On Traffic Diversity and Code Coverage: An Experimental

Analysis

BopoA e g

hERE R KR

OE % B -FRE- # - O



PRI SREERLNGEFLZRRA

CERIEY hERE: HER

PEARN AR HT Y AT MBI RELE R IFE SR E S RELE
Fen ke B A FEBEHE 2 AR EA ] R B P R AP R4
AR BEPFRPIRGEREEFHoBEH 2 B D W4 o LR
Snort & e sk % kT i E Kik- F 0 1) 32, 2% R iR

Kihz 7120 31.8% & Linux kernel *F & > i & Rih- ¥ i 3 8. 16%:R]

REEF AR KRS P E P QAT EF A BB RS E B g

G R LR ARSI BRI T EF R L S LR
LT LP TSRS TS SETERE T EE R S

AT Ed TEDEFRE THOR AHPEhRRREG LR -

MaEF: g F R BNEES 0 RRBRE



On Traffic Diversity and Code Coverage: An Experimental Analysis

Student: Chun-Pin Shao Advisor: Dr. Ying-Dar Lin
Institute of Network Engineering

National Chiao Tung University

Abstract

Network traffic traces can be used to test network devices. Network traffic
traces may differ in many aspects, such as the user’s behaviors and the size of
network. It is assumed that using more diverse traffic to test network devices could
have larger code coverage. However, how to describe the diversity of traffic traces is
still an issue. In this thesis, traffic diversity index is defined and a methodology for
calculating traffic diversity and analyzing-code coverage is proposed. Packet traces
with different number of packets and collected from different size of network
segments are used to test target programs: Experiment results show that code
coverage increases with more number-of packets or larger size of network segments.
In experiments on Snort, packet source 1 can achieve 32.2% code coverage while
packet source 2 achieves 31.8%, and on Linux kernel, packet source 1 can achieve
8.16% while packet source 2 achieves 9.47%. Richness which is the number of types
in a packet trace would not decrease with a larger number of packets or larger size of
network segments in packet traces. However, evenness which is the relative
proportion of a type of packets among the packets in a packet trace may not increase
correspondently since there would be traffic bursts from the same user or the same
network protocol, thus the decrease of traffic diversity. In the view of richness and
evenness, we can learn more information about packet traces.

Keywords: traffic diversity, code coverage, network test



Content

CHAPTER 1 INTRODUCTION ...ttt ettt ettt st e st e st e e st e s s tassabe s satassabessataesaeeeas 1
CHAPTER 2 RELATED WORKS ...ttt sttt e sttt ste s st e e s te s sab s s sbaessbaessaanesaan e 2
2 R D LAY ==t I 1 N[ =5 3
A O] 5] =N 010 )Y/ = = ¥\ ] =S 6
CHAPTER 3 PROBLEM STATEMENT ..ottt ettt sttt st s st s eraesane s 7
I I B = T o (0] £ 8
3.2 PROBLEM STATEMENT ...vvttiiitteteietee e e etteeesetteeesestessssbeseesssbesesassessessssesssssbesesasssssesassssesssrenssasseesesases 8
TR I =0t 1= 0 = 9
CHAPTER 4 SYSTEM ARCHITECTURE AND PROPOSED METHODOLOGY........ccceueune.. 10
4.1 SYSTEM ARCHITECTURE ....cciittiieiteee e s etteeeeetee e e staeessetbeeesastesesssbeeeeabaesssstesesssbeeesasbeesessensesssrenenas 10
Y [ = A T0] 010 0 1€ 2 11
CHAPTER 5 EXPERIMENTS AND OBSERVATIONS (i ittt 12
DL ENVIRONMENT ... tcuvttieiuveeeesefines chnses s iiiassssans i5eandantssanssabessesbeneiiesesesassessssnsesesssssesssassessssssssesssenens 12
5.2 EXPERIMENT RESULTS ..uvvieiiesseee iitetessassssessnsesesansaissstansssiiitesnnnnesssessssessssesesssssessssssssssssssssssssenens 13
CHAPTER 6 CONCLUSION. ...ttt ieieievis it easiinnssassssstiesereesseis e o aaasesttsssesssstesssesssssssssesssssssssessssnes 26

REFERENCES .......coo oo e i ittt ettt 27



List of Figures

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

1 Diversity index calculator and code coverage analyzer

2 Methodology of diversity calculator

3 Methodology of code coverage analyzer

4 Diversity index vs. code coverage with different number of packets in Snort

5 Correlation coefficient between code coverage and diversity indices on Snort

6 Diversity index vs. code coverage with different size of network segment in
Snort

7 Range of code size in Snort

8 Application header diversity index vs. code coverage with different size of
network segment in Snort

9 Diversity index vs. code:coverage with different number of packets in Linux
Kernel

10 Correlation coefficient between code coverage and diversity indices on Linux

kernel
11 Diversity index vs. code coverage with different size of network segment in

Linux kernel



List of Tables

Table 1 Examples of richness and evenness
Table 2 Comparison between diversity indices
Table 3 Example of problem statement

Table 4 Configuration of Snort-2.9.0.5



Chapter 1 Introduction

Network traffic traces can be used to test network devices. For example, NCTU
Betasite [1] collects traffic from dormitories to test network devices. Network traffic
traces differ in many aspects. The complexity of network traffic generated by various
traffic generators is different from traffic captured from the real world. The user’s
behaviors on different traffic traces from different network segments or captured
during different time periods are also different.

