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A study of the performance of operating modular
multiplication based on TI TMS320C55x’ DSP

Student: Ming-Hung Hsueh Advisor: Dr. Yi-Shiung Yeh

Degree Program of Electrical Engineering Computer Science
National Chiao Tung University

Abstract

Nowadays, because of the rapid progressive of wireless
communication, a variety of mobile computational platforms are
emerged, such as mobile phone, PDA, and notebook. The medium
between mobile stations and.:basestations is air. As a result, to
protect the information of mobile platform becomes an important
issue. TI TMS320c55x’ DSP i1s-a high performance CPU, which can
handle multimedia, voice compression, and voice communication,
and also, has highly performance with low power consumption.
Therefore, it is an ideal multipurpose CPU that can be introduce to
mobile platform. In this thesis, we introduce a systemic model to
estimate the performance of executing a modular multiplication on Tl
TMS320c55x> DSP.  Moreover, we propose a new modular
multiplication algorithm, which achieves higher performance than

Morita & Yang’s Algorithm.
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Chapter 1 Introduction

1.1 Modular Multiplication

Diffie & Hellman[15] proposed the public key concepts in 1976.
Since then, a lot of famous elegant public key crypto-systems had
been proposed, such as EIGamal [14], in which the security is based
on the difficulty of discrete logarithm problem, and RSA[9], in which
the security is based on the large prime problem.  Those
cryptosystems open a new era of cryptology. Nowadays,
crypto-system can provide not only confidential of information but
also authenticity, integrity, and nonrepudiation. The progression of
public key cryptosystems provides wvariety usages, for example,
sharing key between strangers, making- e-transaction reliably, and
authenticating the issuer of information.

The core operation of seme important public key cryptosystems,
such as RSA, ELGamal, and DSA[4] is modular exponentiation.
Executing a modular exponentiation takes the longest time running a
public key encryption or decryption. As a result, improving the
performance of executing modular exponentiation becomes a key
point.

There are two main schemes to achieve higher performance of
executing a modular exponentiation. First, reduce the amount of
modular multiplications, such as Knuth’s[3] M-ary approach and
Chiou’s Parallel scheme[1]. Second, improve the performance of

executing a modular multiplication, such as [2][5][6].



1.2 The Goal of This Thesis

Nowadays, because of the rapid progressive of wireless
communication, a variety of mobile computational platforms are
emerged, such as mobile phone, PDA, and notebook. The medium
between mobile stations and base stations is air. As a result, to
protect information of mobile platform becomes an important issue.

T1 TMS320c55x’ DSP is a high performance CPU. It can handle
multimedia, voice compression, voice communication, and highly
performance with low power consumption. Therefore, it is a
multipurpose CPU that can be introduced to mobile platform.

Our research is to introduce a systemic model to estimate the
performance of executing the maodular multiplications on TI
TMS320c55x” DSP. = Moreover; Wwe -propose a new modular
multiplication algorithm which-achieves higher performance than

Morita & Yang’s Algorithm.



Chapter 2 Implementation of the Basic Arithmetic of Modular
Multiplication Algorithm on TI TMS320c¢55x’ DSP

MS320C55x” DSP takes only one clock cycle to execute an addition,
a subtraction, or a multiplication instruction. Therefore, we need a new
method to evaluation a modular multiplication algorithm for the DSP,

In this chapter, we will briefly introduce the architecture of TI
TMS320c55x’ DSP in Section 2.1 and Section 2.2.  Then, we discuss the
implementation issues of some frequent used arithmetic of modular

multiplication algorithms in Section 2.3.

2.1 Architecture of TI TMS320c55x* DSP

The architecture of TETMS320¢55x” DSP is shown as Fig. 2-1.
The pipeline of TI TMS320¢55x*:DSP has four stages. There are,

| I
| Three data-read data buses (each 16 bits) I.lJ
I I
| | | |

=]

| |
| Three data-read address buses {each 24 bits)

L | TTE11 L1 1
| Program-read data bus {32 bits) |
| Program-read address bus {24 bits) |
cPU 1 I I
N I
Instruction Program Address Data
buffer unit M flow unit data computation
{I umnit) (P unit) flow unit umnit
{A unit) (D unit)

+3 . A |

| Two data-write data buses (each 16 bits) IJ
| Two data-write address buses {(each 24 bits}) IJ

Figure 2-1 The CPU Diagram[13]



1. Instruction buffer unit Machine codes of the instruction set of
Tl TMS320c55x’ DSP are variety length. As a result, an
instruction buffer is needed to smoothen the executing of
programs.

2. Program flow unit This unit handles branch, conditional
operation and pipeline protection. Pipeline protection is an
automatic mechanism to avoid read-write hazard[7].

3. Address data flow unit This unit controls data addresses for
data reading and writing. TI TMS320c55x’ provides three data
read buses and two data write buses.

4. Data computation unit ~ This unit performs arithmetic and logic
operations. There are two 17-bit by 17-bit MAC, a 40-bit ALU
and a Shifter shown in Fig, 2-2.

