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TI TMS320C55x＇ DSP架構下執行模乘法運算之效率研究 

 

學生:薛明宏      指導教授:葉義雄博士 

 

國立交通大學電機資訊學院 資訊學程﹙研究所﹚碩士班 
 

摘  要 

現階段由於無線通訊技術發達，許多無線移動運算平台也應運而

生，例如，無線電話、個人數位助理及具無線上網功能之筆記型電腦

等。由於移動計算平台與基地台溝通的媒介乃是空氣，因此加強資訊

安全保護便成了移動計算平台上一個重要的課題。採用加密系統時除

了安全性外，最重要的便是運算效能，由於模乘法乃現有密碼系統中

最主要的計算元件，加速模乘法的運算將可直接提昇整體密碼系統之

效能。本文針對適用於無線環境多功能的CPU TI TMS320C55’x 

DSP，進行其架構研究，發展出一套系統性的模乘法選用法則，並在

研究過程中發展出一套新的模乘法，此模乘法的運算效能較Morita & 

Yang演算法稍佳。 
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A study of the performance of operating modular 

multiplication based on TI TMS320C55x’ DSP 

Student: Ming-Hung Hsueh    Advisor: Dr. Yi-Shiung Yeh 

Degree Program of Electrical Engineering Computer Science  
 National Chiao Tung University 

 

Abstract 

Nowadays, because of the rapid progressive of wireless 

communication, a variety of mobile computational platforms are 

emerged, such as mobile phone, PDA, and notebook.  The medium 

between mobile stations and base stations is air.  As a result, to 

protect the information of mobile platform becomes an important 

issue.  TI TMS320c55x’ DSP is a high performance CPU, which can 

handle multimedia, voice compression, and voice communication, 

and also, has highly performance with low power consumption.  

Therefore, it is an ideal multipurpose CPU that can be introduce to 

mobile platform.  In this thesis, we introduce a systemic model to 

estimate the performance of executing a modular multiplication on TI 

TMS320c55x’ DSP.  Moreover, we propose a new modular 

multiplication algorithm, which achieves higher performance than 

Morita & Yang’s Algorithm. 
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Chapter 1 Introduction 

1.1 Modular Multiplication 

Diffie & Hellman[15] proposed the public key concepts in 1976.  

Since then, a lot of famous elegant public key crypto-systems had 

been proposed, such as ElGamal [14], in which the security is based 

on the difficulty of discrete logarithm problem, and RSA[9], in which 

the security is based on the large prime problem.  Those 

cryptosystems open a new era of cryptology.  Nowadays, 

crypto-system can provide not only confidential of information but 

also authenticity, integrity, and nonrepudiation.  The progression of 

public key cryptosystems provides variety usages, for example, 

sharing key between strangers, making e-transaction reliably, and 

authenticating the issuer of information. 

The core operation of some important public key cryptosystems, 

such as RSA, ELGamal, and DSA[4] is modular exponentiation.  

Executing a modular exponentiation takes the longest time running a 

public key encryption or decryption.  As a result, improving the 

performance of executing modular exponentiation becomes a key 

point. 

There are two main schemes to achieve higher performance of 

executing a modular exponentiation.  First, reduce the amount of 

modular multiplications, such as Knuth’s[3] M-ary approach and 

Chiou’s Parallel scheme[1].  Second, improve the performance of 

executing a modular multiplication, such as [2][5][6]. 
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1.2 The Goal of This Thesis 

Nowadays, because of the rapid progressive of wireless 

communication, a variety of mobile computational platforms are 

emerged, such as mobile phone, PDA, and notebook.  The medium 

between mobile stations and base stations is air.  As a result, to 

protect information of mobile platform becomes an important issue. 

TI TMS320c55x’ DSP is a high performance CPU. It can handle 

multimedia, voice compression, voice communication, and highly 

performance with low power consumption.  Therefore, it is a 

multipurpose CPU that can be introduced to mobile platform. 

Our research is to introduce a systemic model to estimate the 

performance of executing the modular multiplications on TI 

TMS320c55x’ DSP.  Moreover, we propose a new modular 

multiplication algorithm which achieves higher performance than 

Morita & Yang’s Algorithm. 
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Chapter 2 Implementation of the Basic Arithmetic of Modular 
Multiplication Algorithm on TI TMS320c55x’ DSP 

MS320C55x’ DSP takes only one clock cycle to execute an addition, 

a subtraction, or a multiplication instruction.  Therefore, we need a new 

method to evaluation a modular multiplication algorithm for the DSP. 

In this chapter, we will briefly introduce the architecture of TI 

TMS320c55x’ DSP in Section 2.1 and Section 2.2.  Then, we discuss the 

implementation issues of some frequent used arithmetic of modular 

multiplication algorithms in Section 2.3. 

2.1 Architecture of TI TMS320c55x’ DSP 

The architecture of TI TMS320c55x’ DSP is shown as Fig. 2-1. 

The pipeline of TI TMS320c55x’ DSP has four stages.  There are, 

 

Figure 2-1 The CPU Diagram[13] 
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1. Instruction buffer unit ： Machine codes of the instruction set of 

TI TMS320c55x’ DSP are variety length.  As a result, an 

instruction buffer is needed to smoothen the executing of 

programs. 

