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ABSTRACT 

Science education aims to build learners' scientific knowledge structure and varied 

process skills. The scientific learners who have various prior knowledge and learning 

styles usually need various learning processes to master the concepts or skills. This 

learning requirement can be fulfilled by Hypermedia-based Learning Environments, 

where the free learning environments can provide a non-linear learning process for 

various learning needs. In the non-linear learning process, learners can freely select 

appropriate learning paths to achieve the learning goal and the diversified presentation 

can demonstrate varied process skills. However, the large number of learning choices 

provided by this kind of flexible learning environment usually make learning more 

difficult if learners lack self-regulated learning (SRL) abilities to decide their learning 

processes and strategies. Thus, scaffoldings, which suggest or guide learners when 

learners cannot self-regulate their learning, are usually used to help low-SRL-ability 

learners. According to previous researches, adaptive scaffoldings, which dynamically 

provide learners assistance according to learners' status, can improve learning 

performance and facilitate SRL behaviors better than fixed ones, but providing 

adaptive scaffoldings would cause heavy loads on teachers. Although some of existing 

Intelligent Tutoring System (ITS) approaches can provide adaptive scaffoldings, 

applying these approaches in the non-linear learning processes is still difficult. This is 

because the diverse portfolios and prior knowledge generated by various processes 

cause the teaching strategies more complex than ones for linear learning processes. 

 

Thus, In this dissertation, three subproblems about representing non-linear learning 

plans, adapting learning content to diverse learners' requirements, and diagnosing 

learners' status by heterogeneous portfolios are defined. For solving these 

subproblems, a novel adaptive scaffolding scheme is proposed, where a generalized 

finite state machine, a multi-granularity learning content model, and an 

ontology-based knowledge structure are designed to solve the three subproblems, 

respectively. The evaluation results and the applying cases are also provided in this 

dissertation. 
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Chapter 1 Introduction 

In science education, learners are asked to have deep understanding and master scientific 

inquiry skills in science domain [33]. Thus, many kinds of scientific inquiry assessment [34, 

101, 102] and learning activities [77] are used to assist learners in understanding the complex 

knowledge structure and varied process skills. In addition to traditional face-to-face learning 

activities, Hypermedia-based Learning Environments (HLE) are also used widely to support 

science education to enhance learning efficacy and balance teachers’ loading [58, 71]. The 

hypermedia-based learning environments are suitable to the science learning [51] because the 

free learning environments can provide non-linear learning processes, which can facilitate 

learners to construct knowledge structures on the basis of their own prior knowledge, and the 

diversified presentation are suitable to demonstrate varied process skills. However, without 

any support, most of the learners cannot obtain high learning performances due to the lack of 

self-regulated learning (SRL) abilities [36, 79], including planning goals, controlling strategies, 

monitoring performance, and reflecting on status [72]. SRL scaffoldings, which suggest or 

guide learners to regulate their learning when learners lack abilities to do the SRL well, are 

widely used to help learners learn in HLE [7]. 

 

SRL Scaffoldings are usually categorized into fixed scaffoldings, which are the same 

documents or suggestions for all learners, and adaptive scaffoldings, which can provide 

suggestions according to learners' learning status [5]. Azevedo and his colleague [6] apply 

fixed scaffoldings, adaptive scaffoldings, and no scaffoldings in learners' learning process to 

evaluate how various scaffoldings can affect learners' understanding of topics and SRL 

behaviors. In this research, the fixed scaffolding was a list of questions to remind learners to 

self-regulate their learning, and the adaptive scaffolding was suggestions provided by teachers 
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according to learners' status when learners cannot regulate their learning well. The 

experimental results of this research showed that adaptive scaffoldings based on ongoing 

learning diagnosis can significantly improve learners’ self-regulation and learning 

performances. However, in the real learning situation, it is costly for teachers to take care of 

all learners to provide adaptive scaffoldings. Thus, this dissertation aims to propose a Novel 

Adaptive Scaffolding Scheme, which can adopt teachers' expertise, to provide adaptive 

suggestions to help learners regulate their learning in the hypermedia-based learning 

environment. The main difficulty toward this goal is how to adopt teachers' expertise by using 

Information Technology (IT) to provide appropriate scaffoldings. 

 

The mechanisms used in the IT domain to adopt teachers' knowledge in a system, called 

Intelligent Tutoring System (ITS), can be categorized into the conventional-program-based 

approach and the knowledge-based approach. The former uses hard-coded algorithm to 

simulate teachers’ teaching strategies. However, as an ITS is used wider and wider, more 

teaching strategies are required to be applied to satisfy various learners' needs. The teaching 

strategies embedded in the algorithms are difficult to be maintained and acquired, so the cost 

of refining and maintaining algorithm would grow rapidly. The latter separates the domain 

expertise, represented by knowledge models, from the inference logics, so the teachers' 

knowledge can be refined easily without changing program codes. The knowledge model, 

explicitly representing teachers’ teaching strategies, can also facilitate to maintain and acquire 

teachers' knowledge. However, the variety of learners' portfolios and requirements in the 

non-linear learning processes of HLE makes the adopted teaching strategies complex, so the 

major challenge to apply knowledge-based approaches is how to design a suitable knowledge 

model to satisfy the teaching requirements of the non-linear learning processes provided by 

the free HLE. This dissertation defines and solves three subproblems caused by providing 
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adaptive scaffoldings in the non-linear learning processes, where three knowledge models are 

proposed in the Novel Adaptive Scaffolding Scheme to solve the three subproblems, 

respectively. The subprobems, the related ITS mechanisms, and the proposed ideas are listed 

as follows. 

 

Learning Process Representation Subproblem 

The learning process in HLE is non-linear, which usually makes learners difficult to plan 

their learning goals, because these learners cannot choose the most suitable learning paths to 

their learning status among the large amount of choices. Thus, in order to suggest learners 

appropriate learning paths, teachers' typical learning paths for various kinds of learners and 

rules of selecting learning paths need to be adopted in the adaptive scaffolding scheme. 

 

Existing ITS mechanisms which provide adaptive navigation support [2, 14, 18, 20, 44, 

78, 91] can facilitate teachers to generate typical learning plans and suggest learners with the 

appropriate learning paths. However, for the non-linear learning processes, the typical 

learning plans need to be complex with many candidate learning paths, and this kind of 

mechanisms still lack the knowledge model which can fulfill both expressive power and 

understandability. A Learning Process Representation Subproblem occurs where a knowledge 

model needs to be designed to satisfy both adequate expressive power to represent teachers' 

learning path selection knowledge and good understandability for teachers to provide their 

expertise. 

  

In order to solve the Learning Process Representation Subproblem, the proposed scheme 

generalize a finite state machine, which is an easy-to-understand model to represent 

conditional processes, to represent the learning processes. The new model proposed in this 
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dissertation is named Generalized Finite State Machine, where the states denote learning 

activities and the extended transition functions express the complex teaching strategies of 

learning path selection. 

 

Personalized Content Adaptation Subproblem 

In the non-linear learning processes in the free HLE, learners have diversified learning 

progress and even various learning environments and meida. Choosing appropriate content to 

satisfy learning requirements is a key task of controlling learning for a learner. However, the 

diverse requirements need to be satisfied by providing huge number of versions for each 

content, and it is difficult for learners to find appropriate versions by themselves. 

 

Learning recommender mechanisms in ITS [29, 46, 54, 65, 66] can recommend existing 

learning materials to learners according to learning styles, prior knowledge, and environments, 

but the huge number of content is needed for the learners' diversified needs. Content 

Adaptation mechanisms [11, 15, 30, 53, 57, 75, 97, 99] can dymanically generate new content 

for learners' requirements by fragmenting and recombining original content. However, 

managing large number of content fragments to efficiently provide learners appropriate 

content is still difficult, which is called a Personalized Content Adaptation Subproblem. 

 

In order to solve the Personalized Content Adaptation Subproblem, the original content 

is decomposed into blocks with the inner media and text. Various versions of content can be 

generated for various requirements by transcoding some media. A Multi-Granularity 

Content model is proposed to manage these versions of content, where a version is 

represented as three granularities: page level, block level, and media level. When a request is 

received, the system can retrieve the most suitable version of the page firstly to find the more 
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or less suitable content version and adapt it to the detailed requirements by replacing the 

blocks from other versions and transcoding the media if the request time is acceptable. Thus, 

the content adaptation process from coarse-grained to fine-grained can efficiently retrieve 

good-enough content and effectively refine it to the suitable content. 

 

Process Skill Diagnosis Subproblem 

In addition to the traditional lectures and examinations, an HLE can provide varied 

learning media and activities, such as virtual laboratories, to enhance the effectiveness of 

science learning. These activities can generate various learner portfolios to record learners' 

behavior and performances for monitoring and reflecting on their learning status. However, 

the various learning paths and diverse learner portfolios in the non-linear learning processes 

make moitoring and reflecting difficult because learners are difficult to refer to peers' 

performances and progress. 

 

Existing learning diagnosis mechanisms [17, 38, 45, 56, 62] in ITS domain can 

effectively diagnose learners' performance by traditional assessment results, but the ideas of 

these mechanisms are difficult to be applied to diagnose scientific process skills and learning 

behaviors for the science learning because heterogenerous learner portfolios generated by the 

scientific learning activities cannot be analyzed by the existing appraoches. Thus, a Process 

Skill Diagnosis Subproblem is defined as how to manage and organize the heterogenerous 

learner portfolios and provide learning diagnosis by applying the teaching expertise to these 

diversified portfolios to assist learners in monitoring and reflecting on learning status. 

 

For the Process Skill Diagnosis Subproblem, because the heterogeneous learner 

portfolios are difficult to be analyzed and used in learning diagnosis, a Heterogeneous 
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Knowledge Diagnosis model is proposed where the learners' behaviors in science learning 

activities can be identified as correct or incorrect actions by using the proposed key operation 

action patterns. These heterogeneous learning events are organized into an ontology-based 

knowledge structure, which is a tree of concepts and process skills with the relations 

connecting among the nodes. With the relations of concepts and process skills, it is easy to 

find the causal relationships between events and learning performances. Thus, the high-level 

learning diagnosis knowledge is easy to be applied to the organized portfolios. 

  

Generally speaking, this dissertation proposes a novel adaptive scaffolding scheme to 

assist learners in self-regulating their learning in the scientific learning domain. This 

knowledge-based scheme applies teachers' educational knowledge to diagnose learners' 

learning status and provide scaffoldings to fit individual learners' needs. In order to evaluate 

the effectiveness of the proposed novel adaptive scaffolding scheme, three sub-systems based 

upon the three proposed models, including a Generalized Finite State Machine, a 

Multi-Granularity Content model, and a Heterogeneous Knowledge Diagnosis model, were 

constructed and the corresponding experiments were conducted. The results show that the 

adaptive scaffoldings for planning learning based on Generalized Finite State Machine can 

significantly improve low-grade learners' learning performances. For supporting learning 

content selection and adaptation, the proposed Multi-Granularity Content model is more 

efficient than the previous approaches to provide more appropriate content. For monitoring 

and reflecting on learners learning status, the scaffoldings based on the Heterogeneous 

Knowledge Diagnosis model can also improve learners' motivation to understand learning 

problems. 

 

In the rest of the dissertation, the related works about Self Regulated Learning 
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scaffolding systems and the issues raised for non-linear scientific learning processes are 

introduced in Chapter 2. In order to overcome these issues, a Novel Adaptive Scaffolding 

scheme is proposed and described in Chapter 3, where three subproblems about non-linear 

scientific learning processes and the corresponding models used to solve the problems are 

introduced. In Chapters 4, 5, and 6, the three models and their evaluation are detailedly 

described, respectively. Afterward, a conclusion and the references used in this dissertation 

are provided in Chapters 7 and 8, respectively. Finally, the cases of applying the proposed 

models to real learning situations are given in appendices. 
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Chapter 2 Preliminaries 

The free learning processes and varied presentation can satisfy more requirements of 

learners to learn scientific concepts and scientific inquiry capabilities, but the learners' 

performance might become low because the learners cannot make decisions among the large 

number of choices in the flexible learning environment without enough ability of SRL. Thus, 

scaffoldings are necessary to help these learners regulate their learning. In this chapter, the 

scientific inquiry and process skills are described firstly, and SRL models and the existing 

scaffolding approaches are also introduced. 

2.1 Scientific Inquiry and Scientific Process Skill 

Today, Scientific Inquiry-based learning receives widespread attention. The purpose of 

such learning is to promote students’ knowledge and understanding of scientific ideas as well 

as how scientists study the natural world [19]. If students possess scientific inquiry skills, they 

are capable of conducting an investigation, collecting evidence from a variety of sources, 

developing an explanation from the data, and communicating and defending their conclusions 

[35]. Scientific inquiry can be considered as a set of process skills that consists of questioning, 

hypothesis-making, experimenting, recording, analyzing, and concluding, which can be 

regarded as "hands-on" learning  [19, 52]. The knowledge and capabilities of scientific 

inquiry are multidimensional [19, 34, 92] and can be divided into three types: (1) Substantive 

Knowledge, e.g., scientific concepts, facts, and processes; (2) Procedural Knowledge, e.g., 

procedural aspects of conducting a scientific inquiry; and (3) Problem Solving and Integrative 

Abilities, e.g., the ability to solve problems, pose solutions, conceptualize results, and reach 

conclusions [50]. 

2.2 Self-Regulated Learning and Its Scaffolding Survey 

Self-regulation is a learning skill employed to actively construct knowledge. Pintrich [72] 
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defined self-regulation as the planning, monitoring, controlling, and reflecting phases. The 

behaviors of cognition in each phase are described as follows: 

� The Planning Phase: A learner activates prior knowledge and plans learning goals and 

processes. 

� The Monitoring Phase: A learner monitors what he/she has learned and evaluates the 

learning performance toward the goals. 

� The Controlling Phase: A learner controls and adjust learning strategies and materials to 

achieve the learning goals. 

� The Reflecting Phase: A learner reflects on and refines the learning strategies and 

processes to continuously improve the learning effectiveness. 

 

Besides, other researchers also define various models of SRL to describe a learner's 

cognitive process. Winne and Hadwin [94] posited that learning happened in four phases: task 

definition, the goal setting and planning, the studying tactics, and adaptation to metacognition. 

Zimmerman [103] defined that the SRL includes three main phases: the forethought phase, 

including task analysis and self-motivation beliefs, the performance phase, including 

self-control and self-observation, and the self-reflection phase, including self-judgement and 

self-reaction. Although the definitions of all researchers' models are different, the described 

learning actions in all models are similar and can be mapped to Pintrich's model in general. 

For example, the task definition, the goal setting and planning phases in the Winne and 

Hadwin's model can be regarded as the planning phase in Pintrich's model; the studying 

tactics can be mapped to the control phase; and the adaptation to metacognition phase can be 

considered as the monitoring and reflecting phases in Pintrich's model. 

 

Thus, this dissertation uses SRL scheme mainly based upon Pintrich's SRL model to 
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define what scaffoldings should be provided by teachers while learners cannot successfully 

complete the tasks of their self-regulation: 

� In the planning phase, learners plan their learning activities, so teachers need to suggest 

learners who cannot plan their own learning with typical learning plans. 

� In the monitoring phase, learners evaluate their learning performances, so teachers need 

to assist learners in evaluating their knowledge and skills. 

� In the controlling phase, learners control learning strategy and the presentation of 

materials, so teachers have to assist learners in determining which content and presentation is 

appropriate and adapt the content presentation for learners’ needs. 

� In the reflecting phase, learners should reflect on learning status and find out themselves’ 

learning barriers, so a learning diagnosis is usually needed to determine how to remedy the 

learners’ learning barriers. 

 

Azevedo [6] categorized scaffoldings into fixed and adaptive scaffoldings. Several fixed 

scaffolding systems were proposed in recent years to help learners be aware of each phase of 

self-regulated learning. 

� Abrami [1] proposed an E-portfolio system to assist learners in planning their learning, 

where learners could create learning works, set learning goals, upload learning results, and 

share these plans and results to teachers, peers, and parents. 

� In order to teach learners to plan their learning and problem solving activities, Ge [28] 

provided learners prompts of five problem solving steps in a problem-based learning activity. 

� Shih [80] developed a platform to facilitate learners to plan and monitor their learning 

schedules, where learners could customize their own learning schedules based on 

teacher-provided schedule templates and monitor learning time, attempts, and progress. 

� KnowledgePuzzle [3] can facilitate learners to mark the segments in hypertext content and 
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define relations bwtween these segments to plan the navigation path. The tool can also 

regenerate the hypertext by integrating the segments according to the navigation plan to 

facilitate to read. 

� Siadaty and her colleaegues [82] use competence ontology to model a company's 

necessary skills and provide workers suggestions of learning goal planning and tools to monitor 

workers' learning status. 

 

According to previous evaluation, the fixed scaffoldings can make learners be aware of 

planning and monitoring their learning, but these scaffoldings lack personalized support to 

address learners’ indivudual learning needs [6]. Adaptive scaffoldings were provided to help 

learners overcome their barriers of SRL according to learners' status. In the research [6], 

adaptive scaffoldings provided by teachers can offer learners better learning effectiveness, but 

the wide use of this kind of adaptive scaffoldings in the real learning environments would 

cause heavy loads on teachers. ITS mechanisms, aiming to use IT mechanisms to guide 

learners to learn and overcome their learning barriers, could be solutions to widely provide 

adaptive scaffoldings without much increase teachers' loads. 

 

ITS approaches can be categorized into conventional-problem-based approachs and 

knowledge-based approaches. The former develop intelligent logics by hard-coded programs, 

and the latter aims to seperate the teaching knowledge from system control logics. The 

following sections introduce these two kinds of intelligent tutoring system approaches. 

2.3 Intelligent Tutoring System Approach Survey 

Many existing intelligent tutoring systems were designed by conventional programs, 

where the teachers’ teaching strategies are simulated by using artificial intelligent algorithms. 
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Planning Support 

Some existing learning systems, providing adaptive navigation support to guide learners 

learning, can assist learners in planning their learning. 

� Iglesias [49], Su [84] and their colleagues provided learners adaptive learning sequences 

according to learners’ learning performances and prior knowledge by using reinforcement 

learning and planning algorithm, respectively. 

� Hsiao and her colleagues [42] proposed parameterized questions, having attributes such as 

difficulty and concepts, and applied adaptive navigation support to select questions for learners 

to enhance learning effect and motivation. 

� Context-dependent parameters [16] and learning styles, such as Field Independent/Field 

Dependent, visual/verbal, abstract/concrete, etc. [73], were also used to compute the adaptive 

learning sequences. 

� Hwang [48] proposed an adaptive game-based learning system where the learning styles, 

global/sequential, are used to determine the game sequence. 

� Flores [24] grouped learners by using high/low prior knowledge and high/low motivation, 

and provide adaptive tutorials by using the groups. 

� Shih and her colleagues [81] used online-test to diagnose learners' abilities of concepts 

and gave adaptive remedial instrucction according to the concept abilities. 

� Despotović-Zrakić [21] clustered learners by learning styles, such as active/reflexive, 

sensitive/intuitive, visual/verbal, and sequential/global, and provided adaptive course to each 

cluster. 

� Huang and his colleagues [43] used sequential pattern mining to find recommended 

concept-learning path. In order to provide adaptive presentation, the user-voting approach and 

Item Response Theory (IRT) were used to determine the learners' ability levels and learning 

objects' difficulty levels. 
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Monitoring and Reflecting Support 

For helping learners monitor and reflect on their learning processes in the science 

education, there were plenty of customized virtual laboratories [23, 41, 52, 93, 100] that 

constructed environments of specific experiments for scientific inquiry to assess learners’ 

integrated abilities including scientific knowledge and process skills, but constructing a 

hard-coding virtual experimental environment for each specific experiment was costly and time 

consuming. 

 

The learning diagnosis mechanisms were defined to assist learners in reflecting on their 

learning status and finding their learning barriers. 

� Liu and Yu [64] proposed an Aberrant Learning Detection approach, which finds learners 

who have low learning performances due to non-cognitive factors by using Learning Caution 

Indexes (LCI) to detect the difference between the real learning performance and the estimated 

performance from Item Response Theory (IRT). 

� Moridis and his colleague [69] constructed an affect recognition system by formula-based 

method and Artificial Neural Network (ANN) method to predict learners’ mood in online 

self-assessment and give affective feedbacks after or before assessment. 