A major issue of how to describe the differences between network traffic traces
is developed in this thesis. An idea referred to biological diversity is introduced.
Biological diversity [2] is a degree of variation of life species within a given ecosystem
for measuring the health of a given ecosystem. Greater diversity implies better
health. Considering packets that belong to a defined type as individuals of a life
species, the concept of biological diversity can be used to describe how diverse a
network traffic trace is and traffic diversity is coined in this thesis. Furthermore, a
traffic diversity index is needed to quantify the traffic diversity to alleviate the
comparison of traffic traces. There are several well-known diversity indices such as
Simpson’s index [3], Shannon’s index [4][5] and Renyi’s index [6][7]. Those indices are
compared and one of them is chosen for calculating traffic diversity index.

Network traffic traces are used for testing network devices. A major concern of
using network traffic traces to test network devices is how much code coverage the
network traffic traces can achieve. Code coverage [8] is a measure used in software
testing. It is a degree to which the source code of program has been tested. It is
assumed that using more diverse network traffic to test network devices could have

larger test coverage and hence may trigger more defects.

1



In this thesis, network traffic traces will be compared underlying traffic diversity
and verified if more diverse traffic can achieve larger code coverage. The models
based on traffic diversity index will be defined by TCP/IP header fields (fixed-length
header fields) and application header fields (variable-length header fields). The
diversity index for each header field of a traffic trace will be calculated according to
the defined models of traffic diversity. All diversity indices of a traffic trace will be
formed by a diversity vector and then merged as a combined diversity index. The
traffic diversity of traffic traces will be compared according to every single traffic
diversity index and the combined traffic diversity index. Next, code coverage will be
applied where source code needs to be instrumented with code coverage analysis
tool. Traffic traces that differ in number of packets and network of segments will be
used to measure the code coverage where the code coverage analysis tool is applied.
Finally, the correlation between traffic diversity indices and test coverage will be
verified.

The organization of this thesis:is as follows. In chapter 2, related works including
introductions to diversity index, well-known diversity indices and code coverage will
be presented. In chapter 3, definitions and problem statement will be presented.
System architecture and proposed methodology will be presented in chapter 4.
Experiment results and observations will be presented in chapter 5. Finally,

conclusion of this thesis will be presented in chapter 6.

Chapter 2 Related Works

In this chapter, we shall introduce basic terms of diversity index and three
well-known diversity indices. We shall give an example to illustrate them. Code

coverage will be introduced as well. Criteria of code coverage will be illustrated by an
2



example.

2.1 Diversity Index

Overview

A diversity index is a statistic to measure the local members of a set consisting
of various types of objects. It was first introduced in ecology [1] to measure the
biodiversity in an ecosystem. It can also be applied in other areas, such as in
economics to measure the distribution over sectors of economic activity in a region,
and in information science to describe the complexity of a set of information. We
shall use the terms of ecology to explain diversity index in the rest of this chapter.

There are two basic factors of measuring diversity index: species richness and
species evenness [2]. Species richness is simply the'number of species present in a
system and makes no use of relative abundances. The more species present in a
habitat, the richer the habitat. Species evenness s the relative abundance or
proportion of individuals among the species.

To give an example, we sample/‘two different fields for wildflowers, as shown in
Table 1. Sample 1 consists of 300 daisies, 335 dandelions and 365 buttercups, while
sample 2, 20 daisies, 49 dandelions and 931 buttercups. Both samples have the same
richness, 3 species, and the same total number of individuals. However, the first
sample has more evenness than the second. This is because the total number of
individuals in the first sample is quite evenly distributed between the three species

than the second.



Table 1: Examples of richness and evenness

Numbers of individuals
Flower species Sample 1 Sample 2
Daisy 300 20
Dandelion 335 49
Buttercup 365 931
Total 1000 1000

Simpson’s index

Simpson’s index [3], in terms of ecology, takes into account the species richness
as well as the species evenness. The Simpson’s index D represents the probability
that two randomly selected individuals in the habitat will belong to the same species.

The formula for calculating D is

D= Zf:lni(ni_l)
NN-1) '

where N represents the total number of individuals of all species, n; the number
of individuals in species i, S the number of species. However, we often use D=1 — D
to present diversity intuitively. Index.0, represents no diversity of species, while index
1, infinite. The bigger D represents more diversity.

To give an example, consider the example in Table 1. We calculate diversity

index for sample 1 and sample 2 as

E(Sample 1H=1- 300(300-1)+335(335-1)+365(365-1) _ 0.666,
1000(1000—1)

5(Sample 2)=1— 20(20-1)+49(49-1)+931(931-1) _ 0.131.
1000(1000—1)

Therefore, sample 1 is more diverse than sample 2 in the view of Simpson’s index.