2. Program flow unit ： This unit handles branch, conditional 

operation and pipeline protection.  Pipeline protection is an 

automatic mechanism to avoid read-write hazard[7]. 

3. Address data flow unit ： This unit controls data addresses for 

data reading and writing.  TI TMS320c55x’ provides three data 

read buses and two data write buses. 

4. Data computation unit ： This unit performs arithmetic and logic 

operations.  There are two 17-bit by 17-bit MAC, a 40-bit ALU 

and a Shifter shown in Fig, 2-2. 

 

Figure 2-2  The Data Computation Unit Diagram[13] 
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2.2 Arithmetic Instructions of TI TMS320c55x’ DSP  

2.2.1 The Registers 

1. There are four 40-bit Accumulators AC0, AC1, AC2, AC3.  

Accumulators are used to execute arithmetic and logic operations. 

The highest 8-bit of the accumulator is used for sign-extended 

purpose.  As a result, the accumulators can perform 16-bit and 

32-bit operations. 

2. There are eight 24-bit auxiliary registers XAR0~XAR7.  

The auxiliary registers can used to execute arithmetic and logic 

operations.  The other purpose of auxiliary registers is data 

addressing.  Only the lower 16-bit of auxiliary registers, also called 

as AR0~AR7, can be used to perform arithmetic and logic operations.  

3. There are four 16-bit temporary registers T0, T1, T2, and T3.  

Temporary registers are used for data addressing and to execute 

arithmetic and logic operations. 

The symbols of the instruction set of TI TMS320c55x’ DSP are 

denoted as: 

dst, src represent ACn, ARn, and Tn 

Smem、Xmem、Ymem means the value of an address 

k4, k8, k16 means 4-bit, 8-bit, and 16-bit constants 

2.2.2 Left Shift 

The left-shift instructions of TI TMS320c55x’DSP with each 

left-shift instruction taking only one clock cycle are shown in Fig. 

2-3.  Note that only some of the left-shift instructions can be 
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performed a 32-bit left-shit. 

 

Figure 2-3  Left Shift Instructions[11] 

2.2.3 Addition 

The addition instructions of TI TMS320c55x’DSP with each 

addition instruction taking only one clock cycle are shown in Fig. 2-4.  

Note that only some of the addition instructions can be performed a 

32-bit addition. 

 

Figure 2-4  Addition Instructions[11] 

2.2.4 Subtraction 

The subtraction instructions of TI TMS320c55x’DSP with each 
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subtraction instruction taking only one clock cycle are shown in Fig. 

2-5.  Note that only some of the subtraction instructions can be 

performed a 32-bit subtraction. 

 

Figure 2-5  Subtraction Instructions[11] 

2.2.5 Multiplication 

The multiplication instructions of TI TMS320c55x’DSP with 

each multiplication instruction taking only one clock cycle are shown 

in Fig. 2-6 and Fig. 2-7.  Note that only 16-bit by 16-bit 

multiplication can be performed. 
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Figure 2-6  Multiplication Instructions (1) [11] 

 

Figure 2-7  Multiplication Instructions (2) [11] 
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2.3 The Implementation issues of Frequent Used Arithmetic of 
Modular Multiplication Algorithm on TI TMS320c55x’ DSP 

The implementations in this chapter are also referred to section 

5.1 and section 5.4 in TMS320C55x DSP Programmer's Guide[12]. 

The fixed-point arithmetic is in section 5.1 and the division is in 

section 5.4. 

2.3.1 Pipeline Protection Issue 

TI TMS320c55x’ DSP provides an automatic pipeline 

protection mechanism to prevent read-write hazard.  However, it 

also causes the extra clock cycles.  We use a 1024-Bit addition as an 

example shown in Fig. 2-8. 
01  AMOV #(VarA), XAR1 
02  AMOV #(VarB), XAR2 
03  AMOV #(AResult), XAR3 
04  MOV #62, T0 
05  MOV #64, T1 
06  MOV40 dbl(*AR1(T0)), AC0 
07  ADD dbl(*AR2(T0)), AC0 
08  MOV AC0,dbl(*AR3(T1)) 
09  SFTS AC0, #-32 
10  || MOV #30, BRC0 
11  RPTBLocal Adder_Loop 
12  SUB #2, T0 
13  MOV40 dbl(*AR1(T0)), AC1 
14  SUB #2, T1 
15  ADD #1, T0 
16  ADD uns(*AR2(T0)),AC1 
17  ADD AC1, AC0 
18  SUB #1, T0 
19  ADD uns(*AR2(T0))<< #16, AC0 
20  MOV AC0, dbl(*AR3(T1)) 
21 Adder_Loop: 
22  SFTS AC0, #-32 
23  SUB #1, T1 
24  MOV AC0, *AR3(T1) 

Figure 2-8  1024-Bit addition code with RAW hazard 
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The above program contains some RAW hazards.  The 

Adder_loop is from the line 12 through the line 22.  The loop uses 

10 instructions.  As we learn from Section 2.2, there must be only 

10 clock cycles needed for each loop.  However, 20 clock cycles are 

consumed for each loop.  We discover that the extra clock cycles are 

affected by the lines 12, 13, 15, 16, 18, and 19.  Let’s analyze the 

codes of the lines 12 to 13. 

