
 

 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

博 士 論 文 
 
 
 
 

探勘時間間隔循序特徵樣式之相關研究 

 
A Study on Time Interval-based Sequential Patterns Mining 

 
 
 
 
 

研 究 生：陳以錚 

指導教授：李素瑛  教授 

彭文志  副教授 

 

 
 

中 華 民 國 一０一 年 六 月 

 
 



 

 

 

探勘時間間隔循序特徵樣式之相關研究 

A Study on Time Interval-based Sequential Patterns Mining 
 
 
 
 
 

研 究 生：陳以錚             Student：Yi-Cheng Chen 

指導教授：李素瑛、彭文志    Advisor：Suh-Yin Lee, Wen-Chih Peng 

                              

 
 
 

國 立 交 通 大 學 
資 訊 科 學 與 工 程 研 究 所 

博 士 論 文  
 
 

A Dissertation 

Submitted to Institute of Computer Science and Engineering  

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

Computer Science 
 
 

June 2012 
 

Hsinchu, Taiwan, Republic of China 

 



 

 - ii -

探勘時間間隔循序特徵樣式之相關研究 
 

研究生: 陳以錚   指導教授: 李素瑛 博士、彭文志 博士 
 

國立交通大學資訊工程博士班 
 

摘 要 

循序特徵樣式因其廣泛的實用性，在資料探勘的領域中一直扮演著非常重

要的角色，藉著探勘出存在的時間順序對許多相關實務有很大的幫助。但現今

的演算法大都只考慮針對時間點的循序樣式探勘，並無時間的持續概念，處理

時間間隔的相關演算法與應用領域一直為學者專家所忽略。本論文專注於探討

時間間隔循序樣式之相關問題，研究如何設計正確的表示方法與有效率的探勘

演算法，並討論所產生之相關技術。表示方法(representation)是在處理時間間

隔序列時，最基礎的問題。對以時間間隔為基礎的循序樣式而言，單純依照發

生時間的所排序出的前後關係，並無法表示出一個完整的時間間隔循序樣式。

本論文改進目前幾種表示法的缺點，在有效利用儲存空間的前提之下，提出了

兩種表示法：同時片段表示法 (coincidence representation)與端點表示法

(endpoint representation)，能有效表達樣式中間隔彼此的關係，並且避免產生混

淆問題(ambiguous problem)。以片段表示法為基礎，我們設計了一個能在大型

資料庫中，有效率探勘時間間隔特徵樣式的演算法(CTMiner)。本論文也考慮

了相關變化型樣式，設計出了以端點表示法為基礎，探勘封閉式時間間隔特徵

樣式的演算法 (CEMiner) 與漸增式探勘時間間隔特徵樣式的演算法

(Inc_CTMiner)。從合成與真實測資的實驗結果可得知，我們所提出的三種演

算法，都能有效率且正確地找出所有的相關時間間隔特徵樣式，並且只需少量



 

 - iii -

的記憶體使用量。本論文也將三種演算法實際應用於現實生活的資料上，找出

有用的時間間隔特徵樣式，以證明演算法的實用性。 

 

關鍵詞: 循序特徵樣式、封閉循序特徵樣式、漸增式樣式探勘、時間間隔特徵

樣式、表示方法。 



 

 - iv -

A Study on Time Interval-based Sequential 
Patterns Mining 

 

 

Student: Yi-Cheng Chen   Advisor: Dr. Suh-Yin Lee, Dr. Wen-chih Peng 
 

Department of Computer Science and Information Engineering 
National Chiao Tung University 

 
 

ABSTRACT 
Sequential pattern mining is a key issue in data mining. However, most of the previous 

studies are mainly focused on time point-based event data. Little attention has been paid to 

mining patterns from time interval-based event data, where each event persists for a time interval. 

Since intervals may overlap, the relation between any two intervals is intrinsically complex. In 

this dissertation, we propose two new representations, coincidence representation and endpoint 

representation to simplify the processing of complex relations among event intervals. Then, 

three efficient algorithms, CTMiner, CEMiner and Inc_CTMiner, are developed to discover 

several types of temporal patterns from interval-based data. Based on coincidence representation, 

an efficient algorithm, CTMiner is developed to discover frequent temporal patterns from 

interval-based data. The algorithm employs two pruning techniques to reduce the search space 

effectively. The mining of closed sequential patterns has attracted researchers for its capability of 

using compact results to preserve the same expressive power as conventional mining. In this 

dissertation, a novel algorithm, CEMiner, is developed to discover closed temporal patterns based 

on endpoint representation. Algorithm CEMiner also utilizes some optimization technique to 

reduce the search space in processing. In several real-life applications, sequence databases 

generally update incrementally with time. A number of discovered sequential patterns may be 

invalidated, and a number of new patterns may be introduced by the evolution on the database. 

We proposed an efficient algorithm, Inc_CTMiner to incrementally mine temporal patterns in 

interval database. Moreover, the algorithm employs some optimization techniques to reduce the 

search space effectively. The experimental studies indicate that all proposed algorithms are 

efficient and scalable and outperforms the state-of-the-art algorithms. The improvement of 



 

 - v -

proposed pruning strategies also has been discussed. Furthermore, we also apply our algorithms 

on real data to show the efficiency and validate the practicability of interval-base temporal 

mining. 

  

Keywords: sequential pattern, closed sequential pattern, incremental pattern mining, temporal 

pattern mining, representation. 



 

 - vi -

誌謝 

 

在博士班期間，首先要感謝的就是指導教授李素瑛老師。李老師在研究上的諄諄善誘

與耐心教誨，才讓我得以完成博士論文。李老師嚴謹的治學態度，於研究與投稿的每個階

段屢次再現，總見老師百忙中抽空，費心審查。除了在學術方面的指導外，李老師在生活

態度、待人處世，以及各方面給予我的教導，都遠遠超出一名指導教授的職責，不僅讓我

終身受益，也讓我深刻感受到李老師對於學生的衷心關愛與呵護。 

 

我也要感謝我的共同指導教授彭文志老師，平日研究上的指導，總能指出我尚需改進

之處。在一些人生未來的方向上，彭老師也給予我寶貴的意見與幫助，讓我獲益良多。 

 

在此我以真摯的心感謝所有口試委員，不吝於提供多年的寶貴研究經驗，充實了本論

文的深度與廣度。謝謝陳銘憲老師、陳良弼老師、曾新穆老師、沈錳坤老師、與黃俊龍老

師，為豐富本論文內容提供絕佳的意見，在方法適用範圍、方法評比、研究結果的適切論

述、方法的差異性等等見解，使本論文更臻完善。諸位口試委員是我學術研究的最佳典範，

也是我最值得學習的對象。 

 

此外，資訊系統實驗室的學長姊及學弟妹們，非常感謝你們在這段期間的協助與支持，

不僅同窗，更為好友；是你們使我的研究之路如此精彩，如此溫馨。 

 

最後要感謝我最親愛的家人。先父陳哲浩先生、母親葉忱女士和姊姊陳以涵女士。有

你們分享我的一切，這才使我的努力有了意義。無論是在日常生活上的悉心照顧與關懷，

還是在博士班期間給予我永無止盡的精神支持，都是我源源不絕的動力來源。雖然先父尚

未看見我完成學業即匆促辭世，但我仍要將此論文獻給我的父親，我依然是追隨著您的腳

步。 

 

再次感謝一路走來教誨我、陪伴我、支持我的大家，謝謝。 



 

 - vii -

Table of Contents 

ABSTRACT .............................................................................................................................iv 

Table of Contents ...................................................................................................................vii 

List of Figures ...........................................................................................................................x 

List of Tables .........................................................................................................................xiii 

Chapter 1 Introduction ............................................................................................................1 

Chapter 2 An Efficient Algorithm for Mining Temporal Patterns from Interval-based 

Data ...........................................................................................................................................4 

2.1 Introduction ................................................................................................................4 

2.2 Related Work ..............................................................................................................6 

2.3 Preliminary ...............................................................................................................10 

2.4 Incision Strategy and Coincidence Representation ................................................11 

2.4.1 Incision Strategy.............................................................................................12 

2.4.2 Coincidence Representation ..........................................................................17 

2.5 Proposed algorithm ..................................................................................................20 

2.5.1 CTMiner .........................................................................................................21 

2.5.2 Multi-Projection Technique ..........................................................................25 

2.5.3 Correctness of Algorithm ..............................................................................27 

2.6 Experimental Results and Performance Study .......................................................27 

2.6.1 Data Generation .............................................................................................28 

2.6.2 Runtime Performance on Synthetic Datasets ...............................................29 

2.6.3 Scalability and Memory Usage Studies.........................................................31 

2.6.4 Influence of Proposed Pruning Strategies ....................................................34 

2.6.5 Real World Dataset Analysis .........................................................................34 

2.7 Summary ...................................................................................................................39 

 



 

 - viii -

Chapter 3 An Efficient Algorithm for Mining Closed Temporal Patterns from Interval 

Database ..................................................................................................................................41 

3.1 Introduction ..............................................................................................................41 

3.2 Related Works...........................................................................................................44 

3.2 Preliminary ...............................................................................................................46 

3.3 Endpoint Representation..........................................................................................47 

3.4 CEMiner ....................................................................................................................49 

3.4.1 Closure Checking ...........................................................................................50 

3.4.2 Proposed Algorithm .......................................................................................53 

3.5 Experimental Results................................................................................................56 

3.5.1 Performance on Synthetic Datasets ..............................................................58 

3.5.2 Scalability and Memory Usage Studies.........................................................59 

3.5.3 Real-World Dataset Analysis ........................................................................61 

3.6 Summary ...................................................................................................................62 

Chapter 4 Incremental Mining Temporal Patterns from Interval-based Database ..........63 

4.1 Introduction ..............................................................................................................63 

4.2 Related Work ............................................................................................................67 

4.3 Preliminary ...............................................................................................................69 

4.4 Coincidence Representation.....................................................................................70 

4.5. Inc_CTMiner Algorithm .........................................................................................74 

4.5.1 Basic Concepts of Inc_CTMiner ...................................................................74 

4.5.1.1 Sequence Transformation ...................................................................76 

4.5.1.2 CTMiner Algorithm ............................................................................78 

4.5.1.3 Interval Extension ...............................................................................79 

4.5.2 Proposed Algorithm: Inc_CTMiner .............................................................83 

4.6 Experimental Results and Performance Study .......................................................88 

4.6.1 Data Generation .............................................................................................89 



 

 - ix -

4.6.2 Execution Time and Memory Usage on Synthetic Datasets ........................90 

4.6.3 Performance on Different Updating Scenario..............................................93 

4.6.4 Scalability Studies ..........................................................................................94 

4.6.5 Impact of Pruning Strategy ...........................................................................95 

4.6.6 Real Dataset Analysis.....................................................................................97 

4.7 Summary ...................................................................................................................98 

Chapter 5 Conclusion...........................................................................................................100 

Bibliography .........................................................................................................................102 

 

 



 

 - x -

List of Figures 

Fig. 2.1: Example of two ambiguous problems of hierarchical representation …………… 7 

Fig. 2.2: Example of relation matrix representation…………………………….. …………… 8 

Fig. 2.3: Six possible segmentations between two consecutive end time points …………… 14

Fig. 2.4: The pseudocode of Incision Strategy………………………………….. …………… 15

Fig. 2.5: An example of incision strategy……………………………………….. …………… 16

Fig. 2.6: The coincidence representation of Allen’s 13 relations between two 
intervals 

…………… 18

Fig. 2.7: CTMiner algorithm……………………………………………………. …………… 22

Fig. 2.8: Example of projection and multi-projection technique………………... …………… 26

Fig. 2.9: Experimental results on dataset D10k – C20 – N1k…………………… …………… 29

Fig. 2.10: Experimental results on dataset D100k – C40 – N10k……………….. …………… 30

Fig. 2.11: Experimental results on dataset D200k – C40 – N10k……………….. …………… 31

Fig. 2.12: Experiments of scalability and memory usage……………………….. …………… 32

Fig. 2.13: The performance testing of influence on proposed pruning strategies. …………… 33

Fig. 2.14: Experimental results on ASL-BU, ASL-GT, Pioneer, and Auslan2 
dataset 

…………… 36

Fig. 2.15: Experimental results on Library dataset……………………………… …………… 37

Fig. 3.1: Allen’s 13 relations between two intervals…………………………….. …………… 42

Fig. 3.2: An example database…………………………………………………... …………… 46

Fig. 3.3: The endpoint representation of Allen’s 13 relations between two 
intervals 

…………… 48

Fig. 3.4: CEMiner algorithm……………………………………………………. …………… 53

Fig. 3.5: EBIDE algorithm………………………………………………………. …………… 54



 

 - xi -

Fig. 3.6: An example of projected databases and closed temporal patterns…….. …………… 56

Fig. 3.7: Parameters of synthetic data generator………………………………… …………… 57

Fig. 3.8: The performance and mining result on data set D10k – C10 – N1k…... …………… 58

Fig. 3.9: The performance and mining result on data set D100k – C10 – N1k…. …………… 59

Fig. 3.10: The performance with different database size………………………... …………… 60

Fig. 3.11: The memory usage of five algorithms………………………………... …………… 60

Fig. 3.12: The performance and mining result on library data set from NCTU… …………… 61

Fig. 4.1: Concept of INSERT and APPEND updates interval sequence database …………… 66

Fig. 4.2: The frequent pattern tree built from updated database DB+db in Table 
4.2 

…………… 76

Fig. 4.3: An example of incision strategy……………………………………….. …………… 77

Fig. 4.4: Algorithm of incision strategy…………………………………………. …………… 78

Fig. 4.5: CTMiner algorithm……………………………………………………. …………… 79

Fig. 4.6: Possible variations of relation and coincidence representation for 
concatenating two event sequences 

…………… 80

Fig. 4.7: An example of concatenation of two coincidence sequences…………..…………… 83

Fig. 4.8: Pseudo code of Naïve_Method………………………………………... …………… 85

Fig. 4.9: The search space reduction on FPTDB of example database DB in 
Table 4.2 

…………… 86

Fig. 4.10: An algorithmic overview of Inc_CTMiner…………………………… …………… 87

Fig. 4.11: Algorithm of Inc_CTMiner…………………………………………... …………… 88

Fig. 4.12: The performance on data set D10k – C10 – N1k (with Rinc = 10%, 
Rext = 50% and Rapp = 20% updating scenario) 

…………… 92

Fig. 4.13: The performance on data set D100k – C20 – N10k (with Rinc = 10%, 
Rext = 50% and Rapp = 20% updating scenario) 

…………… 93

Fig. 4.14: The performance on data set D200k – C20 – N10k (with Rinc = 10%, 
Rext = 50% and Rapp = 20% updating scenario) 

…………… 94



 

 - xii -

Fig. 4.15: Total execution time with various increment ratios, extended ratios 
and appended ratios 

…………… 96

Fig. 4.16: The performance on different database size and on influence of 
proposed pruning strategies 

…………… 97

Fig. 4.17: Execution time of three algorithms and multi updates on library 
dataset from NCTU 

…………… 99



 

 - xiii -

List of Tables 

Table 2.1: Allen’s 13 relations between two intervals…………………………... …………… 5 

Table 2.2: Database example……………………………………………………. …………… 11

Table 2.3: Example of projected databases and frequent temporal patterns…….. …………… 24

Table 2.4: Parameters of synthetic data generator………………………………. …………… 28

Table 2.5: Five real-life databases………………………………………………. …………… 35

Table 2.6: Some temporal patterns discovered from of NCTU library…………. …………… 38

Table 4.1: Part of temporal patterns discovered from of NCTU library………… …………… 64

Table 4.2: An example of temporal database……………………………………. …………… 70

Table 4.3: Comparisons of existing representation……………………………… …………… 71

Table 4.4: The coincidence representation of Allen’s relations between two 
intervals 

…………… 74

Table 4.5: Parameters of synthetic data generator………………………………. …………… 90

 



 

 - 1 -

Chapter 1 

Introduction 
 

Recently, sequential pattern mining is an active research topic in data mining domain, due to 

its widespread applicability. This kind of applications always considers order relation and time 

issue in our daily lives. Sequential pattern mining mainly deals with extracting the positive 

behavior of a sequential pattern that can help in predicting the next event after a sequence of 

events. However, finding sequential patterns is a difficult problem since the mining may have to 

generate or examine a large number of intermediate subsequence combinations. Many sequential 

pattern mining algorithms have focused on exploring an approach to discover frequent time-point 

based correlations or patterns in large sets of temporal data. 

 

However, in many real-world scenarios, events usually tend to persist for periods of time 

instead of instantaneous occurrences, cannot be treated as “time points”. In such cases, the data is 

usually a sequence of events with both start and finish times. Much existing research mainly 

focused on discovering patterns from time point-based event data. These approaches is hampered 

by the fact that they can only handle instantaneous events efficiently, not event intervals. By 

comprehensive observation, we can perceive that time point-based issue is just a special case of 

the time interval-based issue (where start time is identical to finish time), but not vise versa. 

Mining time interval-based patterns (also called temporal patterns) from such data is 

undoubtedly more complex and arduous, and requires a different approach from mining time 

point-based data, such as mining traditional sequential patterns or episode. 

 

To the best of our knowledge, all the related research in this domain is based on Allen’s 

temporal logics [2], which are categorized into 13 temporal relations between any two event 

intervals as: “before,” “after,” “overlap,” “overlapped by,” “contain,” “during,” “start,” “started 

by,” “finish,” “finished by,” “meet,” “met by,” and “equal.” These 13 relationships can describe 

any relative position of two intervals based on the arrangements of the start and the finish end 

time points. However, all the Allen’s logics are binary relation and may suffer several problems 



 

 - 2 -

when describing relationships among more than three events. An appropriate representation is 

very crucial for facing this circumstance. Various representations have been proposed but most of 

them have restriction on either ambiguity or scalability. 

 

In this dissertation, we discuss three issues related to temporal pattern, mining temoral pattern, 

mining closed temporal pattern and incremental mining of temoral pattern. For each issue, we 

discuss its challenge and the major bottleneck, and propose proper representation for processing 

intervals among event sequence. Based on proposed representations, some algorithms are given 

to address each issue.  

 

For temporal pattern mining, we develop the concept of slice-coincidence to trim the 

processing of complicated relationship among event intervals effectively, and facilitate the 

temporal pattern mining. Allen’s 13 temporal logics can be reduced to simply three relationships, 

i.e. “before,” “equal” and “after.” All event intervals are incised to event slices and grouped into 

coincidence regarding to the global information of end time arrangements in the sequence. 

Utilizing the incision strategy, a new algorithm, CTMiner (Coincidence Temporal Miner) is 

proposed to address the crucial problem and discover the frequent temporal patterns efficiently 

and effectively. Experimental studies on both synthetic and real datasets indicate that proposed 

strategy and algorithm are both efficient and scalable and outperforms state-of-the-art algorithms. 

Furthermore, our experiments also show that the proposed approach consumes a much smaller 

memory space. 

 

For closed temporal pattern mining, we simplify the processing of complex relations among 

intervals by capturing the global information of all endpoints in a sequence. Various existing 

representations may lead to different kinds of problem. We develop a compact representation, 

endpoint representation, to express a pattern or sequence nonambiguously. Endpoint 

representation can facilitate the process and improve the performance of algorithm. A novel 

algorithm, CEMiner, which stands for Closed Endpoint Temporal Miner, is proposed to discover 

closed temporal patterns efficiently and effectively. Furthermore, CEMiner employs some 

optimization strategies to reduce the search space and avoids nonpromising closure checking and 

database projection. 



 

 - 3 -

For incremental mining of temporal pattern, this dissertation proposes an efficient algorithm, 

Inc_CTMiner which stands for Incremental Coincidence Temporal Miner, to address the crucial 

problem and incrementally discover temporal patterns based on the coincidence representation. 

Furthermore, Inc_CTMiner employs some pruning strategies to reduce the search space. 

Experimental studies on both synthetic and real datasets indicated that, in the incremental 

environment, Inc_CTMiner is efficient and outperforms the state-of-the-art algorithms, which are 

based on static database. Our experiments also revealed that the proposed approach is scalable 

and consumes a smaller memory space. We also applied Inc_CTMiner on real world datasets to 

demonstrate the practicability of maintaining the temporal patterns. 

 

The rest of the dissertation is organized as follows. Chapter 2 gives a novel algorithm for 

mining temporal patterns from interval-based data. Chapter 3 addresses the problem of closed 

temporal pattern mining and develops a novel algorithm for finding closed patterns from 

interval-based data. Chapter 4 provides the detailed discussion for an incremental mining 

algorithm for temporal patterns from interval-based database. Finally, we conclude in Chapter 5.  



 

 - 4 -

Chapter 2 

An Efficient Algorithm for Mining Temporal 

Patterns from Interval-based Data 

 

2.1 Introduction 
Recently, sequential pattern mining is an active research topic in data mining domain, due to 

its widespread applicability. This kind of applications always considers order relation and time 

issue in our daily lives. Sequential pattern mining mainly deals with extracting the positive 

behavior of a sequential pattern that can help in predicting the next event after a sequence of 

events. However, finding sequential patterns is a difficult problem since the mining may have to 

generate or examine a large number of intermediate subsequence combinations. Most of the 

previous sequential pattern mining algorithms, such as GSP [32], MEMISP [20], PrefixSpan [30], 

PSP [22] and SPADE [39] to name a few, focus on exploring an approach to discover frequent 

time-point based correlations or patterns in large sets of temporal data. 

 

In many real world scenarios, some events, which intrinsically tend to persist for periods of 

time instead of instantaneous occurrences, cannot be treated as “time points”. In such cases, the 

data is usually a sequence of events with both start and finish times. For example, in the medical 

field, some relationships can be mined from clinical records of patients to study the correlations 

between the symptoms and the diseases, or the influences between the diseases and other diseases. 

One may find that during Kawasaki disease infections, the patients often begin with a high-grade 

and persistent fever. Another discovery might be that during the presence of Kawasaki diseases, 

the affected patients develop red eyes, red mucous membranes in the mouth, and cracked red lips. 

 

Much existing research mainly focused on discovering patterns from time point-based event 

data. These approaches is hampered by the fact that they can only handle instantaneous events 

efficiently, not event intervals. By comprehensive observation, we can perceive that time 



 

 - 5 -

point-based issue is just a special case of the time interval-based issue (where start time is 

identical to finish time), but not vise versa. Mining time interval-based patterns (also called 

temporal patterns) from such data is undoubtedly more complex and arduous, and requires a 

different approach from mining time point-based data, such as mining traditional sequential 

patterns or episode. 

 

To the best of our knowledge, all the related research in this domain is based on Allen’s 

temporal logics [2], which are categorized into 13 temporal relations between any two event 

intervals as: “before,” “after,” “overlap,” “overlapped by,” “contain,” “during,” “start,” “started 

by,” “finish,” “finished by,” “meet,” “met by,” and “equal.” These 13 relationships can describe 

any relative position of two intervals based on the arrangements of the start and the finish end 

time points, as shown in Table 2.1. However, all the Allen’s logics are binary relation and may 

suffer several problems when describing relationships among more than three events. An 

appropriate representation is very crucial for facing this circumstance. Various representations 

have been proposed but most of them have restriction on either ambiguity or scalability. 

 

Table 2.1: Allen’s 13 relations between two intervals 

Temporal Relation Inversed Relation Pictorial Example
Endpoints Constraint 

( s: starting time, f: finishing time ) 

A before B B after A A.f  B.s 

A overlaps B B overlapped-by A ( A.s  B.s )  ( A.f  B.s )  ( A.f  B.f ) 

A contains B B during A ( A.s  B.s )  ( A.f  B.f ) 

A starts B B started-by A ( A.s = B.s )  ( A.f  B.f ) 

A finished-by B B finishes A ( A.s  B.s )  ( A.f = B.f ) 

A meets B B met-by A A.f = B.s 

A equal B B equal A ( A.s = B.s )  ( A.f = B.f ) 

A after B B before A B.f  A.s 

A overlapped-by B B overlaps A ( B.s  A.s )  ( B.f  A.s )  ( B.f  A.f ) 

A during B B contains A ( B.s  A.s )  ( B.f  A.f ) 

A started-by B B starts A ( B.s = A.s )  ( B.f  A.f ) 

A finishes B B finished-by A ( B.s  A.s )  ( B.f = A.f ) 

A met-by B B meets A B.f = A.s 

 

 

B

A

A
B

A 
B

A
B

A 
B

B
A

B 
A

B 
A

B
A

A
B

A B

B
A

B

A



 

 - 6 -

In this chapter, a fundamentally different technique from previous work is proposed to 

discover temporal patterns. Without any doubt, the major bottleneck of temporal mining task is 

the complex relationship among event intervals. We develop the concept of slice-coincidence to 

trim the processing of complicated relationship among event intervals effectively, and facilitate 

the temporal pattern mining. Allen’s 13 temporal logics can be reduced to simply three 

relationships, i.e. “before,” “equal” and “after.” All event intervals are incised to event slices and 

grouped into coincidence regarding to the global information of end time arrangements in the 

sequence. Utilizing the incision strategy, a new algorithm, CTMiner (Coincidence Temporal 

Miner) is proposed to address the crucial problem and discover the frequent temporal patterns 

efficiently and effectively. Experimental studies on both synthetic and real datasets indicate that 

proposed strategy and algorithm are both efficient and scalable and outperforms state-of-the-art 

algorithms. Furthermore, our experiments also show that the proposed approach consumes a 

much smaller memory space. 

 

The rest of this chapter is organized as follows. Section 2.2 gives the related work. Section 

2.3 provides the detailed definitions. Section 2.4 introduces the incision strategy and the 

coincidence representation. Section 2.5 describes the CTMiner algorithm. Section 2.6 presents 

the experiments and performance study, and we summarize in Section 2.7. 

 

 

2.2 Related Work 
Sequential pattern mining is one of the most important research themes in data mining. 

Recently, there has been a stream of research on it [1, 3, 6, 10, 11, 18, 20, 21, 22, 30, 32, 39] and 

its extensions, including closed patterns [4, 5, 15, 34, 38, 40], incremental pattern mining [4, 5, 7, 

9, 12, 14, 19, 23, 26, 28, 42] to name a few. Almost all of these related studies mentioned above 

are focused on time point-based event data which has no duration concept. Some recent works 

have investigated the mining of interval-based events [2, 13, 16, 17, 24, 25, 27, 29, 31, 33, 35, 36, 

37, 41]. 

 

Villafane et al. [33] proposed a graph mining technique to discover time interval-based 

sequential pattern by transforming data sequences to containment graphes. However, the 



 

 - 7 -

containment rules discussed are constrained only to “contains” and “during.” Kam et al. [16] 

proposed a compact encoding method, hierarchical representation and designed an algorithm to 

discover frequent temporal patterns. Although hierarchical representation only use k + (k 1 ) = 

2k 1 memory space for describing a k-intervals pattern (k event indices, k 1 describers), it may 

suffer from two ambiguous problems. First, the same relationships among event intervals can be 

mapped to different temporal patterns. As shown in Fig. 2.1(a), the pattern can be expressed as 

“((A overlaps B) before C) overlaps D ” or “(A overlaps B) before (C during D).” Second, the 

same temporal pattern can represent different relationships among event intervals. For example, 

Fig. 2.1(b) shows that pattern “(A overlaps B) overlaps C ” can represent two different relations 

among intervals. 