� Gonzalez and his colleagues [31] proposed a math problem diagnosis system, where 

mistakes in Math solutions are matched by predefined mistake patterns and provide 

corresponding remedial action suggestions. 

� Wu [95] proposed an intelligent tutee system to encourage learners learning by teaching in 

a concept mapping activity. The adaptive prompts are used to elicit learners' reflection on 

cognition and meta-cognition. 

� Barnes and Stamper [8] proposed an automatic hints generator for logic proof by Markov 
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decision processes, which are constructed using previous learners’ solution. 

 

These conventional-program-based intelligent tutoring system approaches could provide 

learners effective assistance in parts of self-regulated learning processes. However, the 

teaching environments and subjects are continuously changing, but the teaching knowledge 

embedded in the systems is difficult to be acquired and maintained. Thus, the requirements of 

knowledge-based approaches appear to provide learners learning systems having higher 

maintainability. The following subsections introduce the existing knowledge-based ITS 

mechanisms, which can support learners to plan, control, monitor and reflect on their learning. 

2.3.1 Knowledge-based Learning Planning Support Mechanism 

In order to provide learners adaptive learning paths to help plan their learning, some 

editable adaptive navigation support mechanisms and specifications were proposed. 

� SCORM Sequencing and Navigation [2] is one of the most popular adaptive learning 

activity specifications, where teachers can represent their learning strategies as the sequencing 

rules to control the learners’ learning paths among the learning materials. 

� Sakurai and his colleagues [78] proposed a dynamic storyboarding to manage didactic 

knowledge, representing learning sequence templates, and assist learners in planning university 

subjects. The results showed the system was beneficial for learning. 

� Clemente, Ramírez and Antonio [18] proposed a rule-based learning diagnosis, which can 

find appropriate learning materials according to learning objectives, learners’ abilities, and 

materials’ topics. 

 

Although teachers can represent their teaching strategies as rules by using these 

approaches, for teachers to take care of the detailed inference of adaptive learning rules is still 

difficult. Thus, graph-based models were proposed to enhance the understandability of 
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learning processes by visualizing the designed processes. 

� LAMS [20] is a user-friendly learning activity planning system, where teachers can design 

a collaborative learning process for the whole class, but the linear learning process designed by 

LAMS cannot represent adaptive learning strategies for personalized learning. 

� The dynamic fuzzy Petri Nets (DFPN) [14, 44, 91] was used to represent the behavior of 

tutoring agent, where the learning activity contains a main learning sequence. After a post test, 

the remedial learning contents can be shown if the score of test is lower than the threshold. 

� Inference diagrams [12, 61] were also used to describe the courseware diagram and 

support the evaluation of learners’ learning performance. The learning sequence of each learner 

can be various with different score range after an examination. Similar to the researches of 

DFPN, adaptive navigation support is only based on single test score and cannot express the 

learners’ complete learning statuses. 

 

These models can provide adaptive navigation support according to the single test score, 

but the lack of expressive power make it still difficult to express teaching strategies for 

complex learning portfolios. Thus, how to facilitate teachers to intuitively design the adaptive 

learning plan to support learners in planning their learning processes is a critical issue. 

2.3.2 Knowledge-based Strategy Control Support Mechanism 

For supporting learning strategy control, most of existing approaches focus on content 

selection and adaptation. Learners having various styles, prior knowledge, learning paths, and 

learning devices require personalized content presentation to satisfy their learning needs. 

When learners control their learning, selecting an appropriate learning content is necessary to 

ensure learning effectiveness. Thus, some learning content recommenders were proposed to 

assist learners in choosing existing learning content in the repository. 

� Graf and her colleagues [32] proposed a tool DeLeS, which can automatically detect 
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learners’ learning styles in LMS for teachers to understand their learners. Learning styles 

include attempts of learning, preference of content types and learning types, and navigation 

styles.  

� Mampadi and his colleagues [65] proposed an adaptive navigation support system to 

recommend learning materials according to the learners’ learning styles, which emphasize on 

Pask’s Holist-Serialist dimension. 

� Manouselis and his colleagues [66] proposed a collaborative filtering recommender for 

learning resource, where teachers used multi-attributes ratings to parameterize resources and 

shared with others. Ghauth and Abdullah [29] also proposed a learning material recommender 

by incorporating keyword-based content-based filtering and average good-learner ratings. 

� Klasnja-Milicevic, Vesin, Ivanovic and Budimac [54] proposed a recommender to 

recommend learning materials by clustering learners according to learning styles and finding 

habits and interests using frequent sequences mining. 

� For the ubiquitous learning, Hwang and Chang [46] proposed a mobile learning approach 

which provides location-based formative assessment to encourage learners to observe the real 

environment and find the answers. 

 

However, because of various learners' styles, prior knowledge, and learning devices, the 

number of learners' requirement combination can be large. The mechanisms mentioned above 

can only select existing content for learners, so the huge number of content versions, which 

should be prepared, cause the content version management and large search space problem. 

To cope with this problem, content adaptation mechanisms were proposed to adapt single 

content to satisfy wide range of requirements. 

 

Fudzee and Abawajy [25] grouped content adaptation approaches into two basic types: 
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static adaptation and dynamic adaptation. The former usually generates multiple variants for 

each content component, attaching a layout description for the presentation of 

component-based Web content [40, 68, 89]. These static adaptation approaches can reduce 

download time, but they require preprocessing tasks and greater storage allocation. Another 

limitation is that they do not take into account the user's preference and the situation of the 

wireless network. 

 

Many dynamic adaptation approaches, including content structure analysis and 

context-based adaptations, have been proposed to resolve these issues [25]. 

� A Hierarchical Atomic Navigation Concept (HANd) was proposed by González-Castaño 

and his colleagues [30] to navigate on small-scale devices, using the content structure analysis 

approach. In the HANd approach, an automatically generated navigator page is used to indicate 

some or all elements embedded in a World Wide Web (WWW) page. To generate the navigator 

page, a Web page is analyzed and fragmented into several separate “clipped” versions with the 

degrees of importance. According to the ability of the browsing device, the navigator page can 

determine a threshold of importance degree to control the amount of elements delivered to 

users. 

� Based on a similar concept, many fragmentation and summarization processes have been 

proposed to organize a Web page into a thumbnail representation that indexes detailed 

information [15], breaks each Web page into several text units [11], and detects the important 

parts [99] or the interesting fragments in dynamic Web pages [75], thus reducing delivery 

latency. 

 

However, not all Web pages are suitable for text summarization because summarized 

statements, as lossy information, may mislead users. To help improve understanding, the 
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semantically coherent perceivable units of the Web content can be extracted and presented 

together on a mobile device according to their semantic relationships [53, 57, 97]. 

 

However, most of the aforementioned content adaptation approaches need to manage 

large number of content fragments, and face a combination explosion problem when the 

number of requirements become large. Thus, how to manage the content versions to facilitate 

personalized content adaptation still needs to be solved. 

 

2.3.3 Knowledge-based Learning Diagnosis Support Mechanism 

Learners in the non-linear science learning process require to monitor and reflect on their 

learning status of scientific concepts and process skills during the learning activities, 

including lectures, traditional examinations, and process skill learning activities, such as 

virtual labortory assessment. Existing learning diagnostic mechanisms can evaluate learners' 

learning status and provide remedial learning suggestions according to their test results. 

� Lin and her colleagues [62] used item-concept relations and learners’ correctness of items 

to calculate the learners’ learning performances of concepts. 

� Furthermore, Hwang [45] and Heh [38] proposed mechanisms which can determine 

remedial learning paths by referring learners’ learning performances and the knowledge 

structure representing as a concept ontology. Hwang [47] further proposed a group decision 

approach which can integrate multiple experts' knowledge structures by using the rules-based 

approach. The integrated knowledge structure could be also used to diagnose learners' weak 

concepts and suggest remedial learning paths. 

� Afterward, Chu, Hwang and Huang [17] proposed an Enhanced Concept Effect 

Relationship to represent concepts and their difficulty levels to improve the effectiveness of 

learning diagnosis. 
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Although these approaches can effectively provide diagnosis for traditional examination 

results, the lack of considering learners' learning behaviors in other kinds of learning activities 

causes the limitation of finding learners' barriers, especially for process skills learning. 

� Kosba and his colleagues [56] proposed a mechanism, which can automatically generate 

adaptive feedback for teachers and learners according to the collected learning performances 

and learning behaviors by modeling teachers' high-level diagnostic knowledge using a 

rule-based approach. 

� Mitrovic [67] proposed a constraint-based intelligent tutoring system, where the key 

action patterns are modeled as rules associated with the positive feedbacks. The system could 

give positive feedbacks when learners' actions are correct and uncertain. 

 

However, the considered learning behaviors belong to traditional learning situations. The 

approache is still difficult to be applied to diagnose learners' scientific process skill learning. 

 

In addition to the traditional assessments, in order to facilitate learners to evaluate their 

process skills, some editable virtual lab systems were also proposed for teachers to design 

scientific inquiry experimental tests. 

� Higgins and his colleagues [39] proposed an authoring tool for teachers to construct 

diagram-based free-response assessment in electronics like logic circuit design. While teachers 

design the question, they can also set the marking file which is used to input their system for 

scoring of learners’ answer. The teacher can use this authoring tool to create different 

diagram-based assessment in electronics. 

� Yaron and his colleagues [98] proposed an authoring tool to provide teacher the 

flexibility of adding new chemicals and chemical equations. Learners can operate predefined 
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devices to conduct a chemical experiment, doing actions like mix chemicals or heat device to 

observe the reaction. 

 

These mechanisms can provide virtual environments for learners to train their process 

skills, but the learning diangostic mechanisms were still lacked for evaluating learners' 

learning behaviors in the virtual experiments. 

 

Current learning diagnostic mechanism can deal with the traditional learning situations 

well, and the high-level diagnostic knoweldge can also be modeled by using rule-based 

approaches in previous researches. However, for scientific learning, heterogeneous learning 

behaviors from process skill training and scientific concept learning are still difficult to be 

analyzed and applied by teachers' high-level diagnostic knowledge.  
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Chapter 3 Novel Adaptive Scaffolding Scheme 

According to the analysis in the Chapter 2, although the previous studies have proven 

that the existing ITS approaches can facilitate teachers and learners to teach and learn 

effectively in specific domain and learning situations, scaffolding learners for each SRL 

phases among the non-linear scientific learning processes still causes some probems, as 

shown in Figure 3.1: 

 

 

Figure 3.1: Subproblems and related SRL phases 

 

Learning Process Representation Subproblem: Because of the lack of the appropriate 

learning process representation, teachers are difficult to design the adaptive learning plan to 

support learners in their planning phase. 

 

Personalized Content Adaptation Subproblem: Due to the lack of content versions 

management approaches, efficiently providing personalized content adaptation to support 

learners in their controlling phase is difficult. 
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Process Skill Diagnosis Subproblem: Because of the heterogeneous learning behaviors 

from process skill training and scientific concept learning, analyzing learners' learning 

portfolios and applying teachers' high-level diagnostic knowledge to give learning diagnosis 

to support learners in their monitoring and reflecting phases is difficult. 

 

To cope with these problems, a Novel Adaptive Scaffolding Scheme, including the 

Generalized Finite State Machine, the Multi-Granularity Content model, and the 

Heterogeneous Knowledge Diagnosis, is proposed. As shown in Figure 3.2, the Novel 

Adaptive Scaffolding Scheme includes three scaffolding providers to support learners to 

self-regulate their learning: 

 

Plan Scaffolding Provider (PSP): A PSP, based on Generalized Finite State Machines 

to solve the Learning Process Representation Subproblem, can provide suggested learning 

plans to facilitate learners to plan their learning. 

 

Content Scaffoldings Provider (CSP): When learners aim to control their learning 

materials, a CSP, based on a Multi-Granularity Content Model to solve the Personalized 

Content Adaptation Subproblem, can manage content versions and adapt learning content to 

the learners' requirements. 

 

Suggestion Scaffolding Provider (SSP): During the learning process, learners need to 

monitor and reflect on their learning. A SSP, based on a Heterogeneous Knowledge Diagnosis 

Model to solve the Process Skill Diagnosis Subproblem, can give learning diagnosis and 

remedial suggestion to help the learners understand their own learning status. 
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All learners' learning portfolios, including records of reading content, test results, and 

portfolios of process skill training are stored into a Learner Portfolio Database. Learning 

resources, such as learning content and test items, are stored in the Learning Content 

Repository and Test Item Repository, respectively. Besides, learning applications, such as 

virtual laboratories, are stored into a Learning Application Repository. These learning 

portfolios and resources are refered and fired by the three scaffolding providers to provide 

learning scaffolding services. 

 

In the beginning of learning, PSP can suggest next learning activities to help a learner 

plan learning processes according to the learning portfolios when planning learning processes. 

Afterward, in the controlling phase, the learner aims to learn with a learning content, CSP can 

provide an appropriate learning content according to the learner's portfolio and the planned 

learning activity. After learning and testing, SSP can support the learner to monitor and reflect 

on their learning status according to the learning portfolios and provide diagnostic report for 

the learner to plan the next round of learning. Thus, in the proposed scheme, the 

interoperability of all scaffolding providers is concerned to scaffold the learner's whole 

learning process. 
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Figure 3.2: Novel Adaptive Scaffolding Scheme Architecture 

3.1 Learning Process Representation Subproblem 

In a non-linear learning process, three kinds of necessary elements should be represented 

in the learning activity plan: learning paths, learning activities, and the learning-path-selecting 

strategies. Various learning paths should be designed for various kinds of learners. Among the 

learning paths, learning activities, such as examinations, lectures, or projects, should be 

determined. Besides, in the branches of the learning process, the learning-path-selecting 

strategies based on teachers’ teaching knowledge should be designed to guide learners to 

select appropriate learning processes. However, designing a model for teachers to design 

processes and learning-path-selecting strategies flexibly and easily is difficult. 

Thus, the Learning Process Representation Subproblem is defined as how to design a 

learning plan model, such that 

� the model can represent the learning paths and learning activities, 

� the model can represent learning-path-selecting strategies and these strategies can be 
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executed to conduct learning planning, and 

� the model is easy to understand and be used to design processes for teachers? 

 

In order to intuitively represent the non-linear learning process to solve this Learning 

Process Representation Subproblem, a generalized finite state machine is used to model the 

knowledge of learning activity plans. The Generalized Finite State Machine (GFSM) is 

designed by generalizing a traditional finite state machine, where a compound input is used to 

represent multiple attributes of a learner’s status and the rules of the Disjunction Normal 

Form (DNF) are used in the new transition function to express the teachers’ 

learning-path-selecting strategies. 

 

3.2 Personalized Content Adaptation Subproblem 

In order to fulfill individual learners’ learning styles and learning status, the presentation 

of a learning material should be various. Existing content adaptation mechanisms can adapt 

the text or multimedia items to various presentation needs, but how to manage and reuse the 

adapted presentation versions to efficiently provide learning content is still an important issue. 

The existing learning content recommender systems consider a learning material as a static 

item. If a huge number of presentation versions are adapted for various requirements, the 

recommender should manage all the versions and have large search space for recommending a 

material for a new learner. If all the materials are stored as the detailed chunks of all adapted 

versions, the recommendation is still inefficient due to the combination explosion of these 

chunks for forming a complete learning material. 

Thus, the Personalized Content Adaptation Subproblem is defined as how to control 

the granularity of the stored content presentation versions, such that 

� the response time of the mechanism is acceptable, and 
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� the mechanism can retrieve or adapt suitable learning materials to the learners' 

requirements? 

 

According to the preliminary studies, the learning materials stored in a single content 

granularity cause the inefficient problem in providing content having adaptive presentation to 

a new learner. Thus, a Multi-Granularity Content model (MGC) is proposed to represent and 

store the learning materials as multiple granularities. For a new requirement, the 

coarse-grained learning material fulfilling the most learning needs is retrieved as the main 

body of the provided content. Afterward, the fine-grained parts of the retrieved material, 

which are less appropriate for the learner, are replaced by other fine-grained parts to enhance 

the quality of the adapted content. The content adaptation mechanism adapts learning 

materials from coarse-grained to fine-grained can prevent the combination explosion 

problems and the combination costs of detailed chunks. 

 

3.3 Process Skill Diagnosis Subproblem 

Learners need to monitor and reflect on their learning status in the monitoring and 

reflecting phases of self-regulation, so learning diagnosis mechanisms were proposed to 

support learners to evaluate their own learning. In the linear learning process, all learners’ 

learning portfolios are homogeneous, so assessing learners’ learning performance and status is 

easy by ranking or scoring. However, in the non-linear learning process, all learners’ learning 

processes are various, so how to assess the heterogeneous learning portfolio to provide the 

learning diagnosis is more difficult than the homogeneous ones. Teachers’ high-level 

diagnosis knowledge can be generally applied for various learning processes, but the existing 

approaches only focus on evaluating learners’ results of traditional tests. Without considering 

learners’ detailed learning behaviors in learning activities, such as operations in a scientific 



 

27 
 

inquiry experiment, the learning diagnosis cannot precisely capture learners’ learning status 

and process skills, especially in the science education. 

 

Thus, the Process Skill Diagnosis Subproblem is defined as how to provde learning 

diagnosis for scientific learning, such that 

� the heterogenerous learner portfolios generated in the scientific learning can be 

managed and organized, 

� the teaching expertise can be applied to these diversified portfolios, and 

� the diagnosis can find learners' weekness of concepts and process skills? 

 

To cope with the Process Skill Diagnosis Subproblem, a middle-level knowledge 

representation is needed to extract the learners’ learning status from heterogenerous learning 

events and provide structural learner models for learning diagnosis. Thus, a Heterogeneous 

Knowledge Diagnosis model (HKD) is proposed where an Ability-Centered Level is defined 

to connect high-level diagnosis knowledge and low-level learning events. In the 

Ability-Centered Level, all the learning behaviors and test results are structured for further 

diagnosis. In the Ability-Centered Level, the background knowledge, including concepts or 

process skills, is represented as the ontology, where concepts and skills are represented as 

nodes and the prerequisite relations and extended relations are represented as the relations 

between nodes. All learning behaviors and test results are extracted and represented as 

predicates of learning status. For example, after learners get a score 0.8 of a concept c1 in a 

test, a predicate is recorded as Score(c1, 0.8), and after reading a lecture about c1 during the 

inadequate reading time, the learning behavior is also be recorded as LearningTime(c1, 

inadequate). Besides, assume a learner does a wrong operations about the measurement skill 

in the virtual lab, a predicate WrongOperation(measurement) is recorded. In order to extract 
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the structured learning status from the heterogeneous learning events, the frame-based 

knowledge representation is used to model all the learning activities. For example, the frame 

of a reading activity records the lecture’s expected reading time and its associated concepts. 

For an experiment-based test, the frame records all necessary and wrong operation patterns 

and their associated skills and concepts. The embedded rules are defined to transform a 

learner’s learning events to the predicates in the Ability-Centered Level according to the slots 

of the frames. Besides, the high-level learning diagnosis knowledege can be represented by 

using rule-based representation, which can infer learning status and learning barriers from the 

predicate of learning status and the relations in the ontology of the Ability-Centered Level. 

3.4 Interoperability of Scaffolding Providers in Adaptive Scaffolding 

Scheme 

The three scaffolding providers can be interoperable to provide the complete adaptive 

scaffoldings for learners. As shown in Figure 3.3, in the planning phase of self-regulated 

learning, the Plan Scaffolding Provider based on Generalized Finite State Machines can 

provide the suggested learning activity si ∈ S (Step 2) according to the learner’s learner model 

µk ∈ ∑∑∑∑ and the previous learning activity (Step 1). 

PSP: ∑ × S � S, where ∑ is a set of learner models and S is a set of learning activities. 

If the learner takes a reading activity, the Content Scaffolding Provider based on a 

Multi-Granularity Content Model can adapt the content cj ∈ C (Step 4) according to the 

requirements of learning activity si and the learner model µk (Step 3) to support the learner 

learning in the control phase. 

CSP: ∑ × S � C, where C denotes a set of contents. 

The learner can read the content cj or take a test in the suggested learning activity si and 

generate a set of learning events el ∈ E. The Reading represents the learner’s behavior in the 
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reading leanring activity and Learning represents the learning behavior in other learning 

activities: 

Reading: S × C � E, where E denotes a set of learning events. 

Learning: S � E 

Finally, in the monitoring and the reflecting phases, the Suggestion Scaffolding Provider 

based on the Heterogeneous Knowledge Diagnosis Model can infer new learner model 

according to these learning events el (Step 5). 

