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ABSTRACT

Sequential pattern mining is a key issue in data mining. However, most of the previous
studies are mainly focused.on.time point-based event data. Little attention has been paid to
mining patterns from time interval-based event data, where each event persists for a time interval.
Since intervals may overlap, the relation between any two intervals is intrinsically complex. In
this dissertation, we propose two new representations, coincidence representation and endpoint
representation to simplify the processing of complex relations among event intervals. Then,
three efficient algorithms, CTMiner, CEMiner and Inc_CTMiner, are developed to discover
several types of temporal patterns from interval-based data. Based on coincidence representation,
an efficient algorithm, CTMiner is developed to-discover frequent temporal patterns from
interval-based data. The algorithm employs two pruning techniques to reduce the search space
effectively. The mining of closed sequential patterns has attracted researchers for its capability of
using compact results to preserve the same expressive power as conventional mining. In this
dissertation, a novel algorithm, CEMiner, is developed to discover closed temporal patterns based
on endpoint representation. Algorithm CEMiner also utilizes some optimization technique to
reduce the search space in processing. In several real-life applications, sequence databases
generally update incrementally with time. A number of discovered sequential patterns may be
invalidated, and a number of new patterns may be introduced by the evolution on the database.
We proposed an efficient algorithm, Inc_ CTMiner to incrementally mine temporal patterns in
interval database. Moreover, the algorithm employs some optimization techniques to reduce the
search space effectively. The experimental studies indicate that all proposed algorithms are

efficient and scalable and outperforms the state-of-the-art algorithms. The improvement of
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proposed pruning strategies also has been discussed. Furthermore, we also apply our algorithms
on real data to show the efficiency and validate the practicability of interval-base temporal

mining.

Keywords: sequential pattern, closed sequential pattern, incremental pattern mining, temporal

pattern mining, representation.
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Chapter 1

Introduction

Recently, sequential pattern mining is an active research topic in data mining domain, due to
its widespread applicability. This kind of applications always considers order relation and time
issue in our daily lives. Sequential pattern mining mainly deals with extracting the positive
behavior of a sequential pattern that can help in predicting the next event after a sequence of
events. However, finding sequential patterns is a difficult problem since the mining may have to
generate or examine a large number. of intermediate subsequence combinations. Many sequential
pattern mining algorithms have focused on exploring an approach to discover frequent time-point

based correlations or patterns in large sets of temporal data.

However, in many real-world scenarios, events usually tend to persist for periods of time
instead of instantaneous occurrences, cannot be treated as “time points”. In such cases, the data is
usually a sequence of events with both start and finish times. Much existing research mainly
focused on discovering patterns from time point-based event data. These approaches is hampered
by the fact that they can only handle instantaneous events efficiently, not event intervals. By
comprehensive observation, we can perceive that time point-based issue is just a special case of
the time interval-based issue (where start time is identical to finish time), but not vise versa.
Mining time interval-based patterns (also called temporal patterns) from such data is
undoubtedly more complex and arduous, and requires a different approach from mining time

point-based data, such as mining traditional sequential patterns or episode.

To the best of our knowledge, all the related research in this domain is based on Allen’s

temporal logics [2], which are categorized into 13 temporal relations between any two event

29 ¢ 99 ¢ 99 ¢ 29 ¢¢

intervals as: “before,” “after,” “overlap,” “overlapped by,” “contain,” “during,” “start,” “started

by,” “finish,” “finished by,” “meet,” “met by,” and “equal.” These 13 relationships can describe
any relative position of two intervals based on the arrangements of the start and the finish end

time points. However, all the Allen’s logics are binary relation and may suffer several problems



when describing relationships among more than three events. An appropriate representation is
very crucial for facing this circumstance. Various representations have been proposed but most of

them have restriction on either ambiguity or scalability.

In this dissertation, we discuss three issues related to temporal pattern, mining temoral pattern,
mining closed temporal pattern and incremental mining of temoral pattern. For each issue, we
discuss its challenge and the major bottleneck, and propose proper representation for processing
intervals among event sequence. Based on proposed representations, some algorithms are given

to address each issue.

For temporal pattern mining, we develop the concept of slice-coincidence to trim the
processing of complicated relationship among event intervals effectively, and facilitate the
temporal pattern mining. Allen’s 13 temporal logics can be reduced to simply three relationships,

29 ¢¢

1.e. “before,” “‘equal’ and “after.” All event intervals are incised to event slices and grouped into
coincidence regarding to the global information of end time arrangements in the sequence.
Utilizing the incision strategy, a new algorithm, CTMiner (Coincidence Temporal Miner) is
proposed to address the crucial problem and discover the frequent temporal patterns efficiently
and effectively. Experimental studies on both synthetic and real datasets indicate that proposed
strategy and algorithm are both efficient and scalable and outperforms state-of-the-art algorithms.
Furthermore, our experiments also show that the proposed approach consumes a much smaller

memory space.

For closed temporal pattern mining, we simplify the processing of complex relations among
intervals by capturing the global information of all endpoints in a sequence. Various existing
representations may lead to different kinds of problem. We develop a compact representation,
endpoint representation, to express a pattern or sequence nonambiguously. Endpoint
representation can facilitate the process and improve the performance of algorithm. A novel
algorithm, CEMiner, which stands for Closed Endpoint Temporal Miner, is proposed to discover
closed temporal patterns efficiently and effectively. Furthermore, CEMiner employs some
optimization strategies to reduce the search space and avoids nonpromising closure checking and

database projection.



For incremental mining of temporal pattern, this dissertation proposes an efficient algorithm,
Inc_CTMiner which stands for /ncremental Coincidence Temporal Miner, to address the crucial
problem and incrementally discover temporal patterns based on the coincidence representation.
Furthermore, Inc CTMiner employs some pruning strategies to reduce the search space.
Experimental studies on both synthetic and real datasets indicated that, in the incremental
environment, Inc CTMiner is efficient and outperforms the state-of-the-art algorithms, which are
based on static database. Our experiments also revealed that the proposed approach is scalable
and consumes a smaller memory space. We also applied Inc. CTMiner on real world datasets to

demonstrate the practicability of maintaining the temporal patterns.

The rest of the dissertation is organized as follows. Chapter 2 gives a novel algorithm for
mining temporal patterns from interval-based data. Chapter 3 addresses the problem of closed
temporal pattern mining and develops a novel algorithm for finding closed patterns from
interval-based data. Chapter 4 provides the detailed discussion for an incremental mining

algorithm for temporal patterns from interval-based database. Finally, we conclude in Chapter 5.



Chapter 2
An Efficient Algorithm for Mining Temporal

Patterns from Interval-based Data

2.1 Introduction

Recently, sequential pattern mining is an active research topic in data mining domain, due to
its widespread applicability. This kind of applications always considers order relation and time
issue in our daily lives. Sequential pattern mining mainly deals with extracting the positive
behavior of a sequential pattern-that can help in predicting the next event after a sequence of
events. However, finding sequential patterns is a difficult problem since the mining may have to
generate or examine a large number of intermediate subsequence combinations. Most of the
previous sequential pattern mining algorithms, such as GSP [32], MEMISP [20], PrefixSpan [30],
PSP [22] and SPADE [39] to name a few, focus on exploring an approach to discover frequent

time-point based correlations or patterns in large sets of temporal data.

In many real world scenarios, some events, which intrinsically tend to persist for periods of
time instead of instantaneous occurrences, cannot be treated as “time points”. In such cases, the
data is usually a sequence of events with both start and finish times. For example, in the medical
field, some relationships can be mined from clinical records of patients to study the correlations
between the symptoms and the diseases, or the influences between the diseases and other diseases.
One may find that during Kawasaki disease infections, the patients often begin with a high-grade
and persistent fever. Another discovery might be that during the presence of Kawasaki diseases,

the affected patients develop red eyes, red mucous membranes in the mouth, and cracked red lips.

Much existing research mainly focused on discovering patterns from time point-based event
data. These approaches is hampered by the fact that they can only handle instantaneous events

efficiently, not event intervals. By comprehensive observation, we can perceive that time



point-based issue is just a special case of the time interval-based issue (where start time is
identical to finish time), but not vise versa. Mining time interval-based patterns (also called
temporal patterns) from such data is undoubtedly more complex and arduous, and requires a
different approach from mining time point-based data, such as mining traditional sequential

patterns or episode.

To the best of our knowledge, all the related research in this domain is based on Allen’s

temporal logics [2], which are categorized into 13 temporal relations between any two event

99 ¢ 99 ¢ 99 ¢ 29 ¢¢

intervals as: “before,” “after,” “overlap, started

overlapped by,” “contain,” “during,” “start,
by,” “finish,” “finished by,” “meet,” “met by,” and “equal.” These 13 relationships can describe
any relative position of two intervals based on the arrangements of the start and the finish end
time points, as shown in Table 2.1. However, all the Allen’s logics are binary relation and may
suffer several problems when describing relationships among more than three events. An
appropriate representation is-very crucial for facing this circumstance. Various representations

have been proposed but most of them have restriction on either ambiguity or scalability.

Table 2.1: Allen’s 13 relations between two intervals

Temporal Relation | Inversed Relation | Pictorial Example | (. ta::t‘i‘:gpfiir'l‘]?’ S"ill‘l:::ﬂl‘::; N
A before B B after 4 Af<B.s
A overlaps B B overlapped-by 4 (A.s < Bis) A(Af>Bs)A(Af<B.f)
A contains B B during 4 (As<Bs) A (Af>Bf)
A starts B B started-by 4 (A.s=Bs)A (Af<BY)
A finished-by B B finishes A (4> B.s)A (Af= B
A meets B B -met-by 4 “ Af=B.s
Aequal B Bequal 4 Il: (As=Bs)A(Af=BY)
A after B B before 4 Bf<As
A overlapped-by B B overlaps 4 (Bs<As)A(Bf>As)A(Bf<Af)
A during B B contains 4 (Bs<As)A(Bf>Af)
A started-by B B starts A (Bs=As)A(Bf<AS)
A finishes B B finished-by 4 (Bs>As)A(Bf=Af)
A met-by B B meets 4 “ Bf=A4.s




In this chapter, a fundamentally different technique from previous work is proposed to
discover temporal patterns. Without any doubt, the major bottleneck of temporal mining task is
the complex relationship among event intervals. We develop the concept of slice-coincidence to
trim the processing of complicated relationship among event intervals effectively, and facilitate
the temporal pattern mining. Allen’s 13 temporal logics can be reduced to simply three

29 ¢¢

relationships, i.e. “before,” “equal” and “after.” All event intervals are incised to event slices and
grouped into coincidence regarding to the global information of end time arrangements in the
sequence. Utilizing the incision strategy, a new algorithm, CTMiner (Coincidence Temporal
Miner) is proposed to address the crucial problem and discover the frequent temporal patterns
efficiently and effectively. Experimental studies on both synthetic and real datasets indicate that
proposed strategy and algorithm are both efficient and scalable and outperforms state-of-the-art
algorithms. Furthermore, our experiments also show that the proposed approach consumes a

much smaller memory space.

The rest of this chapter is organized as follows. Section 2.2 gives the related work. Section
2.3 provides the detailed definitions. Section 2.4 introduces the incision strategy and the
coincidence representation. Section 2.5 describes the CTMiner algorithm. Section 2.6 presents

the experiments and performance study, and we summarize in Section 2.7.

2.2 Related Work

Sequential pattern mining is one of the most important research themes in data mining.
Recently, there has been a stream of research oniit [1, 3, 6, 10, 11, 18, 20, 21, 22, 30, 32, 39] and
its extensions, including closed patterns [4, 5, 15, 34, 38, 40], incremental pattern mining [4, 5, 7,
9,12, 14, 19, 23, 26, 28, 42] to name a few. Almost all of these related studies mentioned above
are focused on time point-based event data which has no duration concept. Some recent works
have investigated the mining of interval-based events [2, 13, 16, 17, 24, 25, 27, 29, 31, 33, 35, 36,
37, 41].

Villafane et al. [33] proposed a graph mining technique to discover time interval-based

sequential pattern by transforming data sequences to containment graphes. However, the



containment rules discussed are constrained only to “contains” and “during.” Kam et al. [16]
proposed a compact encoding method, hierarchical representation and designed an algorithm to
discover frequent temporal patterns. Although hierarchical representation only use & + (k -1 ) =
2k —1 memory space for describing a k-intervals pattern (k event indices, £ —1 describers), it may
suffer from two ambiguous problems. First, the same relationships among event intervals can be
mapped to different temporal patterns. As shown in Fig. 2.1(a), the pattern can be expressed as
“((4 overlaps B) before C) overlaps D > or ‘(4 overlaps B) before (C during D).” Second, the
same temporal pattern can represent different relationships among event intervals. For example,
Fig. 2.1(b) shows that pattern “(4 overlaps B) overlaps C ™ can represent two different relations

among intervals.

overlaps
before D
overlaps C
A B
a | ¢ | [ B ]
[ 8 | [ b | L
(((A overlaps B) before C) overlaps D) D B) overlaps O
before
- c |
A B C D >
((A overlaps B) overlaps C)
H W [ c 1]
T A

>

((A overlaps B) before (C during D))

(a) ()

Fig. 2.1: Example of two ambiguous problems of hierarchical representation

Rainsford et al. [31] presented an approach that combine temporal semantics with association
rules. The algorithm firstly generates the traditional association rules, and then finds all the
possible pairings of temporal items in each rule. Hoppner [13] proposed a nonambiguous
representation, relation matrix which exhaustively lists all binary relationships between event
intervals in a pattern. For example, pattern P in Fig. 2.2(a) can be represented as a matrix in Fig.

2.2(b). The relation matrix does not scale well if plenty of intervals appear in a pattern since it



needs 2k + (k x (k—1)=k +k memory space to describe a k-intervals pattern (2k event indices,

k* — k describers).

H-DEFS [27] was proposed to discovery frequent arrangements of temporal intervals. This
approach transforms an event sequence into a vertical representation using id-lists. The id-list of
one event is merged with the id-list of other events to generate temporal patterns. TSKR [24]
expressed the temporal concepts of coincidence and partial order for interval patterns. The pattern
represented in TSKR format is easily understandable but may reveal the relationship between
pairwise event intervals in a pattern ambiguously. For example, in Fig. 2.2(a), pattern P and Q are

represented as the identical TSKR expression “AB(BC)C.”

R B A BBl O

e . =t equal

Pattern P A = b b a: after
b : before
[al[B] [B B I — a0 0 : overlaps
c|[c]
R c 0-by: overlapped-by
Pattern O a O'by =
(a) Two example temporal patterns (b) Relation matrix for P

Fig. 2.2: Example of relation matrix representation

Laxman et al. [17] extended the original framework of frequent episode discovery in event
sequences by incorporating event duration constraints. The authors also presented some
algorithms based on finite-state automaton. Based on the efficient algorithm MEMISP [20], the
algorithm ARMADA [35] is proposed to find frequent temporal patterns from large database.
DTP [41] partitions database into some disjoint datasets, so that scanning the whole database
could be avoided when calculating the support of each pattern. However, DTP only discusses two

of the Allen relationships: “contains” and “during.

Temporal representation [36] utilizes endpoint arrangements to represent the temporal pattern

nonambiguously. For example, in Fig. 2.2(a), pattern P can be represented as the expression “4 <
A <B'<C'<B <(C”, where “+” and “—” represent the start and finish endpoints of an event

interval, respectively. It requires 2k + (2k — 1) = 4k — 1 space to describe a k-intervals pattern (2k



event indices, 2k — 1 describers). TPrefixSpan [36] used temporal representation to discover
frequent temporal patterns. TPrefixSpan first generates all the possible candidates and then

discovers frequent events and scans the projected databases for support counting.

Patel et al. [29] utilized additional counting information to achieve a lossless hierarchical
representation, named augmented representation. Every Allen describer must take a space to store
five counters, i.e., contain, finish-by, meet, overlap and start counters for accumulating the
occurrences of corresponding relations. For example, in Fig. 2.2(a), pattern P can be represented
as expression “(4 before[0,0,0,0,0] B) overlaps[0,0,0,1,0] C.” The counter of overlap describer is
[0,0,0,1,0] since C only overlaps B. Augmented hierarchical representation is not easily

comprehensible and needs £ + (kK — 1) X 6 = 7k — 6 memory space n a k-intervals pattern (k
event indices, 6x(k—1) deseribers).- IEMiner [29] was designed to discover frequent temporal

patterns from interval-based events based on the augmented representation.

HTPM [37] was developed to mine hybrid temporal pattern from event sequences, which
contain both point-based and interval-based events. Authors modify temporal representation [36]
to also express event points. Moerchen et al. developed a new kind of pattern, STPO [25], to
express Allen relationship. Authors utilize the boundaries of interval and further consider the
noise tolerance. However, SIPO may suffer the ambiguous problem and the mining algorithm
requires discovering both closed sequential pattern and closed itemset, and therefore is time

consuming.

There are three contributions from our work reported in this chapter. The first contribution is
that we propose an incision strategy, to simplify processing complex relations when mining
temporal patterns. The incision strategy segments all intervals to disjoint slices based on the
global information in a pattern. The second contribution is that we develop a new representation,
coincidence representation, to express a pattern or sequence nonambiguously, based on the
incision strategy. As mentioned above, various existing representations may lead to different
kinds of problem. An appropriate representation can facilitate processing and improve
performance of algorithm. Coincidence representation has several advantages and we will discuss

in details in section 2.4.2.



The final contribution is that we design a new algorithm, CTMiner, which can effectively
avoid the effort on candidate generation and test for mining temporal patterns. We first transform
interval sequences in database to coincidence format and then borrow the idea from PrefixSpan
[21] (Prefix-projected Sequential pattern mining), an efficient pattern growth-based algorithm in
finding sequential patterns from transactional database, to mine frequent temporal patterns.
Furthermore, CTMiner employs the proposed optimization strategies to reduce the search space
and avoids non-promising projection. The performance.in both synthetic datasets and real
datasets shows that CTMiner outperforms state-of-the-art algorithms. Our experimental results

also show that the proposed approach consumes a much smaller memory space.

2.3 Preliminary

Definition 2.1 (Event interval)

Let E = {ey, ea,..., ex} be the set of event symbols. Without loss of generality, we define a set of
uniformly spaced time points based on the natural number N. We say the triplet (e;, s;, /i) € E x N
x N is.an event interval, where e¢; € E, s;, fi € N and s; < f; The two time points s; f-are called
event times, where s; is the starting time and f; is the finishing time. The set of all event intervals

over E is denoted by /.

Definition 2.2 (Event sequence and maximal property)

An event sequence 1s a series of event interval triplets {(ei, s1, f1), (€2, 52, f2), ---> (€ns Sns f1)),
where s; < s;11, and:s; < fi. Every interval (e;, s;, f;) must be maximal in a sequence, that there is no
(ej, 55, fj) in the sequence such that e; = ¢; and [s;, 17), [s;, /;) overlap or meet each other. We call this
assumption, maximal property, defined as follows:

vV (eiSifi), (€,Spfi)elizj:Gi<s)Afi=s) — ei#eg (1)
(1) is also called the maximality assumption [9]. The maximal property guarantees that each
event interval is maximal in the series. If maximal property is violated, we can merge both event

intervals and replace them by their union (e;, min(s;, s;), max(f;, f;)).
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Definition 2.3 (Temporal database)
Considering a database DB = {r, r2, ..., rn}, €ach record r;, where 1 < i < m, consists of a
sequence-id and an event interval (i.e. an event symbol, a starting time, and a finishing time,

where starting time < finishing time). DB is called a temporal database.

Table 2.2: Database example

event | start | finish .
SID symbol| time 1in event sequence coincidence sequence
1 A 2 7 4
1 B 5 P_agi_"
1 C 5 12 C A"(A'B'C)BC:D'ED”
1 D 16 22 A
1 E 18 20
2 B 1 S 5 B
w7 E =
3 F 10 13
3 A 6 12 A
=18 0w A"(A"B")B @D'E D"
S E . 19 —
4 B 8 16
4 A 18 21 3 e 2 i
4 D 24 28 o——s BADTRP
4 E 25 27

Actually, if all records in the database DB with the same client-id are grouped together and
ordered by nondecreasing start time, the database can be transformed into a collection of event
sequences. As a result, the database DB can be viewed as a collection of event sequences. For
example, in Table 2.2, the temporal database consists of 17 event intervals, and 4 event

sequences.

2.4 Incision Strategy and Coincidence Representation

We focus on the discussions of temporal pattern mining due to the widespread applicability of
this technique and the lack of research on this topic. However, the time interval-based mining

problem is much more arduous than time point-based mining problem. Since the time period of
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the two intervals may overlap, the relation among event intervals is more complex than that of the
event points, as shown in Table 2.1. In this chapter, an efficient strategy is derived to simplify the
processing of temporal pattern mining. We also propose a new format to express temporal

patterns effectively.

2.4.1 Incision Strategy

By our observation, the complex relations between event intervals are the major bottleneck
for mining temporal patterns. We propose an incision strategy to address this critical issue. Before

introducing the incision strategy, we give some definitions first.

Definition 2.4 (Time set and time sequence)

Given an event sequence g = {(€i,Sisf1), (€2, 52, 12), .- -5 (€n, Sny fn)), Aset T, = {s1, 11, 82, f2, .-, Si,
Jis-+o» Sn, fuy 18 called a time set'corresponding to g. If we order all the elements in 7, and
eliminate redundant element, we can derive a sequence 1S, = ({1, to, ..., &) where ;€T , t:< t;+;.

TS, is called a time sequence corresponding to g.

Definition 2.5 (Incising function and event slice)

Given an event sequences g = {(€1, S1, /1), (€2, 52, f2), -..(€i, Sis fi)s -+ (€ns Su, fn)) Where (e;, s;, f7) €

I and corresponding time sequence TS,. Let #, ¢;+1€ TS,, an incising function ¥ is defined as,

orail | {855 :tj)/\(fi :th)

e if (s, =1, )A(f >t.)