Shannon’s index

The Shannon index H [4][5] takes into account the species richness and the

species evenness as well. It is the information entropy of the distribution, treating



species as symbols as their relative population sizes as the probability.
The formula for calculating H is

H=— Z?:l p; In Pi,

. . . n; .
where p; represents the relative abundance of each species, calculating as Fl n; is

the number of individuals in species I, N the total number of all individuals, S the
number of species.
To give an example, consider the example in Table 1. We calculate diversity

index for sample 1 and sample 2 as

300 300 335 335 365

H(Sample 1) = —( n + In +
1000 ™ 1000 T 1000 ™ 1000 T 1000 " 1000

©%=1.212,

20 20 49 49 931

H(Sample 2) = —(——In + In +
1000 " DA REREY 7000 T 1000 " 1000

°2)=0.293.

Therefore, sample 1 is more diverse than sample 2 inithe view of Shannon’s index.

Renyi’s index
Renyi’s index [6][7] is a generalization of Shannon’s index. The Renyi’s index of
order o is defined as

Hg =_ln(zl 1pl)

where a« > 0, # 1, p; represents the relative abundance of each species,

calculating as %, n; the number of individuals in species I, N the total number of all

individuals and S the number of species. Lower value of «, approaching zero, give a
index which increasingly weights all possible events more equally, regardless of their

probabilities. a which is approaching one gives the Shannon’s index. When a = 0, it

is the maximum possible Shannon’s index.

Comparison

All indices above consider both richness and evenness. We further compare
them in the view of sample size sensitivity and difficulty of calculation [5]. Table 2

lists the comparison. Simpson’s index has lower sample size sensitivity than
5



Shannon’s index as well as Renyi’s index. In this thesis, packet number of packet
traces in experiments ranges from 1 to 10000000, thus we prefer Simpson’s index.
Furthermore, calculation of Simpson’s index is simpler than Shannon’s index and

Renyi’s index.

Table 2 Comparison between diversity indices

Simpson’s | Shannon’s | Renyi’s

index index index
Sample size sensitivity Low High High
Calculation Simple Moderate | Moderate

2.2 Code Coverage

Overview

Code coverage [8][9] was first- mentioned in. “Communications of the ACM” in
1963 by Miller and Maloney. It is @ measure used in systematic software testing to
describe the degree to which the source code of a program has been tested.

Software testing can be categorized simply into black-box testing and white-box
testing. Black-box testing is based on what a system is required to do, while
white-box testing is based on how a system operates. Coverage-based testing

provides a way to quantify the degree of thoroughness of white-box testing [10].

Coverage criteria

To measure how well the program is executed by a test suite, we can use one or
more coverage criteria. There are three basic coverage criteria [11][12]:
A. Function level coverage — The percentage of functions which have been called in
a program.
B. Branch level coverage — The percentage of branches of control structures which

have been decided in a program.



C. Line level coverage — The percentage of lines which have been executed in a
program.

For example, consider the following C++ function.

int foo (int x, int y)

{
intz=0;
if ((x>0) && (y>0))
z=x;
return z;
}

Assume this function is part of some bigger program and this program is running
with some test suite. If during the execution function “foo” is called at least once, the
function level coverage for “foo” is satisfied. Branch level coverage can be satisfied
with test cases that call foo(1, 1), foo(1, 0) and foo(0, 0). These are necessary as in
the first two cases (x > 0) evaluates to true while the third false. Line level coverage
can be satisfied if foo(1, 1) is called. In this case, every line in this function is
executed.

Moreover, the increasing size and complexity of software system has led to
increasing challenges in evaluating code coverage. There would be scalability issues
with large software for common code coverage tools. Prioritized coverage approach
[13] is proposed to provide capabilities for evaluating code coverage and setting

priorities for testing.

Chapter 3 Problem Statement

In this chapter, we define diversity indices to alleviate comparison between
packet traces. Criterion of code coverage is also defined. Finally, we give a problem

statement.



3.1 Definitions

A. Diversity index
We define six diversity indices which includes fixed-length headers and
variable-length header. Each index is calculated by the formula of Simpson’s index.
Ds jpis the diversity index for source IP of a packet trace, which means the probability
that randomly select two packets from a packet trace, the source IPs are different.
Thus Dy jp is for destination IP, Ds o1t for source port, Dy port for destination port.
Moreover, we define a mixed diversity index Dpmix= Ds p™ Dy 1p™ Ds port * Dy _port Which
means the probability that randomly select two packets from a packet trace, the
source IPs, destination IPs, source' ports and destination ports are different
simultaneously. We also define Dqp, for application header. In this thesis, we look at
“http.host” in HTTP header since HTTP is popular in-application layer and “http.host”
means the URL. IP addresses imply hosts in a packet trace, and port numbers the
applications. Source IP, destination IP, source’ port, destination port are the
fixed-length headers, while application headers the variable-length headers.
Code coverage
We define C the percentage of branches of control structures which have been

decided in a program,

C = number of branches that have been decided in target program

total number of branches in target program

3.2 Problem Statement

In this thesis, we anticipate that using more diverse traffic to test network
devices could have larger code coverage. Thus we use packet traces with different

number of packets and size of network segments to test target programs. We want to



find the relationship between the defined diversity indices of packet traces and code
coverage of target programs that packet traces can achieved.