A Y
g Three data-read data buses (each 16 bits) §

N L

D unit

. . |
Register file |
17-bit x 17-bit] 17-bit x 17-bit 40-bit .
[ unit | | [aco[act]acz] acs| MAC MAC ALU Shifter

40-hit accumulators

A M
( Two data-write data buses (each 16 bits) 3

Figure 2-2 The Data Computation Unit Diagram[13]



2.2 Arithmetic Instructions of TI TMS320c55x’ DSP

2.2.1 The Registers

1. There are four 40-bit Accumulators ACO, AC1, AC2, AC3.
Accumulators are used to execute arithmetic and logic operations.
The highest 8-bit of the accumulator is used for sign-extended
purpose. As a result, the accumulators can perform 16-bit and
32-bit operations.

2. There are eight 24-bit auxiliary registers XARO0~XAR?7.
The auxiliary registers can used to execute arithmetic and logic
operations.  The other purpose of auxiliary registers is data
addressing. Only the lower 16-hit of auxiliary registers, also called
as ARO~ARY7, can be used to perform arithmetic and logic operations.

3. There are four:16-bit temporary registers T0, T1, T2, and T3.
Temporary registers are used for-data’ addressing and to execute
arithmetic and logic operations:

The symbols of the instruction set of TI TMS320c55x” DSP are
denoted as:

dst, src represent ACn, ARn, and Tn
Smem Xmem Ymem means the value of an address

k4, k8, k16 means 4-bit, 8-bit, and 16-bit constants

2.2.2 Left Shift

The left-shift instructions of TI TMS320c55x’DSP with each
left-shift instruction taking only one clock cycle are shown in Fig.

2-3.  Note that only some of the left-shift instructions can be



performed a 32-bit left-shit.

Parallzl
N, Syntax Enable Bit Size Cycles Pipsling
[1] SFTL dst, #1 Yas 2 1 X
[2] SFTL dst, #-1 Yas 2 1 X
[3] SFTL ACx, Tx[, ACy] Yas 2 1 X
[4] SFTL ACx, #5HIFTWI], ACy] Yas 3 1 X

Figure 2-3  Left Shift Instructions[11]

2.2.3 Addition

The addition instructions of TI TMS320c55x’DSP with each
addition instruction taking only one clock cycle are shown in Fig. 2-4.
Note that only some of the addition instructions can be performed a

32-bit addition.

Parallel
Mo, Syntax Enable Bit Size Cycles Pipeline
[1] ADD [sre,] dst Yas 2 1 X
[4] ADD k4, dst Yes 2 1 X
[3] ADD K16, [snc ] dst Mo 4 1 X
[4] ADD Smem, [src,] dst Mo 3 1 X
[5] ADD ACy =< Tx Yos 2 1 X
[E] ADD ACx == #SHIFTW, ACy Yos 3 1 X
[7] ADD K16 =< #16, [ACx] ACy Mo o 1 X
[#] ADD K16 << #3HFT, [ACx, ] ACy Mo 4 1 X
=] ADD Srmermn =< T, [ACK] ACy Mo 3 1 X
[10]  ADD Smern =< #1686, [ACx ] ACy Mo 3 1 X
[11]  ADD [unsi]Smem)], CARRY, [ACx] ACy Mo 3 1 X
[12]  ADD [unsi]lSmem()], [ACx ] ACy Mo 3 1 X
[13]  ADD [uns(]Smem[)] == #SHIFTW, [ACx,] ACy Mo 4 1 X
[14]  ADD deliLmeam), [ACx] ACy §[] 3 1 X
[15] ADD Xmem, ¥mem, ACx M 3 1 X
[16] ADD K158, Smem Mo o 1 X
[17]  ADDW [ACxk] ACy Yes 2 1 X

Figure 2-4  Addition Instructions[11]

2.2.4 Subtraction

The subtraction instructions of TI TMS320c55x’DSP with each



subtraction instruction taking only one clock cycle are shown in Fig.
2-5. Note that only some of the subtraction instructions can be

performed a 32-bit subtraction.

Parallel
No.  Syntax Enable Bit Size Cycles Pipeline
[1] SUB [srz,] dst s 2 1 X
[2] SUB k4, dst Yias 2 1 X
[3] SUB K16, [sre)] dst Mo 4 1 X
[4] SUB Smem, [src,] dst Mo 3 1 X
[5] SLUB snc, Smem, dst Mo 3 1 X
[8] SUB ACx =< Tx, ACy s 2 1 X
[T SUB ACxk =< #SHIFTW, ACy Yas 3 1 X
[&] SUB K16 =< #16, [ACx | ACY Mo 4 1 X
[2] SUB (K16 == #5HFT, [ACx] ACy Mo < 1 X
[10]  SUB Smem << Tx, [ACx] ACy Mo 3 1 X
[11] SUB Smem << #16, [ACx], ATy Mo 3 1 X
[12]  SUB ACx, Smem << #16 ACy Mo 3 1 X
[13]  SUB [unsi]Smem[]], BORROW, [ACx ] ACy Mo 3 1 X
[14]  SUB [unsi]Smem[)], [ACx ] ACy Mo 3 1 X
[18]  SUB [uns(]Smem[) =< #5HIFTW, [ACx] ACy Mo 4 1 X
[18]  SUB dbl{lmem), [ACx ] ACy M 3 1 X
[171  SUB ACx, dbliLmem) ACy Mo 3 1 X
[18]  SUB Xmem, Ymem, ACx Mo 3 1 X