‘P(tja tj+19 (eia Sis fi)): ei_ if(Si <tj)/\(.f;' :tjﬂ) (2)
el i (sps, YRCHmS 1T

& otherwise.

An event slice S = WY(, t+1, (e; s, fi)) and is called,
e intact slice of event ¢;, if s; = ¢, and f; = #;+1, and denoted as e;

o starting slice of event e;, if s; = #; and f; > ¢;+1, and denoted as ei:
o finishing slice of event e;, if s; < t; and f; = t;+1, and denoted as e; ;

e intermediate slice of event e;, if s; < t;and f; > ¢;+1, and denoted as e; "

Obviously, an event interval can only have one starting slice and one finishing slice but can have
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many intermediate slices. The corresponding slice of a starting (finishing) slice is defined as the

finishing (starting) slice of the same interval.

For example, in Table 2.2, sequence 2 has 4 event intervals, (B, 1, 5), (D, 8, 14), (E, 10, 13),
and (F, 10, 13) and its corresponding time set = {1, 5, 8, 14, 10, 13, 10, 13} and time sequence =
(1, 5, 8, 10, 13, 14). An event interval D can be incised into three event slices, start slice D' =
Y( 8, 10, (D, 8, 14)), intermediate slice ) Y( 10, 13, (D, 8, 14)), and finish slice D = "Y( 13,
14, (D, 8, 14)). The event interval B has only one intact slice B = ¥( 1,:5, (B, 1, 5)).

Definition 2.6 (Grouping function and coincidence)

Given an event sequences,g=<(€ersS1s/1)s (€2, 52, 12), --. (€1, Sis [1), -+- (€n, Snsfn)), Where (e;, 55, f7) €
I, and t;, tisie ISy = (t1, tr, ..., t), 1 <j < k-1, a grouping function is defined as,

D (1, tir1, q) = (5, tir1, (BasS1s-T1))s (L, G15 (€2, S2, T2))s ..., ¥ (G Lj+15 (B Sny Tn)) 3 3)
A coincidence C;is defined as @ (, t+1, ) = (Sj1, Sj2,- -, Sje-..) and sorting Sj¢ in lexicographic
order. For brevity, the brackets are omitted if a coincidence has only one slice, i.e., coincidence (5)

is written as S.

With the incising function and grouping function, we can transform an event sequence into
slice-and-coincidence expression.. However, here come two. problems. First, two adjacent
intervals and two separate intervals can not be discriminated by merely collecting all
coincidences.. Accordingly, we use a meet slice, @, to distinguish two adjacent intervals. The
slice @ indicates that the finishing slices and/or intact slices in the previous coincidence are
adjacent to the starting slices and/or intact slices in the next coincidence. We take sequence 3 in
Table 2.2 as example, we can not distinguish the meet relation between interval B and D by just

collecting all coincidences to form a sequence, i.e., ( A (A B') B D'E D ). Meet slice @ is
inserted between event slice B and D' to express the meet relation. Second, the information of

intermediate slice, actually, need not be considered. Without intermediate slice, we still can
express an event sequence nonambiguously. For example, as the sequence 2 in Table 2.2, without

D, sequence ( B D (EF) D ) still can represent sequence 2 correctly.
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Definition 2.7 (Coincidence sequence)

Given an event sequences g = {(e1, s1, f1), (€2, $2, f2), ..., (€, Si, fi)s .., (€ns Sn, f1)), Dy definition 5
and 6, we can derive a coincidence sequence q.= (Cy, C, ..., Ci-1) with meet slice addition and
intermediate slice pruning. ¢, is also called the coincidence representation of g. Additionally, to
deal with multiple occurrences of events, we attach occurrence number to event slices to
distinguish multiple occurrences of the same event type in a coincidence sequence. For example,

( 4" (B 47 )A: D) is a coincidence sequence with occurrence number, where event 4 occurs twice.

For a temporal database DB, we can transform it into a set of tuples (sid, q.), where sid is the
sequence-id of each event sequence ¢ in DB and ¢, is the coincidence representation of g. For
example, in Table 2.2, we can transform four event sequences in DB into corresponding
coincidence sequences. For better readability, later in this chapter, we suppose that the temporal

database has been transformed into-coincidence representation.

AT B A BT
output: A output: B~ output: A" B "
(a) (®) ©

A.s A f A f B.s A.f =B.s

\ 4
Y
\ 4

output: A output: output: @
(d) (e) ®

Fig. 2.3: Six possible segmentations between two consecutive end time points

Actually, there are six possible segmentations between any two end time points in a time
sequence. Considering two consecutive end time points, we use a “< ” or “ =" to describe the
smaller or equal order relation respectively. Without loss of generality, we use “4 ” and “B ” to

represent two different event intervals. All possible segmentations are listed as follows,
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1)

2)

3)

4)

5)

6)

A.s <B.s: The event interval 4 is segmented to starting slice A~ and output, as in Fig.
2.3(a);

A.f <B.f: The event interval B is segmented to finishing slice B and output, as in Fig.
2.3(b);

B.s <A.f: The event interval 4 and event interval B are segmented to finishing slice 4
and starting slice B~ respectively, and 4 B~ is output, as in Fig. 2.3(c);

4) A.s < A.f: The event interval A does not require any segmentation. We can directly
output the intact slice 4, as in Fig. 2.3(d);

A.f <B.s :we only consider the period between two consecutive end time points. There
is no interval nor slice in this time period, so we do nothing in this case, as the interval 4
and B in Fig. 2.3(e);

A. T =B. s : instead of segmenting any event interval, we only output the meet slice “@”

to assist the distinction-of two adjacent event intervals, as the 4 and B in Fig. 2.3(f).

algorithm 2.1: incision_strategy (g )
Input: g: An event sequence
Output: ¢ : A coincidence sequence
Variable: endtime_list, last_endtime, coincidence
l:  endtime list < @, last_endtime «— & , coincidence — & ,q" «— @ ;
2: add all the end time points of every event interval in ¢ into endtime list;
3: sort every endtime in endtime_list by endtime. time in nondecreasing order;
4: merge all endtime. symbols together with identical endtime. time and endtime. type;
51 for each endtime T in endtime_list do
6: coincidence «— & ;
7: if last endtime. time =T . time then // segmentation 6
8: coincidence « coincidence U “@”;
9: else  //last endtime.time + T. time
10: if last_endtime. type = “s ” then // segmentation 1, 3, and 4
11: coincidence < coincidence \J- every symbol in last_endtime. symbol add “+”;
// starting slice
12: if T.type = “f” then // segmentation 2, 3, and 4
13: coincidence < coincidence U every symbol in T. symbol add “-;
// finishing slice
14: combine start slice and finish slice with same symbol in coincidence;  // intact slice
15: q’ «—q’ < {coincidence ) ; //append coincidence to coincidence sequence
16: last_endtime — T,
17: outputq’;

Fig. 2.4: The pseudocode of Incision Strategy
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In this chapter, we propose an efficient method, incision strategy, to transform an event
sequence into coincidence sequence effectively. The pseudo code of incision strategy is
elaborated in Fig. 2.4. We use an example to explain the algorithm. Incision strategy first puts all
the end time points of every event interval in a sequence into a data structure endtime_list which
has three attributes: symbol, time and type, as shown in Fig. 2.5(b). Then it sorts the record in
endtime_list in nondecreasing order based on their times and types (starting or finishing). If the
times of two end time points are the same but the types are different, the order is based on the
type, i.e., finishing type is smaller than starting type. Then we merge the event symbol of end
time points together if both time and type of end time points are identical. For example,
considering an event sequence with 5 intervals shown in Fig. 2.5(a), we put all 10 end time points
into endtime_list and sort them in nondecreasing order as in Fig. 2.5(b). Since the B.s is identical
to the D.s, we can merge them together. But we can not combine £.s with B.f and E.f, since the
type of end time points are not the same. Then we traverse all the sorted end time points in

endtime_list one-by-one to incise the event slices.

endtime_ list
4,1,4) symbol | time | type
output :
(B,2,5) A [1]s .
event BD 3 i > - A
interval- (D, 2,8) = 3 ] > — B'D"
(E,3,5) = TR A E
(F, 5,7) Bl | 5 A 4 g—’gE
=2
F 5 S =
coincidence . - . . _ F 7 f _
representation = AV (BDIYAE)BE)@F) (D) D 3 F > —> D
(a) an event sequence with 5 intervals (b) endtime_list data structure

Fig. 2.5: An example of incision strategy

Reducing memory usage and computation time are two important issues for algorithm design.
Since we have utilized meet slice to effectively distinguish two adjacent intervals, intermediate
slices need not be incised. Given an example as in Fig. 2.5(a), the event interval D can be

segmented into five event slices, one starting slice D', three intermediate slices D°, and one

finishing slice D . By trimming the intermediate slices, we can still express the relationship
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between any two intervals correctly. As shown in the graph, this tatic can reduce one-third of

storage space, and thereby improves the performance of our incision strategy.

Notice that if the starting slice and is corrsponding finishing slice are in the same coincidence,
we have to combine them to form an intact slice since the interval is not incised (Line 14,
algorithm 2.1). By the merge operation of incision strategy, the event slices occurring

simultaneously in the same time period can be grouped together to form a coincidence easily.

2.4.2 Coincidence Representation

We know that the Allen’s 13 relationships are binary relation and may suffer several problems
when describing relationships -among more than three events. An appropriate representation is
very crucial for facing this circumstance. As mentioned above, various representations have been

proposed but most of them have restriction on either ambiguity or scalability.

In this chapter, a new representation, coincidence representation is proposed to address the
ambiguity and scalability problems. The coincidence representation utilizes the concept of slice
and coincidence, and considers the information of entire event sequence instead of individual
event interval. By incision strategy, all event intervals in a sequence are segmented into event
slices and simultaneously occurring slices are grouped together to form the coincidences.
Concatenation of all coincidences can describe an event sequence effectively and simplify the
processing of complex pairwise relationships among all intervals efficiently. This is also the

primary motivation of coincidence representation.

The coincidence representation of Allen’s 13 relations between two event intervals is
categorized as in Fig. 2.6. Given two different event intervals “4” and “B”, we discuss Allen’s 13
relationships with coincidence representation in details as follows,

(1) (A before B) or (B after A) : 4 and B are totally disjoint. According to whether the intervals

are incised or not, there are four kinds of coincidence representation: (4)(B), (4)(B ' )(B ), (4

)4 ) (B), and (4")(4 )B )(B ). There may exist some other interleaved event intervals or

slices, but the order will not change.
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Temporal Inversed Coincidence Coincidence
Pictorial Example Pictorial Example
Relation Relation representation representation
ao| o ®® ®E)E)
before after
A _ A _ -
B A E A A ®) E (A (A) B B
A B
[ A ]
overlaps | overlapped-by B | (A")(AB") (B)
B A
A B
contains | cuyge A @) A) Il AYEBYB)A)
B A [ & ]
A B X A
—p—y ; (A'B) (A) B (A'BYB)A)
B A
A B A
finished-by|  finishes \_|AI (A") (A B) B (A" B) (A B)
B A
‘ pres
A 5 A 5] A @ (B) [~ E A @@B)B)
meets met-by
_ A - —
B A %:B A A) @ @) E A9 (A)@EH @)
A B A
A o
equal equal = (AB) B A'BH (A B
B A LE |

Fig. 2.6: The coincidence representation of Allen’s 13 relations between two intervals

(2) (A overlaps B) or (B overlapped-by A) : A part of 4 intersects a part of B, therefore 4 and B
must both have been incised into event slices. The corresponding coincidence representation

is (4" )(A B')(B ). There may exist some other interleaved event intervals or slices, but the
order will not change and the finish slice 4 and the start slice B~ occur simultaneously.

(3) (A contains B) or (B during A) : A part of 4 intersects the whole of B, therefore 4 must have
been incised into start and finish slices. If B is also incised, the coincidence representation

will be (4" )(B') (B )(4 ). If B is not incised, the coincidence representation will be (4

")(B)(4 ). There may be some other interleaved event intervals or slices, but the order will
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not change.
(4) (A starts B) or (B started-by A) : The whole of 4 intersects a part of B, therefore B must
have been incised into start and finish slices. If 4 is also incised, the coincidence

representation is (4 B )(4 )(B ). If A is not incised, the coincidence representation is (AB
")(B ). There may be some other interleaved event intervals or slices, but the order will not

change. The main characteristic is that the start slice or the intact slice of interval 4 occurs
with the start slice of B simultaneously.

(5) (A finished-by B) or (B finish A) :A part of 4 intersects the whole of B, therefore 4 must
have been incised into start and finish slices. If B is also incised, the coincidence

representation is (4°) (B') (4 B ). That means the finish slices of 4 and B occur
simultaneously. If B is not-incised, the coincidence representation is (4 ") (4 B). That means

the finish slice of 4 and the intact slice of B oceur simultaneously. There may exist some
other interleaved event-intervals or slices, but the order will not change. The main
characteristic is that the finish slice or the intact slice of B occurs with the finish slice of 4
simultaneously.

(6) (A meets B) or (B met-by A) : 4 and B are adjacent. Just like the before and after relations,
there are four kinds of coincidence representation. We only utilize a meet slice “@” to
discriminate “meets” and “met-by” relations effectively. According to whether the intervals
are incised or not, the corresponding coincidence.representation may be represent as (A4)@(B),
(A)@B)B ), (4 )A )@(B), and (4" )(4 )@(B ) (B ):

(7) (A equal B) or (B equal A): 4 and B are entirely overlapped. If 4 and B are both incised, the
corresponding coincidence representation is (4 'B") (4 B_). On the contrary, if both 4 and B

are not incised, the corresponding coincidence representation 1s (4B). There may exist some
other interleaved event ‘intervals or slices, but the order will not change. The main

characteristic is that 4 occurs with B simultaneously, whether both of them are incised or not.

We utilize coincidence representation to express both event sequences and temporal patterns
since it have several advantages, as follows:
o Nonambiguity: A representation is ambiguous [13] if 1) the same relationships between

intervals may be mapped to different temporal patterns and 2) the patterns cannot reveal the
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temporal relations among all pairs of intervals. Accordingly, the following observations
indicate that the ambiguity no longer exists in our coincidence representation. First, by
definition 2.5 and 2.6, we can build a unique coincidence sequence by transforming every
event sequence into coincidence representation. In other words, the temporal relations among
intervals can be mapped one-to-one to a coincidence sequence. Second, in a coincidence
sequence, the order relation of the start and finish slices of 4 and B can be categorized as
shown in Fig. 2.6. We can infer the original temporal relationships between intervals 4 and B
nonambiguously.

Good scalability: In the best case, all £ intervals in a pattern are equal, thus memory space
for describing a k-intervals pattern is k. In the worst case, all & intervals overlap one-by-one,
thus we require 2k memory space to express a k-intervals pattern. The coincidence
representation scales well even if plenty of intervals appear in a pattern.

Simple is good: Obviously, the complex relations between intervals are the major bottleneck
of temporal pattern mining since the mining may need to generate or examine explosive
number of intermediate subsequences. By incision strategy, we can transform event intervals
into non-overlapped fragments, event slices. The relations between event slices are simple,

2 ¢

just “before,” “after” and “equal.” The simpler the relations, the less number of intermediate
candidate sequences are generated and processed. Therefore, with coincidence representation,
we can discover frequent temporal patterns more efficiently.

Compact space usage: Since the utilization of meet token, we can omit the intermediate
slices within the coincidence sequences or patterns. This tactic can reduce the computation

time and memory space efficiently, as shown in Fig. 2.5(c).

2.5 Proposed algorithm

In this section, we propose a new algorithm, called CTMiner (Coincidence Temporal

Miner), to mine frequent temporal patterns efficiently. CTMiner utilizes the concepts of

slice-and-coincidence to accomplish the temporal pattern discovering. Section 2.5.1 details the

algorithm. We mine temporal patterns based on coincidence representation and propose two

pruning mechanisms for reducing the search space. In section 2.5.2, we discuss the difference

between traditional sequential projection and temporal projection, and propose a new projection
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technique, multi-projection taking into account of interval-based event sequence. Finally,

section 2.5.3 proves the correctness and completeness of CTMiner algorithm.

2.5.1 CTMiner

Definition 2.8 (Projected database)

Let « be a coincidence sequence in a database DB. The «-projected database, denoted as DB,

«, 18 the collection of suffixes of sequences in DB with regards to prefix «.

Definition 2.9 (temporal pattern)

Considering two coincidence sequence = (@i, da, ..., ay) and f = (by bs, ..., b,), ais called a
subsequence of f, denoted as @ E p, if there exist integers 1 <i; < i < ...< i, < m such that ¢;

bi,a, < b, ..., a, < by, and f-is-also called a supersequence of @. Given a temporal database
DB, a tuple (sid, q.) 1s said to contain a coincidence sequence «, if #is a subsequence of g.. The

support of #in DB is the number of tuples in the database containing «, i.¢.,

support (&) = [{(sid, qc) | ({sid, gc) € DB) A (@ E qo)}- 4)

Given a positive integer min_sup as the support threshold, a coincidence sequence @ is called
frequent if support ( @) = min_sup. A frequent coincidence sequence is called temporal pattern if

all event slices in sequence appear in pair, 1.e., every starting (finishing) slice has corresponding

finishing (starting) slice.

Let database in Table 2.2 with min_sup =2 be an example. The coincidence sequence (4 ) (4
"B") (B)) is a temporal pattern since it occurs in sequence 1 and 3, and its support = 2 >
min_sup. A coincidence sequence ((4 ') (4 C") (C)) is not frequent since it occurs only in
sequence 1, and its support = 1 < min _sup. Although ( (4") (4 B') ) is also a frequent
coincidence sequence, it is not a temporal pattern due to B has no corresponding finishing slice

in sequence.
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Fig. 2.7 illustrates the main framework which includes the necessary processing steps of
CTMiner. Given a temporal database, the event intervals associated with the same sequence 1D
are grouped into an event sequence. CTMiner first transforms the temporal database into
coincidence respresentation (Line 2, algorithm 2.2), and then calls sub-procedure CPrefixSpan
to discover and output all temporal patterns (Lines 3-4, algorithm 2.2). By borrowing the idea of
the PrefixSpan [30], CPrefixSpan is developed based on the concepts of slice-and-coincidence
and with two search space pruning method. CPrefixSpan first scans projected database once to
collect all local frequent slices and remove infrequent slices (Lines 1-3, algorithm 2.2). For each
frequent slice, we can append it to original prefix to generate a new coincidence sequence with
the length increased by 1. This way, the prefixes are extended (Lines 7-12, algorithm 2.2). Finally,
we can discover all frequent temporal patterns by constructing the projected database with the
frequently extended prefixes and recursively running until the prefixes cannot be extended (Lines

13-18, algorithm 2.2).

Algorithm 2.2: CTMiner (DB, min_sup)

Input: DB: a temporal database, min_sup: the minimum support threshold
Qutput: 7P: set of all frequent patterns in DB

01: TP — ;

02: use incision_strategy transforming DB into coincidence representation;
03: call CPrefixSpan (DB, (), min_sup, TP );

04: output 7P;

Procedure CPrefixSpan (DB, o, min_sup, TP )
05: scan DB, once, remove infrequent slices and find every frequent slice s such that:
06: (i) s can be assembled to the last coincidence of «;
or (ii) (s) can be appended to «;
07: for each frequent slice s do

08: if 5 is a “finishing slice” then

09: if exist corresponding starting slice in & then // pre-pruning
10: append s to & to form a’;

11: if 5 is a “starting slice” or “intact slice” then

12: append s to r to form «;

13: for each o’ do

14: construct DB, with insignificant postfix elimination; // post-pruning
15: if DB, | > min_sup then

16: if o’ is a temporal pattern then // all slices in o’ appearing in pair
17: TP — TPU{a’ };

18: call CPrefixSpan (DB, a’, min_sup, TP);

Fig. 2.7: CTMiner algorithm
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Taking into account the property of event slice and coincidence, we propose two pruning
strategies, pre-pruning and post-pruning to reduce the searching space efficiently and effectively.
Firstly, the starting slices and finishing slices definitely occur in pairs in a coincidence sequence.
We only require projecting the frequent finishing slices which have the corresponding starting
slices in their prefixes (Lines 8-10, algorithm 2.2). It is called pre-pruning strategy which can

prune off non-qualified patterns before constructing projected database.

Secondly, when we construct a projected database, some slices in postfix sequences need not

be considered. With respect to a prefix sequence ( @), a finishing slice in a projected postfix
sequence is called significant, if it has corresponding starting slices in { #). When constructing
the projected database DBy, only-the significant slices in postfix sequences are collected. All

insignificant slices are eliminated since they ‘can be ignored in the discovery of frequent temporal
patterns.  The second pruning -method is called post-pruning strategy which eliminates

insignificant sequences when constructing projected database (Lines 13-14, algorithm 2.2).

Because of the post-pruning strategy, CPrefixSpan can not guarantee that the new coincidence
sequences_formed from appending previously discovered frequent sequences with locally
frequent slices are always frequent. We require an additional computation to insure that the
support count of the coincidence sequences in a projected database is no less than min sup (Line
15, algorithm 2.2). Since |DB|,| (number of sequences in DB|,) can be produced by using a simple
counter when we project the database, the computation cost is nearly negligible. Finally, if all
slices in a frequent coincidence sequence appear in pairs, i.e., every starting (finishing) slice has
corresponding finishing (starting) slice, we can out this frequent coincidence sequence as a
temporal pattern (Lines 16-17, algorithm 2.2). The experimental studies indicate that pre-pruning
and post-pruning strategies can improve the performance in both computation time and memory

usage efficiently.

Notice that, when scanning projected database to calculate the support count of an intact slice

s, both s and starting slice s * occurring in coincidence sequences need to be accumulated. Since

the only difference between intact slice and starting slice is whether the event interval have been

incised or not, both of them in the coincidence sequence imply the existence of an event interval.
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But when counting the support of starting slice s = or finishing slice s , only the occurrence of s

"~ ors in a database need to be accumulated. Same as database projection, when we construct

the projection with respect to intact slice (s), we collect not only the sequence prefixed with (s),

but also prefixed with (s ") as the projected database.