The problem could be formulated as follows.
Given:

Packet traces with different number of packets and different size of network
segments.
Assumption:

Packet trace with higher traffic diversity Ds jp, D ip, Ds port, Dd port@and Dpmix can
reach larger code coverage C.
Goal:

Find the relationship between the Ds p, De.p, Ds port, Dd port and Dmix and code

coverage C.

3.3 Example

We give an example in this section. Two packet traces, 100000.pcap which has
100000 packets and 10000000.pcap which has 10000000 packets, are used here.
Target program is Snort. Table 3 lists diversity indices and the code coverage these
two packet traces can achieve on Snort. In this example, all diversity indices in
10000000.pcap are larger than those in 100000.pcap. The code coverage
10000000.pcap can achieve is also larger than 100000.pcap can achieve. Thus, code
coverage has positive correlation to diversity indices.

Table 3 Example of problem statement

Ds_lP Dd_IP Ds_port Dd_port Dmix C
100000.pcap 0.96 0.85 0.97 0.86 0.71 24.4%
10000000.pcap | 0.99 0.98 0.98 0.99 0.94 32.2%




Chapter 4 System Architecture and Proposed

Methodology

In this chapter, we illustrate the system architecture for diversity index
calculator and code coverage analyzer. Furthermore, we detail the methodology for

calculating diversity indices and analyzing code coverage.

4.1 System Architecture

The system consists of two main components — diversity index calculator and

code coverage analyzer, as shown in Fig. 1.

—_—

/- N : B

{ Y Code coverage [ngtrumented targel
{ Targel source code p———® . : ;

\, F insirumeniation ool source code

\‘-\«_‘_ _,.-/

>  Results
o~ e L
Diversity index

Y

( Packettraces  } Sl
\ / calculator

— -

Fig. 1 Diversity index calculator and code coverage analyzer

The purpose of diversity index calculator is to calculate the diversity of header
fields selected from a packet trace. The selected header fields are extracted from the
packet trace first. Then the diversity index of each header field is calculated using the
Simpson’s index formula. In the code coverage analyzer, the source code of the target
program is instrumented first by an instrumenting tool. Packet traces are then
replayed in turns as input data on the test platform. The code coverage of the target

program is obtained on test completion and the results is analyzed.

10



4.2 Methodology

In Fig. 2, the procedure of calculating diversity index using the formula of
Simpson’s index is described. For a single packet trace, the chosen header fields are
extracted first. The chosen header fields are source IP, destination IP, protocol
number, source port, destination port, and application header. They are stored
separately in files. Next, each file is sorted according to their contents, therefore
identical items are grouped. Then, we calculate diversity index for each header field

Yig ni(ni—1)

using Simpson’s index formula D=1—D =1 — NN-1)

, where n; represents

the number of individuals in species i, N the total number of individuals of all

species and S the number of species ina packet trace.

Packet trace /

v
Retrieve header fields and store as files
separately

Files of header
fields

CHJCUJEH;E! Ds IF . Dd P, Ds part Dd port . Drni»cJ Dapu

Diversity
mndex of each
header field

Fig. 2 Methodology of diversity calculator

Fig. 3 shows the procedure of analyzing code coverage. The source code of the target

program must be instrumented and installed on the test platform first. If the source

11



code is of user level, Gecov is used. If kernel level, Gcov with kernel patch is applied.
Packet trace is then replayed on the test platform to test the target programs.

Once the target program exits, Gcov collects and analyzes the statistics of code

Source code to
be tested

4

coverage.

Instrument source code by GCOV

A J
Instrumented
source code

4

Packet trace » Packet replay

A 4
Statistics of
code coverage

Fig. 3 Methodology of code coverage analyzer

Chapter 5 Experiments and Observations

Experiment results are shown in this chapter. Snort and Linux kernel are the
target source codes. Packets traces are those with different number of packets and

size of network segments.

5.1 Environment

The programs to be tested are Snort-2.9.0.5 and Linux kernel-2.6.35. Snort is
user-level program while Linux kernel the kernel-level program. Both have to be

instrumented by Gcov and installed on Ubuntu 10.10. Gcov is a code coverage

12



analysis program used in concert with GCC to analyze programs. User-level program
can be instrumented by Gcov directly, while kernel-level code need to instrumented
by Gcov with kernel patch and module.

Packet traces used in following experiments are retrieved from two PCAP files
which are named packet source 1 and packet source 2 respectively. Packet traces can
be categorized by two purposes: number of packets (1.pcap, 10.pcap, 100.pcap,
1000.pcap, 10000.pcap, 100000.pcap, 1000000.pcap, 5000000.pcap and
10000000.pcap) and size of network segments (140.113.0.0/16.pcap,
140.113.243.0/24.pcap, 140.113.243.0/26.pcap, 140.113.243.0/28.cap,
140.113.249.0/24.pcap, 140.113.249.0/26.pcap, 140.113.249.0/28.cap). Two sets of
packet traces are retrieved from packet source 1 and packet source 2 respectively. In
the category of number of packets, packet trace with fewer packets is a subset of
that with more packets. For example, 10.pcap is a subset of 100.pcap and also a
subnet of 10000.pcap. In the category of size of network segments, packet trace with
smaller segment is a subset ‘of that with arger segment. For example,
140.113.243.0/28.pcap is a subset of 140.113.243.0/26.pcap and also a subnet of

140.113.0.0/16.pcap.