 

 

 

Rainsford et al. [31] presented an approach that combine temporal semantics with association 

rules. The algorithm firstly generates the traditional association rules, and then finds all the 

possible pairings of temporal items in each rule. Hoppner [13] proposed a nonambiguous 

representation, relation matrix which exhaustively lists all binary relationships between event 

intervals in a pattern. For example, pattern P in Fig. 2.2(a) can be represented as a matrix in Fig. 

2.2(b). The relation matrix does not scale well if plenty of intervals appear in a pattern since it 

before

overlaps 

overlaps

D

C

BA 
A 

B D 

(((A overlaps B) before C) overlaps D)

C

A 
B D 

((A overlaps B) before (C during D))

C

before

overlaps 

CB A 

during

D

(a) 

Fig. 2.1: Example of two ambiguous problems of hierarchical representation

A 
B 

C 

((A overlaps B) overlaps C ) 

A 
B 

C 

((A overlaps B) overlaps C ) 

(b) 



 

 - 8 -

needs 2k + (k × (k  1)) = k2 + k memory space to describe a k-intervals pattern (2k event indices, 

k2  k describers). 

 

H-DFS [27] was proposed to discovery frequent arrangements of temporal intervals. This 

approach transforms an event sequence into a vertical representation using id-lists. The id-list of 

one event is merged with the id-list of other events to generate temporal patterns. TSKR [24] 

expressed the temporal concepts of coincidence and partial order for interval patterns. The pattern 

represented in TSKR format is easily understandable but may reveal the relationship between 

pairwise event intervals in a pattern ambiguously. For example, in Fig. 2.2(a), pattern P and Q are 

represented as the identical TSKR expression “AB(BC)C.” 

 

 

 

Laxman et al. [17] extended the original framework of frequent episode discovery in event 

sequences by incorporating event duration constraints. The authors also presented some 

algorithms based on finite-state automaton. Based on the efficient algorithm MEMISP [20], the 

algorithm ARMADA [35] is proposed to find frequent temporal patterns from large database. 

DTP [41] partitions database into some disjoint datasets, so that scanning the whole database 

could be avoided when calculating the support of each pattern. However, DTP only discusses two 

of the Allen relationships: “contains” and “during. 

 

Temporal representation [36] utilizes endpoint arrangements to represent the temporal pattern 

nonambiguously. For example, in Fig. 2.2(a), pattern P can be represented as the expression “A＋< 

A－< B＋< C＋< B－< C－”, where “＋” and “－” represent the start and finish endpoints of an event 

interval, respectively. It requires 2k + (2k  1) = 4k  1 space to describe a k-intervals pattern (2k 

C 

Fig. 2.2: Example of relation matrix representation 

equal 
after 
before 
overlaps 
overlapped-by 

(a) Two example temporal patterns

=  :
a  :
b  :
o  :

o-by:

A 

C 

A

B 

B C 

=

=

=

bb

o-by

oa

a

A B 
C 

Pattern P 

A 

Pattern Q 

B 
C 

(b) Relation matrix for P

B 



 

 - 9 -

event indices, 2k  1 describers). TPrefixSpan [36] used temporal representation to discover 

frequent temporal patterns. TPrefixSpan first generates all the possible candidates and then 

discovers frequent events and scans the projected databases for support counting. 

 

Patel et al. [29] utilized additional counting information to achieve a lossless hierarchical 

representation, named augmented representation. Every Allen describer must take a space to store 

five counters, i.e., contain, finish-by, meet, overlap and start counters for accumulating the 

occurrences of corresponding relations. For example, in Fig. 2.2(a), pattern P can be represented 

as expression “(A before[0,0,0,0,0] B) overlaps[0,0,0,1,0] C.” The counter of overlap describer is 

[0,0,0,1,0] since C only overlaps B. Augmented hierarchical representation is not easily 

comprehensible and needs k + (k  1) × 6 = 7k  6 memory space in a k-intervals pattern (k 

event indices, 6×(k1) describers). IEMiner [29] was designed to discover frequent temporal 

patterns from interval-based events based on the augmented representation. 

 

HTPM [37] was developed to mine hybrid temporal pattern from event sequences, which 

contain both point-based and interval-based events. Authors modify temporal representation [36] 

to also express event points. Moerchen et al. developed a new kind of pattern, SIPO [25], to 

express Allen relationship. Authors utilize the boundaries of interval and further consider the 

noise tolerance. However, SIPO may suffer the ambiguous problem and the mining algorithm 

requires discovering both closed sequential pattern and closed itemset, and therefore is time 

consuming. 

 

There are three contributions from our work reported in this chapter. The first contribution is 

that we propose an incision strategy, to simplify processing complex relations when mining 

temporal patterns. The incision strategy segments all intervals to disjoint slices based on the 

global information in a pattern. The second contribution is that we develop a new representation, 

coincidence representation, to express a pattern or sequence nonambiguously, based on the 

incision strategy. As mentioned above, various existing representations may lead to different 

kinds of problem. An appropriate representation can facilitate processing and improve 

performance of algorithm. Coincidence representation has several advantages and we will discuss 

in details in section 2.4.2. 



 

 - 10 -

The final contribution is that we design a new algorithm, CTMiner, which can effectively 

avoid the effort on candidate generation and test for mining temporal patterns. We first transform 

interval sequences in database to coincidence format and then borrow the idea from PrefixSpan 

[21] (Prefix-projected Sequential pattern mining), an efficient pattern growth-based algorithm in 

finding sequential patterns from transactional database, to mine frequent temporal patterns. 

Furthermore, CTMiner employs the proposed optimization strategies to reduce the search space 

and avoids non-promising projection. The performance in both synthetic datasets and real 

datasets shows that CTMiner outperforms state-of-the-art algorithms. Our experimental results 

also show that the proposed approach consumes a much smaller memory space. 

 

 

2.3 Preliminary 
Definition 2.1 (Event interval) 

Let E = {e1, e2,…, ek} be the set of event symbols. Without loss of generality, we define a set of 

uniformly spaced time points based on the natural number N. We say the triplet (ei, si, fi)  E  N 

 N is an event interval, where ei  E, si, fi  N and si  fi. The two time points si, fi are called 

event times, where si is the starting time and fi is the finishing time. The set of all event intervals 

over E is denoted by I. 

 

Definition 2.2 (Event sequence and maximal property) 

An event sequence is a series of event interval triplets (e1, s1, f1), (e2, s2, f2), …, (en, sn, fn), 

where si  si+1, and si  fi. Every interval (ei, si, fi) must be maximal in a sequence, that there is no 

(ej, sj, fj) in the sequence such that ei = ej and [si, fi), [sj, fj) overlap or meet each other. We call this 

assumption, maximal property, defined as follows: 

 ( ei, si, fi ), ( ej, sj, fj )  I, i  j : (si  sj)  (fi  sj) → ei  ej                          (1) 

(1) is also called the maximality assumption [9]. The maximal property guarantees that each 

event interval is maximal in the series. If maximal property is violated, we can merge both event 

intervals and replace them by their union (ei, min(si, sj), max(fi, fj)). 

 

 



 

 - 11 -

Definition 2.3 (Temporal database) 

Considering a database DB = {r1, r2, …, rm}, each record ri, where 1  i  m, consists of a 

sequence-id and an event interval (i.e. an event symbol, a starting time, and a finishing time, 

where starting time  finishing time). DB is called a temporal database. 

 

Table 2.2: Database example 

SID 
event 

symbol 
start 
time 

finish 
time 

event sequence coincidence sequence 

1 A 2 7 
1 B 5 10 
1 C 5 12 
1 D 16 22 
1 E 18 20 

A＋(A－B＋C＋) B－C－D＋E D－ 

2 B 1 5 
2 D 8 14 
2 E 10 13 
2 F 10 13 

B D＋(EF) D－ 

3 A 6 12 
3 B 7 14 
3 D 14 20 
3 E 17 19 

A＋(A－B＋) B－@ D＋E D－ 

4 B 8 16 
4 A 18 21 
4 D 24 28 
4 E 25 27 

B A D＋E D－ 

 

 

Actually, if all records in the database DB with the same client-id are grouped together and 

ordered by nondecreasing start time, the database can be transformed into a collection of event 

sequences. As a result, the database DB can be viewed as a collection of event sequences. For 

example, in Table 2.2, the temporal database consists of 17 event intervals, and 4 event 

sequences. 

 

 

2.4 Incision Strategy and Coincidence Representation 
We focus on the discussions of temporal pattern mining due to the widespread applicability of 

this technique and the lack of research on this topic. However, the time interval-based mining 

problem is much more arduous than time point-based mining problem. Since the time period of 

B A D 

E 

E 

A 

B 
D 

B D 

E 

F 

A 

B 

C D 

E 



 

 - 12 -

the two intervals may overlap, the relation among event intervals is more complex than that of the 

event points, as shown in Table 2.1. In this chapter, an efficient strategy is derived to simplify the 

processing of temporal pattern mining. We also propose a new format to express temporal 

patterns effectively. 

 

2.4.1 Incision Strategy 

By our observation, the complex relations between event intervals are the major bottleneck 

for mining temporal patterns. We propose an incision strategy to address this critical issue. Before 

introducing the incision strategy, we give some definitions first. 

 

Definition 2.4 (Time set and time sequence) 

Given an event sequence q = (e1, s1, f1), (e2, s2, f2), …, (en, sn, fn), A set Tq = {s1, f1, s2, f2, …, si, 

fi,…, sn, fn} is called a time set corresponding to q. If we order all the elements in Tq and 

eliminate redundant element, we can derive a sequence TSq = t1, t2, …, tk where tiTq , ti ti+1. 

TSq is called a time sequence corresponding to q. 

 

Definition 2.5 (Incising function and event slice) 

Given an event sequences q = (e1, s1, f1), (e2, s2, f2), …(ei, si, fi), …, (en, sn, fn) where (ei, si, fi)  

I and corresponding time sequence TSq. Let tj, tj+1 TSq, an incising function Ψ is defined as, 

Ψ( tj, tj+1, (ei, si, fi)) = 



































otherwise.

)()(if

)()(if

)()(if 

)()(if

1

1

1

1

      

 t  f    t  s     e 

 t = f    t   s     e 

 t  f    t =  s    e 

 t = f    t =  s     e 

jiji
*
i

jijii

jijii

jijii

                               (2) 

An event slice S = Ψ(tj, tj+1, (ei, si, fi)) and is called, 

 intact slice of event ei, if si = tj and fi = tj+1, and denoted as ei; 

 starting slice of event ei, if si = tj and fi  tj+1, and denoted as ei
＋; 

 finishing slice of event ei, if si  tj and fi = tj+1, and denoted as ei
－; 

 intermediate slice of event ei, if si  tj and fi  tj+1, and denoted as ei
 *. 

Obviously, an event interval can only have one starting slice and one finishing slice but can have 



 

 - 13 -

many intermediate slices. The corresponding slice of a starting (finishing) slice is defined as the 

finishing (starting) slice of the same interval. 

 

For example, in Table 2.2, sequence 2 has 4 event intervals, (B, 1, 5), (D, 8, 14), (E, 10, 13), 

and (F, 10, 13) and its corresponding time set = {1, 5, 8, 14, 10, 13, 10, 13} and time sequence = 

1, 5, 8, 10, 13, 14. An event interval D can be incised into three event slices, start slice D＋ = 

Ψ( 8, 10, (D, 8, 14)), intermediate slice D* = Ψ( 10, 13, (D, 8, 14)), and finish slice D－ = Ψ( 13, 

14, (D, 8, 14)). The event interval B has only one intact slice B = Ψ( 1, 5, (B, 1, 5)). 

 

Definition 2.6 (Grouping function and coincidence) 

Given an event sequences q = (e1, s1, f1), (e2, s2, f2), … (ei, si, fi), … (en, sn, fn), where (ei, si, fi)  

I , and tj, tj+1 TSq = t1, t2, …, tk, 1  j  k-1, a grouping function is defined as, 

Φ (tj, tj+1, q ) = {Ψ(tj, tj+1, (e1, s1, f1)), Ψ(tj, tj+1, (e2, s2, f2)), …,Ψ(tj, tj+1, (en, sn, fn)) }.          (3) 

A coincidence Cj is defined as Φ (tj, tj+1, q) = (Sj1, Sj2,…, Sjℓ,…) and sorting Sjℓ in lexicographic 

order. For brevity, the brackets are omitted if a coincidence has only one slice, i.e., coincidence (S) 

is written as S. 

 

With the incising function and grouping function, we can transform an event sequence into 

slice-and-coincidence expression. However, here come two problems. First, two adjacent 

intervals and two separate intervals can not be discriminated by merely collecting all 

coincidences. Accordingly, we use a meet slice, @, to distinguish two adjacent intervals. The 

slice @ indicates that the finishing slices and/or intact slices in the previous coincidence are 

adjacent to the starting slices and/or intact slices in the next coincidence. We take sequence 3 in 

Table 2.2 as example, we can not distinguish the meet relation between interval B and D by just 

collecting all coincidences to form a sequence, i.e.,  A＋(A－B＋) B－D＋E D－ . Meet slice @ is 

inserted between event slice B－ and D＋ to express the meet relation. Second, the information of 

intermediate slice, actually, need not be considered. Without intermediate slice, we still can 

express an event sequence nonambiguously. For example, as the sequence 2 in Table 2.2, without 

D*, sequence  B D＋(EF) D－  still can represent sequence 2 correctly. 

 



 

 - 14 -

Definition 2.7 (Coincidence sequence) 

Given an event sequences q = (e1, s1, f1), (e2, s2, f2), …, (ei, si, fi), …, (en, sn, fn), by definition 5 

and 6, we can derive a coincidence sequence qc = C1, C2, …, Ck－1 with meet slice  addition and 

intermediate slice pruning. qc is also called the coincidence representation of q. Additionally, to 

deal with multiple occurrences of events, we attach occurrence number to event slices to 

distinguish multiple occurrences of the same event type in a coincidence sequence. For example, 

 
1A (B 

1A ) A2 D is a coincidence sequence with occurrence number, where event A occurs twice. 

 

For a temporal database DB, we can transform it into a set of tuples sid, qc, where sid is the 

sequence-id of each event sequence q in DB and qc is the coincidence representation of q. For 

example, in Table 2.2, we can transform four event sequences in DB into corresponding 

coincidence sequences. For better readability, later in this chapter, we suppose that the temporal 

database has been transformed into coincidence representation. 

 

 

 

Actually, there are six possible segmentations between any two end time points in a time 

sequence. Considering two consecutive end time points, we use a “ ” or “ = ” to describe the 

smaller or equal order relation respectively. Without loss of generality, we use “A ” and “B ” to 

represent two different event intervals. All possible segmentations are listed as follows,  

B 

B. s 

output: A＋ 

A. s 

A 

A＋ 

B 

B 

output: @ 

A. f  = B. s 

A 

output:  

B 

B. sA. f

A 

Fig. 2.3: Six possible segmentations between two consecutive end time points 

A 

A. f 

output: A 

A. s 

A 

(f) 

A 

A. f 

output: A－ B ＋ 

B. s 

A－ B ＋ 

A 

B. f

output: B－

B 

B－ 

A. f

(b) (c) (a) 

(d) (e)



 

 - 15 -

1) A. s 
 < B. s : The event interval A is segmented to starting slice A＋ and output, as in Fig. 

2.3(a); 

2) A. f  < B. f : The event interval B is segmented to finishing slice B－and output, as in Fig. 

2.3(b); 

3) B. s  < A. f : The event interval A and event interval B are segmented to finishing slice A－ 

and starting slice B＋ respectively, and A－B＋ is output, as in Fig. 2.3(c); 

4) 4) A. s  < A. f : The event interval A does not require any segmentation. We can directly 

output the intact slice A, as in Fig. 2.3(d); 

5) A. f  < B. s : we only consider the period between two consecutive end time points. There 

is no interval nor slice in this time period, so we do nothing in this case, as the interval A 

and B in Fig. 2.3(e); 

6) A. f  = B. s : instead of segmenting any event interval, we only output the meet slice “@” 

to assist the distinction of two adjacent event intervals, as the A and B in Fig. 2.3(f). 

 

algorithm 2.1: incision_strategy ( q ) 

Input: q: An event sequence 
Output: q’: A coincidence sequence  
Variable: endtime_list, last_endtime, coincidence 
 
1:  endtime_list ←  , last_endtime ←  , coincidence ←  , q’ ←  ; 
2:  add all the end time points of every event interval in q into endtime_list; 
3:  sort every endtime in endtime_list by endtime. time in nondecreasing order; 
4:  merge all endtime. symbols together with identical endtime. time and endtime. type; 
5:  for each endtime T in endtime_list do 
6:    coincidence ←  ; 
7:    if last_endtime. time = T . time then  // segmentation 6 
8:      coincidence ← coincidence ∪ “@”; 
9:    else   // last_endtime. time ≠ T . time 

10:      if last_endtime. type = “s ” then  // segmentation 1, 3, and 4 
11:        coincidence ← coincidence ∪ every symbol in last_endtime. symbol add “+”; 

 // starting slice 
12:      if T.type = “f ” then  // segmentation 2, 3, and 4 
13:        coincidence ← coincidence ∪ every symbol in T. symbol add “”;  

// finishing slice 
14:    combine start slice and finish slice with same symbol in coincidence;   // intact slice
15:    q’ ← q’ ◇  coincidence  ;  //append coincidence to coincidence sequence 
16:    last_endtime ← T ; 
17:  output q’ ; 

Fig. 2.4: The pseudocode of Incision Strategy 
 

 



 

 - 16 -

In this chapter, we propose an efficient method, incision strategy, to transform an event 

sequence into coincidence sequence effectively. The pseudo code of incision strategy is 

elaborated in Fig. 2.4. We use an example to explain the algorithm. Incision strategy first puts all 

the end time points of every event interval in a sequence into a data structure endtime_list which 

has three attributes: symbol, time and type, as shown in Fig. 2.5(b). Then it sorts the record in 

endtime_list in nondecreasing order based on their times and types (starting or finishing). If the 

times of two end time points are the same but the types are different, the order is based on the 

type, i.e., finishing type is smaller than starting type. Then we merge the event symbol of end 

time points together if both time and type of end time points are identical. For example, 

considering an event sequence with 5 intervals shown in Fig. 2.5(a), we put all 10 end time points 

into endtime_list and sort them in nondecreasing order as in Fig. 2.5(b). Since the B.s is identical 

to the D.s, we can merge them together. But we can not combine F.s with B.f and E.f, since the 

type of end time points are not the same. Then we traverse all the sorted end time points in 

endtime_list one-by-one to incise the event slices. 

 

 

 

Reducing memory usage and computation time are two important issues for algorithm design. 

Since we have utilized meet slice to effectively distinguish two adjacent intervals, intermediate 

slices need not be incised. Given an example as in Fig. 2.5(a), the event interval D can be 

segmented into five event slices, one starting slice D＋, three intermediate slices D 
*, and one 

finishing slice D－. By trimming the intermediate slices, we can still express the relationship 

Fig. 2.5: An example of incision strategy

(b) endtime_list data structure

(A, 1, 4) 
 

(B, 2, 5) 
 

(D, 2, 8) 
 

(E, 3, 5) 
 

(F, 5, 7) 

(a) an event sequence with 5 intervals

(A＋) (B＋D＋) (A－E＋) (B－E－) @ (F) (D－): coincidence 
representation 

endtime_list 
type symbol time 

s E 3 

s A 1 
s BD 2 

f A 4 
f BE 5 
s F 5 
f F 7 
f D 8 

event 
 interval : 

output :

D－

A＋

B＋D＋

@
B－E－

F

A－E＋



 

 - 17 -

between any two intervals correctly. As shown in the graph, this tatic can reduce one-third of 

storage space, and thereby improves the performance of our incision strategy. 

 

Notice that if the starting slice and is corrsponding finishing slice are in the same coincidence, 

we have to combine them to form an intact slice since the interval is not incised (Line 14, 

algorithm 2.1). By the merge operation of incision strategy, the event slices occurring 

simultaneously in the same time period can be grouped together to form a coincidence easily. 

 

2.4.2 Coincidence Representation 

We know that the Allen’s 13 relationships are binary relation and may suffer several problems 

when describing relationships among more than three events. An appropriate representation is 

very crucial for facing this circumstance. As mentioned above, various representations have been 

proposed but most of them have restriction on either ambiguity or scalability. 

 

In this chapter, a new representation, coincidence representation is proposed to address the 

ambiguity and scalability problems. The coincidence representation utilizes the concept of slice 

and coincidence, and considers the information of entire event sequence instead of individual 

event interval. By incision strategy, all event intervals in a sequence are segmented into event 

slices and simultaneously occurring slices are grouped together to form the coincidences. 

Concatenation of all coincidences can describe an event sequence effectively and simplify the 

processing of complex pairwise relationships among all intervals efficiently. This is also the 

primary motivation of coincidence representation. 

 

The coincidence representation of Allen’s 13 relations between two event intervals is 

categorized as in Fig. 2.6. Given two different event intervals “A” and “B”, we discuss Allen’s 13 

relationships with coincidence representation in details as follows, 

(1) (A before B) or (B after A) : A and B are totally disjoint. According to whether the intervals 

are incised or not, there are four kinds of coincidence representation: (A)(B), (A)(B＋)(B－), (A

＋)(A－) (B), and (A＋)(A－)(B＋)(B－). There may exist some other interleaved event intervals or 

slices, but the order will not change. 



 

 - 18 -

Temporal 

Relation 

Inversed 

Relation 
Pictorial Example

Coincidence 

representation 
Pictorial Example 

Coincidence 

representation 

(A) (B) (A) (B＋) (B－) A 

before 

B 

B 

after 

A (A＋) (A－) (B) 

 

(A＋) (A－) (B＋) (B－) 

A 

overlaps 

B 

B 

overlapped-by

A 

(A＋) (A－B＋) (B－)   

A 

contains 

B 

B 

during 

A 

(A＋) (B) (A－) 

 

(A＋) (B＋) (B－) (A－) 

A 

starts 

B 

B 

started-by 

A 

(A＋B) (A－) 

 

(A＋B＋) (B－) (A－) 

A 

 finished-by 

B 

B 

finishes 

A 

(A＋) (A－B) 

 

(A＋) (B＋) (A－B－) 

(A) @ (B) (A) @ (B＋) (B－) 
A 

meets 

B 

B 

met-by 

A (A＋) (A－) @ (B) 

 

(A＋) (A－) @ (B＋) (B－)

A 

equal 

B 

B 

equal 

A 

(AB) 

 

(A＋B＋) (A－B－) 

Fig. 2.6: The coincidence representation of Allen’s 13 relations between two intervals 

 

(2) (A overlaps B) or (B overlapped-by A) : A part of A intersects a part of B, therefore A and B 

must both have been incised into event slices. The corresponding coincidence representation 

is (A＋)(A－B＋)(B－). There may exist some other interleaved event intervals or slices, but the 

order will not change and the finish slice A－ and the start slice B＋ occur simultaneously. 

(3) (A contains B) or (B during A) : A part of A intersects the whole of B, therefore A must have 

been incised into start and finish slices. If B is also incised, the coincidence representation 

will be (A＋)(B＋) (B－)(A－). If B is not incised, the coincidence representation will be (A

＋)(B)(A－). There may be some other interleaved event intervals or slices, but the order will 

D 

A 
B

A B

E 

E 

A

A
B

D 

B

E 

A

B 
A 

B 

A

A
B

D 

E 

E 

B
B

A 
B

D 

A 

A 

B

A 

E 

B

A 

B E 

B

A 

E 

B

A
A 

B

A 

B 



 

 - 19 -

not change. 

(4)  (A starts B) or (B started-by A) : The whole of A intersects a part of B, therefore B must 

have been incised into start and finish slices. If A is also incised, the coincidence 

representation is (A＋B＋)(A－)(B－). If A is not incised, the coincidence representation is (AB

＋)(B－). There may be some other interleaved event intervals or slices, but the order will not 

change. The main characteristic is that the start slice or the intact slice of interval A occurs 

with the start slice of B simultaneously. 

(5) (A finished-by B) or (B finish A) :A part of A intersects the whole of B, therefore A must 

have been incised into start and finish slices. If B is also incised, the coincidence 

representation is (A＋) (B＋) (A－B－). That means the finish slices of A and B occur 

simultaneously. If B is not incised, the coincidence representation is (A＋) (A－B). That means 

the finish slice of A and the intact slice of B occur simultaneously. There may exist some 

other interleaved event intervals or slices, but the order will not change. The main 

characteristic is that the finish slice or the intact slice of B occurs with the finish slice of A 

simultaneously. 

(6) (A meets B) or (B met-by A) : A and B are adjacent. Just like the before and after relations, 

there are four kinds of coincidence representation. We only utilize a meet slice “@” to 

discriminate “meets” and “met-by” relations effectively. According to whether the intervals 

are incised or not, the corresponding coincidence representation may be represent as (A)@(B), 

(A)@(B＋)(B－), (A＋)(A－)@(B), and (A＋)(A－)@(B＋) (B－). 

(7) (A equal B) or (B equal A): A and B are entirely overlapped. If A and B are both incised, the 

corresponding coincidence representation is (A＋B＋) (A－B－). On the contrary, if both A and B 

are not incised, the corresponding coincidence representation is (AB). There may exist some 

other interleaved event intervals or slices, but the order will not change. The main 

characteristic is that A occurs with B simultaneously, whether both of them are incised or not. 

 

We utilize coincidence representation to express both event sequences and temporal patterns 

since it have several advantages, as follows: 

 Nonambiguity: A representation is ambiguous [13] if 1) the same relationships between 

intervals may be mapped to different temporal patterns and 2) the patterns cannot reveal the 



 

 - 20 -

temporal relations among all pairs of intervals. Accordingly, the following observations 

indicate that the ambiguity no longer exists in our coincidence representation. First, by 

definition 2.5 and 2.6, we can build a unique coincidence sequence by transforming every 

event sequence into coincidence representation. In other words, the temporal relations among 

intervals can be mapped one-to-one to a coincidence sequence. Second, in a coincidence 

sequence, the order relation of the start and finish slices of A and B can be categorized as 

shown in Fig. 2.6. We can infer the original temporal relationships between intervals A and B 

nonambiguously. 

 Good scalability: In the best case, all k intervals in a pattern are equal, thus memory space 

for describing a k-intervals pattern is k. In the worst case, all k intervals overlap one-by-one, 

thus we require 2k memory space to express a k-intervals pattern. The coincidence 

representation scales well even if plenty of intervals appear in a pattern.  

 Simple is good: Obviously, the complex relations between intervals are the major bottleneck 

of temporal pattern mining since the mining may need to generate or examine explosive 

number of intermediate subsequences. By incision strategy, we can transform event intervals 

into non-overlapped fragments, event slices. The relations between event slices are simple, 

just “before,” “after” and “equal.” The simpler the relations, the less number of intermediate 

candidate sequences are generated and processed. Therefore, with coincidence representation, 

we can discover frequent temporal patterns more efficiently. 

 Compact space usage: Since the utilization of meet token, we can omit the intermediate 

slices within the coincidence sequences or patterns. This tactic can reduce the computation 

time and memory space efficiently, as shown in Fig. 2.5(c). 

 

 

2.5 Proposed algorithm 
In this section, we propose a new algorithm, called CTMiner (Coincidence Temporal 

Miner), to mine frequent temporal patterns efficiently. CTMiner utilizes the concepts of 

slice-and-coincidence to accomplish the temporal pattern discovering. Section 2.5.1 details the 

algorithm. We mine temporal patterns based on coincidence representation and propose two 

pruning mechanisms for reducing the search space. In section 2.5.2, we discuss the difference 

between traditional sequential projection and temporal projection, and propose a new projection 



 

 - 21 -

technique, multi-projection taking into account of interval-based event sequence. Finally, 

section 2.5.3 proves the correctness and completeness of CTMiner algorithm. 