Figure 2-5 ‘Subtraction Instructions[11]

2.2.5 Multiplication

The multiplication instructions of TI TMS320c55x’DSP with
each multiplication instruction taking only one clock cycle are shown
in Fig. 2-6 and Fig. 2-7. Note that only 16-bit by 16-bit

multiplication can be performed.
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No.
[11
[2]
[3]
[4]
[5]
[]
[71
[5]
B
(0]
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Parallal

Syntax Enable Bit Size Cycles Pipeling
SAR[F] [ACx] ACy Yas 2 1 X
MPY[R] [ACx] ACy Yos 2 1 X
MPY[R] Tx, [ACx,] ACy Yos 2 1 X
MPYKIR] K8, [ACx,] ATy Yos 3 1 X
MPYK[R] K1&, [ACx] ACy Mo 4 1 X
FMPYR[R] [T2 = 13mem, Cmem, ACx Mo 3 1 X
SORMIR]T2 = 1%mem, ACx Mo 3 1 X
FMPYRIR] [T2 = 1Smem, [ACx,] ACy Mo 3 1 X
MPYREK[R] [T2 = ]Smem, KB, ACx Mo 4 1 X
FMPYR[RI40] [T2 = J[unsi]Xmeam[)], [uns(]¥mem[)], ACx Mo 4 1 X
FPYRIRIU] [T = ]13mem, Tx, ACx Mo 3 1 X
Figure 2-6  Multiplication Instructions (1) [11]
Parallel
Syntax Enabkle Bit Size Cycles Pipeline
SOAR] [ACx] ACy s 2 1 X
MAC[R]ACK, Tx, ACy[, ACy] Yes 2 1 X
MAC[R]ACY, Tx, ACx, ACy Yes 2 1 X
MACK[R] Tx, KB, [ACx,] ACy Yes 3 1 X
MACK[R] Tx, K16, [ACx,] ACy Mo 4 1 X
MACMR] [T3 = 15mem, Cmem, ACx Mo 3 1 X
MACMR]Z [T3 = ]Smem, Cmem, ACx Mo 3 1 X
S0AMIR] [T3 =15mem, [ACx,] ACy Mo 3 1 X
MACMR] [T3 = 1Smem, [ACx ] ACy Mo 3 1 X
MACMR] [T = ]Smeam, Tx, [ACx,] ACy Mo 3 1 X
MACME[R] [T3 =15meamn, KB, [ACx,] ACy Mo 4 1 X
MACMIR]40] [T3 = J[uns(]Xmem[)], [uns(]¥mem[)], [ACx] ACy Mo 4 1 X
MACM[RI40] [T3 = Juns{]Xmem[)], [unsi]¥mam[)], ACx == #1& Mo 4 1 X

[ ACY]

Figure 2-7 Multiplication Instructions (2) [11]



2.3 The Implementation issues of Frequent Used Arithmetic of
Modular Multiplication Algorithm on TI TMS320c55x’ DSP

The implementations in this chapter are also referred to section
5.1 and section 5.4 in TMS320C55x DSP Programmer's Guide[12].
The fixed-point arithmetic is in section 5.1 and the division is in

section 5.4.

2.3.1 Pipeline Protection Issue

Tl TMS320c55x” DSP provides an automatic pipeline
protection mechanism to prevent read-write hazard. However, it
also causes the extra clock cycles. We use a 1024-Bit addition as an

example shown in Fig. 2-8.

01 AMOV #(VarA); XAR1

02 AMOV #(VarB); XAR2

03 AMOV #(AResult), XAR3
04 MOV #62, TO

05 MOV #64, T1

06 MOV40 dbl(*AR1(T0O)), ACO
07 ADD dbl(*AR2(T0)), ACO
08 MOV ACO0,dbl(*AR3(T1))

09 SFTS ACO, #-32

10 || MOV #30, BRCO

11 RPTBLocal Adder_Loop

12 SUB #2, TO

13 MOV40 dbl(*AR1(T0)), AC1
14 SUB #2, T1

15 ADD #1, TO

16 ADD uns(*AR2(T0)),AC1
17 ADD AC1, ACO

18 SUB #1, TO

19 ADD uns(*AR2(T0))<< #16, ACO
20 MOV ACO, dbl(*AR3(T1))
21 Adder_Loop:

22 SFTS ACO, #-32

23 SUB#1,T1

24 MOV ACO, *AR3(T1)

Figure 2-8 1024-Bit addition code with RAW hazard



The above program contains some RAW hazards. The
Adder_loop is from the line 12 through the line 22. The loop uses
10 instructions. As we learn from Section 2.2, there must be only
10 clock cycles needed for each loop. However, 20 clock cycles are
consumed for each loop. We discover that the extra clock cycles are
affected by the lines 12, 13, 15, 16, 18, and 19. Let’s analyze the
codes of the lines 12 to 13.