SSP: E × ∑ � ∑ 

 

 

Figure 3.3: Knowledge interoperability between the three scaffolding providers 

 

 



 

30 
 

The three scaffolding providers in the scheme mentioned above can provide adaptive 

scaffoldings to help learners in their SRL processes. The information of learners' status can be 

shared among these scaffoldings providers to produce ongoing diagnosis and suggestions. In 

the following chapters, the three knowledge models used in the three scaffolding providers are 

introduced precisely. 
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Chapter 4 Generalized Finite State Machine 

For the non-linear learning process reprentation, the existing learning process 

representation models either lack expressive power to express teaching strategies for complex 

learning portfolios or are non-intuitive to facilitate teachers to design. Thus, how to facilitate 

teachers to intuitively design the adaptive learning plan to guide learners in their planning 

phase is a critical issue. Thus, a generalized finite state machine is used to model the 

knowledge of learning plans. The finite state machine (S, ∑, s0, δ, F) is an intuitive model, 

usually used to represent the process, where S denotes a set of states, ∑ denotes a set of 

alphabets of possible inputs, s0 denotes the initial state, δ denotes a transition function δ: S × 

∑ → S, and F denotes a set of final states. The generalized finite state machine (GFSM) is 

generalized from the traditional finite state machine, where the state S represents the leanring 

activities and transitions δ represent the recommended learning processes. Planning learning 

paths from the non-linear learning processes needs to refer to learners' concept abilities, styles, 

and previous learning paths. However, in the traditional finite state machine, the inputs ∑, 

which are a set of alphabets, are difficult to represent the complex learner portfolio, because 

the single-alphabet input needs to describe multiple attributes of a learner's portfolio, such as 

concept abilities, and learning styles. Thus, in the GFSM, a compound input is used to 

represent multiple attributes of a learner’s portfolio. Because of the compound inputs, the 

traditional transition function, which is a mapping table between states, input alphabets, and 

the next states, is needed to be generalized to implement the GFSM. The rules of the 

disjunction normal form (DNF) are used in the new transition function to express the teachers’ 

learning-path-selecting strategies. 

4.1 Definition of Generalized Finite State Machine 

The definitions of GFSM are as follows: 
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GFSM = (S, ∑, s0, δ, F): a generalized finite state machine. 

S = {s0, s1, …, sn}: a set of states, which represent learning activities. 

∑ = {µ1, µ2, …, µm}: a set of compound inputs µi, which represent learner models. 

µi = {ai1, ai2, …, aiN}: a set of attributes aij. Assumed there are N attributes recorded in 

the learner model in the scheme. 

s0: initial state. 

δ: S × ∑ → S: a transition function where DNF rules are embedded. 

F ⊂ S: a set of final states 

4.2 Rule Class Generation 

In order to implement the GFSM, which adopts DNF rules to represent 

learning-path-selecting strategies, the rule-based approach is used to conduct the execution of 

GFSM. Besides, in order to facilitate rule management, the New Object oriented Rule Model 

(NORM) architecture [63, 87, 88, 96] is used. NORM is a knowledge model of rule base, 

where the rules about the same knowledge domain are collected into a rule class (RC). Each 

rule class can include or refer to some other rule classes, and these relevant rule classes will 

form a set of rule objects (RO), which can be dynamically linked and perform cooperative 

inference. Accordingly, a GFSM can be considered as a knowledge object and the transition 

function can be represented as rules, which can be conducted by an existing inference 

mechanism. The algorithm of Rule Class Generation is proposed to transform a GFSM to an 

RC, as shown in Algorithm 4.1, where the state facts fnow and fnext are used as the variables to 

store the names of the current state and the next state generated by the inference. The learning 

status facts {fa1, fa2, ..., faN}are generated to store the values of the compound inputs µ. Thus, 

the rule r can refer to the current state fnow and the learning status {fa1, fa2, ..., faN}to determine 

the name of the next state fnext. 
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Algorithm 4.1: Rule Class Generation 

Input: GFSM 

Output: RC 

Step 1: Create a rule clase RC. 

Step 2: Generate a fact fnow to record the name of the last state and add fnow into RC. 

Step 3: Generate a fact fnext to store the name of the next state and add fnext into RC. 

Step 4: Generate facts {fa1, fa2, ..., faN} to record all the attributes of the learning status and 
add them into RC. 

Step 5: Generate a rule r for each transition mapping tuple δ(si) = sj and its embedded DNF 
rule R as 

  “If (fnow = 'si') ∧ R => fnext = 'sj' ” and add r into RC. 

Step 6: Return RC. 

Example 4.1: 

Assumed the GFSM = (S, ∑, s0, δ, F) where S = {s0, s1, s2} denotes the three learning 

activities and s0 is the initial activity. F = {s1, s2} denotes that the learning activities s1 and s2 

are both final activities. Each input µ in ∑ contains the values of four attributes {c1, c2, style}, 

where c1 and c2 denote the abilities of two concepts and style denotes the learning style. The 

transition function δ contains two rules: δ(s0, µ) = s1 if µ satisfy the embedded rule R1: c1 > 

0.5 ∧ c2 > 0.5 ∧ style = visual; and δ(s0, µ) = s2 if µ satisfy the embedded rule R2: c1 ≤ 0.5 ∨ 

c2 ≤ 0.5. The two transition rules mean that if the learner's scores of concept c1 and c2 are 

both greater than 0.5 and the learning style is visual, the suggestion of the next activity is s1, 

or the the suggestion of the next activity is s2, otherwise. Thus, by using the Rule Class 

Generation algorithm, the rule class of GFSM can be generated as two state facts, fnow and fnext, 

and three learning status facts, fc1, fc2, and fstyle. The two rules can be generated corresponding 

to the two rules in the transition function δ. The rule r1 generated according to R1 is "If (fnow = 

's0') ∧ (fc1 > 0.5 ∧ fc2 > 0.5 ∧ fstyle = visual) => fnext = 's1'" and r2 generated according to R2 is 

"If (fnow = 's0') ∧ (fc1 ≤ 0.5 ∨ fc2 ≤ 0.5) => fnext = 's2'". 
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4.3 Extended Model for Non-Linear Learning Process 

The GFSM can clearly represent the non-linear learning process and the 

learning-path-selecting strategies. Teachers can design their teaching strategies by using 

GFSM and it can suggest the next learning activities to learners when they cannot by plan 

their learning by themselves. The process of applying GFSM to help planning includes the 

designing and executing phases as shown in Figure 4.1. In the designing phase, a non-linear 

learning plan can be designed via a graphical authoring tool to help teachers easily design 

learning-path-selecting strategies with various learning resources and activities, and the Rule 

Class Generation, using Rule Class Generating Algorithm is used to generate the rule class of 

learning sequencing controls from the DNF rules embedded in the GFSM. In the executing 

phase, the rule class is used in an Adaptive Learning Planning to suggest adaptive learning 

plan to learners. Three kinds of learning resource repository are provided: learning content 

repository can retrieve and display SCORM compliant learning contents, test item repository 

can provide test items and perform examination, and learning application repository contains 

the registration of learning services, which are provide by other learning systems, such as 

virtual laboratories and simulation-based tests, and can be executed and communicated via 

web services. Accordingly, the states of GFSM are also defined as three types: si ∈ NLA ∪ NAP 

∪ NEA, where NLA is a set of states denoting lecturing activities, such as an 

online-content-reading activity, NAP is a set of states denoting education applications, such as 

virtual lab assessment, and NEA is a set of states denoting examination activities, such as an 

online test. 
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Figure 4.1: Designing and Executing Phase of Object Oriented Leanring Activity System 

4.3.1 Adaptive Learning Planning 

Figure 4.2 illustrates the flowchart of the Adaptive Learning Planning. In the beginning of 

the process, the rule class and GFSM are loaded into the rule base, and the learning activity of 

the initial state is fired. The corresponding learning resources are suggested to learners using a 

proper display interface according to the type of the learning resources. After the learner 

finishes the current learning activity, the inference process is triggered with the latest state and 

the learning status to find the next state until the final state is reached. 

 

Figure 4.2: Flowchart of Rule based adaptive learning method 
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The Algorithm of Adaptive Learning Planning is shown as follows, where the fact fnow 

stores the name of the current state, such as 's0' or 's1'. The current activity is displayed 

according to the category of the current state. After finishing the current activity, the name of 

the next state can be infered by using the inputted rule class with fnow and {fa1, fa2, ..., faN}, 

which stored all values of learning status, such as abilities of concepts and learning style. 

Algorithm 4.2: Adaptive Learning Planning 

Input: The GFSM and the corresponding rule class 

Step 1: Initially, fnow = 's0' 

Step 2: Do loop 

  2.1: Find si in GFSM where fnow = 'si' 

  2.2: If si ∈ NLA Then show learning items in a SCORM compliant content displayer 

       Else if si ∈ NAP Then show learning items in a learning application displayer 

       Else if si ∈ NEA Then show learning items in a test item displayer 

  2.3: If si ∉ F, Then the learning activity is finished. 

     Else Trigger the inference process with inputted rule class: 

       Set µj, represented the current learners' status, into {fa1, fa2, ..., faN}. 

       Trigger inference to get new value of fnext. 

       Assign the value of fnext into fnow. 

  End loop 

 

4.4 Experiment and Experimental Result 

The concept of GFSM is applied to implement a learning system, named Object-Oriented 

Learning Activity System (OOLA) [60]. The in-service teachers were invited to design a 

scientific learning activity, named “The evaporation, condensation and boil of water” in the 

OOLA system. The course structure and the teaching strategies are described in Appendix 1. 

To evaluate the effectiveness of OOLA system, we apply the one-group pretest-posttest design 

for the 62 learners of 5th graders in an elementary school in Taiwan. Firstly, let the pretest 

examination score of concepts of “The evaporation, condensation and boil of water” be the 

covariate variable. After one month learning with OOLA system, the posttest examination 
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score of the same scope is chosen as the dependent variable. Referring to the pretest result, the 

learners are partitioned into high grade group and low grade group. The pairwise t-test and 

discussion of all learners, high grade group and low grade group are as follows. 

 

The pairwise t-test of all learners 

Table 4.1: The pretest-posttest of learning achievement 

Learner Group Mean Size Standard Deviation Mean difference 

Learning 

Achievement 

pretest 

Posttest 

25.7419 

28.1290 

62 

62 

3.1516 

4.1429 

.4002 

.5261 

 

Table 4.2: The one-group pretest-posttest t-test 

Pairwise t-test 

Variance of Paired Difference 

t 
Mean 

Standard 
Deviation 

Standard Error of 
Mean 

pretest-posttest 2.3871 3.9187 .4977 4.797* 

*p < .001     

 

Table 4.1 and Table 4.2 show that there is significant difference between the pretest and 

the posttest mean scores (t = 4.797, p < .001). It is deduced that the Scaffolding Instruction 

designed by OOLA system is effective for learners. 

 

The pairwise t-test of high grade group 

Furthermore, referring to the pretest result, the learners are partitioned into high grade 

group and low grade group. The pairwise t-test in each group is also investigated to analyze the 

pretest-posttest of learning achievement. 
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Table 4.3: The pretest-posttest of learning achievement of high grade group 

Learner Group Mean Size Standard Deviation Mean difference 

Learning 

Achievement 

Pretest 

Posttest 

28.3548 

29.1290 

31 

31 

1.5822 

3.5846 

.2842 

.6438 

 

Table 4.4: The one-group pretest-posttest t-test of high grade group 

Pairwise t-test 

Variance of Paired Difference 

t 
Mean 

Standard 
Deviation 

Standard Error of 
Mean 

pretest-posttest .7742 3.5657 .6404 1.209 

*p < .001 
 

In Table 4.3 and Table 4.4, the means scores of the pretest and the posttest have no 

significant difference (t = 1.209, p > .001). It is deduced that the Scaffolding Instruction is not 

effective for high grade learners. 

 

The pairwise t-test of low grade group 

Table 4.5: The pretest-posttest of learning achievement of low grade group 

Learner Group Mean Size Standard Deviation Mean difference 

Learning 

Achievement 

pretest 

posttest 

23.1290 

27.6452 

31 

31 

1.8928 

3.3221 

.3400 

.5967 

 

Table 4.6: The one-group pretest-posttest t-test of low grade group 

Pairwise t-test 

Variance of Paired Difference t 

Mean 
Standard 
Deviation 

Standard Error of 
Mean 

 

pretest-posttest 4.5161 3.6503 .6556 6.888* 

*p < .001     
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In Table 4.5 and Table 4.6, the mean scores of the pretest and the posttest have significant 

difference (t = 6.888, p < .001). It is deduced that the Scaffolding provided by OOLA system is 

effective for low-grade learners. After further discussion with learners, we found that the 

high-grade learners tend to learning by interaction with other learners or teachers. Therefore, 

the individual learning in HLE without discussion with peers and teachers is difficult to 

improve their learning performance. On the contrary, the low-grade learners tend to find the 

solutions from learning objects. It results in that the scaffoldings of OOLA system can assist 

them in finding the learning objects based on their misconception. Therefore, the scaffoldings 

of OOLA system is effective especially for low-grade learners. 
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Chapter 5 Multi-Granularity Content Model 

For learners having various portfolios, prior knowledge, and learning devices, a learning 

content can be transformed to various versions to fulfill the diverse requirements. As 

mentioned in Chapters 2 and 3, adapting the single-granularity learning content to diverse 

requirements is inefficient. If the content versions are managed as coarse-grained versions, the 

huge amont of versions need to be managed for diverse requirements. If the fine-grained 

content versions are used, combining fine-grained versions to generate new content for 

diverse requests could cause the combination explosion. Thus, a Multi-Granularity Content 

Model is proposed to represent and store the learning contents as multiple granularities, 

including page, block, and media, where a learning content can be retrieve as a coarse-grained 

content or a set of fine-grained contents. 

For a new request, the most suitable coarse-grained version is retrieved as the main body 

of the output. If the response time is acceptable, the fine-grained parts of the retrieved content, 

which are less appropriate for the learner, are replaced by other fine-grained parts to enhance 

the quality of the adapted content. The content adaptation mechanism adapts learning 

materials from coarse-grained to fine-grained can prevent the huge number of prepared 

contents and the problem of combination explosion of detailed chunks. 

5.1 Definition of Multi-Granularity Content Model 

The definitions of the Multi-Granularity Content Model are as follows: 

� MGC = (F, N, SF): Multi-Granularity Content Model. 

� F: a set of possible feature sets. 

� N = {n0, n1, …, nm}: a set of nodes of all granularities in cases. 

� ni = (Fi, childi, leveli, contenti): a node of a content version. 

� Fi ∈ F: a set of features 
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� childi ⊂ N is a set of children nodes. If ni is a leaf, childi = {}. 

� leveli : the level of granularity, where ni ∈ childj iff levelj = leveli - 1. 

� contenti denotes the original content of the version ni. contenti = contentj 

iff ni and nj are adapted from the same content. 

� SF: F × ∑ → ℜ: a satisfaction function, where ℜ is the degree of the adaptation 

quality and ∑ is a set of inputted learner models. 

The MGC can be applied to the learning content domain to define the detailed definitions 

as follows: 

� If leveli = 0, ni denotes a page version of a learning content; if leveli = 1, ni denotes a 

block version of a page; and if leveli = 2, ni denotes a media version of a block. 

� Fi = CPi | leveli = 0 

� CPi = {c1, c2, ...}is a set of concept properties, denoting the concepts taught in 

the page ni. 

� Fi = HPi ∪ LPi ∪ {bi} | leveli = 1 

� HPi = <a1, a2,…, an>: every attribute (aj) denotes a set of features about 

hardware properties, such as the machine type (PDA or smartphone), Central 

Processing Unit (CPU) speed, memory capacity, screen size, and sound rate. 

� LPi = <b1, b2,…, bk>: every attribute (bj) denotes a set of features about the 

learner properties, e.g., maximum delivery time, preferred picture format 

ordering, preferred audio property, media switch, preferred content type, 

cognitive style, learning style, etc. Thus, we can initially define the 

LP=<Delivery Time (DT), Preferred Picture Format Ordering (PPFO), Picture 

Switch (PS), Audio Switch (AS)>. 

� bi denotes the suitable network bandwidth to this version. 

� Fi = MPi ∪ {typei, sizei} | leveli = 2 
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� MPi denotes the media parameters of the media-level nodes, where the features 

depend on typei. If typei = image, MPi = {widthi, highti, colori, mTypei}; if typei 

= audio, MPi = {precisioni, ratei }; and if typei = video, MPi = {widthi, highti, 

precisioni, ratei}. 

� colori denotes the color depth, mTypei denotes the image type, precisioni 

denotes the sound precision, and ratei denotes the sound rate. 

� sizei denotes the size of this media version. 

� ∑ = CPi ∪ HPi ∪ LPi ∪ {bi}: a learner's request. 

 

Example 5.1: 

A n0 with leveli = 0 denotes a page-level node, where the features F0 = {c1, c2} contains 

two concepts teached in the content0. c1 is "Freezing Point" and c2 is "Temperature Drop". 

From n1 to n15 are the block versions of n0, where leveli = 1. The nodes contains a set of 

features HPi ∪ LPi ∪ {bi}, where HPi = <1, 400, 128, 480, 640, 16, 16, 44> denotes that a 

learner uses a PDA (1) with 400 Mhz, 128 MB, 480×640 resolution, 16 bits color depth, 16 bits 

sound precision and 44 KHz sound rate (U denotes Unsupported) under 80 kbps bandwidth (bi) 

to retrieve the content, and LPi = <5, JPGB, 1, 0> denotes that the maximum delivery time (DT) 

is less equal than 5 seconds (sec.), the order of Preferred Picture Format Ordering (PPFO) is 

JPG (J) > PNG (P) > GIF (G) > BMP (B), the switch attribute of media, PS=1, enables to show 

the picture, and the AS=0 disables the audio play, respectively. Table 5.1 shows the example 

with 15 nodes having leveli = 1. The attribute definitions of LP and HP can be extended to meet 

the various requirements. 
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Table 5.1: Example of block-level nodes having leveli = 1 

 Bandwidth (b) Hardware Properties (HP) Learner Properties (LP) 

n1 213 <2, 528, 384, 320, 480, 16, 32, 120> <7, JBGP, 1, 1> 

n2 175 <2, 600, 384, 320, 480, 24, 16, 40> <2, GPBJ, 0, 1> 

n3 487 <0, 1200, 4000, 1366, 768, 32, 16, 300> <2, JGPB, 1, 0> 

n4 223 <2, 528, 288, 320, 480, 16, 8, 30> <3, JBPG, 1, 0> 

n5 281 <2, 528, 384, 320, 480, 16, 32, 120> <7, PJGB, 0, 1> 

n6 69 <0, 2000, 8000, 1366, 768, 32, 32, 500> <1, GPBJ, 1, 0> 

n7 232 <2, 528, 288, 320, 480, 16, 8, 30> <5, JPGB, 0, 1> 

n8 290 <1, 1000, 448, 480, 800, 24, 16, 140> <1, GPJB, 1, 0> 

n9 95 <0, 1200, 4000, 1366, 768, 32, 16, 300> <1, BJGP, 0, 0> 

n10 167 <0, 1200, 4000, 1366, 768, 32, 16, 300> <5, GPJB, 1, 0> 

n11 220 <0, 1200, 4000, 1366, 768, 32, 16, 300> <5, JPGB, 0, 1> 

n12 326 <2, 528, 288, 320, 480, 16, 8, 30> <4, JPGB, 0, 0> 

n13 339 <2, 528, 288, 320, 480, 32, 8, 20> <7, PBGJ, 0, 0> 

n14 313 <2, 528, 288, 320, 480, 32, 8, 20> <4, GJPB, 1, 1> 

n15 95 <2, 528, 384, 320, 480, 16, 32, 120> <4, PBJG, 0, 0> 

 

5.2 Content Version Management Scheme 

Content versions of each granularity are stored in MGC Base and managed by Content 

Version Management Sheme for serving learners' requests, as shown in Figure 5.1. The 

page-level nodes in the MGC are managed in the Page Version Base. The block-level nodes 

record all versions of blocks adapted in the previous adaptation processes, so an efficient 

retrieval mechanism is necessary for the large amount of nodes. These block-level nodes are 

processed by a Case Decision Tree Construction process to generate decision tree stored in a 

Block Version Base according to the hardware and learner properties to facilitate to efficiently 

retrieve appropriate nodes. All versions of media in blocks are managed in the Media Version 

Base. When retrieving a new case, the learner's request is firstly used to retrieve an 
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appropriate pages according to concept properties (CP) in the request and page-level nodes. If 

the original blocks in the pages cannot satisfy the request, an Adaptation Decision Process is 

executed to retrieve the appropriate block-level nodes generated in the previous adaptation. If 

these previous block-level nodes cannot still satisfy the request, a new media object can be 

trandcoded in the Learning Content Synthesis. 

