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Network-based Computational Epidemiology:

A Multilayer Framework Integrating Social Networks with
Epidemic Dynamics

Student: Yu-Shiuan Tsai Advisor : Dr. Chuen-Tsai Sun

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Network-based computational epidemiologists use computers and
either theoretical or actual network topologies to study the transmission
dynamics of human diseases and social trends. In this dissertation |
discuss the importance, ‘current status, advantages, and modeling
procedures of network-based computational epidemiology, specifically
presenting three original studies in detail. The first study is an
investigation of how resources and transmission costs influence diffusion
dynamics and tipping points in scale-free networks. An epidemic model
based on an analytic equation is proposed to explain the existence of
epidemic critical thresholds in scale-free networks. Study results suggest
the possibility of controlling the spread of epidemics in scale-free
networks by manipulating resources and costs associated with an
infection event. In the second study, a proposal for a multilayer
epidemiological framework that integrates realistic social networks,

called the Multilayer Epidemic Dynamics Simulator (MEDSIm), is



described from individual and national perspectives. Model flexibility

and generalizability are tested using outbreak locations and intervention
scenarios for the 2009 A/H1IN1 influenza epidemic in Taiwan. The results
coincide with the dynamic processes of epidemics under different
intervention scenarios, thus clarifying the effects of complex contact
structures on disease transmission dynamics. In the third study, the
potential benefits of epidemic simulations and instructions for building

network-based epidemic models by novices learning network-based
computational epidemiology approaches is investigated. The goal is to
help individuals with less advanced computing skills build

epidemiological models, determine appropriate simulation parameters,
and construct operational procedures. It is my hope that the studies
presented in this dissertation can assist in efforts by public health
organizations to correctly implement intervention strategies by using

simulations to analyze multilayer interactions.
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Chapter 1. Introduction

Network-based computational epidemiologists use computers and either
theoretical or realistic network topologies to study the reasons, conditions, and
transmission dynamics of human diseases and social trends. In this chapter | will
summarize several network-based computational epidemiological issues, and
introduce some of the details of both computational and network-based computational
epidemiology. After reviewing the history, current status, and importance of the

subject, | will give a general overview.of the dissertation.



1.1. Computational and Networ k-based

Computational Epidemiology

Epidemiologists study the distribution of individuals who are healthy or infected
during a contagious disease outbreak, as well as conditions and factors supporting the
spread of a disease (Lloyd & May, 2001). The two most common research approaches
are observation and experimentation. In the first, epidemic diseases are analyzed
using empirical data collected from clinical cases, epidemic monitoring surveys, and
other investigation tools to determine contagious patterns or disease properties. In the
second, subjects are randomly divided into two groups, members of one group are
treated with the experimental’ variable, and a comparison of the two groups
determines the positive, negative, or null effects of the variable.

Computational epidemiologists construct mathematical models and use
computing techniques to obtain epidemic results. Researchers validate results by
comparing them with observable empirical data, or use their results to explain
experimental variable characteristics. The most commonly used mathematical tool for
computational epidemiology studies is differential equations, in which individuals in a
population are divided into finite states representing different health statuses.

Relations among states are determined by differential equations using mathematical



symbols. A major advantage of a differential equation system is that the number of

each state can be easily computed; a disadvantage is that they are weak in terms of

describing social properties such as social distance.

To compensate for the lack of social properties, epidemiologists are

incorporating social networks into their mathematical models, reflecting the idea that

there is no distance between individuals with the same health status—that is, there are

no restrictions on any two individuals being in contact with each other. Social network

structures consist of nodes (objects) and links (social relations). For example, in a

friendship network, nodes represent individuals -and links represent whether or not

two nodes are friends. Due to its ability to represent social relations, network-based

computational epidemiology has grown in_popularity. However, since individual

characteristics and their corresponding integrated mathematical models are so

complex, powerful computers are required to solve equation systems. As the size and

detail of a social network increases, so does the need for increased computation time

and power.



1.2. Computational Epidemiology History

The first approaches used in computational epidemiology were based on
differential equation systems. One of the first contagious epidemiology models,
proposed by Kermack and McKendrick (1927), is known as the compartmental SIR
model. In this model, all individuals in a population are classifie@usseptible
(vulnerable to infection but not yet infectethfected (and capable of infecting others),
or Removed (recovered, dead, or otherwise not posing any further threat). Differential
equations mark the progress of each state. In the past 80 years, numerous
compartmental models have .been created and improved for research purposes (for
examples, see Bailey, 1950; Bartlett, 1956; Diekmann, Heesterbeek & Metz, 1990;
Hyman & Stanley, 1988; Rollett, 1945). - Major progress was made in the 1990s, with
the addition of other states and model revisions to emphasize cyclic characteristics
(Ahmed & Agiza, 1998; Anderson & May, 1991; Wang, 2006).

Describing epidemic dynamics using compartmental models based on
differential equation systems is an easy method for representing the time dimension,
but such approaches lack a spatial dimension. Individuals in the same compartment
are modeled as one group, implying that any two group members are directly

connected—a flawed concept, since it ignores a long list of potential real-world



differences among individuals. To overcome this flaw, Von Neumann (1966)

introduced his cellular automata model (which considers spatial differences and the

movement of individuals) to epidemic propagation research (Fuentes & Kuperman,

1999; Sirakoulis, Karafyllidis & Thanailakis, 2000). Other researchers focused on

integrating compartmental and cellular automata models to support epidemiological

models (Liu & Jin, 2005; Mikler, Venkatachalam & Abbas, 2005; White, del Rey &

Sanchez, 2007).

In addition to using the cellular automata model to consider spatial effects, social

network models are increasingly being used by mathematical epidemiologists. Watts

and Strogatz (1998) have proposed the concept of a “small-world” phenomenon to

explain why any two individuals in the world can be contacted via a small number of

connecting individuals. Barabasi ‘and Albert (1999) then proposed a “scale-free

network” algorithm to explain the phenomenon of “the rich becoming richer.” Unlike

theoretical random networks (Erdos & Renyi, 1960), social networks are much closer

to the real world situation, and hence can be used to depict individual contacts in

network-based epidemic model studies (BekBarabasi, 2002; Grais, Hugh Ellis &

Glass, 2003; Meyers, Newman, Martin & Schrag, 2003; Newman, 2002; Pourbohloul

et al., 2005; Parham & Ferguson, 2006; Handcock & Jones, 2006). Other researchers

have focused on the influences of social network structure on compartmental models



(Barthelemy, Barrat, Pastor-Satorras & Vespignani, 2004, 2005; Draief, 2006;

Pastor-Satorras & Vespignani, 2001b; Shirley & Rushton, 2005; Silva, Ferreira &

Martins, 2007; Wang, 2002; Yang et al., 2007; Zhou, Yan & Wang, 2005;).

Agent-based differential equation system approaches emphasize heterogeneity

and interactions among individuals. In these approaches, individuals are represented

as agents whose interactions can be modeled in the form of rules (Bogufia &

Pastor-Satorras, 2002; Huang, Sun, Hsieh & Lin, 2004). The advantage of such an

approach is that it supports simulations of the movement of individuals, which in turn

supports an understanding of epidemic contagion routes. Using this kind of approach,

Barrett et al. (2005) constructed a society of 1.6 million agents to simulate the daily

behaviors of individuals in" Portland, Oregon, and Epstein (2009) studied the 2009

influenza A (H1N1) epidemic by constructing a model containing 6.5 billion agents to

simulate international human contact and daily movement. Unlike compartmental

models that focus on the behaviors of whole populations, agent-based models focus

on individual behaviors.

A geometric structure has recently been integrated into epidemic models. Due to

the limitations of standard cellular automata, in this study geographical cellular

automata are used to simulate an environment (Liu, Xia, Yeh, Qiang & Jia, 2007; Zhou,

Sun & Xie, 1999). An actual geographic area can be defined as cells to study epidemic



dynamics in social and geometric transformations (Flache & Hegselmann, 2001,

Menard, 2008). Other kinds of cellular automata have been tied to epidemic

contagious behaviors via network-based compartmental models (Zhong, Huang &

Song, 2009). To visualize the dynamics of a regional epidemic, at least two research

teams have integrated a geometric information system (GIS) into a mathematical

epidemiological model (Xu, Zhang & Mendes, 2007; Zhou, 2008).



1.3. Current Status of Computational

Epidemiology

Epidemiologists are currently emphasizing temporal and spatial depictions of
infectious disease occurrences and pathogenic mechanisms. Regarding the temporal
aspect, researchers have focused on understanding spreading trends and dynamic
changes in infectious diseases. The most common approach is to construct analytically
systematic epidemiological models with differential equations, and then derive stable
solutions (Feng, Huang & Castillo-Chavez, 2005; Inaba, 2007; Langlais & Naulin,
2003; Li & Jin, 2005; Shim, Feng, Martcheva & Castillo-Chavez, 2006; Supriatna,
Soewono & Van Gils, 2008; Wang & Zhao, 2005). Populations can be broken down
into infection stages such &ssceptible, Latent, Infectious andRecovered, and changes
in subpopulations over time can be modeled using system dynamic differential
equations (Feng et al., 2005; Inaba, 2007; Langlais & Naulin, 2003; Li & Jin, 2005;
Shim et al., 2006; Supriatna et al., 2008; Wang & Zhao, 2005). Using suitable
parameter values (e.g., transmission rate, recovery rate), infectious dynamics and
transmission thresholds that become endemic above and vanish below those values can
be derived to acquire analytic solutions from equations (Huang, Tsai & Sun, 2009;

Huang, Tsai, Sun, Hsieh & Cheng, 2010; Pastor-Satorras & Vespignani, 2001, 2002;



Tsai, Sun & Huang, 2008). According to the different transmission capabilities of

epidemic diseases, basic reproduction numbers can be derived to estimate how many

individuals will be infected from the first infected individual (Hethcote, 2000; Keeling

& Grenfell, 2000).

Regarding the spatial aspect, researchers have focused on understanding the

distribution of infected individuals (which can be determined from medical case reports)

to help in monitoring and immunization efforts. Because of the advantages of computer

technology, GIS data on absolute distance and the properties of geographical regions

are now commonly applied in research (Rae, 2009; Wylie, Shah & Jolly, 2007). Many

researchers are also integrating GIS into epidemic disease monitoring and prevention

efforts (Edwards & Clarke, 2009; Jeger, Pautasso, Holdenrieder & Shaw, 2007; Mao &

Bian, 2010; Thakur & Sharma, 2009). By analyzing medical cases and collecting data

on environmental factors, geographic spatial distribution information can be

determined, and epidemic pathogenic mechanisms can be analyzed. For example, using

spatial clustering analysis, it is possible to analyze abnormal clusters that exceed an

expected number of infected cases, thus supporting efforts to understand the extent of

disease clustering relative to increases in disease vectors (Kan et al., 2008). Kan et al.

have used this approach to explain the smaller number of cases of dengue hemorrhagic

fever in Taiwan compared to Southeast Asian countries. However, it is important to



take advantage of both temporal and spatial aspects when analyzing infectious disease

propagation, therefore many researchers are trying to integrate both temporal and

spatial factors into their epidemiological models (Barrett, Eubank & Marathe, 2006;

Gonzalez, Hidalgo & Barabasi, 2008; Yang, Atkinson & Ettema, 2008).

10



1.4. Trendsin Social Network Integration in

Computational Epidemiology

The past decade has witnessed significant advancements in social network
research, ever since Watts and Strogatz (1998) first described small-world networks
characterized by highly clustered connections and short paths between node pairs.
Their work represents a fundamental change in our knowledge of human relationships,
which has influenced research avenues in a wide range of disciplines such as
epidemiology. (Diosan & Dumitrescu, 2007; ‘Montoya & Solé, 2002; Vazquez,
Flammini, Maritan & Vespignani, 2003).

Complex networks can be used to model real-world complexity. A complex
network is a structure containing numerous nodes and edges. Nodes can represent
objects such as individuals, locations, organisms, or World Wide Web pages.
Depending on node type, edges can represent relationships such as human friendships,
food chains for non-human organisms, or links between web pages. Several network
indexes have been developed to measure relationships (Boccaletti, Latora, Moreno,
Chavez & Hwang, 2006). For example, degree of clustering has been used to determine
why our friend’s friend is often also our friend, degree of separation has been used to

measure how small the world is in terms of weak links, and connectivity distribution

11



has been used to explain the existence of super flddaag, Tsai & Sun, 2010). Such

topological characteristics have also been used as epidemiological indexes to measure

the spreading speed of an epidemic disease (Edmunds, O'Callaghan & Nokes, 1997,

Estrada & Hatano, 2008; Hwang, Kim, Ramanathan & Zhang, 2008).

Infectious diseases spread through individual contact, and many epidemiologists

are using social networks to model individual contact behavior. Social networks, one

type of complex network that is also considered a social structure model, emphasize

individual heterogeneity, individual interaction, and network topological structure

(Boguia & Pastor-Satorras,«2002; Huang et al., 2004). They are often used to model

populations, with nodes representing individuals andlinks representing contacts. Social

network topological structures have been used in‘many epidemic studies over the past

decade. Based on human epidemic disease or computer virus features, different social

network structures have been proposed to analyze epidemic spreading dynamics and

transmission rate thresholds (see, for example, Huang, Sun, Hsieh, Chen & Lin, 2005;

Langlais & Naulin, 2003; May & Lloyd, 2001; Pastor-Satorras & Vespignani, 2001b).

In addition, traffic networks such as daily commuting routes have been used to analyze

the spread of diseases via human transportation networks (Barrett et al., 2005, 2006).

Social network studies comparing the efficiencies of various public health policies have

been conducted by Huang et al. (2004), Huang, Sun & Lin (2005), and Pastor-Satorras

12



and Vespignani (2001b, 2002).

New epidemiological models integraspatial and social network factors. The

most commonly used approach adds various network topologies (e.g., small-world

network, scale-free network) to determine different epidemic spatial distributions

(Huang et al., 2004; Pastor-Satorras & Vespignani, 2001b, 2002). After building social

network models, parameters such as initial infected agent, and epidemic attributes such

as transmission and recovery rates, are manipulated to calculate disease propagation

within the defined network (Huang et al., 2004; Wang & Ruan, 2004). According to

epidemic properties, different simulation scenarios (e.g., network topologies, contact

patterns, agent attributes 'such as age or gender) can be studied using simulations in

order to develop effective public health policies. For example, HIV research entails

looking at how heterosexual sexual contact, homosexual sexual contact, or illegal drug

use affects virus transmission and propagation in a social network (Morris, 1997;

Sumodhee, Hsieh, Sun, Huang & Chen, 2005).

13



1.5. Advantages of Networ k-based

Computational Epidemiology

Understanding the spreading dynamics of infectious diseases and the spatial
distribution of infected individuals is the primary concern of agencies involved in
infectious disease control and prevention (Hethcote, 2000; Moore & Newman, 2000;
Pastor-Satorras & Vespignani, 2002). Efforts to understand social network
associations among geographical characteristics such as coordinates, population size,
and census data represent‘a current trend.in computation epidemiology. The
advantages of understanding these associations are as follows:

1. Epidemic disease properties such as the transmission capability of a virus and
recovery days among individuals are connected to geographical location (Barrett et al.,
2005; Larsen, Axhausen & Urry, 2006). For example, the transmission capability of
influenza in urban areas is greater than in rural areas because of population density
differences, therefore when setting epidemic parameters, transmission rate should be
higher in urban areas. Network integration into compartmental models can be used to
represent individual heterogeneity. Associating social networks with geographical
characteristics has the advantage of accurately describing the topology of individual

social relations in the real world (Barrett et al., 2005; Davis, Yoo & Baker, 2003).

14



2. Public transportation systems such as aircraft, subways, commuter trains, and

buses support the spreading of a virus (Colizza, Barrat, Barthélemy & Vespignani,

2006; Grais et al., 2003; Kaza, Xu, Marshall & Chen, 2009). Modern public

transportation systems make it easy to move between distant locations, and pathogens

can be carried long distance within a matter of hours or days. In 2009, the

swine-origin HIN1 virus emerged in Mexico and rapidly spread throughout South

America, Europe, and Asia within a few weeks; by mid-November of that year, 6,770

deaths were reported in 206 geographic locations (Smith et al.,, 2009). This

underscores the importance of considering such factors as the location of public

transportation systems in epidemiological studies.

3. During a contagious disease outbreak, medical officials and/or public health

experts must consider balances among many factors when determining how to best

use medical resources and enact prevention policies (Riley et al., 2003; Molinari et al.,

2007). In addition, differences in resources and population densities among

administrative and geographical divisions must be considered (Sypsa, Pavlopoulou &

Hatzakis, 2009; Wylie et al., 2007). From the perspective of medical system utility, a

suitable mix of intervention policies is required to efficiently control a disease

outbreak according to limitations of medical resources (Tsai & Huang, 2010; Huang

et al., 2010). In addition, time of maximum number of infected individuals in each
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division must be considered when planning the timing of interventions across

administrative divisions.