12 SUB #2, TO

13 MOV40 dbl(*AR1(T0)), AC1
The result of TO at the line 12 will be used by the line 13 immediately.
As a result, it causes a RAW hazard[7]. Therefore, the automatic
pipeline protection mechanism of TMS320c55x’ inserts the four
NOPs, i.e. the four bubbles into the pipeline to assure the correct
value of TO will be used by the line,13.- The extra NOPs cause the
extra clock cycles. At this case,-running a 1024-bit addition costs
about 650 clock cycles. It’s almost 6 times of executing a 1024-bit
by 16-bit multiplication.

We rewrite the codes in Fig. 2-9. The adder_loop is from the
line 12 through the line 22. The new loop uses 8 instructions and

costs 10 clock cycles. To finish, a 1024-bit addition it costs about

350 clock cycles.

01 AMOV #(VarA), XAR1

02 AMOV #(VarB), XAR2

03 AMOV #(AResult), XAR3
04 ADD #2, AR3

05 MOV #62, TO

06 MOV #63, T1

07 MOV40 dbl(*AR1(T0)), ACO
08 ADD dbl(*AR2(T0)), ACO
09 MOV ACO0,dbl(*AR3(T0))

10



10 SFTS ACO, #-32

11 || MOV #30, BRCO

12 RPTBLocal Adder_Loop

13 SUB #2, TO

14 SUB #2, T1

15 MOV40 dbl(*AR1(T0)), AC1
16 ADD uns(*AR2(T1)),AC1
17 ADD AC1, ACO

18 ADD uns(*AR2(T0))<< #16, ACO
19 MOV ACO, dbl(*AR3(TO0))
20 Adder_Loop:

21 SFTS ACO, #-32

22 SUB #1, TO

23 MOV ACO, *AR3(T0)

Figure 2-9 1024-Bit addition code with less RAW hazard

It spent 11 clock cycles running a 64-bit addition in
TMS320C55x DSP Programmer's Guide[12] costs only 11 clock
cycles. As a result, if the loop unrolling skill[7] is adopted, running
a 1024-Bit addition may:cost 190.clock cycles only. However, this
approach will be much ‘larger source code and make source code

difficult to maintain.

2.3.2 Arithmetic of Modular Multiplication Algorithm on TI
TMS320c¢55x’ DSP

According to our implementation and taking of pipeline
protection, the Clock Cycles Consumption of Frequent Used

Arithmetic of Modular Multiplication is shown in Table. 2-1.

Table 2-1 The clock cycles consumption of
frequent used arithmetic of modular multiplication algorithm

Operation Clock cycles | Loop Unrolling
1024 bits shift 110

1024 bits + 1024 bits 360 190
1024 bits - 1024 bits 300 130
1024 bits x 16 bits 140

32 bits + 16 bits 50

1024 bits comparison 15~650

11



We use the 1024-bit by 16-bit multiplication as the baseline and
weight other arithmetic for evaluation. The weighted clock cycles
consumption is shown in Table 2-2. Table 2-2 will be used to

evaluate modular multiplication algorithms in chapter 4.

Table 2-2 The weighted clock cycles consumption of frequent used
arithmetic of modular multiplication algorithm on TI TMS320c¢55°

Operation Real Unrolling
1024 bits shift 75

1024 bits + 1024 bits 2.15 0.95
1024 bits - 1024 bits 2.15 0.95
1024 bits x 16 bits 1

32 bits + 16 bits 0.5

1024 bits comparison 0~6

12



Chapter 3 Background on Iterative Modular Multiplication

In this chapter, we will go through some well know iterative
modular multiplication algorithm. Our goal is to re-evaluate those
algorithms computational complexity in general purpose CPU and TI
TMS320c55x” DSP.  We try to make a guideline for choosing a properly
modular-multiplication algorithm for TI TMS320c55x” DSP.

3.1 Single Precision Left-to-Right Convention Algorithm

Single precision means “perform a modular multiplication bit
by bit”. Left-to- right convention means “perform a modular
multiplication from the most significant bit to the less significant bit”.
All the single precision  left-to-right. convention algorithms are

suitable for hardware implementation.

3.1.1 Traditional Algorithm of Modular Multiplication

Algorithm Modula_Multiplication (X, Y, D)
//Input: X, Y and D are the n-bit positive integers
//Output: P= X x Y mod D, P is an n-bit positive integer

1. P<O;

2: forj:=n-1downto 0 do

3: begin

4 P& 2 x P

5 if (P = D) then

6: P& P-D;

7: if(y;=1)then

8 begin

9: P& P+X;

10: if (P = D) then

11: P& P-D;

13



12: end;
13: end;
14: return(P);

Time Complexity

This algorithm is suitable for hardware because left shift costs
nothing in hardware. Assume that P has 50% possibility larger
than D. As a result, this algorithm needs n times of n-bit shift, n

times of n-bit addition, and n times of n-bit subtraction.
Table 3-1 The time complexity of Traditional Algorithm

Operation Times
n-bit Left Shift n
n-bit Addition n
n-bit subtraction n
n-bit comparison 2Nn

Storage Complexity

We need n+1 bits for storing-P:

14



3.1.2 Blakley Algorithm[5]

Algorithm Blakley(X, Y, D)
//Input: X, Y and D are the n-bit positive integers
//Output: P= X x Y mod D, P is an n+1-bit positive integer
P<O0;
e< D-X;
for j:= n-1 downto 0 do
begin

if (P = D) then

P& 2 x (P-D);
else
P& 2 x P

if(y; =1) then
10: if (P = D)then
11: P& P-g;
12: else
13: P&EP+ X
14: end,;
15: if (P = D) then
16: P&<P-D;
17: return(P);

Blakley Algorithm introduced a pre-computed integer e. As a
result, it costs less than the traditional modular multiplication
algorithm.