 

 

Figure 5.1: Content Version Management Sheme 

 
In this section, we will describe how to use existing block-level nodes to construct a 

Content Adaptation Decision Tree (CADT) in the Content Version Management Scheme. The 

CDT can be used to efficiently and quickly determine the suitable adapted block-level nodes for 

learners according to the mobile device features, the preferences of learners, and network 

bandwidth. As shown in Figure 5.2, the Case Decision Tree Construction process includes 

Content Version Clustering, based on ISODATA Clustering algorithm, and Content Version 

Cluster Decision Tree Construction, based on ID3 algorithm. 
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Figure 5.2: Case Decision Tree Construction 

 

To apply the ISODATA clustering approach, a similarity measure estimating the 

similarity value between two block-level nodes based on the LP must be determined. Because 

the attribute of an LP might consist of a numerical attribute, e.g., maximum delivery time, and 

a symbolic attribute, e.g., preferred picture format ordering, the similarity measure of an LP 

can be formulized by means of the distance measure approach as follows: 

 

Given two LPi=<a1, a2,…, an> and LPj=<b1, b2,…, bn>, the similarity measure of 

numerical attribute can be formulized as follows: 

kk

kk

k
MinMax

ba
SimofNum

−

−
−= 1 , where 1；k；n, the Maxk and the Mink are the 

predefined maximum and minimum values of k-th attribute in an LP, respectively. 

 

Regarding the symbolic attribute in an LP, the value, JPGB, is like a string. To calculate 

the similarity between two symbolic attributes, their string-based values can be encoded into a 

numerical value by the numerical order of predefined symbol priority. For instance, the 

numerical value of string JPGB can be encoded as ‘1234’ based on the priority order definition 

{"J"=1, "P"=2, "G"=3, "B"=4}. Also, the maximum value will be the ‘4321’ of the string BGPJ. 

The symbolic attribute can thus be transformed into a numerical value and its similarity can be 

measured by the SimofNumk formula. Because attributes in an LP may have different degrees of 
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importance, we define a Weight Vector (WV), which can be manually defined by a learner, to 

adjust for the degree importance of each attribute. Therefore, the similarity measure between 

two LPs can be formulated as: 

 

����������	
��
�, �
�� = ∑���������(��, ��) × ��, where wk ∈WV, ∑wk = 1, and l ≤ 

k ≤ n. 

 

To evaluate when to split and merge the cluster, the DeviationLP, which is used to calculate 

the standard deviation of the samples, must be defined as: 

 

������� !�	
 = " #$%&$
'#($%'�)$

", where 1；k；n, the Maxk and the Mink are the predefined 

maximum and minimum values of kth attribute in an LP, respectively. 

 

Example 5.2:  

Given two LPs, LP1 = <3, JPGB, 1, 0> and LP2 = <2, JGBP, 1, 1>, and a learner predefined 

related attribute WV = <0.5, 0.3, 0.1, 0.1>. We can apply the above similarity measure to 

calculate the similarity between LP1 and LP2. For example, the similarity of the numerical 

attribute, Delivery Time (DT), between LP1 and LP2 is: 
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The similarity of the symbolic attribute, Preferred Picture Format Ordering (PPFO), is:  
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Hence, by the same way, the similarity between LP1 and LP2 is: 
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5.2.1 Content Version Clustering 

An Content Version Clustering based on ISODATA is proposed to group these LPs into 

several clusters according to the aforementioned similarity and deviation measure, shown in 

Content Version Clustering Algorithm (CVClustering). After applying the algorithm, the 

block-level nodes in Table 5.1 can be grouped into three clusters, as depicted in Table 5.2. The 

clustering result shows that the versions in Cluster 1 can satisfy a learner who prefers pictures 

and does not want audio. The versions in Cluster 3 can provide both pictures and audio, and 

the other versions are clustered into Cluster 2. 

  



 

48 
 

 

 

Algorithm 5.1: Content Version Clustering Algorithm (CVClustering) 

 

Symbols Definition: 

DT: the Delivery Time (DT) in a learner propoerties vectors (LP). 

LPset: the set of LP. 

K: the initial number of clusters. 

C: a cluster with several learner preference vectors (LP). 

CC: the Center of Cluster. 

Cset: the set of clusters with the Center of Cluster (CC) 

Ts: the split threshold (Standard Deviation) for splitting a cluster into two ones.  

Tm: the merge threshold (Mean Distance) for merging two clusters into one. 

Tn: the minimum number of the members in a Cluster for deleting a cluster. 

Ti: the maximum iteration number for executing the clustering process  

Tp: the minimum number of Cluster pair for merging clusters process. 

 

Input: LPset, K, Ts, Tm, Tn. 

Output: The set of Clusters, Cset. 

 

Step 1: Initial Clusters Selection: 

  1.1: For i = 1 to K.  

         Randomly select LPi∈LPset to insert LPi into Ci with CCi=LPi and then 
insert Ci into Cset. 

Step 2: ISODATA Clustering Process:  

  2.1: Execute the following sub-Steps (2.2-2.6) repeatedly until there is no 
difference between two iterations or the amount of iteration exceeds Ti.  

  2.2: Insert each LPj∈LPset into appropriate cluster Ci∈Cset according to the 
SimilarityLP(CCi, LPj). 

  2.3: Delete the Ci if the number of LP is less than Tn. 

  2.4: Split a Ci into two clusters according to Ts and Tn.  

  2.5: Merge two clusters into one according to Tm and Tp. 

  2.6: Re-compute the Cluster Center (CCi) for each Ci∈Cset. 

Step 3: Output the Cset. 
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Table 5.2: Result of applying CVClustering with the cluster parameters (K =5, Ts =0.01, Tm 

=1.0, Tn =1, Ti=50, Tp=1) based on data in Table 5.1 

Cluster Label Block-level Nodes 

1 {n3, n4, n6, n8, n10} 

2 {n2, n5, n7, n9, n11, n12, n13, n15} 

3 {n1, n14} 

 

5.2.2 Content Version Cluster Decision Tree Construction 

After the clustering process, each cluster will be tagged with a label, as shown in Table 5.2. 

Determining a suitable cluster for a new request is an issue which can be resolved by using the 

decision tree approach. Based on the Hardware Properties (HPs) in these block-level nodes, 

with cluster labels defined in Table 5.2, we can apply a decision tree induction algorithm, 

Iterative Dichotomiser 3 (ID3) [74], to create a Content Adaptation Decision Tree (CADT). 

ID3 can process only the symbolic value of an attribute, so the numerical attribute values of the 

HP in Table 5.1, e.g., CPU speed, system memory, etc., have to be discretized by the following 

approach. 

 

In all HPs, l  and µ  are the minimal and maximal values of an attribute, respectively. 

Let ∆=( l -µ ) / N, where N is the number of desired discrete ranges. Then, a numeric value of 

an attribute can be mapped into the symbolic value. For example, given N = 3, the 

corresponding symbolic values are L in [ l , l +∆ ], M in [ l +∆ , l +2∆ ], and H in [ l +2∆ , 

l +3∆ ] 
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Therefore, the numerical attribute of HP in Table 5.1 can be mapped into several discrete 

ranges, as shown in Table 5.3. 

Table 5.3: Result of mapping the numerical value in HP 

Numerical Attribute Representative Symbol 

CPU Speed (CPU) L: Low, M: Medium, H: High 

System Memory (SM) L: Low, LM: Low-Medium, MH: Medium-High, H: High, 

Screen Horizontal Size (SHS) T: Tiny, S: Small, M: Medium, L: Large 

Screen Vertical Size (SVS) T: Tiny, S: Small, M: Medium, L: Large 

 

Example 5.3: 

Table 5.4 shows six HP data with cluster label, which have been classified into two 

subsets: {4, 7, 12} and {5, 15, 1} according to the attribute, "Sound Precision." The expected 

information needed to classify six samples is given by the information gain (I): 

 

I (the number of nodes in C1, the number of nodes in C2, the number of nodes in C3)  
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The Entropy (E), or expected information based on the partitioning into two subsets by the 

attribute, "Sound Precision," is given by:  
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Finally, the encoding information that would be gained by branching on attribute "Sound 

Precision" is 

 

Gain(Sound Precision) = I(1, 4, 1) - E(Sound Precision) =1.252 - 0.918 = 0.334. 

 

Table 5.4: HP in block-level nodes with cluster label classified by attribute, "Sound Precision" 

Nodes HP in the Node Cluster Label 

n4 <2, 528, 288, 320, 480, 16, 8, 30> 1 

n7 <2, 528, 288, 320, 480, 16, 8, 30> 2 

n12 <2, 528, 288, 320, 480, 16, 8, 30> 2 

n5 <2, 528, 384, 320, 480, 16, 32, 120> 2 

n15 <2, 528, 384, 320, 480, 16, 32, 120> 2 

n1 <2, 528, 384, 320, 480, 16, 32, 120> 3 

 
Consequently, by means of the above ID3 approach, the information gain of each attribute 

(of each HP) in Table 5.4 will be computed. The attribute with the highest information gain will 

be chosen as the test attribute. A node is created and labeled with the attribute, branches are 

created for each value of the attribute, and the samples are partitioned accordingly. Table 5.1 

depicts the result of applying the ID3 algorithm data. 
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Figure 5.3: CADT based on HP in Table 5.1 

 

5.2.3 Content Version Cluster Decision Tree Maintenance Process 

As stated previously, after the clustering and decision tree construction processes are 

complete, all nodes ni in the Node Pool, a temporary buffer, can be grouped into several clusters 

and retrieved by the CADT structure. In the CADT maintenance process (see Figure 5.4), all 

new nodes are first temporarily stored in a Node Pool. While the amount of nodes (N) in a Node 

Pool is more than a threshold, which is estimated automatically by the CADT Rebuilding 

Equation (Y=α+βX) generated by the ordinary least squares approach [37], the CADT is 

rebuilt automatically offline by the clustering and decision tree processes. Then, these 

processed nodes in the Node Pool will be shifted to the final storage and become the historical 

nodes indicated by the newly rebuilt CADT structure. Each node indicates the associated media 

nodes consisting of original or adapted versions, all of which are stored in the Media Version 

Base. Moreover, in order to efficiently manage the storage space of the Media Version Base, 

the Utilization Rate (UR) is checked of every adapted media object version, except for its 

original version. If the UR of any adapted version ni < Threshold, it will be deleted from the 

Media Version Base. 
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Figure 5.4: Flowchart of the CADT maintenance process 

 

5.3 Content Adaptation Process 

To meet diverse learner needs, including varied mobile device capabilities, network 

conditions, and individual learner preferences, the Content Adaptation Process (CAP) has been 

proposed to automatically determine an appropriate MPset for all media-level nodes from the 

Media Parameter database, which records all possible media parameter value sets for media 

adaptation, to adapt and transcode all media resources in a desired page according to the 

requirement of the new ∑. The process is described below. 

 

The first step of CAP is retrieving the most appropriate pages for the request ∑. The 

satisfaction degree of pages for the learner's request is measured by the intersaction of 

contained concept properties: 

i

i
iPage

CPCP

CPCP
FonSatisfacti

∪

∩
=Σ

∑

∑),(  

The page-level node having the highest satisfaction degree is selected and the contained 

blocks are adapted if the blocks cannot fully satisfy the learner's requirements and the request 

time is acceptable. 
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5.3.1 Satisfaction Measure on the Quality of Media 

In the CAP, we would like to determine an adapted media which can meet the requirement 

of a ∑ very well. Therefore, the satisfaction measure on the quality of media has been defined to 

estimate the satisfaction degree between the adapted media selected by CAP and the media 

requested by the learner. 

Given HP = <a1, a2,…, am> and MPi =<b1, b2,…, bn>, the similarity measure of each 

numerical attribute between HP and MPi can be formulized as: 


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where 1；j；m, 1；k；n. 

 

Regarding the symbolic attribute of the image type between the MPi and the requested ∑, 

e.g., Preferred Picture Format Ordering (PPFO), the particular similarity measure of image 

type is formulized as: 

SimofImageType(PPFO ∈ LP, mTypei ∈ MPi) = l - (k - l) × 0.25, 

where k = the order of type in the string of PPFO. 

 
We also define a Satisfaction Weight Vector (SWV) to adjust the degree of importance. 

The satisfaction measure on the quality of media between an ∑ and an MP in the media 

database can thus be formulated as: 

SatisfactionQualityOfMedia ( ∑, MPi) =  

Σ((SimofNum(aj ∈ HP, bk ∈ MPi) | SimofImageType(PPFO ∈ LP, mTypei ∈ MPi)) × 

wj), 

where wj ∈ SWV, Σwj = 1, and 1；j；m, 1；k；n. 
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Example 5.4: 

Given a media-level node na whose fa = { widthi, highti, colori, mTypei, typei, sizei } = 

{ 800, 400, 16, J, image, 160 } with SMV = <0.5, 0.1, 0.3, 0.1>, and a new ∑ = CPi ∪ HPi ∪ LPi 

∪ {bi} = {c1, c2} ∪ {1, 1000, 448, 480, 800, 24, 16, 140} ∪ {1, GPJB, 1, 0} ∪ {500}. Then, 

the satisfaction between ∑ and na can be estimated as follows:   

SatisfactionQualityOfMedia(∑, fa) = 0.5 × SimofNum(480 ∈ HP, 800) + 0.1 × SimofNum(800 

∈ HP, 400) + 0.3 × SimofNum(24 ∈ HP, 16) + 0.1 × SimofImageType("GPJB" ∈ LP, 'J') = 0.5 

× Max(0.33, 0) + 0.1 × Max(0.5, 0) + 0.3 × Max(0.66,0) + 0.1 × (1-(3-1) × 0.25) = 0.165 + 0.05 

+ 0.198 + 0.05 = 0.463. 

 

5.3.2 Satisfaction Score of the Media Parameter 

By means of the SatisfactionQualityOfMedia(∑, MPi), we can understand which adapted 

media is more suitable to meet the requirements of a given ∑. However the response time to ∑s 

will explicitly affect learner satisfaction. Accordingly, we take the response time into account 

and define the satisfaction score of the MPi to estimate the satisfaction degree of applying the 

MPi to adapt the original content contenti, whereby the most appropriate MPset = {MP1, MP2,..., 

MPk} can be determined by the CAP. The definition of the satisfaction score is as follows. The 

satisfaction score is determined by the SatisfactionQualityOfMedia, but the score is multiplied by a 

penalty ratio if the response time exceeds the user-expected time. 
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 In the equation, Texpected denotes the maximum available deliver time (DT) and Tused 

denotes the actual time spent delivering this adapted media version (ni) transcoded by MPi. 

The CAP algorithm is described in Algorithm CAPAlgo. 
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Example 5.5: 

Given an ∑ = {c1, c2} ∪ {1, 1000, 448, 480, 800, 24, 16, 140} ∪ {1, GPJB, 1, 0} ∪ 

{500}. First of all, CAP retrieves the most appropriate page-level node np whose concept 

properties are the most similar to ∑ (Step 1). Assume Fp = { c1, c2}, too. Assume there are two 

media-level nodes, n1 is an image and n2 is an audio file, in requested block-level node, where 

MP1= {800, 400, 16, J, image, 160} without a corresponding physical adapted media file in the 

LOR. Therefore, the content1 will be added into Mediareq only due to the Audio Switch (AS) is 

0, i.e., Mediareq ={content1} (Step 2). Then, all MPi of contenti in Mediareq will be inserted into 

MPcandi for calculating the satisfaction score. Thus, the MPcandi ={MP1} (Step 3). Afterwards, 

we can estimate the Texpected= 1/1=1 to understand how much time we can use to do the CAP for 

each requested contenti (Step 4). 

For each MPi ∈ MPcandi, we estimate how much time we need to spend delivering the 

media size over the Bandwidth (b) of the wireless network, i.e., Tdeliver = 160 / 500 = 0.32 sec.; 

and how high the SatisfactionQualityOfMedia is, i.e., Sat1 = 0.463, as described in Example 4. Then, 

because MP1 has no corresponding physical media file in the LOR, the nearest physical 

media-level node, whose features are {1000, 500, 16, J, image, 160}, in the Media Version 

Base will be selected to estimate its transcoding time in advance if we deliver it to the user. Here, 

we can assume Ttranscoding=1 second. Therefore, the satisfaction score of MP1 can thus be 

calculated by: 

35.0
1/)132.1(1

463.0
)132.0,1,463.0( =

−+
=+MPonScoreSatisfacti

 (Step 5) 

Finally, if the MP1 has the maximum satisfaction score in terms of content1, it will be 

selected to insert into MPset, which will be used to perform the learning content synthesis, as 

described in the follows (Steps 6 and 7). 
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Algorithm 5.2: Content Adaptation Process Algorithm (CAPAlgo) 

 

Symbol Definition: 

∑∑∑∑: denotes a learner request, i.e., ∑∑∑∑ = CPi ∪ HPi ∪ LPi ∪ {bi}. 

contenti: denotes a original content of media-level node ni. 

MPcandi: the candidate MP list 

Mediareq: the set of requested media-level contents 

MPset = {MP1, MP2,.., MPk}: stores all appropriated MPs selected by CAPAlgo. 

Sati: the SatisfactionQualityOfMedia of MPi 

TMDT: maximum available delivery time, default is DT ∈ LP in ∑∑∑∑ 

Texpected:the average expected time of deivering each requested media-level nodes. 

Tdeliver: the estimated deliver time of the ni. 

Ttranscoding: the estimated transcoding time of the ni. 

 

Input: a ∑, TMDT 

Output: MPset 

 

Step 1: Select a page-level node np which has the highest SatisfactionPage(∑, Fp) among all 

page-level nodes. Let ni be the block-level nodes of np where ni ∈ childp. 

Step 2: add all requested media-level contents (contents) into Mediareq  

Step 3: for each contenti ∈ Mediareq, add all MPj ∈ fj where contentj = contenti into MPcandi   

Step 4: calculate Texpected = TMDT/(the number of contenti in Mediareq) 

Step 5: for each MPi ∈ MPcandi 

  5.1: Calculate Sati= SatisfactionQualityOfMedia(∑,MPi) 

  5.2: Calculate Tdeliver= size (S)∈MPi / Bandwidth(b)∈ ∑ 

  5.3: Calculate 

Ttranscoding= 




LOR in file physicalnearest  from  timeng transcodiEstimate

(LOR) RepositoryObject  Learning in is  of file physical if,0 in
 

  5.4: Calculate Satisfaction Score of MPi= SatisfactionScoreMP(Sati, Texpected, Tdeliver+ 
Ttranscoding) 

Step 6: for each contenti ∈ Mediareq,  

  6.1: Select MPi with maximum Satisfaction Score and store it into MPset. 

Step 7: Return the MPset.  
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5.3.3 Content Version Reuse Decision 

The Content Adaptation Decision Tree (CADT) can be used to search, retrieve, and 

maintain block-level nodes. The desired adapted contents can be delivered quickly to learners if 

there is a similar existing case held by CADT. Determining how to efficiently deliver an 

appropriate adapted content from the existing block-level nodes or how to redo the 

aforementioned Content Adaptation Process (CAP) is a concern. We propose an Adaptation 

Decision Process Algorithm (ADPAlgo) to process the adapted content decision quickly. The 

ADPAlgo is shown as follows. 

 

In the Adaptation Decision Process (ADP), we are given a new ∑ = CPx ∪ HPx ∪ LPx ∪ 

{bx}. First, a suitable page-level node is selected by using the concept properties CP and all 

the required content contentx are determined. Second, a cluster will be selected by traversing 

the CADT based on HPx and these block-level nodes ni, whose features Fi = HPi ∪ LPi ∪ {bi} 

in the selected cluster will be merged with those in the Block Version Base. Third, a block-level 

node will be deleted if it satisfies one of four selection rules, e.g., contentx ≠ contenti. Fourth, if 

there is a remaining nodes with higher similarity compared to the ∑, the Learning Content 

Synthesizer (LCS) will compose the personalized learning content and transcode the associated 

contents based on necessity. Then, the adapted learning content will be delivered to a learner 

directly without or with low transcoding latency. Otherwise, the block-level nodes will be 

triggered to create a new block-level node based on the ∑. 