Table 2.3: Example of projected databases and frequent temporal patterns

event sequences with corresponding slice projected coincidence database
S : - B temporal patterns
coincidence representation prefix : insignificant
SI: ((_BY)BD'ED) (A)
(AY |83: (_B"HB @D'ED") (AD)
S4: (D'ED") (AE)
(AD'ED" )
(any St (A°B")BD'ED ) (AY(A BB )
RN R + - .
S1: (A"(A"B*C*)B"CD*ED") S3: (WBHB @DED ) |(A'(AB")BE)
S2: (BD'(EF)D") S1: (D'ED )
$3: (A(A BB @D'ED") By |82 (R'ED) (B)
S4: (BAD'ED ) (B)"ls3. (@D'ED ) (BD)
S4: (ADTED") (BE)
| infrequent slice elimination . |st:l (B DED) (BD'ED )
(BY g3 (B"@D'ED™)
SI: (A'(AB)B D'ED )
S2: (BD"ED) © » E
$3: (A"(A'B)B"@D'ED”) L 4 (D)
S4: (BAD'ED") ¥ (D'ED")
S3: (ED™)
S4: (ED7)
S1: (D7)
S2: D™
) S3: 2 D™ ; (E)
S4: (D)

We take the database in Table 2.2 with min_sup =2 as an example. There are 17 event records
which can be regarded as 4 event sequences in the database. After transforming, the event
sequences with corresponding coincidence representation are shown as in first column in Table
2.3. We can find all the frequent slices with scanning database once. Since the pre-pruning
strategy, we only require process the intact slices and starting slices as shown in second column

in Table 2.3. We take the slice A~ and E as examples to further discuss in details. The projected
database with respect to (4 ) has 2 sequences: (4 B )B D'ED ) and ((AB')B @ D ED ).
Continuing the recursive process with the (4 ) - projected database, we can discover all frequent
temporal patterns prefixed with (4 ). In addition, when projecting intact slice (E), the generated

postfix sequences will be eliminated by post-pruning strategy directly since (D ) is insignificant.
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Hence, we do not need to consider the (E) -projected database. The last column in Table 2.3 lists

all generated temporal patterns.

2.5.2 Multi-Projection Technique

The projection approach partitions the data and the set of frequent patterns to be processed,
and confines each process to the corresponding smaller projected database. This approach can
reduce the search space effectively. For a frequent pattern, we only require searching its
corresponding projected database for locally frequent items, and then append them to original

pattern to form new frequent patterns.

However, the projection method is designed for traditional time point-based patterns mining.
When mining the interval-based.temporal patterns, the complex relationship between any two
intervals will cause unanticipated-result if we adopt projection approach directly without any
modification. For example, as in Fig. 2.8(a), when projecting a time point-based sequence ¢q; =
((ADBYXOYAXBD)) with respect to a prefix ((4)(B)), a projected sequence g;’ = ((C)(A)(BD)) will
be generated. The projected result ¢,” is accurate since the relationship between any two time
point-based events is just “before” and “after.” The pairwise relations of first (4)(8) and second
(A)(B) ins; are both (4 before B). But the feature of time interval is quite different from that of

time point; the pairwise relationships among intervals are:more-complex. For example, as in Fig.
respect to a prefix ((4 )(B ")), only a projected sequence ¢, = (C)(4 B )(A B D)4 )(B)) is
generated if we adopt projection approach without modification. Although the projected result
looks promising, actually the revealed information is net sufficient. The first occurrence of (4

)(B)) in g, implies the temporal relation between interval 4 and B is (4 finished-by B), but the

overlaps B). Obviously, only ¢, does not present the projected result sufficiently. In this chapter,
a new projection strategy, multi-projection, is proposed for time interval-based patterns mining to

address this problem.
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From conventional projection, the major difference of multi-projection lies in the postfixes
generation and collection. For a given sequence x as prefix, the traditional projection method
forms projected database from collection of postfixes of sequences in database with regards to x.
The generation of postfixes only considers the first occurring position of x in sequences, as
shown in Fig. 2.8(a). However, given a coincidence sequence y as prefix, the multi-projection
method generates postfixes with regards to every occurring position of y in every sequence in
database, and then collects all the generated postfixes to construct projected database. For
example, in Fig. 2.8(b), multi-projecting a coincidence sequence ¢» with regard to a prefix ((4

)(B)) will generate two postfix es ¢,’ and ¢g,”’. Usually, large size of projected databases will be

generated by multi-projection technique. With regards to a prefix, the more occurrences in a
sequence, the more postfixes will be generated. The size of projected database is the crucial
bottleneck in CTMiner since-the-major cost of algorithm is recursive database projection. If the
number of generated postfixes can be reduced, the performance of temporal mining can be further

improved.

prefix X — (A)(B))
| project
time point sequence q; = {(A)B)(C)(A)(BD))
| generate
postfix sequence ¢, = {(C)(A)BD))

(a) example of traditional projection

prefix y = ((A")(B"))

| project { project
coincidence sequence ¢, = {(AN)(BC)(A"B)ANBID)A)BY))
| generate i
postfix sequence ¢’ = {(_C)(A"B)(A")(BD)A)B))
! generate
postfix sequence ¢, = ({((DYAHBY)

(b) example of multi-projection

Fig. 2.8: Example of projection and multi-projection technique

The pseudoprojection technique proposed by Pei et al. [30] is a good solution for reducing the

size of projected database. Instead of performing physical projection, pseudoprojection registers
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the sequence-ID and the starting position of the projected postfix in the sequence. Then, a
physical projection of a sequence is replaced by registering a sequence identifier and the
projected position index point. With this technique, the usage of main memory can be reduced
intrinsically. The implementation of multi-projection also utilizes pseudoprojection technique to
avoid physically copying postfixes. Thus, we can promote both computation time and memory
space efficiently. Our experimental result shows that the performance of multi-projection in both

synthetic data and real data still scales well when processing considerable event sequences.

2.5.3 Correctness of Algorithm

The correctness of the CTMiner is proven as below.

Lemma 2.1 (Support property of projected database) Let @ and f be two temporal patterns in
temporal database DB such that o 'is a prefix of p. The support of pin DB equals to the one in
DB,

Proof: As discussing in [30], we know that to collect support count of sequence £ in DB, only the
sequences in the DB sharing the same prefix « should be considered. Furthermore, only those
suffixes with the prefix « being a supersequence of £ should be counted. Hence, the support of S

in DB equals to the one in DBy

Theorem 2.1 (Correctness of CTMiner) The temporal patterns discovered from CTMiner are
correct.

Proof: By lemma 2.1, we realize that the CTMiner can enumerate the support count correctly.
Therefore, if CTMiner says that the support of « is frequent and all event slices in o appearing in

pairs, « is a temporal pattern.

2.6 Experimental Results and Performance Study

To evaluate the performance of CTMiner, four temporal pattern mining algorithms,

ARMADA [35], H-DFS [27], IEMiner [29] and TPrefixSpan [36], were also implemented for
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comparison. All algorithms were implemented in C++ language and tested on a Pentium D 3.0
GHz with 2 GB of main memory running Windows XP system. The comprehensive performance
study has been conducted on both synthetic and real world datasets. To show the efficiency of
CTMiner, we perform four kinds of experiments. First, we compare the running time of CTMiner
and other temporal pattern mining algorithms using synthetic datasets. We also show the
distribution of pattern length with different thresholds. Second, we investigate the scalability and
memory usage of CTMiner. Third, we discuss the improvement of runtime performance with
proposed pruning strategies. Finally, we apply CTMiner in some real datasets to compare the

performance and also discuss the practicability of temporal pattern mining.

2.6.1 Data Generation

The synthetic data sets in the experiments are generated using synthetic generation program
proposed by Agrawal et al.-[1].-Since the original data generation program was designed to
generate time point-based data, the generator for the temporal pattern mining algorithms requires
modifications accordingly. The parameter setting of temporal data generator is shown in Table

2.4.

Table 2.4: Parameters of synthetic data generator

Parameters Description
|D| Number of event sequences
[ C | Average size of event sequences
| S| Average size of potentially frequent sequences
Ns Number of potentially frequent sequences
N Number of event symbols

We first create a set of maximal potentially large sequences used in the generation of event
sequences. The number of maximal potentially large sequence is Ns. A maximal potentially large
sequence is generated by first picking the size from a Poisson distribution with mean equal to |9].
Then, we chose the event interval symbols in maximal potentially large sequence from N events
randomly. Since the time interval in a sequence has duration, the data generator for temporal
pattern mining algorithms requires an additional tuning for experimental data generation. We

adopt the modification proposed by Wu et al. [36]. All the duration times of event intervals are
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classified into three categories: long, medium and short. The long, medium and short interval
events are with an average length of 12, 8 and 4 respectively. For each event interval, we first
randomly decide its category and then determine its length by drawing a value from a normal

distribution.

Finally, we select the temporal relations between consecutive intervals randomly and form a
maximal potentially large sequence. Since we adopt normalized temporal patterns [13], the
temporal relationships can be chosen from the set {before, meets, overlaps, is-finished-by,
contains, starts, equal}. After all maximal potentially large sequences are determined, we
generate |D| event sequences. Each event sequence is generated by first deciding its size, which
was picked from a Poisson distribution with mean equal to |C|. Then, each event sequence is

generated by assigning a series of maximal potentially large sequences.

D10k —C20—Nlk D10k — C20 — N1k
8000 1800
7000 [ | —&—H-DFS ut 1600
/'g 6000 [ = | —2— TprefixSpan § 1400
3 = I
E 5000 +ARMADA g 1200 i
3 oo —HE— TEMiner S 1000
o
E —&— CTMiner S 800 [
=} [ (5]
S 3000 £ ow |
2000 R
1000 T . e 200 [
0 o i ‘ 0 ‘ : ‘ ‘ ;
R Y LA T Y o
minimum support (%) minimum support (%)
(a) Performance of the five algorithms (b) The number of temporal patterns

Fig. 2.9: Experimental results on dataset D10k — C20 — N1k

2.6.2 Runtime Performance on Synthetic Datasets

In all the following experiments, some parameters are fixed, i.e., |S| = 4 and Ns = 5,000. The
other parameters are configured for comparing the temporal pattern mining algorithms. The first
experiment of the five algorithms is on the dataset D10k—C20-N1k, which contains 10,000 event
sequences, the average length of sequence is 20 and the number of events is 1,000. Fig. 2.9(a)

and 2.9(b) show the processing time of the five algorithms and the number of generated temporal
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patterns at different support thresholds respectively. The minimum support thresholds vary from
1 % to 4 %. Obviously, when the minimum support value decreases, the processing time required
for all algorithms increases. However, the runtime for ARMADA, H-DFS, [EMiner and
TPrefixSpan increase drastically compared to CTMiner. When minimum support is 1 %, the data
set contains a large number of temporal patterns. From the graph, we can observe that CTMiner
is about 4.5 times faster than IEMiner, more than 6.6 times faster than ARMADA, about 8.5
times faster than TPrefixSpan and more than 13.1 times faster than H-DFS.

The second experiment is performed on dataset D100k—C40-N10k, which is much larger
since it contains 100,000 event sequences, average length 40 and 10,000 event intervals. Fig.
2.10(a) and 2.10(b) show the running time and the number of generated temporal patterns at
different support thresholds respectively. However, we vary the minimum support thresholds
from 0.5 percent to 1 percent to generate larger number of frequent patterns from large data set.
The data set contains a large number of temporal patterns when minimum support is reduced to
0.5 %. We can see that CTMiner is about 4 times faster than IEMiner, about 6 times faster than
ARMADA, more than 8.2 times faster than TPrefixSpan and more than 12.6 times faster than
H-DFS.

D100k — C40 — N10k D100k — C40 — N10k
70000 3500
60000 | AT H-DFS 3000
8 —2&— TprefixSpan @
2 £ 2500 [
230000 1| —m— s RMaDA g
% 40000 [ | —E* TEMiner 22000
2 —— CIMi =
£ 30000 € 21500 ]
= g
20000 | = 1000 |
10000 500 [
0 0 - ‘ ‘ ‘ ‘
1 0.9 0.8 0.7 0.6 0.5 1 0.9 0.8 0.7 0.6 0.5
minimum support (%) minimum support (%)
(a) Performance of the five algorithms (b) The number of temporal patterns

Fig. 2.10: Experimental results on dataset D100k — C40 — N10k
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D200k — C40 — N10k D200k — C40 — N10k
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(a) Performance of the five algorithms (b) The number of temporal patterns

Fig. 2.11: Experimental results on dataset D200k — C40 — N10k

The third experiment is performed on dataset D200k—C40—-N10k, which contains 200,000
event sequences, average length-40.and 10,000 event intervals. Fig. 2.11(a) and 2.11(b) show the
running time and the number of generated temporal patterns at different support thresholds
respectively. Same as second experiment, the minimum support thresholds vary from 0.5 percent
to 1 percent. When minimum support is reduced to 0.5 %, CTMiner is more than 4.2 times faster
than IEMiner, more than 6.5 times faster than ARMADA, about 9.1 times faster than
TPrefixSpan, while H-DFS never terminates on our machine. The total experiments indicate that
even with extremely low support and a large number of temporal patterns, CTMiner algorithm is

still efficient and outperforms state-of-the-art algorithms.

2.6.3 Scalability and Memory Usage Studies

In this section, we study the scalability and memory usage of the CTMiner algorithm. Fig.
2.12(a) shows the results of scalability tests of the CTMiner algorithm, with the database size
growing from 100K to 500K sequences, and with different minimum support threshold settings.
Here, we use the data set C40—N10k which the average length of the sequence is 40 and the
number of events in the database is 10,000 with varying different database size. As the size of
database increases and minimum support decreases, the processing time of CTMiner increases,
since the number of frequent patterns also increases. As can be seen, CTMiner is linearly scalable

with different minimum support threshold. When the number of generated temporal patterns is
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large, the runtime of CTMiner still increases linearly with different database size.

Then, we compare the memory usage among the five algorithms, ARMADA, CTMiner,
H-DFS, IEMiner and TPrefixSpan, using synthetic data set D100k — C40 — N10k. Fig. 2.12(b)
shows the results, from which we can observe that CTMiner is not only more efficient, but also
more stable in memory usage than the other four algorithms. For example, when minimum
support threshold is reduced to 1%, CTMiner consumes is about 3.4 times smaller than
ARMADA, more than 7.1 times smaller than TEMiner, more than 13 times smaller than
TPrefixSpan and about 21 times smaller than H-DFS. This also explains why in our previous
performance tests when the support threshold becomes extremely low, why CTMiner is still
efficient and outperforms state-of-the-art algorithms. Based on our analysis, CTMiner only needs
memory space to hold the sequence data sets plus a set of header tables and pseudoprojection
tables to construct projected databases. Although TPrefixSpan is also designed based on
PrefixSpan, it still consumes memory space to hold the generated candidate sequences because of
the complex relation among intervals. Both IEMiner and H-DFES need memory space to hold
candidate sequences in each level. When the minimal support threshold drops, the set of

candidate sequences grows up quickly, which results in memory consumption upsurging.
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(a) CTMiner with different database size (b) Memory usage of five algorithms

Fig. 2.12: Experiments of scalability and memory usage
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In summary, our performance study shows that CTMiner has the best overall performance
among the four algorithms tested. The scalability study also shows that CTMiner scales well even
with large databases and low thresholds. The memory usage analysis shows the efficient memory
consumption of CTMiner and part of the reason why other algorithms become slow since the

candidate sequences may consume a huge amount of memory.
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Fig. 2.13: The performance testing of influence on proposed pruning strategies
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2.6.4 Influence of Proposed Pruning Strategies

In this section, to reflect the speedup of proposed pruning methods, we measure the CTMiner
with two pruning strategies and without pruning strategy on time performance. The experiment is
performed on the data set D100k—C40-N10k, which contains 100,000 event sequences, the
average length of sequence is 40 and the number of events is 10,000. Fig. 2.13 is the results of
varying minimum support thresholds from 0.5 percent to 1 percent. As shown in Fig. 2.13(a),
pre-pruning strategy can improve 23.4% to 27.9% of the performance of CTMiner. Because of
removing non-qualified slices before database projection, pre-pruning strategy can efficiently

speedup the execution time. The impact of the post-pruning strategy is presented in Fig.2.13(b).

As can be seen from the graph, when CTMiner is without post-pruning strategy, the execution
time is about 9.5% slower than CTMiner in average. We can find that post-pruning strategy can
improve the performance of CTMiner by effectively eliminating all useless slices for temporal
pattern construction. Fig. 2.13(c) depicts the influence on two proposed pruning strategies. We
can see that CTMiner is constantly about 33% faster than the one without any pruning strategy.
Nevertheless, the proposed pruning strategies not only effectively reduce the searching space but

also efficiently improve the performance of CTMiner.

2.6.5 Real World Dataset Analysis

In addition to using synthetic data sets, we have also performed an experiment on real world
datasets [18] to compare the performance and indicate the applicability of temporal pattern
mining. We use five datasets for evaluation, as shown in Table 2.5. The origin and preprocessing
steps of each dataset are briefly described as follows. For more details, please refer to [18].

e ASL-BU: The intervals are transcriptions from videos of American Sign Language
expressions provided by Boston University. It consists of observation interval sequences with
labels such as head mvmt: nod rapid or shoulders forward.

e ASL-GT: The intervals are derived from numerical time series with features derived from
videos of American Sign Language expressions. The numerical time series were discretized

into 2-4 states. Each sequence represents one of 40 word like brown or fish.
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Table 2.5: Five real-life databases

Database  Intervals Labels  Sequences

ASL-BU 18,250 154 441
ASL-GT 89,247 47 3493
Pioneer 4,883 92 160
Auslan2 900 12 200

Library = 549,071 206,844 = 28,339

Pioneer: The intervals were derived from the Pioneer-1 datasets in the UCI repository. The
numerical time series were discretized by choosing thresholds manually based on exploratory
data analysis. Each sequence describes one of three scenarios: gripper, move, turn.

Auslan2: The intervals were derived from the high quality Australian Sign Language dataset
in the UCI repository. The dimensions were discretized using Persist and the median as the
divider. Each sequence represents a word like girl or right.

Library: We collect 1,098,142 library records (lending and returning) for three years from the
National Chiao Tung University Library [6]. The database includes 206,844 books and 28,339
readers. An event interval is constructed by a book ID and corresponding lending and
returning time. The size of database is the number of sequences in database (same as the
number of readers, 28,339). The maximal and the average length of sequences are 262 and 38

respectively.

In Fig. 2.14 and Fig. 2.15, we show the execution time of five algorithms on all real datasets

with varying minimum support thresholds. Obviously, all experiments indicate that even with

extremely low support, CTMiner is still efficient and outperforms all other mining algorithms,

especially, with large datasets, such as Library. As can be seen from Fig 2.15(a) and 2.15(b),

when the minimum support is greater than 0.1 %, most of the generated temporal patterns are

with length one or two. As the minimum support drops down to 0.05 %, there are 14,549

temporal patterns and the execution time of CTMiner is about 1.7 times faster than IEMiner,

more than 3 times faster than ARMADA, about 4.2 times faster than TPrefixSpan and H-DFS has

never terminated.

-35-



ASL-BU ASL-GT

60 7000
| | —&— H-DFS 6000 —&— H-DFS

~ 50 ) — .
2 —2&— TprefixSpan 2 —2&— TprefixSpan
Q Q
Z 4o [ | 7= ARMADA 2 5000 —8&— ARMADA
g —&— [EMiner g —&— [EMiner
2307 &
=l

10 [

o

running time (secs)

0.001

(c) Perform g of five algorithms on
on Pio

Fig. 2.14: Experin ‘ i 1, and Auslan2

- 36 -




Library Library
20000 16000
18000 [ | —#— H-DFS 14000
5 16000 | —2&— TprefixSpan % 12000
2 14000 | —=— ARMADA £
2 } 210000 |
g 12000 [ | —=— IEMiner =
& 10000 | —— CTMiner 2 8000 |
- o
S 80001 56000 |
6000 § ot
4000 [
2000( & |
L L L N T 0 1 L L Il Il
O 01 0094008 007 0067005 01 009 008 007 006 005
minimum support (%) minimum support (%)
(a) Performance of five algorithms (b) The number of generated
on Library dataset temporal patterns on Library
8000
7000 O 1-pattern
E 6000 M )_pattern
:g 5000 [ 0 3-pattern
g 4000 [ U 4-pattern
e
£3000 | B S_pattern
= 2000 [ O 6-pattern
1000 B 7.pattern
0
0.1 0.09 0.08 0.07 0.06 0.05

minimum support (%)

(c) Distribution of temporal patterns

Fig. 2.15: Experimental results on Library dataset

Finally, to show the practicability of temporal patterns, we applied the CTMiner algorithm in
book lending dataset to extract the compact reader’s behaviors. This kind of information would
be more helpful than conventional sequential pattern for reader recommendation. Table 2.6
illustrates some temporal patterns (part of mining results) discovered from the NCTU library. We
take pattern 1 and 2 as examples. Suppose two readers, Mary and Sue, both check out the books
“The Know-1t-All” and “The Curious Incident of the Dog in the Night-time”, if Mary check out
two books at the same time, the library can send her an e-mail to notify that the book “The

Hitchhiker's guide to the galaxy” is still on shelf or the book “The Restaurant at the End of the
Universe” will be returned by 23" of June, 2011. But if Sue checks out two books at different
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times, the library may send an e-mail to her to notify the information of the books “Le

Cosmicomiche” or “The One Hundred Years of Solitude”.