Time Complexity

Assume that P has 50% possibility larger than D. As a result,

this algorithm needs n times of n-bit shift, 1/2n times of n-bit

addition, and n times of n-bit subtraction.
Table 3-2 The time complexity of Blakely’s Algorithm
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Operation Times
n-bit Left Shift n
n-bit Addition 1/2n
n-bit subtraction n
n-bit comparison 2n

Storage Complexity

The lengths of P and e are n+1 bits and n bits, respectively.
Note that in process are need n+1 bits for the length of P, but we

only output n bits for the length of P.
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3.1.3 Chiou & Yang’s Algorithm|[2]

Algorithm Chiou_Yangl1(X, Y, D)

//Input: X, Y and D are the n-bit positive integers

/[Output: P= X x Y mod D, P is an n+1-bit positive integer
1. P<O;

2. R€ 2"mod D;

3. for j:=n-1 downto 0 do

4: Dbegin

5: P& 2 x P

6 if (carry(P)) then

7 P& P+R,;

8 if(y;=1) then

9 begin

10: P& P+ X;

11: if (carry(P)) then
12: P& P+R;
13: end,;

14: end;

15: if (P = D) then

16: P& P-D;

17: return(P);

Algorithm Chiou_Yang 2(X, Y, D)

//Input: X, Y and D are the n-bit positive integers
/[Output: P= X x Y mod D, P is an n-bit positive integer
P<O0;

C<0;

R1< 2" mod D;

R2€ 2 x 2"mod D;

R3¢ 3 x 2"mod D;
T1< (2" + X) mod D;
T2€ (2x 2"+ X) mod D;

17



8. T3¢ (3 x 2"+ X) mod D;
9: forj:=n-1downto 0 do
10: begin

11: P& 2 x P;

12: if (carry(P)) then

13: c&c+1;

14: if(y; = 1) then

15: case c of

16: 0:z&z+X;
17: 1:z2&z2+T1;
18: 2:2€72+T2;
19: 3:z2&z2+T3;
20: end case;

21: else

22: case c of

23: 1:z& 7+ S1;
24: 2:2€ 7+ S2;
25: 3:2& 7+ 83;
26: end case;

27: if (carry(P)) then

28: c< 2

29: else

30: c< 0

31: end;

32: if (P = D) then
33: P& P-D;
34: return(P);

Chiou & Yang’s Algorithm 1 uses Carry(P 2" and
pre-computed table to perform the modular-multiplication. The
time complexity for the algorithm is n times “n-bit left shift” and
2/3n times “n-bit addition”. It also requires 2n+1 bits storage

space for P and R.
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Later Chiou & Yang proposed another algorithm, called
Algorithm 2, to improve the performance. The major difference
between them is that Algorithm 2 using six-element pre-computed
table instead of using one-element in Algorithm 1. In algorithm 2
it requires 7n+2 bits storage space for P and pre-computed table.
Time and Storage Complexity

The comparison between two Algorithms are shown in table
3-3.

Table 3-3 The time and storage complexity of
Chiou & Yang’s Algorithm

Operation Algorithm 1 Algorithm 2
n-bit Left Shift n n

n-bit Addition 3/2n n
Space required(bits) 2n+1 n+2
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3.2 Multi-Precision Left-to-Right Convention Algorithm

Multi-precision means “perform modular multiplication block
by block”.  Left-to-right convention means “perform modular
multiplication from the most significant block to the less significant
block”.  All the multi-precision algorithms are more suitable for

software implementation.

3.2.1 Leong, Tan &Tan’s Algorithm [8]

Algorithm Leong_Tan_Tan(X, Y, D)
/[P = XxY mod D, where 0 < X,Y < D

//D=2”‘1+nz_2:di2‘, inz_l:xiZ‘
i=0 i=0

//Y=§yi2i: Pzn_lpizi,
i=0 i=0

/Iw is the bit amount of a digit

1. e[0]«2"-D;

2. for(i=Li<w,i<i+l)

3: begin

4. e[i] < (e[i —1] x 2);

5 if e[i]>D then

6 e[i] < (e[i]+e[0]) mod 2";

7 end;

8. P<«0;

9: for(i:P],wo,iei—l)
W

10: begin

11: P XXV 1YivoYigy + Px2"
12: for(j=0,j<w,j« j+1)

13: begin

14: if p,, then
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15: begin

16: P« P-2""+¢[j];

17: if p,=1 then P« P-2"+¢[0];
18: end:

19: end:

Zozend;

21. if P>D then P« (P+¢[0]) mod D;
22: return(P);

Leong, Tan &Tan’s Algorithm is suitable for software
implementing. Even though they claim that the algorithm is a
multi-precision algorithm, but it looks like a single precision. The
algorithm does not reduce the time complexity significantly.

