Figure 11(a). According to the
first observation index (fraction of new infected cases at
epidemic curve peak), the strongest epidemic disease
transmission intensity affects a population and nega-
tively impacts public health resources over a period of
one week. The second index (epidemic curve peak week
number) indicates the severity and urgency of an epi-
demic, thus impacting deadlines for initiating public
health policies; higher values indicate more time for
making policy decisions.

The results from our comparisons of epidemic curve
peaks at different reduced transmission rates are shown
in Figure 11(c). The basic fraction of new infected cases
at curve peak (noted as 100%, with a transmission rate
of 1.0) is shown in the leftmost part of the graph. The
relative total number of cases (red line) consists of two
line segments, one from 1.0 to 0.5 and the other from
0.5 to 0.1. According to this result, transmission rate
should be reduced by at least 50% to obtain better peak
number suppression. An obvious decrease in peak
number occurs when the transmission rate reduction
is 70%.

Curve peak week numbers at different transmission
rates are shown in Figure 11(d). Note that week
number increased as transmission rate decreased – a
positive result for public health policy makers. The
results from simulations of various long- and short-
term intervention policy activation scenarios are
shown in Figures 11(f)–(h). No differences in numbers
of infected cases were observed for different interven-
tion policy activation times (Figures 11(f) and (g)).
However, epidemic peak was delayed from weeks 55
to 71 when intervention policy activation time was set
at 50 with a 70% reduction in transmission rate
(Figure 11(h)). Activation time exerted a much
weaker effect on peak timing at a 30% reduction in
transmission rate. According to these results, while
time of intervention policy activation did not signifi-
cantly reduce the number of infected cases, it
did exert an obvious effect in terms of delaying peak
time – a positive result for public health policy deter-
mination and preparation.
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Figure 12. Epidemic peak week numbers for urban and rural areas.
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Next, we compared differences in swine-origin H1N1
influenza A starting locations in Taiwan and their
effects on the subsequent spreading of the disease
(Figure 12, Tables 5 and 6). Taipei was labeled a
high-density area and Taichung a low-density area. In
the first (pre-swine-origin virus) scenario, case numbers
peaked much earlier in Taipei (20) than in Taichung
(61). When the transmission rate was reduced to
30%, the Taichung peak was significantly delayed.
When comparing numbers of infected cases at the
curve peak, both locations had approximately the

same number of new cases, but Taipei had a much
larger number of total cases. After reducing the trans-
mission rate from 50% to 30%, Taichung had a much
later peak week compared to Taipei, with no effect of
intervention policy activation time on the total number
of cases or newly infected cases in either location. The
results suggest that less densely populated starting loca-
tions are more sensitive to intervention policy activa-
tion time – that is, the combination of early activation
time and low transmission rate significantly delays epi-
demic curve peaks in less densely populated locations.

Table 5. Observation index values according to different policy activation scenarios during swine-origin H1N1 influenza A outbreak

in Taipei

Policy activation time Observation index

Transmission rate reduction

0% 30% 50% 70% 90%

Scenario #1

Pre-virus appearance

Total cases 1,784,044 1,407,752 1,108,520 485,761 8

New infected cases at epidemic curve peak 171,329 113,898 64,926 12,231 8

Week number of epidemic curve peak 20 26 36 77 0

Percentage of new infected cases at

epidemic curve peak

9.60% 6.38% 3.64% 0.69% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
100% 78.90% 62.14% 27.23% 0.00%

Scenario #2

After 50 cases are

diagnosed

Total cases Same as above 1,409,827 1,108,794 487,425 855

New infected cases at epidemic curve peak 114,120 65,235 12,468 155

Week number of epidemic curve peak 24 30 51 7

Percentage of new infected cases at

epidemic curve peak

6.40% 3.66% 0.70% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.02% 62.15% 27.32% 0.05%

Scenario #3

After 100 cases are

diagnosed

Total cases Same as above 1,410,263 1,108,993 488,900 1,991

New infected cases at epidemic curve peak 113,532 65,314 12,604 349

Week number of epidemic curve peak 24 29 47 8

Percentage of new infected cases at

epidemic curve peak

6.36% 3.66% 0.71% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.05% 62.16% 27.40% 0.11%

Scenario #4

After 200 cases are

diagnosed

Total cases Same as above 1,410,782 1,109,355 491,563 4,599

New infected cases at epidemic curve peak 114,191 65,442 12,883 818

Week number of epidemic curve peak 23 28 42 9

Percentage of new infected cases

at epidemic curve peak

6.40% 3.67% 0.72% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.08% 62.18% 27.55% 0.26%

Scenario #5

After 400 cases are

diagnosed

Total cases Same as above 1,411,273 1,109,893 496,246 10,000

New infected cases at epidemic curve peak 114,185 65,669 13,408 1,680

Week number of epidemic curve peak 23 27 38 10

Percentage of new infected cases at

epidemic curve peak

6.40% 3.68% 0.75% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
79.11% 62.21% 27.82% 0.56%
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4. Conclusion

Our goal in this paper was to integrate complex human
travel networks into a standard SLIR disease transmis-
sion model to create a four-layer simulation prototype
named the MEDSim. The framework is offered to
researchers interested in determining the contributions
of complex human contact structures to the transmis-
sion dynamics of influenza viruses. Our proposed
model is capable of providing insights that reflect the

dynamic processes of epidemics according to various
intervention scenarios involving outbreak location,
intervention timing, and different policy suites. We
view this multilayer approach as both convenient and
effective for public health practitioners and administra-
tors responsible for initiating early responses to poten-
tial pandemics, and for assessing intervention strategies
in outbreak locations.