Table 2.6: Some temporal patterns discovered from of NCTU library

PID temporal patterns support
“The Know-It-All” “The Hitchhiker's”guide to 163
1 the galaxy
“The Curious Incident of the “The Restaurant at the (0 57%)
Dog in the Night-time” End of the Universe” ’
“The Know-It-All” 43
2 o Chsmieomiahe” “The One Hundred Years
“The Curious Incident of the of Solitude” (0 15%)
Dog in the Night-time” ’
“The Homed Man” 109
3 “Ut og stjaele hester”
“Corazoén tan blanco” (03 8%)
“Wise Children” 97
4 “Magic Toyshop” “Burning Your Boats”
“Nights at the Cirus” (034%)
_ 88
5 “Palaverers” “Closely Watched Trains” “Vita nuova”
(0.31%)
“The End of the Affair” 92
6 “The Pearl in the Deep”
“I Served the King of England” (0.32%)
“The End of the Affair” 35
7 “The Inheritance of Loss”
“I Served the King of England” (0. 12%)

To show the phenomena of pattern 1 and 2 are not just an anecdote, we discuss the case why
readers, lending the same two books at different time, may have totally different interest. We find

that the books “The Know-1t-AIl” and “The Curious Incident of the Dog in the Night-time” are
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placed side by side on the shelf in NCTU Library. The author of “The Curious Incident of the
Dog in the Night-time” has mentioned the books “The Hitchhiker's guide to the galaxy” and “The
Restaurant at the End of the Universe” several times in the article. Hence, this can explain the
expression from pattern 1 in Table 9, i.e., 0.57% readers who check out two books together will

lend other two books later.

Moreover, we analyze the readers with behavior as pattern 2 in Table 9 and observe that all of
them have taken an optional course, Discussion of Human Relationship in Modern Society from
Literature. In this class, the first and second reading assignments are “The Know-It-AIl” and “The
Curious Incident of the Dog in the Night-time”, respectively. The final report is the discussion of
alienation and antagonism between people from “The One Hundred Years of Solitude.” This is the

reason why these 43 students have the lending behavior as pattern 2.

From this example, we show the practicability of temporal pattern mining. We also can
perceive that temporal patterns can promise a more expressive result to extract correlations

among event data than conventional sequential patterns.

2.7 Summary

Mining' temporal patterns from time interval-based data is a difficult problem since the
processing for complex relations among intervals may require generating and examining large
amount of intermediate subsequences. In this chapter, a novel technique, incision strategy and a
new representation, coincidence representation are proposed to remedy this critical issue. We
simplify the processing of complex relations among event intervals effectively. Coincidence

representation is nonambiguous and has several advantages over existing representations.

Based on coincidence representation, we develop an efficient algorithm, CTMiner to
discover frequent temporal patterns without candidate generation. The algorithm further employs
two proposed pruning techniques to reduce the search space effectively. By analyzing the
differences between mining sequential patterns and temporal patterns, we also propose a new

projection technique, multi-projection to correctly project a database into a set of smaller
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projected databases. The experimental studies indicate that CTMiner is efficient and scalable.

Both running time and memory usage of CTMiner outperform state-of-the-art algorithms.

To the best of our knowledge, most previous extensions of mining sequential pattern only
focus on time point-based data. Little attention has been paid to the related extension studies of

mining temporal patterns from time interval-based data. The major reason is the complex relation

among intervals. In this chapter, we ze proposed ¢ idence representation to overcome this

problem and facilitate the prc idence representation, there are

many interesting extens / i C 1 as ing closed and maximal
temporal patterns, increme toward data stream.

- 40 -



Chapter 3
An Efficient Algorithm for Mining Closed

Temporal Patterns from Interval Database

3.1 Introduction

Recently, sequential pattern mining is an active research topic in data mining for its wide
applications such as customer analysis, network intrusion detection, discovery of tandem repeats
in DNA sequences, study of scientific and ‘medical processes, to name a few. Many efficient
algorithms [1, 3, 6, 10, 11,-18,-20,-21, 30, 32, 39] proposed so far have good performance for
discovering complete-set sequential patterns. But when mining long frequent sequences, or when
using low support thresholds, the performance of such algorithms usually degrade dramatically.
For example, assume a database contains only one long sequence {((a;)(@2)(a3)... (a100))}. If the
minimum_support is 1, in the complete-set frequent pattern mining, there will be (2'® — 1)
frequent patterns: {(a;):1, {a):1; ..., ((a1)(a2)(a3)...(aio0)):1}. All of them except ((a1)(a2)(a3)...
(a100)):1 are redundant, since all the other frequent patterns and their supports can be derived

from this pattern.

Undoubtedly, a long sequential pattern usually contains an explosive number of subsequences
and using low support threshold often bears huge number of computations. When a user or an
application only needs the longest or more expressive sequential pattern, closed pattern mining
algorithm may be a better alternative. We can avoid exhaustive enumeration of all frequent
sequences and thus improve the performance. Hence, the mining of closed sequential patterns
has attracted researchers for its capability of using compact results to preserve the same

expressive power as complete-set frequent patterns mining.

Previous researches of closed sequential pattern mining [4, 5, 15, 34, 38] mainly focus on

time point-based data. There has been no efficient method developed for mining closed sequential
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pattern from time interval-based data. However, in many real world scenarios, some events,
which intrinsically tend to persist for periods of time instead of instantaneous occurrences, cannot
be treated as “time points”. In such cases, the data is usually a sequence of events with both start
and finish times. Examples include library lending, stock fluctuations, patient diseases, and
meteorology data. Actually, discovering closed sequential patterns from time interval-based data
can reveal more interesting patterns. For example, in the medical field, the simple ordered

sequence of events such as “fever — cough — headache,” may be inadequate to express the

complex relationships among symptoms. If we consider the duration time of events, some
relationships can be mined from clinical records of patients to study the correlations between the
symptoms and the diseases, or the influences between the diseases and other diseases. One may
find that “in the case of myocardial infarction, chest pain usually contains the cardiac enzymes
increasing.” Another discovery might be that “in many tuberculosis patients, the presence of

coughing up blood usually overlaps intermittent fever.”

Existing time point-based approaches are hampered by the fact that they can only handle
instantaneous events efficiently, not event intervals. We can perceive that time point-based issue
is just a special case of the time interval-based issue (where start time is identical to finish time),
but not vise versa. Mining closed time interval-based patterns (also referred to as closed
temporal patterns) is more complex and arduous, and requires a different approach from mining
time point-based data. So far, little effort has been paid to ‘the issue of mining closed time
interval-based sequential patterns. This is partly because of the complicated relationship among
event intervals. Since the feature of time interval is quite different from time point, the pairwise
relationships between any two time interval-based events are intrinsically complex. This complex
relation is really a crucial bottleneck when we endeavor to design an efficient and effective
algorithm for mining closed temporal patterns, since the complex relations may lead to generate
larger number of candidate sequences and workload for counting the support of a candidate

sequence.
Allen’s 13 temporal logics [2] are comprehensively used to describe the relations among

intervals, as shown in Fig. 2.1. Considering the arrangements of the start and the finish endpoints,

there are 13 temporal relations between any two event intervals as: “before,” “after,” “overlap,”
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99 ¢¢

“overlapped by,” “contain,” “during,” “start,” “started by,” “finish,” “finished by,” “meet,” “met

2

by,” and “equal.” However, all the Allen’s logics are binary relation and may suffer several
problems when describing relationships among more than three event intervals. An appropriate
representation is very crucial for facing this circumstance. Various representations [8, 13, 16, 24,

25, 29, 36] have been proposed but most of them have restriction on either ambiguity or

scalability.
Temporal Relation | Pictorial Example (s: ]::t:':?:i[:; fo;nslt:hm t[il:ne )
Abefore B e Af<Bs
A overlaps B Ii (As<Bs)A(Af>Bs)n(Af<Bf)
A contains B (A gy | (As<Bs)A(AS>Bf)
Asstarts B (As=Bs)n(Af<Bf)
A finished-by B Iﬁ (Ads>Bs) A (Af=Bf)
A meets B Af=Bs
A cqual B (4ds=Bs)A(Af=Bf)
A after B - Bf<As
A overlapped-by B (Bs<As)na(Bf>As)n(Bf<Af)
A during B (Bs<As) A (Bf>Af)
A started-by B E— (Bs=As) A (Bf<Af)
A finishes B (Bs>As)n(Bf=Af)
A met-by B Bf=As

Fig. 3.1: Allen’s 13 relations between two intervals

The contributions of this chapter are as follow:

e We simplify the processing of complex relations among intervals by capturing the global
information of all endpoints in a sequence. Comparing with the complex relations between
intervals, the relations among endpoints are simple, i.e., only “before,” “after” and “equal.”

e Various existing representations may lead to different kinds of problem. We develop a
compact representation, endpoint representation, to express a pattern or sequence

nonambiguously. Endpoint representation can facilitate the process and improve the

performance of algorithm.
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e A novel algorithm, CEMiner, which stands for Closed Endpoint Temporal Miner, is
proposed to discover closed temporal patterns efficiently and effectively. Furthermore,
CEMiner employs some optimization strategies to reduce the search space and avoids

nonpromising closure checking and database projection.

Experimental studies on both synthetic and real datasets indicate that proposed strategy and
algorithm are both efficient and scalable and outperforms the state-of-the-art algorithms. Our
experiments also show that the proposed approach consumes a much smaller memory space. The
remainder of this chapter is organized as follows. Section 3.2 and 3.3 provide the related work
and some preliminaries, respectively. Section 3.4 introduces the endpoint representation. Section
3.5 describes the CEMiner algorithm. Section 3.6 gives the experiments and performance study,

and we summarize in Section 3.7.

3.2 Related Works

CloSpan [38] is the first algorithm for mining closed sequential patterns from time point data.
It generates a set of closed sequence candidates and then do post-pruning to discover closed
sequential patterns. Although it performs two pruning methods to reduce search space, it still
consumes much memory to maintain the set of historical closed sequence candidates.BIDE [34]
is a fast algorithm for mining closed sequential patterns. Different from CloSpan, it uses a
sequence closure checking scheme to avoid the maintenance of closed candidate sequence. The
Proposed BackScan pruning method can prune the search space more aggressively than the
methods used in CloSpan. COBRA [15] is a two-phased mining algorithm. It first finds all closed
frequent itemsets [40], and then extends search space with only these frequent closed itemsets.
Because COBRA uses both vertical and horizontal database formats to reduce the searching time

in mining process, the memory usage is a major problem.

Some recent works have investigated the mining of complete-set temporal patterns. Kam et al.
[16] designed an algorithm that uses the hierarchical representation to discover temporal patterns.
However, the hierarchical representation is ambiguous and many spurious patterns are found.

Hoppner [13] defined the supporting level of a pattern as the total time in which the pattern can

- 44 -



be observed within a sliding window. But the algorithm needs to scan the database repeatedly,

which would significantly lower its efficiency.

H-DFS [27] was proposed to discovery frequent arrangements of event intervals. This
approach transforms an event sequence into a vertical representation using id-lists. Hence,
H-DFS does not scale well when the temporal pattern length increases. TSKR [24] expressed the
temporal concepts of coincidence and partial order for interval patterns. The pattern represented
in this format is easily understandable but may reveal the relationship between pairwise event
intervals in a pattern ambiguously. Based on MEMISP [20], an algorithm ARMADA [35] is
proposed to find frequent temporal patterns from large database. This approach only needs two
database scans and does not require candidate generation or database projection. Wu et al. [36]
devised a_nonambiguous expression, temporal representation, and TPrefixSpan algorithm to
discover frequent temporal patterns. Although this algorithm only need two scans of the database,

it does not employ any pruning strategy to reduce the search space.

Patel et al. [29] utilized additional counting information to achieve a lossless hierarchical
representation, named Augmented Representation, and proposed an algorithm, [EMiner. Although
IEMiner uses some optimization strategies to reduce the search space and remove nonpromising
candidate sequences, it still has to scan database multiple times. HTPM [37] was developed for
mining hybrid temporal patterns from event sequences, which contain both point-based and
interval-based events. A new robust representation, SIPO [25], utilizes the boundaries of interval
and further considers the noise tolerance to express relationships among intervals. The mining
algorithm requires discovering both closed sequential pattern and closed itemset. Based on a
compact representation, coincidence representation, CTMiner [8] is an efficient algorithm for
mining temporal patterns. Algorithm also proposed some pruning strategies to significantly

reduce the search space.

All of these algorithms only focus on mining closed sequential patterns from time point-based
data or mining temporal patterns from time interval-based data. No effort has been put to closed
temporal pattern. In this chapter, we discuss and design an efficient method to discover closed

temporal patterns from interval-based data.
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3.2 Preliminary

Definition 3.1 (Event interval and event sequence)

Let E = {ey, ea,..., ex} be the set of event symbols. Without loss of generality, we define a set of
uniformly spaced time points based on the natural number N. We say the triplet (e;, s;, /) € E x N
x N is an event interval, where e¢; € E, s;, f; € N and s; < f; The two time points s;, f; are called
endpoints of an event interval, where s; is the starting endpoint and f; is the finishing endpoint.

The set of all event intervals over E is denoted by /. An event sequence is a series of event

interval triplets ((e1, 51, f1), (€2, 2, /2); - -, (€n, Sn, f1)), Where s; < s;1;, and s; < f;.

Definition 3.2 (Temporal database)

Considering a database DB = {r{, 72, ..

sequence-id, SID and an event interval (i.e. an event symbol, a starting endpoint, and a finishing

., "m}, each record 7;, where 1 < 7 < m, consists of a

endpoint, where starting time<-finishing time). DB is called a temporal database.

event | start | finish . .
SID symbol| time | time event sequence endpoint representation
1 4 2 7 A
—

1 B 5 10 B

1 C 5 12 C D A*BCYABCD'E'ED”
1 D 16 22 E

1 E 18 20 h—

sl s ||

L B'B"D(E'F'YE F)D~

S e VA e (E'F')EF)

2 F 10 13 _

3 4 6 12 A

3 B 7 15 —te ) A*B'A"(B"DYE'E' D™
3 D 15 20 —

3 E 17 19 —

4 B 8 16

4 | 4 18 21 Lo o P

. B BAADEED

4 D 24 29 E

4 E 25 27

Actually, if all records in DB with the same client-id are grouped together and ordered by
nondecreasing start time, the database can be transformed into a collection of event sequences. As

a result, the database DB can be viewed as a collection of event sequences. As in Fig. 3.2,

Fig. 3.2: An example database
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example database consists of 17 event intervals, and 4 event sequences.

3.3 Endpoint Representation

The time interval-based mining problem is much more difficult than time point-based mining
issue. Since the time period of the two intervals may overlap, the relation among event intervals
is intrinsically more complicated than that of the event points. Allen’s 13 temporal logics [2], in
general, are adopted to describe the relations among intervals, as shown in Fig. 1. Unfortunately,
when describing relationships among more than three events, Allen’s temporal logics may suffer

several problems.

A suitable representation is very important for describing a temporal pattern. As mentioned
above, various representations-have been proposed but most of them have restriction on either
ambiguity or space usage. In this chapter, a new expression, endpoint representation is proposed

to address the ambiguous and scalable problem.

Definition 3.3 (Endpoint sequence)

Given an event sequence g = {(er1, si, f1), (€2, 52, 15), .-, (€is Sis f)s -5 (€ns Sns fu))s T= { 51, f1, 52,

25 -ees Sis fis -ous Sus fn + 18 @ set of all endpoints in g. After sorting 7' in nondecreasing order, an
endpoint sequence g, = {1, t2, ..., to,) can be derived by representing s; and f; as ¢;' and e; ,
respectively. Note that we use the parenthesis to indicate the times of endpoints are the same. To
deal with multiple occurrences of events, we attach occurrence number to endpoint to

distinguish multiple occurrences of the same event type in an endpoint sequence.

For example, in Fig. 3.2, an event sequence with SID 2 is (B, 1, 5), (D, 8, 14), (E, 10, 13), (F,
10, 13)) and its corresponding endpoint sequence is ( B' B D' (E' F') (E F ) D ). An
endpoint sequence ¢. is also called the endpoint representation of g. {4, B; (B D) D (4, B,
") B, A2 A» ) is an endpoint sequence with occurrence number where both event 4 and B occur

twice. For a temporal database DB, by Definition 3.3, we can transform it into a set of tuples (SID,
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q.y where SID is the sequence-id of each event sequence ¢ in DB, ¢. is the endpoint
representation of g. For example, in Fig. 3.2, we can transform four event sequences into
corresponding endpoint sequences. For readability, in this chapter, we suppose that all temporal

database mentioned later have been transformed into endpoint representation.

Temporal Relation
{Inversed)

Abefore B Bafter 4 B2 A YA)B") (BY)

Pictorial Example Endpoint

Temporal Relation rep tation

Aoverlaps B | B overlapped-by A (A WB WA WB)

A contains B B during A (ANWBYB A
A siarts B B started-by A -_ (A BYB WA
B

. N A + + -

A fmished-by B B finishes A I% (A" WB WA B)
Ameets B B met-by A n (A WA BYNB)

A + oty =

Aequal B B egual 4 B (4B WA B")

Fig. 3.3: The endpoint representation of Allen’s 13 relations between two intervals

The endpoint representation has several benefits; and the most important one is that it can
simplify the processing of complex pairwise relationships among all intervals efficiently. It
utilizes the arrangement of endpoints as defined in Definition 3.3, and considers the information
of entire event sequence instead of individual event interval. Given two different event intervals
A and B, the endpoint representation of Allen’s 13 relations between 4 and B is categorized as in

Fig. 3.3. The three major merits of proposed representation are discussed as follows,
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e Scalability: We only require 2k space for describing a k-interval temporal pattern, since
each interval has two endpoints. Comparing with other representations, the endpoint
representation still scales well even if plenty of intervals appear in a pattern.

e Nonambiguity: According to [5], we can find that the endpoint representation has no
ambiguous problem. First, by Definition 3.3, a unique endpoint sequence can be built by
transforming every event sequence into endpoint representation. In other words, the
temporal relations among intervals can be mapped one-to-one to an endpoint sequence.
Second, in an endpoint sequence, the order relation of the starting and finishing endpoints
of 4 and B can be categorized as shown in Fig. 3.3. We can infer the original temporal
relationships between intervals 4 and B nonambiguously.

e Simplicity: Obviously, the complex relations between intervals are the major bottleneck of
closed temporal pattern._mining since the mining may need to generate or examine
explosive number of intermediate subsequences. The relation between two endpoints is
simple, just “before,” “after” and “equal.” The simpler the relations, the less number of
intermediate candidate sequences are generated and processed. Therefore, with endpoint

representation, we can discover closed temporal patterns more efficiently.

3.4 CEMiner

We focus on the discussions of closed temporal pattern mining due to the widespread
applicability of this technique and the lack of research on this topic. In this chapter, we develop a
new algorithm, called CEMiner (standing for Closed Endpoint temporal Miner), to discover
closed temporal patterns efficiently. CEMiner utilizes the arrangement of endpoints to accomplish
the closed temporal pattern mining. In section 3.4.1, we outline the main idea of closure checking
to assure a temporal pattern is closed or not. Section 3.4.2 details the algorithm and also discusses

some pruning mechanisms for reducing the search space effectively.

Before introducing the algorithm, we give some definitions first. Let & be an endpoint
sequence in a temporal database DB in endpoint representation. The « - projected database,

denoted as DB|,, is the collection of postfixes of sequences in DB with regards to prefix o
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Considering two endpoint sequence « = {(ai, aa, ..., a,) and f = (b1, by, ..., by), a is called a

subsequence of £, denoted as « E f, if there exist integers 1 <i; < i, < ...< i, <m such that a;

bii,ax < by, ..., a, < bi. We also call £ a supersequence of «, and S contains «. If £ contains «

and their supports are the same, we call fabsorbs «.

Definition 3.4 (Closed temporal pattern)
Given a temporal database DB in endpoint representation, a tuple (SID, g.) is said to contain an
endpoint sequence ¢, if e is a subsequence of g.. The support of an endpoint sequence « in DB is

the number of tuples in the database containing ¢, i.e., support (@) = |{{SID, ge ) | ({(SID, gc ) €
DB) A (a E ge)}|- Given a positive integer min_sup as the support threshold, the set of temporal
patterns, TP, includes all the endpoint sequences whose supports are no less than min sup and all
endpoints in sequences appear-in-pairs. The set of closed temporal patterns is defined as follows,

CTP={(aeTP)A( #B e TP)such that (¢ EB) A (support () = support (5))}.

Let database in Fig. 3.2 with min_sup = 2 be an example. The endpoint sequence {4 B A B
) 1s a temporal pattern since it occurs in sequence 1 and 3 (support = 2 > min_sup) and each
starting ‘endpoint has corresponding finishing endpoint. (4 B A4 ) is a frequent endpoint
sequence but'not a temporal pattern, since B does not have corresponding finishing endpoint.

The endpoint'sequence {4 B'A B ) is not a closed temporal pattern since it is absorbed by { 4~

B'ABEE ) Thatmeans(4 B'A B )T (A B A B E E )and both support =2.

3.4.1 Closure Checking

To verify a new closed temporal pattern p, we require checking whether p is a sub-sequence
or super-sequence of an existing temporal pattern p’ and the projected database of p and p’ is
equal. This operation is also called closure checking and is very critical when mining closed
temporal patterns. The performance of an algorithm usually hinged on whether the closure
checking is well-designed. By borrowing the idea of the BI-Directional Extension [17], the

closure checking of CEMiner algorithm is developed in order to discover closed temporal
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patterns efficiently, which are represented with endpoint representation.

Definition 3.5 (Forward-extension and backward-extension)

Given an endpoint sequence « = {a, aa, ..., a,) in a temporal database DB, if « is non-closed,
there must exist at least one endpoint x, which can be used to extend o to a new endpoint
sequence «’, which has the same support, i.e., support (o) = support (). a can be extended in
five ways: (1) o’ =<{ay, az, ..., a,Ux ); (2) &’ ={a\, ap, ..., ap, x); 3) &’ ={x, a1, ay, ..., ayy; (4) 3,
1 <i<n, a ={ay, a,...aJux, iil,..., apy(5) iy L<i<n, a ={ay;a, ...a; X, ai+1,..., ay). In
cases (1) and (2), x occurs after all endpoints in «, we call x a forward-extension endpoint and
a’ a forward-extension sequence w.r.t. a. In cases (3), (4) and (5), x occurs before the last
endpoint in @, we call x a backward-extension endpoint and o’ a backward-extension

sequence w.r.t. a.