12  SUB #2, T0 

13  MOV40 dbl(*AR1(T0)), AC1 

The result of T0 at the line 12 will be used by the line 13 immediately.  

As a result, it causes a RAW hazard[7].  Therefore, the automatic 

pipeline protection mechanism of TMS320c55x’ inserts the four 

NOPs, i.e. the four bubbles into the pipeline to assure the correct 

value of T0 will be used by the line 13.  The extra NOPs cause the 

extra clock cycles.  At this case, running a 1024-bit addition costs 

about 650 clock cycles.  It’s almost 6 times of executing a 1024-bit 

by 16-bit multiplication. 

We rewrite the codes in Fig. 2-9.  The adder_loop is from the 

line 12 through the line 22.  The new loop uses 8 instructions and 

costs 10 clock cycles.  To finish, a 1024-bit addition it costs about 

350 clock cycles. 
01  AMOV #(VarA), XAR1 
02  AMOV #(VarB), XAR2 
03  AMOV #(AResult), XAR3 
04  ADD #2, AR3 
05  MOV #62, T0 
06  MOV #63, T1 
07  MOV40 dbl(*AR1(T0)), AC0 
08  ADD dbl(*AR2(T0)), AC0 
09  MOV AC0,dbl(*AR3(T0)) 
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10  SFTS AC0, #-32 
11  || MOV #30, BRC0 
12  RPTBLocal Adder_Loop 
13  SUB #2, T0 
14  SUB #2, T1 
15  MOV40 dbl(*AR1(T0)), AC1 
16  ADD uns(*AR2(T1)),AC1 
17  ADD AC1, AC0 
18  ADD uns(*AR2(T0))<< #16, AC0 
19  MOV AC0, dbl(*AR3(T0)) 
20 Adder_Loop: 
21  SFTS AC0, #-32 
22  SUB #1, T0 
23  MOV AC0, *AR3(T0) 

Figure 2-9  1024-Bit addition code with less RAW hazard 

It spent 11 clock cycles running a 64-bit addition in 

TMS320C55x DSP Programmer's Guide[12] costs only 11 clock 

cycles.  As a result, if the loop unrolling skill[7] is adopted, running 

a 1024-Bit addition may cost 190 clock cycles only.  However, this 

approach will be much larger source code and make source code 

difficult to maintain. 

2.3.2 Arithmetic of Modular Multiplication Algorithm on TI 
TMS320c55x’ DSP 

According to our implementation and taking of pipeline 

protection, the Clock Cycles Consumption of Frequent Used 

Arithmetic of Modular Multiplication is shown in Table. 2-1. 
Table 2-1 The clock cycles consumption of  

frequent used arithmetic of modular multiplication algorithm 

Operation Clock cycles Loop Unrolling 
1024 bits shift 110  
1024 bits + 1024 bits 360 190 
1024 bits - 1024 bits 300 130 
1024 bits × 16 bits 140  
32 bits ÷ 16 bits 50  
1024 bits comparison 15~650  
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We use the 1024-bit by 16-bit multiplication as the baseline and 

weight other arithmetic for evaluation.  The weighted clock cycles 

consumption is shown in Table 2-2.  Table 2-2 will be used to 

evaluate modular multiplication algorithms in chapter 4. 
Table 2-2 The weighted clock cycles consumption of frequent used  
arithmetic of modular multiplication algorithm on TI TMS320c55’ 

Operation Real Unrolling 
1024 bits shift .75  
1024 bits + 1024 bits 2.15 0.95 
1024 bits - 1024 bits 2.15 0.95 
1024 bits × 16 bits 1  
32 bits ÷ 16 bits 0.5  
1024 bits comparison 0~6  
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Chapter 3 Background on Iterative Modular Multiplication 

In this chapter, we will go through some well know iterative 

modular multiplication algorithm.  Our goal is to re-evaluate those 

algorithms computational complexity in general purpose CPU and TI 

TMS320c55x’ DSP.  We try to make a guideline for choosing a properly 

modular-multiplication algorithm for TI TMS320c55x’ DSP. 

3.1 Single Precision Left-to-Right Convention Algorithm 

Single precision means “perform a modular multiplication bit 

by bit”.  Left-to- right convention means “perform a modular 

multiplication from the most significant bit to the less significant bit”.  

All the single precision left-to-right convention algorithms are 

suitable for hardware implementation. 

3.1.1 Traditional Algorithm of Modular Multiplication 

Algorithm Modula_Multiplication (X, Y, D) 
//Input: X, Y and D are the n-bit positive integers 
//Output: P= X × Y mod D, P is an n-bit positive integer 
1: P 0; 
2: for j:= n-1 downto 0 do 
3: begin  
4:  P  2 × P; 
5:  if ( P ≧ D) then 
6:   P  P – D; 
7:  if( yj = 1 ) then 
8:  begin 
9:   P  P + X; 
10:   if ( P ≧ D) then 
11:    P  P – D; 



 14

12:  end; 
13: end; 
14: return(P); 

Time Complexity 

This algorithm is suitable for hardware because left shift costs 

nothing in hardware.  Assume that P has 50% possibility larger 

than D.  As a result, this algorithm needs n times of n-bit shift, n 

times of n-bit addition, and n times of n-bit subtraction. 
Table 3-1 The time complexity of Traditional Algorithm 