4. GIS is a suitable tool for graphically representing epidemics. By using

visualization tools, large bodies of complex data can be analyzed spatially. Based on

experience with newly emerging viruses such as SARS, avian influenza (H5N1), and

swine-adapted influenza (H1N1), public health officials must deal with the potential

of one such virus becoming pandemic (Fraser et al., 2009; Kuiken, Rimmelzwaan, Van

Amerongen & Osterhaus, 2003; Tomlinson & Cockram, 2003). However, traditional

epidemic models cannot adequately. work ‘with geographic information due to

limitations associated with equation size, therefore geographic network-based

computation epidemiology ‘with GIS has value in.terms of studying virus spreading

trends.
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1.6. Dissertation Overview

The rest of this dissertation is organized as follows: in Chapter 2 | will present a
brief overview of a preliminary study involving network-based computational
epidemiology, especially a network topology proposal from an original study
conducted by Huang, Tsai and Sun (2010).

In Chapter 3 | will present details from an original research project conducted by
Huang et al. (2010), Tsai & Huang (2010), and Tsai, Sun & Huang (2010) that used
network-based computational® epidemiology-with a theoretically complex network
topology. Based on considerations of resource limitations and transmission costs, |
will propose an epidemic_model that uses: analytic equations to identify critical
epidemic thresholds in scale-free networks.

In Chapter 4 | will discuss the details of an original research project by Tsai et al.
(2010) to integrate realistic social networks with standard epidemiological models,
and then describe a multilayer epidemiological framework—Multilayer Epidemic
Dynamics Simulator, or MEDSim—from national and individual perspectives. The
framework was used to compute outbreak locations and intervention scenarios for the
2009 A/HIN1 influenza epidemic as a means of testing model flexibility and

generalizability.
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In Chapter 5 I will present details of an original research project on the potential
benefits of epidemic simulations, and describe the building of a network-based
epidemic model for epidemiology students with little computing experience who are
interested in studying computational epidemiology and public health education (Hsieh,
Huang, Sun & Tsai, 2009; Huang, Tsai & Wen, 2010a, 2010b). In Chapter 6 | will

summarize my conclusions and give suggestions for future research.

18



Chapter 2. Preliminaries

In this chapter, | will first introduce the most commonly used epidemiological
models for network-based computational epidemiological studies, and then briefly

explain network-based epidemiology and several social network structures.
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2.1. Epidemiological Approaches Overview

The two most commonly used approaches to modeling epidemic spreading
dynamics ar@opulation-based andnetwork-oriented. In population-based approaches,
hosts that share the same symptoms are modeled or grouped in terms of a limited
numbers ofclasses (also known agompartments); the main task of researchers is to
study and compare their various dynamics (Feng et al., 2005; Inaba, 2007; Langlais &
Naulin, 2003; Shim et al., 2006; Supriatna et al., 2008; Wang & Zhao, 2005).
Combinations of classes are ‘used to model and analyze population dynamics. For
example, the SLIR model.. puts individuals “into one of four infection
statuses-Susceptible, Latent, Infectious; or Recovered (Li & Jin, 2005)—and
differential equations are used to'determine transitions between epidemiological phases.
Depending on whether removed individuals can become susceptible a second time,
diseases can be modeled as SLIR or SLIRS cycles.

Population-based and network-oriented approaches respectively emphasize
large-scale population-level and individual-level perspectives. Population-based
approaches are suitable for discussing dynamic variation across individuals in the same
compartment, but they are weak in terms of modeling individual heterogeneity and

addressing human travel networks (Barrett et al., 2005; Huang et al., 2004). Since
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individuals are modeled as groups, any two members of the same group are assumed as

having a direct connection, which is not true in the real world. Furthermore, individual

movement and activity are location-dependent, therefore phenomena cannot be

simulated by a population-based approach that assumes a homogeneous population

distribution. In contrast, network-oriented approaches may be appropriate for

introducing individual heterogeneity, but they are computation-intensive and

time-consuming when simulating the behaviors of individuals with multiple attributes

in large-scale social environments (Barrett et al., 2005; Epstein, 2009). Many efforts

have been made to match individual and population behaviors with heterogeneity and

computation requirements when studying epidemic dynamics (Davis et al., 2003; Levin

& Durrett, 1996; Sawyer, 2003).

In contrast, network-oriented ‘approaches emphasize individual heterogeneity,

interactions among individuals, and network structure (Boguia & Pastor-Satorras,

2002; Huang et al., 2004). Individuals in a network are represented as nodes, and

interactions between them as links. Network nodes can be used to represent the

characteristics of individuals, locations, neighborhoods, or cities, and models can

incorporate the temporal dynamics of these features. Time frames for links between two

nodes can be preferentially defined (Ortiz-Pelaez, Pfeiffer, Soares-Magalhdes &

Guitian, 2006)—an approach commonly used to represent group structures for
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individuals exhibiting interaction or relationship patterns (Barabasi & Albert, 1999;

Erdos & Renyi, 1960; Newman, 2003; Watts & Strogatz, 1998). Network-oriented

approaches are suitable for capturing complex contact patterns among individuals,

exploring epidemic dynamics, and assessing the efficacies of public health policies

(Pastor-Satorras & Vespignani, 2001b, 2002; Huang et al.,, 2004, 2005). Lattice

networks have been used to determine distance relationships between individuals. In

contrast, random networks support features associated with casual contacts among

mobile individuals and the low degree of separation commonly observed in social

networks (Barrett et al., 2005). These approaches are viewed as reliable for

investigating epidemics, with the transmission dynamics of specific network models

being manipulated to investigate the spread of emerging infectious diseases (Liu, Lai &

Ye, 2003; May & Lloyd, 2001). The topological features of social networks have

recently been found to exert considerable influence on the transmission dynamics and

critical thresholds of infectious diseases, thus supporting subtle analyses that

network-oriented models are incapable of (Draief, Ganesh & Massouli€, 2008; Huang

et al., 2005; Langlais & Naulin, 2003; Pastor-Satorras & Vespignani, 2001b).
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2.2. Compartmental Models

In standard epidemiological models, all individuals (nodes) in a population
(complex network) can be roughly classified into a limited number of states, including
Susceptible, Infected and Removed, as defined in Chapter 1. Epidemiologists use
combinations of these states to represent orders of transition between different
epidemiological phases, giving names such as “SIR” and “SIS” to their models. The
most commonly used model is the SIBiqceptible- | nfected- R ecove) (Figure 2.1),

which can be formulated using ordinary differential equations as follows:

as

L - _psi

dt d

dl

— = BSI -al
dt d
@:a’[

dt

[, a constant transmission rate, represents the speed atSukgeptible individuals

become infected, andr is a constant recovery rate used to determine transformation

speed from Infected to Recovered.

S |

Figure 2.1. Flowchart of the SIR epidemiologic model.
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When simulating epidemic. dynamics .in complex networks, epidemiologists

usually assume that nodes run stochastically through an SIS cycle, which does not take

into account the possibility of an individual's removal due to death or acquired

immunization. The SIS model has been widely adopted to study contagious diseases

leading to endemic states with a stationary average density of infected individuals. It is

worth noting that for many contagious diseases, analyses derived from the SIS model

can be readily extended to the SIR and SIRS models (Pastor-Satorras & Vespignani,

2002). During each time step, each susceptible node is subject tprabability

contagion rate if it is connected to one or more infected nodes. Infected nodes recover at

a probability rated, and once again become susceptible. An effective spreading rate
24



A is defined asd =v/J . Recovery rated can be assigned a value of 1, since it only
affects the definition of the time scale of contagious disease propagation
(Pastor-Satorras & Vespignani, 2003). Pastor-Satorras and Vespignani (2002) define
p(t) as the density of infected nodes at time stepVhen time step becomes
infinitely large, p can be represented as a steady-state density of infected nodes.
Using these definitions, they applied mean-field theory to a SIS epidemiological model,
and used Anderson and May'’s (198djnogeneous mixing hypothesis according to the
topological features of homogeneous networks to obtain (a) a steady-state gensity

of infected nodes during long time periods (EQ. 2:1), and (b) the critical thredpold

(Eq. 2.2):
0 < ,
P=1Ah yui (2.1)
A
1
A== (2.2)

where (k) = Zkkpk is the average vertex degree of the network, gpdhe fraction

of nodes that have vertex degrkein the network. According to Egs. 2.1 and 2.2, a
positive and nonzero critical thresholtl exists in a homogeneous network based on
the SIS epidemiological model. The contagion spreads and becomes epidemic if the
effective spreading rate exceeds the critical threshbiel ); otherwise, the contagion

dies out. As shown in Figure 2.3, the SIS epidemiological model separates an infected

state from a healthy state at critical threshd|d In summary, the primary prediction of
25



an SIS epidemiological model in a homogeneous network is the presence of a positive

critical threshold, proportional to the inverse of the average number of neighbors of

each node, below which epidemics die and endemic states are impossible.

50% -

o 40% - /’//

g Healthy state 7

g 30% /

/

:;20% /

§ 10% | // Infected state

00/0 . T / T T T 1
0 0.1 1 0.2 0.3 0.4 0.5

Ac Spreading Rate A

Figure 2.3. Phase transition diagram for epidemic simulations in homogeneous networks.
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2.3. Social Network Modelsand
Networ k-based Epidemiology

Complex networks are commonly used to represent structures for groups of
individuals who exhibit interaction or relationship patterns (Barabasi & Albert, 1999;
Erdos & Renyi, 1960; Newman, 2003; Watts, 2003; Watts & Strogatz, 1998). As
shown in Figure 2.4 and Table 2.1, complex networks can be categorized as small
world, scale-free, or random according to basic statistical properties such as local
clustering, the small world phenomenon, or power-law connectivity distribution. They
are popular among researchers who construct. computational simulations of virtual
societies, contagious diseases, Internet viruses, and the spread of cultural beliefs and

influences—all of which are affected by transmission routes.

(a) Small-World Network (SWN)  (b) Scale-Free Network (SFN) (¢) Random Network (RN)

Figure 2.4. Three types of complex networks.
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Table 2.1. Two Complex Networks Categories

Network Clustering  Degreeof  Connectivity
CRIEER Type ezl Coefficient  Separation  Distribution
Homogeneous Small-world Watts and Strogatz high low Normal
networks Random Erdds and Renyi very low low Normal
Heter ogeneous Scale-free Barabasi and Albert very low low Power-law
networ k

Generating a Watts and Strogatz (1998) small-world network begins with an

n-dimension ordered network with periodic boundary conditions, in which each node is

connected to az quantity of neighbors, usuallg>2n (Figure 2.5a) (Watts &

Strogatz, 1998; Newman, 2003). Each link is randomly rewired to a new node with

probability p (Figure 2.5b). Under adverse circumstances, this construction method

can break the original ordered network into-several isolated subgraphs (Figure 2.5d).

Newman and Watts (1999). introduced a variation of the original construction method

that emphasizes the insertion of long-range shortcuts instead of rewiring links. In their

version, two previously unconnected-nodes are randomly selected and connected via a

newly added link, with users determining the number of links to be added (Figure 2.5c).

Newman and Watts’ small-world network thus avoids the problem of network breakage,

while preserving the positive characteristic of connecting each node in an

n-dimensional ordered network wittn neighboring nodes. Since both the original

and new versions (Newman, 2003) exhibit small world and local clustering properties,

they are considered similar to human daily contact networks.
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Figure 2.5. (a) One-dimensional ordered network with each node connected to
four adjacent nodes. (b) Watts and Strogatz’s (Duncan J. Watts & Strogatz, 1998)
small world network with four rewired shortcuts. (c) Newman and Watts’ (M. E.
J. Newman & D. J. Watts, 1999) improved small world network with five
additional shortcuts. (d) Example of a broken network in Watts and Strogatz’s

(Duncan J. Watts & Strogatz, 1998) small world network.

Generating a Barabasi and Albert (1999) scale-free network begins with a small
number of nodes designated s (Newman, 2003). During each iteration, a new node
is introduced and connected @< z, pre-existing nodes according to a probability
based on each node’s vertex degree. New nodes are preferentially attached to existing
nodes that have large numbers of connections. This type of network exhibits
small-world and power-law connectivity distribution properties, implying the existence
of a small number of nodes with very large vertex degrees—similar to World Wide Web
hyperlinks and human sexual contact webs.

Erdés and Renyi's (1960; Newman, 2003) random networks are generated by

adding links between pairs of randomly chosen nodes with certain probabilities. They
29



are capable of exhibiting small-world properties if sufficient numbers of links are added,

but with little or no local clustering—an unusual situation in the real world.

Huang, Tsai and Sun (2010) used three rules to generate friend-making

networks—friend making, joining and leaving, and friendship updates—until each

network reached a statistically stationary state. Taking a bottom-up, network-oriented

simulation approach to modeling reflects the evolutionary mechanism of real-world

social networks. They built on insights from previous studies (e.g., Davidsen, Ebel &

Bornholdt, 2002) to apply local and interactive rules to acquaintance network

evolution. Findings from this approach can be used to explore human activity in

specific social networks—for example, rumor propagation and disease outbreaks

(Figure 2.6).
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Figure 2.6. Comparison of node degree distributions and network

structures between Davidsen et al.’s two-rule model (a and b) and our proposed

three-rule model (c and d).

Communities, cities, and countries—even the entire planet—can be defined in

terms of complex networks consisting of large-scale nodes and links. Each node
31



represents one individual with status-determining attributes (often referred to as
node-related local information) such as epidemiological progress, contagiousness, and
immunization (Huang et al., 2005; Xu et al., 2007). Connections between individuals
are referred to as links, with different links representing different interpersonal
relationships (Pastor-Satorras & Vespignani, 2001b). In HIV/AIDS epidemic
simulations they represent sexual relationships, and in SARS epidemic simulations
they represent close physical proximity (Huang et al., 2004, 2005). The states of all
network nodes change simultaneously during each time step. The state of an individual
node is determined by its @ariginal state,-its linked neighbor’s state, and a set of
interaction rules.

Past epidemiological research has focused on the transmission dynamics and
spreading situations of biologically contagious diseases. A growing number of research
efforts are focusing on non-biological and intangible concepts such as computer viruses,
cultural influences, rumors, ideas, and beliefs that exist in social networks and on the
Internet. In these kinds of spreading scenarios, cultural influences move ideas and
beliefs between transmitters and receivers, eventually making the majority of receivers
behave in the same manner as transmitters (Huang et al., 2005; Lynch, 1996; Rogers,
2003). Researchers have recently looked at epidemic dynamics and critical thresholds
in homogeneous networks (e.g., Erdds and Renyi’s random and Watts and Strogatz’s
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small-world) and heterogeneous networks (e.g., Barabasi and Albert’s scale-free).
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Chapter 3. Analysisof Epidemiological
Transmission in Theoretical Complex

Networks

Avian influenza, a flu that originally spread only among birds but is now found
among birds and humans, is a likely candidate to become an epidemic or pandemic
disease. Another epidemic, the 1918 influenza outbreak in North America, is one of the
most studied by epidemiologists. Nine decades later, Watts (1998) described his
proposed small-world property in complex networks, which has strongly influenced
research involving human networks. Later, Pastor-Satorras and Vespignani (2001a)
combined epidemic dynamics and complex networks to propose an epidemic model
indicating that according to a scale-free network created by Barabasi and Albert (1999),
an epidemic threshold tends toward 0 as long as the network is sufficiently large. Based
on their model (which | will refer to as the P-V model in this dissertation), Huang and
Tsai proposed a modified model containregpurce limitations andtransmission costs
for analyzing epidemic thresholds (Huang et al., 2010; Tsai and Huang, 2010). We
used computer simulations to verify the model, as well as to show its practical
applications.
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3.1. Motivation

Researchers who take network-oriented approaches to analyzing contagious
disease diffusion processes note that the topological features of social networks exert
considerable influence on transmission dynamics and spreading situations associated
with epidemics (Newman, 2003; Newman & Watts, 1999). Unlike non-network
approaches, they support subtle analyses of epidemic dynamics (Pastor-Satorras &
Vespignani, 2001a, 2001b, 2002, 2003; Huang et al., 2004, 2005). Researchers of
epidemic dynamics and critical thresholds in'scale-free networks consistently conclude
that regardless of transmission capability, all ‘contagious diseases have high
probabilities of stable spreading and survivalin scale-free netWxkst al., 2007).

According to Pastor-Satorras and Vespignani (2001b), a positive critical
transmission threshold does not exist for the spreading of contagious diseases in
scale-free social networks. In other words, even contagious diseases with tiny
transmission capabilities survive in such networks. Pastor-Satorras and Vespignani’'s
proposed spreading dynamic is expressed as follows:

9O - g, )+ 21 p. 0]l .0} -

where p, (t) is the density of infected nodes wikhconnections,A a constant

infection rate, and@[{pk(t)}] the probability that any given individual will become
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linked to an infected individual, witl@ assumed to be a function of the partial
densities of infected individual{s,ok(t)} . Eq. (3.1) states that during each time step,
infected individuals who have connections will recover, yet continue to infect other
individuals according to four parameters: infection rate, connectivity, number of
healthy individuals, and probabilit;H[{,ok(t)}]. Pastor-Satorras and \Vespignani

defined p, as the steady state g, (t), and observed thap, is a function ofA in

a steady state, therefore is a function of A, such thatg(A) :iz kP(k) o, , with
k

(k)
P(k) representing connectivity distribution. Furthermore, when considering the
stationary condition dp,(t)/dt=0 within. a ‘scale-free network in which
P(k) =2m*k~® with minimum degree m, the critical-epidemic threshd|dhas the
property A, :<k>/<k2> - 0 ask - o, Accordingly, for infinite size networks, either
no epidemic threshold exists, or the threshold approaches 0.