With respect to an endpoint sequence «, if there exists no forward-extension endpoint nor
backward-extension , & must be a closed endpoint sequence. For example, as the database in Fig.

3.2, endpoint £ is a forward-extension endpoint of sequence ( A 'B'A B_): 2, since the support
of (A'B'A B E" Yisalso 2. Hence,(A4 B A B ) is not closed. The CEMiner checks closure in

two directions as follows,
e Forward directional checking is used to grow the temporal patterns and also check the
forward-extension endpoint and closure of patterns.
e Backward directional checking is used to check the backward-extension endpoint and
closure of a temporal pattern and prune the search space.
CEMiner partitions database into smaller projected databases and appends locally frequent

endpoints to grow patterns recursively and also verify whether they are closed or not.

For a temporal pattern o = {(a,, a, ..., a,) and a locally frequent endpoint y, a pattern «’ = (aj,
a, ..., ap, y) or{ai, as, ..., a,\J y) is not closed, if there is a forward-extension endpoint x; in each
sequence where '’ appears (forward directional checking). And if there is a backward-extension
endpoint x; in each sequence where «’ appears, &’ is also not closed (backward directional

checking). Otherwise, & is closed.
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Definition 3.6 (The i-th last-in-first appearance)
For an endpoint sequence o containing an endpoint sequence (a;, az, .. a,), the i-th last-in-first

appearance w.r.t. (@) a», . a;) in «is denoted as LF; and defined recursively as: 1) if i = n, it is the

ey

last appearance of g; in the first instance of (a; a» . a) in a; 2)if 1 < i <n, it is the last

appearance of g; in the first instance of (a; a», . a;) in « and LF; must appear before LF;.;. For

ey

example, given the endpoint sequence = (A4, B; A B, (4s B, )4, B, )D D E E )
andp=(B B D D ) as prefix, the 2" and the 4™ last-in-first appearance w.r.t. prefix p in «
are B, and D respectively. Since the first instance of pin zis{ A4, B, A1 B, (4, B,") (4,
"B, )D" D ) and the second endpoint in p is B, the 2™ last-in-first appearance w.r.t. prefix p
in a is the last appearance of B, i.c., B, in «. Likewise, the 4™ last-in-first appearance w.r.t.

prefix pineis D .

Definition 3.7 (The i-th semi-maximum period)
For a sequence « containing an endpoint sequence (ai @, .. a,), we can define the i-th

semi-maximum period of (a; az, __a; in eas: 1)1f 1 <i < n, it is the piece of sequence between

ooy
0oeg,

ey

w.r.t. {a, @, .. a;). For example, given an endpoint sequence @ =(A4; B, 41 By (A By') (4>
"By )D' D'E E Yandp=(B B D" D ) as prefix, the 1*' semi-maximum period of prefix p
inais (A, B Ay B, A4, ). Since the first instance of p in ais (41" By A, B, (4, By))
(42" B, )D"' D) and the first endpoint in p is B, the 1* last-in-first appearance w.r.t. prefix p in
a is B, , the sequence before B,  in @vis ¢ 41" B, A, B, A, ). Likewise, the 2™
semi-maximum period of prefix p in « is the piece of sequence between B and B, , i.e., ( A

By (4, By') 4y ).

Definition 3.8 (EBackScan search space pruning)
Let an endpoint sequence a = (a1, aa, ..., a,), if i, 1 <i < n and there exists an endpoint x which

appears in each of the i-th semi-maximum periods of the prefix « in database DB, we can safely
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stop growing «a. Since we can derive a new endpoint sequence &’ = {x, aj, az, ..., a,) (i=1) or &’

={ay, az, ..., Ai1UX, Qjy ..., ayy (1<i<n)or a’ ={ay, ay, ..., ai.1, X, ai, ..., ay) (1<i<n)and all (a
C ') and (support (a ) = support («’)) hold. Any locally frequent endpoint w.r.t. & is also a

locally frequent w.r.t. &’. Hence we can stop growing the endpoint sequence ¢, since there is no

hope to discover closed temporal patterns from c.

3.4.2 Proposed Algorithm

Fig. 3.4 illustrates the main framework of CEMiner. It first transforms the temporal database
to endpoint representation and counts the support of each endpoint concurrently. It also removes
infrequent endpoints under given minimum suppott, min_sup (Lines 2-3, algorithm 3.1). For each
frequent starting endpoint x;~we-build projected database DB|. and use EBackScan to check
whether x can be pruned or not (Lines 5-7, ‘algorithm 3.1). If not, we compute the number of
backward-extension endpoints and call EBIDE recursively (Line 9, algorithm 3.1). Finally, we

output all closed temporal pattern (Line 10, algorithm 3.1).

Algorithm 3.1: CEMiner (DB, min_sup)

Input: a temporal database DB, and the minimum support min_sup
Output: all closed temporal patterns C7P

l: CTP —

2: transform DB into endpoint presentation;

3: find all frequent endpoints and remove infrequent endpoints;
4: FSE « all frequent starting endpoint;

5: for eachinterval x € FSE do

6 construct projected database DB, with regard to x;

7 if  EBackScan(x, DBy = “false” then

8 BE =backward extension check (x, DB,,);

9: EBIDE (DB, x, min_sup, BE, CTP ),

10:output all closed temporal patterns CTP;

Fig. 3.4: CEMiner algorithm

The pseudo code of EBIDE is shown in Fig. 3.5. For a prefix o, EBIDE scans its projected
database DB|, once to discover all local frequent endpoints (Line 1, algorithm 3.2) and computes

the number of forward-extension endpoints (Lines 2-3, algorithm 3.2). If « is a temporal pattern
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and has neither backward-extension endpoint nor forward-extension endpoint, then « is a closed
temporal pattern (Lines 4-5, algorithm 3.2). For each frequent endpoint, we can append it to
original prefix to generate new sequence «’ with the length increased by 1 (Lines 6-11, algorithm

3.2). In this way, the prefixes are forward-extended.

Algorithm 3.2: EBIDE (DB, a, min_sup, BE, CTP)

Input: a projected database DB|, , an endpoint sequence « , the minimum support
min_sup, and aset of closed temporal patterns CTP
Output: a set of closed temporal patterns CTP

01:scan DB, once, remove infrequent endpoints and find every frequent endpoint y
such that:

(1) ¥ can be assembled to the last endpoint of @ to form a temporal pattern; or

(ii). (y) can be appended to @ to form a temporal pattern;
02: LFE <« all local frequent endpoint;

03:FE=|{z|(z € LFEy~ (support (z) = support (a2 )}|;
04:if (BE + FE == 0) and (« is a temporal pattern) then
// no backward and forward extension
05: CTP — CIP U {a}; /l a isaclosed temporal pattern
06:for each y e LFE do
07: if yisa “finishing endpoint” then

08: if exist corresponding starting endpoint in ¢ then

09: append bto & to form o”;  // pre-pruning strategy

10: if yisa “starting endpoint then

11: append y to e to form a’;

12: construct projected database DB, with insignificant postfix elimination; //

post-pruning strategy
13: if ~EBackScan («’, DB|,’) = “false” then
14: BE = backward extension check (a’, DBy );
15: EBIDE (DB , @’, min_sup, BE, CTP);

Fig. 3.5: EBIDE algorithm

With the property of event endpoint, we use three pruning strategies, pre-pruning,
post-pruning, and pair-pruning to reduce the searching space efficiently and effectively. First,
the starting endpoint and finishing endpoint definitely occur in pairs in an endpoint sequence. We
only require projecting the frequent finishing endpoints which have the corresponding start

endpoints in their prefixes (Lines 7-9, algorithm 3.2). It is called pre-pruning strategy which can
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prune off non-qualified patterns before constructing projected database. Second, when we
construct a projected database, some endpoints in postfixes need not be considered. With respect
to a prefix sequence ¢, a finishing endpoint in projected postfix is called significant, if it has a
corresponding starting endpoint in projected postfix or in . When constructing the projected
database DB),, only the significant endpoints are collected and all insignificant endpoints are
eliminated since they can be ignored in the discovery of closed temporal patterns. The second
pruning method is called post-pruning strategy which eliminates insignificant endpoints when
constructing projected database (Lines 12-13;algorithm 3.2). Finally, if o’ is frequent, EBIDE
uses EBackScan to check if @’ can be pruned (Line 15, algorithm 3.2). If not, it computes the

number of backward-extension endpoints and calls itself recursively (Lines 16-17, algorithm 3.2).

Moreover, we can avoid-some unnecessary checking based on the characteristic of endpoint
representation. When extending the pattern by a locally frequent endpoint, if the appending
endpoint is a finishing endpoint, we require a two-directional closure checking, i.e.,
backward-extension and forward-extension checking, to verify whether the pattern is closed or
not. However, if the appending endpoint is a starting endpoint, we can omit the closure checking.
Since the starting endpoint and finishing endpoint always occur in pairs in an endpoint sequence,
forward directional checking is unnecessary. Actually, we just require growing the pattern. The

last pruning method is called pair-pruning.

We take the database in Fig. 3.2 with min_sup = 2 as an example. There are 17 event intervals
which can be regarded as 4 event sequences in the database. After transforming database, we can
find all frequent endpoints. They are (4 ): 3, (4 ): 3, (B )1 4,(B ). 4,{(D ): 4,(D ): 4, (E"): 4,
and (£ ): 4, where the notation “(pattern): count” represents the sequence and its associated

support count. The event sequences with corresponding endpoint representation are shown as in

first column in Fig. 3.6. We take the frequent endpoint 4~ and £~ as examples to further discuss
in details.
For an endpoint 4, the projected database with respect to A* has 3 sequences: ( B'A B D"

E'ED Y (BABD)'ED Yand{(4 D'E'E D ). Since 4 is a starting endpoint, by
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pair-pruning, we need not do closure checking. Continuing the recursive process with the DB+,
we can discover all closed temporal patterns prefixed with 4". In addition, when projecting
frequent endpoint £, the endpoint D in generated postfix sequences will be eliminated by
post-pruning strategy directly since D is insignificant. The last column in Fig. 3.6 lists all

generated closed temporal patterns. Obviously, the set of closed patterns expresses the same

information as the set of temporal patterns, but includes much fewer patterns.

projected database closed temporal patterns

( : insignificant endpoint ) ( : not closed )
g

(A*A” ):3 (not closed)
(A*B*A"B™ ): 2 (not closed)
(A*A"D'D™ ):3 (not closed)
(ATATE'E™ ):3 (not closed)
(A*B*ATBTE'E” ):2

event sequences with corresponding

. . refix
endpoint representation il

S1:(B* AB D'E"E D)
(A") [83:(B*A (B DH)E'E D)

. + Rt AR C- N EYTE- D
S1:(A* B'CHA B C' D'E'E D) S0 A DEE D

S2:(B*B D' (E" F)(E F)D )

S3: (A*B'A° (BT D)E'ET DY) (A+A7D+E+E7D7 )il
S4:(B"BTA"AT D' E'E"D™) 1. (WAl D" E- DN (B*B™ ):4 (not closed)
i B climinai (B" S2:¢ BBD'E" E D) (B*B'D'D” ) : 3 (not closed)
111 requent endpoint elimination $3:( A" (B" D*) E'E- D) (B*B’E*E’ o

S4:(B"A"A D'E'E D) (B'BD'E'E'D ):3
Sl:(AJr B'*A B D'E'E" D7) Sl:(E+ EpD
S2:(B*"B D'E" E- D) (D% S2:(E*YE D) (D'D™ ):4 (not closed)
S3:(A'B'A (B D")E'E D) S3:(E'E D) (D'E'ED ):4
S4: (B*B A"A"D'E*E" D7) S4:(E"E D)

S1:(E"D)

2:(E" D
(E") :3_ EE, o ; (E*E™ ):4 (not closed)
S4: (E- D7)

Fig. 3.6: An example of projected databases and closed temporal patterns

3.5 Experimental Results

To best of our knowledge, there have been no efficient methods developed for mining closed
temporal patterns. Hence, to evaluate the performance of CEMiner, four temporal pattern mining
algorithms, CTMiner [8], H-DFS [27], IEMiner [29] and TPrefixSpan [36] are compared with
CEMiner. All algorithms were implemented in C™ language and tested on a computer with
Pentium D 3.0 GHz with 2 GB of main memory. The performance study has been conducted on
both synthetic and real world datasets. First, we compare the execution time using synthetic
datasets at different minimum support. Second, we conduct an experiment to observe the memory

usage and the scalability on execution time of CEMiner. Finally, CEMiner is applied in
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real-world dataset, library lending data, to show the performance and the practicability of mining

closed temporal patterns.

The synthetic data sets in the experiments are generated using synthetic generation program
modified from [1]. Since the original data generation program was designed to generate time
point-based data, the generator for closed temporal pattern mining algorithm requires
modifications on interval events aceordingly. The parameter setting of temporal data generator is

shown in Fig. 3.7.

Parameters Description
| D | Number of event sequences
| C| Average size of event sequences
| S| Average size of potentially frequent sequences
Ng Number of potentially frequent sequences
N Number of event symbols

Fig. 3.7: Parameters of synthetic data generator

We create a set of potentially frequent sequences used in the generation of event sequences.
The number of potentially frequent sequences is Ns. A potentially frequent sequence is generated
by first picking the size of sequence from a Poisson distribution with mean equal to | S |. Then,
the event intervals in potentially frequent sequence are chosen from N event symbols randomly.
All the duration times of event intervals are classified into three categories: long, medium and
short, which are normally distributed with an average length of 12, 8 and 4, respectively. For each
event interval, we first randomly decide its category and then determine its length by drawing a
value. The temporal relations between consecutive intervals are selected randomly to form a
potentially frequent sequence. Since we adopt normalized temporal patterns [13], the temporal
relationships can be chosen from the set {before, meets, overlaps, is-finished-by, contains, starts,
equal}. After all potentially frequent sequences are determined, we generate | D | event sequences.
Each event sequence is generated by first deciding the size of sequence, which was picked from a
Poisson distribution with mean equal to | C |. Then, each event sequence is generated by

assigning a series of potentially frequent sequences.

-57 -



D10k - C10 - N1k D10k - C10 — N1k

150 |
100 [
50 1

350 [ | —%—H-DFS 2 30T £ Lpattem g

—&— [EMiner 21300 [= 2-pattern

- 300 —— TPrefixSpan N 3

] 250 —— CTMiner =250 & 3-patiem

b —+— CEMiner 2 4-pattern

£ 200 % 200

:ﬂ P [ S-pattern

g

g

£

=1

0 n ! . . 0 - 2 L. El &
4 35 3 2.5 2 15 1 4 3.5 3 25 2 15 1
minimum support (%) minimum support (%)
(@) (b)

D10k - C10° = Nlk

800
(L —8— Complete-set pattern
600 ——Closed pattern

500
400
300
200
100

number of temporal patterns

g e 3 25 2 15 1
minimum support (%)

(©)
Fig. 3.8: The performance and mining result on data set D10k —C10 — N1k

3.5.1 Performance on Synthetic Datasets

In all the following experiments, two parameters are fixed, i.¢., | S | =4 and Ny = 5,000. The
other parameters are configured for comparision. The first experiment of the five algorithms is on
the data set D10k—C20-N1k. Fig. 3.8(a) shows the running time of the five algorithms with
minimum supports varied from 1 % to 4 %. Obviously, when the minimum support value
decreases, the processing time required. for all algorithms increases. We can see that when the
support is greater than 3.5%, CTMiner outperforms CEMiner. However, when we continue to
the lower threshold, the runtime for [EMiner, H-DFS and TPrefixSpan increase drastically
compared to CEMiner. This is partly because of the generation of an explosive number of
frequent patterns for the complete-set mining algorithm. When minimum support is 1 %,
CEMiner is about 1.5 times faster than CTMiner, more than 2 times faster than TPrefixSpan,
about 3 times faster than IEMiner and more than 5 times faster than H-DFS. Fig. 3.8(b) shows the
number of generated closed and complete-set patterns at different support thresholds. Fig. 3.8(c)

shows the distribution of closed patterns, from which one can see that when minimal support is
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no less than 3%, the length of closed patterns is short (only 2-3), and the maximum number of

closed patterns in total is 580.
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Fig. 3.9: The performance and mining result on data set D100k — C20 — N1k

The second experiment is performed on data set D100k—C20-N10k, which is much larger
since it contains 100,000 event sequences and 10,000 event intervals. Figure 9 shows the
performance and mining result. Fig. 3.9(a) and 3.9(b) illustrates the running time of the five
algorithms and the number of generated closed and complete-set patterns at different support
thresholds respectively. However, we vary the minimum support thresholds from 0.5 percent to 1
percent to generate larger number of closed patterns from large data set. The data set contains a
large number of closed temporal patterns when minimum support is reduced to 0.5 %. CEMiner
is about 2 times faster than CTMiner, more than 4 times faster than TPrefixSpan, more than 5
times faster than IEMiner and about 9 times faster than H-DFS. The distribution of closed

patterns is shown in Fig. 3.9(¢), and the maximum number of closed patterns in total is 2,616.

3.5.2 Scalability and Memory Usage Studies
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In this section, we study the scalability and memory usage of the CEMiner algorithm. Here,
we use the data set C = 20, N = 10k with varying different database size. Fig. 3.10 shows the
results of scalability tests of the CEMiner algorithm, with the database size growing from 100K
to 500K sequences, and with different minimum support threshold varying from 3 % to 1 %. As
the size of database increases and minimum support decreases, the processing time of CEMiner
increases, since the number of frequent patterns also increases. As can be seen, CEMiner is
linearly scalable with different minimum support threshold. When the number of generated
closed patterns is large, the runtime of CEMiner still increases linearly with different database

size.
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Then, we compare the memory usage among the five algorithms, CEMiner, CTMiner,
TPrefixSpan, IEMiner and H-DES using synthetic data set D10k—C10-N1k. Fig. 3.11 shows the
results, from which we can observe that CEMiner is not only more efficient, but also more stable
in memory usage than the other four algorithms. For example, when minimum support threshold
is reduced to 1%, CEMiner is about 2 times smaller than CTMiner, more than 3 times smaller
than TPrefixSpan, almost 7 times smaller than TEMiner and more than 25 times smaller than
H-DFS. This also explains why in our previous performance tests when the support threshold
becomes extremely low, why CEMiner is still efficient and outperforms state-of-the-art
algorithms. Based on our analysis, CEMiner only requires memory space to hold the closed
sequence data which is much less than frequent complete-set sequence data. CTMiner and
TPrefixSpan still consume memory space to hold the generation of an explosive number of
frequent patterns for the complete-set mining. Same as IEMiner and H-DFS, both of them need

memory space to hold candidate sequences in each level. When the minimal support threshold
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drops, the set of candidate sequences grows up quickly, which results in memory consumption

upsurging.

In summary, performance study shows that CEMiner has the best overall performance among
the algorithms tested. The scalability study also shows that CEMiner scales well even with large
databases and low thresholds. The memory usage analysis shows the efficient memory
consumption of CEMiner and part of the reason why other algorithms become slow since the

candidate sequences may consume a huge amount of memory.
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Fig. 3.12: The performance and mining result on library data
set from NCTU

3.5.3 Real-World Dataset Analysis

In addition to using synthetic data sets, we have also performed an experiment on real world
dataset to compare the performance and indicate the applicability of closed temporal pattern
mining. The database used in the experiment consists a collection of 1,098,142 library records
(lending and returning) for three years from the National Chiao Tung University Library. The
experimented database includes 206,844 books and 28,339 readers. An event interval is
constructed by a book ID and corresponding lending and returning time. The size of database is
the number of sequences in database (same as the number of readers, 28,339). The maximal and

the average length of sequences are 262 and 38 respectively.

Figure 3.12 shows the performance and mining result. Fig. 3.12(a) indicates the running time

of five mining algorithms with varying minimum support thresholds from 0.1 % to 0.05 % and
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the number of generated patterns under different thresholds is shown in Fig. 3.12(b). As the
minimum support drops down to 0.05 %, there are 13,550 closed patterns and the running time of
CEMiner is about 1.5 times faster than CTMiner, more than 2 times faster than TPrefixSpan,

about 5 times faster than IEMiner and H-DFS has never terminated.

3.6 Summary

Previous studies of mining closed sequential pattern mainly are focused on time point-based
data. Little attention has been paid to the mining of closed temporal patterns from time
interval-based data. Since the processing for complex relations among intervals may require
generating and examining large amount of intermediate subsequences, mining closed temporal
patterns from time interval-based-data is an arduous problem. In this chapter, we develop an
efficient algorithm, CEMiner, to discover closed temporal patterns without candidate generation,
based on proposed endpoint representation. The algorithm further employs three pruning methods
to reduce the search space effectively. The experimental studies indicate that CEMiner is efficient
and scalable. Both running time and memory usage of CEMiner outperform state-of-the-art
algorithms: Furthermore, we also apply CEMiner on real world dataset to show the efficiency and

the practicability of mining time interval-based closed pattern.
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Chapter 4

Incremental Mining Temporal Patterns from

Interval-based Database

4.1 Introduction

Sequential pattern mining is an essential data mining technique with broad applications, such
as market and customer analysis, network intrusion detection, analysis of Web access, and finding
of tandem repeats in DNA sequences, to 'name a few. Several efficient algorithms exhibit
excellent performance in discovering sequential patterns from a static database, i.e., mine the
entire database and acquire the results in a one-stop solution. Nevertheless, the assumption of
having a static database may not hold in a number of applications. The database usually grows
incrementally over time, i.c., some new data may be added. The algorithms based on static
database do not consider the evolution of database and the maintenance of discovered sequential
patterns. The result mined from the original database may no longer be valid since existing
sequential patterns will be invalid, and new sequential patterns may be introduced with the
evolution of databases. Obviously, re-mining the updated databases from scratch each time is

inefficient because it wastes computational resources and neglects the previous mining result.