 

Example 5.6: 

Based on the data in Table 5.1, given a new Learner Request ∑ = CPx ∪ HPx ∪ LPx ∪ {bx} 
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= {c1, c2} ∪ {2, 528, 384, 320, 480, 24, 32, 120} ∪ {5,JGBP,1,1} ∪ {90} and a new n16 = ({1, 

133, 128, 480, 640, 16, 16, 44} ∪ {12, GJBP, 0, 1} ∪ {150}, childi, 1, contenti) in the Block 

Version Base. By using CPx, the most suitable page-level node is selected and the inner 

contentx will be retrieved by using Adaptation Decision Process Algorithm (ADPAlgo). 

According to the CADT in Figure 5.3, we can find the rule: if Machine Type (MT) = ‘2’ and 

Color Depth (CD) = ‘24,’ then ‘C2,’ so that we can use the block-level nodes {n2, n5, n7, n9, n11, 

n12, n13, n15} of C2 in Table 5.2 and n16 in Block Version Base to select a suitable block-level 

node (Steps 1 and 2). Then, n16 is deleted due to (contenti ≠contentx), and n2, n5, n7, n11, n12, and 

n13 are deleted due to their bandwidth deviation ？？？？ 45 (α×B) while α is 0.5 and bi is 90 KB 

(Step 3 through Step 4). Afterward, n15 with n7 similar attributes while 

Smin=0.9(β)×8(NHP)=7.2 and the similarity value = 0.772 (>γ=0.6) compared with an ∑ is a 

suitable ni for the user (Step 5 through Step 6).  

 

However, because n15 is not completely the same as the ∑, a new node, n17, will be created 

by the Content Adaptation Process (CAP) based on the ∑ and stored in the Block Version Base 

for the next similar learner request (Step 8). Thus, the Block Version Base will hold two new 

nodes, i.e., {n16 and n17} and the adapted Block Version Based on n15 will be delivered to a 

learner directly. Because the content version of n15 was adapted according to the previous 

similar learner request, the CAP process does not need to be executed again. Therefore, the 

adaptation and transcoding latency can be omitted and saved. 
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Algorithm 5.3: Adaptation Decision Process Algorithm (ADPAlgo) 

 

Symbol Definition: 

nset: stores several historical blocl-level nodes 

contentx: denotes the retrieved content in the selected page-level node. 

∑∑∑∑: denotes a learner request, i.e., ∑ = CPx ∪ HPx ∪ LPx ∪ {bx}. 

nnew: stores the new block-level node created according to the ∑∑∑∑. 

α: denotes the acceptable percent threshold of bandwidth deviation.  

β: denotes the acceptable weight Threshold of the amount (NHP) of attributes in HP. 

γ: denotes the acceptable threshold of Similarity value. 

SMin =β ×NHP: denotes the minimum amount of the same attributes value between HPi 

and HPx. 

 

Input: a ∑∑∑∑, a contentx 

Output: a suitable block-level node 

 

Step 1: If the CADT is not Empty, 

 Then use the HPx in ∑ to traverse the CADT for finding the suitable cluster with 
similar HP. 

Step 2: Insert nodes ni into nset from the selected Cluster in CADT and Block Version 

Base. 

Step 3: Delete these ni from nset, if contenti ．contentx.  

Step 4: Delete these ni from nset, if |bi -Zｽﾓ|ZZZZ？？？？Zα ×ｽﾓ. 

Step 5: Delete these ni from nset, if the number of HPi attributes with similar value 

compared with ∑∑∑∑Zv SMin. 

Step 6: Delete these ni from nset, if the similarity between ni in nset and ∑∑∑∑ according to 

  the SimilarityLP(LPx, LPi) v γ. 

Stept 7: If ∃a ni∈nset whose attribute values in terns of HPi and LPi is the same as ∑∑∑∑, 

  Then goto Step 9. 

Stept 8: do the Content Adaptation Process (CAP) according to the LPx in ∑∑∑∑ and create 
the nnew 

  stored in Block Version Base. 

Stept 9: If nset is not empty, 

  Then Output the ni with the highest similarity in nset. 

  Else Output the nnew. 
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5.3.4 Content Adaptation and Synthesis 

The Learning Content Synthesizer (LCS) aims to compose appropriate personalized 

learning content based on diverse learner preferences. As stated previously, when dealing with 

a new ∑ without any suitable existing adapted content to be delivered, the CAP will decide a 

corresponding MPset to transcode the associated media resources. Hence, given that a page has 

n media resources and its corresponding MPset = {MP1, MP2,…,MPm}, where 1；m；n, it is 

implied that the (n-m) resources do not need to be transcoded and shown due to the satisfaction 

degree and Switch Attribute (SA) of media, e.g., PS and AS in the LP. To notify users, media 

resources that are not shown will be automatically replaced by some additional annotations 

from the SCORM metadata. To efficiently manipulate the diverse versions of learning content, 

a page’s original HTML will be transformed into a well-formed XHTML and tree-like 

Document Object Model (DOM) structure. The details of the LCS are described in LCSAlgo. 

 

Algorithm 5.4: Learning Content Synthesis Algorithm (LCSAlgo) 

 

Symbol Definition: 

TCAP: the spending time of executing the Content Adaptation Process (CAP). 

TADP: the spending time of executing the Adaptation Decision Process (ADP). 

Tdeliver: the estimated deliver time of the media version (V) in MPi. 

Tscore: the minimum threshold of Satisfaction for the content adaptation process. 

Tused: The used time of MPs, which needn’t be re-adapted. 

DT: the maximum available delivery time, DT ∈ LP in ∑. 

Contentx: denotes a requested media-level content. 

MPset = {MP1, MP2,.., MPk}: stores all appropriated MPs selected by CAPAlgo. 

Mediaadapt: store the media objects, which need to do content adaptation process 

rγ : denotes the original media resource in a page. 

Trγ : denotes the transcoded media resource. 

 

Input: a ∑ with corresponding MPset and contentx. 

Output: an adapted and transcoded learning content version, XHTML. 



 

62 
 

 

Step 1: if (ni = ADPAlgo(∑, contentx)) = null, 

  Then 

    1.1: Estimate the TCAP and TADP 

    1.2: MPset =CAPAlgo(∑, DT-( TCAP+ TADP)), where TMDT in CAPAlgo = (DT-( TCAP+ 
TADP)). 

  Else 

  1.3: for each MPi ∈ MPset in ni 

    1.3.1: Calculate Sati= SatisfactionQualityOfMedia(∑,MPi) 

    1.3.2: Calculate Tdeliver= size (sizei) / Bandwidth(bx)∈ ∑ 

    1.3.3: Calculate Ttranscoding= 

    



LOR in file physical nearest from time gtranscodin Estimate

(LOR) Repository Object Learning in is PM of file physical if i,0

 

    1.3.4: Calculate Satisfaction Score of MPi 

        = SatisfactionScoreMP(Sati, DT/(the number of MPi ∈ MPset), Tdeliver+ Ttranscoding) 

    1.3.5: If Satisfaction Score of MPi < Tscore, then add contenti of MPi into Mediaadapt 

  1.4: Estimate the TCAP and TADP 

  1.5: for each MPi∈MPset and ∉ Mediaadapt,  

    1.5.1: Calculate Tused = Tdeliver+ Ttranscoding 

  1.6: for each contentk∈Mediaadapt, 

    1.6.1: the MPi of contentk =CAPAlgo(∑, DT-( TCAP+ TADP+ Tused)),  

      where Mediareq in CAPAlgo = Mediaadapt and 

      TMDT in CAPAlgo =( DT-( TCAP+ TADP+ Tused)).   

    1.6.2: replace the original media-level nodes.  

Step 2: for each media resource, rγ , in a page.  

  2.1: apply MPγ∈MPset, to transcode the rγ into the trγ. 

Step 3: transform the original HTML into XHTML format 

Step 4: replace all rγ by trγ into the XHTML. 

Step 5: replace all unshown media resources by the useful annotation from SCORM metadata. 

Step 6: output the XHTML with associated transcoded media resources. 

 

Example 5.7: 

Assume the CADT structure has already been built. Then, given ∑ = {c1, c2} ∪ {1, 1000, 

448, 480, 800, 24, 16, 140} ∪ {1, GPJB, 1, 0} ∪ {500} and the minimum threshold of 
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satisfaction, Tscore = 0.7. After the ADPAlgo (∑) process, there are two media-level nodes with 

the corresponding MPs in MPset, i.e., MPset={MP1, MP2}={("M1v0", image, <800, 400, 16, J>, 

160), ("M2v1", image, <480, 700, 24, P>, 50)}. Thus, assume TADP =1 sec., and Tdeliver of MP1= 

(size in MP1)/ (bandwidth in LR) = 160 KB / 500 KB=0.32 sec. and Tdeliver of MP2= 50 KB/ 500 

KB=0.1 sec. (Step 1.3.b). The associated Media Object, content2, of MP2 does not need to be 

adapted again because content2 has the adapted media version (V1) based on MP2, i.e., M2v1, in 

the LOR. On the contrary, M1v0, which is the original version (V0) of MO1, must be adapted 

according to the definition of MP1 before it can be delivered to the learner. Therefore, assume 

Ttranscoding = 1 sec. to adapt M1v0 into the nearest version, i.e., (“M1v2,” image, <800, 400, 16, B>, 

500) (Step 1.3.c).  

 

In addition, according to the result of Example 5.4, the Sat1 of MP1 is 0.463 by the 

equation: SatisfactionQualityOfMedia(∑,MP1) (Step 1.3.a). Consequently, the satisfaction score of 

MP1 is calculated by: 

35.0
1/)132.1(1

463.0
)132.0,1,463.0( =

−+
=+MPonScoreSatisfacti

 

 

Besides, Sat2 is calculated by: 

SatisfactionQualityOfMedia(∑,MP2) = 0.5 × SimofNum(480 ∈ HP, 480) 

+ 0.1 × SimofNum(800 ∈ HP, 700) + 0.3 × SimofNum(24 ∈ HP, 24) 

+ 0.1 × SimofImageType("GPJB" ∈ LP, 'P') = 0.9625 (Step 1.3.1) 

 

Consequently, the satisfaction scores of MP2 is calculated by: 

SatisfactionScoreMP(0.9625, 2 / 2 , 0.1 + 0) = 9625.0
1/)11.0(1

9625.0
=

−+
, because the 

Ttranscoding = 0 sec. for adapting M2v1 (Step 1.3.2). 
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Because the satisfaction score of MP1 = 0.35, which is less than 0.7 (Tscore), and the 

satisfaction score of MP2 = 0.9625, which is larger than 0.7, the MO of MP1, M1v0, will be 

added to the Mediaadapt for further adaptation process, i.e., Mediaadapt ={"M1v0"} (Step 1.3.5).  

 

Assume TCAP  = 0.2 sec. and TADP  = 1 sec. for the "M1v0" (Step 1.4), "M2v1" of MP2 

doesn’t need to be adapted again, so the Tused for MP2 = Tdeliver+ Ttranscoding=0.1+0=0.1 (Step 

1.5). Afterward, we can get an MP3=("M1v0," image, <480, 240, 24, P>, 20) for the "M1v0" by 

calling the CAPAlgo(∑, TMDT) = CAPAlgo(∑, DT-( TCAP+ TADP+ Tsave)) = CAPAlgo(∑, 

2-( 0.2+ 1+ 0.1)), where Mediareq in CAPAlgo = Mediaadapt = {content1} (Step 1.6.1). 

Therefore, MPset={MP3, MP2}={(“M1v0,” image, <480, 240, 24, P>, 20), (“M2v1,” image, <480, 

700, 24, P>, 50)} (Step 1.6.2). According to the MPset, the media version, M1v0, of MP3 will be 

transcoded by the definition of MP3 first, and then output the XHTML with associated 

transcoded media resources (Step 2 through Step 6). 

 

5.4 Experimental Result 

A Personalized Learning Content Adaptation Model (PLCAM) system [85] based on 

MGC model was constructed to evaluate the effectiveness of MGC model, and actual 

experiments and simulated experiments were performed. The details and results are described 

in the following sub-chapters. 

 

5.4.1 Result of Actual Experiments 

In the actual experiments, performance of the prototypical PLCAM system was evaluated 

by the experimenters in terms of the personalized learning content delivering process, including 
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the Content Adaptation Process (CAP), the Adaptation Decision Process (ADP), and the 

Learning Content Synthesizer (LCS), and the dynamic bandwidth detection scheme, based on 

the SCORM-compliant learning content in relation to "the plants in campus". These 

characteristics were tested to observe and evaluate the resultant Delivery Time (DT) and the 

transmission data size according to various bandwidth settings for different requests. The 

performance of the PLCAM in terms of DT compared with inadaptation and static adaptation 

approaches was evaluated as well. 

 

As mentioned in Sections 5.1 and 5.2, the DT plays an important role in affecting one’s 

learning performance in mobile learning environments. Therefore, a bandwidth detection 

scheme was developed to automatically detect the latest network bandwidth for providing the 

learner with more precise personalized learning content with higher fidelity. As shown in 

Figure 5.5.a, with the decrease of "actual" network bandwidth, the bandwidth that a user can 

consume will decrease as well by means of monitoring each transmission time compared with 

the setting of the user’s desired maximum DT. For example, in Figure 5.5.b, a user’s functional 

bandwidth has been updated at 3, 5, and 7 (times) due to the detection of the long delivery 

latency at 2, 4, and 6 (times) (maximum DT = 5 sec.). 

 

 
Figure 5.5: Experiment results of the automatic dynamic bandwidth detection scheme 

 
Figure 5.6 shows the effectiveness of the PLCAM in delivering proper personalized 

adapted learning content that meets a similar ∑ without waiting for the CAP to be completed. 
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Therefore, Fig. 11 illustrates the DT, which consists of the data transmission time and the 

PLCAM adaptation time, in terms of the different requests and the size of transmission data 

based on the various bandwidth settings. In Figure 5.6.a, assume the definition of the maximum 

DT is 5 sec., during the first request for a learning object, the average DT is about 8.416 sec., 

including the content adaptation process (about 3 sec.) and the actual content delivery. On the 

contrary, the average DT during the second request can be controlled around 5.238 sec. to meet 

the constraint of the maximum DT without repeating the content adaptation process. Figure 

5.6.b shows that the size and quality of transmission data can be increased gradually with the 

increase of usable bandwidth by the aforementioned dynamic bandwidth detection scheme 

based on the definition of maximum DT. 

 

 
Figure 5.6: DT of different requests and transmission data size based on various bandwidth 

settings 

 
Assumed that there is a learning object, which contains a Waveform Audio Format (WAV) 

file with 660,768 bytes and six pictures with 1,016,392 bytes. The original size is about 1.8 

Mbytes. The learner specified the maximum tolerable DT to be 5 sec. We observed the 

transmission results based on the various bandwidth settings in terms of the approaches, which 

included the inadaptation, static adaptation, and PLCAM. In Figure 5.7, the inadaptation 

approach transmits content without employing the content adaptation process and spends much 

more DT than the static adaptation approach and the PLCAM. In this example, the static 

adaptation approach prepared three versions of learning content in advance, i.e., 200 KB, 170 

KB, and 140 KB. Therefore, within the bandwidth range from 140 KB to 220 KB, the DT is 
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almost the same between the static adaptation approach and the PLCAM. However, the static 

adaptation approach cannot consistently provide users with the appropriate content version 

according to the various bandwidths; thus, this approach spent a great deal of time gradually 

decreasing the bandwidth from 140 KB to 50 KB. On the contrary, the PLCAM is still able to 

offer a stable delivery time and the proper personalized adapted content to meet the diverse user 

needs. 

 

 
Figure 5.7: Comparison among the inadaptation, static adaptation, and PLCAM approaches 

 

5.4.2 Results of Simulated Experiments 

To evaluate the performance and effectiveness of the PLCAM in depth, several simulated 

experiments were carried out, emulating a large number of diverse user requests with Learner 

Preferences (LPs) and Hardware Profiles (HPs) to access the desired Learning Objects from the 

Learning Object Repository (LOR). The performance and satisfaction degree of the PLCAM in 

terms of: 1) Learning Content Adaptation Management Scheme (LCAMS) with Content 

Version Cluster Decision Tree (CADT) in Figure 5.8, Figure 5.9, Figure 5.10, and Figure 5.11; 

2) the parameter setting of the LP clustering algorithm in Figure 5.12; and 3) the CADT 

maintenance process in Figure 5.13 and Figure 5.14 were evaluated based on the different 
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experimental conditions, including bandwidth, LPs, and devices. 

 

The simulated experiments were executed on a computer with a 1-GHz Central Processing 

Unit (CPU), 1 G of Random Access Memory (RAM), and a Windows XP Operating System 

(OS). Table 5.5 lists the HP data used to perform the following experiments. 

 

Table 5.5: HP in ∑ data used for the simulation experiments 

ID HP in CAR Machine Type 

1 <2, 600, 384, 320, 480, 24, 16, 40> Cell Phone 

2 <1, 1000, 576, 480, 800, 24, 32, 100> PDA 

3 <1, 1000, 448, 480, 800, 24, 16, 140> PDA 

4 <2, 528, 288, 320, 480, 32, 8, 20> Cell Phone 

5 <2, 528, 384, 320, 480, 16, 32, 120> Cell Phone 

6 <2, 528, 288, 320, 480, 16, 8, 30> Cell Phone 

7 < 0, 2000, 8000, 1366, 768, 32, 32, 500> Notebook 

8 <0, 1200, 4000, 1366, 768, 32, 16, 300> Notebook 

 
The LCAMS in the PLCAM uses the CADT structure to efficiently determine the 

appropriate personalized learning content to meet the diverse learner requests. Therefore, we 

analyzed the performance and differences between the PLCAM without and with the CADT to 

perform the content adaptation based on different bandwidths, 5000 KB, 2000 KB, 1000 KB, 

500 KB, 250 KB, 50 KB, and the number of requested Media Objects (MOs) from 1 to 15, i.e., 

[1-15]. During this simulated experiment, each of the 250 Learner Requests (∑s) was generated 

by LP=(Maximum Delivery Time=1 sec., JPBG, 1/0, 1/0) and the random HP ID between 1 and 

6, i.e., [1,6], in Table 5. The results of the simulated experiment are shown in Figure 5.8 and 

Figure 5.10, respectively. 

 

In Figure 5.8, the Query-Diff and Sat-Diff denote the difference of query time of 

determining the suitable MPset and the satisfaction score between the PLCAM without and with 

the CADT, respectively. Figure 5.8.a shows that the Query-Diff explicitly increases with the 

increase of bandwidth ？ 250 KB and the number of requested MOs ？ 4, which shows that the 



 

69 
 

CADT can efficiently speed up the performance of the Adaptation Decision Process (ADP). 

 

Figure 5.8.b indicates that the Sat-Diff also increases if the bandwidth ？ 500 KB and the 

number of requested MOs ？ 7, which shows that decrease of query time can enhance the 

satisfaction score because response time is an important factor in user satisfaction. As for the 

bandwidth = 50 KB, the Sat-Diff and Query-Diff are very low because the available DT is 

insufficient to determine the MPset with a better satisfaction score in the ADP. On the contrary, 

the PLCAM without the CADT needs much more time to determine the suitable MPset from the 

MP database while the number of requested MOs increases. 

 
Figure 5.8: Comparison of (a) the difference of query time; and (b) the difference of satisfaction 

between the PLCAM without and with the CADT based on different bandwidths and requested 

MOs 

 

Figure 5.9 shows the delivery time, the query time, and the satisfaction score between the 

PLCAM without and with the CADT based on 500 KB bandwidth only. In Figure 5.9.a, the 

Delivery Time (CADT), consisting of physical data transmission time and transcoding time, is 

almost the same as the PLCAM without CADT approach. In Figure 5.9.b, the difference of 

query time (Query-Diff) is from 0.08 sec. to 0.4 sec, which saves 8 to 40 percent time 

consumption in terms of DT=1 sec. Furthermore, although the PLCAM uses the CADT to 

improve the performance of the content adaptation process, a higher satisfaction score than the 

score obtained without the CADT, can be maintained, as seen in Figure 5.9.c. 
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Figure 5.9: Comparison of (a) the delivery time; (b) the query time; and (c) the satisfaction 

score between the PLCAM without and with CADT based on 500 KB bandwidth and different 

requested MOs 

 
Regarding the influence of bandwidth between query time and the satisfaction score, 

Figure 5.10.a shows that the average DT is almost the same without and with the CADT. This 

finding indicates that the CADT can determine similar personalized learning content like the 

PLCAM without CADT. Also, query time (CADT) will decrease with the increase of 

bandwidth, while query time without the CADT is almost the same, as seen in Figure 5.10.b. 