New contagious diseases are constantly emerging in different parts of the world,
but very few reach epidemic proportions or even survive in social networks; the
majority of diseases die almost immediately following their appearance. This
observation serves as our motivation to take a more detailed look at limitations in
transmission and interaction processes rather than the topological features of social
networks—the focus of many epidemiological studies published in the past decade.

Two important factors associated with face-to-face interactions and daily contacts have
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been understudiedesource limitations andtransmission costs. The termresource in

this situation is defined as what is consumed by individuals during the spreading

process of a contagious disease. There are five properties associated with resources: (a)

they can be visible (e.g., seminal fluid, physical power) or invisible (e.g., time, energy);

(b) individual resources are finite and can be temporarily exhausted; (c) the use of one

type of resource entails the consumption of smaller quantities of other types of

resources, thereby reducing the total available resource amount; (d) individual

resources can recover or regenerate after a period of time; and (e) they are

non-reproducible. Contagious carriers . who apply resources to specific recipients

cannot reuse the same resources on other recipients; conversely, recipients cannot reuse

resources spent on individual carriers. We ‘acknowledge the importance of

Pastor-Satorras and Vespignani's (2001a) work on the topological power-law features

of scale-free social networks, especially since their ideas have inspired numerous

studies on critical thresholds and immunization strategies. However, such assumptions

may be unrealistic and inaccurate when applied to biologically contagious diseases

spread via face-to-face interactions and daily contacts. A closer inspection of their

mathematical analyses and numerical simulations reveal what we believe to be

incorrect assumptions that daily interaction processes are cost-free, and that the impacts

of resource limitations and transmission costs are minimal.
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3.2. A Contagious Epidemiological Model
under Resource Limitationsand

Transmission Cost Considerations

Our mathematical model is based on the epidemic simulation model shown in Eq.
(3.1) as proposed by Pastor-Satorras and Vespignani (2001b). However, this model
neglects individual access to energy, time, and other finite resources. Therefore, we
propose a model under different infection rate-to-link degree assumptions.

To incorporate individual access to energy, time, and other finite resources, we
modified the model to consider resource limitations and transmission costs using two
different approaches, as shown in Eqg. (3.2).

%:—pk(t)+/]sk[l—pk ®)]6[{ o ©} ], wheres, = ming k) (3.2
According to the termS, (with R representing average resources and
transmission costs), the spreading of each infection is proportional to the minimum

value of each active node’s available resourB&y @nd number of links.

Using the mean field method, we let the stationary conditgn(t)/dt=0,

obtaining

__AS06(4)

< 1+1S6() (3.3)

where p, is the steady state op, (t). Substitutingd(A) in Eq. (3.3), we get
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1 AS 6
=—)> kP(k
(k)zk: Wi ise (3.4)
Note that the right side of Eqg. (3.4) is concave at ab®ufi.e., the second

derivative is no larger than zero), and tiéat O is considered a trivial solution. Since

it is possible for @ to have a non-singular solution, we derived the inequality

df1 1S

d9(<k> ;kp(k)lmskej 3 (3.5)
Differentiating Eq. (3.5) and substituting O fér we get

iz kP(k)AS =1 orA <L

(k)4 TS RPK)S, (36)

Accordingly, critical threshold/, is defined as the maximal , resulting in

W
TN KPS (3.7)

Since S, =min(R/c,k), the denominator.can be divided into two parts, obtaining

Kk
Y B
> KP(K) + > —kP(K) (3.8)
<R R ©
According to the first term in the Eg. (3.8) denominakois smaller tharR/c,
therefore substituting/c for k makes the first term larger. Similarly, according to the

second term, the summation is smaller than the entire scépthefefore substituting

k for the entire scope also makes the second term larger. Thus,
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Az _ (k)
Z(Sj P(k)+z|§kP(k) (3.9)

ks%
Using the same method, another substitution on the left side of the Eq. (3.9)

denominator results in
PIFS |
R R
z(j P(k)+ > —kP(k)
C — C

k

(3.10)

Since D P(k) =1, we arrive at
k

Az— =R
BENE
c) ¢ c) |, R (3.11)

and observe that a&) — « =4, is at minimum equal t%.

o L
~ L
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Figure 3.1. Critical Thresholdl, is a function of the ratio of transmission costs to
individual resourcesd/ R) in scale-free networks. We used it to analyze results from
our simulation experiments and three mathematical analyses.

As shown in Figure 3.1, the mathematical results are consistent with the
simulation result. The results indicate that when resources and transmission costs are
taken into consideration, a significant critical threshold (above which a contagious
disease exceeds control and becomes epidemic, and below which a contagious disease
disappears) exists when a contagion event occurs in a scale-free network—in short, a
non-zero critical threshold exists in scale-free networks. Our results also indicate that
the appearance of a critical threshold is tied to a ratio of transmission costs to available
resources. In summary, the lower boundAf becomes larger whether transmission
cost c increases or the average resource R decreases. Accordingly, an individual’'s
available resources expand wheR is large, thereby decreasing that individual's
ability to contact almost all other personal network nodes. Sihiceepresents the
threshold at which a contagious disease exceeds control and become epidemic,
managing the value ofl. is the primary concern of epidemiologists and public health
officials. The result supports what we know about immunization: appropriately
restricting one’s resources increases the critical threshold. Neglecting one’s resources
makesR infinitely large, meaning we can treat those resources as inexhaustible, and

41



that the critical thresholdl, will approach 0 as long as the size of the average number
of links is large enough. The model thus becomes identical to Pastor-Satorras and
Vespignani’'s model (Eg. 3.1), in which a disease has the potential to become epidemic

even when the number of infected nodes is very small.
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3.3. Epidemic Effect of Limited

Resources/Transmission Cost Ratio

One scenario to which Eq. (3.11) can be applied is a network attack spread via the
Internet—an example of a scale-free network (Barabasi et al., 2002). Although
spreading time is short, affected areas can be very large, with disastrous results in terms
of lost data, work time, and money. One suggested strategy for controlling computer
network attacks is placing restrictions on downloads from web services (e.g., a
maximum of one gigabyte per day)—in otherwords, a time resource limitation to raise
the outbreak critical threshold... Another potential strategy is charging downloading
fees—that is, raising transmission costs-to increase outbreak critical thresholds. The
algorithm Barabasi and Albert (1999) introduced to build their model (which | will
refer to as the BA model in this dissertation) is based on a concept common to networks
such as the Internet, the World Wide Web, and social networks—that is, for each node
there is a large probability of connecting to other nodes that are already linked to still
other nodes. According to the algorithm, we take disconnected nodes, steadily add

new nodes, and connect the new nodes to existingodes at a probability of

Pk)= Zi?—k where k is the degree of thieth node. The algorithm stops and a graph
j
j

is created when the number of nodes reabhés this model it is easy to see that nodes
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already having large numbers of links will gain even more—for instance, already
popular web pages have high probabilities of becoming even more popular.

We applied this logic to the BA model using a connectivity distribution of
P(k)=2m’k™ , and an expected number of connecting degrees of

(k} = I ) kP(k)dk = 2m. Note that the probability of infected nodes can be expressed as

m

=ijmk2m2k‘3ﬂdk
2mJm 1+1S6

Whenk is smaller tharr/c, thenk can be used as a substitute &, otherwise,

R/c can serve as the substitute. As a result,

R1 1 mR A0 =1
G=miffc= dk + —dk
m k 1+Ak8 Jff k> (3.12)

C 1+4R¢
¢

Eliminating @ from both sides and reducing Eqg- (3.12) produces

—+ A0

1=m |an + m/‘R (3.13)
—+A8 1+A1-—-6
R C

Next, the expected density of infected nodes is givenpbryz P(k)p, . By
k

substituting P(k) = 2m’k ™ and g, into this equation, we get

o . 5 AS8
= ["2mk222C gk
p=| 1+150 (3.14)

Similarly, by dividing Eq. (3.14) and integrating we obtain

M mg

c m’c A8
p=2mPA%02 IR 2= nPig+ 2mie+— (3.15)
1+im9 R R 1+5w

Substituting Eq. (3.13) into Eqg. (3.15),
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C

mid+m— me
0=2m18 TZR —0-"T 41 (3.16)
1+—- A0 R
c
g+°C_1
Note that wheneven si, the term within the braces of Eg. (3.16) is

R
E@(l—@)

smaller than O, therefore so gs In other words, the numerator is a criterion for a

threshold to occur; if larger, thresholl will be far from 0. We found that Eq. (3.17) is

the upper bound of that epidemiological threshold:

R m
—<

c 21-6)

(3.17)

Note that wherR/c is smaller thanm/[2x (1<8)|, the density ofp infected

nodes in the stationary state cannot be larger than 0. The distance of the critical

threshold from 0 is decided by each node’s available resources. Furthermore, when the

infection probability 8 or the minimum degree of each nadés fixed, the smalleR/c

makes the difference between the two sides of Eq. (3.17) larger, and moves the critical

threshold even further from 0. On the other han/dis fixed, the higher the infection

probability & or the lower the minimum of each degree, the higher the network’s

critical threshold. In other words, the critical threshold is simply determined by

differences among available resourcB&, minimum degreem, and infection

probability 8. The spreading of a disease in a BA network can be controlled by

efficiently managing these differences.
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Chapter 4. Effectsof Individual
Diversity on Epidemic Modeling in
Realistic Social Networ ks

In this chapter | will describe an innovative simulation framework that combines
daily commuting network data with a commonly used population-based transmission
model to assess the impacts of various interventions on epidemic dynamics in Taiwan.
Called the Multilayer Epidemic Dynamics Simulator (MEDSIim), the proposed
framework has four contact structures: within age group, between age groups, daily
commute, and nationwide ‘interaction. To test model flexibility and generalizability,
outbreak locations and intervention scenarios were simulated for the 2009 swine-origin
influenza A (HLN1) epidemic. Results indicate that lower transmission rates and earlier
intervention activation times did not reduce total numbers of infected cases, but did
delay peak times. When transmission rate was decreased by a minimum of 70%,
significant epidemic peak delays were observed when interventions were activated
before new case number 50; no significant effects were noted when the transmission
rate was decreased by less than 30%. Observed peaks occurred more quickly when
initial outbreaks took place in urban rather than rural areas. MEDSim apparently
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provides insights that reflect the dynamic processes of epidemics under different

intervention scenarios, thus clarifying the effects of complex contact structures on

disease transmission dynamics.
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4.1 Motivation

After emerging in Mexico in April of 2009, the swine-origin H1N1 influenza virus
rapidly spread worldwide. In June of that year, the World Health Organization issued its
highest possible pandemic alert—Ilevel 6 (Smith et al., 2009). Influenza researchers and
epidemiologists have generally focused on two spreading factors: age group
(determining post-infection symptoms) (Feng et al., 2005; Inaba, 2007; Langlais &
Naulin, 2003; Shim et al., 2006; Supriatna et al., 2008; Wang & Zhao, 2005) and adult
travel (determining routes by which viruses spread). Since individuals in the same age
group tend to have similar-epidemic characteristics; age group has been proposed as a
distinguishing condition in terms 'of population.compartmentalization (Feng et al., 2005;
Inaba, 2007; Langlais & Naulin, 2003; Shim et al., 2006; Supriatna et al., 2008; Yang et
al., 2009). Most children and adolescents have better resistance to contagious diseases
than individuals age 65 and older. However, the Mexican population segment that was
most affected by the HIN1 virus consisted of youth below the age of 15; of all
individuals affected by the first infection wave, 61% were children and 29% adults
(Fraser et al., 2009). Since novel influenza viruses are known to cause greater
morbidity among children (Belshe et al., 1992), the youngest age group served as the

main focus of H1N1 intervention efforts.
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Many researchers have used age structure to capture heterogeneity when modeling

epidemic dynamics (Inaba, 2007; Shim et al., 2006; Wang & Zhao, 2005), with some

integrating compartmental models consisting of different age groups to identify the

potential impacts of specific populations and temporal epidemic trends (Wang & Zhao,

2005). Childhood diseases such as rotavirus infections have been used to assess the

efficacy potential of various vaccination strategies (Shim et al., 2006), and transmission

threshold and stability have been the focuses of epidemic simulations involving

specific age structures (Inaba, 2007).

Another important factor.in modeling epidemic dynamics is population movement.

Over the past three decades Taiwan has experienced a rapid increase in the number of

commuters for work and ‘other. purposes, especially among young adults (Marsh,

1996)—a phenomenon perceived as' supporting the spread of viruses over long

distances within the country (Yang et al., 2009). Commuting is marked by strong

spatial-temporal regularity: regardless of travel distance or time, most commuters

follow simple and repetitive patterns (Gonzalez et al., 2008). These patterns are

receiving considerable attention from researchers studying the spreading dynamics of

diseases and viruses (Huang et al., 2005), the clustering characteristics of epidemic

diseases at the beginning of an outbreak (Riley, 2007; Tomlinson & Cockram, 2003),

and the targeting of vaccinations, quarantining, and other public health policies
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(Epstein, 2009; Keeling & Rohani, 2007; Liu, Takeuchi & Iwami, 2008;
Pastor-Satorras & Vespignani, 2002).

A multi-layer simulation framework that combines daily commuting networks and
a commonly used population-based transmission model for simulating epidemic
dynamics was proposed, using the 2008-2009 seasonal influenza A and 2009
swine-origin influenza A (H1N1) outbreaks to estimate model parameters. The
potential impacts of different outbreak locations and interventions on the Taiwan-wide
epidemic dynamics of swine-origin influenza A were assessed, including intervention

timing and different combinations of public health responses.
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4.2 A Multilayer Epidemiological M odel

| ntegrating Human Commuting Networks

To analyze the spreading dynamics of epidemic diseases in detail, a top-down
simulation framework was established, along with a prototype of the Multilayer
Epidemic Dynamics Simulator (MEDSiIm), which integrates population-based and
network-oriented approaches to capturing complex demographic, geographic, and
biological properties, including human movement patterns and disease progression
(Figure 4.1). Based on the aobservation that-epidemic dynamics in large populations
are similar to those found in.deterministic systems (Keeling & Rohani, 2007), a
deterministic framework was established for the MEDSim model. As shown in Figure
4.2, layer 1 individuals within the same location are organized according to age group;
a population-based approach was used to model the transmission dynamics of each
group. The layer 2 focus is on contact patterns and interactions between different age
groups within the same location. The effects of regional interactions on human travel
networks are added to layer 3 by incorporating population density and commuting
volume between any two locations. In layer 4, a network-oriented approach was used
to incorporate a geographic information system (GIS) for constructing human travel

networks on a national scale, with nodes representing locations on commuting routes,
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and links representing movement between them.

Infection
information volume

Location
information volume

Figure 4.1. Multilayer Epidemic Dynamics " Simulator (MEDSim) concept.
Infection information usage.is highest in Layer-1 and lowest in Layer 4, the
opposite of location information.

Due to its ability to comprehensively integrate multilayer structures to generate
dynamic spatial and temporal processes, Mathworks MATLAB was used to implement
the MEDSIim framework as a numerical computation kernel. By using Microsoft Excel
to organize census and transportation data, policy makers, health professionals, and
others who have less experience with specialized computer software will be able to

generate simulation scenarios with minimal assistance.
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Figure 4.2. MEDSim framework.

Layer 1: Within an age group

A four-state SLIR epidemiological model was used to represent different infection
stages among individuals in the same age group in the same location. Individual
epidemic status was initially set-&isceptible, followed by atent,Infectious, and
Removed. The numbers -of pathogens that Susceptible-to-Latent hosts carry are
insufficient for active transmission to other Susceptible hosts, but these numbers
eventually reach levels where hosts become Infectious, begin to infect other
Susceptible hosts, and eventually move toward a Removed status. The dynamics of the
four epidemic states over time are expressed as EQs. 4.1a-d, which have the following
features:

1. At time t, the population of interest is divided into four compartme($),

L(t), I(t) and R(t)) that correspond to the SLIR model’s four epidemic states. Since
the SLIR model is a closed syster§(t) + L(t) +1(t) + R(t) = N, with N a constant

representing the entire population.
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2. Transmission ratef is a constant representing how fast Susceptible

individuals become infected and acquire a Latent status.

3. Latent rated is a constant used to determine transformation speed from

Latent to Infected.

4. Removed rater is a constant used to determine transformation speed from

Infected to Recovered.

Ordinary differential equations can be used to express the SLIR model as

%(;) = BSWOIW) / I (4.1a)

%(f) = —6L(t) + BSEII(t) LN (4.1b)

4O - _ays) +oL#) (4.1c)
dt

%ﬂ = al(0) (4.1d)

Figure 4.3a and b illustrate the concept and flowchart of the model’s first layer,

respectively. Note the modification to take self-motivated hospitalization into

consideration (i.e., those individuals who visit hospitals or clinics during an influenza

outbreak regardless of their infection status). Depending on diagnostic accuracy, some

are confirmed as infectious and receive medical treatment in advance, thus altering

transmission and removed rates for certain populations. To integrate this factor into the

model, an additional three features are proposed: (a) an investigation cosstant

representing the percentage of a population that goes to a hospital or clinic in advance
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of becoming ill; (b) a detection constant used to determine the percentage of a

population confirmed as infectious; and (c) the time delay consignused to

represent time between a patient with symptoms visiting a hospital or clinic and the

time that his or her infection is confirmed.
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(S) (L) (lo)

Not investigated
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Transmission rate ( /3 12)

(b)
Figure 4.3(a) Modified SLIR model layer 1 concept. (b) Modified SLIR m«
layer 1 flowchart.