Previous research of the incremental mining algorithm [4, 5,7, 9, 12, 14, 19, 23, 26, 28, 42]
mainly focused on sequential patterns discovered from time point-based data. Prior works have
claimed that in reality, mining time interval-based patterns is more practical [8]. Interval-based
sequential patterns, also referred to as temporal patterns, occasionally can reveal more precise
information. In many real-world applications, some events, which intrinsically persist for periods
of time instead of instantaneous occurrences, cannot be treated as “time points.” In such cases,
the data is usually a sequence of interval events with both start and finish times. Examples

include library lending, stock fluctuation, patient diseases, and meteorology data, to name a few.
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Table 4.1: Part of temporal patterns discovered from of NCTU library

PID temporal patterns support
e 29 “The Hitchhiker's guide to
The K -It-All
: ¢ Lnow the galaxy” 163
“The Curious Incident of the “The Restaurant at the (0 57%)
Dog in the Night-time” End of the Universe” ’
“The Know-It-All” 43
2 o Closmtesiiiahe” “The One Hundred Years
“The Curious Incident of the of Solitude” (0.15%)
Dog in the Night-time” ’
“The End of the Affair” 92
3 “The Pearl in the Deep”
“I Served the King of England” (0,32%)
“The End of the Affair” 35
4 “The Inheritance of Loss”
“I Served the King of England” (0 12%)

Consider an example of mining temporal patterns from the NCTU library lending datasets.
Usually, there is duration between the time of a reader borrowing a book and the time he/she
returning the book. Thus, the lending dataset, in general, is time interval-based. By extracting
some users’ lending patterns, we could develop a recommendation system for library. This
information would be more helpful than conventional sequential time point-based pattern. Table
4.1 illustrates some temporal patterns (part of mining results) discovered from the NCTU library.
We used pattern 1 and 2 for discussion. Suppose that two readers, Mary and Sue, both check out
the books “The Know-It-All” and “The Curious Incident of the Dog in the Night-time.” If Mary
checks out two books simultaneously, the library can send her an e-mail to notify her that the
book “The Hitchhiker's Guide to the Galaxy” is still on the shelf, or that the book “The
Restaurant at the End of the Universe” will be returned by June 23, 2011. However, if Sue checks
out two books at different times, the library may send her an e-mail to notify her about the
availability of books “Le Cosmicomiche” or “The One Hundred Years of Solitude.” The temporal
patterns offer a more expressive result to present correlations among data than conventional

sequential patterns.
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Allen’s 13 temporal logics [2] are usually adopted to describe the complex relations among

29 ¢ 9% ¢ 99 ¢ 9 ¢

intervals, as follows: “before,” “after,” “overlap,” “overlapped by,” “contain,” “during,” “start,”
“started by,” “finish,” “finished by,” “meet,” “met by,” and “equal.” However, Allen’s temporal
logics are binary relations and may experience several problems when describing relationships
among more than three event intervals. An appropriate representation is crucial for this
circumstance. Various representations [8, 13, 16, 24, 25, 29, 36] have been proposed; however,
most of them have a restriction on either ambiguity or scalability. In this chapter, we utilize the
endpoint arrangements to effectively simplify the processing of complex relations, which is the
major bottleneck of incremental mining of temporal patterns.. Since the endpoints are

99 ¢¢

non-overlapped, Allen’s 13 temporal logics can be reduced to 3 relations, i.e. “before,” “equal”

and “after.”

As mentioned early, new time interval-based data is generated. To truly capture temporal
patterns; one should re-execute existing algorithms of mining temporal patterns from the updated
database, where the new data is appended or the new record is inserted. In this chapter, we target
at designing algorithms to incrementally mine temporal patterns. To the best of our knowledge,
no methods have been discussed on how to discover frequent sequential patterns from time
interval-based data in an incremental environment. Since the feature of time intervals differs
considerably from that of time points, the pairwise relationships'between any two interval events
are intrinsically complex. This complex relation is a crucial problem in the design of an efficient
and effective algorithm for maintaining temporal patterns. When appending an interval to an
event sequence, the complex relations may lead to the generation of a larger number of possible

candidates and consume more memory-space.

Two types of incremental updates for interval sequence database are used, 1) inserting new
sequences into database, denoted as INSERT; 2) appending new intervals to existing sequences,
denoted as APPEND. A real world application may include all types of updates. When the
database is updated with a combination of INSERT and APPEND, we can regard the INSERT as
a special case of APPEND, for inserting a new sequence is equivalent to appending a new

sequence to an empty sequence, as shown in Fig. 4.1. This chapter proposes an efficient
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algorithm, Inc_CTMiner which stands for /ncremental Temporal Miner, to address the crucial
problem and incrementally discover temporal patterns based on the coincidence representation.
Furthermore, Inc_ CTMiner employs some pruning strategies to reduce the search space and
avoids non-promising database projection. Experimental studies on both synthetic and real
datasets indicated that, in the incremental environment, Inc_ CTMiner is efficient and outperforms
the state-of-the-art algorithms, which are based on static database. Our experiments also revealed
that the proposed approach is scalable and consumes a smaller memory space. We also applied
Inc_ CTMiner on real world datasets to demonstrate the practicability of maintaining the temporal

patterns.

original
database
< (DB) »
. increment
- database
@)  ~
extended ; _ — {3 APPEND
database - > 4 .
(EDB) | ket _ |- /
P %) : e 0 s
updated _ 4
database
(DB)

Fig. 4.1: Concept of INSERT and APPEND updates interval sequence

The remainder of this chapter is organized as follows: Section 4.2 presents the related work;
Section 4.3 introduces the preliminaries; Section 4.4 provides incremental mining algorithms;
Section 4.5 presents the experimental results and performance study; and finally, Section 4.6

summerizes this chapter.
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4.2 Related Work

A number of studies have investigated the mining of temporal patterns [2, 8, 13, 17, 24, 25,
27, 29, 31, 33, 35, 36, 37, 41] in a static environment. Kam et al. [16] proposed a hierarchical
representation and designed an algorithm to discover temporal patterns. Although hierarchical
representation is a compact encoding method, it may suffer from two ambiguous problems, as
follows: 1) the same relationships among event intervals can be mapped to different temporal
patterns; and 2) the same temporal pattern can represent different relationships among event
intervals. Hoppner [13] proposed a nonambiguous representation, relation matrix, which
exhaustively lists all binary relationships between event intervals in a pattern. The mining
algorithm needs to scan the database repeatedly, which considerably lowers its efficiency, and the

relation matrix does not scale effectively if numerous intervals appear in a pattern.

H-DFS [27] was proposed to discover frequent arrangements of temporal intervals. This
approach transforms an event sequence into a vertical representation using id-lists. However,
H-DFS does not scale effectively when the temporal pattern length increases. TSKR [24]
expressed the temporal concepts of coincidence and partial order for interval patterns. The pattern
represented in TSKR format is easily understandable and robust; however, it may reveal the
relationship between pairwise event intervals ambiguously. Based on MEMISP [20], ARMADA
[35] was proposed to find temporal patterns from large databases. Since it is based on relation
matrix representation, memory usage is a substantial bottleneck when the database is very large.
TPrefixSpan [36] uses temporal representation to discover temporal patterns nonambiguously, but
it does not use any pruning strategy to reduce the search space. Augmented hierarchical
representation [29] uses additional counting information to achicve a lossless expression. Every
Allen describer must take space to store five counters. Based on this representation, IEMiner [29]
was proposed by using optimization strategies and removing non-promising candidate sequences,

but it must scan the database multiple times.

A robust representation, SIPO [25], used the partial order of intervals and considers the noise
tolerance to express relationships among intervals. Nevertheless, the proposed algorithm requires
discovering both closed sequential pattern and closed itemset, and therefore, is time consuming.

CTMiner [8] is an efficient algorithm for mining temporal patterns. It utilizes a non-ambiguous
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and compact representation, coincidence representation [8] to facilitate the mining process. It first
segments all intervals to disjoint slices based on the global information in a pattern, and
subsequently groups all event slices occurring simultaneously to form a coincidence to represent

a sequence.

A few prior works [4, 5,7, 9, 12, 14, 19, 23, 26, 28, 42] have focused on incremental mining
sequential patterns from time point-based data. ISM [28] uses a sequence lattice of original
database for incrementally mining of sequential patterns. The sequence lattice includes all of the
frequent sequences and all of the sequences in the negative border. Two problems occur when
using negative border. First, the combined number of sequences in the frequent set and the
negative border is large. Second, the sequences in negative border are generated based on the
structural relation between sequences. However, these sequences do not necessarily have high
support. Therefore, using negative border is very time and memory consuming. Zhang et al. [42]
developed two candidate generate-and-test algorithms, GSP+ and MFS+, for incremental mining
of sequential patterns when sequences are inserted into or deleted from the original database.
ISE [23] is another incremental mining algorithm based on candidate generate-and-test approach.
The weakness of these three algorithms is that the candidate set may be very large and the
level-wise working manner requires multiple database scans. When the frequent sequences are

long, the testing phase is usually slow and costly.

The IncSpan [9] buffers a set of semi-frequent sequences as the candidates in the updated
database which can accelerate the maintaining process efficiently. Two optimization techniques,
reverse pattern matching and shared projection, were proposed to improve the performance.
However, IncSpan fails to find the complete set of sequential patterns from an updated database
because several properties are incorrect. Nguyen et al. [26] proved the incompleteness of IncSpan
and proposed an algorithm, IncSpan+, to correct the weaknesses of IncSpan. IncSP [12] solved
the maintenance problem through effective implicit merging and efficient separate counting over
appended sequences. The proposed early candidate pruning technique, further speeds up the
discovery of new patterns. PBIncSpan [7] uses a prefix tree to record all frequent sequences and

corresponding projected databases to maintain the discovered sequential patterns; however such a
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method requires extremely huge storage space when the database is large. The proposed pruning
strategy is based on the Apriori property and is inefficient when the prefix tree has numerous

nodes.

All previous studies for incremental mining are mainly focused on time point-based data
which has no concept of duration of time. Limited attention has been paid to updating temporal
patterns from interval-based database. In this chapter, we design a new algorithm, Inc_ CTMiner,

which can incrementally discover temporal patterns effectively and efficiently.

4.3 Preliminary

Let £ = {ey, 2,..., e} be the set of event symbols. Without loss of generality, we define a set
of uniformly spaced time points based on the natural number N. We say the triplet (e, s;, ;) € £ x
N x N is-an event interval, where e;€ £, s;, fi € N and s; < f; The two time points s; f; are called

event times, where s; 1s the starting time and f; is the finishing time. The set of all event intervals

over Z is denoted by J. An event sequence is a series of event interval triplets {(e1, s1, f1), (e2, 52,

£2), ..., (en, S, f1)), Where s; < 5341, and s; < fi. A temporal database is a set of tuple (SID, Q) where
SID is a sequence-id and Q is an event sequence. For example, in Table 4.2, the temporal
database DB has 3 event sequences. Given two event sequences Q and Q’, Q"= @ < O’ means
Q7 is the concatenation of O and Q°. O’ is called appended sequence of O and Q" is called
updated sequence of Q appended with Q.

Definition 4.1 (Increment and updated database)

Given a temporal database DB appended with a few event sequences after some time, DB is
called original database. The increment database db is referred to as the set of newly appended
data sequences. The SIDs of the data sequences in db may already exist in DB. A database
combining all the data sequences from DB and db is referred to as the updated database DB’
An extended database EDB of an updated temporal database DB’ is a set of event sequences in
DB’ which are the concatenations of sequences in DB and db. The concept of Definition 4.1 is

given as Fig. 4.1.

-69 -



Table 4.2: An example of temporal database

original database DB

increment database db

SID

event interval

event interval

pictorial example

pictorial example

coincidence representation

(4,1,3),(B,4,06), (F,7,10),(D,8, 10)

(F, 10, 13), (G, 14, 18)

| [=

__Juem

LA |[B ]

[ O ]

(A (B) (F") (F D)

<& (OX(©)

—~ (B)(F)H (D) (F)(©)

“4,1,3),(D,4,6),(E,7,9)

| Lo |J[ €

(A) (DE)

&

—~ AD®E

“,1,3),(D,4,6), (E,7,10)

L~ | o ][ E

A DE)

) 7]

—~ (ADBE)

(B, 11, 14), (F, 15, 20), (D, 16, 18)

B ey o

< (B)(F) (D) (F)

—~ B)FEHYDO)FE)

4.4 Coincidence Representation

The incremental mining of temporal patterns is more difficult than that of conventional
sequential patterns. Since the time period of two intervals may overlap, the relation among event
intervals is more complex than that of the event points. An appropriate representation is very
important for describing relationships among more than three events. Various representations

have been proposed but most of them have restriction on either ambiguity or space usage. The

existing representations are compared in Table 4.3.
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Table 4.3: Comparisons of existing representation

. Relation Augmented .
Hierarchy Matrix Temporal TSKR Hierarch Coincidence
Representation (List) Representation Represen tat};on Representation
proposed 2000 2002 2007 2007 2008 2010
time (DaWak) (IDA) (TKDE) (DMKD) (SIGMOD) (CIKM)
f};zcz k+ (k-1) kx(k—1) | 2k+@k—1) | Bestcase:k | k+(6x (k—1)) | Bestcase: k
g =2k-1 =2 -k =4k-1 Worst case: k> =7k—-6 Worst case: 2k
(for k events)
ambiguous
problem yes no no yes no no
relations
between complex complex complex simple complex simple
events

Given an event sequence O =<{((ey, 51, f1), (€2, 52, /2), ..., (€n, Sus [1)), the set T ={s, f1, 52, f2, ...,
Siy fis--+» Sus fny 18 called a time set corresponding to sequence Q where 1 < i < n. If we order all
the elements in 7" and eliminate redundant elements, we can derive a sequence 18 =<#, %, 13, ...,

txy where ;e T, t;< ti1. TSp 1s called a time sequence corresponding to sequence Q.

Definition 4.2 (Incising Function and Event Slice)

Given an event sequences Q= ((e1, 81, /1), (€2, $2, /o), -5 (€is Sis f), --- (€n, Sus Ju)) WherTe (es, 51, f)

€ J,and a, be TS,

o

if (5, =a)A (L =b)
Coaf (s, =a)A(f, >b)
- if (s, <a)A(f =b)

¢ if (s, <a) A(S>b)

i

N

Q

an incising function ¥( a, b, (e, S, fi)) =

& otherwise.

e Aneventslice S=Y(a,b, (e, si, f7)) 1s called starting slice, 1f a = s;, b =min{ ¢ | te TSy, s; < t
<f;},and denoted as e; .

e Aneventslice S=Y(a, b, (e, s;, f;)) 1s called finishing slice, if @ = max{ ¢ | te TSy, s5; <t <fi},
b =f;, and denoted as ¢; .

e Aneventslice S="Y(a,b, (e, s;, ) is called intermediate slice, ifa # s, b #f;, s, <a < b <f;
and b =min{ t | te TSy, a < b < f;}, and denoted as e

e Aneventslice S=Y(a,b, (e, s;, /) is called intact slice, if @ = s; and b =f; and A teT. So such
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that s; < ¢ < f;, and denoted as e;.
Let S and S’ be two event slices. We say that S is similar to S’, denoted as § = S’, if the event

symbol of S is identical to the event symbol of S”.

For example, as db in Table 4.2, sequence 4 has three event intervals, (B, 11, 14), (F, 15, 20)
and (D, 16, 18) and its corresponding time sequence = (11, 14, 15, 16, 18, 20). Event interval F
can be incised into three event slices, start slice /7~ = ¥(15; 16, (F, 15, 20)), F= Y(16, 18, (F,
15, 20)) and finish slice F* = Y(18, 20, (F; 15, 20)). Event interval B has only one intact slice B
= Y(11, 14, (B, 11, 14)). F and F have the same event symbol, F, hence F' ~ F . By

Definition 4.2, we know that there are four kinds of event slice. Obviously, an event interval can

only have one start slice and one finish slice but can have many intermediate slices.

Definition 4.3 (Grouping Function, Coincidence and Coincidence Sequence)

Given an event sequences Q= ((ei, S1, f1), (€2, 52, f2), -5 (€i, Sis [1)s -+ (€ns Sus fn)) Where (e, s;, f7)
€ J,and a, be TSy ={ti, b, B3, ..., tr), 1 <k < 2n, a grouping function,

d(a,b,q)={¥Y(a, b, (€1,5s1, 1), ¥(a,b, (€S2, 1)), ..., ¥(ab,(en s f))}-

A coincidence C; = O(;, t;+1, O) = (Si1, Siz,+--, Sij,...), where #; and ¢+ is two consecutive event

times in 7Sp and S;; is an event slice, 1 <i< k—1, 1 <j <. C;is an ordered set of event slices
sorted by lexicographic order. A coincidence sequence (. is denoted by (Cj, (>, ..., C;-1) and

also called the coincidence representation of 0. To deal with multiple occurrences of events, we
attach occurrence number to event slices to distinguish multiple occurrences of the same event
type in a coincidence sequence. For example, (4, )(B1 )B1 D )D )4, By ) (B> YEF)(4y)) is

a coincidence sequence with occurrence number where both event 4 and B occur twice.

To facilitate the incremental maintenance of temporal patterns, we also preserve the starting
and the finishing time of Q, s¢ and f2, respectively. s is the starting time of the first event
interval in Q and f€ is the finishing time of the last event interval in Q, i.e., if 0= ((e1, 51, /1), (€2,
82, 12)s s (€ny Sny f2)), s9=s ande = f,. For a temporal database DB, by Definition 4.2 and 4.3,
we can transform it into a set of tuples (SID, O., [s<, f¢]) where SID is the sequence-id of each

event sequence O in DB, Q. is the coincidence representation of O, and s and /€ are the starting
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and finishing time of Q. For example, in Table 2, we can transform three event sequences in PB

into corresponding coincidence sequences. For better readability, later in this chapter, we suppose

that the temporal database has been transformed into coincidence representation.

Table 4.4: The coincidence representation of Allen’s relations between two

intervals
Temporal Inversed o o P Coincidence S Coincidence
Relation Relation Pictorial Exarggle representation Pictorial Example representation
-] .
before after
B A -A FA— -A “ +A-ptR-
n A"A'B ﬂ A"A"B'B
A B A
overlaps | overlapped-by - AT(A BB~
B A | B |
A B
contains during A"BA” | B | ATB'B A"
B A [ B | (D]
A B - [ A
starts started-by ;I (A"B) A- B (A"B) B_A”
B A B
A B A A
finished-by finishes A'(A"B) B A'B'(A'B)
B A B
rem B e
[A] AwB A AwB'B
meets met-by S %
B A o Il A+A_@ B A+A"@ B™B~
A B 3 A
equal equal = AB B (A"B") (A"B))
B A C

We adopt coincidence representation [8] to express a temporal pattern since it can accelerate
the process of updating temporal patterns when new intervals are appended to the original
interval sequences. The coincidence representation has several benefits, and the most important
one is that it can simplify the processing of complex pairwise relationships among all intervals
effectively. It utilizes the concept of slice-and- coincidence as defined in Definition 4.2 and 4.3,

and considers the information of an entire event sequence instead of individual event intervals.
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Given two different event intervals 4 and B, the coincidence representation of Allen’s 13 relations

between A4 and B is categorized as in Table 4.4.

4.5. Inc_CTMiner Algorithm

In this section, we develop a new algorithm, named Inc_CTMiner (Incremental
Coincidence Temporal Miner), for incremental mining of temporal patterns, by utilizing the
concepts of slice-and-coincidence. Section 4.5.1 gives some basic concepts and a glance of
CTMiner algorithm. Section 4.5.2 details the Inc CTMiner algorithm and also discusses the

proposed optimization mechanisms for reducing the search space.

4.5.1 Basic Concepts of Inc CTMiner

Before introducing the algorithm, we give some definitions first. Let O, be a coincidence
sequence in a temporal database DB. The O.-projected database, denoted as DB , is the
collection of postfixes of coincidence sequences in DB with regards to prefix Q.. Considering

two coincidence sequences Q. = (Cj, Cy, ..., Cp) and Q. = (Cy’, Cy’, ..., Cp’), O. 1s called a

subsequence of O.’, denoted as Q. E Q.’, if there exist integers 1 <i; < i, < ...<i, < m such that

CicCi,GcCy,...,C,c Cy . We also call Q. a supersequence of O., and O.’contains Q..

Definition 4.4 (Temporal Pattern)
Given a temporal database DB, a tuple (SID, O., [s <, f°]) is said to contain a coincidence
sequence a, if « is a subsequence of O.. The support of a coincidence sequence « in DB is the

number of tuples containing ¢, i.e., support (@) = [{(SID, Q., [s<, f°]) | (SID, Q., [s, f9])

DB) A (a E Qc)}|. Given a positive integer min_sup as the support threshold, the set of temporal

patterns includes all coincidence sequences whose supports are no less than min_sup.

Let the temporal database DB in Table 4.2 with min_sup = 2 be an example. The coincidence
sequence ((4)(D)) is a temporal pattern since it occurs in sequence 1, 2, and 3, and its support =3

> min_sup. A coincidence sequence ((B)(D)) is not a temporal pattern since it occurs only in
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sequence 1, and its support = 1 < min_sup.

A frequent pattern tree (FPT) T is a tree that represents the set of temporal patterns in a
temporal database. A node d in T stores an event slice and has a tag labeled with “p” or “i”. Label

6e_ 9

‘p” means node d corresponding to a temporal pattern that starts from the root node to d. Label
“” means node d corresponding to an intermediate sequence of a temporal pattern that starts from
the root node to d. Coincidence cutting is captured by using labeled edges. Each tree edge in T
has a tag labelled with “solid” or “dash”. Solid edge means two connected nodes are in different
coincidences; dash edge means two connected nodes are in the same coincidence. Each node also
preserves two information, say support value and sequence_list. The support value represents
the support count of the intermediate sequence or temporal pattern. The sequence list stores a list

of sequence-ids, 1.e., SIDs, to represent the sequences containing this intermediate sequence or

temporal pattern. The example is-as-shown in Fig. 4.2(a).