5.2 Experiment results

On Snort
The command used in the experiments on Snort is “snort —c <snort.conf> -r
<xxx.pcap> -A full” where “snort.conf” is the configuration file of Snort and “xxx.pcap”

the packet trace. Table 3 summarizes the configuration of Snort.

13



Table 3 Configuration of Snort-2.9.0.5

Function Status
Decoder Enabled
Base detection engine Enabled

Dynamic loaded library Enabled

Preprocessor Enabled
Output modules Only “log_tcpdump” enabled
Customized rule set Snortrules-2903

Code coverage and richness increases when packet number increases,
but not each of diversity indices increases.

In Fig. 4(a), code coverage C that packet traces of packet source 1 can achieve
ranges from 19.1% to 32.2% as the number of packets increases from 1 to 10000000.
Diversity indices also increase except the source IP.diversity index Ds ;p and mixed
diversity index D, when the number of-packets reaches 5000000. In Fig. 4(b),
richness of each header that packet traces of packet source 1 can achieve increases
as the number of packets increases..The reason is that Simpson’s index considers
both richness and evenness. A burst of hetwork traffic from the same source IP leads
to the decrease of evenness, which can cause the decrease of diversity indices. We
also notice that when the number of packets exceeds 1000000, code coverage
increases slowly. It means that the packet source 1 triggers most part of source code
as it can when the packet number exceeds 1000000.

In Fig. 4(c), code coverage C that packet traces of packet source 2 can achieve
ranges from 19.4% to 31.8% as the number of packets increases from 1 to 10000000.
All diversity indices increase as the number of packets increases. In Fig. 4(d), richness
of each header that packet traces of packet source 2 can achieve increases as the
number of packets increases. With comparing to packet source 1, packet source 2

can achieve larger code coverage and its evenness is better than packet source 1.

14



Code coverage increases when network segment size becomes larger,

but not each of diversity indices increases.

In Fig. 6(a), code coverage C that packet source 1 can achieve increases from

28.2% to 32.2% when the size of network segments becomes larger. A larger size of

network segments contains more hosts, implying more richness in IP diversity.

In Fig. 6(b), code coverage C that packet source 2 can achieve increases from

27.5% to 31.8% when the size of network segments becomes larger. However, source

IP diversity index Ds jp decreases in network segment 140.113.249.0/24, which

means that traffic bursts occurred in 140.113.249.0/24.pcap which resulted in worse

evenness.

Diversity index Packet source 1

1 5 ‘ - 35.00%
0.9 f/{&f //Eg_ 33.00%
0.8 r/ﬁ_{ f/ ¢ 31.00%
0.7 / / 29.00%
0.6 27.00%

0.5 }x/g / // 25.00%
0.4 23.00%

/ / / 21.00%

Code coverage

g:i 1o /Wk

19.009
0.1 -#’j 17.009
0 n T T T T T T T T 15-000

Number of packets

1000000
5000000
10000000

—{—source IP

—&— destination IP
=—X=source port
—X=— destination port
—@— mix

—&— code coverage

Fig. 4(a) Diversity index vs. code coverage for packet source 1 with different number

of packets

15




Richness

Packet source 1

Code coverage

20000 E 35.00%
1?888 - 30.00%
14000 - 25.00%
12000 o—o——— 7 - 20.00%
10000
- 15.00%
8000 .00%
6000 - 10.00%
4000
2000 I - 5.00%
0 H_,_@_,_@M",‘g , : : 0.d =0—source IP
— o o o o o o o o
= &8 8 § § § § &
=~ S S S S S I
= S § § § =4 destinatio
Number of packets = niP

Fig. 4(b) Richness vs. code coverage for packet source 1 with different number of

packets

Diversity index

1

Packet source 2

0.9

0.8

o pmmm— e

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 -

100

1000
10000
100000

Number of packets

1000000

5000000

10000000

Code coverage

33.00%
31.00%
29.00%
27.00%
25.00%
23.00%
21.00%
19.00%

17.00%
15.00%

—{—source IP

—&A— destination IP
—X=—source port
—%X=— destination port
—@— mix

—&— code coverage

Fig. 4(c) Diversity index vs. code coverage for packet source 2 with different number

of packets

16




Richness Packet source 2 Code coverage
20000 35.00%
18000
X ___i—i - 30.00%
16000 ¥
/ /r - 25.00%
14000 ,/
12000 o
— - 20.00%
10000
8000 - 15.00%
6000 - 10.00%
4000 X
000 /D - 5.00%
xZ ={}=source IP
0 +—X: X: X: K= ' ' =~ destination IP
— o o o o o o o o
- S 8 e 3 3 3 8 |=%=source port
— o o o o o . .
— S 8 8 8 |=%=destination port
Number of packets - 0 = =—€— code coverage

Fig. 4(d) Richness vs. code coverage for packet source 2 with different number of

packets

The mixed diversity index D, has highest correlation to code coverage

We calculate the correlation coefficient between code coverage and diversity

indices on Snort to find which index has highest correlation to code coverage. In Fig.