Operation Times 
n-bit Left Shift n 
n-bit Addition n 
n-bit subtraction n 
n-bit comparison 2n 

Storage Complexity 

We need n+1 bits for storing P. 
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3.1.2 Blakley Algorithm[5] 

Algorithm Blakley(X, Y, D) 
//Input: X, Y and D are the n-bit positive integers 
//Output: P= X × Y mod D, P is an n+1-bit positive integer 
1: P 0; 
2: e  D – X; 
3: for j:= n-1 downto 0 do 
4: begin  
5:  if ( P ≧ D) then 
6:   P  2 × (P – D); 
7:  else 
8:   P  2 × P; 
9:  if( yj = 1 ) then 
10:   if ( P ≧ D) then 
11:    P  P – e; 
12:   else 
13:    P  P + X; 
14: end; 
15: if ( P ≧ D) then 
16:  P P – D; 
17: return(P); 

Blakley Algorithm introduced a pre-computed integer e.  As a 

result, it costs less than the traditional modular multiplication 

algorithm.  

Time Complexity 

Assume that P has 50% possibility larger than D.  As a result, 

this algorithm needs n times of n-bit shift, 1/2n times of n-bit 

addition, and n times of n-bit subtraction. 
Table 3-2 The time complexity of Blakely’s Algorithm 
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Operation Times 
n-bit Left Shift n 
n-bit Addition 1/2 n 
n-bit subtraction n 
n-bit comparison 2n 

Storage Complexity 

The lengths of P and e are n+1 bits and n bits, respectively.  

Note that in process are need n+1 bits for the length of P, but we 

only output n bits for the length of P. 
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3.1.3 Chiou & Yang’s Algorithm[2] 

Algorithm Chiou_Yang1(X, Y, D) 
//Input: X, Y and D are the n-bit positive integers 
//Output: P= X × Y mod D, P is an n+1-bit positive integer 
1: P 0; 
2: R  2n mod D; 
3: for j:= n-1 downto 0 do 
4: begin  
5:  P  2 × P; 
6:  if (carry(P)) then 
7:   P  P + R; 
8:  if( yj = 1 ) then 
9:  begin 
10:   P  P + X; 
11:   if (carry(P)) then 
12:    P  P + R; 
13:  end; 
14: end; 
15: if ( P ≧ D) then 
16:  P  P – D; 
17: return(P); 

 
Algorithm Chiou_Yang 2(X, Y, D) 
//Input: X, Y and D are the n-bit positive integers 
//Output: P= X × Y mod D, P is an n-bit positive integer 
1: P 0; 
2: C 0; 
3: R1  2n mod D; 
4: R2  2 × 2n mod D; 
5: R3  3 × 2n mod D; 
6: T1  (2n + X) mod D; 
7: T2  (2× 2n + X) mod D; 



 18

8: T3  (3 × 2n + X) mod D; 
9: for j:= n-1 downto 0 do 
10: begin  
11:  P  2 × P; 
12:  if (carry(P)) then 
13:   c  c + 1; 
14:  if( yj = 1 ) then 
15:   case c of 
16:    0: z  z + X; 
17:    1: z  z + T1; 
18:    2: z  z + T2; 
19:    3: z  z + T3; 
20:   end case; 
21:  else 
22:   case c of 
23:    1: z  z + S1; 
24:    2: z  z + S2; 
25:    3: z  z + S3; 
26:   end case; 
27:  if (carry(P)) then 
28:   c  2; 
29:  else 
30:   c  0; 
31: end; 
32: if ( P ≧ D) then 
33:  P  P – D; 
34: return(P); 

Chiou & Yang’s Algorithm 1 uses Carry(P ≧  2n) and 

pre-computed table to perform the modular-multiplication.  The 

time complexity for the algorithm is n times “n-bit left shift” and 

2/3n times “n-bit addition”.  It also requires 2n+1 bits storage 

space for P and R. 
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Later Chiou & Yang proposed another algorithm, called 

Algorithm 2, to improve the performance.  The major difference 

between them is that Algorithm 2 using six-element pre-computed 

table instead of using one-element in Algorithm 1.  In algorithm 2 

it requires 7n+2 bits storage space for P and pre-computed table.  

Time and Storage Complexity 

The comparison between two Algorithms are shown in table 

3-3. 
Table 3-3 The time and storage complexity of  

Chiou & Yang’s Algorithm 

Operation Algorithm 1 Algorithm 2 
n-bit Left Shift n n 
n-bit Addition 3/2n n 
Space required(bits) 2n+1 7n+2 
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3.2 Multi-Precision Left-to-Right Convention Algorithm 

Multi-precision means “perform modular multiplication block 

by block”.  Left-to-right convention means “perform modular 

multiplication from the most significant block to the less significant 

block”.  All the multi-precision algorithms are more suitable for 

software implementation. 