%,
e P .
Event: support A: 2 B: 2 F:2 iif'+"2'5 D:3 E:2
Lotz
sequence_list 2]3 114 1[4 114 1|2!3|4 2[3
I node D: 2 E:2] [D:2] [F:2] iF:2i iD:2 ¥ 2
ErEvent:support 2l3 = S Ehes B )4
| sequence list. :
--------------------- E:2 1D:21 F :2
2[3 i [1]4
solid edge
dash edge ----- ==
1]4
(a) (b)

Fig. 4.2: The frequent pattern tree built from updated database DB+db in Table 4.2

Fig. 4.2(b) shows the frequent pattern tree built from the updated database DB+db in Table
4.2. The temporal patterns and intermediate sequences are represented by a node with the solid
squares and dotted squares, respectively. Coincidences can be captured by using edge label. For

instance, {(B)(F )(D)(F )) is a temporal pattern and the solid link illustrates that B, F', D and F
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are all in different coincidence. The formal definition of our problem is given as follows.

Definition 4.5 (Problem Statement)

Given a temporal database DB, a minimum threshold min_sup, the set of temporal patterns FPT
in DB, and a updated temporal database DB’ of DB, the problem of incremental temporal pattern
mining is to mine the set of temporal patterns FP7T’ in DB’ based on FPT instead of re-mining on

DB’ from scratch.

4.5.1.1 Sequence Transformation

The maintenance of time interval-based patterns is much more difficult than conventional
time point-based patterns. Since. the time period of the two intervals may overlap, the relation
among event intervals is more-complex than that of the event points. Hence, we use an efficient
method, ineision strategy, to transform ‘the new appending sequences into coincidence

representation and accelerate the maintaining process.

endtime_list
(4,1,4) symbol | time | type
output :
(B.2.5) AT [s o th
event = BD 2 S ¥ A
interval | ° (D, 2,8) = i S - S
(.3, 5) 1= | F P
(F,5,7) i | 3 g:BE
F 5 S S g
coincidence %, S _ F 7 f ~
representation $C BBt ) (BE)e@FD D S f > - D
(a) (b)

Fig. 4.3: An example of incision strategy

The incision strategy segments all intervals to disjoint slices based on the global information
in a sequence. For example, considering an event sequence with five intervals shown in Fig.
4.3(a), we first put all ten end time points into endtime_list and sort them in non-decreasing order
based on their times and types (start or finish). We merge the event symbol of end time points

together if both time and type of end time points are the same. As in Fig. 4.3(b), since the
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finishing time of interval B is identical to the finishing time of interval £, we can merge them
together. But we can not merge the finish time of interval £ with the start time of interval F, since
the type of end time points are not the same. Then we compare each record in endtime list
one-by-one to segment event slice. By traversing all the sorted end time points in endtime_list,

we can generate the event slices effectively.

Algorithm 4.1: incision_strategy ( Q)

Input: O: an event sequence

Output: Q.: a coincidence sequence
Variable: endtime list, last endtime, and coincidence

01: endtime list« @, last_endtime < @ , coincidence « @, Q. « D;

02: add all the end time points of every event interval in Q into endtime list;

03:/ sort every endtimein-endtime_list by endtime. time in nondecreasing order;

04: merge all endtime. symbols together with identical endtime. time and endtime. type;
05: for each endtime.T in.endtime_list do

06: coincidence < @;

07: if last_endtime. time =T . time then

08: coincidence < coincidence U “@”;// meet token

09: else //last_endtime. time + T. time

10: if last_endtime. type = “s” then

11: coincidence < coincidence U every symbol in last endtime. symbol add “+”;
// start slice

1k if T.type = “f” then

13: coincidence < coincidence |J every symbol in 7. symbol add “-; // finish slice

14: combine start slice and finish slice with same symbol in coincidence; // intact slice

15: O, — Q. & { coincidence ) ;

16: last_endtime < T;

17: output Q. ;

Fig. 4.4: Algorithm of incision strategy

Coincidence representation uses meet token “@” to express the meet relation among two
adjacent intervals. As the example in Fig. 4.3(a), interval £ meets interval F, hence we add a “@”
between two coincidences (B E ) and (F). In general, reducing memory usage and saving
computation time are two important issues for algorithm design. Since the meet token has been
used to distinguish two adjacent intervals, incision strategy can totally avoid the generation of
intermediate slices. Given an example as Fig. 4.3(a), the event interval D can be segmented into

five event slices, one start slice D', three intermediate slices D*, and one finish slice D . By

trimming the intermediate slices, we can still express the relationship between any two intervals

correctly, as shown in Fig. 4.3(a). Utilizing meet token can reduce the memory usage and the
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computation cost effectively and efficiently, thereby improves the performance of our incision

strategy.

The pseudo code of incision strategy is shown as Fig. 4.4. By the merge operation of incision
strategy, the event slices occur simultaneously in the same time period can be grouped together to
form a coincidence easily. Given an event sequence, we can transform it to an equivalent
coincidence sequence by incision. strategy. Collecting all coincidence sequences can form a

coincidence database which is equivalent to original temporal database.

Algorithm 1: CTMiner (DB, min_sup)

Input: DB: a temporal database, min_sup: the minimum support threshold
Output: FPTpp: frequent pattern tree of a database DB

19: FPTDB «— @,

20: use incision_strategy transforming DB into coincidence representation;
21: call CPrefixSpan (DB, (), min_sup, FPTpg );

22: output FPTpg;

Procedure CPrefixSpan (DB, o, min_sup, FPTpg)

23: scan DB, once, remove infrequent slices and find every frequent slice b such that:

24: (i) b can be assembled to the last slice of e or (ii) (b) can be appended to « to form
a frequent coincidence sequence; // support(h) = (' min_supx|DB| )

25: for each frequent slice . do

26:  if b is a “finish slice” then

278 if exist corresponding start slice in & then  // pre-pruning
28: append b to a to form £ ;

29: if bis a “start slice” or “intact slice” then

30: append b to o to form f;

31: for each fdo
32:  construct f—projected database DB\s with insignificant postfix elimination;
// post-pruning

33:  if|DBg| = (min_supx|DB|) then

34: if fis a temporal pattern then

35: insert ginto FPTpg;

36: call CPrefixSpan (DB, f min_sup, FPTpg );

Fig. 4.5: CTMiner algorithm

4.5.1.2 CTMiner Algorithm

CTMiner [8] is an efficient temporal mining algorithm based on static database. It transforms
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event intervals into non-overlapped event slices and mined all temporal patterns recursively
based on the projection technique [30]. Furthermore, CTMiner employs two optimization
strategies, pre-pruning and post-pruning, to reduce the search space and avoids non-promising
projection. Since the event start slices and finish slices definitely occur in pairs in a sequence,
CTMiner only projects the frequent finish slices which have the corresponding start slices in their
prefixes. It is called pre-pruning strategy which can prune off non-qualified patterns before
constructing projected database. When constructing a projected database, some postfixes need not
be considered. With respect to a prefix (p), a projected postfix is called significant, if all finish
slices in postfix have corresponding start slices in (p). CTMiner constructs the projected database
DBy, by collecting significant postfixes only. All insignificant postfixes are eliminated since they
can be ignored in the discovery of temporal patterns. This pruning method is called post-pruning
strategy which eliminates insignificant sequence when constructing projected database. The

pseudo code of CTMiner algorithm is given in Fig. 4.5.

4.5.1.3 Interval Extension

As mentioned above, appending an event sequence is more challenging than conventional
sequence. Since an interval has duration, an interval in existing event sequence may merge with
an interval.in appended event sequence. Given two intervals /; and 7, with the same event symbol
and /; is in existing event sequence and /> is in appended sequence, if the end time of /; is the
same with the start time of /», /; and , will merge together. The interval-extension may vary the
relation among intervals in the event sequence, hence also modify the coincidence representation
of the event sequence. For example, as the event sequence 1 in Table 4.2, the relation between
interval F' and D is “finished-by” in original _event sequence, but becomes “contains” after
concatenation. The coincidence representations of original event sequence and appended

sequence are {((A)(B)(F')(F D)) and ((F)(G)) respectively. However, the representation of

updated sequence is not just the concatenation of two coincidence sequence since the last

coincidence of ((4)(B)(F )(£_D)) will modify the first coincidence of ((F)(G)), i.e., (A)(B)(F
)(D)F )G)). Fig. 4.6 indicates all possible variations of Allen relation for concatenating two

event sequences.
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relation 1.(Aequal ByO A 2.(Aequal Byo B
variation — (Astarts B) — (A started-by B)
A A A
pictorial
example B B B
relation 3. (A finished-by B) & A 4. (A finished-by B) & B
variation’ — (A contains B) — (Aoverlaps B)
C A A A
pictorial
example’ B B B
relation . 5.(Aequal B) & (Astarts B) | 6. (A finished-by B) & (A starts B)
variation — (Astarts B) — (Acontains B)
o= o A A A A
pictorial
example - B B B B

Fig. 4.6: Possible variations of relation and coincidence representation

for concatenating two event sequences

Definition 4.6 (Concatenation of coincidence sequence)
Given two coincidence sequences and their corresponding time information, Q.= (C}, C,, ..

[s9, f2] where C, = (S, ..., Sw)and 0.” = (C’, Co’, .

- G,
., G, [s97, 1271 where € = (S, ...,
Siy"), Oc < O; means (. concatenates with Q.. There-are three kinds of concatenation for
coincidence sequence,

1) Sequence-extension: O. gy O =(Ci, Cy, ..., Cy, C°, Gy, ..., C), ifo = sQ’;

2) Entire coincidence-extension: Q. <., Q. = (Cy, C,, .. ey Cp), 1f
s 2=5%andx=y

n VS,ueC,Si’eC, S~ S’ where 1 <i<x,

= Cn-la Caa Cz’s

eni lf ( Sni =eni )/\ ( Sli’: eni )
=i (S =e. S '=e"
Co= (Suts +vos Sutseers Sy Sa= | & (=) n (5=,
en[ lf(Sn[:em‘)/\(Sli’:en[)
G if(S,=e,)A (S, =€)

3) Partial coincidence-extension: Q. <o O’ =(Ci, O, ..

n fQ:SQ,

vy Gty Coy Cp, G, o, G, 0
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s ISue C,Si e Cr,Su= S where 1 <k<x, 1 <£<Ly
» IS € Cust. VS € C, Sug® Sin’,or 3817 € C, VS, € Gy, Sii” #8S,;  where 1

<g<x,1<h<y,
Ca = (Sala ceey Saia--~a Sax)a

e. if3S5,=S§,'st.(S,=e, )A(S,=e,)
or(S,=e, )A(S, /=e)

Sii= 10 if3S, =S, st.(S,=e)a(S,/=e,)
OT (. “ AR S iy

S~ otherwise,

n

Cb = (Sb1, - Sbj,..., Sby),

- FENE aes B I ] NG
or (S, =ey~(S,; ' ~e,)

Sy= D if3S, =S,/ st(S,=¢,)A(S,'=¢€)

or(S,=e, )n(S,=e)

1j

§,," otherwise.

If both 38,, € C,s.t. V81" € Cr’, Sie® Sip” and 381,° € C1’, VS, € Cp, Sii” #: S, where

1 <g=<ux, 1'<h<y,ameettoken “@” must be mserted between C, and Cp, i.e., Oc Opar O =
(C1, il . C. .10 OF, G.

Let us take eight coincidence sequences Q;, 0, ..., Os in Fig. 4.7 for example. In Fig. 4.7(a),
when Q) appending O, since the finishing time of Q; is different from the starting time of 0,, we
can just concatenate two coincidence sequences without modification (the case 1 in Definition 6).
In Fig. 4.7(b), when Q3 appending Qs, since the finishing time of Os is equal to the starting time
of O, and the slices in the last coincidence of O3 and in the first coincidence of Q4 are all similar
to each other, the concatenation of Qs and Q4 is the entire coincidence-extension (the case 2 in
Definition 6). By Definition 4.6, (4 BBE )& eu(AB DE" )=(A4 B D),iec, 4 G A=A,
B Cew B =B, and D &ene D = D. Note that, since £ CenE = E *, we need not presenting £ "in
(A B'D).
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Actually, the partial coincidence-extension (the case 3 in Definition 6) has three conditions.
As the coincidence sequences Qs and (¢ in Fig. 4.7(c), since 1) the finishing time of Qs is equal

to the starting time of Qg, and 2) there are event slices, B , D, E and F' , in the last coincidence of
Os similar to event slices, B, D, E and F' in the first coincidence of Qg, respectively, and 3) an

event slice 4 in the last coincidence of Qs is not similar to any slice in the first coincidence of Qg

the concatenation of Qs and Qs is the partial coincidence-extension, i.e., (A4 B DEF ) Opar (B D'
EF)=(ADE ) B E). However, in Fig. 7(d), although the concatenation of Q; and QOgis
also partial coincidence-extension, (AB ' DEF ) Op(BD EF G)=(ADE" )@ (B E G).
Since slice 4 in last coincidence of Q7 and slice G in the first coincidence Qs are not extended,

we need to add token “@” to express meet relation between 4 and G.

event -
sequence O [1>8] 0,10, 18] Q3 [1,10]  0,[10, 19]
A
A
pictorial B
example B D
D
E
coincidence. | (A")(A'BD) Oy (AB™D) (B7) (A'E"(ABDE ) O (AB'DE")(BE )
representation ° s (A,*) (A B/ D1) (A, Bz+Dz) (B, ) _ (A*E*)(A’B*D JBE )
(a) (b)
seanonc P 0s[1, 10] 0, [10,21] 0;[1,10] 0,[10.21]
A
A
B
B
pictorial D i
example D
E i
E
F i
=
coincidence G 1
representation ° :
(B'F)(ABDEF) Opar (B D'EF)(DF) { (B'F)(AB DEF") Opar (B D'EF'G)(DF)
— (B'F")(AD'E")(BE)(DF) — (B'F")(AD'E*)@ (B EG)(DF)
(c) (d)

Fig. 4.7: An example of concatenation of two coincidence sequences
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4.5.2 Proposed Algorithm: Inc_ CTMiner

When a temporal database DB is updated to DB’, there are three possible cases for the

temporal patterns in DB’,

Case 1: A pattern is frequent in DB’, and also frequent in DB.

Case 2: A pattern is frequent in DB’, and infrequent in DB but has a frequent pattern in DB as a
prefix.

Case 3: A pattern is frequent.in DB’, and infrequent in DB and has no any frequent patterns in
DB as a prefix.

Case 1 is easy to handle since we have already stored the information of previous mining results

into FPTpp. We can obtain the temporal patterns in Case 1 by checking and adjusting the support

of every pattern in FPTppin DB’ As the example database DB and db in Table 4.2, the temporal

pattern ((4)(D)): 2 is frequent, where the notation “(pattern) : count” represents the pattern and

its associated support. And itis-stillfrequent after updated.

Although we have not preserved any information of infrequent sequences in DB, in Case 2,
all temporal patterns have at least one prefix subsequence which is frequent in DB, i.e., the
frequent prefix is stored in FPTpp. Hence, we can utilize every temporal pattern.in FPTpp as
prefix to recursively discover the temporal patterns in Case 2. Since, in Case 3, the temporal
patterns have no information stored in previous mining results, £#P7pp, we need to scan DB’ for
all new frequent 1-slices, and then use each new frequent 1-slice as prefix to construct projected
database and recursively mine all temporal patterns in Case 3. For example, in Table 4.2, ((B)(F)):

2 is frequent after updated and has no frequent pattern in DB as prefix in FP1pp.

Before introducing Inc CTMiner algorithm, we first give an intuitive approach,
Naive _Method, for incremental mining temporal patterns. Naive Method will also be used for
baseline comparisons to assess the merit of Inc CTMiner later. Fig. 4.8 illustrates the pseudo
code. It first determines the extended database, EDB, and uses incision_strategy to transform all
event sequences in DB’ to coincidence representation (Lines 1 and 2, algorithm 4.3). Then it calls
CPrefixSpan, which is the sub-procedure of CTMiner, on EDB, and store mined results in a
pattern tree, PTgpp (Line 3, algorithm 4.3). Note that, when mining EDB, the mined results

should include both frequent and infrequent patterns, i.e., the min_sup is set as 1. Since even a
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pattern is infrequent in EDB, it still may become frequent in the updated database DB’. For each
temporal pattern in FTPpp, we update its support count if it also exists in P7zpp and check
whether it is still frequent in DB’ (Lines 4-10, algorithm 4.3). Finally, we verify each remaining

pattern in PTgpp in DB—EDB to adjust the support and output if it is frequent in DB’ (Lines
11-17, algorithm 4.3).

Algorithm 4.3: Naive_Method ( DB’, min_sup, FPTpg)

Input: DB’ updated temporal database, min sup: the minimum support,
FPTpg: frequent pattern tree of original DB

Output: FPTpp:: frequent pattern tree of updated database DB’

Variable: PTy);p: pattern tree of EDB

01: determine EDB ;
02: use incision-strategy to transform DB’ to coincidence presentation;
03: PTgpg — CPrefixSpan ( EDB, (), 1/|EDB|, PTgpp);

// sub-procedure of CTMiner

04: for each node o in FPTpp do
05: if « € PTEDB

06: update support(« ) and delete node & in PTgpg ;

07:  if support () > (min_supx|DB’|)

08: insert node a to FPTpp

09: else

10: delete node « and all its descendent node in F'PTp; ;

11: scan DB — EDB once for updating the support of node in PTgpp ;
12: for each node Sin PTxpz do
13:  if support(S) = ( min_supx|DB’|)

14: insert node fto FPTpp: ;
15:  else
16: delete node S and all its descendent node in PTgpg ;

17: Output FPTDB’ 5
Fig. 4.8: Pseudo code of Naive. Method

In order to calculate the support of all patterns which are infrequent in DB but frequent in DB,
Naive Method keeps the information of all possible candidate set, i.e., mining EDB with min_sup
= 1 (Line 3, algorithm 4.3). This awkward approach induces large memory usage and may
involve many non-promising database projection. To remedy this problem, we design a more
elegant algorithm, Inc CTMiner, which performs two optimization techniques to reduce

unnecessary space searches.
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Definition 4.7 (Search Space Reduction)

Given a temporal pattern « in DB (node « in FPTpg), when DB is updated to DB’, incre_sid is

defined as a set of all sequence IDs in increment database db and incre_slice|, is defined as a set

of all event slices in db,. We have two kinds of search space reduction,

1) Sequence-reduction: If {&’ s sequence list} Mincre_sid = &, then DB, is identical to DB .
The support of o and all temporal patterns prefixed with ¢, i.e., node « and all child nodes
of a in FPTpg, are unchanged in DB’. Hence there is no temporal pattern which is infrequent
in DB but becomes frequent in DB’ with « as prefix. We can stop searching « and all a’s
child nodes in FPTpp.

2) Slice-reduction: If o’ s parent node in in FPTpp does not insert any node as child node

when DB is updated to DB’, and the set of { @ and all &’ s sibling nodes} (incre_ slice, = O,

then the support of & and all temporal patterns prefixed with e, i.e., node & and all child
nodes of & in FPTpp, are-unchanged in DB’. Hence there is no temporal pattern which is
infrequent in DB but becomes frequent in DB’ with & as prefix. We can stop searching « and

all child nodes of ain FPTpp.

4 \ : slice-reduction

z,
r DS ) : )
\\ M S | O : sequence-reduction
o e
E:2
3

2

@

Fig. 4.9: The search space reduction on FPTpp of
example database DB in Table 4.2

Now we give an example to demonstrate the correctness of Definition 4.7. Given DB updated

with db in Table 4.2 (min_sup = 2) and corresponding F7Ppp in Fig. 4.9, the incre sid = {1, 4}

and incre_slice = {B, D, F, F", F, G}. By sequence-reduction, since all the sequence_lists of
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three nodes (4)(D)(E), (A)(E), (D)(E) and (E) are {2, 3}, and {2, 3} N incre sid={2,3} N {1, 4}
= (J, we can stop searching these three nodes when discovering FTPpg+a, as shown in Fig. 4.9.
The sequence_list of node (4)(D) is {1, 2, 3}. Hence, we cannot stop checking and growing the
node (4)(D) by sequence-reduction, due to {1, 2, 3} N {1, 4} = {1}+. However, since the
parent node of (4)(D), i.e., node (A4) does not insert any new child node and the set of (4)(D) and
(A)(D)’s sibling nodes M incre_ slice|qaypy= {D, E} N{F, G} = &, we still can stop checking

and growing node (4)(D) and all its child nodes by the slice-reduction, as shown in Fig. 4.9.

DB’= DB +db
previous
mining DB
result :

{}

FPTpg {1 APPEND gj&xm
L e Inc_ CTMlner

db FPTpg:

infrequent S ,/ ‘\ (case 1, 2 and 3)
l=slices in DB (%) i %
L. Initial phase: I1. Mining phase:

)
-« . S “ —
Y R g
scan et new frequent mine
1-slices in L frequent patterns
1-slices in DB
DB in DB’ (case 3)

I11. Extending phase:

ASE- A 2 A

frequent patterns e frequent patterns
FPTpp reduce

in DB’ (case 1) in DB’ (case 2)

________________________________________________________________________________

Fig. 4.10: An algorithmic overview of Inc_CTMiner

The search space reduction in Definition 4.7 plays an important role in Inc_ CTMiner. When
the minimum support goes lower and the maintained patterns turn to be longer, many
unnecessary searches can be avoided effectively. As observed in our experiments, the search

space reduction can skip more than 60% nodes in FPTpp, especially when minimum support is
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extremely low. This is also the main reason why Inc CTminer not only outperforms other
algorithms in runtime performance, but also consumes less memory space. The algorithmic
overview and the pseudo code of Inc CTMiner are shown as in Fig. 4.10 and Fig. 4.11,

respectively.