Also in consideration of preventive health care actions among individuals, a
feature was added in which individuals with &anstatus are moved to either &n or
|, status according to whether or not they visit a hospital or clinic (expressed as

investigation proportions). I, individuals are identified a$,, or I, depending on
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whether or not they are correctly diagnosed as infectious (expressed as detection

proportion c¢). Note that regardless of positive or negative diagnosis, a period of time

T must elapse prior to confirmation. The difference between s$tatand eitherl,
or I, isthe transmission ratd,,, 1,, and |, all eventually change to state.

This extended SLIR model is expressed as

L = SSOBLW + By (O + Bl () /N (4.23)
%ﬂ = —0LD) + SOBLE) + B, + BL,B) /N (4.2b)
‘”C;f) = ~[,() + OL(t) (4.2¢)
df];” = ~I(t - )4 5T,(0) (4.2d)
%ﬁ” = —a,I,(t)+ (1= )[(2) (4.2€)
‘”#Ef) = —a, [, (Al = 1) (4.21)
‘%ﬂ = ~a, [, + (1~ DLE=T) (4.29)
LD = a0 + a,l,©) + a,1,0) (4.2h)

Layer 2: Among age groups

Individuals in different age groups have different infection properties, expressed

in terms of epidemic parameters such as transmission and removed rates. Two

age-related features were considered: (a) the transmissiongatess,, ., and 3, ,

which represent cross-age group infections; and (b) the relative percentageage

level, which affects the potential for cross-age infections. To distinguish among
56



parameters for individuals in different age groups, a subscript was added to each
parameter in Egs. 4.2a-h (with the exceptionTg—for example, paramete$(t)
was changed toS,(t) for age level p. Three age levels were assumed when
analyzing H1NZ1: children (birth to 14), adults (15 to 64), and seniors (65 and older). To
capture the complexity of infections across age groups, transmission rates between
different age levels were differentiated. Two transmission rate subscripts were added
(4,4), the first for the age of an infectious individual, and the second for the age of the
individual being infected (Figure 4.4). Epidemic parameters used in population-based
compartmental models were also used to.model infections across age groups. Three
transmission rates and three removed rates were used, based on the number of
individuals seeking medical.attention.

To construct the layer 2 model; Egs. 4.2a and 4.2b were respectively revised to

4.3a and 4.3b, without making any other changes to the Eq. (4.2) sub-equations.

ds

- = _SpoXp('BZWIZp + 'Bllpy[llp + '81211p[1211) / /Vp
at (4.33)
B sz Xq)(p('BZzszZp + 'Bllqullp + '812111)[12p) / /Vq
qa#p
de —
. _BIJLIJ + SpoXp(ﬂprIZp + lgllppjllp + 18121}1)[121]> / ‘/Vp
at (4.3b)

+ sz XqXp('BquIZp + 'Bllqplllp + 'Bquy[lZp) / /Vq

q#p
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Figure 4.4. MEDSIm layer 2 architecture flowchart. Thick solid lines indicate
parameters for other (non-p‘and non-q) age groups. Thick dashed curves indicate
relative percentages of each.age group within the total population of each
location.

Layer 3: Commuting

This study focused on the impacts of daily commuting networks on the spreading
of an influenza virus. Since influenza viruses are transmitted via air-borne droplets,
commuter hosts are capable of infecting other individuals along their standard routes.
The layer 3 model reflects two assumptions regarding hosts with jobs: they commute
over longer distances than individuals who stay at home or travel to local centers such
as schools, and they tend to come into contact with individuals in the same age group
along their routes and at their destinations. Higher contact frequencies among
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individuals in more densely populated areas were assumed. Accordingly, the layer 3

model considers four features associated with travel between population centers

(locations):

1. o(p), a binary value representing whether age lepels the commuter age

1 if p=commutable age lev
0 otherwise

level—that is, g(p) :{ . It was assumed that children
and seniors are less likely than adults to commute on a daily basis, making adults the
most likely carriers of pathogens between locations.

2. w,;, indicating how many individuals commute from locatjdo locationi on
a daily basis.

3. I]i, a weighting factor representing average contacts among individuals in
locationi on a daily basis.

4. d', a normalized population density value for location

For all i and j locations in aw commuting network, the following

geodemographic weight was used to measure the effects of commutingndn

population interactions.

Geodemographic weighti) =o(p)d'n’ i

Z WJ',/f

k#j

As shown in Figure 4.5, the commuting population age level in this example is 15-64
years. Theo(p) function represents whether age grquis a traveling population.

For all i locations in the commuting network, the ter#f(7) represents the set of
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locations connected to location within commuting networkW . The term

w.,/ Y w,, is the ratio of commuters between locatignandi to commuters
k#j

between locatioryj and all other locations. If locationis a large urban center,

W/ Z w, . Will be large; ifi is a suburb or rural location, it will be small. Public

k#j

health policies involving transportation can be tested by changing contact rates among

population centers in the layer 3 model.

Location
b
b

Wi,

Figure 4.5. Potential movement of infectivity between locatiorend | .
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Figure 4.6. MEDSIim layer. 3 architecture flowchart. Properties associated with
commuting between two‘locations are indicated by thick solid lines. Additional
location properties are indicated by thick-dashed-lines.

The layer 3 framework is presented in-Figure 4.6. To construct the layer 3 model,

Egs. 4.3a and 4.3b were respectively revised to Egs. 4.4a and 4.4b. Note the addition of

the geodemographic weight on the third line of each equation. All other Eq. 2

sub-equations are the same.

dSi I g1 0 0 7 i 7 I 7 i i
d; = _Spd XDXD(’BZPPIZD + 'Bllpplllp + '812pp112p) / /Vp
- S;Z dIX;X;(IBZIQpIZIp + lgljlqplljlp + '811'2@]11'2[)) / ‘/Vt; (4 4a)
q#p .
i /8 ¥, . . . . . . .
- .D%(:.) o(pd'n Sp ZJW, ZJDP[?/D * 1j1pp 1]1p + 'Bljzpp[1]2p> / /V;
’ ' k#j 7
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dLj i i 1 g1 y,0 I 7 7 7 7 7 7 i
= _Hpr + Spd Xpo(ﬁpr[Zp + 'Bllpp[llp + '312pp[12p> / /Vp

dt
+ 8,2 d'X X, Booylsy + Byl + Biglivy) / I
(4.4b)

141 Q1 Js1 J J J J J J J
+ z U(p>d 4 Sp z 2pp[2p + llpplllp + 'Blpr[lZp) / /Vp
JONG) W; i
k#j

Layer 4. Nationwide interactions

Taiwan’s national travel network and the commuting weight were used to
simulate individual movement within regions (layer 3). Nodes represent locations, and
edges represent commuting weights between locations. Once transportation data are
obtained, nodes can represent any scale—for instance, a building for city simulations
and a town for regional or national simulations. In this research, each node represents
an individual town. Layer 4 of the model consists of 409 towns and 19,014 links
(Figure 4.7) representing Taiwan’s national commuting network, which can be
manipulated to determine the effects of various movement policies and commuting

restrictions.
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Figure 4.7. Taiwan’s nationwide commuting network.

After combining the four.layers, the completeeMEDSim model is expressed as

dSi I gi 0 0 7 ey 7 7
d; - _Spd Xpo(ﬂprIZ 'Bllpp l1lp 'Blzpp 12p) / /V
- S;Z dl’X;X;('Bqup[;q 4 'Blilqulilq &l '811’21117[11‘211) / /V;
q#*p (45a)
- 0(0)0”17151 z ( ijplsz llppllllp 12pp IZD) / /Vj
JON(D)
/f¢]
dLj [ g1 I g1, 0 0 7 i 7 i
d; = _HPLP + Sﬂd XPXP(ﬁZPPIZ ﬂllﬂp 11p ﬁlpr 12;7> / /V
+ S;Z de;X;('BZI'qp[;q + 'Blliqulliq + 'Blléqulléq> / /sz
q#*p (45b)
+ U(p>dff7f51 Z(:) (:szp lg]lpp lip 12pp 12p) / /V/
‘ON (i
’ /f¢]
d[i 7 iyl
== -, + G (4.50)
oo pi-mrsi (4.5d)
dt
dl! o o
T = —alpl, + (- 5D, (4.5¢)
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dl},

dlz{p - _aljlplljlp + C;III;I(Z- B T> (45f)
dr’ o o
= a1, + (= eI = ) (4.50)
ar’i

d; = allp[llp + a12p112p + aZpIZp (45h)

The parameters used in Egs. 4.5a-h are listed in Table 4.1.

Table 4.1. MEDSim Parameters
Category Layer Attribute Symbol Description
ﬁlf Transmission rate from investigated/diagnosed/treated age
lpp

groupp to same age group in town

Transmission

ﬁ" Transmission rate from investigated/misdiagnosed age
rate 1200 groupp to same age group in town
,81' Transmission rate from non-investigated age gt
2op same age group in town
Latent rate 9; Latent rate of age groypin towni
al Removed rate of investigated/diagnosed/treated age group
1 Iy p in towni
Removed rate a’pr Removed rate of misdiagnosed age grpup towni
Epidemic a;, Removed rate of non-investigated age grpup towni
Investigation st Investigated proportion of age groppn towni
ratio A (Default: 0.6)
Detection el Correctly diagnosed proportion of age grquin towni
ratio S (Default: 0.6)
Delay time T Time between investigation and correct diagnosis
(Default: 3)
i Transmission rate from investigated/diagnosed/treated age
1y groupp and same age groegin towni
5 Transmission 13112 Transmission rate from misdiagnose_d age-gmapd
rate v same age groupin towni
i Transmission rate from non-investigated age gmapd
2xy same age groupin towni
5 Relative )(i Age groupp as a percentage of towpopulation
percentage P (Source: ROC Interior Ministry)
Determination o(p) Binary value for commutable age level
(Default: adult)
Relative d’ Population of town as a pelr(?antage of the largest town’s
: X opulation
L ocation density (Source: REJO% Interior Ministry)
Commuting W, Number of commuters from towrto towni
weight - (Source: ROC Institute of Transportation)
,71' Average number of daily contacts among individuals in
4 Intercity rate locationi

(Default: 0.8)
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Technological Framework

Figure 4.8 shows the MEDSIm technological framework, including a simulation
flowchart, census databases, and the relationship between the four MEDSim layers and
the databases. The first step is to manually create an Excel data set for the user’s chosen
scenario—for example, determining breakout locations or public health policies. Most
data sets consist of spatial locations and census information, which are used to establish
geographic and demographic categories; each MEDSim parameter belongs to at least
one of these. Since the layer 1 focus-in-this example is on disease progression on an
individual level, standard expert-based parameters in compartmental models associated
with epidemics were used-instead of transportation or census databases (Keeling &
Rohani, 2007). In layer 2, percentages of individuals in each age group were
determined from census data, and the numbers of individuals in each location were
gathered from transportation databases. In layer 3, transportation databases were used
to gather information on the numbers of individuals traveling between towns on a daily
basis. In layer 4, transportation data were used to establish the underlying national

travel network.

65



Databases

Transportation
Database

Simulation
Output

GUI
Execution

Nationwide
interactions
er4

Data
Setting

Census
Database

| Evaluation |

Location name and
coordinates

Distance upper and
weight lower thresholds

La;

Commuting

Lafer 3

J Infections across
\ Traffic %4 Commuting weight ‘ Layer2 28 groups

Relative age group X .
R percentage Infections within
Population

Layer | 8¢ groUps

Territory

Location o |
and relative density

Figure 4.8. MEDSIm simulation tool framework.

Figure 4.9 presents a.screenshot -of a MEDSIim GUI. Multilayer epidemic model
parameters are initialized-at the beginning of each simulation. Model parameters
requiring setup are (a) initial outbreak conditions, including the name of the town and
number of infected persons in an age group identified by the surveillance system; (b)
disease transmission parameters at different layers, including transmission, latent, and
removed rates according to the SLIR process for each age group, contact rates between
age groups, and regional contact probabilities between towns; and (c) output maps and
charts of towns of interest and severity indicators to be monitored (e.g., daily infected
cases, daily new cases, and epidemic velocity and acceleration). Daily epidemic
progress can be monitored in terms of sizes and locations of red circles on maps

(infected individuals), epidemic curves on time charts, and output panels (numbers of
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infected individuals at different times in different locations). Regarding kernel

execution, MEDSIim models can be used for computing epidemic dynamics.

Simulation results can be shown as graphical curves, or expressed and recorded as

numerical files. Last, simulation results are evaluated by users, who can repeat steps as
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Figure 4.9. MEDSim implementation GUI.

Satistical Analysisfor Model Validation

Two indices for comparing simulated and actual numbers of infected individuals
were used to test the reliability and validity of time-series MEDSIm data: correlation

coefficient (CC) and coefficient of efficiency (CE), respectively expressed as Egs. (4.6)
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and (4.7) (Huang et al., 2004)X,|t=1,2,....n} represents the number of actual
infected individuals, andY;| t =1,2,...,n} the number calculated by MEDSim. In both

sets, t denotes time step in 1-week units; a total of n weeks is represented by each set.
X andY denote the means ok, and Y,, respectively. The CC test measures data
distance: higher positive values indicate positive correlations, and lower negative

values indicate negative correlations. The CE test is used to measure the level of

accuracy between two data sets; higher values indicate greater accuracy.

> (X, - X)(Y,-Y)
CC = t=1 H{=1,1] (4.6)

Ji(xt —Yf\/ioc -v)?

(X, <X
CE=1- tsl 1[0,1] 4.7)
Z(Xt _Y)z

t=1
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4.3 Simulating the 2009 Novel HIN1 Influenza

MEDSIm reliability (in terms of parameter calibration and model fit) was tested
using actual epidemic curves. Public health policies were tested and compared based on
the above parameters, and MEDSIim was used to simulate the influenza A (H1N1) virus
and to determine the effects of various policies. Population data from the Republic of
China (ROC) Ministry of the Interior and transportation data from the ROC

Transportation Institute (2001) were used to establish simulation parameter settings.

Parameterization

The seasonal influenza A and swine-origin influenza A (H1N1) viruses were used
to perform parameterization. Default parameter values are shown in Table 4.1.
Parameters for both viruses were systematically calibrated to create a small range,
based on parameters normally used with standard SLIR settings (Keeling & Rohani,
2007). Summaries of MEDSIim attribute settings and values are given in Table 4.2 and
Table 4.3. The transmission ratgh, ,, 3,, and B, were directional between age
groups. Individual age group targets are presented in the form of sub-columns.
Experimental results from applying MEDSIim using the Table 4.2 and Table 4.3
parameter values for the two influenza viruses are shown in Figures 10a and b,

respectively. Actual and simulated case data for both influenzas are shown in weekly
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units.

The CC and CE results for the two influenza epidemics are 0.86 and 0.74 for

seasonal, and 0.77 and 0.36 for swine-origin HLN1, respectively. Figure 4.10a shows

the plotting of fractions of new infected cases of seasonal influenza A in Taiwan

between September 2008 and April 2009, normalized to total cases. Higher CC and CE

values for seasonal influenza explain the similarities between the two curves. Figure

4.10b shows the plotting of fractions of new infected cases for the swine-origin

influenza A virus in Taiwan from week 25 to week 52 in 2009, also normalized to total

cases. As shown, the number of actual-cases decreased between weeks 37 and 48,

followed by an increasing trend, resulting in a lower CE value. This two-wave pattern is

very similar to global diffusion /patterns-associated with international travel. Since

international travel was not incorporated at this stage, the swine-origin HIN1 model

failed to capture the second wave; however, it did capture the peak time for the first

(primary) wave (Figure 4.10b).
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Table 4.2. MEDSIm parameters used for fitting simulation curves with actual seasonal
influenza A curves in Taiwan between September 2008 and April 2009

Layer Attribute Value
Children Adults Seniors
B 1.3333 0.6667 0.6667
B, 3.3333 1.6667 1.6667
By 3.3333 1.6667 1.6667
1 A 0.0714
a),, 0.1429
al,, 0.2500
a,, 0.1429
Target Adults Seniors Children Seniors Children Adults
', 0.6667 0.6667 1.3333 0.6667 1.3333 0.6667
2 B,  1.6667 1.6667 < 3.3333  1.6667 3.3333 1.6667
B,  1.6667 1.6667..3.3333" (1.6667 3.3333 1.6667

Table 4.3. MEDSim parameters. used for fitting simulation curves to actual
swine-origin influenza A (H1N1) curves in Taiwan from week 25 to week 52

Layer Attribute Value
Children Adults Seniors
B 2.6667 1.3333 1.3333
B 3.3333 1.6667 1.6667
B, 3.3333 1.6667 1.6667
1 A 0.0714
a),, 0.3333
ajy, 0.1429
a,, 0.1667
Target Adults Seniors Children Seniors Children Adults
B, 1.3333 1.3333 2.6667 1.3333 2.6667 1.3333
2 Bl 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667
,BZI‘Xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667
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Figure 4.10. Comparison of weekly new infected céstween actual and simula
results normalized for (a) seasonal influenza A and (b) swine-origin HIN1 influenza A.

I nter vention Policy Evaluation

Different public health policies were tested and compared using the
above-described parameters. In addition, the effects of medical advice quality and
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number of commuters were simulated, and original epidemic curves were compared

with those following the implementation of the public health policies. Special

emphases were placed on peak numbers of infected cases and peak infection days, since

the goals of public health officials are to reduce the peak number (since it has a direct

effect on social costs such as drugs and hospital beds), and to delay the peak day.