This study has several limitations, such as the lack of
confirmed numbers of H1N1 influenza A cases in

Table 6. Observation index values according to different policy activation scenarios during swine-origin H1N1 influenza A outbreak

in Taichung

Policy activation time Observation index

Transmission rate reduction

0% 30% 50% 70% 90%

Scenario #1

Before the swine-origin influenza

A (H1N1) virus emerges

Total cases 2,190,247 1,672,733 1,112,428 485,801 8

New infected cases at epidemic curve peak 172,083 114,556 64,551 12,186 8

Week number of epidemic curve peak 61 83 119 284 1

Percentage of new infected cases at

epidemic curve peak

7.86% 5.23% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
100% 76.37% 50.79% 22.18% 0.00%

Scenario #2

After 50 cumulative swine-origin

influenza A (H1N1) infected

cases are diagnosed

Total cases (see above) 1,672,266 1,117,265 487,030 767

New infected cases at epidemic curve peak 113,760 64,598 12,200 120

Week number of epidemic curve peak 73 93 180 28

Percentage of new infected cases at

epidemic curve peak

5.19% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.35% 51.01% 22.24% 0.04%

Scenario #3

After 100 cumulative swine-

origin influenza A (H1N1)

infected cases are diagnosed

Total cases (see above) 1,671,019 1,120,702 488,492 1,723

New infected cases at epidemic curve peak 113,672 64,430 12,194 273

Week number of epidemic curve peak 72 90 169 29

Percentage of new infected cases at

epidemic curve peak

5.19% 2.94% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.29% 51.17% 22.30% 0.08%

Scenario #4

After 200 cumulative swine-

origin influenza A (H1N1)

infected cases are diagnosed

Total cases (see above) 1,674,627 1,125,289 491,418 3,668

New infected cases at epidemic curve peak 113,592 64,556 12,198 520

Week number of epidemic curve peak 71 88 158 32

Percentage of new infected cases at

epidemic curve peak

5.19% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.46% 51.38% 22.44% 0.17%

Scenario #5

After 400 cumulative swine-

origin influenza A (H1N1)

infected cases are diagnosed

Total cases (see above) 1,677,338 1,132,127 49,486 7,424

New infected cases at epidemic curve peak 112,155 64,605 12,188 1057

Week number of epidemic curve peak 70 85 147 34

Percentage of new infected cases at

epidemic curve peak

5.12% 2.95% 0.56% 0%

Total cases of epidemic curve

Total cases of basic epidemic curve

� �
76.58% 51.69% 22.67% 0.34%
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Taiwan (at this time it is not a notifiable disease in this
country). The data used for parameterization reflect
severe and hospitalized cases, which we assume as
having the same proportions as non-severe cases per
time unit. Differences between actual and simulated
cases can be significantly reduced when using appropri-
ate parameter values in terms of investigation and
detection proportions. Secondly, since the SLIR model
is imprecise in terms of its Removed designation, we
could not address the number of H1N1-related deaths
in our discussion of peak time delay. In real-world sce-
narios involving pandemic diseases with high death
rates, peak time delays are very important for disease
prevention policy decisions. Thirdly, due to the limited
scope of this study, we did not gather and organize the
exceptionally large amounts of available data for all
areas represented by network nodes (e.g. workplaces,
houses, and schools) or network data for long-distance
transportation (e.g. highway, railway, or airline).
Instead, we used location and age for population group-
ing, based on their similarities in responses to epidemic-
related factors. Furthermore, we did not address other
individual attributes, such as income level or number of
social groups per individual, when determining trans-
mission rate, removed rate, or other parameters.

We believe our proposed MEDSim framework can
help public health organizations decide when to imple-
ment intervention strategies by simultaneously analyzing
multilayer interactions. To build on this positive begin-
ning, we plan to expand the multilayer framework to
make it suitable for other acute diseases, as well as to
make it responsive to complex human contact structures.
Although our focus in this pilot study was on a novel
influenza epidemic in Taiwan, the general multilayer
framework concepts can be transferred to other sites.
The SLIR model in layer 1 can be considered a general
model for all droplet-transmitted respiratory infections,
and the age group and commuting interactions in layers
2 and 3 can be disassembled to meet the requirements of
risk factors for other infectious diseases. Furthermore,
the network topology in layer 4 can be modified to meet
the needs of different scales of link-node structures as
noted in an earlier section. However, when transferring
the proposed multilayer framework to other sites, data
on the link-node network structures and transmission
parameters for the diseases being studied must be col-
lected, organized, and verified. One of our goals is to
establish a portable framework for this procedure. Our
plans also include extending the MEDSim for use as a
general-purpose disease modeling framework. For exam-
ple, we will work on adding long-distance transportation
networks to our model to determine the impacts of shut-
ting down railway or airline systems, and on modifying
different contact structures (e.g. mosquito–human) to
model vector-borne diseases, such as dengue fever and

malaria, as well as human–animal contact diseases, such
as rabies and Japanese encephalitis.
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