5, we can observe that the mixed diversity index D, which means the probability

that randomly select two packets from a packet trace, the source IP, destination IP,

source port and destination port are all different has highest correlation coefficient

to code coverage comparing to other diversity indices both in packet source 1 and 2.

17




Correlation coefficient between code

correlation coverage and diversity indices
coefficient
1
0.9
0.8 —°

0.7 -7%7
0.6

0.5

O— —1
\57 —1— g
0.4
0.3
0.2
0.1
0 ' ' ' ' =O— packet source 1
Ds_IP Dd_IP Ds_port Dd_port Dmix
=)= packet source 2

Fig. 5 Correlation coefficient between code coverage and diversity indices on Snort

Diversity index

Code coverage

Packet source 1

1 - 33.00%
0.9 /%%?: 32.00%
8'3 ] yd 4 //'/ - 31.00%
0.6 x” 4 - 30.00%
0.5 29.00%
0.4 - 7 - 28.00%
8'3 / - 27.00%
01 / - 26.00%
0 T T T T T ‘ T T T 25000
= source IP
> © ™ © D © ™ o
vV \V V N Vv Vv vV %
%'Q\ ’b'Q\ ,5,0\ QQ\ on\ 0,9\ O),Q\ 09\ —A— destination IP
W A Ao AR Ao
\'\rb erb ,»N’b Qr» ';\r')) N\r';) '\"\t")) Qr> —X— source port
7 © W R N s —x— destination port
—&— mix
Size of network segments
—&— code coverage

Fig. 6(a) Diversity index vs. code coverage for packet source 1 with different size of

network segments

18




Diversity index Packet source 2 Code coverage

1 - x— 32.00%
) ;- oo
' // O I 0
0.7 Oo— / / 30.00%
(O)g // - 29.00%
0.4 / - 28.00%
03 .7P., - 27.00%
0.2
o1 / - 26.00%
T T T T T T T T . 0
R 4 25.00%
D © ™ © b © ™ © |——source IP
% v vV N v v V N
b?)9\ o o R S Q) @_0\ S o < N OV [—a—destination IP
V v v Nl v N’ —X— source port
SRR AN RN
N N e W e e ) X —x— destination port
© © © v © »® »® ¥ P
N N N Y N N .
—&— mix
Size of network segments —&— code coverage

Fig. 6(b) Diversity index vs. code coverage for packet source 2 with different size of

network segments.in Snort

Significant increase of code coverage in specific part of source code.

In Snort, source code in the directory “Httplnspect” is used to decode user
applications. Given a data buffer, Httpinspect will decode the buffer, find HTTP fields,
and normalize the fields. Thus, the part of Snort source code should be greatly
influenced by different packet traces. The percentage of branches of the directory
“Httplnspect” to all source code is only 7%.

From Fig. 7(a), we can observe that code coverage of “Httplnspect” that packet
source 1 can achieve ranges from 2.1% to 52.6%, while the code coverage of all
source code from 19.2% to 32.2%.

From Fig. 7(b), we can observe that code coverage of “Httplnspect” that packet
source 2 can achieve ranges from 2.1% to 53.5%, while the code coverage of all
source code from 19.4% to 31.8%. Thus, packet source 2 can achieve larger code

coverage when packet number reaches 10000000. We can obtain more precise

19



analysis on the influence of different packet traces to specific part of source code.

Code coverage Packet source 1
60.00%

50.00% ——
40.00% f
30.00% /
20.00% —D=D——D—M-
10.00% /

0.00% °—'°_°/°/

— =) o o o o o o o
=1 S S S S S S g

= =] 8 3 3 = & —o— Httplnspect
— o o o g
— o o g
— N g
=

=0 All source
Number of packets
code

Fig. 7(a) Range of.code size in Snort for packet source 1

Code coverage Packet source 2
60.00%
50.00% "

40.00% /
30.00% /
20.00% E—'M

10.00% /

Q’O/J —O— Httplnspect

O-OO% T T T T T T T T 1
— o o o o o o o o
= S § g§ 8§ g g s
= =} =) o S o)
S 8 S S S =0 All source
- S 2 § code

Number of packets

Fig. 7(b) Range of code size in Snort for packet source 2

20



Code coverage increases when network segment size becomes larger in
the view of variable header fielder.

We can observe variable length header fields as well. The field “http.host” in
HTTP header is selected. Packet traces used here are pure HTTP traffic, which are
retrieved from those packet traces used in previous experiments.

In Fig. 8(a), code coverage that packet source 1 can achieve increases from
24.1% to 26.9% when the size of network segments becomes larger. However,
evenness makes the diversity index decreasing at 140.113.249.0/26. However, it is
clear that richness is increasing when the size of network segments becomes larger.

In Fig. 8(b), code coverage that packet source 2 can achieve increases from
22.7% to 26.8% when the size of:network segments becomes larger. However,
evenness makes the diversity .index decreasing. from 140.113.249.0/28 to

140.113.0.0/16.