Figure 4.11 has two parts, one addressing the impacts of transmission rate

reduction, and one on the effects of various intervention policies. Results from

simulated observation indices for different transmission rates are shown in Table 4.4 .

According to the Figure 4.11 data for weekly fractions of new infected cases, both

curve peak and height were negatively affected by decreased transmission rates.

According to the Figure 4.12 data on the cumulative number of new infections at

different transmission rates, that number decreased as transmission rate decreased. In

Figure 4.13, two observation indices were used to distinguish between the epidemic

curve produced by the highest transmission rate, and the curves shown in Figure 4.11.

According to the first observation index (fraction of new infected cases at epidemic

curve peak), the largest transmission intensity of an epidemic disease infects a

population over a period of one week, which affects the quantity of available public

health resources; a decreasing value reduces the burden on those resources. The second

index (epidemic curve peak week number) indicates the severity and urgency of an
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epidemic, which affects deadlines for initiating public health policies; a higher value

indicates more time for making policy decisions.

—=—Basic epidemic curve at original transmission rate
10% T ——Mitigated epidemic curve #1 at 30% reduced transmission rate
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Figure 4.11. New infected cases per week-at different transmission rates.
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Figure 4.12. Cumulative new infected cases at different transmission rates.
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Figure 4.14. Comparison of new infected cases at epidemic curve peak at
different transmission rates.
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Figure 4.16. New infected cases at epidemic curve peak according to various
intervention policy scenarios.
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Figure 4.17. Numbers of infected cases according to various intervention policy
scenarios.
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Table 4.4 Observation index values according to different transmission rates.

Transmission Rate Reduction (%)

Observation Index

0% 30% 50% 70% 90%
Total cases. 1,784,044 1,407,752 1,108,520 485,761 8
New infected cases at epidemic 171329 113.898 64.926 12.231 8
curve peak.
Week number of epidemic curve 20 2 36 77 °
peak.
Fraction of new infected cases at 9.6% 6.4% 3.6% 0.7% 0%
epidemic curve peak.
Total cases of epidemic curve
- - - 100% 78.9% 62.1% 27.2% 0.%
Total cases of basic epidemic curve

Results from comparisons of epidemic curve peaks at different reduced

transmission rates are shown in Figure 4.13. The basic fraction of new infected cases at

curve peak (noted as 100%, with.a transmission rate of 1.0) is shown in the leftmost part

of the graph. The relative total number of cases (red line) consists of two line segments,

one from 1.0 to 0.5, and the other from 0.5 to 0.1. According to this result, transmission

rate should be reduced by at’least 50% to obtain better peak number suppression. An

obvious decrease in peak number occurs when the transmission rate is reduced to 70%.

Curve peak week numbers at different transmission rates are shown in Figure 4.14.

Note that week number increased as transmission rate decreased—a positive result for

public health policy makers. Results from simulations of various long- and short-term

intervention policy activation scenarios are shown in Figure 4.16,Figure 4.17 and

Figure 4.18. No differences in numbers of infected cases were observed for different

intervention policy activation times (Figure 4.16 and Figure 4.17). However, epidemic

peak was delayed from week 55 to week 71 when intervention policy activation time
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was set at 50 with a 70% reduction in transmission rate (Figure 4.18). Activation time

exerted a much weaker effect on peak timing at a 30% transmission rate reduction.

According to these results, while time of intervention policy activation did not

significantly reduce the number of infected cases, it did exert an obvious effect in terms

of delaying peak time—a positive result in terms of public health policy determination

and preparation.

Next, differences in swine-origin HIN1 influenza A starting locations in Taiwan

were compared in terms of their effects on the subsequent spreading of the disease

(Figure 4.19, Table 4.5 and.Table 4.6). Taipei was labeled a high-density area and

Taichung a low-density area. In the first (pre-swine origin virus) scenario, case number

peaked much earlier in Taipei (20) than in Taichung (61). When the transmission rate

was reduced to 30%, the Taichung peak was significantly delayed. When comparing

numbers of infected cases at the curve peak, both locations had approximately the same

number of new cases, but Taipei had a much larger number of total cases. After

reducing the transmission rate from 50% to 30%, Taichung had a much later peak week

compared to Taipei, with no effect of intervention policy activation time on total

number of cases or newly infected cases in either location. The results suggest that less

densely populated starting locations are more sensitive to intervention policy activation

time—that is, the combination of early activation time and low transmission rate
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significantly delays epidemic curve peaks in less densely populated locations.
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Figure 4.19. Epidemic peak week numbers for urban and rural areas.
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Table 4.5. Observation index values according to different policy activation scenarios
during swine-origin influenza A (H1N1) outbreak in Taipei.

Transmission Rate Reduction

Poalicy Activation Time Observation Index 0% 30% 50% 70%  90%
Total cases. 1,784,044407,7521,108,52(485,761 8
New infected cases at epidemic curve peak. 171,328,898 64,926 12,231 8
Scenario #1 Week number of epidemic curve peak. 20 26 36 77 0

Fraction of new infected cases at epidemic curve

Before the swine-origin influenza A peak. 9.60% 6.38% 3.64% 0.69% 0%

(H1INZ1) virus emerges. -
Total cases of epidernic curve 100% 78.90% 62.14%27.23%0.00%
Total cases of basic epidemic curve
Total cases. 1,784,044409,8271,108,794487,425 855
Scenario #2 New infected cases at epidemic curve peak. 171,391,120 65,235 12,468 155
Week number of epidemic curve peak. 20 24 30 51 7

After 50 cumulative swine-origin Fraction of new infected cases at epidemic curve

fl ( ) infected peak 9.60% 6.40% 3.66% 0.70% 0%
influenza A (H1N1) infected cases :

are diagnosed. Total cases of gpldermc c.urve 100% 79.02% 62.15% 27.32%0.05%
Total cases of basic epidemic curve

Total cases. 1,784,044410,2631,108,993488,900 1991

St g e New infected cases at epidemic curve peak. 171,378,532 65,314 12,604 349

Week number of epidemic curve peak. 20 24 29 a7 8

After 100 cumulative swine-origin Fraction of new infected cases atepidemic curve

fl ( ) infected peak 9.60% 6.36% 3.66% 0.71% 0%
influenza A (H1N1) infected cases :

i Total f epidemi
are diagnosed. otel cases G e oA 100% 79.05% 62.16%27.40%0.11%
Total cases of basic epidemic curve
Total cases: 1,784,044410,7821,109,355491,563 4599
e New infected cases at epidemic curve peak. 171,391,191 65,442 12,883 818
Week number of epidemic curve peak. 20 23 28 42 9

After 200 cumulative swine-origin Fraction of new infected cases at epidemic curve

fl ( ) infected peak 9.60% 6.40% 3.67% 0.72% 0%
influenza A (H1N1) infected cases :

i . Total f epidemi
are diagnosed S i 100% 79.08% 62.18% 27.55%0.26%
Total cases of basic epidemic curve
Total cases. 1,784,044411,2731,109,893496,24610000
S s New infected cases at epidemic curve peak. 171,391,185 65,669 13,408 1680
Week number of epidemic curve peak. 20 23 27 38 10

After 400 cumulative swine-origin Fraction of new infected cases at epidemic curve

influenza A (H1N1) infected cases P€ak.
ar e diagnosed. ( Total cases of epidemic curve ]

9.60% 6.40% 3.68% 0.75% 0%

100% 79.11% 62.21%27.82%0.56%

Total cases of basic epidemic curve
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Table 4.6. Observation index values according to different policy activation scenarios
during swine-origin influenza A (H1N1) outbreak in Taichung.

Poalicy Activation Time

Transmission Rate Reduction
0% 30% 50% 70% 90%

Observation Index

Scenario #1

Beforethe swine-origin influenza A
(HIN2) virus emer ges.

Total cases. 2,190,2471,672,7331,112,428485,801 8
New infected cases at epidemic curve peak72,083 114,556 64,551 12,186 8
Week number of epidemic curve peak. 61 83 119 284 1
Fraction of new infected cases at epidemic

7.86% 5.23% 2.95% 0.56% 0%
curve peak.

100% 76.37% 50.79%22.18%0.00%

Total cases of epidemic curve
Total cases of basic epidemic curve

Scenario #2

After 50 cumulative swine-origin
influenza A (HIN1) infected casesare

Total cases. 2,190,2471,672,2661,117,265487,030 767

New infected cases at epidemic curve peak72,083 113,760 64,598 12,200 120

Week number of epidemic curve peak. 61 73 93 180 28

Fraction of new infected cases at epidemic 786% 519% 2.95% 056% 0%
curve peak.

diagnosed. [ Total cases of gpldermc curve ] 100%  76.35% 51.01%22.24%0.04%
Total cases of basic epidemic curve
Total cases. 2,190,2471,671,0191,120,702488,492 1723
G e New infected cases at epidemic curve peak72,083 113,672 64,430 12,194 273
Week number of epidemic curve peak. 61 72 90 169 29
After 100 cumulative swine-origin Fraction of new infected cases at epidemic

7.86% 5.19% 2.94% 0.56% 0%

influenza A (H1N1) infected casesare .Curve peak.
diagnosed. ( Tollyyes oo NN TGN ] 100% 76.29% 51.17%22.30%0.08%
Total.cases of basic epidemic curve
Total.cases. 2,190,2471,674,6271,125,289491,418 3668
Sl 2 New infected cases at epidemic curve peak72,083 113,592 64,556 12,198 520
Week number of epidemic curve peak. 61 71 88 158 32
After 200 cumulative swine-origin Fraction of new infected cases at epidemic

influenza A (HIN1) infected casesare

7.86% 5.19% 2.95% 0.56% 0%
curve peak:

diagnosed. ( Total cases of gpldemlc cturve ] 100% 76.46% 51.38% 22 44%0.17%
Total cases of basic epidemic curve
Total cases. 2,190,2471,677,3381,132,127 49,486 7424
Srrelais New infected cases at epidemic curve peak72,083 112,155 64,605 12,188 1057
Week number of epidemic curve peak. 61 70 85 147 34
After 400 cumulative swine-origin Fraction of new infected cases at epidemic

influenza A (HIN1) infected casesare
diagnosed.

7.86% 5.12% 2.95% 0.56% 0%
curve peak.

100% 76.58% 51.69%22.67%0.34%

Total cases of epidemic curve
Total cases of basic epidemic curve
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The proposed model is capable of providing insights that reflect the dynamic

processes of epidemics according to various intervention scenarios involving outbreak

location, intervention timing, and different policy suites. | view this multilayer

approach as both convenient and effective for public health practitioners and

administrators responsible for initiating early responses to potential pandemics, and for

assessing intervention strategies in outbreak locations.

This particular part of this dissertation has several limitations, such as the lack of

confirmed numbers of H1IN1 influenza A cases in Taiwan—at this time it is not a

notifiable disease in this country. The data used for model validation reflect severe and

hospitalized cases, which 'were assumed as having the same proportions as non-severe

cases per time unit. Differences between actual and simulated cases can be significantly

reduced when using appropriate parameter values in terms of investigation and

detection proportions. Second, since the SLIR model is imprecise in terms of its

Removed designation, it was not possible to address the number of HIN1-related deaths

in any discussion of peak time delay. In real-world scenarios involving pandemic

diseases with high death rates, peak time delays are very important for disease

prevention policy decisions. Third, due to the limited scope of this study, it was not

possible to gather and organize the exceptionally large amounts of available data on all

areas represented by network nodes (e.g., workplaces, houses and schools). Instead,
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location and age were used for purposes of population grouping, due to their
similarities in responses to epidemic-related factors. Furthermore, other attributes such
as income level and number of social groups per individual were not addressed when

determining transmission rate, removed rate, or other parameters.
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Chapter 5. Simulation Architecture for
Studying Networ k-based
Computational Epidemiology | ssues
and for Public Health Education

Pur poses

This chapter looks at issues tied-to predicting epidemic outbreaks on a national
scale, and testing the efficacies of different combinations of epidemic intervention
policies. Network-based simulations have been.proven as useful approaches for
epidemiologists to address epidemic dynamics. In addition, investigations of complex
public health issues are easy to simulate, therefore universities and research institutes
are now using network-based simulations as teaching tools for epidemiology and
public health students. However, instructors have reported that the process of
constructing appropriate network-based epidemic models and running simulations is
difficult, especially when the modeling of individual movement and contact patterns
is involved.

| worked with three other authors to establish a four-category framework based
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on geodemographic properties for use by undergraduate students and novice

researchers wanting to construct network-based simulation models. The framework

was evaluated with two infectious disease scenarios in Taiwan—HIV and influenza.

Results indicate that the framework significantly improved student efforts to learn

epidemic transmission principles, and to analyze the efficacies of various public

health policies. To construct a multi-scale contact network, the proposed framework

can be used to build geodemographic commuting or travel networks.
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5.1 Motivation

A wide variety of network-based simulations are currently being used to model
epidemic dynamics and to evaluate combinations of epidemic intervention policies.
Due to their capability of modeling the movement and contact behavior of individuals,
network-based simulations are being used by a growing number of researchers to
explore epidemic dynamics (see, for example, Alfonseca, Martinez-Bravo & Torrea,
2000; Axelrod, 1997; Barrett et al., 2005; Boccara & Cheong, 1993; Ferguson et al.,
2005; Gilbert & Troitzsch, 2005; Hsieh, Huang, Sun & Chen, 2005; Hsieh, Sun, Kao &
Huang, 2006; Huang et al.;2005; Schneeberger et al., 2004; Stroud, Del Valle, Sydoriak,
Riese & Mniszewski, 2007; Sumodhee et al.,; 2005).

To implement network-based simulations in the modeling of epidemic dynamics,
we constructed social network simulations for modeling the transmission dynamics of
HIV, SARS, and influenza in Taiwan (Hsieh et al., 2005; Hsieh et al., 2006; Huang et
al., 2004, 2005; Sumodhee et al., 2005). For purposes of training students and novice
epidemiologists, instructors from many disciplines are collaborating with simulation
researchers to recreate the transmission dynamics of infectious diseases, and to
improve general understanding of public health policy efficacies (Hsieh et al., 2006;

Huang et al., 2005). However, computational epidemiology researchers and instructors
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are still addressing individual problems involving movement and contact patterns

among millions of people of different ages and with different professions, educational

levels, marital/partner statuses, and levels of epidemiological resistance (Barrett et al.,

2005; Boccara & Cheong, 1993; Huang et al., 2004, 2005). In addition, emerging and

re-emerging infectious disease outbreaks can develop randomly and unexpectedly,

depending on the breadth of early stage outbreaks, numbers of randomly imported

cases, the responses of infected individuals, and contacts with other susceptible

individuals (Barrett et al., 2005; Huang et al., 2004, 2005). Public health policies

executed by health authorities also directly and indirectly affect epidemic dynamics

and spreading situations (Hsieh et al., 2005). Furthermore, improper implementation

and the inappropriate timing of public health policy activation occasionally produce

such secondary impacts as disease concealment and social discrimination against

infected patients and the health care employees who provide their care (Huang et al.,

2004). In spite of these factors, most students and novice researchers in public health

and related disciplines still use questionnaires or field investigation techniques when

studying epidemic outbreaks—a process that prevents many from gaining a macro

view of epidemic dynamics, or from assessing the potential efficacies of public health

policies for prevention and control.

In this chapter | will discuss ways of applying network-based simulation
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approaches to undergraduate and novice researcher education, and describe

simulations of the transmission dynamics of two infectious disease scenarios in

Taiwan—HIV and influenza. The goals are to clearly illustrate existing challenges to

building network-based epidemic simulations, and to assist epidemiology students and

novice researchers in their efforts to predict the transmission dynamics of emerging

and re-emerging infectious diseases.
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5.2 Potential Benefitsin Learning Through

Epidemic Simulations

Hands-on learning through the use of epidemic simulations has at least three
potential benefits:

1. Operational. Epidemiology problems often require examinations of the
influences of various public health policies in specific environments. Using the SARS
outbreak of 2003 as an example, epidemiologists would be interested in measuring the
potential impacts of public health-policies, but running real-world experiments would
be impossible in such a context. With simulation tools, epidemiology instructors and
students can examine the influences of different public health policies in different
regions, and execute “what-if’‘experiments to study the emerging behaviors of
infections when irrelevant health policies are temporarily removed. In short,
simulations can be optimized for learning (Bertsche, Crawford & Macadam, 1996).

2. Observational. Users can take epidemic simulation processes and adjust their
scales for observation purposes, slow them down, or speed them up (Sumodhee et al.,
2005). Epidemic simulations not only allow novice researchers to practice
professional skills without having to invest large amounts of resources, but are also

recognized as an efficient approach to reviewing or proving epidemiological concepts.
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This protects learners from having to jump into high-risk situations. In classrooms,

post-simulation reports allow teachers to determine which concepts their students

have mastered (Hargrave & Kenton, 1999; Klein, Berlin, Kostolansky & Del Palacio,

2004; Levy, Levy & Solomon, 1995).

3. Construction. Epidemic simulations can be used to create or explore

environments. Using public health policy assessments as an example, learners can

practice predicting developments that might result from different combinations of

public health policies. In classrooms, epidemiology instructors can exert relatively

precise control over knowledge construction and accumulation (Hargrave & Kenton,

1999).