 

2.5.1 CTMiner 

Definition 2.8 (Projected database) 

Let α be a coincidence sequence in a database DB. The α-projected database, denoted as DB|

α, is the collection of suffixes of sequences in DB with regards to prefix α. 

 

Definition 2.9 (temporal pattern)  

Considering two coincidence sequenceα= a1, a2, …, an and β = b1, b2, …, bm,αis called a 

subsequence of β, denoted asα⊑ β, if there exist integers 1  i1  i2  … in  m such that a1  

bi1, a2  bi2, …, an  bin, and β is also called a supersequence ofα. Given a temporal database 

DB, a tuple sid, qc is said to contain a coincidence sequenceα, ifαis a subsequence of qc. The 

support ofαin DB is the number of tuples in the database containingα, i.e., 

support (α) = |{sid, qc | (sid, qc  DB)  ( ⊑ qc)}|.                               (4) 

Given a positive integer min_sup as the support threshold, a coincidence sequence α is called 

frequent if support (α)  min_sup. A frequent coincidence sequence is called temporal pattern if 

all event slices in sequence appear in pair, i.e., every starting (finishing) slice has corresponding 

finishing (starting) slice. 

 

Let database in Table 2.2 with min_sup =2 be an example. The coincidence sequence (A＋) (A

－B＋) (B－) is a temporal pattern since it occurs in sequence 1 and 3, and its support = 2  

min_sup. A coincidence sequence (A＋) (A－C＋) (C－) is not frequent since it occurs only in 

sequence 1, and its support = 1  min_sup. Although  (A＋) (A－B＋)  is also a frequent 

coincidence sequence, it is not a temporal pattern due to B＋ has no corresponding finishing slice 

in sequence. 

 

 



 

 - 22 -

Fig. 2.7 illustrates the main framework which includes the necessary processing steps of 

CTMiner. Given a temporal database, the event intervals associated with the same sequence ID 

are grouped into an event sequence. CTMiner first transforms the temporal database into 

coincidence respresentation (Line 2, algorithm 2.2), and then calls sub-procedure CPrefixSpan 

to discover and output all temporal patterns (Lines 3-4, algorithm 2.2). By borrowing the idea of 

the PrefixSpan [30], CPrefixSpan is developed based on the concepts of slice-and-coincidence 

and with two search space pruning method. CPrefixSpan first scans projected database once to 

collect all local frequent slices and remove infrequent slices (Lines 1-3, algorithm 2.2). For each 

frequent slice, we can append it to original prefix to generate a new coincidence sequence with 

the length increased by 1. This way, the prefixes are extended (Lines 7-12, algorithm 2.2). Finally, 

we can discover all frequent temporal patterns by constructing the projected database with the 

frequently extended prefixes and recursively running until the prefixes cannot be extended (Lines 

13-18, algorithm 2.2). 

 

Algorithm 2.2: CTMiner (DB, min_sup) 

Input: DB: a temporal database, min_sup: the minimum support threshold 
Output: TP: set of all frequent patterns in DB 
 
01: TP ← ; 
02: use incision_strategy transforming DB into coincidence representation; 
03: call CPrefixSpan (DB , , min_sup, TP ); 
04: output TP; 
 
Procedure CPrefixSpan (DB| ,  , min_sup, TP ) 
05: scan DB| once, remove infrequent slices and find every frequent slice s such that:
06: (i)  s can be assembled to the last coincidence of ; 

or (ii) s can be appended to ; 
07: for each frequent slice s do 
08:     if s is a “finishing slice” then 
09:         if exist corresponding starting slice in  then  // pre-pruning 
10:             append s to  to form ’; 
11:     if s is a “starting slice” or “intact slice” then 
12:         append s to  to form ’; 
13: for each ’ do 
14:     construct DB|’ with insignificant postfix elimination; // post-pruning 
15:     if |DB|’ |  min_sup then 
16:         if ’ is a temporal pattern then // all slices in ’ appearing in pair 
17:             TP ← TP∪{’ }; 
18:     call CPrefixSpan (DB|’ , ’, min_sup, TP ); 

Fig. 2.7: CTMiner algorithm 
 



 

 - 23 -

Taking into account the property of event slice and coincidence, we propose two pruning 

strategies, pre-pruning and post-pruning to reduce the searching space efficiently and effectively. 

Firstly, the starting slices and finishing slices definitely occur in pairs in a coincidence sequence. 

We only require projecting the frequent finishing slices which have the corresponding starting 

slices in their prefixes (Lines 8-10, algorithm 2.2). It is called pre-pruning strategy which can 

prune off non-qualified patterns before constructing projected database. 

 

Secondly, when we construct a projected database, some slices in postfix sequences need not 

be considered. With respect to a prefix sequence α, a finishing slice in a projected postfix 

sequence is called significant, if it has corresponding starting slices in α. When constructing 

the projected database DB|α , only the significant slices in postfix sequences are collected. All 

insignificant slices are eliminated since they can be ignored in the discovery of frequent temporal 

patterns. The second pruning method is called post-pruning strategy which eliminates 

insignificant sequences when constructing projected database (Lines 13-14, algorithm 2.2). 

 

Because of the post-pruning strategy, CPrefixSpan can not guarantee that the new coincidence 

sequences formed from appending previously discovered frequent sequences with locally 

frequent slices are always frequent. We require an additional computation to insure that the 

support count of the coincidence sequences in a projected database is no less than min_sup (Line 

15, algorithm 2.2). Since |DB|a| (number of sequences in DB|a) can be produced by using a simple 

counter when we project the database, the computation cost is nearly negligible. Finally, if all 

slices in a frequent coincidence sequence appear in pairs, i.e., every starting (finishing) slice has 

corresponding finishing (starting) slice, we can out this frequent coincidence sequence as a 

temporal pattern (Lines 16-17, algorithm 2.2). The experimental studies indicate that pre-pruning 

and post-pruning strategies can improve the performance in both computation time and memory 

usage efficiently. 

 

Notice that, when scanning projected database to calculate the support count of an intact slice 

s, both s and starting slice s ＋ occurring in coincidence sequences need to be accumulated. Since 

the only difference between intact slice and starting slice is whether the event interval have been 

incised or not, both of them in the coincidence sequence imply the existence of an event interval. 



 

 - 24 -

But when counting the support of starting slice s ＋ or finishing slice s －, only the occurrence of s

＋ or s － in a database need to be accumulated. Same as database projection, when we construct 

the projection with respect to intact slice s, we collect not only the sequence prefixed with s, 

but also prefixed with s ＋ as the projected database. 

 

Table 2.3: Example of projected databases and frequent temporal patterns
event sequences with corresponding 

coincidence representation 
slice 

prefix
projected coincidence database

    : insignificant 
temporal patterns 

 A  
S1:  ( _ B＋) B－D＋E D－  
S3:  ( _ B＋) B－@ D＋E D－  
S4:   D＋E D－  

 A＋
S1:  (A－B＋) B－D＋E D－  
S3:  (A－B＋) B－@ D＋E D－  

 A  
 A D  
 A E  
 A D＋E D－  
 A＋(A－B＋) B－  
 A＋(A－B＋) B－E   

 B  

S1:   D＋E D－  
S2:   D＋E D－  
S3:   @ D＋E D－  
S4:   A D＋ E D－  

 B＋
S1:   B－D＋E D－  
S3:   B－@ D＋E D－  

 B  
 B D  
 B E  
 B D＋E D－  

 D   

 D＋

S1:   E D－  
S2:   E D－  
S3:   E D－  
S4:   E D－  

 D  
 D＋E D－  

S1:   A＋(A－B＋C＋) B－C－D＋E D－  
S2:   B D＋(EF) D－  
S3:   A＋(A－B＋) B－@ D＋E D－  
S4:   B A D＋E D－  
 

 ↓infrequent slice elimination 
 
S1:   A＋(A－B＋) B－ D＋E D－  
S2:   B D＋ E D－  
S3:   A＋(A－B＋) B－@ D＋E D－  
S4:   B A D＋E D－  
 

 E  

S1:   D－  
S2:   D－  
S3:   D－  
S4:   D－  

 E  

 

We take the database in Table 2.2 with min_sup = 2 as an example. There are 17 event records 

which can be regarded as 4 event sequences in the database. After transforming, the event 

sequences with corresponding coincidence representation are shown as in first column in Table 

2.3. We can find all the frequent slices with scanning database once. Since the pre-pruning 

strategy, we only require process the intact slices and starting slices as shown in second column 

in Table 2.3. We take the slice A＋ and E as examples to further discuss in details. The projected 

database with respect to A＋ has 2 sequences: (A－B＋)B－D＋ED－   and (AB＋)B－@ D＋ED－ . 

Continuing the recursive process with the A＋ - projected database, we can discover all frequent 

temporal patterns prefixed with A＋. In addition, when projecting intact slice E, the generated 

postfix sequences will be eliminated by post-pruning strategy directly since D－ is insignificant. 



 

 - 25 -

Hence, we do not need to consider the E -projected database. The last column in Table 2.3 lists 

all generated temporal patterns. 

 

2.5.2 Multi-Projection Technique 

The projection approach partitions the data and the set of frequent patterns to be processed, 

and confines each process to the corresponding smaller projected database. This approach can 

reduce the search space effectively. For a frequent pattern, we only require searching its 

corresponding projected database for locally frequent items, and then append them to original 

pattern to form new frequent patterns. 

 

However, the projection method is designed for traditional time point-based patterns mining. 

When mining the interval-based temporal patterns, the complex relationship between any two 

intervals will cause unanticipated result if we adopt projection approach directly without any 

modification. For example, as in Fig. 2.8(a), when projecting a time point-based sequence q1 = 

(A)(B)(C)(A)(BD) with respect to a prefix (A)(B), a projected sequence q1’ = (C)(A)(BD) will 

be generated. The projected result q1’ is accurate since the relationship between any two time 

point-based events is just “before” and “after.” The pairwise relations of first (A)(B) and second 

(A)(B) in s1 are both (A before B). But the feature of time interval is quite different from that of 

time point; the pairwise relationships among intervals are more complex. For example, as in Fig. 

2.8 (b), when projecting a coincidence sequence q2 = (A＋)(B＋C)(A－B－)(A＋)(B＋D)(A－)(B－) with 

respect to a prefix (A＋)(B＋), only a projected sequence q2’ = (C)(A－B－)(A＋B＋D)(A－)(B－) is 

generated if we adopt projection approach without modification. Although the projected result 

looks promising, actually the revealed information is not sufficient. The first occurrence of (A
＋)(B＋) in q2 implies the temporal relation between interval A and B is (A finished-by B), but the 

second occurrence of (A＋)(B＋) in q2 implies the temporal relation between interval A and B is (A 

overlaps B). Obviously, only q2’ does not present the projected result sufficiently. In this chapter, 

a new projection strategy, multi-projection, is proposed for time interval-based patterns mining to 

address this problem. 

 

 



 

 - 26 -

From conventional projection, the major difference of multi-projection lies in the postfixes 

generation and collection. For a given sequence x as prefix, the traditional projection method 

forms projected database from collection of postfixes of sequences in database with regards to x. 

The generation of postfixes only considers the first occurring position of x in sequences, as 

shown in Fig. 2.8(a). However, given a coincidence sequence y as prefix, the multi-projection 

method generates postfixes with regards to every occurring position of y in every sequence in 

database, and then collects all the generated postfixes to construct projected database. For 

example, in Fig. 2.8(b), multi-projecting a coincidence sequence q2 with regard to a prefix (A
＋)(B＋) will generate two postfix es q2’ and q2’’. Usually, large size of projected databases will be 

generated by multi-projection technique. With regards to a prefix, the more occurrences in a 

sequence, the more postfixes will be generated. The size of projected database is the crucial 

bottleneck in CTMiner since the major cost of algorithm is recursive database projection. If the 

number of generated postfixes can be reduced, the performance of temporal mining can be further 

improved. 

 

 

 

The pseudoprojection technique proposed by Pei et al. [30] is a good solution for reducing the 

size of projected database. Instead of performing physical projection, pseudoprojection registers 

coincidence sequence q2 = (A＋)(B＋C)(A－B－)(A＋)(B＋D)(A－)(B－) 

prefix y = (A＋)(B＋)

postfix sequence q2’ =     ( _C)(A－B－)(A＋)(B＋D)(A－)(B－) 

(b) example of multi-projection 

time point sequence q1 = (A)(B)(C)(A)(BD) 

postfix sequence q1’ =      (C)(A)(BD) 

project

(a) example of traditional projection

project

postfix sequence q2’’ =                    (_D)(A－)(B－) 

generate

project

generate

prefix x = (A)(B) 

Fig. 2.8: Example of projection and multi-projection technique 

generate 



 

 - 27 -

the sequence-ID and the starting position of the projected postfix in the sequence. Then, a 

physical projection of a sequence is replaced by registering a sequence identifier and the 

projected position index point. With this technique, the usage of main memory can be reduced 

intrinsically. The implementation of multi-projection also utilizes pseudoprojection technique to 

avoid physically copying postfixes. Thus, we can promote both computation time and memory 

space efficiently. Our experimental result shows that the performance of multi-projection in both 

synthetic data and real data still scales well when processing considerable event sequences. 

 

2.5.3 Correctness of Algorithm 

The correctness of the CTMiner is proven as below. 

 

Lemma 2.1 (Support property of projected database) Let  and  be two temporal patterns in 

temporal database DB such that  is a prefix of . The support of  in DB equals to the one in 

DB|. 

Proof: As discussing in [30], we know that to collect support count of sequence  in DB, only the 

sequences in the DB sharing the same prefix  should be considered. Furthermore, only those 

suffixes with the prefix  being a supersequence of  should be counted. Hence, the support of  

in DB equals to the one in DB|. 

 

Theorem 2.1 (Correctness of CTMiner) The temporal patterns discovered from CTMiner are 

correct. 

Proof: By lemma 2.1, we realize that the CTMiner can enumerate the support count correctly. 

Therefore, if CTMiner says that the support of  is frequent and all event slices in  appearing in 

pairs,  is a temporal pattern. 

 

 

2.6 Experimental Results and Performance Study 
To evaluate the performance of CTMiner, four temporal pattern mining algorithms, 

ARMADA [35], H-DFS [27], IEMiner [29] and TPrefixSpan [36], were also implemented for 



 

 - 28 -

comparison. All algorithms were implemented in C++ language and tested on a Pentium D 3.0 

GHz with 2 GB of main memory running Windows XP system. The comprehensive performance 

study has been conducted on both synthetic and real world datasets. To show the efficiency of 

CTMiner, we perform four kinds of experiments. First, we compare the running time of CTMiner 

and other temporal pattern mining algorithms using synthetic datasets. We also show the 

distribution of pattern length with different thresholds. Second, we investigate the scalability and 

memory usage of CTMiner. Third, we discuss the improvement of runtime performance with 

proposed pruning strategies. Finally, we apply CTMiner in some real datasets to compare the 

performance and also discuss the practicability of temporal pattern mining. 

 

2.6.1 Data Generation 

The synthetic data sets in the experiments are generated using synthetic generation program 

proposed by Agrawal et al. [1]. Since the original data generation program was designed to 

generate time point-based data, the generator for the temporal pattern mining algorithms requires 

modifications accordingly. The parameter setting of temporal data generator is shown in Table 

2.4. 

 

Table 2.4: Parameters of synthetic data generator  

Parameters Description 

| D | Number of event sequences 

| C | Average size of event sequences 

| S | Average size of potentially frequent sequences 

NS Number of potentially frequent sequences 

N Number of event symbols 

 

We first create a set of maximal potentially large sequences used in the generation of event 

sequences. The number of maximal potentially large sequence is NS. A maximal potentially large 

sequence is generated by first picking the size from a Poisson distribution with mean equal to |S|. 

Then, we chose the event interval symbols in maximal potentially large sequence from N events 

randomly. Since the time interval in a sequence has duration, the data generator for temporal 

pattern mining algorithms requires an additional tuning for experimental data generation. We 

adopt the modification proposed by Wu et al. [36]. All the duration times of event intervals are 



 

 - 29 -

classified into three categories: long, medium and short. The long, medium and short interval 

events are with an average length of 12, 8 and 4 respectively. For each event interval, we first 

randomly decide its category and then determine its length by drawing a value from a normal 

distribution. 

 

Finally, we select the temporal relations between consecutive intervals randomly and form a 

maximal potentially large sequence. Since we adopt normalized temporal patterns [13], the 

temporal relationships can be chosen from the set {before, meets, overlaps, is-finished-by, 

contains, starts, equal}. After all maximal potentially large sequences are determined, we 

generate |D| event sequences. Each event sequence is generated by first deciding its size, which 

was picked from a Poisson distribution with mean equal to |C|. Then, each event sequence is 

generated by assigning a series of maximal potentially large sequences. 

 

 

 

2.6.2 Runtime Performance on Synthetic Datasets 

In all the following experiments, some parameters are fixed, i.e., |S| = 4 and NS = 5,000. The 

other parameters are configured for comparing the temporal pattern mining algorithms. The first 

experiment of the five algorithms is on the dataset D10k–C20–N1k, which contains 10,000 event 

sequences, the average length of sequence is 20 and the number of events is 1,000. Fig. 2.9(a) 

and 2.9(b) show the processing time of the five algorithms and the number of generated temporal 

Fig. 2.9: Experimental results on dataset D10k – C20 – N1k 

(b) The number of temporal patterns (a) Performance of the five algorithms

minimum support (%) 

nu
m

be
r 

of
 t

ot
al

 p
at

te
rn

s 

D10k – C20 – N1k 

0

200

400

600

800

1000

1200

1400

1600

1800

4 3.5 3 2.5 2 1.5 1

minimum support (%) 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

4 3.5 3 2.5 2 1.5 1

ARMADA 
TprefixSpan 
H-DFS 

IEMiner 
CTMiner 

D10k – C20 – N1k 



 

 - 30 -

patterns at different support thresholds respectively. The minimum support thresholds vary from 

1 % to 4 %. Obviously, when the minimum support value decreases, the processing time required 

for all algorithms increases. However, the runtime for ARMADA, H-DFS, IEMiner and 

TPrefixSpan increase drastically compared to CTMiner. When minimum support is 1 %, the data 

set contains a large number of temporal patterns. From the graph, we can observe that CTMiner 

is about 4.5 times faster than IEMiner, more than 6.6 times faster than ARMADA, about 8.5 

times faster than TPrefixSpan and more than 13.1 times faster than H-DFS. 

 

The second experiment is performed on dataset D100k–C40–N10k, which is much larger 

since it contains 100,000 event sequences, average length 40 and 10,000 event intervals. Fig. 

2.10(a) and 2.10(b) show the running time and the number of generated temporal patterns at 

different support thresholds respectively. However, we vary the minimum support thresholds 

from 0.5 percent to 1 percent to generate larger number of frequent patterns from large data set. 

The data set contains a large number of temporal patterns when minimum support is reduced to 

0.5 %. We can see that CTMiner is about 4 times faster than IEMiner, about 6 times faster than 

ARMADA, more than 8.2 times faster than TPrefixSpan and more than 12.6 times faster than 

H-DFS. 

 

 

 

Fig. 2.10: Experimental results on dataset D100k – C40 – N10k 

(b) The number of temporal patterns (a) Performance of the five algorithms

0

500

1000

1500

2000

2500

3000

3500

1 0.9 0.8 0.7 0.6 0.5

minimum support (%) 

nu
m

be
r 

of
 p

at
te

rn
s 

D100k – C40 – N10k 

minimum support (%) 

D100k – C40 – N10k

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

1 0.9 0.8 0.7 0.6 0.5

ARMADA 
TprefixSpan 
H-DFS 

IEMiner 
CTMiner 



 

 - 31 -

 

 

The third experiment is performed on dataset D200k–C40–N10k, which contains 200,000 

event sequences, average length 40 and 10,000 event intervals. Fig. 2.11(a) and 2.11(b) show the 

running time and the number of generated temporal patterns at different support thresholds 

respectively. Same as second experiment, the minimum support thresholds vary from 0.5 percent 

to 1 percent. When minimum support is reduced to 0.5 %, CTMiner is more than 4.2 times faster 

than IEMiner, more than 6.5 times faster than ARMADA, about 9.1 times faster than 

TPrefixSpan, while H-DFS never terminates on our machine. The total experiments indicate that 

even with extremely low support and a large number of temporal patterns, CTMiner algorithm is 

still efficient and outperforms state-of-the-art algorithms. 

 

2.6.3 Scalability and Memory Usage Studies 

In this section, we study the scalability and memory usage of the CTMiner algorithm. Fig. 

2.12(a) shows the results of scalability tests of the CTMiner algorithm, with the database size 

growing from 100K to 500K sequences, and with different minimum support threshold settings. 

Here, we use the data set C40–N10k which the average length of the sequence is 40 and the 

number of events in the database is 10,000 with varying different database size. As the size of 

database increases and minimum support decreases, the processing time of CTMiner increases, 

since the number of frequent patterns also increases. As can be seen, CTMiner is linearly scalable 

with different minimum support threshold. When the number of generated temporal patterns is 

Fig. 2.11: Experimental results on dataset D200k – C40 – N10k 

(b) The number of temporal patterns (a) Performance of the five algorithms

nu
m

be
r 

of
 p

at
te

rn
s 

D200k – C40 – N10k 

minimum support (%) 

0.9 0.8 0.7 0.6 0.51 
0

500

1000

1500

2000

2500

3000

3500

4000

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

minimum support (%) 

D200k – C40 – N10k

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

1 0.9 0.8 0.7 0.6 0.5

ARMADA 
TprefixSpan 
H-DFS 

IEMiner 
CTMiner 



 

 - 32 -

large, the runtime of CTMiner still increases linearly with different database size. 

 

Then, we compare the memory usage among the five algorithms, ARMADA, CTMiner, 

H-DFS, IEMiner and TPrefixSpan, using synthetic data set D100k – C40 – N10k. Fig. 2.12(b) 

shows the results, from which we can observe that CTMiner is not only more efficient, but also 

more stable in memory usage than the other four algorithms. For example, when minimum 

support threshold is reduced to 1%, CTMiner consumes is about 3.4 times smaller than 

ARMADA, more than 7.1 times smaller than IEMiner, more than 13 times smaller than 

TPrefixSpan and about 21 times smaller than H-DFS. This also explains why in our previous 

performance tests when the support threshold becomes extremely low, why CTMiner is still 

efficient and outperforms state-of-the-art algorithms. Based on our analysis, CTMiner only needs 

memory space to hold the sequence data sets plus a set of header tables and pseudoprojection 

tables to construct projected databases. Although TPrefixSpan is also designed based on 

PrefixSpan, it still consumes memory space to hold the generated candidate sequences because of 

the complex relation among intervals. Both IEMiner and H-DFS need memory space to hold 

candidate sequences in each level. When the minimal support threshold drops, the set of 

candidate sequences grows up quickly, which results in memory consumption upsurging. 

 

 

 

 

Fig. 2.12: Experiments of scalability and memory usage 

minimum support (%) 

(b) Memory usage of five algorithms(a) CTMiner with different database size 

500000

number of sequences in database 

C40 – N10k 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

1% 

1.5% 

2.5% 

3% 

0 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 

100000 200000 300000 400000

2% 

m
em

or
y 

us
ag

e 
(M

B
) 

D10k – C40 – N1k 

0

500

1000

1500

2000

2500

1 0.9 0.8 0.7 0.6 0.5

ARMADA

IEMiner

TprefixSpan

H-DFS

CTMiner



 

 - 33 -

In summary, our performance study shows that CTMiner has the best overall performance 

among the four algorithms tested. The scalability study also shows that CTMiner scales well even 

with large databases and low thresholds. The memory usage analysis shows the efficient memory 

consumption of CTMiner and part of the reason why other algorithms become slow since the 

candidate sequences may consume a huge amount of memory. 

 

 

 

 

Fig. 2.13: The performance testing of influence on proposed pruning strategies

post-pruning strategy 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

minimum support (%) 

(b) The performance testing of influence 
on post-pruning strategy  

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

(a) The performance testing of influence 
on pre-pruning strategy 

proposed pruning strategy 

minimum support (%)

(c) The performance testing of influence 
on proposed pruning strategies 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

pre-pruning strategy 

minimum support (%)

CTMiner 

CTMiner without 
prepruning strategy 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

1 0.9 0.8 0.7 0.6 0.5
0

1000

2000

3000

4000

5000

6000

1 0.9 0.8 0.7 0.6 0.5

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

1 0.9 0.8 0.7 0.6 0.5 

CTMiner 

CTMiner without 
prepruning strategy 

CTMiner 

CTMiner without 
prepruning strategy 



 

 - 34 -

2.6.4 Influence of Proposed Pruning Strategies 

In this section, to reflect the speedup of proposed pruning methods, we measure the CTMiner 

with two pruning strategies and without pruning strategy on time performance. The experiment is 

performed on the data set D100k–C40–N10k, which contains 100,000 event sequences, the 

average length of sequence is 40 and the number of events is 10,000. Fig. 2.13 is the results of 

varying minimum support thresholds from 0.5 percent to 1 percent. As shown in Fig. 2.13(a), 

pre-pruning strategy can improve 23.4% to 27.9% of the performance of CTMiner. Because of 

removing non-qualified slices before database projection, pre-pruning strategy can efficiently 

speedup the execution time. The impact of the post-pruning strategy is presented in Fig.2.13(b).  

 

As can be seen from the graph, when CTMiner is without post-pruning strategy, the execution 

time is about 9.5% slower than CTMiner in average. We can find that post-pruning strategy can 

improve the performance of CTMiner by effectively eliminating all useless slices for temporal 

pattern construction. Fig. 2.13(c) depicts the influence on two proposed pruning strategies. We 

can see that CTMiner is constantly about 33% faster than the one without any pruning strategy. 

Nevertheless, the proposed pruning strategies not only effectively reduce the searching space but 

also efficiently improve the performance of CTMiner. 

 

2.6.5 Real World Dataset Analysis 

In addition to using synthetic data sets, we have also performed an experiment on real world 

datasets [18] to compare the performance and indicate the applicability of temporal pattern 

mining. We use five datasets for evaluation, as shown in Table 2.5. The origin and preprocessing 

steps of each dataset are briefly described as follows. For more details, please refer to [18]. 

 ASL-BU: The intervals are transcriptions from videos of American Sign Language 

expressions provided by Boston University. It consists of observation interval sequences with 

labels such as head mvmt: nod rapid or shoulders forward. 

 ASL-GT: The intervals are derived from numerical time series with features derived from 

videos of American Sign Language expressions. The numerical time series were discretized 

into 2-4 states. Each sequence represents one of 40 word like brown or fish. 

 



 

 - 35 -

 

Table 2.5: Five real-life databases 

Database Intervals Labels Sequences

ASL-BU 18,250 154 441 

ASL-GT 89,247 47 3493 

Pioneer 4,883 92 160 

Auslan2 900 12 200 

Library 549,071 206,844 28,339 

 
 

 Pioneer: The intervals were derived from the Pioneer-1 datasets in the UCI repository. The 

numerical time series were discretized by choosing thresholds manually based on exploratory 

data analysis. Each sequence describes one of three scenarios: gripper, move, turn. 

 Auslan2: The intervals were derived from the high quality Australian Sign Language dataset 

in the UCI repository. The dimensions were discretized using Persist and the median as the 

divider. Each sequence represents a word like girl or right. 