Algorithm 4.4: Inc_CTMiner ( DB’, min_sup, FPTpgp)

Input: DB’ : updated temporal database, min_sup: the minimum support,
FPTpg: frequent pattern tree of original DB
Output: FPTpp : frequent pattern tree of updated database DB’

01: determine EDB; // initial Phase

02: use incision_strategy with interval_extension to transform DB’ into
coincidence presentation

03: NFS « scan db and check infrequent 1-slices in DB for new frequent
1-slices in DB’ ; // frequent 1-slice in DB’ ¢ FPTpp

04: for each slice b.in.NFS do // mining phase
05: insert b into FPTpp;
06: call Inc_CT (DB, b, min_sup, FPTpg:);

07: scan DB’ once for update the support of node in FPTpp ; // extending phase
08: for each node « in FPTpg whose support = ( min_supx|DB’| ) do

09:  insert e into FPTpp: ;;

10:  if search_pruning (o, DB\, ) = ““ false  // search space pruning

11: call Inc_CT (DB, o, min_sup, FPTpg");

12: Output FPTpg;

Procedure Inc_CT ( DB’|,, o, min_sup, FPTpg")

13: scan DB/, once to find every frequent slice ¢ ; //support = ( min_supX|DB’|)
14: for each slice ¢ do

15:  “if ¢ is a “finish slice” then

16: if exist corresponding start slice in « then // pre-pruning
17, append ¢ to a to form g,

18: if ¢ is.a “start slice” or “intact slice” then

19: append ¢ to a to form S,

20: for each gnot existed in FPTpp do
21:  construct DB’j; with insignificant postfix elimination; / post-pruning
22:  if |DB’\g| = (‘min_supx|DB’| ) then

23: insert finto FPTpg;
24: if search_pruning (8, DB’z) = “false ” // search space pruning
25: call Inc_CT (DB’\3, B, min_sup, FPTpg );

Fig. 4.11: Algorithm of Inc CTMiner

There are three phases in Inc_ CTMiner, initial phase, mining phase and extending phase.
Initial phase first uses the incision strategy and considers the interval extension to transform all

sequences into coincidence representation (Line 2, algorithm 4.4), and scans db once to discover
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all new frequent 1-slices in DB’. Notice that, due to the storing of infrequent 1-slices in DB, we
can find the complete set of new frequent slices in DB’ without rescanning DB again (Line 3,
algorithm 4.4). Then, in mining phase, we use each new frequent slice as prefix to construct
projected database and call sub-procedure /nc_CT to discover the temporal patterns (Lines 4-6
algorithm 4.4). Finally, in extending phase, Inc CTMiner updates the support of every frequent
pattern in DB. If a pattern is still frequent in DB’, we use search_reduction in Definition 7 to
check if growing can stop. If not, sub-procedure /nc CT is called to discover the temporal

patterns (Lines 7-11, algorithm 4.4).

Sub-procedure Inc_CT recursively calls itself and works as follows. For a patter « as prefix,
we scan its projected database DB), once to find its locally frequent slices (Line 13, algorithm 4.4)
and adopt pre-pruning and. post-pruning strategies to avoid non-promising projection (Lines
14-23, algorithm 4.4). We alsouse search reduction to check whether growing can stop. If not,

call Inc_CT recursively to discover the temporal patterns (Lines 24-25, algorithm 4.4).

4.6 Experimental Results and Performance Study

To evaluate the performance of Inc_CTMiner, one temporal pattern mining algorithms,
CTMiner [8] and one incremental temporal pattern maintaining approach, Naive method are
compared with Inc_CTMiner. All algorithms were implemented in C™ language and tested on a
computer with Pentium D 3.0 GHz with 2 GB of main memory. The performance study has been
conducted on both synthetic and real world datasets. We perform three kinds of experiments in
order to assess the efficiency of Inc. CTMiner. First, we compare the execution time and memory
usage using synthetic datasets at extreme low minimum support. Second, we run Inc_ CTMiner
on different scenario to reflect the influence on performance of updated environments. Third, we
conduct an experiment to observe the scalability on execution time of Inc CTMiner. Finally,
Inc_ CTMiner is applied in real-world dataset, library lending data, to show the performance and

the practicability of incremental maintenance for temporal patterns.
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4.6.1 Data Generation

The synthetic data sets in the experiments are generated using synthetic generation program
modified from [1]. Since the original data generation program was designed to generate time
point-based data, the generator for the temporal pattern maintaining algorithm requires
modifications on interval events and incremental scenario accordingly. The parameter setting of

temporal data generator is shown in Table 4.5.

Table 4.5: Parameters of synthetic data generator

Parameters Description

| D Number of event sequences

|C| Average size of event sequences

S| Average size of potentially frequent sequences

Ns Number of potentially frequent sequences

N Number of event symbols

Rine Ratio of the number ?f sequences in increment database db to
updated database DB

Rl Ratio of tl}e numb.erlof existed: sequences extended to new
sequences inserted in increment database db

Reop Ratio of the number of intervals of an existed sequence

appearing in original database DB to increment database db

The updated database DB’ is generated first and.then divided into the original database DB
and increment database db. We create a set of potentially frequent sequences used in the
generation of event sequences. The number of potentially frequent sequence is Ns. A potentially
frequent sequence is generated by first picking the size of sequence from a Poisson distribution
with mean equal to | § |. Then, the event intervals in potentially frequent sequence are chosen
from N event symbols randomly. All the duration times of event intervals are classified into three
categories: long, medium and short, which are normally distributed with an average length of 12,
8 and 4, respectively. For each event interval, we first randomly decide its category and then
determine its length by drawing a value. The temporal relations between consecutive intervals are
selected randomly to form a potentially frequent sequence. Since we adopt normalized temporal
patterns [13], the temporal relationships can be chosen from the set {before, meets, overlaps,
is-finished-by, contains, starts, equal}. After all potentially frequent sequences are determined,

we generate | D | event sequences. Each event sequence is generated by first deciding the size of
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sequence, which was picked from a Poisson distribution with mean equal to | C |. Then, each

event sequence is generated by assigning a series of potentially frequent sequences.

Finally, we partition the updated database DB’ into the original database DB and increment
database db, as the example in Fig. 4.1. Different settings of three parameters are used to reflect
different updating scenarios. Parameter R;,., called increment ratio, decides the size of the
increment database db. We pick | D.| X R;,. sequences randomly into db and place remaining | D |

X (1 - Rj,.) sequences into. DB. Furthermore, we use extended ratio, R.., to divide event

b

sequences in db to “old” sequences, which’s sid have appeared in DB, and “new” inserted

sequences. Total | db | x R... sequences were randomly chosen from db as “old” sequence which
were to be split further. The splitting of event sequences is to simulate that some intervals are
conducted formerly (thus in"DB), while the remaining intervals are newly appended (thus in db).
The splitting is controlled by the third parameter R,,,, the appended ratio. If a sequence with total
m intervals 18 to split, we placed the leading m X (1 = R,;,) intervals in DB and the remaining m
X R, mtervals in db,. For example, a DB’ with Rj,. = 20%, R.; = 30% and R,,, = 40% means
that 20% of sequences in DB is in db; 30% of the sequences in db have sids occurring in DB,
and that for each “old” sequence, (1 -40%) = 60% of intervals were conducted before database

updating. Note that the calculation is integer-based with “ceiling” function.

4.6.2 Execution Time and Memory Usage on Synthetic

Datasets

In all the following experiments, two parameters are fixed, i.c., the average size of potentially
frequent sequences, | S | = 4, and the number of potentially frequent sequences, Ns = 5,000. We
set Rine = 10%, Reyy = 50% and R,,, = 20% to model common database updating scenario. The
effect of various minimum supports on performance, including runtime and memory usage is
evaluated. The first experiment for comparison of five algorithms is on the dataset
D10k—C10-N1k with the minimum support thresholds varying from 0.01 % to 0.005 %.
Obviously, re-mining from scratch with non-incremental algorithm is less efficient than using

incremental maintaining algorithm, as illustrated in Fig. 4.12(a). When we continue to lower the
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minimum threshold, the runtime for TPrefixSpan and IEMiner increase drastically compared to
CTMiner, Naive method and Inc CTMiner while Inc CTMiner outperforms the other four
algorithms. We can see that when the support is larger than 0.009 %, CTMiner outperforms Naive
method partly because of the generation of a fewer number of frequent patterns for the
maintenance. When minimum support is 0.005 %, Inc_ CTMiner is about 3 times faster than
Naive method, 4 times faster than CTMiner, about 10 times faster than IEMiner, more than 38
times faster than TPrefixSpan. The memory usages of five algorithms are showed as in Fig.
4.12(b). We can see that Inc_ CMiner consume less memory than the other four algorithms. For
example, when minimum support threshold is reduced to 0.005%, Inc. CTMiner consumes 27
MB which is more than 1.2 times smaller than CTMiner (33 MB), more than 1.7 times smaller
than TPrefixSpan (48 MB), about 2.4 times smaller than Naive method (65 MB), and almost 5.8
times smaller than IEMiner (104 MB).
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Fig. 4.12: The performance on data set D10k — C10 — N1k (with R;,.= 10%, Ry =
50% and R,,, = 20% updating scenario)

The second experiment is performed on data set D100k—C20-N10k, which contains 100,000
event sequences, average length 40 and 10,000 event intervals with common database updating
scenario. The execution time of different algorithms is shown in Fig. 4.13(a). We can see that
when the support is 0.005%, Inc_CTMiner takes 610 seconds, which is more than 2.4 times faster
than Naive method (1515 sec.), more than 4.1 times faster than CTMiner (2526 sec.), about 10.5
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times faster than IEMiner (6439 sec.), about 38 times faster than TPrefixSpan (23232 sec.). Fig.
4.13(b) shows the memory usages of five algorithms with different minimum support thresholds.
We can see that although Naive method has better performance on execution time than re-running
CTMiner from scratch, it involves larger memory space for execution partly because of storing

every possible frequent sequences and doing many non-promising database projection.
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(a) The execution time of three algorithms  (b) The memory usage of three algorithms

Fig. 4.13: The performance on data set D100k — C20 — N10k (with R;,. = 10%, Rex; =
50% and Ry, = 20% updating scenario)

The third performance measurement is performed on a larger data set D200k—C20-N10k. The
data set contains a large number of temporal patterns when minimum support is reduced to 0.005
%. Fig. 4.14(a) illustrates the execution time of different algorithms at different minimum
supports. When minimum support lowers to 0.005%, Inc_CTMiner takes 1,759 sec., which is
almost 2 times faster than Naive method (3371 sec.), more than 3.3 times faster than CTMiner
(5804 sec.), about 10 times faster than IEMiner (17543 sec.), more than 23.5 times faster than
TPrefixSpan (41364 sec.). Fig. 4.14(b) shows the results of memory consuming, from which we
can observe that Inc_ CMiner is not only more efficient, but also more stable in memory usage
than the other four algorithms. For example, when minimum support threshold is reduced to
0.005%, Inc_ CTMiner consumes 271 MB which is more than 1.4 times smaller than CTMiner
(397 MB), about 3.8 times smaller than Naive method (1,031 MB), about 4.7 times smaller than
TPrefixSpan (1,294 MB) and almost 5.8 times smaller than IEMiner (1,579 MB).
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Fig. 4.14: The performance on data set D200k — C20 — N10k (with R;,. = 10%, Ry, =
50% and Ry, = 20% updating scenario)

Three experiments above indicate that, when some sequences are appended and some new
sequences are inserted, even with an extremely low minimum support and a large number of
temporal patterns, Inc_ CTMiner algorithm is still efficient and outperforms other algorithms in

both execution time and memory usage.

4.6.3 Performance on Different Updating Scenario

In this section, in order to reflect the influence of incremental environment on time
performance, three parameters, increment ratio, extended ratio and appended ratio, are configured
to generate different updating scenarios for comparing the execution times of five algorithms.
Generally, incremental maintaining algorithms gain less at higher increment ratio because larger
increment ratio means more sequences appearing in db and causes more pattern updates. If most
of the frequent sequences in DB turn out to be invalid in DB’, the information stored by
maintenance algorithms in pattern updating might become useless. Fig. 4.15 is the results of
varying increment ratio, R;,., from 1% to 40% on D100k — C20 — N10k. The min_sup is fixed at
0.01%. Note that we use the execution time ratio to show the improvement of incremental

maintaining algorithms over CTMiner, i.e., the execution time of incremental maintaining
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algorithm / the execution time of Inc CTMiner. As indicated in Fig. 4.15(a), the smaller the
increment database db is, the more time Inc_ CTMiner could save. Inc CTMiner is still faster
than CTMiner even when R;, reaches 40%. When R;,. becomes much larger, say over 40%,
Inc_CTMiner is slower than CTMiner. When the size of the increment database becomes larger
than the size of the original database, i.e. the database has accumulated dramatic change,

re-mining from scratch might be a better choice for the totally new sequence database.

The impact of the extended ratio, R, 1S presented in Fig. 4.15(b) on D100k — C20 — N10k
dataset with min_sup =0.01%. Note that, for better illustration, we adopt the execution time ratio
to show the improvement of incremental maintaining algorithms over CTMiner. As shown in Fig.
16, Inc_CTMiner updates patterns more efficiently than Naive method and CTMiner. Higher R,
means that there are more event sequences in the original database expended in the increment
database. Consequently, the speedup ratio decreases as the R, increases because more appended
sequence need to be processed. We can observe that Inc. CTMiner is efficient even when the R,
is increased to 100%, i.e., all the sequences in the increment database are extended from original
database. Fig. 4.15(c) depicts the performance comparisons of Inc_ CTMiner and Naive method
with CTMiner concerning appended ratios, R,,,, on D100k — C20 — N10k dataset. We can see
from the figure that Inc CTMiner is constantly about 5.3 times faster than CTMiner over various

Rapp, ranging from 10% to 90%.

4.6.4 Scalability Studies

In the following experiments, we study the scalability on the execution time of Inc CTMiner
algorithm. Here, the total number of event sequences is increased from 100K to 500K, with fixed
parameters C = 20, N = 10k, Rj,e= 10%, R.; = 50% and R, = 20%. Fig. 4.16(a) shows the
results of scalability tests of the Inc CTMiner ‘algorithm, with different minimum support
threshold varying from 0.03 % to 0.01 %. As the size of database increases and minimum support
decreases, the processing time of Inc CTMiner increases, since the number of patterns
maintained also increases. As can be seen, under different minimum support threshold,

Inc_CTMiner is still linearly scalable with different database size.
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Fig. 4.15: Total execution time with various increment ratios, extended ratios and
appended ratios

4.6.5 Impact of Pruning Strategy

In this section, to reflect the speedup of proposed pruning methods, we measure the
Inc_ CTMiner with two pruning strategies and without pruning strategy on time performance. The
experiment is performed on the data set D100k—C20-N10k, which contains 100,000 event
sequences, the average length of sequence is 20 and the number of events is 10,000. Fig. 4.16(b)
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is the results of varying minimum support thresholds from 0.5 percent to 0.1 percent. As shown
in Figure, sequence-pruning strategy can improve 25.6% to 33.8% of the performance of
Inc CTMiner. Because of removing unnecessary sequences before maintenance, sequence-

pruning can efficiently speedup the execution time.
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Fig. 4.16: The performance on different database size and on influence of proposed
pruning strategies
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The impact of the slice-pruning strategy is presented in Fig. 4.16(c). As can be seen from the
graph, when Inc CTMiner is without slice-pruning, the execution time is about 21.2% slower
than Inc CTMiner in average. We can find that slice-pruning strategy can improve the
performance of Inc CTMiner by effectively eliminating all useless sequences for maintaining
temporal pattern. Fig. 4.16(d) depicts the influence on two proposed pruning strategies. We can
see that Inc CTMiner is constantly about 40.2% faster than the one without any pruning strategy.
Consequently, the proposed pruning strategies not only effectively reduce the searching space but

also efficiently improve the performance of Inc_CTMiner.

In summary, our performance study shows that Inc CTMiner has the best overall
performance among the algorithms tested. The memory usage analysis shows the efficient
memory consumption of Inc_CTMiner. The scalability study also shows that proposed algorithm

scales well even with large databases and low thresholds.

4.6.6 Real Dataset Analysis

In addition to using synthetic data sets, we have also performed an experiment on real world
data set to compare the performance and indicate the applicability of temporal pattern mining.
The database used in this experiment consists of a collection of 1,098,142 library records,
includes lending and returning records, for three years from the National Chiao Tung University
Library. The database includes 206,844 books and 28,339 readers. An event interval is composed
by a book ID and corresponding lending and returning time. The size of database is the number
of sequences in database (same as the number of readers, 28,339). The maximum and the average
length of sequences are 302 and 36, respectively. First, we collect the records of first two and half
years to construct the original database DB and use the record of last half year to build the
increment database db. The DB with 1,053,276 library records can be viewed as 26,738 user
sequences and the db with 44,866 library records can be viewed as 3,514 user sequences. Fig.
4.17(a) shows the performance of execution time with varying minimum support thresholds from
0.1 % to 0.05 %, respectively. As the minimum support drops down to 0.05 %, Inc_CTMiner is

almost 2 times faster than Naive method and more than 2.7 times faster than CTMiner.
Finally, we discuss the performance of Inc_CTMiner to process multiple database updates.
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We still use the records of first two and half years to construct DB and divide the records of the
rest half years by every one month to build six different db. Fig. 4.17(b) shows the performance
of Inc_ CTMiner, with min_sup = 0.1%, to incrementally maintain multiple database updates, i.e.,
6 months, six updates in this case. Each time the database is updated, we also run CTMiner to
re-mine from scratch for comparison. We can see from the figure, when the increments
accumulate, the time for incremental mining also increases, but increase is very small. The
incremental mining still outperforms te-mining with CTMiner by a factor of 2.5 or 3.5. This

experiment shows that Inc. CTMiner is really efficient for multiple updates of database.
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Fig. 4.17: Execution time of three algorithms and multi updates on library dataset from
NCTU

4.7 Summary

Previous studies of updating sequential pattern mainly are focused on time point-based data.
Little attention has been paid to the incremental mining of temporal patterns from time
interval-based data. Since the processing for complex relations among intervals may require
generating and examining large amount of intermediate subsequences, maintaining temporal

patterns from time interval-based data is a challenging problem. In this chapter, we investigate
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the issue for incremental mining the temporal patterns. Inc_CTMiner is proposed to balance the
efficiency and reusability based on a proper expression, coincidence representation. The
algorithm also employs two optimization techniques, sequence-reduction and slice-reduction, to
further reduce the search space effectively. The experimental results indicate that both execution
time and memory usage of Inc CTMiner outperform previous algorithms designed based on
static database. We also show the graceful scalability of Inc_ CTMiner. Furthermore, we apply the

algorithm on real world dataset to sho e ¢ e and the practicability of maintaining

temporal patterns.



Chapter 5

Conclusion

In this dissertation, we propose two new representations, coincidence representation and
endpoint representation to simplify the processing of complex relations among event intervals.
Then, three efficient algorithms are developed to discover several types of temporal patterns from
interval-based data. These algorithms employ some pruning techniques to reduce the search space
effectively. The experimental studies indicate that all proposed algorithm is efficient and scalable
and outperforms state-of-the-art algorithms. Furthermore, we also apply our algorithms on real

world data to show the efficiencyand validate the practicability of interval-base temporal mining.

In Chapter 2, a novel technique, incision strategy and a new representation, coincidence
representation are proposed to remedy the critical issue of temporal pattern mining. We simplify
the processing of complex relations among event intervals effectively. Coincidence representation
is nonambiguous and has several advantages over existing representations. Based on coincidence
representation, we develop an efficient algorithm, CTMiner to discover frequent temporal
patterns without candidate generation. The algorithm further employs two pruning techniques,
pre-pruning and post-pruning, to reduce the search space effectively. By analyzing the differences
between mining sequential patterns and temporal patterns, we also propose a new projection
technique, multi-projection to correctly project a database into a set of smaller projected
databases. The experimental studies indicate that CTMiner is efficient and scalable. Both running

time and memory usage of CTMiner outperform state-of-the-art algorithms.

Previous studies of mining closed sequential pattern mainly are focused on time point-based
data. Little attention has been paid to the mining of closed temporal patterns from time
interval-based data. Since the processing for complex relations among intervals may require
generating and examining large amount of intermediate subsequences, mining closed temporal
patterns from time interval-based data is an arduous problem. In Chapter 3, we develop an

efficient algorithm, CEMiner, to discover closed temporal patterns without candidate generation,
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based on proposed endpoint representation. The algorithm further employs three pruning methods,
pre-pruning, post-pruning and pair-pruning, to reduce the search space effectively. The
experimental studies indicate that CEMiner is efficient and scalable. Both running time and
memory usage of CEMiner outperform the state-of-the-art algorithms. Furthermore, we also
apply CEMiner on real world dataset to show the efficiency and the practicability of mining time

interval-based closed pattern.

Little attention has been paid to the incremental mining of temporal patterns from time
interval-based data. Since the processing for complex relations among intervals may require
generating and examining large amount of intermediate subsequences, maintaining temporal
patterns in interval-based database is a challenging problem. In Chapter 4, we investigate the
issue for incremental mining of the temporal patterns. Inc_CTMiner is proposed to balance the
efficiency and reusability based on a proper expression, coincidence representation. The
algorithm also employs two-optimization techniques, sequence-reduction and slice-reduction to
further reduce the search space effectively. The experimental results indicate that both execution
time and memory usage of Inc CTMiner outperform previous algorithms designed based on
static database. We also show the graceful scalability of Inc_CTMiner. Furthermore, we apply the
algorithm on real world dataset to show the efficiency and the practicability of maintaining time

interval-based patterns.
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