In response to a wide. variety of geographic.and demographic restrictions, we

divided all network-based epidemic simulations into four categories. The first

category reflects the use of real contact tracing for constructing small-scale

individual-to-individual contact networks. Using the 2003 SARS outbreak as an

example, health authorities in Taiwan and Singapore attempted to construct contact

histories for all infected individuals in order to quarantine anyone who had come into

contact with a carrier. The second category consists of individuals and locations. For

example, saunas and bars frequented by homosexuals can be viewed as activity

locations bridging susceptible individuals with HIV carriers; for illegal drug users,
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infection locations include syringes and chemicals used for drug dilution. To construct

social networks for illegal drug users, epidemiologists must determine how many

times a user shares a syringe with other users during one week or month, or how

many users share the same diluting agent in a single session.

The third category reflects individual neighborhood concepts using statistical

geographic properties. In the absence of real contact data, epidemiologists may need

to build a specific and customized social network using well-constructed and

appropriate interaction and contact assumptions. An example is social mirror

identities that connect two layers in the Cellular Automata with Social Mirror Identity

Model (CASMIM), a small-world social network that preserves the properties of

individuals who interact with. their neighbors within two-dimensional geographic

spaces (Huang et al., 2004, 2005). The properties reflect such activities as

long-distance movement and daily visits to fixed locations. The fourth category

frequently requires significant support in the form of demographic or geographic data.

For example, Ferguson et al.’s (2005) Southeast Asian influenza simulation used

statistical data for group density, household size, age distribution, school and

workplace size, and individual travel information. The spread of HIV among

homosexuals serves as a negative example—that is, movement, location, and means

of sexual contact are less obvious, making it more difficult to build a network-based
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HIV epidemic simulation (Sumodhee et al., 2005).

To build a network-based epidemic model, four properties are considered

exceptionally important:

1. Time scale. In the case of HIV diffusion via heterosexual contact, frequency

distributions of sexual behaviors over one month or one year show power-law

distribution features (Schneeberger et al., 2004), but the same is not true when the

time scale is reduced to one day or one week. It is also important to remember that

different diseases have different incubation periods (e.g., 5 days for SARS versus 6

months to 20 years for HIV) and immunization time frames.

2. Geographic scale. Care must be taken when selecting this scale. For example,

a new form of influenza tends to be expressed as a large-scale epidemic, therefore

models for countries that have multiple regions require the consideration of

cross-border transportation networks. Building a social network for any modern city

with an established mass transportation system must assume a strong and varied mix

of human movement, which can affect considerations of inter-regional transportation.

3. Data dependency. Data granularity determines the best method for building a

network model. Using homosexual HIV diffusion as an example, any situation in

which data are limited to frequency distributions of sexual contact restricts modelers

to using abstract von Neumann and Moore neighborhood concepts (Huang et al.,
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2005). However, if movement within a high-risk contact group can be traced,

modelers can create simulations capable of predicting further development.

4. Extendability. Due to the diversity of data collected for epidemiology issues,

simulations of specific infectious diseases often require modifications to existing

network models. For example, the homogeneous mixing hypothesis used in random

networks assumes that all members of a group are well-mixed (i.e., equal probabilities

exist for contact between any two members), but data on sexual contact or needle

sharing do not support this hypothesis. Therefore, extendibility is a major concern

when applying an existing network model to-new epidemic simulations.

Using computer simulations as a pedagogical tool is nhow common in many

technology training programs, .as well as-in the teaching of science concepts (Colpitts,

2002; Hsieh et al., 2006; Liao & Sun, 2001). Computer simulations are also being used

in epidemiology disciplines to support educational and training efforts based on

constructivist learning principles. In addition to mitigating learner obsession with the

minutiae of complex procedures described in epidemiology textbooks (Wenglinsky,

1998), simulations provide multiple opportunities for “learning by doing” (Oehme &

Seitzer, 2000). Constructivists believe that learners draw upon prior knowledge when

forming new schema via discovery learning (Bruner, 1977). When confronted with a

new stimulus, learners apply their own knowledge bases to accommodate new
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information and to alter their existing schema (Piaget, 1977). When constructive

learning processes are embedded in epidemic simulations, students can learn by doing,

have more and better opportunities for discovering interesting primary and secondary

epidemic issues, and gain hands-on experience for dealing with real-world public

health issues.

Originally developed for medical education in the early 19péshlem-based

learning is now considered a core teaching model in over 60 medical schools (Savery

& Duffy, 1996). The use of simulations for learning and teaching has two

characteristics that make it compatible: with- the theoretical foundations of

problem-based learning:

1. Engagement. Students  often request epidemic simulations to assist with

learning and to gain a sense of engagement with real-world epidemiology problems.

This allows for the introduction of related concepts to the learning process. There is

no “perfect” simulation, but simulations can still support meaningful learning

experiences as long as scenario limitations are taken into account (Aldrich, 2003).

2. Interaction flexibility. Epidemic simulations can be used with interaction and

feedback methods to illustrate how infectious diseases are spread under different

conditions and circumstances (Aldrich, 2003). Epidemiology problems are usually

complex, and rarely have single “correct” answers, which encourages learners to
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repeatedly manipulate parameters. With sufficient practice, learners or novice

researchers can learn how to transfer their new knowledge to real-world infectious

diseases.
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5.3 Teaching Computational Modeling and

Simulation

Processes and goals associated with learning via epidemic simulations differ
from those associated with traditional classroom and textbook-centered learning.
Epidemic simulation scenarios are often open-ended and poorly defined (Hsieh et al.,
2005), and problems frequently arise after simulations are started. We therefore
suggest that novices be required to use instruction-based manuals to run epidemic
simulations and to create professional quality reports or presentations of their learning
results. Teacher preparation time will vary depending on the required epidemiology
background, scenario construction requirements, and necessary instruction to help
learners formulate problem statements, collect data, run simulations, and create
reports. Evaluative techniques for learning results also differ from those used in
traditional classroom settings, and require some training on the part of instructors. In
light of the amount of required background knowledge (Hargrave & Kenton, 1999),
we suggest using pre-instructional time to teach public health policy assessment and
epidemic outbreak prediction skills, and post-instructional time to teach skills in
epidemic simulation construction and analysis. Both are appropriate for

learning-by-doing experiences.
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We designed a five-step epidemiology teaching process: (a) introducing

epidemiology knowledge and background scenarios; (b) preparing a pre-test for

guiding students to key properties of an epidemiological issue; (c) creating

step-by-step instruction-based epidemic simulations with appropriate sample data,

user manuals for operating epidemic simulations, and experiment design examples; (d)

unrestrained operating time, which allows students to construct and develop their own

experiments; and (e) post-tests or final presentations to evaluate student understanding.

Since disease scenarios often have no single or absolute approach, it is difficult to

evaluate how well novice learners understand the operational aspects of simulations.

One potential solution is* to design constructive pre-tests and post-tests. Using

epidemic simulations associated with public health policies as an example, novice

learners may be asked to compare the efficacies of different combinations of public

health policies before and after an epidemic simulation is run. In addition, we have

observed that novice learners exhibit wide differences in terms of controlling

simulation parameters (Hsieh et al., 2006), and therefore suggest that parameters be

used as an evaluation criterion.

Developing appropriate prevention and control measures entails making and

monitoring the results of multiple rules and decisions made at different points during

an epidemic. Conflicts among decision criteria for different strategies are inevitable,
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and our proposed multi-scale simulation framework can help decision makers test and

refine different strategies at different layers. For example, Layer 1 can be used to

simulate and evaluate a vaccination policy by changing transmission rates among

groups at greater risk of infection (e.g., children or seniors). This would allow for the

testing of social distance measures such as school closures. Layer 2 can be used to

evaluate quarantine strategies by changing contact rates among different age groups,

layer 3 can be used to evaluate travel restrictions by changing regional contact rates

among cities, and layer 4 can be used for the same purpose by changing the structure

of the commuting network. -By analyzing multi-scale interactions, decision makers

can prepare themselves for making rapid proactive intervention decisions in response

to clearly identified outbreak transmission pathways. Furthermore, our simulation

framework can provide additional ‘geospatial insight into epidemiological processes

underlying control measures. Spatial orientation and visualization are necessary when

monitoring disease progression and generating potential control strategies. We

incorporated a geographic information system (GIS) into our multi-scale simulation

framework in order to capture spatial variation in disease transmission throughout

Taiwan. GIS supports a visual analysis of the spatial impacts of individual control

measures. Combining multi-scale simulations, spatial visualization, and geographic

information can clarify spatial and temporal characteristics in support of potential
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pandemic preparation and control measures.
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Chapter 6. Conclusions

The goal of this dissertation was to integrate realistic human social networks into a
standard epidemiological disease transmission model. Toward that goal, | presented
the potential benefits of network-based computational epidemiological simulations.
Starting from theoretical complex network topology, | gave a possible explanation for
why infectious diseases are extinguished at small transmission rates, even in
scale-free networks. The study results suggest the possibility of controlling the spread
of epidemics in scale-free networks by.manipulating resources and costs associated
with an infection event. | ‘then proposed a multilayer network-based computational
epidemiological framework .called MEDSim, whose development | assisted with, to
integrate realistic social networks ‘into" traditional epidemiological models. To
demonstrate and test model flexibility and generalizability, the 2009 A/H1N1 influenza
epidemic was used to compute outbreak locations and to simulate intervention
scenarios. Results indicate that the proposed MEDSIim framework can help public
health organizations decide when to implement intervention strategies by
simultaneously analyzing multilayer interactions. For novices studying computational
epidemiology and public health principles, | worked with three other authors to
describe an instruction program for building network-based epidemic models. The

101



goal is to help individuals with less advanced computing skills to build

epidemiological models, determine appropriate simulation parameters, and construct

operational procedures.

To build on this positive beginning, in the future | will work with the researchers

cited in this dissertation to expand the multilayer framework in order to make it suitable

for other acute diseases, and to make it responsive to complex human contact structures.

| have five goals:

1. To model future disease spreading activity, | will work on modifying

MEDSIim parameters.toinclude dynamic variables that change over time.

2. To account for vaccinations—specifically among school-age children, but

also among other age groups—I will add one more state to the first MEDSIm

layer.

3. | will add transportation routes (e.g., highways, railways, air routes) to the

fourth MEDSIm layer.

4. | will work on adding an “international layer” to MEDSIim in order to model

cross-border epidemic dynamics.

5. | will work on extending MEDSim for use as a general purpose disease

modeling framework—for example, modifying contact structures such as

human-mosquito contact in order to model vector-borne diseases such as
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dengue fever and malaria, and human-animal contact to model zoonotic

diseases such as rabies and Japanese encephalitis.
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Integrating epidemic dynamics with daily
commuting networks: building a
multilayer framework to assess influenza
A (HINI) intervention policies

Yu-Shiuan Tsai', Chung-Yuan Huang?, Tzai-Hung Wen?,
Chuen-Tsai Sun' and Muh-Yong Yen*

Abstract

We describe an innovative simulation framework that combines daily commuting network data with a commonly used
population-based transmission model to assess the impacts of various interventions on epidemic dynamics in Taiwan.
Called the Multilayer Epidemic Dynamics Simulator (MEDSim), our proposed framework has four contact structures: within
age group, between age groups, daily commute, and nationwide interaction. To test model flexibility and generalizability,
we simulated outbreak locations and intervention scenarios for the 2009 swine-origin influenza A (HIN ) epidemic. Our
results indicate that lower transmission rates and earlier intervention activation times did not reduce total numbers of
infected cases, but did delay peak times. When the transmission rate was decreased by a minimum of 70%, significant
epidemic peak delays were observed when interventions were activated before new case number 50; no significant
effects were noted when the transmission rate was decreased by less than 30%. Observed peaks occurred more quickly
when initial outbreaks took place in urban rather than rural areas. According to our results, the MEDSim provides
insights that reflect the dynamic processes of epidemics under different intervention scenarios, thus clarifying the effects
of complex contact structures on disease transmission dynamics.

Keywords
computer simulation, epidemic dynamics, geographic information system, multilayer model, travel network

individuals affected by the first infection wave, 61%

. Introduction were children and 29% adults.” Since novel influenza

After emerging in Mexico in April of 2009, the swine-
origin HINT1 influenza virus rapidly spread worldwide.
In June of that year, the World Health Organization
issued its highest possible pandemic alert: level 6.!
Influenza researchers and epidemiologists have focused
on two spreading factors: age group (determining post-
infection symptoms)®’ and adult travel (determining
routes by which viruses spread). Since individuals in
the same age group tend to have similar epidemic
characteristics, age group has been proposed as a dis-
tinguishing condition in terms of population compart-
mentalization.” ®* Children and adolescents generally
have better resistance to contagious diseases than indi-
viduals age 65 and older. However, the Mexican pop-
ulation segment that was most affected by the HINI
virus consisted of youths below the age of 15; of all

viruses are known to cause greater morbidity among
children,'” the youngest age group served as the main
focus of HINTI intervention efforts.
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Many researchers have used age structure to capture
heterogeneity when modeling epidemic dynamics,®>’
with some integrating compartmental models consist-
ing of different age groups to identify potential impacts
of specific populations and temporal epidemic trends.”
Childhood diseases, such as rotavirus infections, have
been used to assess the efficacy potential of various vac-
cination strategies,” and transmission threshold and
stability have been the focuses of epidemic simulations
involving specific age structures.’

Another important factor in modeling epidemic
dynamics is population movement. Over the past three
decades Taiwan has experienced a rapid increase in the
number of commuters for work and other purposes, par-
ticularly among young adults'' — a phenomenon per-
ceived as supporting the spread of viruses over long
distances within the country.® Commuting is marked
by strong spatial-temporal regularity: regardless of
travel distance or time, most commuters follow simple
and repetitive patterns.'? These patterns are receiving
considerable attention from researchers studying the
spreading dynamics of diseases and viruses,'? the clus-
tering characteristics of epidemic diseases at the begin-
ning of a breakout,'*'” and the targeting of vaccinations,
quarantining, and other public health policies.'¢""

The two most commonly used approaches to model-
ing epidemic spreading dynamics are population based
and network oriented. In population-based approaches,
hosts sharing the same symptoms are modeled or
grouped in terms of limited numbers of classes (also
known as compartments) that researchers analyze and
compare.” ’ Combinations of classes are used to model
and analyze population dynamics. For example, the
Susceptible, Latent, Infectious, or Recovered (SLIR)*
model gives individuals one of four infection statuses
and differential equations are used to study system
dynamics in terms of transitions between epidemiolog-
ical phases. Depending on whether removed individuals
can become susceptible a second time, diseases can be
modeled as SLIR or SLIRS cycles.

Network-oriented approaches emphasize individual
heterogeneity, interactions among individuals, and net-
work structure.?"*>* Individuals in a network are rep-
resented as nodes, and interactions between them as links.
Network nodes can be used to represent the characteris-
tics of individuals, locations, neighborhoods, or cities,
and models can incorporate the temporal dynamics of
these features. Time frames for links between two nodes
can be preferentially defined® — an approach commonly
used to represent group structures for individuals exhibit-
ing interaction or relationship patterns.”*?’ Network-
oriented approaches are suitable for capturing complex
contact patterns among individuals, exploring epidemic
dynamics, and assessing the efficacies of public health
policies.'”?*2*2% Lattice networks have been used to

determine distance relationships between individuals. In
contrast, random networks support features associated
with casual contacts among mobile individuals and the
low degree of separation commonly observed in social
networks.**? Some researchers incorporate more realis-
tic underlying networks (e.g. daily contact networks)
when modeling interaction behaviors.*®**  These
approaches are viewed as reliable for investigating epi-
demics, with the transmission dynamics of specific net-
work models being manipulated to investigate the
spread of emerging infectious diseases.>**° The topolog-
ical features of social networks have recently been found
to exert considerable influence on the transmission
dynamics and critical thresholds of infectious diseases,
thus supporting the subtle analyses that network-oriented
models are incapable of *!3:28-34

Population-based and network-oriented approaches
respectively emphasize large-scale population-level and
individual-level perspectives. Each has its own limita-
tions. Population-based approaches are suitable for
discussing dynamic variation across individuals in the
same compartment, but they are weak in terms of
modeling individual heterogeneity and addressing
human travel networks.?**° Since individuals are mod-
eled as groups, any two group members are assumed to
have a direct connection, which is not true in the real
world. Furthermore, movement and activity are loca-
tion dependent; therefore, phenomena cannot be simu-
lated by a population-based approach that assumes a
homogeneous population distribution. In contrast, net-
work-oriented approaches may be appropriate for
introducing individual heterogeneity, but they are com-
putation intensive and time consuming when simulating
the behaviors of individuals with multiple attributes in
large-scale social environments.'”** Many efforts have
been made to match individual and population behav-
iors with heterogeneity and computation requirements
when studying epidemic dynamics.>> >’

Here we will propose a multilayer simulation
framework that combines daily commuting networks
and a commonly used population-based transmission
model for simulating epidemic dynamics. We used the
2008-2009 seasonal influenza A and 2009 swine-origin
influenza A (HINI1) outbreaks to estimate model
parameters. We then assessed the potential impacts of
different outbreak locations and interventions on the
Taiwan-wide epidemic dynamics of swine-origin influ-
enza A, including intervention timing and different
combinations of public health responses.