Diversity index Packet source 1 Code coverage

1 28.00%
0.9
0.8 o—o 4 ~ o | 27.00%
0.7 / / L 26.00%
0.6 A2 < Vi
0.5 J / 25.00%
0.4

4 i 0

0.3 24.00%
0.2 - 23.00%
0.1

0 T T T T T T T T 22.00%

® 6 v © (S v ©
Q\ .Q\q/ O)Q\q’ Q\\' q_g\q’ Q\q/ oyg\q' .Q\N
¥ ™ ™ x ™ > .
v v > v v v >
KRN o> RN N o> —O- http.host
o o o Ny S o o Ng
Ng N Ne Ng N Ne
—O— code coverage
Size of network segments

Fig. 8(a) Diversity index vs. code coverage for packet source 1 with different size of

network segments

21



Diversity index Packet source 2 Code coverage
1 28.00%
0.9 o O0—a—pn
0.8 / . - 27.00%
0.7 , / f
- 26.00%
0 / / /o/ A
/9/0 O/ )
0.5 25.00%
0a - |f
03 y - 24.00%
' /
02 - 23.00%
0.1 -
0 = T T T T T T T T 22-00%
SIS SUREI N
q??) q,“?) q?"b ¢} q??’ q,“?) q,@ ¢l —{— http.host
’)). I)). I)). \'x Ib. I)). . N
" > > o N N N Y
o o o WP o o o ¥
N3 Ny Ny Ny N3 Ny —0— code coverage
Size of network segments

Fig. 8(b) Diversity index vs. code coverage for'packet source 2 with different size of

network segments

On Linux kernel

Linux kernel-2.6.35 was instrumented by Gcov with kernel patch and recompiled.
We only observed source code under directory “/net” since the whole Linux kernel is
too large and the directory /net is directly related to network traffic.
Code coverage increases when packet number increases, but not each
of diversity indices increases.

Code coverage of the experiments on Linux kernel is not as that large as in Snort.
In Fig. 9(a), code coverage that packet source 1 can achieve increases from 6.07% to
8.16% when the number of packets ranges from 1 to 10000000, and so do the
diversity indices. It means that evenness is achieved since diversity indices are
increasing (as least not decreasing) when the number of packets increases. In Fig.
9(b), code coverage that packet source 2 can achieve increases from 5.81% to 9.47%

when the number of packets ranges from 1 to 10000000, and so do the diversity
22



indices. Packet source 2 can achieve larger code coverage than packet source 1.

Diversity index

Packet source 1

Code coverage

1 - - 8.50%
0.9

/@i{ - 8.00%
0.8
0.7 //W /-—/ / - 7.50%
0.6 - 7.00%
0.5
04 - 6.50%
0.3 - 6.00%
02/ /
01 4 - 5.5 —O—source IP

o 4 50 —&— destination IP
' ' ' ' ' ' ' ' " =x=source port
N Q Q Q Q Q Q Q Q
Y N> ,\90 \9@ 0000 QQQQ QQOQ QQQQ —X— destination port
R R 4 —e— mix

Number of packets

—&— code coverage

Fig. 9(a) Diversity index vs. code coverage for packet source 1 with different number

of packets in Linux kernel

Diversity index

Packet source 2

Code coverage

1 10.00%

0.9 9.50%

0.8 9.00%

0.7 8.50%

0.6 8.00%

0.5 7.50%

0.4 7.00%

0.3 6.50%

0.2 + 6.00%

0.1 J > o=source IP
0 - T T . . . . . . 5] == destination IP

O O O \) \) O =X=source port
S & & & & & destinati
N Q Q Q Q —X— destination port
N S § N .
~ —0— mix

Number of packets

—&— code coverage

Fig. 9(b) Diversity index vs. code coverage for packet source 2 with different number

of packets in Linux kernel
23




The mixed diversity index D, has highest correlation to code coverage
We calculate the correlation coefficient between code coverage and diversity
indices on Linux kernel to find which index has highest correlation to code coverage.
In Fig. 10, we can observe that the mixed diversity index D which means the
probability that randomly select two packets from a packet trace, the source IP,
destination IP, source port and destination port are all different has highest
correlation coefficient to code coverage comparing to other diversity indices both in

packet source 1 and 2.

Correlation coefficient between code coverage
correlation and diversity indices

coefficient
1

0.9

0.8 Pt

0.7 O /

0.6 o— \o/ /I:l

0.5 O S _/
e o—— -

0.4

0.3

0.2

0.1

0 ! ' ' ' =QO= packet source 1
Ds_IP Dd_IP Ds_port Dd_port Dmix

=3} packet source 2

Fig. 10 Correlation coefficient between code coverage and diversity indices on Linux

kernel

24



Code coverage increases when network segment size becomes larger,
but not each of diversity indices increases.

In Fig. 11(a) and 11(b), code coverage increases when the size of network
segment becomes larger. A larger size of network segments means more hosts and
thus more richness in IP diversity. However, the source IP diversity index D jp

decreases at 140.113.249.0/24 in packet source 1, which means worse evenness.

Diversity index Packet source 1 Code coverage
9.00%

8.50%

8.00%

7.50%

7.00%

6.50%

£.00%

—0—source IP

—&A— destination IP

—X=source port

N N W N N N © —x— destination port
: D‘Q' vo' .