 Library: We collect 1,098,142 library records (lending and returning) for three years from the 

National Chiao Tung University Library [6]. The database includes 206,844 books and 28,339 

readers. An event interval is constructed by a book ID and corresponding lending and 

returning time. The size of database is the number of sequences in database (same as the 

number of readers, 28,339). The maximal and the average length of sequences are 262 and 38 

respectively. 

 

In Fig. 2.14 and Fig. 2.15, we show the execution time of five algorithms on all real datasets 

with varying minimum support thresholds. Obviously, all experiments indicate that even with 

extremely low support, CTMiner is still efficient and outperforms all other mining algorithms, 

especially, with large datasets, such as Library. As can be seen from Fig 2.15(a) and 2.15(b), 

when the minimum support is greater than 0.1 %, most of the generated temporal patterns are 

with length one or two. As the minimum support drops down to 0.05 %, there are 14,549 

temporal patterns and the execution time of CTMiner is about 1.7 times faster than IEMiner, 

more than 3 times faster than ARMADA, about 4.2 times faster than TPrefixSpan and H-DFS has 

never terminated. 



 

 - 36 -

 

 

 

 

 

 

 

 

 

 

 

(d) Performance of five algorithms on 
Auslan2 dataset 

minimum support (%) 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

Auslan2 

minimum support (%)

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

Pioneer 

(c) Performance of five algorithms 
on Pioneer dataset 

(b) Performance of five algorithms 
on ASL-GT dataset 

minimum support (%) 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

ASL-GT 

minimum support (%)

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

0 

10 

20 

30 

40 

50 

60 

0.025 0.02 0.015 0.01 0.009 0.008

ARMADA 
TprefixSpan 
H-DFS

IEMiner

CTMiner

ASL-BU 

0

1000

2000

3000

4000

5000

6000

7000

0.05 0.04 0.03 0.02 0.01

(a) Performance of five algorithms 
on ASL-BU dataset 

0 

20 

40 

60 

80 

100 

120 

140 

0.06 0.05 0.04 0.03 0.02
0

1

2

3

4

5

6

0.05 0.02 0.01 0.005 0.001

Fig. 2.14: Experimental results on ASL-BU, ASL-GT, Pioneer, and Auslan2 
d t t

ARMADA 
TprefixSpan 
H-DFS 

IEMiner 
CTMiner 

ARMADA 
TprefixSpan 
H-DFS 

IEMiner 
CTMiner 



 

 - 37 -

 

 

 

Finally, to show the practicability of temporal patterns, we applied the CTMiner algorithm in 

book lending dataset to extract the compact reader’s behaviors.  This kind of information would 

be more helpful than conventional sequential pattern for reader recommendation. Table 2.6 

illustrates some temporal patterns (part of mining results) discovered from the NCTU library. We 

take pattern 1 and 2 as examples. Suppose two readers, Mary and Sue, both check out the books 

“The Know-It-All” and “The Curious Incident of the Dog in the Night-time”, if Mary check out 

two books at the same time, the library can send her an e-mail to notify that the book “The 

Hitchhiker's guide to the galaxy” is still on shelf or the book “The Restaurant at the End of the 

Universe” will be returned by 23rd of June, 2011. But if Sue checks out two books at different 

(c) Distribution of temporal patterns 

minimum support (%)

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 
16000

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.09 0.08 0.07 0.06 0.05

minimum support (%) 

nu
m

be
r 

of
 t

ot
al

 p
at

te
rn

s 

minimum support (%)

0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

0.1 0.09 0.08 0.07 0.06 0.05

1-pattern 
2-pattern 
3-pattern 
4-pattern 
5-pattern 
6-pattern 
7-pattern 

nu
m

be
r 

of
 p

at
te

rn
s 

0 
2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 
20000 

0.1 0.09 0.08 0.07 0.06 0.05

Library Library 

(b) The number of generated 
temporal patterns on Library 

(a) Performance of five algorithms 
on Library dataset 

Fig. 2.15: Experimental results on Library dataset 

ARMADA 
TprefixSpan 
H-DFS 

IEMiner 
CTMiner 



 

 - 38 -

times, the library may send an e-mail to her to notify the information of the books “Le 

Cosmicomiche” or “The One Hundred Years of Solitude”. 

 

Table 2.6: Some temporal patterns discovered from of NCTU library 

PID temporal patterns support

1 

 

163 

(0.57%)

2 

 

43 

(0.15%)

3 

 

109 

(0.38%)

4 

 

97 

(0.34%)

5 

 

88 

(0.31%)

6 

 

92 

(0.32%)

7 

 

35 

(0.12%)

 

To show the phenomena of pattern 1 and 2 are not just an anecdote, we discuss the case why 

readers, lending the same two books at different time, may have totally different interest. We find 

that the books “The Know-It-All” and “The Curious Incident of the Dog in the Night-time” are 

“Palaverers” “Vita nuova” “Closely Watched Trains”

“Ut og stjaele hester”

“Corazón tan blanco”

“The Homed Man” 

“The Inheritance of Loss” 
“I Served the King of England”

“The End of the Affair” 

“The Pearl in the Deep”
“I Served the King of England” 

“The End of the Affair” 

“Magic Toyshop” 
“Nights at the Cirus”

“Wise Children” 

“Burning Your Boats” 

“Le Cosmicomiche”
“The Curious Incident of the 
Dog in the Night-time” 

“The Know-It-All” 
“The One Hundred Years 

of Solitude” 

“The Restaurant  at  the 
End of  the Universe”

“The Hitchhiker's guide to 
the galaxy” 

“The Curious Incident of the 
Dog in the Night-time” 

“The Know-It-All” 



 

 - 39 -

placed side by side on the shelf in NCTU Library. The author of “The Curious Incident of the 

Dog in the Night-time” has mentioned the books “The Hitchhiker's guide to the galaxy” and “The 

Restaurant at the End of the Universe” several times in the article. Hence, this can explain the 

expression from pattern 1 in Table 9, i.e., 0.57% readers who check out two books together will 

lend other two books later. 

 

Moreover, we analyze the readers with behavior as pattern 2 in Table 9 and observe that all of 

them have taken an optional course, Discussion of Human Relationship in Modern Society from 

Literature. In this class, the first and second reading assignments are “The Know-It-All” and “The 

Curious Incident of the Dog in the Night-time”, respectively. The final report is the discussion of 

alienation and antagonism between people from “The One Hundred Years of Solitude.” This is the 

reason why these 43 students have the lending behavior as pattern 2. 

 

From this example, we show the practicability of temporal pattern mining. We also can 

perceive that temporal patterns can promise a more expressive result to extract correlations 

among event data than conventional sequential patterns. 

 

 

2.7 Summary 
Mining temporal patterns from time interval-based data is a difficult problem since the 

processing for complex relations among intervals may require generating and examining large 

amount of intermediate subsequences. In this chapter, a novel technique, incision strategy and a 

new representation, coincidence representation are proposed to remedy this critical issue. We 

simplify the processing of complex relations among event intervals effectively. Coincidence 

representation is nonambiguous and has several advantages over existing representations. 

 

Based on coincidence representation, we develop an efficient algorithm, CTMiner to 

discover frequent temporal patterns without candidate generation. The algorithm further employs 

two proposed pruning techniques to reduce the search space effectively. By analyzing the 

differences between mining sequential patterns and temporal patterns, we also propose a new 

projection technique, multi-projection to correctly project a database into a set of smaller 



 

 - 40 -

projected databases. The experimental studies indicate that CTMiner is efficient and scalable. 

Both running time and memory usage of CTMiner outperform state-of-the-art algorithms.  

 

To the best of our knowledge, most previous extensions of mining sequential pattern only 

focus on time point-based data. Little attention has been paid to the related extension studies of 

mining temporal patterns from time interval-based data. The major reason is the complex relation 

among intervals. In this chapter, we utilize proposed coincidence representation to overcome this 

problem and facilitate the processing. Hence, based on coincidence representation, there are 

many interesting extensions that may be studied further, such as mining closed and maximal 

temporal patterns, incremental temporal patterns maintaining, and method toward data stream. 



 

 - 41 -

Chapter 3 

An Efficient Algorithm for Mining Closed 

Temporal Patterns from Interval Database 

 

3.1 Introduction 
Recently, sequential pattern mining is an active research topic in data mining for its wide 

applications such as customer analysis, network intrusion detection, discovery of tandem repeats 

in DNA sequences, study of scientific and medical processes, to name a few. Many efficient 

algorithms [1, 3, 6, 10, 11, 18, 20, 21, 30, 32, 39] proposed so far have good performance for 

discovering complete-set sequential patterns. But when mining long frequent sequences, or when 

using low support thresholds, the performance of such algorithms usually degrade dramatically. 

For example, assume a database contains only one long sequence {(a1)(a2)(a3)… (a100)}. If the 

minimum support is 1, in the complete-set frequent pattern mining, there will be (2100 – 1) 

frequent patterns: {a1:1, a2:1, …, (a1)(a2)(a3)…(a100):1}. All of them except (a1)(a2)(a3)… 

(a100):1 are redundant, since all the other frequent patterns and their supports can be derived 

from this pattern. 

 

Undoubtedly, a long sequential pattern usually contains an explosive number of subsequences 

and using low support threshold often bears huge number of computations. When a user or an 

application only needs the longest or more expressive sequential pattern, closed pattern mining 

algorithm may be a better alternative. We can avoid exhaustive enumeration of all frequent 

sequences and thus improve the performance.  Hence, the mining of closed sequential patterns 

has attracted researchers for its capability of using compact results to preserve the same 

expressive power as complete-set frequent patterns mining. 

 

Previous researches of closed sequential pattern mining [4, 5, 15, 34, 38] mainly focus on 

time point-based data. There has been no efficient method developed for mining closed sequential 



 

 - 42 -

pattern from time interval-based data. However, in many real world scenarios, some events, 

which intrinsically tend to persist for periods of time instead of instantaneous occurrences, cannot 

be treated as “time points”. In such cases, the data is usually a sequence of events with both start 

and finish times. Examples include library lending, stock fluctuations, patient diseases, and 

meteorology data. Actually, discovering closed sequential patterns from time interval-based data 

can reveal more interesting patterns. For example, in the medical field, the simple ordered 

sequence of events such as “fever → cough → headache,” may be inadequate to express the 

complex relationships among symptoms. If we consider the duration time of events, some 

relationships can be mined from clinical records of patients to study the correlations between the 

symptoms and the diseases, or the influences between the diseases and other diseases. One may 

find that “in the case of myocardial infarction, chest pain usually contains the cardiac enzymes 

increasing.” Another discovery might be that “in many tuberculosis patients, the presence of 

coughing up blood usually overlaps intermittent fever.” 

 

Existing time point-based approaches are hampered by the fact that they can only handle 

instantaneous events efficiently, not event intervals. We can perceive that time point-based issue 

is just a special case of the time interval-based issue (where start time is identical to finish time), 

but not vise versa. Mining closed time interval-based patterns (also referred to as closed 

temporal patterns) is more complex and arduous, and requires a different approach from mining 

time point-based data. So far, little effort has been paid to the issue of mining closed time 

interval-based sequential patterns. This is partly because of the complicated relationship among 

event intervals. Since the feature of time interval is quite different from time point, the pairwise 

relationships between any two time interval-based events are intrinsically complex. This complex 

relation is really a crucial bottleneck when we endeavor to design an efficient and effective 

algorithm for mining closed temporal patterns, since the complex relations may lead to generate 

larger number of candidate sequences and workload for counting the support of a candidate 

sequence. 

 

Allen’s 13 temporal logics [2] are comprehensively used to describe the relations among 

intervals, as shown in Fig. 2.1. Considering the arrangements of the start and the finish endpoints, 

there are 13 temporal relations between any two event intervals as: “before,” “after,” “overlap,” 



 

 - 43 -

“overlapped by,” “contain,” “during,” “start,” “started by,” “finish,” “finished by,” “meet,” “met 

by,” and “equal.” However, all the Allen’s logics are binary relation and may suffer several 

problems when describing relationships among more than three event intervals. An appropriate 

representation is very crucial for facing this circumstance. Various representations [8, 13, 16, 24, 

25, 29, 36] have been proposed but most of them have restriction on either ambiguity or 

scalability. 

 

 

Fig. 3.1: Allen’s 13 relations between two intervals 

 

The contributions of this chapter are as follow: 

 We simplify the processing of complex relations among intervals by capturing the global 

information of all endpoints in a sequence. Comparing with the complex relations between 

intervals, the relations among endpoints are simple, i.e., only “before,” “after” and “equal.” 

 Various existing representations may lead to different kinds of problem. We develop a 

compact representation, endpoint representation, to express a pattern or sequence 

nonambiguously. Endpoint representation can facilitate the process and improve the 

performance of algorithm.  



 

 - 44 -

 A novel algorithm, CEMiner, which stands for Closed Endpoint Temporal Miner, is 

proposed to discover closed temporal patterns efficiently and effectively. Furthermore, 

CEMiner employs some optimization strategies to reduce the search space and avoids 

nonpromising closure checking and database projection. 

 

Experimental studies on both synthetic and real datasets indicate that proposed strategy and 

algorithm are both efficient and scalable and outperforms the state-of-the-art algorithms. Our 

experiments also show that the proposed approach consumes a much smaller memory space. The 

remainder of this chapter is organized as follows. Section 3.2 and 3.3 provide the related work 

and some preliminaries, respectively. Section 3.4 introduces the endpoint representation. Section 

3.5 describes the CEMiner algorithm. Section 3.6 gives the experiments and performance study, 

and we summarize in Section 3.7. 

 

 

3.2 Related Works 
CloSpan [38] is the first algorithm for mining closed sequential patterns from time point data. 

It generates a set of closed sequence candidates and then do post-pruning to discover closed 

sequential patterns. Although it performs two pruning methods to reduce search space, it still 

consumes much memory to maintain the set of historical closed sequence candidates.BIDE [34] 

is a fast algorithm for mining closed sequential patterns. Different from CloSpan, it uses a 

sequence closure checking scheme to avoid the maintenance of closed candidate sequence. The 

Proposed BackScan pruning method can prune the search space more aggressively than the 

methods used in CloSpan. COBRA [15] is a two-phased mining algorithm. It first finds all closed 

frequent itemsets [40], and then extends search space with only these frequent closed itemsets. 

Because COBRA uses both vertical and horizontal database formats to reduce the searching time 

in mining process, the memory usage is a major problem.  

 

Some recent works have investigated the mining of complete-set temporal patterns. Kam et al. 

[16] designed an algorithm that uses the hierarchical representation to discover temporal patterns. 

However, the hierarchical representation is ambiguous and many spurious patterns are found. 

Hoppner [13] defined the supporting level of a pattern as the total time in which the pattern can 



 

 - 45 -

be observed within a sliding window. But the algorithm needs to scan the database repeatedly, 

which would significantly lower its efficiency. 

 

H-DFS [27] was proposed to discovery frequent arrangements of event intervals. This 

approach transforms an event sequence into a vertical representation using id-lists. Hence, 

H-DFS does not scale well when the temporal pattern length increases. TSKR [24] expressed the 

temporal concepts of coincidence and partial order for interval patterns. The pattern represented 

in this format is easily understandable but may reveal the relationship between pairwise event 

intervals in a pattern ambiguously. Based on MEMISP [20], an algorithm ARMADA [35] is 

proposed to find frequent temporal patterns from large database. This approach only needs two 

database scans and does not require candidate generation or database projection. Wu et al. [36] 

devised a nonambiguous expression, temporal representation, and TPrefixSpan algorithm to 

discover frequent temporal patterns. Although this algorithm only need two scans of the database, 

it does not employ any pruning strategy to reduce the search space. 

 

Patel et al. [29] utilized additional counting information to achieve a lossless hierarchical 

representation, named Augmented Representation, and proposed an algorithm, IEMiner. Although 

IEMiner uses some optimization strategies to reduce the search space and remove nonpromising 

candidate sequences, it still has to scan database multiple times. HTPM [37] was developed for 

mining hybrid temporal patterns from event sequences, which contain both point-based and 

interval-based events. A new robust representation, SIPO [25], utilizes the boundaries of interval 

and further considers the noise tolerance to express relationships among intervals. The mining 

algorithm requires discovering both closed sequential pattern and closed itemset. Based on a 

compact representation, coincidence representation, CTMiner [8] is an efficient algorithm for 

mining temporal patterns. Algorithm also proposed some pruning strategies to significantly 

reduce the search space. 

 

All of these algorithms only focus on mining closed sequential patterns from time point-based 

data or mining temporal patterns from time interval-based data. No effort has been put to closed 

temporal pattern. In this chapter, we discuss and design an efficient method to discover closed 

temporal patterns from interval-based data. 



 

 - 46 -

3.2 Preliminary 
Definition 3.1 (Event interval and event sequence)  

Let E = {e1, e2,…, ek} be the set of event symbols. Without loss of generality, we define a set of 

uniformly spaced time points based on the natural number N. We say the triplet (ei, si, fi)  E  N 

 N is an event interval, where ei  E, si, fi  N and si  fi. The two time points si, fi are called 

endpoints of an event interval, where si is the starting endpoint and fi is the finishing endpoint. 

The set of all event intervals over E is denoted by I. An event sequence is a series of event 

interval triplets (e1, s1, f1), (e2, s2, f2), …, (en, sn, fn), where si  si+1, and si  fi. 

 

Definition 3.2 (Temporal database) 

Considering a database DB = {r1, r2, …, rm}, each record ri, where 1  i  m, consists of a 

sequence-id, SID and an event interval (i.e. an event symbol, a starting endpoint, and a finishing 

endpoint, where starting time  finishing time). DB is called a temporal database. 

 

 

Fig. 3.2: An example database 

 

Actually, if all records in DB with the same client-id are grouped together and ordered by 

nondecreasing start time, the database can be transformed into a collection of event sequences. As 

a result, the database DB can be viewed as a collection of event sequences. As in Fig. 3.2, 



 

 - 47 -

example database consists of 17 event intervals, and 4 event sequences. 

 

 

3.3 Endpoint Representation 
The time interval-based mining problem is much more difficult than time point-based mining 

issue. Since the time period of the two intervals may overlap, the relation among event intervals 

is intrinsically more complicated than that of the event points. Allen’s 13 temporal logics [2], in 

general, are adopted to describe the relations among intervals, as shown in Fig. 1. Unfortunately, 

when describing relationships among more than three events, Allen’s temporal logics may suffer 

several problems. 

 

A suitable representation is very important for describing a temporal pattern. As mentioned 

above, various representations have been proposed but most of them have restriction on either 

ambiguity or space usage. In this chapter, a new expression, endpoint representation is proposed 

to address the ambiguous and scalable problem. 

 

Definition 3.3 (Endpoint sequence) 

Given an event sequence q = (e1, s1, f1), (e2, s2, f2), …, (ei, si, fi), …, (en, sn, fn), Tq= { s1, f1, s2, 

f2, …, si, fi, …, sn, fn } is a set of all endpoints in q. After sorting T in nondecreasing order, an 

endpoint sequence qe = t1, t2, …, t2n can be derived by representing si and fi as ei
＋ and ei

－, 

respectively. Note that we use the parenthesis to indicate the times of endpoints are the same. To 

deal with multiple occurrences of events, we attach occurrence number to endpoint to 

distinguish multiple occurrences of the same event type in an endpoint sequence.  

 

For example, in Fig. 3.2, an event sequence with SID 2 is (B, 1, 5), (D, 8, 14), (E, 10, 13), (F, 

10, 13) and its corresponding endpoint sequence is  B＋ B－ D＋ (E＋ F＋) (E－ F－) D－ . An 

endpoint sequence qe is also called the endpoint representation of q. A1
＋B1

＋(B1
－D＋) D－(A1

－B2

＋) B2
－A2

＋A2
－ is an endpoint sequence with occurrence number where both event A and B occur 

twice. For a temporal database DB, by Definition 3.3, we can transform it into a set of tuples SID, 



 

 - 48 -

qe where SID is the sequence-id of each event sequence q in DB, qe is the endpoint 

representation of q. For example, in Fig. 3.2, we can transform four event sequences into 

corresponding endpoint sequences. For readability, in this chapter, we suppose that all temporal 

database mentioned later have been transformed into endpoint representation. 

 

 

Fig. 3.3: The endpoint representation of Allen’s 13 relations between two intervals 

 

The endpoint representation has several benefits, and the most important one is that it can 

simplify the processing of complex pairwise relationships among all intervals efficiently. It 

utilizes the arrangement of endpoints as defined in Definition 3.3, and considers the information 

of entire event sequence instead of individual event interval. Given two different event intervals 

A and B, the endpoint representation of Allen’s 13 relations between A and B is categorized as in 

Fig. 3.3. The three major merits of proposed representation are discussed as follows, 



 

 - 49 -

 Scalability: We only require 2k space for describing a k-interval temporal pattern, since 

each interval has two endpoints. Comparing with other representations, the endpoint 

representation still scales well even if plenty of intervals appear in a pattern. 

 Nonambiguity: According to [5], we can find that the endpoint representation has no 

ambiguous problem. First, by Definition 3.3, a unique endpoint sequence can be built by 

transforming every event sequence into endpoint representation. In other words, the 

temporal relations among intervals can be mapped one-to-one to an endpoint sequence. 

Second, in an endpoint sequence, the order relation of the starting and finishing endpoints 

of A and B can be categorized as shown in Fig. 3.3. We can infer the original temporal 

relationships between intervals A and B nonambiguously. 

 Simplicity: Obviously, the complex relations between intervals are the major bottleneck of 

closed temporal pattern mining since the mining may need to generate or examine 

explosive number of intermediate subsequences. The relation between two endpoints is 

simple, just “before,” “after” and “equal.” The simpler the relations, the less number of 

intermediate candidate sequences are generated and processed. Therefore, with endpoint 

representation, we can discover closed temporal patterns more efficiently. 

 

 

3.4 CEMiner 
We focus on the discussions of closed temporal pattern mining due to the widespread 

applicability of this technique and the lack of research on this topic. In this chapter, we develop a 

new algorithm, called CEMiner (standing for Closed Endpoint temporal Miner), to discover 

closed temporal patterns efficiently. CEMiner utilizes the arrangement of endpoints to accomplish 

the closed temporal pattern mining. In section 3.4.1, we outline the main idea of closure checking 

to assure a temporal pattern is closed or not. Section 3.4.2 details the algorithm and also discusses 

some pruning mechanisms for reducing the search space effectively.  

 

Before introducing the algorithm, we give some definitions first. Let  be an endpoint 

sequence in a temporal database DB in endpoint representation. The  - projected database, 

denoted as DB| , is the collection of postfixes of sequences in DB with regards to prefix . 



 

 - 50 -

Considering two endpoint sequence  = a1, a2, …, an and  = b1, b2, …, bm,  is called a 

subsequence of , denoted as  ⊑ , if there exist integers 1  i1  i2  … in  m such that a1  

bi1, a2  bi2, …, an  bin. We also call  a supersequence of , and  contains . If  contains  

and their supports are the same, we call  absorbs . 

 

Definition 3.4 (Closed temporal pattern) 

Given a temporal database DB in endpoint representation, a tuple SID, qe is said to contain an 

endpoint sequence , if  is a subsequence of qe. The support of an endpoint sequence  in DB is 

the number of tuples in the database containing , i.e., support () = |{SID, qe  | ( SID, qe   

DB)  ( ⊑ qe)}|. Given a positive integer min_sup as the support threshold, the set of temporal 

patterns, TP, includes all the endpoint sequences whose supports are no less than min_sup and all 

endpoints in sequences appear in pairs. The set of closed temporal patterns is defined as follows, 

CTP = {(   TP )  ( ∄  TP ) such that ( ⊑ )  ( support () = support () )}.  

 

Let database in Fig. 3.2 with min_sup = 2 be an example. The endpoint sequence A＋B＋A－B－

 is a temporal pattern since it occurs in sequence 1 and 3 (support = 2  min_sup) and each 

starting endpoint has corresponding finishing endpoint. A＋B＋A－ is a frequent endpoint 

sequence but not a temporal pattern, since B＋ does not have corresponding finishing endpoint. 

The endpoint sequence  A＋B＋A－B－  is not a closed temporal pattern since it is absorbed by  A＋

B＋A－B－E＋E－ . That means  A＋B＋A－B－  ⊏  A＋B＋A－B－E＋E－  and both support = 2.  

 

3.4.1 Closure Checking 

To verify a new closed temporal pattern p, we require checking whether p is a sub-sequence 

or super-sequence of an existing temporal pattern p’ and the projected database of p and p’ is 

equal. This operation is also called closure checking and is very critical when mining closed 

temporal patterns. The performance of an algorithm usually hinged on whether the closure 

checking is well-designed. By borrowing the idea of the BI-Directional Extension [17], the 

closure checking of CEMiner algorithm is developed in order to discover closed temporal 



 

 - 51 -

patterns efficiently, which are represented with endpoint representation.  

 

Definition 3.5 (Forward-extension and backward-extension) 

Given an endpoint sequence  = a1, a2, …, an in a temporal database DB, if  is non-closed, 

there must exist at least one endpoint x, which can be used to extend  to a new endpoint 

sequence ’, which has the same support, i.e., support ( ) = support (’ ).  can be extended in 

five ways: (1) ’ = a1, a2, …, an∪x ; (2) ’ = a1, a2, …, an, x; (3) ’ = x, a1, a2, …, an; (4) i, 

1  i  n, ’ = a1, a2, …ai∪x, ai+1,…, an; (5) i, 1  i  n, ’ = a1, a2, …ai, x, ai+1,…, an. In 

cases (1) and (2), x occurs after all endpoints in , we call x a forward-extension endpoint and 

’ a forward-extension sequence w.r.t. . In cases (3), (4) and (5), x occurs before the last 

endpoint in , we call x a backward-extension endpoint and ’ a backward-extension 

sequence w.r.t. . 

 

With respect to an endpoint sequence , if there exists no forward-extension endpoint nor 

backward-extension ,  must be a closed endpoint sequence. For example, as the database in Fig. 

3.2, endpoint E＋ is a forward-extension endpoint of sequence  A＋B＋A－B－ : 2, since the support 

of  A＋B＋A－B－E＋  is also 2. Hence,  A＋B＋A－B－  is not closed. The CEMiner checks closure in 

two directions as follows,  

 Forward directional checking is used to grow the temporal patterns and also check the 

forward-extension endpoint and closure of patterns. 

 Backward directional checking is used to check the backward-extension endpoint and 

closure of a temporal pattern and prune the search space. 

CEMiner partitions database into smaller projected databases and appends locally frequent 

endpoints to grow patterns recursively and also verify whether they are closed or not. 

 

For a temporal pattern  = a1, a2, …, an and a locally frequent endpoint y, a pattern ’ = a1, 

a2, …, an, y or a1, a2, …, an∪ y is not closed, if there is a forward-extension endpoint xj in each 

sequence where ’ appears (forward directional checking). And if there is a backward-extension 

endpoint xi in each sequence where ’ appears, ’ is also not closed (backward directional 

checking). Otherwise, ’ is closed. 