2. Multilayer epidemic dynamic
simulation

To analyze the spreading dynamics of epidemic dis-
eases in detail, we established a top-down simulation
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framework and implemented a prototype of our
Multilayer Epidemic Dynamics Simulator (MEDSim).
The MEDSim integrates population-based and net-
work-oriented approaches to capturing complex demo-
graphic, geographic, and biological properties,
including human movement patterns and disease

progression (Figure 1). Based on the observation that
epidemic dynamics in large populations are similar to
those found in deterministic systems,'® we established a
deterministic framework for our MEDSim model. As
shown in Figure 2, layer 1 individuals within the
same location are organized according to age group;

Layer 1

Layer 2

Layer 3

Layer 4

Infection
information volume

High Loy

Low| High

Location
information volume

Figure |. The MEDSim concept. Infection information usage is highest in layer | and lowest in layer 4, the opposite of location

information.
S-L-I-R Process
v. | Age Grou,
| — | Location:
z Adult
2 “.Elder Yy
i - — nRin
Comnical
s *’*k Children aton
n;—- ! < KRR || \8°%, /|  \@ .
Time &

Layer 1: Contact between
individuals in same age
groups.

Layer 2: Contact between
individuals in different age
groups in the same location.

Layer 4: Nationwide
commuting network.

Layer 3: Contacts
between locations.

Figure 2. MEDSim framework.
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a population-based approach is used to model the
transmission dynamics of each group. The layer 2
focus is on contact patterns and interactions between
different age groups within the same location. The
effects of regional interactions on human travel net-
works are added to layer 3 by incorporating population
density and commuting volume between any two loca-
tions. In layer 4, a network-oriented approach is used
to incorporate a geographic information system (GIS)
for constructing human travel networks on a national
scale, with nodes representing locations on commuting
routes and links representing movement between them.

Due to its ability to comprehensively integrate
multilayer structures to generate dynamic spatial and
temporal processes, we used Mathworks MATLAB
to implement our MEDSim framework as a numerical
computation kernel. By using Microsoft Excel to
organize census and transportation data, policy
makers, health professionals, and others who have
less experience with specialized computer software
will be able to generate simulation scenarios with min-
imal assistance.

2.1. Layer |: Within age groups

We used the four-state SLIR epidemiological model to
represent different infection stages among individuals in
the same age group in the same location. Individual
epidemic status is initially set at Susceptible (vulnerable
to infection but not yet infected), followed by Latent
(infected but unable to infect others), Infectious (capa-
ble of infecting other individuals), and Removed (i.e.
recovered, deceased, or otherwise not posing any further
threat). The numbers of pathogens that Susceptible-
to-Latent hosts carry are insufficient for active transmis-
sion to other Susceptible hosts, but these numbers
eventually reach levels where hosts become Infectious,
begin to infect other Susceptible hosts, and eventually
move toward a Removed status. The dynamics of the
four epidemic states over time are expressed as
Equations (1a)—(1d), which have the following features.

1. At time 7, the population of interest is divided
into four compartments (S(z), L(z), I(t), and R(?))
corresponding to the SLIR model’s four epidemic
states. Since the SLIR model is a closed system,
S(t) + L(t) + I(t) + R(t) = N, with N a constant rep-
resenting the entire population.

2. Transmission rate g is a constant representing how
fast Susceptible individuals become Infected and
acquire a Latent status.

3. Latent rate 0 is a constant used to determine trans-
formation speed from Latent to Infected.

4. Removed rate « is a constant used to determine
transformation speed from Infected to Recovered.

Ordinary differential equations can be used to
express the SLIR model as follows:

ds(

g = ~PSWIM/N (la)
% = —0L(1) + BS(t)I(1)/N (1b)
% = —al(1) + OL(1) )
% = al(f) (1d)

Figures 3(a) and (b) respectively present the concept
and a flowchart of our model’s first layer. Note our
modification in the interest of taking into consideration
self-motivated hospitalization (i.e. those individuals
who visit hospitals or clinics during an influenza out-
break regardless of their infection status). Depending
on diagnostic accuracy, some are confirmed as infec-
tious and receive medical treatment in advance, thus
altering transmission and removed rates for certain
populations. To integrate this factor into the model,
we propose adding three features: (a) an investigation
constant s representing the percentage of a population
that goes to a hospital or clinic in advance of becoming
ill; (b) a detection constant ¢, used to determine the
percentage of a population confirmed as infectious;
and (¢) a time delay constant 7, indicating the
amount of time between a patient with symptoms vis-
iting a hospital or clinic and the time his or her infec-
tion is confirmed. The default values of parameters
s and ¢ are both 0.6 (Table 1), meaning that 60% of
the infected population is prone to visiting hospitals
and/or clinics for medical advice, and 60% of those
visitors are correctly diagnosed as carrying the patho-
gen. The default value of parameter T is 3 (Table 1),
meaning that it takes three days to confirm that a hos-
pital or clinic patient with symptoms is infected with
the pathogen. In simulations, correctly diagnosed
patients are equivalent to confirmed cases in real-
world influenza surveillance systems.

In consideration of preventive health care, we added
a feature in which individuals with an L status are
moved to either an /; (infected and prone to visiting
hospitals and/or clinics for medical advice) or I,
(infected but not prone to visiting hospitals and/or
clinics) status, based on whether or not they actually
visit a hospital or clinic; this feature is expressed as
investigation proportion s. /; individuals are identified
as either /1, (correctly diagnosed as carrying the path-
ogen) or I} (incorrectly diagnosed as carrying the path-
ogen — in other words, false negatives); this is expressed
as detection proportion c¢. Note that regardless of
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Table I. MEDSim parameters

Category Layer

Attribute

Symbol

Description

Epidemic |

Transmission rate

Prisp

Transmission rate from investigated/diagnosed/treated age group p to same age
group in town i

Transmission rate from investigated/misdiagnosed age group p to same age group in

Transmission rate from non-investigated age group p to same age group in town i
Latent rate of age group p in town i

Removed rate of investigated/diagnosed/treated age group p in town i

Removed rate of misdiagnosed age group p in town i

Removed rate of non-investigated age group p in town i

Investigated proportion of age group p in town i (Default: 0.6)

Correctly diagnosed proportion of age group p in town i (Default: 0.6)

Time between investigation and correct diagnosis (Default: 3)

Transmission rate from investigated/diagnosed/treated age group p and same age

Transmission rate from misdiagnosed age-group p and same age group q in town i
Transmission rate from the non-investigated age group p and same age group q in

Age group p as a percentage of town i population. (Source: ROC Interior Ministry)
Binary value for commuter age level (Default: adult)

Population of town i as a percentage of the largest town’s population
(Source: ROC Interior Ministry)

Number of commuters from town i to town j (Source: ROC Institute of

Prapp
town i
i
2pp
Latent rate o,
Removed rate Ay
oo
o,
Investigation ratio Sh
Detection ratio <
Delay time T
2 Transmission rate B,
group g in town i
/S‘Iny
Brey
town i
Location 2 Relative percentage X;
Determination o(p)
Relative density d
Commuting weight  wj;
Transportation)
4 Intercity rate ”

Average number of daily contacts among individuals in location i
(Default: 0.8)

features: the transmission rates Biipg, Bizpg, and Bopg,
which represent cross-age group infections, and the rel-
ative percentage y, of age level, which affects the poten-
tial for cross-age infections. To distinguish among
parameters for individuals in different age groups,
we also added a subscript to each Equation (2) param-
eter (with the exception of 7)) — for example, we chan-
ged parameter S(f) to S,(r) for age level p. We
assumed three age levels when analyzing H1NI: chil-
dren (from birth to 14), adults (15-64), and seniors
(65 and older). Transmission rates between age levels
were differentiated to capture the complexity of infec-
tions across age groups. We added two subscripts
to transmission rate u to create ju,,: p for the age of
an infectious individual, and ¢ for the age of the indi-
vidual being infected (Figure 4). Epidemic parameters
used in population-based compartmental models were
also used to model infections across age groups. We
used three transmission rates and three removed rates,
based on the number of individuals seeking medical
attention.

To construct the layer 2 model, we revised Equations
(2a) and (2b) to (3a) and (3b), respectively, without

making any other changes to the Equation (2) sub-
equations, as follows:

ds
7;’ = SpXpXp(Boppd 2p + Brippl 11p + Bioppl 12p)/ N
) Z XaXp(Bagpl 20 + Brigpl 114 + Bragpl 124)/ Np
q#p
(3a)
dL,
D7 =0 L+ Spxp Xp(Bopplop + Brippl11p+ Bioppl12p)/ Ny

+S, Z Xa Xp(Bogpl2g + Brigpl 114 + Biogpl12¢)/ N,
q#p

(3b)

2.3. Layer 3: Commuting

For the present research we focused on the impacts
of daily commuting networks on the spreading of an
influenza virus. Since influenza viruses are transmitted
via airborne droplets, commuter hosts are capable of
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Figure 4. MEDSim layer 2 architecture flowchart. Red lines indicate parameters for other (non-p and non-q) age groups. Blue curves
indicate relative percentages of each age group within the total population of each location. (Color online only).

infecting other individuals along their standard routes.
The layer 3 model reflects two assumptions regarding
hosts with jobs: they commute over longer distances
than individuals who stay at home or travel to local
centers such as schools, and they tend to come into
contact with individuals in the same age group along
their routes and at their destinations. We also assumed
higher contact frequencies among individuals in more
densely populated areas. Accordingly, the layer 3 model
considers four features associated with travel between
population centers (locations).

o(p), a binary value representing whether age level

p is the commuter age level - that is,
|1 if p=commutable age level
olp) = { 0 otherwise ' We

assumed that children and seniors are less likely
than adults to commute on a daily basis, making
adults the most likely carriers of pathogens between
locations.

wj;, indicating how many individuals commute from
location j to location i on a daily basis.

Location
a

Figure 5. Potential movement of infectivity between locations i
and j.

n', a weighting factor representing the average number
of contacts among individuals in location 7 on a
daily basis.

d', a normalized population density value for location i.

For all i and j locations in a w commuting network,
we used the geodemographic weight shown as
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Equation (4) to measure the effects of commuting on i
and j population interactions:

Geodemographic weiht (j, i) = o(p)d'n’ 4)

Wi
D Wik
=

As shown in Figure 5, the commuting popula-
tion age level in this example is adult (15-64). The
o(p) function represents whether age group p is a trav-
eling population. For all i locations in the commuting
network, the term N(7) represents the set of locations
connected to location i within commuting network w.
The term wy;/ > 4 wjx is the ratio of commuters
between locations j and 7 to commuters between ;j and
all other locations. If location i is a large urban center,
Wi/ D kzi Wik will be large; if 7 is a suburb or rural
location, it will be small. Public health policies involv-
ing transportation can be tested by changing contact
rates among population centers in the layer 3 model.

The layer 3 framework is presented in Figure 6. To
construct the layer 3 model, we revised Equations (3a)
and (3b) to Equations (4a) and (4b), respectively.

Note the addition of a geodemographic weight on the
third line of each equation. All other Equation (2) sub-
equations are the same.

d o S .
7 _SlprXp(ﬂpr p+ﬁlllpp lllp+ﬁ112pp 112p)/Nl

- Sll) Zle;le(:Bqupléq + IBlilqp lilq + ﬁli2qp 12q)/Nl

q#p
=Y o(pd'n'Sy="— S i
JENG) iz Wik

X (ﬁ]prIép + 'Blllppljl 1p + ﬂlprﬂlZp )/N{? (4a)

dL! S . ) . . )
7;’ =6, Ly +S,d X5, 1, (B Loy +Bripp L1y Biopp l12p)/ N,
+S}Zdlqup('62qp q+ﬂ’ilqp ilq+/3§2qp i2q)/N£1

q7#p

+y a(p)dlnls;,Z i
JENQ) Vik

k#j
i
X(ﬁIprIZp llpp 11p+1312pp 12p)/N

(4b)

Location i
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(I35

Not investigated —

¥

(1) J

Removed
(R)

Location j
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) )

X
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(
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Figure 6. MEDSim layer 3 architecture flowchart. Properties associated with commuting between two locations are indicated by red
lines. Additional location properties are indicated by blue lines. (Color online only).
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Figure 7. Taiwan’s nationwide commuting network.

2.4. Layer 4: Nationwide interactions

We used Taiwan’s national travel network and com-
muting weight w;; to simulate individual movement
within regions (layer 3). Nodes represent locations,
and edges represent commuting weights between loca-
tions. Once transportation data are obtained, nodes can
represent any scale — for instance, a building for city
simulations and a town for regional or national simu-
lations. In the present study, each node represents an
individual town. Layer 4 of our model consists of 409
towns and 19,014 links (Figure 7) representing
Taiwan’s national commuting network, which can be
manipulated to determine the effects of various move-
ment policies and commuting restrictions.

After combining the four layers, the complete
MEDSim model can be expressed as

dsi o A . S i
1 =S 1 Bopp Lo+ Bripp T+ Bragp 1))/ N,
- S;, Z le;X;;(,BlquIlzq + ﬂll lqplli 1g + /SliquIIiZq)/N;
q#p
—o(p)yd'n'S, >

jeN(og/Wf*"

X ('BIZPPIéP +ﬂ]l 1]717[/1 Ip +ﬂ/12pp[I12p )/NL

Wi

(5a)

dL o S o o A
L L+ Syl 1 (B T+ Bl P+ Blagp Ty ) N,

dt
+S;ZdiX£1X; (ﬂéqpléq+ﬂilqplilq+ﬂ32qpli2q>/N;

q#p
Fotput's, Y o
JEN(i) = Ik
x ('8]2171)]]2/)+ﬂ/11ppljllp+ﬁll2ppljl2p)/]%
(5b)
dri S
P i iri
ek —Iop + QPLP (5¢)
dr . -
== D s, (5d)
dr, o .
a = ey (=)l (50)
dr’, o
dlp = _al]lpllllp + C;)Illp(t - T) (Sf)
I, i ogi iNTi
dtp = —diylh, + (L =), (1 =1T) (52)
dR! o S o
TIP = Ollllpllllp + O/1217111217 + OllZpIIZp (Sh)

The parameters used in Equation (5) are listed in
Table 1.

2.5. Technological framework

Figure 8 shows the MEDSim technological framework,
including a simulation flowchart, census databases, and
relationships between the four MEDSim layers and the
databases. The first step is to manually create an Excel
data set for the scenario in question — for example,
determining breakout locations or public health poli-
cies. Most data sets consist of spatial locations and
census information, which are used to establish geo-
graphic and demographic categories; each MEDSim
parameter belongs to at least one of the two.
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Figure 8. MEDSim simulation tool framework.

Since our layer 1 focus in this example is on disease
progression at an individual level, standard expert-
based parameters in compartmental models associated
with epidemics were used instead of transportation or
census databases.'® In layer 2, percentages of individ-
uals in each age group were determined from census
data, and the numbers of individuals in each location
were gathered from transportation databases. In layer
3, transportation databases were used to gather infor-
mation on the numbers of individuals traveling between
towns on a daily basis. In layer 4, transportation data
were used to establish the underlying national travel
network.

Figure 9 presents a screenshot of a MEDSim graph-
ical user interface (GUI). Multilayer epidemic model
parameters are initialized at the beginning of each sim-
ulation. Model parameters requiring setup are: (a) ini-
tial outbreak conditions, including the name of the
town and number of infected persons in an age group
identified by the surveillance system; (b) disease trans-
mission parameters at different layers, including trans-
mission, latent, and removed rates according to the
SLIR process for each age group, contact rates between

age groups, and regional contact probabilities between
towns; and (¢) output maps and charts for the towns of
interest and severity indicators to be monitored (e.g.
daily infected cases, daily new cases, and epidemic
velocity and acceleration). Daily epidemic progress
can be monitored in terms of sizes and locations of
red dots on maps (infected individuals), epidemic
curves on time charts, and output panels (numbers of
infected individuals at different times in different loca-
tions). Regarding kernel execution, MEDSim models
can be used for computing epidemic dynamics.
Simulation results can be shown as graphical curves
or expressed and recorded as numerical files. Lastly,
simulation results are evaluated by users, who can
repeat steps as required.

2.6. Statistical analysis for parameterization

To test the reliability and validity of time-series
MEDSim data, we used two indices to compare
simulated and actual numbers of infected individ-
uals: correlation coefficient (CC) and coefficient of
efficiency (CE), respectively expressed as Equations

Downloaded from sim.sagepub.com at NATIONAL TAIWAN UNIV LIB on September 7, 2010


http://sim.sagepub.com/

Tsai et al.

Simulation Help
Initial Reset intial States:
e | ) R -
Show Round 1 Ierations (x1) 85 E
- Inner
EH 1585 285
Transmission 4| | v| 28484 | [14247] [1427]
Exposed .|| o| 00714 00TI4T  DOTI4Z
Recovered 1|| ’| 014286 DI1428€ 014286
Intercity .I 1.' 1 ‘
= Chart Settings
<5 15-65 265 ~ Baten
Visitin 08 s 08
Dn::: - O Percentage | amm
mcion SBR[ o7 | {67 [T 07 [} oo
Transmission «|[" »| foos 005 005 (Press "ctrf” for multi-choice)
Infacted Number

]

Infectious individuals
HIEEGRAN
aith 7824
-l 264
i s
o 3556
it 12460
mum 19850

x 10

Figure 9. MEDSim implementation GUI.