This is a 2 to 27 percent (average 20 percent) time consumption savings in terms of DT=1 sec. 

Therefore, the average satisfaction score (CADT) is also better than “without CADT,” as 

presented in Figure 5.10.c. 

 

 
Figure 5.10: Comparison of (a) the average delivery time; (b) the average query time; and (c) 

the average satisfaction score between the PLCAM without and with the CADT based on 

different bandwidths and requested MOs 

 

To evaluate the performance of the PLCAM in actual mobile learning environments, we 

emulated diverse LRs actually used by the PLCAM with randomized LRs, which had random 

maximum DT between 1 and 8 sec., [1,8], the random bandwidths between 50 KB and 500 KB, 
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[50 KB, 500 KB], and the random number of requested MOs between 1 and 9, [1,9]. We tested 

this simulated experiment for eight iterations, each of which used eight participant HP data in 

Table 5 and generated 250 LRs to test the PLCAM system. Fig. 16 shows the results of the 

experiment. The Delivery Time (CADT) is a bit higher than what is seen without the CADT, as 

shown in Figure 5.11.a. The Query Time (CADT) is still better than what is observed without 

CADT, from about 0.15 to 0.27 sec. (average is 0.2 sec.), as seen in  Figure 5.11.b, and the 

satisfaction score is almost the same and stable around 0.7 during eight iterations. These results 

show that the PLCAM with the CADT can achieve better and more stable performance 

regarding learning content adaptation and the satisfaction degree in simulated actual learning 

environments. 

 

 
Figure 5.11: Comparison of (a) the delivery time; (b) the query time; and (c) the satisfaction 

score between the PLCAM without and with the CADT on random bandwidths [50 KB, 500 

KB], random maximum DT [1,8], random requested MOs [1,9], and eight HP data points in 

Table 5 

 

To analyze the parameter setting of the Content Version Clustering Algorithm 

(CVClustering), we used different parameter settings to test the satisfaction score of the 

PLCAM system based on LP=(1, JPBG, 1/0, 1/0), HP from 1 to 6 in Table 5.5, bandwidth=500 

KB, and the number of MOs between 1 and 9. The parameter setting of the CVClustering has 

been found as {K=3, Ts=0.004, Tm=2, Tn=3, Tp=2}, where the PLCAM attains a better 

satisfaction degree. 
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By means of the analysis of the parameter setting of CVClustering, we found that the 

number of block-level nodes in the Block Version Base, employed to be the threshold of 

rebuilding the CADT, play an important role in satisfaction. Therefore, we used the 

aforementioned parameter setting to evaluate the performance of the PLCAM system by 

adjusting the threshold of rebuilding the CADT. Thus, the experimental results are shown in 

Figure 5.12, where we find that the most suitable thresholds to rebuild the CADT are: 5 at 250 

requests, 35 at 500 requests, and 45 at 1000 requests, respectively. According to these results, 

we can use the ordinary least squares approach to estimate the CADT rebuilding equation: 

 

CADT Rebuilding Equation: Y= 0.04857X, where Y is the predicted thresholds of 

rebuilding the CADT and the X is the number of ∑s. 

 

For example, if the number of ∑s is 750, we can use the Y=0.04857X=0.04857×750=36 to 

be the threshold. Therefore, if there are 36 nodes in the Block Version Base and the total ∑s is 

larger than 750, the CADT maintenance process will rebuild the CADT automatically. 

 

 
Figure 5.12: Most suitable threshold of rebuilding CADT based on the different amount of 

nodes in the Block Version Base 

 

By means of the CADT rebuilding equation, the PLCAM can automatically maintain its 

CADT associated with historicalnodes according to the “use situation” of learners. Therefore, 
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in order to evaluate the performance of the PLCAM with the CADT maintenance process, we 

test the PLCAM by LP=([1,8], random, 1/0, 1/0), Bandwidth=[50 KB,500 KB], the number of 

media=[1,9], the HP data in Table 5.1 to emulate the actual use by learners. 

Figure 5.13 illustrates time spent during the transcoding process over the course of 1000 

LRs. In Figure 5.13, most of the transcoding time was spent during the early phase of the 

requests, as opposed to the latter phase. Because the PLCAM can efficiently manage a large 

number of historical learners’ requests and intelligently deliver proper personalized learning 

content with higher fidelity from the Media Version Base to the learner directly, the transcoding 

time can be decreased substantially. 

 

 
Figure 5.13: Resultant transcoding time of the PLCAM with auto-adjustment scheme 

 

Figure 5.14 illustrates the comparison of query time and the satisfaction score of the 

PLCAM between the dynamic-threshold estimated by the CADT rebuilding equation and 

static-threshold based on the same experimental condition. According to Figure 5.14, we can 

find that the PLCAM with dynamic-threshold can outperform the one with static-threshold. 
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Figure 5.14: Comparison of (a) query time; and (b) the satisfaction score of the PLCAM 

between dynamic-threshold and static-threshold by the random LRs and eight HP data points in 

Table 5 

 

According to the experiment described above, the result shows that CADT can really 

improve the efficiency of content adaptation, especially in the low-bandwidths environments. 

The assumption of this approach is that the attribute set used in the system is fixed. If the 

approach is used with a dynamic attribute set to more flexibly satisfy various learners needs, 

the multiple CADTs need to be generated and the meta-rules need to be used to determine the 

attribute set and the corresponding CADT. 
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Chapter 6 Heterogeneous Knowledge Diagnosis Model 

To cope with the Process Skill Diagnosis Subproblem, a middle-level knowledge 

representation is needed to extract the learners’ learning status from heterogenerous learning 

events and provide structural learner models for learning diagnosis. Thus, an 

Ability-Centered Level is defined to connect high-level diagnosis knowledge and low-level 

learning events, where all the learning behaviors and test results are structured for further 

diagnosis. In the Ability-Centered Level, the background knowledge, including concepts or 

process skills, is represented as the ontology, where concepts and skills are represented as 

nodes and the prerequisite relations and dependency relations are represented as the relations 

between nodes. Not only traditional test results but also learning and testing behaviors in 

virtual laboratories or simulation tests are extracted and represented as predicates of learning 

status [59]. For example, after learners get a score 0.8 of a concept c1 in a test, a predicate is 

recorded as Score(c1, 0.8), and after reading a lecture about c1 during the inadequate reading 

time, the learning behavior is also be recorded as LearningTime(c1, inadequate). Besides, 

assume a learner do a wrong operations about the measurement skill in the virtual lab, a 

predicate WrongOperation(measurement) is recorded. In order to extract the structured 

learning status from the learning events, the frame-based knowledge representation is used to 

model all the learning activities. For example, the frame of a reading activity records the 

lecture’s expected reading time and its associated concepts. For an experiment-based test, the 

frame records all necessary and wrong operation patterns and their associated skills and 

concepts. The embedded rules are defined to transform a learner’s learning events to the 

predicates in the Ability-Centered Level according to the slots of the frames. Besides, the 

high-level learning diagnosis knowledege can be represented by using rule-based 

representation, which can infer learning status and learning barriers from the predicate of 

learning status and the relations in the ontology of the Ability-Centered Layer.  
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6.1 Definition of Heterogeneous Knowledge Diagnosis Model 

The definition of this Heterogeneous Knowledge Diagnosis Model (HKD) is as follows: 

HKD = (Ontology, F, DR): Heterogeneous Knowledge Diagnosis Model. 

Ontology : a set of ontology. 

F = {f1, f2, …, fn}: a set of frames. 

fi = (Ei, Vi , CRi): a frame of learning activity. 

Ei = {e1, e2, …} is a set of all learning events related to the activity. 

Vi is a set of all slot values. 

CRi: Ei × Vi → P is the learning status crystalization rule set, where P denotes the set of 

predicates of learning status 

DR: P × Ontology → ∑ is the diagnostic rule set, where ∑ including a set of attributes, 

denotes the set of learner model. 

6.2 Domain Ontology in Ability-Centered Level 

In order to assess learners’ experimental portfolios, the experiment knowledge related to 

the scientific inquiry experiment need to be defined in advance. Therefore, in the HKD, two 

kinds of knowledge structures are defined by the teacher: the concept map of a subject and the 

skill map of scientific inquiry. The former denotes necessary concepts that learners need to 

learn and understand, and the latter denotes the required skills learners need to be equipped with 

in this assessment experiment. The concept map and the skill map used in the Ontology of HKD 

are defined as follows, respectively. 

Definition of the Concept Map (CM): 

� CM=(C, R), where: 

� C = {c1, c2,..., cn}: ci represents the main concept in a subject 

� R = {cr1, cr2,..., crm}: cri represents the Relation Type between two concepts in a CM, 
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where the Relation Type is defined as the APO: ci is A Part Of cj, or the PR: ci is the 

Prerequisite of ck. 

 
Here, the CM, consisting of a set of concepts (ci) with two types of relations, i.e., 

A-Part-Of relations (APO) and Prerequisite Relations (PR), is a hierarchical structure of 

concepts of a subject. By means of these relational definitions among concepts, learning 

problems related to subject concepts can thus be found and diagnosed for a learner. Figure 6.1 

depicts an example of a partial CM of a Biology Transpiration Experiment, where the concept 

Phenomenon has three sub-concepts: Transpiration, Photosynthesis, and Capillarity, and 

prerequisite concepts of transpiration are water transportation and Capillarity. 

 

 

Figure 6.1: Example of a Partial CM of the Biology Transpiration Experiment 

 

Definition of the Skill Map (SM) for Scientific Inquiry: 

� SM=(S, R), where:  

� S = {s1, s2,..., sn}: si represents a Skill of Scientific Inquiry Skills. 

� R = {sr1, sr2,..., srm}: sri represents the Relation Type between two skills in a SM, where 

the Relation Type is defined as the APO: si is A Part Of sj, or the D: si is Dependence on sk. 

 

The structure of the SM for scientific inquiry is the same as the CM, expect for cross-link 

relation definitions, Dependence Relations (D), which represent cause-and-effect relations 

between two skills. For example, Figure 6.2 illustrates an example of a partial SM for the 
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scientific process, where the skill, Setting Variables, depends on the skill, Making Hypothesis. 

 

 
Figure 6.2: Example of a Partial Scientific Process Skill Map for the Scientific Inquiry 

Experiment 

 

6.3 Learning Activity Frame 

6.3.1 Key Operation Action Pattern 

During the Web-based scientific inquiry experiment, learners will be asked to operate the 

Web-based operation experiment tool, which emulates the actual experiment operation, and 

their behavior will be collected and regarded as Operational Data of the scientific inquiry 

assessment portfolio. However, an important problem is how to automatically assess and 

evaluate operational data of learners. Therefore, in the HKD, the Key Operation Action Patterns 

(KOAP) has been proposed to evaluate the accuracy of learners’ operational data. The KOAP 

defines key operational actions and sequences, which will influence the operational accuracy of 

the Web-based operation experiment tool. Accordingly, the teacher can define the necessary 

KOAP to observe and evaluate learners’ operational data. The definitions related to the 

Experiment Operations (EO) and KOAP in terms of the Web-based operation experiment are 

defined as follows: 

Definitions of the EO: 

� EO={a1, a2,…, an}: denotes all actions that a learner can operate in terms of a Web-based 
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operation experiment tool in the scientific inquiry assessment experiment. 

 

Definitions of the KOAP: 

� KOAP=(KA, AC, AS, OC), where: 

� KA={ai, aj,…, am | 0；the amount of KA；n of EO}: denotes the Key Action (KA), each 

action (ai) of which plays an important action of all operational actions in EO, whose accuracy 

will influence the accuracy of the whole EO. 

� AC=(ai, ai+1, ai+2,…): denotes the Action Continuity (AC), which is an action sequence 

with continuous actions.  

� AS=(ai, ai+j,…,ai+k | i<j<k): denotes the Action Sequence (AS), which is an action 

sequence, but its continuity is not necessary. 

� OC=(ai, ai+1, ai+2,…): denotes the Object Continuity (OC), which is a continuous action 

sequence for a targeted object. 
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[Beaker with Scale] is a Key 
Action (KA). 

In order to sniff out the fire 
correctly, [Action 1] must be 
followed by [Action 2] and it’s 
not allowable to operate other 
actions between them. 

AS=(a1, a2, a5, a8) is a correct 
operational action sequence to 
finish the operation 
experiment, where   [Action 
2] must be done before [Action 
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Definitions of the Assesment Rule (AR):  

� AR={Ar1, Ar2,…, Arn}, where:  

� Ari=If (Condition Setting) Then (Assessment Function): each Ari of AR can be 

represented by the IF-THEN rule format, where:  

� Condition Setting ={Cs1, Cs2,…, Csm} : each Csi of the Condition Setting can be used to 

evaluate the accuracy of the learner’s answer in terms of the assessment portfolio consisting of 

planning data and operational data defined in sub-chapter 6.1. If the result of the Condition 

Setting is true, the Assessment Function will be triggered to evaluate the learner’s assessment 

portfolio. 

In the OPASS, the Predicate Function has been applied to be the function used in the AR. 

A predicate function is defined to be any function that returns TRUE or FALSE. Therefore, any 

value other than FALSE is considered as TRUE. The predicate function always returns a 

Boolean value. The Assessment Function used in the AR is defined as follows. 

 

Definitions of the Assessment Function in AR:  

� WrongStep(Stepi, Problemi): checks the experiment Stepi of the assessment procedure, 

which was executed correctly or not during the Web-based scientific inquiry experiment, 

where:  

� Stepi: the name of an experiment step in the scientific inquiry assessment 

experiment. 

� Problemi: denotes a checking predicate function, which can check whether a 

learner made this kind of problem at an executed experiment Stepi. Therefore, 

each Problemi has its corresponding checking predicate function definition, 

which can be extended and defined by the teacher according to requirements of 

the assessment, such as: 
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� ObjectContinuity_Error(objk, ActionSequencem, WrongPatternn): 

checks the accuracy of the continuity of the object (objk) defined in the 

KOAP according to the comparison between the correct Object Continuity 

(OC) (ActionSequencem) and the learner-made action pattern, which will 

be regarded as WrongPatternn if it is not the correct experimental 

operation. 

� IndependentVariable_Error(objk, IF-Statementn, Then-Statementn): 

checks the accuracy of the independent variable of the object (objk) 

according to the hypothesis setting (IF-Statementn and Then-Statementn), 

defined in Subsection 6.3.4: Assessment Portfolio, that the learner made. 

 

Example 6.1:  

If a learner dipped a stalk of celery into water and then used a knife to cut its root during 

the virtual operation experiment, the accuracy of this experimental operation the learner made 

can thus be checked by defined Assessment Functions, WrongStep( "Action Operation", 

ObjectContinuity_Error([celery], [dip in water] [cut root] [put into tank] [waiting], [dip in 

water] [cut root]). Therefore, learners’ operational actions, i.e., [dip in water] [cut root], are not 

correct because the correct object continuity definition (OC) of Key Operation Action Patterns 

(KOAP) was defined as [dip in water] [cut root] [put into tank] [waiting]. Moreover, the 

accuracy of the hypothesis setting can also be checked by the WrongStep("Operational 

Experiment”, IndependentVariable_Error([celery], [cross section area of celery stem], [the 

decreasing quantity of the red water]). 

 

Condition Setting Function in AR:  

In addition to the assessment function, the condition setting of the AR can also use the 

predicate function to check the condition of a rule. Therefore, in the HKD, the Condition 
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Setting={Cs1, Cs2,…, Csm}, where, for instance, the Csi=NotMatch(ObjectContinuity(targeted 

object, correct OC definition): evaluates the accuracy between the correct OC definition and the 

learner’s operational actions in terms of the targeted object, or Csj=(TargetObject(obj) & 

IdependentVriable(X) & CorrectIdependentVriable(Y) & (X≠Y)): evaluates the accuracy 

between the correct independent variable (Y) and the actual one that the learner set (X) in terms 

of the targeted object (obj) and the condition will be true if the (X≠Y) is true. 

 

Example 6.2:  

Assume there are Ar1=If ( NotMatch( ObjectContinuity([celery], { [dip in water], [cut 

root], [put into tank] [waiting]}) ) Then WrongStep( "Action Operation", 

ObjectContinuity_Error([celery], {[dip in water], [cut root], [put into tank], [waiting]), {[dip in 

water], [cut root]}), and Ar2 = If (TargetObject([celery]) & IdependentVriable([length of stem]) 

& CorrectIdependentVriable([amount of leaves]) & ([length of stem]≠[amount of leaves])) 

Then WrongStep("Operational Experiment”, IndependentVariable_Error([celery], [cross 

section area of celery stem], [the decreasing quantity of the red water]) ). Therefore, the 

Assessment Function, WrongStep(), will be triggered if the Condition Setting of the Ar1 or the 

Ar2 is true. 

 

6.3.3 Assessment Portfolio 

The assessment portfolio of scientific inquiry consists of planning data and operational 

data. Before the assessment process, the log of the Web-based experiment system must be 

transformed into the defined format in the HKD. Logs of planning data, as shown in Table 6.2, 

are the set of attribute-value pairs. For example, in an experiment of biology transpiration, 

learners defined a hypothesis: If the [celery]’s [leaves] are [more], the [decreasing quantity] of 

the [red water] is [more]. Then, logs recorded six attributes, including objects, attributes, and 
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their changes in the condition and effect parts of the hypothesis. 

 
Table 6.2: Example Logs of Planning Data 

Attribute Value Attribute Value 

Hypothesis-IF-Object Celery Hypothesis-THEN-Object Red water 
Hypothesis-IF-Attribute Leaves Hypothesis-THEN-Attribute Decreasing quantity 
Hypothesis-IF-Value More Hypothesis-THEN-Value More 

 

Logs of operational data, as shown in Table 6.3, were a sequence of operations, which 

consists of an action name, a used object, an object of target, and a set of environmental 

attribute-value pairs. For example, the action sequence in Table 6.3 described that a learner [fill] 

a [beaker with scale] with [red water]. Then, the learner [dip] a [head of celery] into a [tank] and 

use a [knife] to [cut] the [stem of the celery]. Afterward, this learner [put] the [celery] into the 

[beaker with scale] and [waited]. 

 

Table 6.3: Example Logs of Operational Data 

Action Used Object Target Object Environmental Status 

Fill Red water Beaker with 
scale 

Temperature: 25Ä, Light: Yes, 

Humility: 60% 

Dip Celery Tank Temperature: 25Ä, Light: Yes, 

Humility: 60% 

Cut Knife Celery Temperature: 25Ä, Light: Yes, 

Humility: 60% 

Put Celery Beaker with 
scale 

Temperature: 25Ä, Light: Yes, 

Humility: 60% 

Wait   Temperature: 25Ä, Light: Yes, 

Humility: 60% 
 

6.4 Diagnosis Proccess 

 By means the teacher-defined assessment knowledge related to the scientific inquiry 

experiment described in the previous section, the learner’s assessment portfolio can thus be 

automatically evaluated and diagnosed by the Online Assessment Portfolio Diagnosis Process 

(OAPDP) in phase 2 of the HKD. The details will be described in this chapter. 



 

85 
 

Figure 6.3 shows the flowchart of the OAPDP, which consists of three modules: (1) 

Evaluation Process; (2) Diagnosis Process; and (3) Diagnostic Report Generation. In the 

Evaluation Process, the OAPDP uses the teacher-defined Assessment Rule (AR) to evaluate the 

accuracy of the learners’ scientific inquiry assessment portfolio and then finds the Wrong 

Experiment Step from the assessment result according to the inference results of the Rule 

Inference Process. Afterwards, in the Diagnosis Process, the OAPDP first diagnoses the 

mis-concept/skill with the corresponding reason for each wrong experiment step by means of 

the Diagnosis Rule (DR) based on the relation model of assessment knowledge as seen in 

Figure 6.1 and Figure 6.2. The OAPDP further analyzes the Remedial Path according to 

relational definitions of the experiment knowledge, i.e., the prerequisite (PR) in the CM and the 

Dependence (D) in the SM of scientific inquiry. Consequently, the Major mis-concept/skill 

with the corresponding wrong experiment step can be discovered. Finally, the Diagnostic 

Report Generation module is able to generate the personalized scientific inquiry diagnostic 

report consisting of descriptions, corresponding reasons, and related remedial suggestions to 

correct learning problems based on the defined Description Format. 
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Figure 6.3: Flowchart of the OAPDP 

 

6.4.1 Diagnostic Rules 

 As mentioned above, the Diagnosis Process module in the OAPDP uses the Diagnosis 

Rule (DR) based on the relation model of assessment knowledge to diagnose the 

mis-concept/skill with the corresponding reason for each wrong experiment step. In the OPASS, 

the DR has thus been proposed and defined as follows. 