Time Complexity
Let n’:Pw.

w

The time spent on.operating-a-multiplication is much larger than
operating an addition. Then-measuring the time complexity, we
always neglect the addition part. Then, Leong, Tan &Tan’s
Algorithm needs only 2n multiplications.

For a realistic estimate, the operation of Leong, Tan &Tan’s

Algorithm list in Table 3-6.
Table 3-4 The time complexity of Leong, Tan &Tan’s Algorithm

Operation Times
n-bit By w-bit Multiplication | n’

n-bit Addition (2w+1)n’
n-bit Subtraction 2wn’

Storage Complexity

Leong, Tan &Tan’s Algorithm needs (w*+2w)n’+w bits.
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3.2.2 b-ary number system

Let b be a positive integer and B={0,1,...b-1}
We denote Z, Q, R be the set of integers, the set of rational numbers,

and the set of real numbers, respectively.

Any number r in Q can be represent by r = Zslribi foreach r. inB.
i=d

We have d>0 if rez; d<0 if reQ-z. Usually, we take
—o<d,s<o0.

n-1
Let D=) db' and %sd

i=0

<b-1

n-1 —

n-1 n-1
Let X =) xb" and Y => yb'
i=0 i=0
n+1
Let P=> pb' and P:=p, . xb+p;
i=0
Let P'= Z pibi and P! = p,xb+p, ,

i=0

3.2.3 Morita & Yang’s Algorithm[6]

Algorithm Morita_Yang(X, Y, D)
[Input: X, Y and D are n digits, where 0<X,Y <D

/[Output: P=X x Y mod D. P is n+2 digits

1. P<O;

2: forj:= n-1 downto 0 do
3. begin

4 P&EDb x P+ X x i
: P .

5: q(_{dn_l+lJ’

6: P&P-b x q x D;

~

«— R
a d_+1]
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8: if (q=1) then

9: P& P-b x D

10: if(g=2) then

11: P& P-b x (2 x D);

12: if(P, = (b-1) x (dn1+1)) then
13: P&P-(b-1) x D;

14: end;

15: if (P = D) then

16: begin

17: q<—{ R J;
d,,+1

18: P& P-q x D;
19: While (P = D) do
20: P& P-D;

21: end;

22: return(P);

Morita & Yang’s Algorithm s suitable for implementing in

software for a low storage and computational power CPU. The

advantages of the algorithm are:
1) Using an approximation value of g.

time.

i) Using lookahead determinate approach.

It can lower the execution

It can restrict the value

in the small range, then it can guess an estimation value shortly.

Actually, the above two condition can also lower the running

time and shorter the storage space.

Time Complexity

We should notice that n presents the number of b-ary digit.

The time spent on operating a multiplication is much larger than

operating an addition.
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always neglects the addition part. Then, Morita & Yang’s
Algorithm needs 2n*+2n multiplications.

For a realistic estimate, the operations of Morita & Yang’s

Algorithm list in Table 3-5.
Table 3-5 The time complexity of Morita & Yang’s Algorithm

Operation Times
n-bit By w-bit Multiplication |n
2w-bit By w-bit Division 2n
n-bit Addition n
n-bit Subtraction 2n

Storage Complexity
Morita & Yang’s Algorithm needs n+2 digits.
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Chapter 4 A New lterative Modular Multiplication Algorithm

We combine both of the algorithms described in the previous chapter
to derive a new iterative modular multiplication algorithm.  Our
algorithm need less pre-computed table space than Leong, Tan & Tan’s
Algorithm and achieve the same performance like Morita & Yang’s
Algorithm. Furthermore, our proposed algorithm is better than Morita

& Yang’s Algorithm.

4.1 The New Modular Multiplication Algorithm

The proposed algorithm is given in Section 4.1.1 and its

correctness is shown in Section 4.1.2

4.1.1 Procedure

Algorithm New_Modular. Multiplication(X, Y, D)
[Input: X, Y and D are n'digits;wwhere 0< X,Y <D

/[Output: P=X x Y mod D. P is n digits.

1. e<Pre-computation(D);

2: P <Approximate(X, Y, D, e);

3: while (P>D) do// The length of P isn+2 digits.
4: P« P-D;

5. P« P;

6: return(P);

Algorithm Pre-computation(D)
[Input:D is n digits
// Output: e[i]=ixb™ mod D, 1<i<6

1: e[« b™ mod D;
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for(i = 2,i <6,i «i+1)
begin
e[i] « (e[i —1] + e[1]);
if e[i]>D then e[i] « €[i]- D;
end;
return(e);

A R

Algorithm Approximation(X, Y, D, e)
// Input: X, Y and D are n digits, where 0<X,Y <D
// Output: P=X x Y mod D. P is n+2 digits

1) P<«O0;

2 fori=n-1i>0,i«<i-1)

3:  begin

4. P« Xxy,+bxP;

5: q e{d::lJ

6: P'«- P'—qxD;

7: if p., >0 “then®P<Pelp,.,I;
8: end;

9:  return(P);

The Algorithm Pre-computation calculates six pre-computed
elements, i.e. b™, 2xb™, 3xb™, 4xb"™, 5xb™ ,and 6xb"*
mod D. The pre-computed elements store in e.