3.2.1 Leong, Tan &Tan’s Algorithm [8] 

Algorithm Leong_Tan_Tan(X, Y, D) 
// DYXwhereDYXP <≤×= ,0,mod  

// ∑
−

=

− +=
2

0

1 22
n

i

i
i

n dD , ∑
−

=

=
1

0
2

n

i

i
ixX  

// ∑
−

=

=
1

0

2
n

i

i
iyY ,  ∑

−

=

=
1

0

2
n

i

i
ipP ,  

//w is the bit amount of a digit 
1: ;2]0[ De n −←  
2: )1,,1( +←≤= iiwiifor  
3: begin 
4:  );2]1[(][ ×−← ieie  
5:  thenDieif ≥][   
6:   ;2mod])0[][(][ neieie +←  
7: end; 

8: ;0←P  

9: )1,0,( −←>⎥⎥
⎤

⎢⎢
⎡= iii

w
nifor  

10: begin
 11:  w

wiwiwiw PyyyXP 2...21 ×+×← −−−  

12:  )1,,0( +←≤= jjwjjfor  
13:  begin 
14:   thenpif nj+  
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15:   begin 
16:    ];[2 jePP nj +−← +  
17:    ];0[21 ePPthenpif n

n +−←=  

18:   end; 

19:  end; 

20: end; 

21: ;mod])0[( DePPthenDPif +←≥  
22: return(P); 

Leong, Tan &Tan’s Algorithm is suitable for software 

implementing.  Even though they claim that the algorithm is a 

multi-precision algorithm, but it looks like a single precision.  The 

algorithm does not reduce the time complexity significantly. 

Time Complexity 

Let n’= ⎥⎥
⎤

⎢⎢
⎡

w
n . 

The time spent on operating a multiplication is much larger than 

operating an addition.  Then measuring the time complexity, we 

always neglect the addition part.  Then, Leong, Tan &Tan’s 

Algorithm needs only 2'2n  multiplications. 

For a realistic estimate, the operation of Leong, Tan &Tan’s 

Algorithm list in Table 3-6. 
Table 3-4 The time complexity of Leong, Tan &Tan’s Algorithm 

Operation Times 
n-bit By w-bit Multiplication n’ 

n-bit Addition (2w+1)n’ 
n-bit Subtraction 2wn’ 

Storage Complexity 

Leong, Tan &Tan’s Algorithm needs (w2+2w)n’+w bits.  
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3.2.2 b-ary number system 

Let b be a positive integer and B={0,1,…b-1} 

We denote Z, Q, R be the set of integers, the set of rational numbers, 

and the set of real numbers, respectively. 

Any number r in Q can be represent by ∑
=

=
s

di

i
ibrr  for each ir  in B. 

We have ZQrifdZrifd −∈<∈≥ 0;0 .  Usually, we take 

∞<<∞− sd , . 

Let ∑
−

=

=
1

0

n

i

i
ibdD  and 1

2 1 −≤≤ − bdb
n  

Let ∑
−

=

=
1

0

n

i

i
ibxX  and ∑

−

=

=
1

0

n

i

i
ibyY  

Let ∑
+

=

=
1

0

n

i

i
ibpP  and nnL pbpP +×= +1  

Let ∑
=

=
n

i

i
ibpP

0

'  and 1' −+×= nnL pbpP  

3.2.3 Morita & Yang’s Algorithm[6] 

Algorithm Morita_Yang(X, Y, D) 
//Input: X, Y and D are n digits, DYXwhere <≤ ,0  

//Output: P= X × Y mod D. P is n+2 digits 

1: P 0; 
2: for j:= 1−n  downto 0 do 
3: begin  
4:  P  b × P + X × yi; 

5:  ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 11n

L

d
P

q ; 

6:  P P – b × q × D; 

7:  ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 11n

L

d
P

q ; 
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8:  if (q=1) then 
9:   P  P – b × D; 
10:  if(q=2) then 
11:   P  P – b × (2 × D); 
12:  if( LP'  ≧ (b – 1) × (dn-1+1)) then 
13:   P P – (b – 1) × D; 
14: end; 
15: if ( P ≧ D) then 
16: begin 

17:  ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 11n

L

d
P

q ; 

18:  P  P – q × D; 
19:  While (P ≧ D) do 
20:   P  P – D; 
21: end; 
22: return(P); 

Morita & Yang’s Algorithm is suitable for implementing in 

software for a low storage and computational power CPU.  The 

advantages of the algorithm are: 

i) Using an approximation value of q.  It can lower the execution 

time. 

ii) Using lookahead determinate approach.  It can restrict the value 

in the small range, then it can guess an estimation value shortly. 

Actually, the above two condition can also lower the running 

time and shorter the storage space. 

Time Complexity 

We should notice that n presents the number of b-ary digit. 

The time spent on operating a multiplication is much larger than 

operating an addition.  Then measuring the time complexity, we 
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always neglects the addition part.  Then, Morita & Yang’s 

Algorithm needs nn 22 2 +  multiplications. 

For a realistic estimate, the operations of Morita & Yang’s 

Algorithm list in Table 3-5. 
Table 3-5 The time complexity of Morita & Yang’s Algorithm 

Operation Times 
n-bit By w-bit Multiplication n 

2w-bit By w-bit Division 2n 
n-bit Addition n 
n-bit Subtraction 2n 

Storage Complexity 

Morita & Yang’s Algorithm needs n+2 digits. 
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Chapter 4 A New Iterative Modular Multiplication Algorithm  

We combine both of the algorithms described in the previous chapter 

to derive a new iterative modular multiplication algorithm.  Our 

algorithm need less pre-computed table space than Leong, Tan & Tan’s 

Algorithm and achieve the same performance like Morita & Yang’s 

Algorithm.  Furthermore, our proposed algorithm is better than Morita 

& Yang’s Algorithm. 
 