 

Definitions of the Diagnosis Rule (DR):  

� DR={Dr1, Dr2,…, Drn}, where:  

� Dri=If (Condition Setting) Then (Diagnostic Function): each Dri of the DR can be 

represented by the IF-THEN rule format, where three types of DRs are defined as follows: 

DRs of the weak concepts, skills, and reasons: 

� If (WrongStep($S, $P) & StepConceptRelation(WrongStep($S, $P), $Concept)) Then 

MisConcept($Concept): diagnoses the weak concept(MisConcept()) according to the 
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relationship between the wrong experiment step (WrongStep()) and the associated concept by 

the function StepConceptRelation(). The $S and $P denote the Stepi and the Problemi of 

Assessment Function, WrongStep(), in AR. 

� If (WrongStep($S, $P) & StepSkillRelation (WrongStep ($S, $P), $Skill)) Then 

MisSkill($Skill): diagnoses the weak skill according to the relationship between the wrong 

experiment step and associated skill of scientific inquiry by the function StepSkillRelation(). 

� If (WrongStep($S, $P) & StepReasonRelation( WrongStep($S, $P), $Type, $Desc)) Then 

Reason($Type, $Desc): diagnoses the corresponding reason of occurred weak conceptor weak 

skill according to the relationship between the wrong experiment step and associated reason, 

where Type is “Concept” or “Skill,” each of which has a corresponding description ($Desc) to 

explain the reason for a problem that a learner made for the wrong experiment step. 

� DRs of the Major Wrong Step of Assessment Experiment: 

� If (MajorMisSkill($Skill) & WrongStep($S,$P) & StepSkillRelation( WrongStep($S, $P), 

$Skill) ) Then MajorWrongStep($S, $P): diagnoses the major wrong experiment steps of a 

learner according to the relationship between the wrong experiment and the major weak skill. 

� DRs of the Remedial Concept and Skill of weak concept and weak skill: 

� If (MajorMisConcept($Cx) & Prerequisite($Cy, $Cx)) Then PRConcept($Cy): diagnoses 

the remedial concept of the learner’s mis-concpet according to the prerequisite concept 

relationship (Prerequisite()) of the major mis-concept. 

� IF(MajorMisSkill($Sx) & Prerequisite($Sy, $Sx)) Then PRSkill($Sy) : diagnoses the 

remedial skill of the learner’s weak skill according to the prerequisite skill relationship 

(Prerequisite()) of the major weak skill. 

 

Table 6.4Zlists examples of the DR Definition andZTable 6.5 also presents examples of the 

Assessment Function Definition, WrongStep($S, $P), associated with the Problem Description, 

the Reason, and the Suggestion Description. The learning problems related to the concepts, 
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cause and effect operations, and skills of scientific inquiry can thus be analyzed and diagnosed 

by means of the proposed DR. 

 

Table 6.4: Example of Three Types in the DR Definition 

Type IF (Condition Setting) THEN 

Symbol 
Definitions 

$S1="Operational Experiment” 

$S2=" Action Operation” 

$P1=IndependentVariable_Error([celery], [cross section area of celery stem], [the 
decreasing quantity of the red water]) ) 
$P2= ObjectContinuity_Error([celery], {[dip in water], [cut root], [put into tank], 
[waiting]), {[dip in water], [cut root]} 

Type 1 

Dr1 
WrongStep($S1, $P1) & 
StepConceptRelation( WrongStep($S1, $P1)), 
"Transpiration") 

MisConcept("Transpiration") 

Dr2 
WrongStep($S2, $P2) & 
StepConceptRelation( WrongStep($S2, $P2)), 
 "Transpiration") 

Dr3 
WrongStep($S2, $P2) & 
StepSkillRelation ( WrongStep($S2, $P2)), 
 "Transpiration") 

MisSkill("Experimental 

Operation ") 

Type 2 

Dr1 

MajorMisSkill("Experiment Planning") & 
WrongStep($S1, $P1) & 
StepSkillRelation( WrongStep($S1, $P1), 
 "Experiment Planning") 

MajorWrongStep($S1,$P1) 

Dr2 

MajorMisSkill("Experimental Operation") & 
WrongStep($S2, $P2) & 
StepSkillRelation( WrongStep($S2, $P2), 
 "Experimental Operation") 

MajorWrongStep($S2, $P2) 

Type 3 

Dr1 
MajorMisConcept("Transpiration")& 
Prerequisite("Water Transportation", 
 "Transpiration") 

PRConcept("Water 
Transportation") 

Dr2 
MajorMisSkill("Setting Variable") & 
Prerequisite("Making Hypothesis", 
 "Setting Variable") 

PRSkill("Making Hypothesis") 
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Table 6.5: Example of WrongStep($S, $P) Definition Associated with Problem Description, 
Reason, and Suggestion Description in the OPASS 

DR Step ($S) Problem ($P)  Problem Description (A), Reason (B), Suggestion 
Description (C) 

Dr1 
Making 
Hypothesis 

Hypothesi_Error( 
scene, IF-Statement, 
Then-Statement) 

A 

Because the solution that you made in the 
[scene] is that "IF [IF-Statement] THEN 
[Then-Statement]", it can not solve the problem 
of the experiment. 

C 
Please carefully read the "Problem Description” 
of [scene] again and try to use another approcah 
to solve it. 

Dr2 
Operational 
Experiment 

VariableOperation_

Error(Variable) 

A 
The [Variable] you operate is not the same 
variable you set in the Setting Variable Step of 
the experiment. 

B 
Reason("Skill","the variable that you set in the 
Setting Variable Step of the experiment can not 
be operated in this experiment")  

C 
You must operate the same variale in the Setting 
Variable Step and the Operational Experiment 
Step both. 

Dr3 
Action 
Operation 

ObjectContinuity_ 

Error (Obj, 
ActionSequence, 
WrongPattern)) 

A 
Because the [Obj] must be operated by 
[ActionSequence], we guess that your operation 
order [WrongPattern] is wrong.   

B 
Reason("Concept", "you may not thoroughly 
understand the [MisConcept] ") 

C 

We suggest that you should learn the 
[MajorMisConcept] and [MisConcept] in 

advance〓 
 

Example 6.3: 

The left-hand side of Figure 6.3 illustrates the rule inferring process during the OAPDP 

process by employing the rule-based inference approach. To follow the descriptions in previous 

examples, if the Ar1 in AR come to be true, a Wrong Experiment Step, "Action Operation," can 

be found from the assessment portfolio of scientific inquiry in the Evaluation Process. 

Therefore, In the Diagnosis Process, after the weak concept and week skill diagnosis, the week 

concept, "Transpiration," and the weak skill, “Experimental Operation," at this "Action 

Operation" step can be inferred by using the Dr2 of Type 1 and the Dr3 of Type 1 in DR in 

Table 4, respectively. Afterwards, in the Remedial Path Diagnosis, the major mis-concept, 
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"Water Transportation," can be found through the Dr1 of Type 3, and according to the inferred 

mis-concpet and the definition of the concept map in Figure 3. Finally, by using the 

aforementioned results, the Dr3 in Table 6.5 was triggered to reason and diagnose the learning 

problems with Problem Description, Reason, and Suggestion Description for this wrong 

experiment step, "Action Operation,”. Consequently, the personalized diagnostic results can be 

offered to the learner as follows: You had the wrong experiment step at [Action Operation Step], 

(A) because the [Obj="celery"] must be operated by [ActionSequence="[celery], {[dip in 

water], [cut root], [put into tank], [waiting]"], we guess that your operation order 

[WrongPattern="[dip in water], [cut root]"] is wrong. (B) The Reason is taht "you may not 

thoroughly understand the [MisConcept="Transpiration"] "). (C) We suggest that you should 

learn the [MajorMisConcept="Water Transportation"] and ["MisConcept="Transpiration"] in 

advance. Consequently, the various learning problems, concerning conceptual knowledge, 

cause and effect operations, and skills of scientific inquiry, with corresponding reasons and 

remedial suggestions can be automatically analyzed and diagnosed by the Diagnosis Process 

in the OAPDP. These diagnostic results will be further organized and syntheized into a 

readable and understandable resport in the Diagnostic Report Generation in the OAPDP. 

6.4.2 Diagnostic Report Generation 

 After the Evaluation and Diagnosis process modules have been processed, the learners’ 

learning problems in relation to the concepts, cause and effect operations, and skills of the 

scientific inquiry experiment can be diagnosed, and corresponding reasons and descriptions can 

also be acquired. The personalized diagnostic report can thus be generated by running the 

Diagnostic Report Generation in the OAPDP. The proposed Diagnostic Report Generation 

Algorithm (DRGalgo) is described in DRGalgo, and Figure 6.4 shows an example of the 

personalized diagnostic report generated by the DRGalgo. 
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Algorithm 6.1: Diagnostic Report Generation Algorithm (DRGalgo) 

 
Symbol Definition: 
WrongStepi: the detected wrong experiment step of SI experiment for the learner.  

MisConcept: the detected weak conceptof the learner. 
MisSkill: the detected weak skill of the learner. 
MajorWrongStep: the detected major wrong step of SI experiment for the learner. 
MajorMisConcept: the detected major weak conceptof the learner. 
MajorMisSkill: the detected major weak skill of the learner. 
PRConcept: the prerequisite concept of a concept. 
$: output the value of variable 
 
Input: All detected wrong experiment steps of SI assessment experiment 
Output: Personalized Diagnostic Report 
 
Step 1: Generate the detailed description for each Wrong Step (WrongStepi)of Assessment 
Experiment, 
  1.1: output the statement: "[Problem]: you made wrong action at [$WrongStepi] Step." 
  1.2: output the statement: "[Corresponding Skill]: [$MisSkill]." 
  1.3: output the statement: "[Phenomenon]: [$(the Problem Description of WrongStepi)] 
  1.4: If Reason.Type = "Concept" 
    Then output the statement: "[Possible Reason]: you may not thoroughly understand the 
[$MisConcept]." 
    Else If Reason.Type = "Skill" 
    Then output the statement: "[Possible Reason]: because [$(the Reason Description of 

WrongStepi)] for the [$MisSkill]" 
  1.5: output the statement: "[Suggestion]: [$(the Suggestion Description of WrongStepi)] 
Step 2: Generate the overall diagnostic description for learner’s assessment result 
  2.1: If [conclusion is wrong]  
      Then  
  Output the statement: "[Problem]: your conclusion is wrong. The possible reason may be the 
[$(the Problem Description of the MajorWrongStep)]." 
  Output the statement: "[Skill Suggestion]: [$(the Suggestion Description of 

MajorWrongStep)]." 
  Output the statement: "[Concept Suggestion]: for the concept of subject in this experiment, 
suggest that you need to thoroughly lean and understand the concept of [$MajorMisConcept]. 
  Output the statement: "[Prerequisite Concept Suggestion]: other than the concept 
[$MajorMisConcept], suggest that you can also thoroughly learn and understand its 
prerequisite concept [$PRConcept]. 
Step 3: Output the Personalized Diagnostic Report 
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Figure 6.4: Example of the Personalized Diagnostic Report Generated by DRGalgo in OPASS 

 

6.5 Experimental Results 

6.5.1 Experimental Plan and Execution 

In order to evaluate the performance of the HKD, a prototypical system, named Online 

Portfolio Assessment and Diagnosis Scheme (OPASS) [83], was developed and several 

experiments were conducted. Two classes, from different schools in Taiwan, participated in the 

assessment experiments. Thirty first-grade learners of high school, in the urban district, and ten 

third-grade learners of junior high school, in the remote district, participated in the assessment 

experiments of scientific inquiry in Biology and Physics, respectively. First, teachers explained 

the purpose of the experiment and taught learners how to use the Web-based scientific inquiry 

experiment system (OPASS). Learners could practice and familiarize themselves with the 
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system by participating in the testing experiment (Figure 6.5a). Following the practice test, the 

learners took the formal assessment experiments (Figure 6.5b) to understand their learning 

problems by means of personalized diagnostic reports (Figure 6.5c). Finally, a questionnaire of 

a five-level Likert Scale, as seen in Table 6.6, was designed and provided to learners to evaluate 

their degrees of satisfaction concerning the OPASS system. 

 

Table 6.6: Questionnaire of Learners’ Degrees of Satisfaction of the OPASS System 

(Five-Level Likert Scale from 1 (Strongly Disagree) to 5 (Strongly Agree)) 

Q1: It would be helpful to provide personalized analysis and learning suggestions concerning 
the operation and examination after the assessment experiment. 

Q2: In Part A of the diagnosis report, the bar charts of skills, concepts, and overall scores can 
assist you in understanding your assessment outcome. 

Q3: In Part B of the diagnosis report, the descriptions consisting of the wrong plans, wrong 
operations, reasons, and possible remedial suggestions can assist you in understanding the 
problems during the experiment. 

Q4: In Part C of the diagnosis reports, the descriptions concerning the overall diagnosis and 
suggestions can improve your learning. 

Q5: This diagnosis report is useful and can improve your learning efficacy. 
 

 
Figure 6.5: (a) Learners Practicing the OPASS, (b) Taking the Examination, and (c) Reading the 

Diagnostic Report Regarding the Scientific Inquiry Experiment in the Physics Domain 

 

6.5.2 Analysis of Learners' Scores with Prior Knowledge Measures 

  

Correlations of OPASS Scores with Prior Knowledge Measures 

Examining the correlations of the OPASS scores with each measure of prior knowledge 

can help clarify meaning. For example, learners with more prior knowledge tended to perform 
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better on each score of the OPASS than learners with lower levels of prior knowledge. The prior 

knowledge measures were intended to give an indication of the degree of learner familiarity 

with the science and related concepts being assessed in the scientific inquiry experiments of the 

OPASS system [9]. In this paper, the prior knowledge measures consist of two kinds of 

knowledge: (1) Science Knowledge; and (2) Scientific Inquiry. The prior science knowledge 

measure was designed to be related to the Physics and Biology domain. Therefore, the grade of 

a learner of Physics and Biology at school was adopted as the prior science knowledge measure. 

The prior scientific inquiry knowledge measure was intended to concern skills of scientific 

inquiry. In order to assess prior scientific inquiry knowledge of participant learners, a 

comprehensive Test of Integrated Science Process Skill (TIPS) was developed by [22]. This 

test included integrated science process skills (e.g., stating hypotheses, controlling variables, 

designing experiments, operational definition, graphing and interpreting data) and was adopted 

as a reference to design a Chinese version. The TIPS had a high reliability (0.89) and was 

non-curriculum-specific for the middle and secondary schools. Afterwards, Burn, Okey, and 

Wise. [10] developed the TIPS II based on the original TIPS. 

By means of the data collected from the experiments of the OPASS system, Table 6.7 lists 

the summary statistics of the Prior Science Knowledge and the OPASS Measures for the 30 

first-grade high school learners (Grade 10) in the Physics domain (effective sample size (N) = 

24). Table 6.8 presents the correlations of the “Total Score” of the OPASS, consisting of 

“Scientific Inquiry” and “Science Knowledge”, with the two prior knowledge measures, 

“Science Knowledge” and “Scientific Inquiry knowledge”. 
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Table 6.7: Summary Statistics for Prior Knowledge and OPASS Measures – Grade 10, Physics 

domain 

   Measures 
 
Statistic 

Prior Science Knowledge OPASS 

Science 
Knowledge: 
Grade in Physics 

Scientific Inquiry: 
Total Score of 
TIPS 

Total 
Score 

Scientific 
Inquiry 

Science 
Knowledge 

Number of 
Learners (N) 

24 24 24 24 24 

Mean Score 71.88 72.64 75.83 79.17 72.50 

Standard 
Deviation 
(SD) 

9.205 7.982 9.289 8.456 12.324 

 

Table 6.8: Correlations of OPASS Scores with Prior Knowledge Measures in TIPS – Grade 10, 

Physics Domain 

 
OPASS Score 

Prior Science 
Knowledge: 
Grade in Physics 

Prior Scientific Inquiry 
Knowledge: 
Total Score of TIPS 

Total -.263 .431* 

Scientific Inquiry  -.156 .492* 

Science 
Knowledge 

-.290 .313 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 

According to the correlations in Table 6.8, the “Total” score of OPASS did not correlate 

with the two prior knowledge measures: “Science Knowledge: Grade in Physics” and “Prior 

Scientific Inquiry Knowledge: Total Score of TIPS.” In addition, the “Prior Science Knowledge” 

did not correlate with the “Prior Scientific Inquiry Knowledge.” This indicates that the mastery 

levels of learners’ grades in Physics may not influence the performance of OPASS and TIPS. 

Besides, the “Total” score of TIPS has the significant positive correlations with the “Total” 

score (0.431, p<.05) and “Scientific Inquiry” (0.492, p<.05) of OPASS, respectively. This 

means that learners with more prior scientific inquiry knowledge tend to perform better on 

“Total” and “Scientific Inquiry” scores of the OPASS. Furthermore, the “Scientific Inquiry” of 

OPASS has a significant positive correlation (0.584, p<.01) with the “Science Knowledge” of 

OPASS. The reason for this outcome is that the OPASS system integrated the scientific inquiry 
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skills and science knowledge together with each step and action of the Web-based assessment 

procedure. 

According to the results of Table 6.8, the “Total” score of the OPASS has a significant 

correlation with the TIPS score. In this paper, the “Scientific Inquiry” score of OPASS consists 

of five scales: (1) Making Hypothesis; (2) Setting Variables; (3) Experimenting; (4) Graphing; 

and (5) Concluding. For estimating the correlations, the TIPS scales were mapped to these five 

OPASS scales. Therefore, the correlations of each sub-score of OPASS with TIPS are shown in 

Table 9 to investigate the reliability and validity of the OPASS system. 

 

Table 6.9: Correlations of OPASS Scores with Prior Knowledge Measures in TIPS – Grade 10, 

Physics Domain 

Z Z Z Z Z Z Z Z Z TIPS 
Score 
OPASS Score 

Making 
Hypothesis 

Setting 
Variables 

Experimenting Graphing Concluding 

Total .031 .506* .271 .235 .203 

Scientific Inquiry .059 .352 .237 .149 .210 

Science Knowledge .005 .509* .240 .245 .158 

(1) Making 
Hypothesis 

.a .a .a  .a .a 

(2) Setting Variables .025 .593** .147 -.062 .166 

(3) Experimenting -.145 .254 .120 -.073 -.054 

(4) Graphing .199 .147 .303 .646** .351 

(5) Concluding -.038 -.151 -.074 -.320 -.094 

a. Cannot be computed because at least one of the variables is constant. 
 

As Table 6.9 shows, the correlation values of “Making Hypothesis” (OPASS) with TIPS 

cannot be computed because all learners correctly performed this step in OPASS. The 

“Concluding” (OPASS) also did not correlate with the one of TIPS because 19 out of 24 

learners were correct. The reason for this is that learners learned concepts and skills related to 

“Making Hypothesis” and “Concluding” in the practice section, and such learning effects 

subsequently became prior knowledge when the learners took the online assessment of 

scientific inquiry in the examination section, as depicted in Figure 6.5. 

The “Experimenting” portion (OPASS) has no significant positive correlation with the one 
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of TIPS. That is because learners were required to interact and operate the Web-based operation 

experiments at the “Experimenting” step in the OPASS system, which can be regarded as a 

"hands-on" assessment. The operational data of learners, as shown inZTable 6.3, were recorded 

and collected in the assessment portfolio and assessed according to the teacher-defined 

assessment knowledge definition, e.g., Key Operation Action Pattern (KOAP). On the contrary, 

the TIPS is a paper-and pencil test and is a suitable approach to measure learners' knowledge of 

scientific concepts and inquiry (e.g., Substantive Knowledge, but it is not easy to assess and 

evaluate learning problems and performance of higher-order capabilities related to scientific 

inquiry.  

Furthermore, the “Setting Variables” and “Graphing” in the OPASS system have 

significant positive correlations (0.593 and 0.646, p < 0.01) with the ones of TIPS, respectively. 