The Algorithm Approximation uses approximation method and

pre-computed table to calculate P= X x Y mod D. The

approximation method uses { P . J instead of {% J to calculate
n—l+

quotient g. The approximation method reduces great amount of

computational time. Certainly, the approximate quotient is not
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equal to the real quotient. The difference in value between the
approximate value and the real value of quotient causes that P may
great than D. We use the pre-computed table to limit P to 6D.
However, the output of Algorithm Approximation, i.e. P, may
still larger than D. The line 3 and 4 of Algorithm

New_Modular_Multiplication truncate the P to P<D.

4.1.2 Correctness

Let g:{ Py J
d,,+1

n-2 )
Z p;b’
i—0

n-1 !

Let t=

we have 0 <tz
we have P'=(P' +t)xb™",

and (P' +D)xb"" > P'>P! xh"=rfrom 0<t<1

Sdb!
i=0

n-1 !

Let a= we have 0<a«<l.

Itimplies D=(d,, +a)xb" and (d _, +1)xb"*>D>d_,xb""

For b,ccM ez
b (mod M) +c=(o+c) mod M

We consider P mod D= (p,,xb"™ +P') mod D

=p,,xb™ mod D +P' mod D

We compute p,, mod D by using table look-up and
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compute P' mod D by using approximation method.

Theoreml: 0<P- Py xD < 5D
d,, +1

Proof:

From P>P' xb"™ and (d,,+1)xb" >D

1 1 n-1 ' n-1
We have P> P'od Y b =
D (d,,+)xb" (d,, +)xb"

ItIMPlIES Plogx D >0 rerrrrrrrrin (1)

We have (P' +1)xb"* >D

S Pt P om D=(d, , +a)xb"*
d,,+a D
G B 5 i 2
d,,+a |d,,+1| D |d;4+1
Max{(PL+1)_ P, }- el P
a d,,+a d,+1" d ,+a""d;+1
b
. : b? +—
Max ot Pug g T2, 6
gﬁdn71<bfl?05PL<b2*l dn—l +a dn—l +1 b +2b b+2
We know 0< 6 <1, if b>4
b+2
6
Then 3<4- <4
b+2
Thus 4>(PL+1)— Pl
d.,+a d ,+1
:>5>(PL+1)_ PL .................................................. (3)
d,,+a |d ,+1

From (2) and (3)

We have L <5
D |d ,+1
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Thus, p{ P JxD<5D -------------------------------------------- 4)

d,, +1

From (1) and (4)

We have 0<P'- Py x D < 5D
d,, +1

In Algorithm Approximation we need six elements for out

pre-computed table.
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4.2 Implement Issues

The proposed algorithm is easy to be implemented. However,
there are two conditions must to be handle. First, the quotient q is

some times greater than one digit in the Algorithm Approximation.

Then, there are no other instructions to compute b™ mod D

directly in the Algorithm Pre-computation. We discuss the two

Issues at Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Calculate P'« P'-qxD with two-digit q

Lemma 1: Let qlxb+q0={ By J Then we get g, <1.

(d gt )
Proof:
P
b+q, = L
g, X do \\(dnl 1)J
_ P 5
-0 525 ©)
We knew P' =p,xb+p,,, 0<P <b*-1 gnd =<d,,<b-1
It implies 0<p, <b-1
p b-1
Max n = 2 X 6
0<pn<b1;2<dn1<b1{dn_1 +1} b+2 ( )

0<

<1, forall b>1
b+2

From (5), we have g, is an integer.

From (6), we have 2x b-1 >q
b+2

30



Thus, ¢, <1

Base on the LEMMA, we modify the Algorithm Approximation
to Algorithm Approximation_M.

Algorithm Approximation_M(X, Y, D, e)
/[l Input: X, Y and D are n digits, where 0<X,Y <D
// Output: P=X x Y mod D. P is n+2 digits

1: P<«O;

2 fori=n-1i>0,i«i-1)
3:  begin

4 P« Xxy, +bxP;

5: A Il dg ‘{d::lJ

6 if g,>0 then Pi«~P'-bxD;

7 P'«<— P'-q, x D;

8: if p., >0 then P<=P4e[p, ,I;
9: end;

10: return(P);
4.2.2 Calculating b™ mod D

There are no other instruction to compute b"™ mod D

directly. ~ We use the approximation method to calculate

b" mod D.

Algorithm e1(D)
[/Input:D is n digits

// Output: e[l]=b"™ mod D

1: e[l] «b"*:
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N

g {e[l]m lefdd, |l e[t |
d,,+1

e[1] < e[l]—qx D;

while (e[l]> D) do
e[1] « e[1] - D;

return(e[1]);

@ g kR w

The line 2 of Algorithm el executes a three-digit dividend
divided by one-digit divisor. We know that the first digit of e[1] is

1 and %sdn_l <b-1. Therefore, the expression e[1]-b x D

operation will make the first digit of e[1] equal to 0. It means that
only two-digit dividend divided by one-digit divisor is needed.
Then, referred to Lemma 1, we modify the Algorithm el to

Algorithm el_M.