4.1 The New Modular Multiplication Algorithm 

The proposed algorithm is given in Section 4.1.1 and its 

correctness is shown in Section 4.1.2 

4.1.1 Procedure 

Algorithm New_Modular_Multiplication(X, Y, D) 

//Input: X, Y and D are n digits, DYXwhere <≤ ,0  

//Output: P= X × Y mod D. P is n digits. 

1: e Pre-computation(D); 

2: P
)

Approximate(X, Y, D, e); 

3: doDPwhile )( ≥
)

// The length of P
)

 is n+2 digits. 
4:  ;DPP −←

))
 

5: ;PP
)

←  
6: return(P); 
 

Algorithm Pre-computation(D) 

//Input:D is n digits 

// Output: Dbiie n mod][ 1+×= , 61 ≤≤ i  

1: ;mod]1[ 1 Dbe n+←  
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2: )1,6,2( +←≤= iiiifor  
3: begin 
4:  ]);1[]1[(][ eieie +−←  
5:  thenDieif ≥][ ;][][ Dieie −←  
6: end; 

7: return(e); 

 
Algorithm Approximation(X, Y, D, e) 
// Input: X, Y and D are n digits, DYXwhere <≤ ,0  
// Output: P= X × Y mod D. P is n+2 digits 
1: ;0←P  
2: )1,0,1( −←>−= iiinifor  
3: begin 
4:  ;PbyXP i ×+×←  

5:  ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 1
'

1n

L

d
P

q  

6:  ;'' DqPP ×−←  
7:  thenpif n 01 >+  ];[' 1++← npePP  

8: end; 
9: return(P); 

The Algorithm Pre-computation calculates six pre-computed 

elements, i.e. 1+nb , 12 +× nb , 13 +× nb , 14 +× nb , 15 +× nb ,and 16 +× nb  

mod D. The pre-computed elements store in e. 

The Algorithm Approximation uses approximation method and 

pre-computed table to calculate P= X ×  Y mod D.  The 

approximation method uses ⎥
⎦

⎥
⎢
⎣

⎢
+− 1

'

1n

L

d
P  instead of ⎥⎦

⎥
⎢⎣
⎢

D
P  to calculate 

quotient q.  The approximation method reduces great amount of 

computational time.  Certainly, the approximate quotient is not 
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equal to the real quotient.  The difference in value between the 

approximate value and the real value of quotient causes that P may 

great than D.  We use the pre-computed table to limit P to 6D. 

However, the output of Algorithm Approximation, i.e. P
)

, may 

still larger than D.  The line 3 and 4 of Algorithm 

New_Modular_Multiplication truncate the P
)

 to P
)

<D. 

4.1.2 Correctness 

Let ⎥
⎦

⎥
⎢
⎣

⎢
+

=
− 1
'

1n

L

d
P

ε  

Let 1

2

0
−

−

=
∑

= n

n

i

i
i

b

bp
t , we have 10 <≤ t . 

we have 1)'(' −×+= n
L btPP , 

and 10'')1'( 11 <≤×>>×+ −− tfrombPPbP n
L

n
L  

Let 1

2

0
−

−

=
∑

= n

n

i

i
i

b

bd
a , we have 10 <≤ a . 

It implies 1
1

1
1

1
1 )1()( −

−
−

−
−

− ×≥>×+×+= n
n

n
n

n
n bdDbdandbadD  

 

For ZMcb ∈,,  

McbcMb mod)()(mod +≡+  

We consider DPbpDP n
n mod)'(mod 1

1 +×= +
+  

DPDbp n
n mod'mod1

1 +×≡ +
+  

We compute Dpn mod1+  by using table look-up and 
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compute DP mod'  by using approximation method. 

 

Theorem 1 : DD
d

PP
n

L 5
1

''0
1

<×⎥
⎦

⎥
⎢
⎣

⎢
+

−≤
−

 

Proof: 

From DbdandbPP n
n

n
L >×+×≥ −

−
− 1

1
1 )1(''  

We have ε=⎥
⎦

⎥
⎢
⎣

⎢
×+

×
≥

×+
×

≥ −
−

−

−
−

−

1
1

1

1
1

1

)1(
'

)1(
''

n
n

n
L

n
n

n
L

bd
bP

bd
bP

D
P  

It implies 0' ≥×− DP ε ···················································· (1) 
 

We have DbP n
L >×+ −1)1'(  

1
1

1

)(')1'( −
−

−

×+=>
+
+

⇒ n
n

n

L badDfrom
D
P

ad
P  

⎥
⎦

⎥
⎢
⎣

⎢
+

−>⎥
⎦

⎥
⎢
⎣

⎢
+

−
+
+

⇒
−−− 1
''

1
')1'(

111 n

L

n

L

n

L

d
P

D
P

d
P

ad
P ······························· (2) 

1
'1'