 

 - 52 -

Definition 3.6 (The i-th last-in-first appearance) 

For an endpoint sequence  containing an endpoint sequence a1, a2, …, an, the i-th last-in-first 

appearance w.r.t. a1, a2, …, ai in  is denoted as LFi and defined recursively as: 1) if i = n, it is the 

last appearance of ai in the first instance of a1, a2, …, ai in  ; 2) if 1 ≤ i < n, it is the last 

appearance of ai in the first instance of a1, a2, …, ai in  and LFi must appear before LFi+1. For 

example, given the endpoint sequence  =  A1
＋ B1

＋ A1
－ B1

－ (A2
＋ B2

＋) (A2
－ B2

－) D＋ D－E＋ E－  

and p =  B＋B－D＋ D－  as prefix, the 2nd and the 4th last-in-first appearance w.r.t. prefix p in  

are B2
－ and D－ respectively. Since the first instance of p in  is  A1

＋ B1
＋ A1

－ B1
－ (A2

＋ B2
＋) (A2

－ B2
－) D＋ D－  and the second endpoint in p is B－, the 2nd last-in-first appearance w.r.t. prefix p 

in  is the last appearance of B－, i.e., B2
－ in . Likewise, the 4th last-in-first appearance w.r.t. 

prefix p in  is D－. 

 

Definition 3.7 (The i-th semi-maximum period) 

For a sequence  containing an endpoint sequence a1, a2, …, an, we can define the i-th 

semi-maximum period of a1, a2, …, ai in  as: 1) if 1 < i ≤ n, it is the piece of sequence between 

the end of the first instance of a1, a2, …, ai-1 in  and the i-th last-in-first appearance w.r.t. a1, 

a2, …, ai; 2) if i = 1, it is the piece of sequence in  located before the 1st last-in-first appearance 

w.r.t. a1, a2, …, ai. For example, given an endpoint sequence  =  A1
＋ B1

＋ A1
－ B1

－ (A2
＋ B2

＋) (A2

－ B2
－) D＋ D－E＋ E－  and p = B＋B－D＋ D－  as prefix, the 1st semi-maximum period of prefix p 

in  is  A1
＋ B1

＋ A1
－ B1

－ A2
＋ . Since the first instance of p in  is  A1

＋ B1
＋ A1

－ B1
－ (A2

＋ B2
＋) 

(A2
－ B2

－) D＋ D－ and the first endpoint in p is B＋, the 1st last-in-first appearance w.r.t. prefix p in 

 is B2
＋, the sequence before B2

＋ in  is  A1
＋  B1

＋  A1
－  B1

－  A2
＋  . Likewise, the 2nd 

semi-maximum period of prefix p in  is the piece of sequence between B1
＋ and B2

－, i.e.,  A1
－ 

B1
－ (A2

＋ B2
＋) A2

－ .  

 

Definition 3.8 (EBackScan search space pruning) 

Let an endpoint sequence  = a1, a2, …, an, if i, 1  i  n and there exists an endpoint x which 

appears in each of the i-th semi-maximum periods of the prefix  in database DB, we can safely 



 

 - 53 -

stop growing . Since we can derive a new endpoint sequence ’ = x, a1, a2, …, an (i = 1) or ’ 

= a1, a2, …, ai-1∪x, ai, …, an (1 i  n) or ’ = a1, a2, …, ai-1, x, ai, …, an (1 i  n) and all ( 

⊏ ’ ) and (support ( ) = support (’ )) hold. Any locally frequent endpoint w.r.t.  is also a 

locally frequent w.r.t. ’. Hence we can stop growing the endpoint sequence , since there is no 

hope to discover closed temporal patterns from . 

 

3.4.2 Proposed Algorithm 

Fig. 3.4 illustrates the main framework of CEMiner. It first transforms the temporal database 

to endpoint representation and counts the support of each endpoint concurrently. It also removes 

infrequent endpoints under given minimum support, min_sup (Lines 2-3, algorithm 3.1). For each 

frequent starting endpoint x, we build projected database DB|x and use EBackScan to check 

whether x can be pruned or not (Lines 5-7, algorithm 3.1).  If not, we compute the number of 

backward-extension endpoints and call EBIDE recursively (Line 9, algorithm 3.1). Finally, we 

output all closed temporal pattern (Line 10, algorithm 3.1). 

 

Algorithm 3.1: CEMiner (DB, min_sup) 

Input: a temporal database DB, and the minimum support min_sup 
Output: all closed temporal patterns CTP 
 
1: CTP ← ; 
2: transform DB into endpoint presentation; 
3: find all frequent endpoints and remove infrequent endpoints; 
4: FSE ← all frequent starting endpoint; 
5: for  each interval x  FSE  do 
6:     construct projected database DB|x with regard to x; 
7:     if  EBackScan(x, DB|x) = “false”  then 
8:         BE = backward extension check (x, DB|x); 
9:         EBIDE (DB|x , x, min_sup, BE, CTP ); 
10: output all closed temporal patterns CTP; 

Fig. 3.4: CEMiner algorithm 
 

The pseudo code of EBIDE is shown in Fig. 3.5. For a prefix , EBIDE scans its projected 

database DB| once to discover all local frequent endpoints (Line 1, algorithm 3.2) and computes 

the number of forward-extension endpoints (Lines 2-3, algorithm 3.2). If  is a temporal pattern 



 

 - 54 -

and has neither backward-extension endpoint nor forward-extension endpoint, then  is a closed 

temporal pattern (Lines 4-5, algorithm 3.2). For each frequent endpoint, we can append it to 

original prefix to generate new sequence ’ with the length increased by 1 (Lines 6-11, algorithm 

3.2). In this way, the prefixes are forward-extended. 

 

Algorithm 3.2: EBIDE (DB| ,  , min_sup, BE, CTP) 

Input: a projected database DB| , an endpoint sequence  , the minimum support  
min_sup, and a set of closed temporal patterns CTP 

Output: a set of closed temporal patterns CTP 
 
01: scan DB| once, remove infrequent endpoints and find every frequent endpoint y 

such that: 
(i) y can be assembled to the last endpoint of   to form a temporal pattern; or 
(ii) y can be appended to   to form a temporal pattern; 

02: LFE ← all local frequent endpoint; 
03: FE = | { z | ( z  LFE)  ( support (z) = support ( )}|; 
04: if (BE + FE == 0) and ( is a temporal pattern) then  

// no backward and forward extension 
05:     CTP ← CTP ∪ {};   //   is a closed temporal pattern 
06: for each  y  LFE  do 
07:     if  y is a “finishing endpoint”  then 
08:         if  exist corresponding starting endpoint in   then 
09:             append b to   to form ’;   // pre-pruning strategy 
10:     if  y is a “starting endpoint  then 
11:         append y to  to form ’; 
12:     construct projected database DB|’ with insignificant postfix  elimination;  // 

post-pruning strategy 
13:     if  EBackScan (’, DB|’) = “false”  then 
14:         BE = backward extension check (’, DB|’); 
15:         EBIDE (DB|’ , ’, min_sup, BE, CTP ); 

Fig. 3.5: EBIDE algorithm 

 

With the property of event endpoint, we use three pruning strategies, pre-pruning, 

post-pruning, and pair-pruning to reduce the searching space efficiently and effectively. First, 

the starting endpoint and finishing endpoint definitely occur in pairs in an endpoint sequence. We 

only require projecting the frequent finishing endpoints which have the corresponding start 

endpoints in their prefixes (Lines 7-9, algorithm 3.2). It is called pre-pruning strategy which can 



 

 - 55 -

prune off non-qualified patterns before constructing projected database. Second, when we 

construct a projected database, some endpoints in postfixes need not be considered. With respect 

to a prefix sequence , a finishing endpoint in projected postfix is called significant, if it has a 

corresponding starting endpoint in projected postfix or in . When constructing the projected 

database DB| , only the significant endpoints are collected and all insignificant endpoints are 

eliminated since they can be ignored in the discovery of closed temporal patterns. The second 

pruning method is called post-pruning strategy which eliminates insignificant endpoints when 

constructing projected database (Lines 12-13, algorithm 3.2). Finally, if ’ is frequent, EBIDE 

uses EBackScan to check if ’ can be pruned (Line 15, algorithm 3.2). If not, it computes the 

number of backward-extension endpoints and calls itself recursively (Lines 16-17, algorithm 3.2). 

 

Moreover, we can avoid some unnecessary checking based on the characteristic of endpoint 

representation. When extending the pattern by a locally frequent endpoint, if the appending 

endpoint is a finishing endpoint, we require a two-directional closure checking, i.e., 

backward-extension and forward-extension checking, to verify whether the pattern is closed or 

not. However, if the appending endpoint is a starting endpoint, we can omit the closure checking. 

Since the starting endpoint and finishing endpoint always occur in pairs in an endpoint sequence, 

forward directional checking is unnecessary. Actually, we just require growing the pattern. The 

last pruning method is called pair-pruning. 

 

We take the database in Fig. 3.2 with min_sup = 2 as an example. There are 17 event intervals 

which can be regarded as 4 event sequences in the database. After transforming database, we can 

find all frequent endpoints. They are A＋: 3, A－: 3, B＋: 4, B－: 4, D＋: 4, D－: 4, E＋: 4, 

and E－: 4, where the notation “pattern: count” represents the sequence and its associated 

support count. The event sequences with corresponding endpoint representation are shown as in 

first column in Fig. 3.6. We take the frequent endpoint A＋ and E＋ as examples to further discuss 

in details. 

 

For an endpoint A＋, the projected database with respect to A＋ has 3 sequences:  B＋A－B－D＋ 

E＋E－D－ ,  B＋A－(B－D＋)E＋E－D－ , and  A－D＋E＋E－D－ . Since A＋ is a starting endpoint, by 



 

 - 56 -

pair-pruning, we need not do closure checking. Continuing the recursive process with the DB|A＋, 

we can discover all closed temporal patterns prefixed with A＋. In addition, when projecting 

frequent endpoint E＋, the endpoint D－ in generated postfix sequences will be eliminated by 

post-pruning strategy directly since D－ is insignificant. The last column in Fig. 3.6 lists all 

generated closed temporal patterns. Obviously, the set of closed patterns expresses the same 

information as the set of temporal patterns, but includes much fewer patterns. 

 

event sequences with corresponding 
endpoint representation 

prefix
projected database 

(     : insignificant endpoint )
closed temporal patterns 

(     : not closed ) 

 A＋
S1:  B＋ A－ B－ D＋ E＋ E－ D－  
S3:  B＋ A－ (B－ D＋) E＋ E－ D－ 
S4:   A－ D＋ E＋ E－ D－  

 A＋A－  : 3  (not closed) 
 A＋B＋A－B－  : 2 (not closed) 
 A＋A－D＋D－  : 3  (not closed) 
 A＋A－E＋E－  : 3  (not closed) 
 A＋B＋A－B－E＋E－  : 2 
 A＋A－D＋E＋E－D－  : 3 

 B＋

S1:   A－ B－ D＋ E＋ E－ D－  
S2:   B－ D＋ E＋  E－ D－  
S3:   A－ (B－ D＋) E＋ E－ D－ 
S4:  B－ A＋ A－ D＋ E＋ E－ D－  

 B＋B－  : 4  (not closed) 
 B＋B－D＋D－  : 3 (not closed) 
 B＋B－E＋E－  : 4 
 B＋B－D＋E＋E－D－  : 3 

 D＋

S1:  E＋ E－ D－  
S2:  E＋ E－ D－  
S3:  E＋ E－ D－ 
S4:  E＋ E－ D－  

 D＋D－  : 4  (not closed) 
 D＋E＋E－D－  : 4 

S1:  A＋ (B＋C＋) A－ B－ C－ D＋ E＋ E－ D－  
S2:  B＋ B－ D＋ (E＋ F＋) (E－ F－) D－  
S3:  A＋ B＋ A－ (B－ D＋) E＋ E－ D－ 
S4:  B＋ B－ A＋ A－ D＋ E＋ E－ D－  
 
infrequent endpoint elimination 
↓ 
 
S1:  A＋ B＋ A－ B－ D＋ E＋ E－ D－  
S2:  B＋ B－ D＋ E＋  E－  D－  
S3:  A＋ B＋ A－ (B－ D＋) E＋ E－ D－ 
S4:  B＋ B－ A＋ A－ D＋ E＋ E－ D－  
 

 E＋

S1:  E－ D－  
S2:  E－ D－  
S3:  E－ D－  
S4:  E－ D－  

 E＋E－  : 4  (not closed) 

Fig. 3.6: An example of projected databases and closed temporal patterns 

 

 

3.5 Experimental Results 
To best of our knowledge, there have been no efficient methods developed for mining closed 

temporal patterns. Hence, to evaluate the performance of CEMiner, four temporal pattern mining 

algorithms, CTMiner [8], H-DFS [27], IEMiner [29] and TPrefixSpan [36] are compared with 

CEMiner. All algorithms were implemented in C++ language and tested on a computer with 

Pentium D 3.0 GHz with 2 GB of main memory. The performance study has been conducted on 

both synthetic and real world datasets. First, we compare the execution time using synthetic 

datasets at different minimum support. Second, we conduct an experiment to observe the memory 

usage and the scalability on execution time of CEMiner. Finally, CEMiner is applied in 



 

 - 57 -

real-world dataset, library lending data, to show the performance and the practicability of mining 

closed temporal patterns. 

 

The synthetic data sets in the experiments are generated using synthetic generation program 

modified from [1]. Since the original data generation program was designed to generate time 

point-based data, the generator for closed temporal pattern mining algorithm requires 

modifications on interval events accordingly. The parameter setting of temporal data generator is 

shown in Fig. 3.7. 

 

 

Fig. 3.7: Parameters of synthetic data generator  

 

We create a set of potentially frequent sequences used in the generation of event sequences. 

The number of potentially frequent sequences is NS. A potentially frequent sequence is generated 

by first picking the size of sequence from a Poisson distribution with mean equal to | S |. Then, 

the event intervals in potentially frequent sequence are chosen from N event symbols randomly. 

All the duration times of event intervals are classified into three categories: long, medium and 

short, which are normally distributed with an average length of 12, 8 and 4, respectively. For each 

event interval, we first randomly decide its category and then determine its length by drawing a 

value. The temporal relations between consecutive intervals are selected randomly to form a 

potentially frequent sequence. Since we adopt normalized temporal patterns [13], the temporal 

relationships can be chosen from the set {before, meets, overlaps, is-finished-by, contains, starts, 

equal}. After all potentially frequent sequences are determined, we generate | D | event sequences. 

Each event sequence is generated by first deciding the size of sequence, which was picked from a 

Poisson distribution with mean equal to | C |. Then, each event sequence is generated by 

assigning a series of potentially frequent sequences. 



 

 - 58 -

 

 

 

3.5.1 Performance on Synthetic Datasets 

In all the following experiments, two parameters are fixed, i.e., | S | = 4 and NS = 5,000.  The 

other parameters are configured for comparision. The first experiment of the five algorithms is on 

the data set D10k–C20–N1k. Fig. 3.8(a) shows the running time of the five algorithms with 

minimum supports varied from 1 % to 4 %. Obviously, when the minimum support value 

decreases, the processing time required for all algorithms increases. We can see that when the 

support is greater than 3.5%, CTMiner outperforms CEMiner. However, when we continue to   

the lower threshold, the runtime for IEMiner, H-DFS and TPrefixSpan increase drastically 

compared to CEMiner. This is partly because of the generation of an explosive number of 

frequent patterns for the complete-set mining algorithm. When minimum support is 1 %, 

CEMiner is about 1.5 times faster than CTMiner, more than 2 times faster than TPrefixSpan, 

about 3 times faster than IEMiner and more than 5 times faster than H-DFS. Fig. 3.8(b) shows the 

number of generated closed and complete-set patterns at different support thresholds. Fig. 3.8(c) 

shows the distribution of closed patterns, from which one can see that when minimal support is 

D10k – C10  – N1k 

11.52 2.5 3 3.5 4 
minimum support (%) 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

0 

50 

100 

150 

200 

250 

300 

350 

400 

CTMiner 
TPrefixSpan 
IEMiner 
H-DFS 

CEMiner 

minimum support (%) 

1-pattern 

2-pattern 

3-pattern 

4-pattern 

5-pattern 

D10k – C10  – N1k 

0

50

100

150

200

250

300

350

400

4 3.5 3 2.5 2 1.5 1 

nu
m

be
r 

of
 to

ta
l p

at
te

rn
s 

nu
m

be
r 

of
 te

m
po

ra
l p

at
te

rn
s 

Closed pattern 

Complete-set pattern

D10k – C10  – N1k 

minimum support (%)

3.5 2.5 1.54 3 2 1
0

100 

200

300

400

500

600

700

800

(a) 

Fig. 3.8: The performance and mining result on data set D10k – C10 – N1k 

(c)

(b)



 

 - 59 -

no less than 3%, the length of closed patterns is short (only 2-3), and the maximum number of 

closed patterns in total is 580. 

 

 

 

The second experiment is performed on data set D100k–C20–N10k, which is much larger 

since it contains 100,000 event sequences and 10,000 event intervals. Figure 9 shows the 

performance and mining result. Fig. 3.9(a) and 3.9(b) illustrates the running time of the five 

algorithms and the number of generated closed and complete-set patterns at different support 

thresholds respectively. However, we vary the minimum support thresholds from 0.5 percent to 1 

percent to generate larger number of closed patterns from large data set. The data set contains a 

large number of closed temporal patterns when minimum support is reduced to 0.5 %. CEMiner 

is about 2 times faster than CTMiner, more than 4 times faster than TPrefixSpan, more than 5 

times faster than IEMiner and about 9 times faster than H-DFS. The distribution of closed 

patterns is shown in Fig. 3.9(c), and the maximum number of closed patterns in total is 2,616. 

 

3.5.2 Scalability and Memory Usage Studies 

(c)

Fig. 3.9: The performance and mining result on data set D100k – C20 – N1k

minimum support (%) 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

1 0.9 0.8 0.7 0.6 0.5

CTMiner TPrefixSpan IEMiner H-DFS 

CEMiner 

D100k – C20 – N10k 

minimum support (%) 

D100k – C20 – N10k 

0

500

1000

1500

2000

2500

3000

3500

4000

1 0.9 0.8 0.7 0.6 0.5

Closed pattern 

Complete-set pattern

nu
m

be
r 

of
 te

m
po

ra
l p

at
te

rn
s 

minimum support (%) 

D100k – C20 – N10k 

nu
m

be
r 

of
 to

ta
l p

at
te

rn
s 

0

100

200

300

400

500

600

700

800

900

1000

1 0.9 0.8 0.7 0.6 0.5

1-pattern

2-pattern

6-pattern

4-pattern

5-pattern

3-pattern

(a) (b)



 

 - 60 -

In this section, we study the scalability and memory usage of the CEMiner algorithm. Here, 

we use the data set C = 20, N = 10k with varying different database size. Fig. 3.10 shows the 

results of scalability tests of the CEMiner algorithm, with the database size growing from 100K 

to 500K sequences, and with different minimum support threshold varying from 3 % to 1 %. As 

the size of database increases and minimum support decreases, the processing time of CEMiner 

increases, since the number of frequent patterns also increases. As can be seen, CEMiner is 

linearly scalable with different minimum support threshold. When the number of generated 

closed patterns is large, the runtime of CEMiner still increases linearly with different database 

size. 

 

 

Then, we compare the memory usage among the five algorithms, CEMiner, CTMiner, 

TPrefixSpan, IEMiner and H-DFS using synthetic data set D10k–C10–N1k. Fig. 3.11 shows the 

results, from which we can observe that CEMiner is not only more efficient, but also more stable 

in memory usage than the other four algorithms. For example, when minimum support threshold 

is reduced to 1%, CEMiner is about 2 times smaller than CTMiner, more than 3 times smaller 

than TPrefixSpan, almost 7 times smaller than IEMiner and more than 25 times smaller than 

H-DFS. This also explains why in our previous performance tests when the support threshold 

becomes extremely low, why CEMiner is still efficient and outperforms state-of-the-art 

algorithms. Based on our analysis, CEMiner only requires memory space to hold the closed 

sequence data which is much less than frequent complete-set sequence data. CTMiner and 

TPrefixSpan still consume memory space to hold the generation of an explosive number of 

frequent patterns for the complete-set mining. Same as IEMiner and H-DFS, both of them need 

memory space to hold candidate sequences in each level. When the minimal support threshold 

Fig. 3.11: The memory usage of 
five algorithms 

number of sequences in database 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 min_sup =2% 

min_sup =3% 

min_sup = 1% 

min_sup =1.5% 

min_sup =2.5% 

0 

50 

100 

150 

200 

250 

100000 200000 300000 400000 500000

Fig. 3.10: The performance with 
different database size 

minimum support (%) 

m
em

or
y 

us
ag

e 
(M

B
) 

D10k – C10  – N1k 

0 

500

1000

1500

2000

2500

3000

4 3.5 3 2.5 2 1.5 1 

CTMiner

TPrefixSpan

IEMiner

H-DFS

CEMiner



 

 - 61 -

drops, the set of candidate sequences grows up quickly, which results in memory consumption 

upsurging. 

 

In summary, performance study shows that CEMiner has the best overall performance among 

the algorithms tested. The scalability study also shows that CEMiner scales well even with large 

databases and low thresholds. The memory usage analysis shows the efficient memory 

consumption of CEMiner and part of the reason why other algorithms become slow since the 

candidate sequences may consume a huge amount of memory. 

 

 
 
 

3.5.3 Real-World Dataset Analysis 

In addition to using synthetic data sets, we have also performed an experiment on real world 

dataset to compare the performance and indicate the applicability of closed temporal pattern 

mining. The database used in the experiment consists a collection of 1,098,142 library records 

(lending and returning) for three years from the National Chiao Tung University Library. The 

experimented database includes 206,844 books and 28,339 readers. An event interval is 

constructed by a book ID and corresponding lending and returning time. The size of database is 

the number of sequences in database (same as the number of readers, 28,339). The maximal and 

the average length of sequences are 262 and 38 respectively. 

 

Figure 3.12 shows the performance and mining result. Fig. 3.12(a) indicates the running time 

of five mining algorithms with varying minimum support thresholds from 0.1 % to 0.05 % and 

minimum support (%) 

nu
m

be
r 

of
 p

at
te

rn
s 

0

1000

2000

3000

4000

5000

6000

7000

8000

0.1 0.09 0.08 0.07 0.06 0.05

1-pattern

2-pattern

3-pattern

4-pattern

5-pattern

6-pattern

7-pattern

(b)

Fig. 3.12: The performance and mining result on library data 
set from NCTU 

minimum support (%) 

ru
nn

in
g 

ti
m

e 
(s

ec
s)

 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

0.1 0.09 0.08 0.07 0.06 0.05

HDFS 
IEMiner 

TPrefixSpan 
CTMiner 
CEMiner 

(a) 



 

 - 62 -

the number of generated patterns under different thresholds is shown in Fig. 3.12(b). As the 

minimum support drops down to 0.05 %, there are 13,550 closed patterns and the running time of 

CEMiner is about 1.5 times faster than CTMiner, more than 2 times faster than TPrefixSpan, 

about 5 times faster than IEMiner and H-DFS has never terminated. 

 

 

3.6 Summary 
Previous studies of mining closed sequential pattern mainly are focused on time point-based 

data. Little attention has been paid to the mining of closed temporal patterns from time 

interval-based data. Since the processing for complex relations among intervals may require 

generating and examining large amount of intermediate subsequences, mining closed temporal 

patterns from time interval-based data is an arduous problem. In this chapter, we develop an 

efficient algorithm, CEMiner, to discover closed temporal patterns without candidate generation, 

based on proposed endpoint representation. The algorithm further employs three pruning methods 

to reduce the search space effectively. The experimental studies indicate that CEMiner is efficient 

and scalable. Both running time and memory usage of CEMiner outperform state-of-the-art 

algorithms. Furthermore, we also apply CEMiner on real world dataset to show the efficiency and 

the practicability of mining time interval-based closed pattern.  

 



 

 - 63 -

Chapter 4 

Incremental Mining Temporal Patterns from 

Interval-based Database 

 

4.1 Introduction 
Sequential pattern mining is an essential data mining technique with broad applications, such 

as market and customer analysis, network intrusion detection, analysis of Web access, and finding 

of tandem repeats in DNA sequences, to name a few. Several efficient algorithms exhibit 

excellent performance in discovering sequential patterns from a static database, i.e., mine the 

entire database and acquire the results in a one-stop solution. Nevertheless, the assumption of 

having a static database may not hold in a number of applications. The database usually grows 

incrementally over time, i.e., some new data may be added. The algorithms based on static 

database do not consider the evolution of database and the maintenance of discovered sequential 

patterns. The result mined from the original database may no longer be valid since existing 

sequential patterns will be invalid, and new sequential patterns may be introduced with the 

evolution of databases. Obviously, re-mining the updated databases from scratch each time is 

inefficient because it wastes computational resources and neglects the previous mining result. 

 

Previous research of the incremental mining algorithm [4, 5, 7, 9, 12, 14, 19, 23, 26, 28, 42] 

mainly focused on sequential patterns discovered from time point-based data. Prior works have 

claimed that in reality, mining time interval-based patterns is more practical [8]. Interval-based 

sequential patterns, also referred to as temporal patterns, occasionally can reveal more precise 

information. In many real-world applications, some events, which intrinsically persist for periods 

of time instead of instantaneous occurrences, cannot be treated as “time points.” In such cases, 

the data is usually a sequence of interval events with both start and finish times. Examples 

include library lending, stock fluctuation, patient diseases, and meteorology data, to name a few. 

 



 

 - 64 -

Table 4.1: Part of temporal patterns discovered from of NCTU library 

PID temporal patterns support

1 

 

163 

(0.57%)

2 

 

43 

(0.15%)

3 

 

92 

(0.32%)

4 

 

35 

(0.12%)

 

Consider an example of mining temporal patterns from the NCTU library lending datasets. 

Usually, there is duration between the time of a reader borrowing a book and the time he/she 

returning the book. Thus, the lending dataset, in general, is time interval-based. By extracting 

some users’ lending patterns, we could develop a recommendation system for library. This 

information would be more helpful than conventional sequential time point-based pattern. Table 

4.1 illustrates some temporal patterns (part of mining results) discovered from the NCTU library. 

We used pattern 1 and 2 for discussion. Suppose that two readers, Mary and Sue, both check out 

the books “The Know-It-All” and “The Curious Incident of the Dog in the Night-time.” If Mary 

checks out two books simultaneously, the library can send her an e-mail to notify her that the 

book “The Hitchhiker's Guide to the Galaxy” is still on the shelf, or that the book “The 

Restaurant at the End of the Universe” will be returned by June 23, 2011. However, if Sue checks 

out two books at different times, the library may send her an e-mail to notify her about the 

availability of books “Le Cosmicomiche” or “The One Hundred Years of Solitude.” The temporal 

patterns offer a more expressive result to present correlations among data than conventional 

sequential patterns. 

“The Inheritance of Loss” 
“I Served the King of England”

“The End of the Affair” 

“The Pearl in the Deep”

“I Served the King of England” 

“The End of the Affair” 

“Le Cosmicomiche”
“The Curious Incident of the 
Dog in the Night-time” 

“The Know-It-All” 
“The One Hundred Years 

of Solitude” 

“The Restaurant  at  the 
End of  the Universe”

“The Hitchhiker's guide to 
the galaxy” 

“The Curious Incident of the 
Dog in the Night-time” 

“The Know-It-All” 



 

 - 65 -

 

Allen’s 13 temporal logics [2] are usually adopted to describe the complex relations among 

intervals, as follows: “before,” “after,” “overlap,” “overlapped by,” “contain,” “during,” “start,” 

“started by,” “finish,” “finished by,” “meet,” “met by,” and “equal.” However, Allen’s temporal 

logics are binary relations and may experience several problems when describing relationships 

among more than three event intervals. An appropriate representation is crucial for this 

circumstance. Various representations [8, 13, 16, 24, 25, 29, 36] have been proposed; however, 

most of them have a restriction on either ambiguity or scalability. In this chapter, we utilize the 

endpoint arrangements to effectively simplify the processing of complex relations, which is the 

major bottleneck of incremental mining of temporal patterns. Since the endpoints are 

non-overlapped, Allen’s 13 temporal logics can be reduced to 3 relations, i.e. “before,” “equal” 

and “after.” 