Algorithm e1_M(D)
[/Input:D is n digits

// Output: e[l]=b"™" mod "D
1: e[l] «b"*:
2. e[l] < €e[1]-bxD;

3: q, g, {—e[”d" | eﬂn-lJ;
if qg,>0 thene[l] < e[l]-bxD;
e[1] < e[1]-q, x D;
while (e[1]> D) do

e[1] « e[1] - D;

return(e[1]);

e XN g k&

Using Algorithm el M, we can modify Algorithm

Pre-computation to Algorithm Pre-computation_M.
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Algorithm Pre-computation_M(D)
[/Input:D is n digits

// Output: e[i]=ixb™ mod D, 1<i<6
1. e[l]<el M(D);

2. for(i=2,i<6,i<i+1)
3:  begin

4: e[i] < (e[i — 1]+ e[1]);
5 if e[i]>D then e[i] « €[i]- D;
6: end;

7. return(e);

4.2.3 Complete Algorithm

Consider implement issues, we modify the Algorithm

New_Modular_Multiplication to New- Modular_Multiplication_M.

Algorithm New_Modular_Multiplication M(X, Y, D)
[nput: X, Y and D are'ndigits, where' 0< X,Y <D
/[Output: P=X x Y mod D. P'is n digits

1. e<Pre-computation_M(D);

2: P <Approximate_ M(X, Y, D, e);

3: while (P>D) do// The length of P isn+2 digits.
4: P« P-D;

5. P« P

6: return(P);
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4.3 Special Case
If d_,=b-1 1is used, d _,+1=b. As a result, no more
division operation is needed and no more g, exist, nether. In
this condition, the Algorithm Approximation_M become Algorithm

Approximation_SPC.

Algorithm Approximation_SPC(X, Y, D, e)
// Input: X, Y and D are n digits, where 0<X,Y <D
// Output: P= X x Y mod D. P is n+2 digits

11 P<«0Q;

2: for(i=n-1i>0,i < i-1)

3:  begin

4: P« Xxvy, +bxP;

S: q < P,

6: P'«— P'-q, x D;

7 if p,,>0 then P«<P4+ep,.,.];
8: end;

9:  return(P);
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4.4 Complexity

We discuss our new algorithm in general purpose CPU and the

TI1 MS3200 55x’ DSP, respectively.

4.4.1 General Purpose CPU

Usually executing a multiplication is much longer than
executing a addition. Then, we only consider time complexity of
running the multiplications. The other assumption is that a 2-digit
dividend divided by 1-digit divisor need about the same clock
cycles as a multiplication operation. The loop repeats n times and
each loop performs 2n+1_times.multiplication. Totally, the new
algorithm will take 2n®+n times.©f multiplication. In the special

case, our algorithm néeds only 2n* times: of multiplication.

4.4.2 TI MS3200C 55x’ DSP

Based on Fig. 4-9 the modified of Proposed Algorithm, the total

computational effort is list in Table 4-1.
Table 4-1 The computational effort of Proposed Algorithm

Operation Worst Case In Average
n-digit subtraction 2n 3/2n

2- digit by 1- digit division n n

n- digit by 1- digit multiplication 2n 2n

n- digit addition 2n 3/2n

4.4.3 Storage Complexity

The new proposed algorithm required 7n+2 digits of b-ary numbers.
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4.6 Compare with Other Algorithms

Base on table 2-2, and the estimated clock cycles consumption
results of chapter 3, we derive table 4-2. In this table, we assume n

IS 1024, w is 16.

Table 4-2 Comparing with other iterative algorithm
by weighted clock cycles consumption

Modular Multiplication Algorithm ideal real

Traditional Algorithm 8.650n | 11.050n
Blakely’s Algorithm 8.175n | 9.975n
Chiou & Yang’s Algorithm 1 2.175n | 3.975n
Chiou & Yang’s Algorithm 2 1.700n| 2.900n
Morita & Yang’s Algorithm 0.366n| 0.590n
Leong, Tan &Tan’s Algorithm 3.921n| 8.797n
New Proposed Algorithm (best case) 0.273n| 0.694n
New Proposed Algorithm (average case) 0.334n| 0.559n
New Proposed Algorithm (worst-case) 0.394n| 0.461n

In average, our proposed algorithm will take the same time as
Morita & Yang’s Algorithm. In special case, new proposed

algorithm will be better than Morita & Yang’s Algorithm.

36



Chapter 5 Conclusion

In this thesis, we study the architecture of TI TMS320c55x’ DSP and
its instruction set. We show that only consider multiplication as the
main computational complexity is not enough. And also, we derive a
evaluation model to estimate the computational complexity of modular
modulation algorithm for TI TMS320c55x” DSP.

Moreover, we proposed a new iterative modular multiplication
algorithm.  The new proposed algorithm can achieve the same
performance as Morita & Yang’s Algorithm in average, and have better

performance in certain cases.

Future work

Our modular multiplication evaluation model is based on TI
TMS320c55x” DSP, now. In the feature we could extend the evaluation

model to other new proposed T1 DSP family.
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