Those correlations describe that learners with more prior knowledge in terms of “Setting 

Variables” and “Graphing” in TIPS tend to perform better on corresponding scales in the 

OPASS system than learners with lower levels. Consequently, the significant correlations 

between the OPASS and the TIPS can show that the OPASS system is able to perform a reliable 

and valid assessment of scientific inquiry.  

In addition to the evaluation for grade 9 learners in the Biology domain at the urban district, 

the prototypical OPASS system was evaluated by 10 grade 9 learners who reside in the remote 

district, as listed in Table 6.10 and Table 6.11, respectively. The results show that the 

performance of the OPASS has no significant correlations with the “Prior Knowledge” of 

learners in terms of “Average of Subjects” and “Grade in Biology,” which is the same as the 

experiment results in Physics.   

 

 

 



 

98 
 

Table 6.10: Summary Statistics for Prior Knowledge and OPASS Measures – Grade 9, Biology 

Domain 

    
Measures 
 
Statistic 

Prior Knowledge OPASS 

Knowledge: 
Average of 
Subjects 

Science 
Knowledge: 
Grade in Biology 

Total 
Score 

Scientific 
Inquiry 

Science 
Knowledge 

Number of 
Learners (N) 

10 10 10 10 10 

Mean Score 75.27 78.83 56.83 62.00 51.67 

Standard 
Deviation 
(SD) 

9.536 9.425 18.316 16.633 23.107 

 

Table 6.11: Correlations of OPASS Scores with Prior Knowledge Measures – Grade 9, Biology 

Domain 

 
OPASS Score 

Prior Knowledge: 
Average of Subjects 

Prior Science Knowledge: 
Grade in Biology 

Total .065 .132 

Scientific Inquiry  -.070 .056 

Science 
Knowledge 

.154 .168 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

6.5.3 Assessment Accuracy of the OPASS System through Domain Experts 

 In addition to the evaluation by the correlations between the OPASS system and a 

comprehensive TIPS test with high reliability and validity, the evaluations of domain experts 

are also important for evaluating the accuracy of diagnostic reports [86]. Therefore, an 

evaluation tool was developed to allow the domain expert to review and evaluate the accuracies 

of the diagnostic results of each learner by checking the assessment portfolios. Three teachers 

as domain experts were invited to evaluate all learners’ experimental logs and score all 

statements in the diagnostic reports generated by the OPASS system. A statement’s score was 

from 0 to 1. Figure 6.6 shows the statistical results in terms of different parts of the diagnostic 

report for three tests shown in Figure 6.4. According to evaluation results, the accuracies of the 

diagnostic reports are very high and meet the professional opinions of the teachers. In addition, 

the teachers also agreed that automatic, generated diagnostic reports can significantly assist 
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teachers in understanding the status of learners’ inquiry abilities. This personalized diagnosis 

task is difficult for teachers to complete manually.  

 

 
Figure 6.6: Statistical Results of Teachers’ Evaluations for Diagnostic Report Accuracies 

 

6.6 Analysis of Learners' Feedback 

Figure 6.7 shows the statistical results of the questionnaire (Cronbach's Alpha = 0.825) 

concerning learners’ satisfaction in terms of two classes (N=10 in Class 1 for Biology and N=24 

in Class 1 for Physics), as shown in Table 6.6. The satisfaction degree is from 3.86 to 4.2 and 

the average is 4.17. This shows that most of learners agreed that the diagnostic mechanism and 

the diagnostic report generated by the OPASS system are useful and can be expected to 

improve learning efficacy and assist in understanding the learning and operational problems in 

Web-based scientific inquiry experiments.  

 
Figure 6.7: Statistical Results of the Questionnaire Concerning the Learners’ Satisfaction 

 

  

4.1 3.9 4.1 3.9 4.23.86 4.07 4.07 3.9 4.143.98 3.985 4.085 3.9 4.17

Q1 Q2 Q3 Q4 Q5

Students' Satisfaction

Class 1 Class 2 Average
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Chapter 7 Conclusion 

This dissertation aims to propose an automatic adaptive scaffolding scheme to assist 

learners in science learning in a hypermedia-based learning environment. Because the various 

learners need personalized learning supports to fulfill their learning needs, the adaptive 

scaffoldings have to guide learners learning in the non-linear learning process. However, the 

heterogeneous learning paths and learning portfolios in the non-linear learning process cause 

the Learning Process Representation Subproblem, the Personalized Content Adaptation 

Subproblem, and the Process Skill Diagnosis Subproblem. In the Learning Process 

Representation Problem, a learning process model is needed for teachers to intuitively express 

the non-linear learning process. To cope with this subproblem, this dissertation proposes a 

Generalized Finite State Machine, where the input of traditional finite state machine is 

generalized to a compound input to represent learners’ complex learning status. Furthermore, 

in order to express teachers’ learning path-selection knowledge, the disjunction normal form 

rules are embedded in the transition function to deal with the inputted learning status. In the 

Personalized Content Adaptation Subproblem, learning content storing in the single 

granularity usually causes the efficiency issue when providing adapted learning content for a 

new request. Thus, a Multi-Granularity Content model is used to manage learning content. 

For a new request, the content can be adapted from coarse-grained to fine-grained to provide 

efficient and effective content adaptation. In the Process Skill Diagnosis Subproblem, the 

low-level heterogeneous learning events cannot be connected to the high-level diagnosis 

knowledge. For this subproblem, an Ability-Centered Knowledge level is proposed, where the 

background knowledge is represented as knowledge ontology and all learning events can be 

evaluated to generate predicates of learning status, which represent the ability-related testing 

performances or learning behaviors. By using the Ability-Centered Knowledge level, the 
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diagnosis knowledge can be applied to assess the heterogeneous learning portfolios to provide 

learning diagnosis. The three knowledge models can communicate with each other and can 

provide the integrated learning support for the four phases of learners’ self-regulated learning. 

 

Besides the evaluation of satisfaction degrees and scores, the learners' behaviors during 

the experiments changed. In the experiments of GFSM, we found that the learners in 

low-grade group tended to plan and implement their learning process more actively, and the 

learners in high-grade group tended to refer to the suggestions to plan their learning processes. 

The reason might be that the better understanding of the course makes the low-grade-group 

learners have more ability to plan learning by themselves, and the high-grade-group learners 

can reflect on their planning strategies by referring the suggestions. Moreover, in the 

experiment of HKD, we found learners spent more time trying to correct actions in the virtual 

experiments by refering to the diagnostic reports. The reason might be that the diagnostic 

reports can help learners reflect on their learning weakness, which is a clearly learning goal 

and can motivate learners to remedy it. However, the SRL behavior changes caused by the 

proposed Novel Adaptive Scaffolding Scheme have not been evaluated precisely and severely. 

In the future research, more evidences, such as the trends of learning time and attempt times, 

will be found from learners' learning logs. Moreover, more teaching strategies of constructing 

and fading scaffoldings will be used to help learners gradually learn to self-regulate their own 

learning process without assistance and then improve learners' SRL abilities. 

 

In the near future, we aim to help learners regulate not only cognition, but also 

motivation, because the learning motivation is easy to decrease in the traditional HLE. Thus, 

we will try to diagnose learners' motivation by analyzing their learning time, behaviors, and 

context. Based on the diagnosis, the system can provide more suggestions, challenges, and 
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interaction with peers to enhance learners' motivation. Besides, the proposed scaffoldings of 

planning focus on helping learners who already have learning goals. However, some learners 

even cannot clearly know their learning directions and goals. Thus, in the near future, we also 

aim to assist learners in determining learning goals based on their prior knowledge and styles. 
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Appendix 1. Object-Oriented Learning Activity System 

Concept is an established framework of understanding an objects, events, or processes 

[55]. The theory of Meaningful Learning, proposed by Ausubel [4], describes that in science 

education the new knowledge must be constructed based on the learners’ prerequisite 

knowledge, named superordinate concept. Gagne [26] also suggested that prior knowledge is 

the necessary internal condition of learning. Thus, how to suggest meaningful learning 

process according to learners’ ability of concepts is an important and challenging issue to 

improve learning efficacy.  

 

We have invited in-service teachers to design a scientific learning activity, named “The 

evaporation, condensation and boil of water” based upon the concept of Scaffolding 

Instruction [76]. Scaffolding Instruction originates from the concept of “zone of proximal 

development (ZPD)”, proposed by [90], which means the distance between what learners can 

do by themselves and what they can be helped to achieve. The teaching strategy of Scaffolding 

Instruction provides individualized support, named Scaffolding, based on the learner’s ZPD 

[13]. Thus, it is important to clearly evaluate the learners’ prior knowledge to provide 

scaffolding in learners’ ZPD. Besides, according to [70], in the scientific learning about water 

cycle, some misconceptions are generated easily to confuse learners. These misconceptions can 

make learning more difficult, so in the adaptive learning activity, we aim to find the 

misconceptions and provide appropriate remedial instructions. The online courses were 

provided to 62 learners of 5th graders in an elementary school in Taiwan. 

 

Before designing the learning activity, the scope of this learning activity was clearly 

defined in Figure x1.1. Based on the theory of [27], we organized the related concepts of water 

cycle in a concept hierarchy, shown in Figure x1.2, and collected the data of related 
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misconceptions to construct a misconception hierarchy, shown in Figure x1.3. Accordingly, the 

knowledge evaluation test items were designed to evaluate the learners’ prior knowledge, and 

the regular learning contents were constructed to teach all related concepts. In order to help 

learners find and correct misconceptions, the diagnostic test items and the corresponding 

contents of remedial instruction were constructed. All the learning sequences were designed as 

flowcharts and further integrated learning resources to construct an online learning activity in 

OOLA system. This learning activity can be performed after a regular lecture of water cycle to 

improve the learners’ learning efficacy.  

 

 
Figure x1.1: Flowchart of designing a learning activity in OOLA system 
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Figure x1.2: A partial concept hierarchy of freezing in water cycle 

 
Figure x1.3: The partial misconception hierarchy of freezing in water cycle 

 

In the strategy of the learning activity, shown in Figure x1.4, a course introduction is given 

as an advance organizer [4], and then a pre test is given to evaluate the prior knowledge of the 

learner. If the learner has already understood the topic of this learning activity, an activity is 

provided to enhance the impression. Otherwise, learning contents are provided based on the 

learner’s prior knowledge. After the concept learning, a post test is given to evaluate the 

learner’s learning ourcomes, and if any concept still can not be handled, the diagnostic test is 

used to find the misconceptions, which will be remedied by the remedial instructions. 
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Figure x1.4: The teaching strategy of the scaffolding instruction with misconception diagnosis 

 

Accordingly, as shown in Figure x1.5, the flowcharts of knowledge evaluation test and 

concept learning in the learning activity were designed. In knowledge evaluation test, the exam 

about the most general concept c1, named “Freezing”, is given to evaluate the overall 

knowledge of freezing. If c1 is understood by learners, the learning services of search engine 

and file-upload service are provided for learners to find related data and upload the reports to 

teachers. Otherwise, if c1 can not be totally understood, the evaluation test will drill down to 

evaluate the prerequisite concepts c1-1, c1-2, and c1-3 in the lower level of concept hierarchy and 

the rest may be deduced by analogy until the concepts of weak understanding in the lowest level 

are evaluated. Then, the learning contents will be provided to construct knowledge from the 

lowest level concepts, evaluated in knowledge evaluation test, to the top level concept. In each 

learning unit object, the learning contents can be hidden if the learner has already had the 

knowledge. For example, in the matrix of second level contents, item1 will be displayed only if 

the score of concept c1-1 is lower than 0.6, and the item4 will be shown only if the average score 

of c1-1, c1-2, and c1-3 is very low. 
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Figure x1.5: A part of flowchart of learning activity “The evaporation, condensation and boil of 

water” 

 

As shown in Figure x1.6, after concept learning, a post test is given to evaluate the learning 

performance of all concepts. If any score of concept is still lower than 0.6, a corresponding 

diagnostic test will be provided to find out the misconceptions, which might cause the low 

learning performance. Then, the misconceptions can be remedied in the remedial instruction, 

and the next concept will be diagnosed subsequently. 

 
Figure x1.6: A part of flowchart of misconceptions diagnosis and remedial instructions 

 

This application shows how to evaluate a learner’s prior knowledge based on concept 

hierarchy by the mechanism of adaptive navigation support in OOLA system. In the concept 

learning, the adaptive presentation mechanism is performed based on the concept matrix to 
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select the appropriate learning contents according to learner’s prior knowledge. Moreover, with 

misconception hierarchy, the learning activity can perform the corresponding diagnosis and 

remedial instruction for each misconception. Figure x1.7 is the screenshot of authoring tool of 

OOLA system, 

 
Figure x1.7: Screenshot of the authoring tool of OOLA system 
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Appendix 2. Personalized Learning Content Adaptation 

Mechanism 

The prototypical PLCAM system was developed on an Apache Server, PHP, Perl and C 

Language, and a SCORM-compliant LOR. Implementation details and experimental results are 

described in this section. 

 

The mobile learning scenario for the prototypical PLCAM system deploys a 

SCORM-compliant Learning Object Repository (LOR) that allows teachers to upload teaching 

materials. Learners, in turn, can search and download the desired learning content onto their 

mobile devices. Learners can log in to the system through their mobile devices and manually 

configure their own Leaner Preference (LP) with Weight Vector (WV). They may then select 

the learning content to download, and proper personalized learning content will be adapted and 

delivered by the PLCAM according to the learners’ Hardware Profile (HP) and LP, and the 

status of the wireless networks. As the number of Learner Requests (∑) increases, the Learning 

Content Adaptation Management Scheme (LCAMS) will automatically rebuild the Content 

Adaptation Decision Tree (CADT) and manage the adapted version of the Media Object (MO) 

in the LOR. 

The operational flow of the PLCAM is illustrated in Figure x2.1. First, a learner uses an ID 

to log in to the prototypical PLCAM system [Step (a)]. After logging in, a learner can use the 

menu on the index page of the Media Version Base to manually configure the following: 1) the 

HP setting, 2) the LP setting, 3) browse the content of the LOR, and 4) read the system manual 

[Step (b)]. The PLCAM can automatically detect the HP of a mobile device and the current 

bandwidth of a wireless network, as shown in the "Dynamic Attributes" [Step (c)]. Next, a 

learner can use the "User Preference Configuration" to manually define the data of an LP, such 

as the preferred maximum Delivery Time (DT), presentation ratio of audio and picture, and the 
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preferred priority of picture, etc. [Step (d)]. After configuring the HP and LP, a learner can 

click "(3) browse the content of LOR" in Step (b) to browse the contents by the "Category 

Page" of the Media Version Base [Step (e)]. The system will list the learning content stored in 

the selected categories [Step (f)]. A learner can also select interesting learning content to 

browse its "SCORM metadata" and "Table of Contents" [Step (g)]. Consequently, the PLCAM 

will adapt the chosen content according to the mobile device profile (HP), LP, and the current 

Bandwidth (B) together, and offer personalized learning content to the learner's mobile device 

[Step (h)]. 
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Figure x2.1: Operational flow for a user to retrieve the learning content by the PLCAM system  

 
Figure x2.2 illustrates screenshots of the PLCAM delivering proper personalized adapted 

learning object content to the similar LR without waiting for the adaptation time of the 

requested content. Assume there is an existing adapted content version created by 

LPa=<5,JGBP,0,0> of learner A, as shown in Figure x2.2.a. This existing version will be 
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selected in advance and delivered directly to the new request with LPb=<5,JGBP,1,0> of 

learner B, due to the higher similarity estimation, as shown in Figure x2.2.b. Therefore, learner 

B does not need to wait for the adaptation to take place again. In the meantime, the PLCAM will 

prepare an accurate content version with a background picture to meet LPb=<5,JGBP,1,0>, 

which is stored in the Media Version Base for the next similar request. For example, this 

prepared version of LPb can be delivered directly to meet the new LPc=<5,JBGP,1,0>, as shown 

in Figure x2.2.c. 

 

LPa=<5,JGBP,0,0>

Bandwidth = 60KB

Maximum Delivery Time = 5 sec.

Background Picture = Disable

LPb=<5,JGBP,1,0>

Bandwidth = 60KB

Maximum Delivery Time = 5 sec.

Background Picture = Enable

LPc=<5,JBGP,1,0>

Bandwidth = 60KB

Maximum Delivery Time = 5 sec.

Background Picture = Enable

Deliver it directly 

a b c

Prepare an accurate version for next request

With Background PictureWithout Background PictureWithout Background Picture

Background Audio 

&Picture link

Background Audio link

 

Figure x2.2: (a) Adapted content version of LPa; (b) delivered the adapted content version of 

LPa for LPb due to the higher similarity; and (c) delivered the content version created by LPb in 

advance for LPc 

 
Figure x2.3 shows several experimental screenshots of the PLCAM system executed on a 

PDA according to diverse user needs. Figure x2.3.a and Figure x2.3.b illustrate adapted content 

based on the same HP and LP with different adaptation parameters under different bandwidth 

values, respectively. The attributes of the LP and HP can be extended to meet the various 

requirements. Thus, a new attribute in the LP, called Preferred Picture Property Ordering 

(PPPO), includes three properties: Dimension (D), Color Depth (C), and Quality (Q). This 
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attribute is used to define the learner’s preferred order of image properties. For instance, like the 

attribute PPFO, a string, DQC, denotes that the order of image priorities is D > C > Q. Hence, 

we added the PPPO attribute into the LP and changed several parameters, e.g., Delivery Time 

(DT) and Audio Switch (AS), to test the results of the learning content adaptation process. As 

shown in Figure x2.3.c, according to the new LP setting and original HP, the property of the 

picture was changed and the audio, background picture, and icon were replaced by hyperlinks 

with annotation text. We further evaluated the learning content adaptation capability by 

changing the screen’s horizontal size and color depth of the HP while using the same LP in 

Figure x2.3.c. The desired adapted learning content was delivered by the PLCAM system, as 

shown in Figure x2.3.d. 
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Figure x2.3: Screenshots of the learning content adaptation process performed by the PLCAM 

system 

 
The PLCAM system also includes a monitoring interface of the LCAMS Web server, used 

to monitor the latest system status and maintain the CADT. As shown in Figure x2.4, the 

"Assign Cluster Label" function button can be used to perform the Content Version Clustering 

Algorithm (CVClustering) for grouping the historical block-level nodes into several clusters 

according to the learners’ LPs, where the resultant clustered information of the CVClustering 

will be shown in the bottom-left part of Figure x2.4. Furthermore, the CADT can be 

reconstructed by the “Rebuild Decision Tree” function button. Its graphical presentation and 
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rule-based representation will be automatically shown in the top-left part of Figure x2.4. The 

right-hand side of Figure x2.4 will list all of the nodes. 

   

 
Figure x2.4: Monitoring interface screen of the LCAMS Web server in the PLCAM system 
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Appendix 3. Online Portfolio Assessment and Diagnosis 

Scheme 

 In order to evaluate the effectiveness of the OPASS, the prototypical system has been 

developed, as shown in Figure x3.1. The OPASS system consists of three databases: (1) 

Assessment Knowledge Base; (2) Diagnosis Rule Base; and (3) Assessment Portfolio Database. 

The assessment knowledge can be defined by teachers to meet the requirements of scientific 

inquiry assessments based on the proposed Assessment Knowledge (AK) definition. The 

OPASS can be integrated with the Web-based scientific inquiry experiment system based on 

the proposed connection protocol. Therefore, learners can use the browser to take the scientific 

inquiry assessment and their operational behavior will be recorded into the assessment portfolio 

database. After learners finish the assessment, the OAPDP will automatically analyze the 

assessment portfolio using the rule inference process according to assessment knowledge and 

then automatically generate personalized diagnostic reports to learners according to diagnostic 

rules.  

 
Figure x3.1: Architecture of the Prototypical OPASS 

  

As seen in Figure x3.2, six assessment activities executed on the Web-based scientific 

inquiry experiment system have also been developed for the Physics (Figure x3.2b) and 

Biology (Figure x3.2c) experiments, respectively. In Figure x3.2a, each assessment was 

developed based on the assessment procedure consisting of six steps, where the operation 

experiment in step 3 offers a Web-based interactive, operational experiment tool to allow 
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learners to operate it and observe responses and reactions. 

 
Figure x3.2: Assessment Activities of the Web-based Scientific Inquiry Experiment in: (b) 

Physics and (c) Biology Based on (a) Assessment Procedure 
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