 

As mentioned early, new time interval-based data is generated. To truly capture temporal 

patterns, one should re-execute existing algorithms of mining temporal patterns from the updated 

database, where the new data is appended or the new record is inserted. In this chapter, we target 

at designing algorithms to incrementally mine temporal patterns. To the best of our knowledge, 

no methods have been discussed on how to discover frequent sequential patterns from time 

interval-based data in an incremental environment. Since the feature of time intervals differs 

considerably from that of time points, the pairwise relationships between any two interval events 

are intrinsically complex. This complex relation is a crucial problem in the design of an efficient 

and effective algorithm for maintaining temporal patterns. When appending an interval to an 

event sequence, the complex relations may lead to the generation of a larger number of possible 

candidates and consume more memory space. 

 

Two types of incremental updates for interval sequence database are used, 1) inserting new 

sequences into database, denoted as INSERT; 2) appending new intervals to existing sequences, 

denoted as APPEND. A real world application may include all types of updates. When the 

database is updated with a combination of INSERT and APPEND, we can regard the INSERT as 

a special case of APPEND, for inserting a new sequence is equivalent to appending a new 

sequence to an empty sequence, as shown in Fig. 4.1. This chapter proposes an efficient 



 

 - 66 -

algorithm, Inc_CTMiner which stands for Incremental Temporal Miner, to address the crucial 

problem and incrementally discover temporal patterns based on the coincidence representation. 

Furthermore, Inc_CTMiner employs some pruning strategies to reduce the search space and 

avoids non-promising database projection. Experimental studies on both synthetic and real 

datasets indicated that, in the incremental environment, Inc_CTMiner is efficient and outperforms 

the state-of-the-art algorithms, which are based on static database. Our experiments also revealed 

that the proposed approach is scalable and consumes a smaller memory space. We also applied 

Inc_CTMiner on real world datasets to demonstrate the practicability of maintaining the temporal 

patterns. 

 

 

 

 

The remainder of this chapter is organized as follows: Section 4.2 presents the related work; 

Section 4.3 introduces the preliminaries; Section 4.4 provides incremental mining algorithms; 

Section 4.5 presents the experimental results and performance study; and finally, Section 4.6 

summerizes this chapter. 

 

 

Fig. 4.1: Concept of INSERT and APPEND updates interval sequence 

 

INSERT 

increment
database

(db) 

original
database

(DB)

..




updated
database

(DB’) 

 

APPEND 
extended 
database 
(EDB) 



 

 - 67 -

4.2 Related Work 
A number of studies have investigated the mining of temporal patterns [2, 8, 13, 17, 24, 25, 

27, 29, 31, 33, 35, 36, 37, 41] in a static environment. Kam et al. [16] proposed a hierarchical 

representation and designed an algorithm to discover temporal patterns. Although hierarchical 

representation is a compact encoding method, it may suffer from two ambiguous problems, as 

follows: 1) the same relationships among event intervals can be mapped to different temporal 

patterns; and 2) the same temporal pattern can represent different relationships among event 

intervals. Hoppner [13] proposed a nonambiguous representation, relation matrix, which 

exhaustively lists all binary relationships between event intervals in a pattern. The mining 

algorithm needs to scan the database repeatedly, which considerably lowers its efficiency, and the 

relation matrix does not scale effectively if numerous intervals appear in a pattern.  

 

H-DFS [27] was proposed to discover frequent arrangements of temporal intervals. This 

approach transforms an event sequence into a vertical representation using id-lists. However, 

H-DFS does not scale effectively when the temporal pattern length increases. TSKR [24] 

expressed the temporal concepts of coincidence and partial order for interval patterns. The pattern 

represented in TSKR format is easily understandable and robust; however, it may reveal the 

relationship between pairwise event intervals ambiguously. Based on MEMISP [20], ARMADA 

[35] was proposed to find temporal patterns from large databases. Since it is based on relation 

matrix representation, memory usage is a substantial bottleneck when the database is very large. 

TPrefixSpan [36] uses temporal representation to discover temporal patterns nonambiguously, but 

it does not use any pruning strategy to reduce the search space. Augmented hierarchical 

representation [29] uses additional counting information to achieve a lossless expression. Every 

Allen describer must take space to store five counters. Based on this representation, IEMiner [29] 

was proposed by using optimization strategies and removing non-promising candidate sequences, 

but it must scan the database multiple times. 

 

A robust representation, SIPO [25], used the partial order of intervals and considers the noise 

tolerance to express relationships among intervals. Nevertheless, the proposed algorithm requires 

discovering both closed sequential pattern and closed itemset, and therefore, is time consuming. 

CTMiner [8] is an efficient algorithm for mining temporal patterns. It utilizes a non-ambiguous 



 

 - 68 -

and compact representation, coincidence representation [8] to facilitate the mining process. It first 

segments all intervals to disjoint slices based on the global information in a pattern, and 

subsequently groups all event slices occurring simultaneously to form a coincidence to represent 

a sequence. 

 

A few prior works [4, 5, 7, 9, 12, 14, 19, 23, 26, 28, 42] have focused on incremental mining 

sequential patterns from time point-based data. ISM [28] uses a sequence lattice of original 

database for incrementally mining of sequential patterns. The sequence lattice includes all of the 

frequent sequences and all of the sequences in the negative border. Two problems occur when 

using negative border. First, the combined number of sequences in the frequent set and the 

negative border is large. Second, the sequences in negative border are generated based on the 

structural relation between sequences. However, these sequences do not necessarily have high 

support. Therefore, using negative border is very time and memory consuming. Zhang et al. [42] 

developed two candidate generate-and-test algorithms, GSP+ and MFS+, for incremental mining 

of sequential patterns when sequences are inserted into or deleted from the original database.  

ISE [23] is another incremental mining algorithm based on candidate generate-and-test approach. 

The weakness of these three algorithms is that the candidate set may be very large and the 

level-wise working manner requires multiple database scans. When the frequent sequences are 

long, the testing phase is usually slow and costly. 

 

 

The IncSpan [9] buffers a set of semi-frequent sequences as the candidates in the updated 

database which can accelerate the maintaining process efficiently. Two optimization techniques, 

reverse pattern matching and shared projection, were proposed to improve the performance. 

However, IncSpan fails to find the complete set of sequential patterns from an updated database 

because several properties are incorrect. Nguyen et al. [26] proved the incompleteness of IncSpan 

and proposed an algorithm, IncSpan+, to correct the weaknesses of IncSpan. IncSP [12] solved 

the maintenance problem through effective implicit merging and efficient separate counting over 

appended sequences. The proposed early candidate pruning technique, further speeds up the 

discovery of new patterns. PBIncSpan [7] uses a prefix tree to record all frequent sequences and 

corresponding projected databases to maintain the discovered sequential patterns; however such a 



 

 - 69 -

method requires extremely huge storage space when the database is large. The proposed pruning 

strategy is based on the Apriori property and is inefficient when the prefix tree has numerous 

nodes. 

 

All previous studies for incremental mining are mainly focused on time point-based data 

which has no concept of duration of time. Limited attention has been paid to updating temporal 

patterns from interval-based database. In this chapter, we design a new algorithm, Inc_CTMiner, 

which can incrementally discover temporal patterns effectively and efficiently. 

 

4.3 Preliminary 
Let E = {e1, e2,…, ek} be the set of event symbols. Without loss of generality, we define a set 

of uniformly spaced time points based on the natural number N. We say the triplet (ei, si, fi)  E  

N  N is an event interval, where ei  E, si, fi  N and si  fi. The two time points si, fi are called 

event times, where si is the starting time and fi is the finishing time. The set of all event intervals 

over E is denoted by I. An event sequence is a series of event interval triplets (e1, s1, f1), (e2, s2, 

f2), …, (en, sn, fn), where si  si+1, and si  fi. A temporal database is a set of tuple SID, Q where 

SID is a sequence-id and Q is an event sequence. For example, in Table 4.2, the temporal 

database ĐB has 3 event sequences. Given two event sequences Q and Q’, Q’’ = Q ◇ Q’ means 

Q’’ is the concatenation of Q and Q’. Q’ is called appended sequence of Q and Q’’ is called 

updated sequence of Q appended with Q’. 

 

Definition 4.1 (Increment and updated database) 

Given a temporal database DB appended with a few event sequences after some time, DB is 

called original database. The increment database db is referred to as the set of newly appended 

data sequences. The SIDs of the data sequences in db may already exist in DB. A database 

combining all the data sequences from DB and db is referred to as the updated database DB’. 

An extended database EDB of an updated temporal database DB’ is a set of event sequences in 

DB’ which are the concatenations of sequences in DB and db. The concept of Definition 4.1 is 

given as Fig. 4.1. 

 



 

 - 70 -

 

 

Table 4.2: An example of temporal database 

 original database DB increment database db 
event interval event interval 

pictorial example pictorial example SID 
coincidence representation 

(A, 1, 3), (B, 4, 6), (F, 7, 10), (D, 8, 10) (F, 10, 13), (G, 14, 18) 

 
 1 

(A) (B) (F＋) (F－D)         ◇           (F) (G) 
→ (B) (F＋) (D) (F－) (G) 

(A, 1, 3), (D, 4, 6), (E, 7, 9)  

 
 2 

(A) (D E)            ◇                
→ (A) (D E) 

(A, 1, 3), (D, 4, 6), (E, 7, 10)  

 
 3 

(A) (D E)            ◇                
→ (A) (D E) 

 (B, 11, 14), (F, 15, 20), (D, 16, 18)  

 
 

4 

                ◇        (B) (F＋) (D) (F－)        
→ (B) (F＋) (D) (F－) 

 

 

4.4 Coincidence Representation 
The incremental mining of temporal patterns is more difficult than that of conventional 

sequential patterns. Since the time period of two intervals may overlap, the relation among event 

intervals is more complex than that of the event points. An appropriate representation is very 

important for describing relationships among more than three events. Various representations 

have been proposed but most of them have restriction on either ambiguity or space usage. The 

existing representations are compared in Table 4.3. 

 

 

D 
B 

F 
A 

F 
G 

A E D 

D 
F 

B 

E D A 



 

 - 71 -

Table 4.3: Comparisons of existing representation 

 
Hierarchy 

Representation 

Relation 
Matrix 
(List) 

Temporal 
Representation

TSKR 
Augmented 
Hierarchy 

Representation 

Coincidence 
Representation

proposed 
time 

2000 
(DaWak) 

2002 
(IDA) 

2007 
(TKDE) 

2007 
(DMKD) 

2008 
(SIGMOD) 

2010 
(CIKM) 

space 
usage 

(for k events) 

k + (k 1) 
= 2k  1 

k  (k  1)
= (k2 – k) 

2k + (2k  1)
= 4k  1 

Best case: k 
Worst case: k2

k + (6  (k  1)) 
= 7k  6 

Best case: k 
Worst case: 2k

ambiguous 
problem yes no no yes no no 

relations 
between 
events 

complex complex complex simple complex simple 

 

 

Given an event sequence Q = (e1, s1, f1), (e2, s2, f2), …, (en, sn, fn), the set T ={s1, f1, s2, f2, …, 

si, fi,…, sn, fn} is called a time set corresponding to sequence Q where 1  i  n. If we order all 

the elements in T and eliminate redundant elements, we can derive a sequence TS = t1, t2, t3, …, 

tk where tiT, ti ti+1. TSQ is called a time sequence corresponding to sequence Q. 

  

Definition 4.2 (Incising Function and Event Slice) 

Given an event sequences Q = (e1, s1, f1), (e2, s2, f2), …, (ei, si, fi), …, (en, sn, fn) where (ei, si, fi) 

 I, and a, b TSQ,  

an incising function Ψ( a, b, (ei, si, fi)) = 


























otherwise.

)()(if

)()(if

)()(if 

)()(if

      

 b  f    a  s     e 

 b = f    a   s     e 

 b  f    a =  s    e 

 b = f    a =  s     e 

ii
*
i

iii

iii

iii

 

 An event slice S = Ψ( a, b, (ei, si, fi)) is called starting slice, if a = si, b = min{ t | tTSQ, si  t 

 fi }, and denoted as ei
＋. 

 An event slice S = Ψ( a, b, (ei, si, fi)) is called finishing slice, if a = max{ t | tTSQ, si  t  fi}, 

b = fi, and denoted as ei
－. 

 An event slice S = Ψ( a, b, (ei, si, fi)) is called intermediate slice, if a  si, b  fi, si  a  b  fi 

and b = min{ t | tTSQ, a  b  fi}, and denoted as ei
*. 

 An event slice S = Ψ( a, b, (ei, si, fi)) is called intact slice, if a = si and b = fi and ∄ tTSQ such 



 

 - 72 -

that si  t  fi, and denoted as ei. 

Let S and S’ be two event slices. We say that S is similar to S’, denoted as S  S’, if the event 

symbol of S is identical to the event symbol of S’. 

 

For example, as db in Table 4.2, sequence 4 has three event intervals, (B, 11, 14), (F, 15, 20) 

and (D, 16, 18) and its corresponding time sequence = 11, 14, 15, 16, 18, 20. Event interval F 

can be incised into three event slices, start slice F＋ = Ψ(15, 16, (F, 15, 20)), F* = Ψ(16, 18, (F, 

15, 20)) and finish slice F－ = Ψ(18, 20, (F, 15, 20)). Event interval B has only one intact slice B 

= Ψ(11, 14, (B, 11, 14)). F＋ and F－ have the same event symbol, F, hence F＋  F－. By 

Definition 4.2, we know that there are four kinds of event slice. Obviously, an event interval can 

only have one start slice and one finish slice but can have many intermediate slices. 

 

Definition 4.3 (Grouping Function, Coincidence and Coincidence Sequence) 

Given an event sequences Q = (e1, s1, f1), (e2, s2, f2), …, (ei, si, fi), …, (en, sn, fn) where (ei, si, fi) 

 I, and a, b TSQ = t1, t2, t3, …, tk, 1  k  2n, a grouping function,  

Φ( a, b, q ) = { Ψ( a, b, (e1, s1, f1) ), Ψ( a, b, (e2, s2, f2) ),  … , Ψ( a, b, (en, sn, fn) ) }. 

A coincidence Ci = Φ(ti, ti+1, Q) = (Si1, Si2,…, Sij,…), where ti and ti+1 is two consecutive event 

times in TSQ and Sij is an event slice, 1  i  k－1, 1  j  n. Ci is an ordered set of event slices 

sorted by lexicographic order. A coincidence sequence Qc is denoted by C1, C2, …, Ck－1 and 

also called the coincidence representation of Q. To deal with multiple occurrences of events, we 

attach occurrence number to event slices to distinguish multiple occurrences of the same event 

type in a coincidence sequence. For example, (A1
＋)(B1

＋)(B1
－D＋)(D－)(A1

－B2
＋)(B2

－)(EF)(A2) is 

a coincidence sequence with occurrence number where both event A and B occur twice. 

 

To facilitate the incremental maintenance of temporal patterns, we also preserve the starting 

and the finishing time of Q, s 
Q and f Q, respectively. s 

Q is the starting time of the first event 

interval in Q and f Q is the finishing time of the last event interval in Q, i.e., if Q = (e1, s1, f1), (e2, 

s2, f2), …, (en, sn, fn), s 
Q = s1 and f Q = fn. For a temporal database DB, by Definition 4.2 and 4.3, 

we can transform it into a set of tuples SID, Qc, [s 
Q, f Q] where SID is the sequence-id of each 

event sequence Q in DB, Qc is the coincidence representation of Q, and s 
Q and f Q are the starting 



 

 - 73 -

and finishing time of Q. For example, in Table 2, we can transform three event sequences in ĐB 

into corresponding coincidence sequences. For better readability, later in this chapter, we suppose 

that the temporal database has been transformed into coincidence representation. 

 

Table 4.4: The coincidence representation of Allen’s relations between two 
intervals 

Temporal 
Relation 

Inversed 
Relation 

Pictorial Example
Coincidence 

representation
Pictorial Example 

Coincidence 
representation 

A B A B＋B－ 
A 

before 
B 

B 
after 

A 
A＋A－B 

 

A＋A－B＋B－ 

A 
overlaps 

B 

B 
overlapped-by 

A 
A＋(A－B＋) B－

  

A 
contains 

B 

B 
during 

A 
A＋B A－ 

 

A＋B＋B－A－ 

A 
starts 

B 

B 
started-by 

A 
(A＋B) A－ 

 

(A＋B＋) B－A－

A 
finished-by 

B 

B 
finishes 

A 
A＋(A－B) 

 

A＋B＋(A－B－) 

A @ B A @ B＋B－ 
A 

meets 
B 

B 
met-by 

A 
A＋A－

@ B 

 

A＋A－
@ B＋B－

A 
equal 

B 

B 
equal 

A 
A B 

 

(A＋B＋) (A－B－)

 

We adopt coincidence representation [8] to express a temporal pattern since it can accelerate 

the process of updating temporal patterns when new intervals are appended to the original 

interval sequences. The coincidence representation has several benefits, and the most important 

one is that it can simplify the processing of complex pairwise relationships among all intervals 

effectively. It utilizes the concept of slice-and- coincidence as defined in Definition 4.2 and 4.3, 

and considers the information of an entire event sequence instead of individual event intervals. 

A
B

D 

A B
E 

A
B 

D E 

BA

C 

B 

A
A 

B 

A

E 

E 

B

B

A

D 
B

A
B

D 

A

A 

B D 
B

A 

A 

B D 

A 

B

D 

A

B
A 

B

A 

B 



 

 - 74 -

Given two different event intervals A and B, the coincidence representation of Allen’s 13 relations 

between A and B is categorized as in Table 4.4. 

 

 

4.5. Inc_CTMiner Algorithm 
In this section, we develop a new algorithm, named Inc_CTMiner (Incremental 

Coincidence Temporal Miner), for incremental mining of temporal patterns, by utilizing the 

concepts of slice-and-coincidence. Section 4.5.1 gives some basic concepts and a glance of 

CTMiner algorithm. Section 4.5.2 details the Inc_CTMiner algorithm and also discusses the 

proposed optimization mechanisms for reducing the search space. 

 

4.5.1 Basic Concepts of Inc_CTMiner 

Before introducing the algorithm, we give some definitions first. Let Qc be a coincidence 

sequence in a temporal database DB. The Qc-projected database, denoted as DB|Qc , is the 

collection of postfixes of coincidence sequences in DB with regards to prefix Qc. Considering 

two coincidence sequences Qc = C1, C2, …, Cn and Qc’ = C1’, C2’, …, Cm’, Qc is called a 

subsequence of Qc’, denoted as Qc ⊑ Qc’, if there exist integers 1  i1  i2  … in  m such that 

C1  Ci1’, C2  Ci2’, …, Cn  Cin’. We also call Qc’ a supersequence of Qc, and Qc’contains Qc. 

 

Definition 4.4 (Temporal Pattern) 

Given a temporal database DB, a tuple SID, Qc, [s 
Q, f Q] is said to contain a coincidence 

sequence , if  is a subsequence of Qc. The support of a coincidence sequence  in DB is the 

number of tuples containing , i.e., support () = |{SID, Qc, [s 
Q, f Q] | (SID, Qc, [s 

Q, f Q]  

DB)  ( ⊑ Qc)}|. Given a positive integer min_sup as the support threshold, the set of temporal 

patterns includes all coincidence sequences whose supports are no less than min_sup. 

 

Let the temporal database DB in Table 4.2 with min_sup = 2 be an example. The coincidence 

sequence (A)(D) is a temporal pattern since it occurs in sequence 1, 2, and 3, and its support = 3 

 min_sup. A coincidence sequence (B)(D) is not a temporal pattern since it occurs only in 



 

 - 75 -

sequence 1, and its support = 1  min_sup. 

 

A frequent pattern tree (FPT) T is a tree that represents the set of temporal patterns in a 

temporal database. A node d in T stores an event slice and has a tag labeled with “p” or “i”. Label 

“p” means node d corresponding to a temporal pattern that starts from the root node to d. Label 

“i” means node d corresponding to an intermediate sequence of a temporal pattern that starts from 

the root node to d. Coincidence cutting is captured by using labeled edges. Each tree edge in T 

has a tag labelled with “solid” or “dash”. Solid edge means two connected nodes are in different 

coincidences; dash edge means two connected nodes are in the same coincidence. Each node also 

preserves two information, say support value and sequence_list. The support value represents 

the support count of the intermediate sequence or temporal pattern. The sequence_list stores a list 

of sequence-ids, i.e., SIDs, to represent the sequences containing this intermediate sequence or 

temporal pattern. The example is as shown in Fig. 4.2(a).  

 

 

 

Fig. 4.2(b) shows the frequent pattern tree built from the updated database DB+db in Table 

4.2. The temporal patterns and intermediate sequences are represented by a node with the solid 

squares and dotted squares, respectively. Coincidences can be captured by using edge label. For 

instance, (B)(F＋)(D)(F－) is a temporal pattern and the solid link illustrates that B, F＋, D and F－  

41

dash edge 

p node 

sequence_list 

Event: support 

sequence_list 

Event: support 

i node 

solid edge 

41
D: 2

Fig. 4.2: The frequent pattern tree built from updated database DB+db in Table 4.2

2 2 3



E: 2

32
E: 2

3 2 
E: 2 

3 1 
D: 3 

(b)(a) 

1 4
B: 2

41
F＋: 2

41
F: 2

41
D: 2

41
F－: 2

41
F 

＋: 2

41
D: 2

F 

－: 2

4 

4 1 
E: 2 

1 4
F: 2

32 
A: 2

3 2 
D: 2 



 

 - 76 -

are all in different coincidence. The formal definition of our problem is given as follows. 

 

Definition 4.5 (Problem Statement) 

Given a temporal database DB, a minimum threshold min_sup, the set of temporal patterns FPT 

in DB, and a updated temporal database DB’ of DB, the problem of incremental temporal pattern 

mining is to mine the set of temporal patterns FPT’ in DB’ based on FPT instead of re-mining on 

DB’ from scratch. 

 

4.5.1.1 Sequence Transformation 

The maintenance of time interval-based patterns is much more difficult than conventional 

time point-based patterns. Since the time period of the two intervals may overlap, the relation 

among event intervals is more complex than that of the event points. Hence, we use an efficient 

method, incision strategy, to transform the new appending sequences into coincidence 

representation and accelerate the maintaining process. 

 

 

 

The incision strategy segments all intervals to disjoint slices based on the global information 

in a sequence. For example, considering an event sequence with five intervals shown in Fig. 

4.3(a), we first put all ten end time points into endtime_list and sort them in non-decreasing order 

based on their times and types (start or finish). We merge the event symbol of end time points 

together if both time and type of end time points are the same. As in Fig. 4.3(b), since the 

Fig. 4.3: An example of incision strategy 

(b) 

(A, 1, 4) 
 

(B, 2, 5) 
 

(D, 2, 8) 
 

(E, 3, 5) 
 

(F, 5, 7) 

(a) 

A＋(B＋D＋) (A－E＋) (B－E－) @ F D－: coincidence 
representation 

endtime_list 
type symbol time

s E 3 

s A 1 
s BD 2 

f A 4 
f BE 5 
s F 5 
f F 7 
f D 8 

event 
 interval : 

output :

D－

A＋

B＋D＋

@

B－E－

F 

A－E＋



 

 - 77 -

finishing time of interval B is identical to the finishing time of interval E, we can merge them 

together. But we can not merge the finish time of interval E with the start time of interval F, since 

the type of end time points are not the same. Then we compare each record in endtime_list 

one-by-one to segment event slice. By traversing all the sorted end time points in endtime_list, 

we can generate the event slices effectively. 

 

Algorithm 4.1: incision_strategy ( Q ) 

Input: Q: an event sequence 
Output: Qc: a coincidence sequence 
Variable: endtime_list, last_endtime, and coincidence 
 
01: endtime_list ←  , last_endtime ←  , coincidence ←  , Qc ←  ; 
02: add all the end time points of every event interval in Q into endtime_list; 
03: sort every endtime in endtime_list by endtime. time in nondecreasing order; 
04: merge all endtime. symbols together with identical endtime. time and endtime. type; 
05: for each endtime T in endtime_list do 
06:   coincidence ←  ; 
07:   if last_endtime. time = T . time then 
08:     coincidence ← coincidence ∪ “@”; // meet token 
09:   else   // last_endtime. time ≠ T . time 
10:     if last_endtime. type = “s” then 
11:       coincidence ← coincidence ∪ every symbol in last_endtime. symbol add “+”; 
           // start slice 
12:     if T.type = “f” then 
13:       coincidence ← coincidence ∪ every symbol in T. symbol add “”;  // finish slice
14:   combine start slice and finish slice with same symbol in coincidence; // intact slice 
15:   Qc ← Qc ◇  coincidence  ; 
16:   last_endtime ← T; 
17: output Qc ; 

Fig. 4.4: Algorithm of incision strategy 
 

Coincidence representation uses meet token “@” to express the meet relation among two 

adjacent intervals. As the example in Fig. 4.3(a), interval E meets interval F, hence we add a “@” 

between two coincidences (B－E－) and (F). In general, reducing memory usage and saving 

computation time are two important issues for algorithm design. Since the meet token has been 

used to distinguish two adjacent intervals, incision strategy can totally avoid the generation of 

intermediate slices. Given an example as Fig. 4.3(a), the event interval D can be segmented into 

five event slices, one start slice D＋, three intermediate slices D*, and one finish slice D－. By 

trimming the intermediate slices, we can still express the relationship between any two intervals 

correctly, as shown in Fig. 4.3(a). Utilizing meet token can reduce the memory usage and the 



 

 - 78 -

computation cost effectively and efficiently, thereby improves the performance of our incision 

strategy. 

 

The pseudo code of incision strategy is shown as Fig. 4.4. By the merge operation of incision 

strategy, the event slices occur simultaneously in the same time period can be grouped together to 

form a coincidence easily. Given an event sequence, we can transform it to an equivalent 

coincidence sequence by incision strategy. Collecting all coincidence sequences can form a 

coincidence database which is equivalent to original temporal database. 