}
1

')1'(
{

1111 +
−

+
+

=
+

−
+
+

−−−− n

L

n

L

n

L

n

L

a d
P

ad
P

d
P

ad
P

Max  

2
64

2
24}

1
'1'

{ 2

2

1110;1
2

2
1 +

−=
+

+
×=

+
−

+
+

−−−<≤−<≤ −
bbb

bb

d
P

ad
P

Max
n

L

n

L

bPbdb
Ln

 

We know 4,1
2

60 ≥<
+

< bif
b

 

Then 4
2

643 <
+

−<
b

 

Thus 
1

')1'(
4

11 +
−

+
+

>
−− n

L

n

L

d
P

ad
P  

⎥
⎦

⎥
⎢
⎣

⎢
+

−
+
+

>⇒
−− 1
')1'(

5
11 n

L

n

L

d
P

ad
P ·················································· (3) 

From (2) and (3) 

We have 5
1

''

1

<⎥
⎦

⎥
⎢
⎣

⎢
+

−
−n

L

d
P

D
P  
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Thus, DD
d

P
P

n

L 5
1

'
'

1

<×⎥
⎦

⎥
⎢
⎣

⎢
+

−
−

············································ (4) 

From (1) and (4) 

We have DD
d

P
P

n

L 5
1

'
'0

1

<×⎥
⎦

⎥
⎢
⎣

⎢
+

−≤
−

 

In Algorithm Approximation we need six elements for out 

pre-computed table. 
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4.2 Implement Issues 

The proposed algorithm is easy to be implemented.  However, 

there are two conditions must to be handle.  First, the quotient q is 

some times greater than one digit in the Algorithm Approximation.  

Then, there are no other instructions to compute Dbn mod1+  

directly in the Algorithm Pre-computation. We discuss the two 

issues at Section 4.2.1 and Section 4.2.2, respectively. 

4.2.1 Calculate DqPP ×−← ''  with two-digit q 

Lemma 1: Let ⎥
⎦

⎥
⎢
⎣

⎢
+

=+×
− )1(
'

1
01

n

L

d
P

qbq   Then we get 11 ≤q . 

Proof: 

⎥
⎦

⎥
⎢
⎣

⎢
+

=+×
− )1(
'

1
01

n

L

d
P

qbq  

⎥
⎦

⎥
⎢
⎣

⎢
+

=⇒
− )1( 1

1
n

n

d
p

q ···························································· (5) 

We knew 1' −+×= nnL pbpP , 1'0 2 −≤≤ bP L  and 1
2 1 −≤≤ − bdb

n  

It implies 10 −≤≤ bpn  

2
12}

1
{

11
2

;10 1 +
−

×=
+−−≤≤−≤≤ −

b
b

d
p

Max
n

n

bdbbp nn

······································ (6) 

1
2
10 <

+
−

≤
b
b , for all 1≥b  

From (5), we have 1q  is an integer. 

From (6), we have 12
12 q

b
b

≥
+
−

×  
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Thus, 11 ≤q  

Base on the LEMMA, we modify the Algorithm Approximation 

to Algorithm Approximation_M. 
 
Algorithm Approximation_M(X, Y, D, e) 
// Input: X, Y and D are n digits, DYXwhere <≤ ,0  
// Output: P= X × Y mod D. P is n+2 digits 
1: ;0←P  
2: )1,0,1( −←>−= iiinifor  
3: begin 
4:  ;PbyXP i ×+×←  

5:  ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 1
'

||
1

01
n

L

d
P

qq  

6:  thenqif 01 > ;'' DbPP ×−←  
7:  ;'' 0 DqPP ×−←  

8:  thenpif n 01 >+  ];[' 1++← npePP  

9: end; 
10: return(P); 

4.2.2 Calculating Dbn mod1+  

There are no other instruction to compute Dbn mod1+  

directly.  We use the approximation method to calculate 

Dbn mod1+ . 

 
Algorithm e1(D) 
//Input:D is n digits 

// Output: Dbe n mod]1[ 1+=  

1: ;]1[ 1+← nbe  
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2: ;
1

]1[||]1[||]1[

1

11
⎥
⎦

⎥
⎢
⎣

⎢
+

←
−

−+

n

nnn

d
eee

q  

3: ;]1[]1[ Dqee ×−←  
4: doDewhile )]1[( ≥  
5:  ;]1[]1[ Dee −←  
6: return(e[1]); 

The line 2 of Algorithm e1 executes a three-digit dividend 

divided by one-digit divisor.  We know that the first digit of e[1] is 

1 and 1
2 1 −≤≤ − bdb

n .  Therefore, the expression e[1]-b × D 

operation will make the first digit of e[1] equal to 0.  It means that 

only two-digit dividend divided by one-digit divisor is needed.  

Then, referred to Lemma 1, we modify the Algorithm e1 to 

Algorithm e1_M. 
 