N N —@— mix

Size of network segments —&— code coverage

Figure 11(a) Diversity index vs. code coverage for packet source 1 with different size

of network segments in Linux kernel

25



Diversity index Packet source 2 Code coverage

1 9.00%
0.9 A //*

0g L x= - 8.50%
0.7 -

- 8.00%

0.5 é/ 7.50%

. 0,

0.3 -+ 7.00%
o2 - 6.50%
o = source IP

0 ' ' ' ' ' ' ' ' 6.1 —— destination IP

o v © % o ™ © v
9\’1/ 9\’1/ %9\’1, 9\'\, 9\’\/ 9\% X 9\% Q-Q\\/ X=source port
,,)’)?‘ ,b'_\?‘ O)'_\?‘ N\'}) 0;_\?‘ %@V %ﬁ?‘ \/,\?,- —%X— de.stlnatlon port
b‘g. b‘g. b‘o. \?‘ b(Q' @. b‘g. l\?‘ d
i > Size of network Segments —&— code coverage

Figure 11(b) Diversity index vs. code .coverage for packet source 2 with different size

of network segments in Linux kernel

Chapter 6 Conclusion

In this thesis, we define diversity indices for both fixed length header fields and
variable header fields to alleviate comparison between packet traces and propose a
methodology for calculating diversity index and analyzing code coverage. The packet
traces are with different number of packets and different size of network segments.
Traffic diversity is calculated by the formula of Simpson’s index which considers
richness and evenness at the same time. We analyze both user level source code -
Snort and kernel level source code — Linux kernel. Source code is instrumented and
analyzed by Gcov to get its code coverage.

From experiment results, we can observe that code coverage increases when
the number of packets or size of network segments of packet traces increase. For

Snort, code coverage that packet source 1 can achieve is 32.2% while packet source 2
26



31.8%. For Linux kernel, code coverage that packet source 1 can achieve is 8.16%
while packet source 2 9.47%. We can conclude that packet source 1 can achieve
larger code coverage that packet source 2 in Snort, while packet source 2 can achieve
larger code coverage that packet source 1 in Linux kernel. Richness of packet traces is
increasing when the number of packets or size of network segments increases.
However, evenness may be influenced by traffic bursts, which leads to the decreasing
of some diversity indices.

In the experiments on Snort, we can see from Fig. 4 and 6 that when the
number of packets exceeds 1000000, code coverage increases slowly. It means that
majority of Snort code which packet traces can trigger are triggered when packet
number reaches 1000000.

From Fig. 7, we can observe the significant influence of different packet traces
on the specific part of source code. From Fig. .5 and 10, we can observe that the
mixed the mixed diversity index Dpix has highest correlation coefficient to code
coverage comparing to other diversity indices

In the future, we will build a more robust and real-time platform to calculate

diversity indices and analyze code coverage on target source code.

References

[1] Ying-Dar Lin, I-Wei Chen, Po-Ching Lin, Chang-Sheng Chen, “On campus beta site:
architecture designs, operational experience, and top product defects,” [EEE
Communication Magazine, vol. 48, pp. 83-91, Dec. 2010.

27



[2] Raymond F. Dasmann, “A Different Kind of Country,” MacMillan Company, New
York.

[3] Edward H. Simpson, ” Measurement of diversity,” Nature 163:688, 1949.

[4] Claude E. Shannon, "A mathematical theory of communication," Bell System
Technical Journal 27: 379-423 and 623-656, 1948.

[5] Edward F. Menhinick, “A Comparison of Some Species-Individuals Diversity

Indices Applied to Samples of Field Insects,” Ecology, vol. 45, pp. 859-861, 1964.

[6] Lucien M. Le Cam, "On Some Asymptotic Properties of Maximum Likelihood

Estimates and Related Bayes' Estimates,
Statistics, 277-330, 1953.

University of California Publications in

[7] Alfred Renyi, “On the measures of entropy and information,” Proceedings of
Fourth Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp.
547-561, 1961.

[8] Glenford J. Myers, “The Art of Software Testing, 2nd edition,” Wiley, 2004.

[9] Joan C. Miller, Clifford-J. Maloney, "Systematic..mistake analysis of digital

computer programs," Communications of the ACM, 1963.

[10] Qian Yang, J. Jenny Li, David Weiss, “A-Survey of Coverage Based Testing Tools,”
ACM Proceedings of the international workshop on Automation of software test,
2006, pp. 99-103, 2006.

[11] Adam Kolawa, Dorota Huizinda, “Automated Defect Prevention: Best Practices in

Software Testing,” IEEE Computer Society Press, pp.254, 2007.

[12] Martin R. Woodward, Michael A. Hennell, "On the relationship between two
control-flow coverage criteria: all JJ-paths and MCDC," Information and Software
Technology, pp. 433-440, 2006.

[13] Mechelle Gittens, Keri Romanufa, David Godwin, Jason Racicot, “All code
coverage is not created equal: a case study in prioritized code coverage,”ACM
Proceedings of the 2006 conference of the Center for Advanced Studies on

Collaborative research, 2006.

28