 

 

Algorithm 1: CTMiner (DB, min_sup) 

Input: DB: a temporal database, min_sup: the minimum support threshold 
Output: FPTDB: frequent pattern tree of a database DB 
 
19: FPTDB ← ; 
20: use incision_strategy transforming DB into coincidence representation; 
21: call CPrefixSpan (DB , , min_sup, FPTDB ); 
22: output FPTDB ; 
 
Procedure CPrefixSpan (DB| ,  , min_sup, FPTDB ) 
23: scan DB| once, remove infrequent slices and find every frequent slice b such that: 
24: (i)  b can be assembled to the last slice of  or (ii) b can be appended to  to form 

a frequent coincidence sequence;  // support(b)  ( min_sup×|DB| ) 
25: for each frequent slice b do 
26:   if b is a “finish slice” then 
27:     if exist corresponding start slice in  then  // pre-pruning 
28:       append b to  to form  ; 
29:   if b is a “start slice” or “intact slice” then 
30:     append b to  to form  ; 
31: for each  do 
32:   construct  – projected database DB| with insignificant postfix elimination;  

// post-pruning 
33:   if |DB| |  ( min_sup×|DB| ) then 
34:     if  is a temporal pattern then 
35:       insert  into FPTDB ; 
36:     call CPrefixSpan (DB| , , min_sup, FPTDB ); 

Fig. 4.5: CTMiner algorithm 
 

 

4.5.1.2 CTMiner Algorithm 

CTMiner [8] is an efficient temporal mining algorithm based on static database. It transforms 



 

 - 79 -

event intervals into non-overlapped event slices and mined all temporal patterns recursively 

based on the projection technique [30]. Furthermore, CTMiner employs two optimization 

strategies, pre-pruning and post-pruning, to reduce the search space and avoids non-promising 

projection. Since the event start slices and finish slices definitely occur in pairs in a sequence, 

CTMiner only projects the frequent finish slices which have the corresponding start slices in their 

prefixes.  It is called pre-pruning strategy which can prune off non-qualified patterns before 

constructing projected database. When constructing a projected database, some postfixes need not 

be considered. With respect to a prefix p, a projected postfix is called significant, if all finish 

slices in postfix have corresponding start slices in p. CTMiner constructs the projected database 

DB|p by collecting significant postfixes only. All insignificant postfixes are eliminated since they 

can be ignored in the discovery of temporal patterns. This pruning method is called post-pruning 

strategy which eliminates insignificant sequence when constructing projected database. The 

pseudo code of CTMiner algorithm is given in Fig. 4.5. 

 

4.5.1.3 Interval Extension 

As mentioned above, appending an event sequence is more challenging than conventional 

sequence. Since an interval has duration, an interval in existing event sequence may merge with 

an interval in appended event sequence. Given two intervals I1 and I2 with the same event symbol 

and I1 is in existing event sequence and I2 is in appended sequence, if the end time of I1 is the 

same with the start time of I2, I1 and I2 will merge together. The interval-extension may vary the 

relation among intervals in the event sequence, hence also modify the coincidence representation 

of the event sequence. For example, as the event sequence 1 in Table 4.2, the relation between 

interval F and D is “finished-by” in original event sequence, but becomes “contains” after 

concatenation. The coincidence representations of original event sequence and appended 

sequence are (A)(B)(F＋)(F－D) and (F)(G) respectively. However, the representation of 

updated sequence is not just the concatenation of two coincidence sequence since the last 

coincidence of (A)(B)(F＋)(F－D) will modify the first coincidence of (F)(G), i.e., (A)(B)(F

＋)(D)(F－)(G). Fig. 4.6 indicates all possible variations of Allen relation for concatenating two 

event sequences. 

 



 

 80

 

 

 

Definition 4.6 (Concatenation of coincidence sequence) 

Given two coincidence sequences and their corresponding time information, Qc = C1, C2, …, Cn, 

[s 
Q, f Q] where Cn = (Sn1, …, Snx) and Qc’ = C1’, C2’, …, Cm’, [s 

Q’, f Q’ ] where C1’ = (S11’, …, 

S1y’), Qc ◇ Qc’ means Qc concatenates with Qc’. There are three kinds of concatenation for 

coincidence sequence,  

1) Sequence-extension: Qc ◇seq Qc’ = C1, C2, …, Cn, C1’, C2’, …, Cm’, if f Q  s 
Q’; 

2) Entire coincidence-extension: Qc ◇ent Qc’ = C1, C2, …, Cn-1, Ca, C2’, …, Cm’, if  

 f Q = s 
Q’ and x = y  

 ∀Sni  Cn, S1i’  C1’, Sni  S1i’ where 1  i  x, 

Ca = (Sa1, …, Sai,…, Sax), Sai = 





















).()(if

)()(if

)()(if 

)()(if

1

1

1

1

 e = ' S   e =  S       

 e = ' S   e =  S     e 

 e = ' S   e =  S    e 

 e = ' S   e =  S     e 

niinini

niininini

niininini

niininini

 

3) Partial coincidence-extension: Qc ◇par Qc’ = C1, C2, …, Cn-1, Ca, Cb, C2’, …, Cm’, if  

 f Q = s 
Q’  

B B

6. (A finished-by B) ◇ (A starts B) 
→ (A contains B) 

B

AA

1. (A equal B) ◇ A 
→ (A starts B) 

B

B

A

2. (A equal B) ◇ B 
→ (A started-by B) 

B

AA

3. (A finished-by B) ◇ A 
→ (A contains B) 

relation 
variation 

: 

pictorial 
example 

: 

relation 
variation 

: 

pictorial 
example 

: 

B B

A

4. (A finished-by B) ◇ B 
→ (A overlaps B) 

B

5. (A equal B) ◇ (A starts B) 
→ (A starts B) 

relation 
variation 

: 

pictorial 
example 

: 

A

B

A

A A

Fig. 4.6: Possible variations of relation and coincidence representation 
for concatenating two event sequences 

   

   
   

   
   

   



 

 81

 ∃Snk  Cn, S1ℓ’  C1’, Snk  S1ℓ’ where 1  k  x, 1  ℓ  y  

 ∃Sng  Cn s.t. ∀S1h’  C1’, Sng ≉ S1h’, or ∃S1h’  C1’, ∀Sng  Cn, S1h’ ≉ Sng  where 1 

 g  x, 1  h  y,  

Ca = (Sa1, …, Sai,…, Sax),  

Sai = 




























    S

 e = ' S   e =  S

 e = ' S   e =  S 'S S     

 e = ' S   e =  S

 e = ' S   e =  S 'S S    e 

ni

ninini

nininini

ninini

ninininini

otherwise,

)()(or            

 )()( s.t.if 

)()(or            

 )()( s.t.if

1

11

1

11









 

 

Cb = (Sb1, …, Sbj,…, Sby),  

Sbj = 






























otherwise.

)()(or            

)()( s.t.if

)()(or            

 )()( s.t.if

1

111

1111

111

11111

  ' S

 e = ' S   e =  S

 e = ' S   e =  S 'S S      

 e = ' S   e =  S

 e = ' S   e =  S 'S S    e 

j

jjjnk

jjjnkjnk

jjjnk

jjjnkjnkj

 

If both ∃Sng  Cn s.t. ∀S1h’  C1’, Sng ≉ S1h’ and ∃S1h’  C1’, ∀Sng  Cn, S1h’ ≉ Sng where 

1  g  x, 1  h  y, a meet token “@” must be inserted between Ca and Cb, i.e., Qc ◇par Qc’ = 

C1, C2, …, Cn-1, Ca, @, Cb, C2’, …, Cm’. 

 

Let us take eight coincidence sequences Q1, Q2, …, Q8 in Fig. 4.7 for example. In Fig. 4.7(a), 

when Q1 appending Q2, since the finishing time of Q1 is different from the starting time of Q2, we 

can just concatenate two coincidence sequences without modification (the case 1 in Definition 6). 

In Fig. 4.7(b), when Q3 appending Q4, since the finishing time of Q3 is equal to the starting time 

of Q4, and the slices in the last coincidence of Q3 and in the first coincidence of Q4 are all similar 

to each other, the concatenation of Q3 and Q4 is the entire coincidence-extension (the case 2 in 

Definition 6). By Definition 4.6, ( A－B B E－ ) ◇ent ( A B＋D E＋ ) = ( A－B＋D ), i.e., A－
◇ent A = A－, 

B ◇ent B
＋ = B＋, and D ◇ent D = D. Note that, since E－

◇ent E
＋= E*, we need not presenting E* in 

( A－B＋D ). 



 

 82

Actually, the partial coincidence-extension (the case 3 in Definition 6) has three conditions. 

As the coincidence sequences Q5 and Q6 in Fig. 4.7(c), since 1) the finishing time of Q5 is equal 

to the starting time of Q6, and 2) there are event slices, B－, D, E and F－, in the last coincidence of 

Q5 similar to event slices, B, D＋, E and F＋ in the first coincidence of Q6, respectively, and 3) an 

event slice A in the last coincidence of Q5 is not similar to any slice in the first coincidence of Q6, 

the concatenation of Q5 and Q6 is the partial coincidence-extension, i.e., (A B－D E F－) ◇par (B D＋

E F＋) = ( A D＋E＋ )( B－E－). However, in Fig. 7(d), although the concatenation of Q7 and Q8 is 

also partial coincidence-extension, ( A B－D E F－) ◇par ( B D＋E F＋G ) = ( A D＋E＋ ) @ ( B－E－G ). 

Since slice A in last coincidence of Q7 and slice G in the first coincidence Q8 are not extended, 

we need to add token “@” to express meet relation between A and G. 

 

 

 

Fig. 4.7: An example of concatenation of two coincidence sequences 

A 
 

B 
 

D 
 

E 
 

F 

: event 
 sequence 

coincidence 
representation : 

: pictorial 
example 

Q6 [10, 21]Q5 [1, 10] 

: event 
 sequence 

coincidence 
representation : 

: pictorial 
example 

A 
 

B 
 

D 

Q2 [10, 18]Q1 [1, 8] 

( A＋) ( A－B D ) ◇seq ( A B＋D ) ( B－ ) 

→ ( A1
＋) ( A1

－B1 D1 ) ( A2 B2
＋D2

 ) ( B2
－ ) 

( A＋E＋) ( A－B D E－ ) ◇ent ( A B＋D E＋ ) ( B－E－ )

   → ( A＋E＋) ( A－B＋D ) ( B－E－ ) 

A
 

B
 

D
 

E

Q4 [10, 19] Q3 [1, 10]     

( B＋F＋) ( A B－D E F－ ) ◇par ( B D＋E F＋) ( D－F－)

→ ( B＋F＋) ( A D＋E＋ ) ( B－E－) ( D－F－) 

Q8 [10, 21] Q7 [1, 10]

A
 

B
 

D
 

E
 

F
 

G

     

      

(b) 

(d) 

(a)

(c)

( B＋F＋) ( A B－D E F－ ) ◇par ( B D＋E F＋G ) ( D－F－)

→ ( B＋F＋) ( A D＋E＋ ) @ ( B－E－G ) ( D－F－) 



 

 83

4.5.2 Proposed Algorithm: Inc_CTMiner 

When a temporal database DB is updated to DB’, there are three possible cases for the 

temporal patterns in DB’, 

Case 1: A pattern is frequent in DB’, and also frequent in DB. 

Case 2: A pattern is frequent in DB’, and infrequent in DB but has a frequent pattern in DB as a 

prefix. 

Case 3: A pattern is frequent in DB’, and infrequent in DB and has no any frequent patterns in 

DB as a prefix.  

Case 1 is easy to handle since we have already stored the information of previous mining results 

into FPTDB. We can obtain the temporal patterns in Case 1 by checking and adjusting the support 

of every pattern in FPTDB in DB’. As the example database DB and db in Table 4.2, the temporal 

pattern (A)(D): 2 is frequent, where the notation “pattern : count” represents the pattern and 

its associated support. And it is still frequent after updated. 

 

Although we have not preserved any information of infrequent sequences in DB, in Case 2, 

all temporal patterns have at least one prefix subsequence which is frequent in DB, i.e., the 

frequent prefix is stored in FPTDB. Hence, we can utilize every temporal pattern in FPTDB as 

prefix to recursively discover the temporal patterns in Case 2. Since, in Case 3, the temporal 

patterns have no information stored in previous mining results, FPTDB, we need to scan DB’ for 

all new frequent 1-slices, and then use each new frequent 1-slice as prefix to construct projected 

database and recursively mine all temporal patterns in Case 3. For example, in Table 4.2, (B)(F): 

2 is frequent after updated and has no frequent pattern in DB as prefix in FPTDB. 

 

Before introducing Inc_CTMiner algorithm, we first give an intuitive approach, 

Naïve_Method, for incremental mining temporal patterns. Naïve_Method will also be used for 

baseline comparisons to assess the merit of Inc_CTMiner later. Fig. 4.8 illustrates the pseudo 

code. It first determines the extended database, EDB, and uses incision_strategy to transform all 

event sequences in DB’ to coincidence representation (Lines 1 and 2, algorithm 4.3). Then it calls 

CPrefixSpan, which is the sub-procedure of CTMiner, on EDB, and store mined results in a 

pattern tree, PTEDB (Line 3, algorithm 4.3). Note that, when mining EDB, the mined results 

should include both frequent and infrequent patterns, i.e., the min_sup is set as 1. Since even a 



 

 84

pattern is infrequent in EDB, it still may become frequent in the updated database DB’. For each 

temporal pattern in FTPDB, we update its support count if it also exists in PTEDB and check 

whether it is still frequent in DB’ (Lines 4-10, algorithm 4.3). Finally, we verify each remaining 

pattern in PTEDB in DB－EDB to adjust the support and output if it is frequent in DB’ (Lines 

11-17, algorithm 4.3). 

 

Algorithm 4.3: Naïve_Method ( DB’, min_sup, FPTDB ) 

Input: DB’: updated temporal database, min_sup: the minimum support, 
FPTDB: frequent pattern tree of original DB 

Output: FPTDB’ : frequent pattern tree of updated database DB’ 
Variable: PTEDB : pattern tree of EDB  
 
01: determine EDB ; 
02: use incision_strategy to transform DB’ to coincidence presentation;  
03: PTEDB ← CPrefixSpan ( EDB,  , 1/ |EDB|, PTEDB);  

// sub-procedure of CTMiner 
 
04: for each node  in FPTDB do 

05:   if   PTEDB 
06:     update support( ) and delete node  in PTEDB ; 
07:   if support ( )  (min_sup×|DB’ |) 
08:     insert node  to FPTDB’ ; 
09:   else 
10:     delete node  and all its descendent node in FPTDB ; 
 
11: scan DB－ EDB once for updating the support of node in PTEDB ; 
12: for each node  in PTEDB do  
13:   if support( )  ( min_sup×|DB’ | ) 
14:     insert node  to FPTDB’ ; 
15:   else 
16:     delete node  and all its descendent node in PTEDB ; 
17: Output FPTDB’ ; 

Fig. 4.8: Pseudo code of Naïve_Method 

 

In order to calculate the support of all patterns which are infrequent in DB but frequent in DB’, 

Naïve_Method keeps the information of all possible candidate set, i.e., mining EDB with min_sup 

= 1 (Line 3, algorithm 4.3). This awkward approach induces large memory usage and may 

involve many non-promising database projection. To remedy this problem, we design a more 

elegant algorithm, Inc_CTMiner, which performs two optimization techniques to reduce 

unnecessary space searches. 

 



 

 85

Definition 4.7 (Search Space Reduction) 

Given a temporal pattern  in DB (node  in FPTDB), when DB is updated to DB’, incre_sid is 

defined as a set of all sequence IDs in increment database db and incre_slice| is defined as a set 

of all event slices in db|. We have two kinds of search space reduction, 

1) Sequence-reduction: If {’ s sequence list}∩incre_sid = , then DB| is identical to DB’|. 

The support of  and all temporal patterns prefixed with , i.e., node  and all child nodes 

of  in FPTDB, are unchanged in DB’. Hence there is no temporal pattern which is infrequent 

in DB but becomes frequent in DB’ with  as prefix. We can stop searching  and all ’s 

child nodes in FPTDB. 

2) Slice-reduction: If ’ s parent node in in FPTDB does not insert any node as child node 

when DB is updated to DB’, and the set of { and all ’ s sibling nodes}∩incre_ slice| = , 

then the support of  and all temporal patterns prefixed with , i.e., node  and all child 

nodes of  in FPTDB, are unchanged in DB’. Hence there is no temporal pattern which is 

infrequent in DB but becomes frequent in DB’ with  as prefix. We can stop searching  and 

all child nodes of  in FPTDB. 

 

 

 

Now we give an example to demonstrate the correctness of Definition 4.7. Given DB updated 

with db in Table 4.2 (min_sup = 2) and corresponding FTPDB in Fig. 4.9, the incre_sid = {1, 4} 

and incre_ slice = {B, D, F, F+, F－, G}. By sequence-reduction, since all the sequence_lists of 

2 2 2 3



E: 2

2
E: 2

3

31 
A: 3

3 1 
D: 3 

2 32
E: 2

3 2 
E: 2 

31
D: 3

Fig. 4.9: The search space reduction on FPTDB of 
example database DB in Table 4.2

: slice-reduction 

: sequence-reduction 



 

 86

three nodes (A)(D)(E), (A)(E), (D)(E) and (E) are {2, 3}, and {2, 3}∩ incre_sid = {2, 3}∩{1, 4} 

= , we can stop searching these three nodes when discovering FTPDB+db, as shown in Fig. 4.9. 

The sequence_list of node (A)(D) is {1, 2, 3}. Hence, we cannot stop checking and growing the 

node (A)(D) by sequence-reduction, due to {1, 2, 3}∩{1, 4} = {1}≠. However, since the 

parent node of (A)(D), i.e., node (A) does not insert any new child node and the set of (A)(D) and 

(A)(D)’s sibling nodes ∩ incre_ slice|(A)(D) = {D, E}∩{F, G} = , we still can stop checking 

and growing node (A)(D) and all its child nodes by the slice-reduction, as shown in Fig. 4.9. 

 

 

 

The search space reduction in Definition 4.7 plays an important role in Inc_CTMiner. When 

the minimum support goes lower and the maintained patterns turn to be longer, many 

unnecessary searches can be avoided effectively. As observed in our experiments, the search 

space reduction can skip more than 60% nodes in FPTDB, especially when minimum support is 

Fig. 4.10: An algorithmic overview of Inc_CTMiner 

Inc_CTMiner

infrequent 
1-slices in DB 

+ 

previous 
mining 
result : 

FPTDB 

{ } 

FPTDB’ 
(case 1, 2 and 3) 

{ } 

→

DB’ 

I. Initial phase: 

new frequent
1-slices in DB’

+ infrequent 
1-slices in 

DB 

search
space 
reduce

II. Mining phase: 

db →

→ 

{ }

mine 

III. Extending phase: 

DB’ →
verify 

FPTDB 

{ } 

frequent patterns 
in DB’ (case 3)  

scan DB’

frequent patterns 
in DB’ (case 2) 

frequent patterns 
in DB’ (case 1) 

{ }

{ }

{ } 

{ } 

mine 

APPEND

DB’ = DB +db

db

DB 
 
 

 



 

 87

extremely low. This is also the main reason why Inc_CTminer not only outperforms other 

algorithms in runtime performance, but also consumes less memory space. The algorithmic 

overview and the pseudo code of Inc_CTMiner are shown as in Fig. 4.10 and Fig. 4.11, 

respectively. 

 

Algorithm 4.4: Inc_CTMiner ( DB’, min_sup, FPTDB ) 

Input: DB’ : updated temporal database, min_sup: the minimum support,  
FPTDB : frequent pattern tree of original DB 

Output: FPTDB’ : frequent pattern tree of updated database DB’ 
 
01: determine EDB; // initial Phase 
02: use incision_strategy with interval_extension to transform DB’ into 

coincidence presentation 
03: NFS ← scan db and check infrequent 1-slices in DB for new frequent 

1-slices in DB’ ; // frequent 1-slice in DB’  FPTDB 
 
04: for each slice b in NFS do // mining phase 
05:   insert b into FPTDB’ ; 
06:   call Inc_CT (DB’|b , b , min_sup, FPTDB’ ); 
 
07: scan DB’ once for update the support of node in FPTDB ; // extending phase 
08: for each node  in FPTDB whose support  ( min_sup×|DB’ | ) do 
09:   insert  into FPTDB’ ;; 
10:   if search_pruning ( , DB’| ) = “ false ” // search space pruning 
11:     call Inc_CT (DB’| ,  , min_sup, FPTDB’ );  
12: Output FPTDB’ ; 
 
Procedure Inc_CT ( DB’| ,  , min_sup, FPTDB’ ) 
13: scan DB’| once to find every frequent slice c ; // support  ( min_sup×|DB’ | ) 
14: for each slice c do 
15:   if c is a “finish slice” then 
16:     if exist corresponding start slice in  then // pre-pruning 
17:       append c to  to form ; 
18:   if c is a “start slice” or “intact slice” then 
19:     append c to  to form ; 
20: for each  not existed in FPTDB do 
21:   construct DB’| with insignificant postfix elimination; // post-pruning   
22:   if |DB’| |  ( min_sup×|DB’ | ) then 
23:     insert  into FPTDB’; 
24:     if search_pruning ( , DB’| ) = “ false ”  // search space pruning 
25:       call Inc_CT (DB’| ,  , min_sup, FPTDB’ ); 

Fig. 4.11: Algorithm of Inc_CTMiner 

 

There are three phases in Inc_CTMiner, initial phase, mining phase and extending phase. 

Initial phase first uses the incision strategy and considers the interval extension to transform all 

sequences into coincidence representation (Line 2, algorithm 4.4), and scans db once to discover 



 

 88

all new frequent 1-slices in DB’. Notice that, due to the storing of infrequent 1-slices in DB, we 

can find the complete set of new frequent slices in DB’ without rescanning DB again (Line 3, 

algorithm 4.4). Then, in mining phase, we use each new frequent slice as prefix to construct 

projected database and call sub-procedure Inc_CT to discover the temporal patterns (Lines 4-6 

algorithm 4.4). Finally, in extending phase, Inc_CTMiner updates the support of every frequent 

pattern in DB. If a pattern is still frequent in DB’, we use search_reduction in Definition 7 to 

check if growing can stop. If not, sub-procedure Inc_CT is called to discover the temporal 

patterns (Lines 7-11, algorithm 4.4). 

 

Sub-procedure Inc_CT recursively calls itself and works as follows. For a patter  as prefix, 

we scan its projected database DB| once to find its locally frequent slices (Line 13, algorithm 4.4) 

and adopt pre-pruning and post-pruning strategies to avoid non-promising projection (Lines 

14-23, algorithm 4.4). We also use search_reduction to check whether growing can stop. If not, 

call Inc_CT recursively to discover the temporal patterns (Lines 24-25, algorithm 4.4). 

 

 

4.6 Experimental Results and Performance Study 
To evaluate the performance of Inc_CTMiner, one temporal pattern mining algorithms, 

CTMiner [8] and one incremental temporal pattern maintaining approach, Naïve method are 

compared with Inc_CTMiner. All algorithms were implemented in C++ language and tested on a 

computer with Pentium D 3.0 GHz with 2 GB of main memory. The performance study has been 

conducted on both synthetic and real world datasets. We perform three kinds of experiments in 

order to assess the efficiency of Inc_CTMiner. First, we compare the execution time and memory 

usage using synthetic datasets at extreme low minimum support. Second, we run Inc_CTMiner 

on different scenario to reflect the influence on performance of updated environments. Third, we 

conduct an experiment to observe the scalability on execution time of Inc_CTMiner. Finally, 

Inc_CTMiner is applied in real-world dataset, library lending data, to show the performance and 

the practicability of incremental maintenance for temporal patterns. 

 

 



 

 89

4.6.1 Data Generation 

The synthetic data sets in the experiments are generated using synthetic generation program 

modified from [1]. Since the original data generation program was designed to generate time 

point-based data, the generator for the temporal pattern maintaining algorithm requires 

modifications on interval events and incremental scenario accordingly. The parameter setting of 

temporal data generator is shown in Table 4.5. 

  

Table 4.5: Parameters of synthetic data generator  

Parameters Description 

| D | Number of event sequences 

| C | Average size of event sequences 

| S | Average size of potentially frequent sequences 

NS Number of potentially frequent sequences 

N Number of event symbols 

Rinc 
Ratio of the number of sequences in increment database db to 
updated database DB’ 

Rext 
Ratio of the number of existed sequences extended to new 
sequences inserted in increment database db 

Rapp 
Ratio of the number of intervals of an existed sequence 
appearing in original database DB to increment database db 

 

The updated database DB’ is generated first and then divided into the original database DB 

and increment database db. We create a set of potentially frequent sequences used in the 

generation of event sequences. The number of potentially frequent sequence is NS. A potentially 

frequent sequence is generated by first picking the size of sequence from a Poisson distribution 

with mean equal to | S |. Then, the event intervals in potentially frequent sequence are chosen 

from N event symbols randomly. All the duration times of event intervals are classified into three 

categories: long, medium and short, which are normally distributed with an average length of 12, 

8 and 4, respectively. For each event interval, we first randomly decide its category and then 

determine its length by drawing a value. The temporal relations between consecutive intervals are 

selected randomly to form a potentially frequent sequence. Since we adopt normalized temporal 

patterns [13], the temporal relationships can be chosen from the set {before, meets, overlaps, 

is-finished-by, contains, starts, equal}. After all potentially frequent sequences are determined, 

we generate | D | event sequences. Each event sequence is generated by first deciding the size of 



 

 90

sequence, which was picked from a Poisson distribution with mean equal to | C |. Then, each 

event sequence is generated by assigning a series of potentially frequent sequences. 

 

Finally, we partition the updated database DB’ into the original database DB and increment 

database db, as the example in Fig. 4.1. Different settings of three parameters are used to reflect 

different updating scenarios. Parameter Rinc, called increment ratio, decides the size of the 

increment database db. We pick | D | × Rinc sequences randomly into db and place remaining | D | 

× (1–Rinc) sequences into DB. Furthermore, we use extended ratio, Rext, to divide event 

sequences in db to “old” sequences, which’s sid have appeared in DB, and “new” inserted 

sequences. Total | db | × Rext sequences were randomly chosen from db as “old” sequence which 

were to be split further. The splitting of event sequences is to simulate that some intervals are 

conducted formerly (thus in DB), while the remaining intervals are newly appended (thus in db). 

The splitting is controlled by the third parameter Rapp, the appended ratio. If a sequence with total 

m intervals is to split, we placed the leading m × (1–Rapp) intervals in DB and the remaining m 

× Rapp intervals in dba. For example, a DB’ with Rinc = 20%, Rext = 30% and Rapp = 40% means 

that 20% of sequences in DB’ is in db; 30% of the sequences in db have sids occurring in DB; 

and that for each “old” sequence, (1–40%) = 60% of intervals were conducted before database 

updating. Note that the calculation is integer-based with “ceiling” function. 

 

4.6.2 Execution Time and Memory Usage on Synthetic 

Datasets 

In all the following experiments, two parameters are fixed, i.e., the average size of potentially 

frequent sequences, | S | = 4, and the number of potentially frequent sequences, NS = 5,000. We 

set Rinc = 10%, Rext = 50% and Rapp = 20% to model common database updating scenario. The 

effect of various minimum supports on performance, including runtime and memory usage is 

evaluated. The first experiment for comparison of five algorithms is on the dataset 

D10k–C10–N1k with the minimum support thresholds varying from 0.01 % to 0.005 %. 

Obviously, re-mining from scratch with non-incremental algorithm is less efficient than using 

incremental maintaining algorithm, as illustrated in Fig. 4.12(a). When we continue to lower the 



 

 91

minimum threshold, the runtime for TPrefixSpan and IEMiner increase drastically compared to 

CTMiner, Naïve method and Inc_CTMiner while Inc_CTMiner outperforms the other four 

algorithms. We can see that when the support is larger than 0.009 %, CTMiner outperforms Naïve 

method partly because of the generation of a fewer number of frequent patterns for the 

maintenance. When minimum support is 0.005 %, Inc_CTMiner is about 3 times faster than 

Naïve method, 4 times faster than CTMiner, about 10 times faster than IEMiner, more than 38 

times faster than TPrefixSpan. The memory usages of five algorithms are showed as in Fig. 

4.12(b). We can see that Inc_CMiner consume less memory than the other four algorithms. For 

example, when minimum support threshold is reduced to 0.005%, Inc_CTMiner consumes 27 

MB which is more than 1.2 times smaller than CTMiner (33 MB), more than 1.7 times smaller 

than TPrefixSpan (48 MB), about 2.4 times smaller than Naïve method (65 MB), and almost 5.8 

times smaller than IEMiner (104 MB). 