Algorithm e1_M(D) 
//Input:D is n digits 

// Output: Dbe n mod]1[ 1+=  

1: ;]1[ 1+← nbe  
2: ;]1[]1[ Dbee ×−←  

3: ;
1
]1[||]1[

||
1

1
01 ⎥

⎦

⎥
⎢
⎣

⎢
+

←
−

−

n

nn

d
ee

qq  

4: thenqif 01 > ;]1[]1[ Dbee ×−←  
5: ;]1[]1[ 0 Dqee ×−←  

6: doDewhile )]1[( ≥  
7:  ;]1[]1[ Dee −←  
8: return(e[1]); 

Using Algorithm e1_M, we can modify Algorithm 

Pre-computation to Algorithm Pre-computation_M. 
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Algorithm Pre-computation_M(D) 

//Input:D is n digits 

// Output: Dbiie n mod][ 1+×= , 61 ≤≤ i  

1: e[1] e1_M(D); 
2: )1,6,2( +←≤= iiiifor  
3: begin 
4:  ]);1[]1[(][ eieie +−←  
5:  thenDieif ≥][ ;][][ Dieie −←  
6: end; 

7: return(e); 

4.2.3 Complete Algorithm 

Consider implement issues, we modify the Algorithm 

New_Modular_Multiplication to New_Modular_Multiplication_M. 
 

Algorithm New_Modular_Multiplication_M(X, Y, D) 

//Input: X, Y and D are n digits, DYXwhere <≤ ,0  

//Output: P= X × Y mod D. P is n digits 

1: e Pre-computation_M(D); 

2: P
)

Approximate_M(X, Y, D, e); 

3: doDPwhile )( ≥
)

// The length of P
)

 is n+2 digits. 
4:  ;DPP −←

))
 

5: ;PP
)

←  
6: return(P); 
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4.3 Special Case 

If 11 −=− bdn  is used, bdn =+− 11 .  As a result, no more 

division operation is needed and no more  1q  exist, nether.  In 

this condition, the Algorithm Approximation_M become Algorithm 

Approximation_SPC. 
 
Algorithm Approximation_SPC(X, Y, D, e) 
// Input: X, Y and D are n digits, DYXwhere <≤ ,0  
// Output: P= X × Y mod D. P is n+2 digits 
1: ;0←P  
2: )1,0,1( −←>−= iiinifor  
3: begin 
4:  ;PbyXP i ×+×←  

5:  ;npq ←  

6:  ;'' 0 DqPP ×−←  

7:  thenpif n 01 >+  ];[' 1++← npePP  

8: end; 
9: return(P); 
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4.4 Complexity 

We discuss our new algorithm in general purpose CPU and the 

TI MS3200 55x’ DSP, respectively. 

4.4.1 General Purpose CPU 

Usually executing a multiplication is much longer than 

executing a addition.  Then, we only consider time complexity of 

running the multiplications.  The other assumption is that a 2-digit 

dividend divided by 1-digit divisor need about the same clock 

cycles as a multiplication operation.  The loop repeats n times and 

each loop performs 2n+1 times multiplication.  Totally, the new 

algorithm will take 2n2+n times of multiplication.  In the special 

case, our algorithm needs only 2n2 times of multiplication. 

4.4.2 TI MS3200C 55x’ DSP 

Based on Fig. 4-9 the modified of Proposed Algorithm, the total 

computational effort is list in Table 4-1. 
Table 4-1 The computational effort of Proposed Algorithm 

Operation Worst Case In Average 

n-digit subtraction 2n 3/2n 

2- digit by 1- digit division n n 

n- digit by 1- digit multiplication 2n 2n 

n- digit addition 2n 3/2n 

4.4.3 Storage Complexity 

The new proposed algorithm required 7n+2 digits of b-ary numbers. 
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4.6 Compare with Other Algorithms 

Base on table 2-2, and the estimated clock cycles consumption 

results of chapter 3, we derive table 4-2. In this table, we assume n 

is 1024, w is 16. 
Table 4-2 Comparing with other iterative algorithm 

 by weighted clock cycles consumption 

Modular Multiplication Algorithm ideal real 
Traditional Algorithm 8.650 n 11.050n
Blakely’s Algorithm 8.175 n 9.975n
Chiou & Yang’s Algorithm 1 2.175 n 3.975n
Chiou & Yang’s Algorithm 2 1.700 n 2.900n
Morita & Yang’s Algorithm 0.366 n 0.590n
Leong, Tan &Tan’s Algorithm 3.921 n 8.797n
New Proposed Algorithm (best case) 0.273 n 0.694n
New Proposed Algorithm (average case) 0.334 n 0.559n
New Proposed Algorithm (worst case) 0.394 n 0.461n

In average, our proposed algorithm will take the same time as 

Morita & Yang’s Algorithm.  In special case, new proposed 

algorithm will be better than Morita & Yang’s Algorithm. 
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Chapter 5 Conclusion  

In this thesis, we study the architecture of TI TMS320c55x’ DSP and 

its instruction set.  We show that only consider multiplication as the 

main computational complexity is not enough.  And also, we derive a 

evaluation model to estimate the computational complexity of modular 

modulation algorithm for TI TMS320c55x’ DSP. 

Moreover, we proposed a new iterative modular multiplication 

algorithm.  The new proposed algorithm can achieve the same 

performance as Morita & Yang’s Algorithm in average, and have better 

performance in certain cases. 

Future work 

Our modular multiplication evaluation model is based on TI 

TMS320c55x’ DSP, now.  In the feature we could extend the evaluation 

model to other new proposed TI DSP family. 
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