(6) and (7).*> Here {X,|r =1,2,...,n} represents the
number of actual infected individuals and
{Y,t=1,2,...,n} the number calculated by the
MEDSim. In both sets, ¢ denotes the time step (in
1 week units); a total of n weeks is represented by
each set. We use X and Y to denote the means of X,
and Y,, respectively. The CC test measures data dis-
tance: higher positive values indicate positive correla-
tions and lower negative values indicate negative
correlations. The CE test is used to measure the
level of accuracy between two data sets; higher
values indicate greater accuracy:

Y (X, — XY, —Y)

CC=
NOSRIC NS SN0 SANC S ¢

e[-1,1] (6)

S (X =Y,y

VI (X - X)

CE=1-

€ [0,1] @)

3. Results and discussion

We tested MEDSim reliability (in terms of parameter
calibration and model fit) with actual epidemic curves,
tested and compared public health policies based on the
above parameters, and used MEDSim to simulate the
influenza A (HIN1) virus and to determine the effects of
the chosen policies. To establish simulation parameter
settings, we used population data from the Republic of
China (ROC) Ministry of the Interior and transporta-
tion data from the ROC Transportation Institute.*®

3.1. Parameterization

We used the seasonal influenza A and swine-origin
influenza A (HINI) viruses to perform parameteriza-
tion. The default parameter values are shown in
Table 1. We systematically calibrated parameters for
both viruses to create a small range, based on parame-
ters normally used with standard SLIR settings.'®
Summaries of MEDSim attribute settings and values
are given in Tables 2 and 3. The transmission rates
Biiyp» Blayy» and By, were directional between age
groups. Individual age group targets are presented in
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Table 2. MEDSim parameters used for fitting simulation curves with actual seasonal influenza A curves in Taiwan between

September 2008 and April 2009

Value
Layer Attribute Children Adults Seniors
I B pp 1.3333 0.6667 0.6667
ﬂi|2pp 3.3333 1.6667 1.6667
ﬂizpp 3.3333 1.6667 1.6667
9;') 0.0714
o b 0.1429
o 2 0.2500
oy 0.1429
Target Adults Seniors Children Seniors Children Adults
2 B Ly 0.6667 0.6667 1.3333 0.6667 1.3333 0.6667
ﬁillxy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667
ﬂi2xy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

Table 3. MEDSim parameters used for fitting simulation curves to actual swine-origin influenza A (HINI) curves in Taiwan from

week 25 to week 52

Value
Layer Attribute Children Adults Seniors
| ﬂ’lw 2.6667 1.3333 1.3333
B 2pp 3.3333 1.6667 1.6667
ﬂi2pp 3.3333 1.6667 1.6667
6;) 0.0714
o Ip 0.3333
o 2% 0.1429
Otizp 0.1667
Target Adults Seniors Children Seniors Children Adults
2 B Ly 1.3333 1.3333 2.6667 1.3333 2.6667 1.3333
ﬂ’lhy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667
ﬂilxy 1.6667 1.6667 3.3333 1.6667 3.3333 1.6667

the form of sub-columns. Experimental results from
applying the MEDSim using the Table 2 and 3 param-
eter values for the two influenza viruses are shown in
Figures 10(a) and (b), respectively. Actual and simu-
lated case data for both influenzas are shown in
weekly units.

Our CC and CE results for the two influenza epi-
demics are 0.86 and 0.74 for seasonal and 0.77 and 0.36
for swine-origin HINI1. In Figure 10(a) we plotted the
fractions of new infected cases of seasonal influenza A
in Taiwan between September 2008 and April 2009,
normalized to total cases. Higher CC and CE values
for seasonal influenza explain the similarities between
the two curves. In Figure 10(b) we plotted fractions of
new infected cases for the swine-origin influenza A virus

in Taiwan from week 25 to week 52 in 2009, also nor-
malized to total cases. As shown, the number of actual
cases decreased between weeks 37 and 48, followed by
an increasing trend, resulting in a lower CE value. This
two-wave pattern is very similar to global diffusion pat-
terns associated with international travel. Because we
did not incorporate international travel at this stage,
our swine-origin HIN1 model failed to capture the
second wave; however, it did capture the peak time
for the first (primary) wave (Figure 10(b)).

3.2. Intervention policy evaluation

We tested and compared different public health policies
using the above-described parameters, simulated the
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Figure 10. Comparison of weekly new infected cases between actual and simulated results normalized for (a) seasonal influenza A

and (b) swine-origin HIN influenza A.

Table 4. Observation index values according to different transmission rates

Transmission rate reduction (%)
Observation index

0% 30% 50% 70% 90%
Total cases. 1,784,044 1,407,752 1,108,520 485,761 8
New infected cases at epidemic curve peak 171,329 113,898 64,926 12,231 8
Week number of epidemic curve peak 20 26 36 77 00
Percentage of new infected cases at epidemic curve peak 9.6% 6.4% 3.6% 0.7% 0%
Total cases of epidemic curve 100% 78.9% 62.1% 27.2% 0.%
Total cases of basic epidemic curve
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effects of medical advice quality and number of com-
muters, and compared original epidemic curves with
those following public health policy implementation.
Special emphases were placed on peak numbers of
infected cases and peak infection days. The goals of
public health officials include reducing the peak
number (since it has a direct effect on social costs,
such as drugs and hospital beds) and delaying peak
day.

Figure 11 has two parts, one addressing the impacts
of transmission rate reduction and one the effects of
various intervention policies. The results from simu-
lated observation indices for different transmission
rates are shown in Table 4. According to the Figure
11(a) data for weekly fractions of new infected cases,
both curve peak and height were negatively affected by
decreased transmission rate. According to the Figure
11(b) data on the cumulative number of new infections
at different transmission rates, that number decreased
as transmission rate decreased. In Figure 11(c) we used
two observation indices to distinguish between the epi-
demic curve produced by the highest transmission rate
and the curves shown in Figure 11(a). According to the
first observation index (fraction of new infected cases at
epidemic curve peak), the strongest epidemic disease
transmission intensity affects a population and nega-
tively impacts public health resources over a period of
one week. The second index (epidemic curve peak week
number) indicates the severity and urgency of an epi-
demic, thus impacting deadlines for initiating public
health policies; higher values indicate more time for
making policy decisions.

The results from our comparisons of epidemic curve
peaks at different reduced transmission rates are shown
in Figure 11(c). The basic fraction of new infected cases
at curve peak (noted as 100%, with a transmission rate
of 1.0) is shown in the leftmost part of the graph. The
relative total number of cases (red line) consists of two
line segments, one from 1.0 to 0.5 and the other from
0.5 to 0.1. According to this result, transmission rate
should be reduced by at least 50% to obtain better peak
number suppression. An obvious decrease in peak
number occurs when the transmission rate reduction
is 70%.

Curve peak week numbers at different transmission
rates are shown in Figure 11(d). Note that week
number increased as transmission rate decreased — a
positive result for public health policy makers. The
results from simulations of various long- and short-
term intervention policy activation scenarios are
shown in Figures 11(f)—(h). No differences in numbers
of infected cases were observed for different interven-
tion policy activation times (Figures 11(f) and (g)).
However, epidemic peak was delayed from weeks 55
to 71 when intervention policy activation time was set
at 50 with a 70% reduction in transmission rate
(Figure 11(h)). Activation time exerted a much
weaker effect on peak timing at a 30% reduction in
transmission rate. According to these results, while
time of intervention policy activation did not signifi-
cantly reduce the number of infected cases, it
did exert an obvious effect in terms of delaying peak
time — a positive result for public health policy deter-
mination and preparation.

300 e - -
First identified case: adult resident of

Taipei
(High-density area)
240 +

—_
[o]
o

1 Intervention policy #1 activated before spread of the

novel influenza virus . .
| = Intervention policy #2 activated after 50 cumulative cases

| = Intervention policy #3 activated after 100 cumulative cases
I 1 Intervention policy #4 activated after 200 cumulative cases
[ m Intervention policy #5 activated after 400 cumulative cases

First identified case: adult resident of
Taichung
(Low-density arga)

-
n
o

[e]
o

Epidemic peak time (week number)
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90%

Transmission rate reduction

0% 30% 50% 70% 90%

Figure 12. Epidemic peak week numbers for urban and rural areas.
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Table 5. Observation index values according to different policy activation scenarios during swine-origin HINI influenza A outbreak

in Taipei

Transmission rate reduction

Policy activation time Observation index 0% 30% 50% 70% 90%
Scenario #l Total cases 1,784,044 1,407,752 1,108,520 485,761 8
Pre-virus appearance  New infected cases at epidemic curve peak 171,329 113,898 64,926 12,231 8
Week number of epidemic curve peak 20 26 36 77 0
Percentage of new infected cases at 9.60% 6.38% 3.64% 0.69% 0%
epidemic curve peak
Total f epidemi
Oté cases of epicemic curve 100% 7890%  62.14%  27.23%  0.00%
Total cases of basic epidemic curve
Scenario #2 Total cases Same as above 1,409,827 1,108,794 487,425 855
After 50 cases are New infected cases at epidemic curve peak 114,120 65,235 12,468 155
diagnosed Week number of epidemic curve peak 24 30 51 7
Percentage of new infected cases at 6.40% 3.66% 0.70% 0%
epidemic curve peak
Total cases of epidemic curve 79.02%  62.15%  27.32% 0.05%
Total cases of basic epidemic curve
Scenario #3 Total cases Same as above 1,410,263 1,108,993 488,900 1,991
After 100 cases are New infected cases at epidemic curve peak 113,532 65,314 12,604 349
diagnosed Week number of epidemic curve peak 24 29 47 8
Percentage of new infected cases at 6.36% 3.66% 0.71% 0%
epidemic curve peak
Total cases of epidemic curve 79.05%  6216%  27.40% O0.11%
Total cases of basic epidemic curve
Scenario #4 Total cases Same as above 1,410,782 1,109,355 491,563 4,599
After 200 cases are  New infected cases at epidemic curve peak 114,191 65,442 12,883 818
diagnosed Week number of epidemic curve peak 23 28 42 9
Percentage of new infected cases 6.40% 3.67% 0.72% 0%
at epidemic curve peak
Total cases of epidemic curve 79.08%  62.18%  27.55% 026%
Total cases of basic epidemic curve
Scenario #5 Total cases Same as above 1,411,273 1,109,893 496,246 10,000
After 400 cases are New infected cases at epidemic curve peak 114,185 65,669 13,408 1,680
diagnosed Week number of epidemic curve peak 23 27 38 10
Percentage of new infected cases at 6.40% 3.68% 0.75% 0%
epidemic curve peak
< Total cases of epidemic curve ) 20.11% 6221% 2782%  0.56%

Total cases of basic epidemic curve

Next, we compared differences in swine-origin HINI1
influenza A starting locations in Taiwan and their
effects on the subsequent spreading of the disease
(Figure 12, Tables 5 and 6). Taipei was labeled a
high-density area and Taichung a low-density area. In
the first (pre-swine-origin virus) scenario, case numbers
peaked much earlier in Taipei (20) than in Taichung
(61). When the transmission rate was reduced to
30%, the Taichung peak was significantly delayed.
When comparing numbers of infected cases at the
curve peak, both locations had approximately the

same number of new cases, but Taipei had a much
larger number of total cases. After reducing the trans-
mission rate from 50% to 30%, Taichung had a much
later peak week compared to Taipei, with no effect of
intervention policy activation time on the total number
of cases or newly infected cases in either location. The
results suggest that less densely populated starting loca-
tions are more sensitive to intervention policy activa-
tion time — that is, the combination of early activation
time and low transmission rate significantly delays epi-
demic curve peaks in less densely populated locations.
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Table 6. Observation index values according to different policy activation scenarios during swine-origin HINI influenza A outbreak

in Taichung

Transmission rate reduction

Policy activation time Observation index 0% 30% 50% 70% 90%
Scenario #l Total cases 2,190,247 1,672,733 1,112,428 485,801 8
Before the swine-origin influenza New infected cases at epidemic curve peak 172,083 114,556 64,551 12,186 8
A (HINI) virus emerges Week number of epidemic curve peak 61 83 19 284 |
Percentage of new infected cases at 7.86% 5.23% 2.95% 0.56% 0%
epidemic curve peak
Total f epidemi
Ota] cases of epidemic curve 100% 7637%  50.79%  22.18% 0.00%
Total cases of basic epidemic curve
Scenario #2 Total cases (see above) 1,672,266 1,117,265 487,030 767
After 50 cumulative swine-origin  New infected cases at epidemic curve peak 113,760 64,598 12,200 120
influenza 'Z(H IN I()j infected Week number of epidemic curve peak 73 93 180 28
cases are dlagnose Percentage of new infected cases at 5.19% 2.95% 0.56% 0%
epidemic curve peak
Total cases of epidemic curve 7635% 5101% 2224% 0.04%
Total cases of basic epidemic curve
Scenario #3 Total cases (see above) 1,671,019 1,120,702 488,492 1,723
After 100 cumulative swine- New infected cases at epidemic curve peak 113,672 64,430 12,194 273
?:'gm |;f|uenza A (dH INT) d Week number of epidemic curve peak 72 90 169 29
nvected cases are diagnose Percentage of new infected cases at 5.19% 2.94% 0.56% 0%
epidemic curve peak
Total cases of epidemic curve 7629% 51.17%  22.30% 0.08%
Total cases of basic epidemic curve
Scenario #4 Total cases (see above) 1,674,627 1,125,289 491,418 3,668
After 200 cumulative swine- New infected cases at epidemic curve peak 113,592 64,556 12,198 520
PZ'g'n |dnfluenza A (dH INT) d Week number of epidemic curve peak 71 88 158 32
ntected cases are diagnose Percentage of new infected cases at 5.19% 2.95% 0.56% 0%
epidemic curve peak
Total cases of epidemic curve 7646% 5138%  22.44% 0.17%
Total cases of basic epidemic curve
Scenario #5 Total cases (see above) 1,677,338 1,132,127 49,486 7,424
After 400 cumulative swine- New infected cases at epidemic curve peak 112,155 64,605 12,188 1057
f)';'gm |dnfluenza A (dH INT) d Week number of epidemic curve peak 70 85 147 34
ntected cases are diagnose Percentage of new infected cases at 5.12% 2.95% 0.56% 0%
epidemic curve peak
Total cases of epidemic curve 7658% 51.69% 22.67% 0.34%
Total cases of basic epidemic curve

4. Conclusion

Our goal in this paper was to integrate complex human
travel networks into a standard SLIR disease transmis-
sion model to create a four-layer simulation prototype
named the MEDSim. The framework is offered to
researchers interested in determining the contributions
of complex human contact structures to the transmis-
sion dynamics of influenza viruses. Our proposed
model is capable of providing insights that reflect the

dynamic processes of epidemics according to various
intervention scenarios involving outbreak location,
intervention timing, and different policy suites. We
view this multilayer approach as both convenient and
effective for public health practitioners and administra-
tors responsible for initiating early responses to poten-
tial pandemics, and for assessing intervention strategies
in outbreak locations.

This study has several limitations, such as the lack of
confirmed numbers of HINI influenza A cases in
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Taiwan (at this time it is not a notifiable disease in this
country). The data used for parameterization reflect
severe and hospitalized cases, which we assume as
having the same proportions as non-severe cases per
time unit. Differences between actual and simulated
cases can be significantly reduced when using appropri-
ate parameter values in terms of investigation and
detection proportions. Secondly, since the SLIR model
is imprecise in terms of its Removed designation, we
could not address the number of HI1N1-related deaths
in our discussion of peak time delay. In real-world sce-
narios involving pandemic disecases with high death
rates, peak time delays are very important for disease
prevention policy decisions. Thirdly, due to the limited
scope of this study, we did not gather and organize the
exceptionally large amounts of available data for all
areas represented by network nodes (e.g. workplaces,
houses, and schools) or network data for long-distance
transportation (e.g. highway, railway, or airline).
Instead, we used location and age for population group-
ing, based on their similarities in responses to epidemic-
related factors. Furthermore, we did not address other
individual attributes, such as income level or number of
social groups per individual, when determining trans-
mission rate, removed rate, or other parameters.

We believe our proposed MEDSim framework can
help public health organizations decide when to imple-
ment intervention strategies by simultaneously analyzing
multilayer interactions. To build on this positive begin-
ning, we plan to expand the multilayer framework to
make it suitable for other acute diseases, as well as to
make it responsive to complex human contact structures.
Although our focus in this pilot study was on a novel
influenza epidemic in Taiwan, the general multilayer
framework concepts can be transferred to other sites.
The SLIR model in layer 1 can be considered a general
model for all droplet-transmitted respiratory infections,
and the age group and commuting interactions in layers
2 and 3 can be disassembled to meet the requirements of
risk factors for other infectious diseases. Furthermore,
the network topology in layer 4 can be modified to meet
the needs of different scales of link-node structures as
noted in an earlier section. However, when transferring
the proposed multilayer framework to other sites, data
on the link-node network structures and transmission
parameters for the diseases being studied must be col-
lected, organized, and verified. One of our goals is to
establish a portable framework for this procedure. Our
plans also include extending the MEDSim for use as a
general-purpose disease modeling framework. For exam-
ple, we will work on adding long-distance transportation
networks to our model to determine the impacts of shut-
ting down railway or airline systems, and on modifying
different contact structures (e.g. mosquito-human) to
model vector-borne diseases, such as dengue fever and

malaria, as well as human—animal contact diseases, such
as rabies and Japanese encephalitis.
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