 

 

 

The second experiment is performed on data set D100k–C20–N10k, which contains 100,000 

event sequences, average length 40 and 10,000 event intervals with common database updating 

scenario. The execution time of different algorithms is shown in Fig. 4.13(a). We can see that 

when the support is 0.005%, Inc_CTMiner takes 610 seconds, which is more than 2.4 times faster 

than Naïve method (1515 sec.), more than 4.1 times faster than CTMiner (2526 sec.), about 10.5 

Fig. 4.12: The performance on data set D10k – C10 – N1k (with Rinc = 10%, Rext = 
50% and Rapp = 20% updating scenario)

(b) The memory usage of three algorithms

minimum support (%) 

m
em

or
y 

us
ag

e 
(M

B
) 

D10k – C10 – N1k 

(a) The execution time of three algorithms 

minimum support (%)

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

D10k – C10 – N1k

1 0.8 0.6 0.4 0.2 0.1
0 

5 

10 
15 

20 

25 

30 
35 

40 

45 

Inc_CTMiner 
Naive method 
CTMiner

0

10

20

30

40

50

60

70

1 0.8 0.6 0.4 0.2 0.1

Inc_CTMiner 
Naive method 
CTMiner 



 

 92

times faster than IEMiner (6439 sec.), about 38 times faster than TPrefixSpan (23232 sec.). Fig. 

4.13(b) shows the memory usages of five algorithms with different minimum support thresholds. 

We can see that although Naïve method has better performance on execution time than re-running 

CTMiner from scratch, it involves larger memory space for execution partly because of storing 

every possible frequent sequences and doing many non-promising database projection. 

 

 

 

The third performance measurement is performed on a larger data set D200k–C20–N10k. The 

data set contains a large number of temporal patterns when minimum support is reduced to 0.005 

%. Fig. 4.14(a) illustrates the execution time of different algorithms at different minimum 

supports. When minimum support lowers to 0.005%, Inc_CTMiner takes 1,759 sec., which is 

almost 2 times faster than Naïve method (3371 sec.), more than 3.3 times faster than CTMiner 

(5804 sec.), about 10 times faster than IEMiner (17543 sec.), more than 23.5 times faster than 

TPrefixSpan (41364 sec.). Fig. 4.14(b) shows the results of memory consuming, from which we 

can observe that Inc_CMiner is not only more efficient, but also more stable in memory usage 

than the other four algorithms. For example, when minimum support threshold is reduced to 

0.005%, Inc_CTMiner consumes 271 MB which is more than 1.4 times smaller than CTMiner 

(397 MB), about 3.8 times smaller than Naïve method (1,031 MB), about 4.7 times smaller than 

TPrefixSpan (1,294 MB) and almost 5.8 times smaller than IEMiner (1,579 MB). 

Fig. 4.13: The performance on data set D100k – C20 – N10k (with Rinc = 10%, Rext = 
50% and Rapp = 20% updating scenario)

minimum support (%)

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

D100k – C20 – N10k 

minimum support (%) 

D100k – C20 – N10k 

m
em

or
y 

us
ag

e 
(M

B
) 

Inc_CTMiner 
Naive method 
CTMiner

0

100

200

300

400

500

600

0.6 0.5 0.4 0.3 0.2 0.1

Inc_CTMiner 
Naive method 
CTMiner 

0 
500 

1000 
1500 
2000 
2500 
3000 
3500 
4000 
4500 
5000 

0.6 0.5 0.4 0.3 0.2 0.1

(a) The execution time of three algorithms (b) The memory usage of three algorithms



 

 93

 

 

 

Three experiments above indicate that, when some sequences are appended and some new 

sequences are inserted, even with an extremely low minimum support and a large number of 

temporal patterns, Inc_CTMiner algorithm is still efficient and outperforms other algorithms in 

both execution time and memory usage. 

 

4.6.3 Performance on Different Updating Scenario 

In this section, in order to reflect the influence of incremental environment on time 

performance, three parameters, increment ratio, extended ratio and appended ratio, are configured 

to generate different updating scenarios for comparing the execution times of five algorithms. 

Generally, incremental maintaining algorithms gain less at higher increment ratio because larger 

increment ratio means more sequences appearing in db and causes more pattern updates. If most 

of the frequent sequences in DB turn out to be invalid in DB’, the information stored by 

maintenance algorithms in pattern updating might become useless. Fig. 4.15 is the results of 

varying increment ratio, Rinc, from 1% to 40% on D100k – C20 – N10k. The min_sup is fixed at 

0.01%. Note that we use the execution time ratio to show the improvement of incremental 

maintaining algorithms over CTMiner, i.e., the execution time of incremental maintaining 

Fig. 4.14: The performance on data set D200k – C20 – N10k (with Rinc = 10%, Rext = 
50% and Rapp = 20% updating scenario) 

minimum support (%)

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

D200k – C20 – N10k 

minimum support (%) 

m
em

or
y 

us
ag

e 
(M

B
) 

D200k – C20 – N10k 

Inc_CTMiner 
Naive method 
CTMiner

0

200

400

600

800

1000

1200

0.6 0.5 0.4 0.3 0.2 0.1

Inc_CTMiner 
Naive method 
CTMiner 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

0.6 0.5 0.4 0.3 0.2 0.1

(a) The execution time of three algorithms (b) The memory usage of three algorithms



 

 94

algorithm / the execution time of Inc_CTMiner. As indicated in Fig. 4.15(a), the smaller the 

increment database db is, the more time Inc_CTMiner could save. Inc_CTMiner is still faster 

than CTMiner even when Rinc reaches 40%. When Rinc becomes much larger, say over 40%, 

Inc_CTMiner is slower than CTMiner. When the size of the increment database becomes larger 

than the size of the original database, i.e. the database has accumulated dramatic change, 

re-mining from scratch might be a better choice for the totally new sequence database.  

 

The impact of the extended ratio, Rext, is presented in Fig. 4.15(b) on D100k – C20 – N10k 

dataset with min_sup = 0.01%. Note that, for better illustration, we adopt the execution time ratio 

to show the improvement of incremental maintaining algorithms over CTMiner. As shown in Fig. 

16, Inc_CTMiner updates patterns more efficiently than Naïve method and CTMiner. Higher Rext 

means that there are more event sequences in the original database expended in the increment 

database. Consequently, the speedup ratio decreases as the Rext increases because more appended 

sequence need to be processed. We can observe that Inc_CTMiner is efficient even when the Rext 

is increased to 100%, i.e., all the sequences in the increment database are extended from original 

database. Fig. 4.15(c) depicts the performance comparisons of Inc_CTMiner and Naïve method 

with CTMiner concerning appended ratios, Rapp, on D100k – C20 – N10k dataset. We can see 

from the figure that Inc_CTMiner is constantly about 5.3 times faster than CTMiner over various 

Rapp, ranging from 10% to 90%. 

 

4.6.4 Scalability Studies 

In the following experiments, we study the scalability on the execution time of Inc_CTMiner 

algorithm. Here, the total number of event sequences is increased from 100K to 500K, with fixed 

parameters C = 20, N = 10k, Rinc = 10%, Rext = 50% and Rapp = 20%. Fig. 4.16(a) shows the 

results of scalability tests of the Inc_CTMiner algorithm, with different minimum support 

threshold varying from 0.03 % to 0.01 %. As the size of database increases and minimum support 

decreases, the processing time of Inc_CTMiner increases, since the number of patterns 

maintained also increases. As can be seen, under different minimum support threshold, 

Inc_CTMiner is still linearly scalable with different database size. 

 

 



 

 95

 

 

4.6.5 Impact of Pruning Strategy 

In this section, to reflect the speedup of proposed pruning methods, we measure the 

Inc_CTMiner with two pruning strategies and without pruning strategy on time performance. The 

experiment is performed on the data set D100k–C20–N10k, which contains 100,000 event 

sequences, the average length of sequence is 20 and the number of events is 10,000. Fig. 4.16(b) 

D100K– C20 – N10k (with Rinc10% – Rapp20%)D100K– C20 – N10k (with Rext50% – Rapp20%)

CTMiner / Inc_CTMiner 

CTMiner / Naive method

increment ratio Rinc 

ex
ec

ut
io

n 
ti

m
e 

ra
ti

o 

extended ratio Rext 

ex
ec

ut
io

n 
ti

m
e 

ra
ti

o CTMiner / Inc_CTMiner 

CTMiner / Naive method

(b) Total execution time over various 
extended ratios 

(a) Total execution time over various 
increment ratios 

1

2

3

4

5

6

7

10% 25% 50% 75% 100%
1 

2 

3 

4 

5 

6 

7 

8 

1% 2% 5% 10% 15% 20% 30% 40%

Fig. 4.15: Total execution time with various increment ratios, extended ratios and 
appended ratios 

D100K– C20 – N10k (with Rinc10% –Rext50% )

appended ratio Rapp 

ex
ec

ut
io

n 
ti

m
e 

ra
ti

o 

CTMiner / Inc_CTMiner 

CTMiner / Naive method

1 

2 

3 

4 

5 

6 

7 

10% 30% 50% 70% 90%

(c) Total execution time over various 
appended ratios 



 

 96

is the results of varying minimum support thresholds from 0.5 percent to 0.1 percent. As shown 

in Figure, sequence-pruning strategy can improve 25.6% to 33.8% of the performance of 

Inc_CTMiner. Because of removing unnecessary sequences before maintenance, sequence- 

pruning can efficiently speedup the execution time. 

 

 

 

minimum support (%) 

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

(b) The performance on influence 
of sequence-pruning strategy 

C20 – N10k (with Rinc10% – Rext50% – 

Rapp20%) 

number of sequences in database | D | 

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

(a) The performance on different 
database size 

0 

50 

100 

150 

200 

250 

100K 200K 300K 400K 500K

1% 
2% 
4% 

6% 
8% 
10% 

D100K– C20 – N10k (with Rinc10% –  

Rext50% – Rapp20%) 

0

100

200

300

400

500

600

700

800

900

1000

0.5 0.4 0.3 0.2 0.1

Inc_CTMiner 

Inc_CTMiner without 
sequence-pruning 

Fig. 4.16: The performance on different database size and on influence of proposed 
pruning strategies  

minimum support (%)

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

(d) The performance on influence 
of proposed pruning strategies 

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

(c) The performance on influence 
of slice-pruning strategy 

D100K– C20 – N10k (with Rinc10% –  

Rext50% – Rapp20%) 

Inc_CTMiner 

Inc_CTMiner without
slice-pruning 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

0.5 0.4 0.3 0.2 0.1

minimum support (%) 

D100K– C20 – N10k (with Rinc10% –  

Rext50% – Rapp20%) 

0

100

200

300

400

500

600

700

800

900

1000

0.5 0.4 0.3 0.2 0.1

Inc_CTMiner 

Inc_CTMiner without 
pruning strategy 



 

 97

The impact of the slice-pruning strategy is presented in Fig. 4.16(c). As can be seen from the 

graph, when Inc_CTMiner is without slice-pruning, the execution time is about 21.2% slower 

than Inc_CTMiner in average. We can find that slice-pruning strategy can improve the 

performance of Inc_CTMiner by effectively eliminating all useless sequences for maintaining 

temporal pattern. Fig. 4.16(d) depicts the influence on two proposed pruning strategies. We can 

see that Inc_CTMiner is constantly about 40.2% faster than the one without any pruning strategy. 

Consequently, the proposed pruning strategies not only effectively reduce the searching space but 

also efficiently improve the performance of Inc_CTMiner. 

 

In summary, our performance study shows that Inc_CTMiner has the best overall 

performance among the algorithms tested. The memory usage analysis shows the efficient 

memory consumption of Inc_CTMiner. The scalability study also shows that proposed algorithm 

scales well even with large databases and low thresholds. 

 

4.6.6 Real Dataset Analysis 

In addition to using synthetic data sets, we have also performed an experiment on real world 

data set to compare the performance and indicate the applicability of temporal pattern mining. 

The database used in this experiment consists of a collection of 1,098,142 library records, 

includes lending and returning records, for three years from the National Chiao Tung University 

Library. The database includes 206,844 books and 28,339 readers. An event interval is composed 

by a book ID and corresponding lending and returning time. The size of database is the number 

of sequences in database (same as the number of readers, 28,339). The maximum and the average 

length of sequences are 302 and 36, respectively. First, we collect the records of first two and half 

years to construct the original database DB and use the record of last half year to build the 

increment database db. The DB with 1,053,276 library records can be viewed as 26,738 user 

sequences and the db with 44,866 library records can be viewed as 3,514 user sequences. Fig. 

4.17(a) shows the performance of execution time with varying minimum support thresholds from 

0.1 % to 0.05 %, respectively. As the minimum support drops down to 0.05 %, Inc_CTMiner is 

almost 2 times faster than Naïve method and more than 2.7 times faster than CTMiner. 

 

Finally, we discuss the performance of Inc_CTMiner to process multiple database updates. 



 

 98

We still use the records of first two and half years to construct DB and divide the records of the 

rest half years by every one month to build six different db. Fig. 4.17(b) shows the performance 

of Inc_CTMiner, with min_sup = 0.1%, to incrementally maintain multiple database updates, i.e., 

6 months, six updates in this case. Each time the database is updated, we also run CTMiner to 

re-mine from scratch for comparison. We can see from the figure, when the increments 

accumulate, the time for incremental mining also increases, but increase is very small. The 

incremental mining still outperforms re-mining with CTMiner by a factor of 2.5 or 3.5. This 

experiment shows that Inc_CTMiner is really efficient for multiple updates of database. 

 

 

 

 

4.7 Summary 
Previous studies of updating sequential pattern mainly are focused on time point-based data. 

Little attention has been paid to the incremental mining of temporal patterns from time 

interval-based data. Since the processing for complex relations among intervals may require 

generating and examining large amount of intermediate subsequences, maintaining temporal 

patterns from time interval-based data is a challenging problem. In this chapter, we investigate 

(b) Multiple updates of library 
dataset from NCTU 

minimum support (%)

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

number of database updates 

ex
ec

ut
io

n 
ti

m
e 

(s
ec

s)
 

(a) Performance of three algorithms on 
library dataset from NCTU

0 

500 

1000 

1500 

2000 

2500 

3000 

0.1 0.09 0.08 0.07 0.06 0.05

Inc_CTMiner 
Naive method 
CTMiner 

0 

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Inc_CTMiner CTMiner 

 

Fig. 4.17: Execution time of three algorithms and multi updates on library dataset from 
NCTU 



 

 99

the issue for incremental mining the temporal patterns. Inc_CTMiner is proposed to balance the 

efficiency and reusability based on a proper expression, coincidence representation. The 

algorithm also employs two optimization techniques, sequence-reduction and slice-reduction, to 

further reduce the search space effectively. The experimental results indicate that both execution 

time and memory usage of Inc_CTMiner outperform previous algorithms designed based on 

static database. We also show the graceful scalability of Inc_CTMiner. Furthermore, we apply the 

algorithm on real world dataset to show the efficiency and the practicability of maintaining 

temporal patterns. 



 

 100

Chapter 5 

Conclusion 
 

In this dissertation, we propose two new representations, coincidence representation and 

endpoint representation to simplify the processing of complex relations among event intervals. 

Then, three efficient algorithms are developed to discover several types of temporal patterns from 

interval-based data. These algorithms employ some pruning techniques to reduce the search space 

effectively. The experimental studies indicate that all proposed algorithm is efficient and scalable 

and outperforms state-of-the-art algorithms. Furthermore, we also apply our algorithms on real 

world data to show the efficiency and validate the practicability of interval-base temporal mining. 

 

In Chapter 2, a novel technique, incision strategy and a new representation, coincidence 

representation are proposed to remedy the critical issue of temporal pattern mining. We simplify 

the processing of complex relations among event intervals effectively. Coincidence representation 

is nonambiguous and has several advantages over existing representations. Based on coincidence 

representation, we develop an efficient algorithm, CTMiner to discover frequent temporal 

patterns without candidate generation. The algorithm further employs two pruning techniques, 

pre-pruning and post-pruning, to reduce the search space effectively. By analyzing the differences 

between mining sequential patterns and temporal patterns, we also propose a new projection 

technique, multi-projection to correctly project a database into a set of smaller projected 

databases. The experimental studies indicate that CTMiner is efficient and scalable. Both running 

time and memory usage of CTMiner outperform state-of-the-art algorithms.  

 

Previous studies of mining closed sequential pattern mainly are focused on time point-based 

data. Little attention has been paid to the mining of closed temporal patterns from time 

interval-based data. Since the processing for complex relations among intervals may require 

generating and examining large amount of intermediate subsequences, mining closed temporal 

patterns from time interval-based data is an arduous problem. In Chapter 3, we develop an 

efficient algorithm, CEMiner, to discover closed temporal patterns without candidate generation, 



 

 101

based on proposed endpoint representation. The algorithm further employs three pruning methods, 

pre-pruning, post-pruning and pair-pruning, to reduce the search space effectively. The 

experimental studies indicate that CEMiner is efficient and scalable. Both running time and 

memory usage of CEMiner outperform the state-of-the-art algorithms. Furthermore, we also 

apply CEMiner on real world dataset to show the efficiency and the practicability of mining time 

interval-based closed pattern. 

 

Little attention has been paid to the incremental mining of temporal patterns from time 

interval-based data. Since the processing for complex relations among intervals may require 

generating and examining large amount of intermediate subsequences, maintaining temporal 

patterns in interval-based database is a challenging problem. In Chapter 4, we investigate the 

issue for incremental mining of the temporal patterns. Inc_CTMiner is proposed to balance the 

efficiency and reusability based on a proper expression, coincidence representation. The 

algorithm also employs two optimization techniques, sequence-reduction and slice-reduction to 

further reduce the search space effectively. The experimental results indicate that both execution 

time and memory usage of Inc_CTMiner outperform previous algorithms designed based on 

static database. We also show the graceful scalability of Inc_CTMiner. Furthermore, we apply the 

algorithm on real world dataset to show the efficiency and the practicability of maintaining time 

interval-based patterns. 



 

 102

Bibliography 
 

[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proceedings of 11th International 

Conference on Data Engineering (ICDE’95), pp. 3-14, 1995. 

[2] J. Allen, “Maintaining Knowledge about Temporal Intervals,” Communications of ACM, 

vol.26, issue 11, pp.832-843, 1983. 

[3] J. Ayres, J. Gehrke, T. Yu, and J. Flannick, “Sequential Pattern Mining Using a Bitmap 

Representation,” The 8th ACM SIGKDD International Conference on Knowledge Discovery 

and Data Mining (KDD’02), pp. 429-435, 2002. 

[4] L. Chang, T. Wang, D. Yang and H. Luan, “SeqStream: Mining Closed Sequential Patterns 

over Stream Sliding Windows,” International Conference on Data Mining (ICDM’08), pp. 

83-92, 2008. 

[5] L. Chang, T. Wang, D. Yang, H. Luan and S. Tang, “Efficient algorithms for incremental 

maintenance of closed sequential patterns in large databases,” Data & Knowledge 

Engineering, vol. 68, issue 1, pp. 68-106, 2009. 

[6] J. Chen, “An Up Down Directed Acyclic Graph Approach for Sequential Pattern Mining,” 

IEEE Transactions on Knowledge and Data Engineering, vol.22, no. 7, pp.913-928, 2010. 

[7] Y. Chen, J. Guo, Y. Wang, Y. Xiong and Y. Zhu, “Incremental Mining of Sequential Patterns 

using Prefix Tree,” The 11th Pacific-Asia Conference on Knowledge Discovery and Data 

Mining (PAKDD’07), pp. 433-440, 2007. 

[8] Y. Chen, J. Jiang, W. Peng and S. Lee, “An Efficient Algorithm for Mining Time 

Interval-based Patterns in Large Databases,” 19th ACM International Conference on 

Information and Knowledge Management (CIKM’10), pp 49-58, 2010. 

[9] H. Cheng, X. Yan and J. Han, “IncSpan: incremental mining of sequential patterns in large 

database,” The 10th ACM SIGKDD International Conference on Knowledge Discovery and 

Data Mining (KDD’04), pp.527-232, 2004. 

[10] M. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential Pattern Mining with Regular 

Expression Constraints,” 25th International Conference on Very Large Data Bases 

(VLDB ’99), pp. 223-234, 1999. 

[11] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu, “FreeSpan: Frequent 



 

 103

Pattern-Projected Sequential Pattern Mining,” The 6th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining (KDD’00), pp. 355-359, 2000. 

[12] C. Ho, H. Li, F. Kuo and S. Lee, “Incremental Mining of Sequential Patterns over a Stream 

Sliding Window,” International Conference on Data Mining - Workshops (ICDMW’06) 

pp.677-681, 2006. 

[13] F. Hoppner, “Finding informative rules in interval sequences,” Intelligent Data Analysis, vol. 

6, no. 3, pp. 237-255, 2002. 

[14] J. Huang, C. Tseng, J. Ou, and M. Chen, “A General Model for Sequential Pattern Mining 

with a Progressive Database,” IEEE Transactions on Knowledge and Data Engineering, 

vol.20, issue 9, pp. 1153-1167, 2008. 

[15] K. Huang, C. Chang, J. Tung, C. Ho, “COBRA: closed sequential pattern mining using 

bi-phase reduction approach,” Proceedings of the 2006 International Conference on Data 

Warehousing and Knowledge Discovery (DaWaK’06), pp. 280-291, 2006. 

[16] P. Kam and W. Fu, “Discovering Temporal Patterns for Interval-based Events,” International 

Conference on Data Warehousing and Knowledge Discovery (DaWaK’00), vol. 1874, pp. 

317-326, 2000. 

[17] S. Laxman, P Sastry and K. Unnikrishnan, “Discovering Frequent Generalized Episodes 

When Events Persist for Different Durations,” IEEE Transactions on Knowledge and Data 

Engineering, vol.19, issue 9, pp. 1188-1201, 2007. 

[18] M. Lin, S. Hsueh, and C. Chang, “Fast discovery of sequential patterns in large databases 

using effective time-indexing,” Information Sciences: An International Journal, vol. 178/22, 

pp. 4228-4245, 2008. 

[19] M. Lin and S. Lee, Incremental update on sequential patterns in large databases by implicit 

merging and efficient counting, Information Systems, vol. 29, issue 5, pp. 385-404, 2004. 

[20] M. Lin and S. Lee, “Fast Discovery of Sequential Patterns by Memory Indexing and 

Database Partitioning,” Journal of Information Sciences and Engineering, Vol. 21, No. 1, pp. 

109-128, 2005. 

[21] H. Mannila, H. Toivonen, and I. Verkamo, “Discovery of frequent episodes in event 

sequences,” Data Mining and Knowledge Discovery, vol. 1, issue 3, pp. 259-289, 1997. 

[22] F. Masseglia, F. Cathala and P. Poncelet, “The PSP Approach for Mining Sequential 

Patterns,” European Conference on Principles of Data Mining and Knowledge Discovery 



 

 104

(PKDD’01), vol. 1510, pp176-184, 1998. 

[23] F. Masseglia, P. Poncelet and M. Teisseire, “Incremental mining of sequential patterns in 

large databases,” Data & Knowledge Engineering, vol.46, issue 1, pp.97–121, 2003. 

[24] F. Morchen and A. Ultsch, “Efficient Mining of Understandable Patterns from Multivariate 

Interval Time Series,” Data Mining Knowledge Discovery, vol. 15, number 2, pp.181-215, 

2007. 

[25] F. Morchen and D. Fradkin, “Robust mining of time intervals with semi-interval partial 

order patterns,” Proceedings of 10th SIAM International Conference on Data Mining 

(SDM’10), pp.315-326, 2010. 

[26] S. Nguyen, X. Sun, M. Orlowska, “Improvements of IncSpan: Incremental Mining of 

Sequential Patterns in Large Database,” The 9th Pacific-Asia Conference on Knowledge 

Discovery and Data Mining (PAKDD’05), pp. 442-451, 2005. 

[27] P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos, “Discovering frequent 

arrangements of temporal intervals,” International Conference on Data Mining (ICDM’05), 

pp. 354-361, 2005. 

[28] S. Parthasarathy, M. Zaki, M. Ogihara, and S. Dwarkadas, “Incremental and interactive 

sequence mining,” Proceedings of the 8th International Conference on Information and 

Knowledge Management (CIKM’99), pp. 251-258, 1999. 

[29] D. Patel, W. Hsu and M. Lee, “Mining Relationships Among Interval-based Events for 

Classification,” Proceedings of the 2008 ACM SIGMOD International Conference on 

Management of Data, pp. 393-404, 2008. 

[30] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal and M. Hsum, 

“Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach,” IEEE 

Transactions on Knowledge and Data Engineering, vol. 16, no. 10, pp.1424-1440, 2004. 

[31] C. Rainsford and J. Roddick, “Adding temporal semantics to association rules,” In 

Proceedings of the 3rd European conference on principles and practice of knowledge 

discovery in databases (PKDD’99), pp. 504-509, 1999. 

[32] R. Srikant and R. Agrawal, “Mining Sequential patterns: Generalizations and Performance 

Improvements,” Proceedings of 5th International Conference on Extended Database 

Technology (EDBT’96), pp. 3-17, 1996. 

[33] R.Villafane, K. Hua and D. Tran, “Knowledge Discovery from Series of Interval Events,” 



 

 105

Journal of Intelligent Information Systems, vol.15, pp.71-89, 2000. 

[34] J. Wang, J. Han, “BIDE: Efficient mining of frequent closed sequences,” Proceedings of the 

20th International Conference on Data Engineering (ICDE’04), pp. 79-90, 2004. 

[35] E. Winarko and J.F Roddick, “ARMADA-An algorithm for discovering richer relative 

temporal association rules from interval-based data,” Data & Knowledge Engineering, vol. 

63, issue 1, pp. 76-90, 2007. 

[36] S. Wu and Y. Chen, “Mining Nonambiguous Temporal Patterns for Interval-Based Events,” 

IEEE Transactions on Knowledge and Data Engineering, vol.19, issue 6, pp. 742-758, 2007. 

[37] S. Wu and Y. Chen, “Discovering hybrid temporal patterns from sequences consisting of 

point- and interval-based events,” Data & Knowledge Engineering, vol.68, issue 11, 

pp.1309–1330, 2009. 

[38] X. Yan, H. Cheng, J. Han and D. Xin, “CloSpan: Mining Closed Sequential Patterns in 

Large Datasets,” Proceedings of 3rd SIAM International Conference on Data Mining 

(SDM’03), pp 166-177, 2003. 

[39] M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,” Machine 

Learning, vol. 42, numbers 1-2, pp. 31-60, 2001. 

[40] M. Zaki and C. Hsiao, “CHARM: An Efficient algorithm for Closed Itemset Mining,” 

Proceedings of 2nd SIAM International Conference on Data Mining (SDM’02), pp. 457-478, 

2002. 

[41] L. Zhang, G. Chen, T. Brijs and X. Zhang, “Discovering during-temporal patterns (DTPs) in 

large temporal databases,” Expert Systems with Applications, vol. 34, pp.1178-1189, 2008. 

[42] M. Zhang, B. Kao, D. Cheung, and C. Yip, “Efficient algorithms for incremental updates of 

frequent sequences,” The 6th Proceedings of Pacific-Asia Conference on Knowledge 

Discovery and Data Mining (PAKDD’02), pp.186-197, 2002.  


