
國 立 交 通 大 學

電機資訊學院 資訊學程

碩士論文

TI TMS320C55x＇ DSP架構下執行模乘法運算之效率研究

A study of the performance of operating modular

multiplication based on TI TMS320C55x’ DSP

研 究 生：薛明宏

指導教授：葉義雄 教授

中 華 民 國 九 十 四 年 六 月

TI TMS320C55x＇ DSP架構下執行模乘法運算之效率研究

A study of the performance of operating modular

multiplication based on TI TMS320C55x’ DSP

研 究 生：薛明宏 Student： Ming-Hung Hsueh

指導教授：葉義雄 Advisor：Dr. Yi-Shiung Yeh

國 立 交 通 大 學

電機資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to Degree Program of Electrical Engineering and Computer Science
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

In
Computer Science

June 2005
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 四 年 六 月

 i

TI TMS320C55x＇ DSP架構下執行模乘法運算之效率研究

學生:薛明宏 指導教授:葉義雄博士

國立交通大學電機資訊學院 資訊學程﹙研究所﹚碩士班

摘 要

現階段由於無線通訊技術發達，許多無線移動運算平台也應運而

生，例如，無線電話、個人數位助理及具無線上網功能之筆記型電腦

等。由於移動計算平台與基地台溝通的媒介乃是空氣，因此加強資訊

安全保護便成了移動計算平台上一個重要的課題。採用加密系統時除

了安全性外，最重要的便是運算效能，由於模乘法乃現有密碼系統中

最主要的計算元件，加速模乘法的運算將可直接提昇整體密碼系統之

效能。本文針對適用於無線環境多功能的CPU TI TMS320C55’x

DSP，進行其架構研究，發展出一套系統性的模乘法選用法則，並在

研究過程中發展出一套新的模乘法，此模乘法的運算效能較Morita &

Yang演算法稍佳。

 ii

A study of the performance of operating modular

multiplication based on TI TMS320C55x’ DSP

Student: Ming-Hung Hsueh Advisor: Dr. Yi-Shiung Yeh

Degree Program of Electrical Engineering Computer Science
 National Chiao Tung University

Abstract

Nowadays, because of the rapid progressive of wireless

communication, a variety of mobile computational platforms are

emerged, such as mobile phone, PDA, and notebook. The medium

between mobile stations and base stations is air. As a result, to

protect the information of mobile platform becomes an important

issue. TI TMS320c55x’ DSP is a high performance CPU, which can

handle multimedia, voice compression, and voice communication,

and also, has highly performance with low power consumption.

Therefore, it is an ideal multipurpose CPU that can be introduce to

mobile platform. In this thesis, we introduce a systemic model to

estimate the performance of executing a modular multiplication on TI

TMS320c55x’ DSP. Moreover, we propose a new modular

multiplication algorithm, which achieves higher performance than

Morita & Yang’s Algorithm.

 iii

致 謝

首先感謝指導教授葉義雄教授，在研究所求學階段授與

我專業知識及正確的研究態度。其次感謝公司長官們的包容

讓我在工作後還能有機會充實自我，更要感謝同事豐富、瑞

敏及嘉耀在我求學過程中所給予的協助。

最後感謝我的家人的支持，尤其是內人莉淳這段日子辛

苦負擔了大部分的家務與女兒們的教養，使我能無後顧之

憂，安心完成學業。

 iv

Contents

中文摘要.. i
英文摘要... ii
致謝.. iii
List of Figures .. vi
List of Tables... vii
Chapter 1 Introduction ...1

1.1 Modular Multiplication..1
1.2 The Goal of This Thesis...2

Chapter 2 Implementation of the Basic Arithmetic of Modular Multiplication
Algorithm on TI TMS320c55x’ DSP...3

2.1 Architecture of TI TMS320c55x’ DSP..3
2.2 Arithmetic Instructions of TI TMS320c55x’ DSP...................................5

2.2.1 The Registers ..5
2.2.2 Left Shift ...5
2.2.3 Addition...6
2.2.4 Subtraction ..6
2.2.5 Multiplication..7

2.3 The Implementation issues of Frequent Used Arithmetic of Modular
Multiplication Algorithm on TI TMS320c55x’ DSP...9

2.3.1 Pipeline Protection Issue...9
2.3.2 Arithmetic of Modular Multiplication Algorithm on TI

TMS320c55x’ DSP ..11
Chapter 3 Background on Iterative Modular Multiplication13

3.1 Single Precision Left-to-Right Convention Algorithm..........................13
3.1.1 Traditional Algorithm of Modular Multiplication.......................13
3.1.2 Blakley Algorithm[5] ..15
3.1.3 Chiou & Yang’s Algorithm[2]...17

3.2 Multi-Precision Left-to-Right Convention Algorithm...........................20
3.2.1 Leong, Tan &Tan’s Algorithm [8]...20
3.2.2 b-ary number system...22
3.2.3 Morita & Yang’s Algorithm[6]..22

Chapter 4 A New Iterative Modular Multiplication Algorithm25
4.1 The New Modular Multiplication Algorithm ..25

4.1.1 Procedure ..25
4.1.2 Correctness..27

4.2 Implement Issues ...30
4.2.1 Calculate DqPP ×−← '' with two-digit q30

 v

4.2.2 Calculating Dbn mod1+ ...31
4.2.3 Complete Algorithm..33

4.3 Special Case ...34
4.4 Complexity...35

4.4.1 General Purpose CPU ...35
4.4.2 TI MS3200C 55x’ DSP ...35
4.4.3 Storage Complexity ..35

4.6 Compare with Other Algorithms ...36
Chapter 5 Conclusion...37
REFERENCES ..38

 vi

List of Figures

Figure 2-1 The CPU Diagram[13] ..3
Figure 2-2 The Data Computation Unit Diagram[13]4
Figure 2-3 Left Shift Instructions[11]..6
Figure 2-4 Addition Instructions[11] ...6
Figure 2-5 Subtraction Instructions[11]...7
Figure 2-6 Multiplication Instructions (1) [11]..8
Figure 2-7 Multiplication Instructions (2) [11]..8
Figure 2-8 1024-Bit addition code with RAW hazard9
Figure 2-9 1024-Bit addition code with less RAW hazard11

 vii

List of Tables

Table 2-1 The clock cycles consumption of frequent used arithmetic of
modular multiplication algorithm...11

Table 2-2 The weighted clock cycles consumption of frequent used
arithmetic of modular multiplication algorithm on TI TMS320c55’12

Table 3-1 The time complexity of Traditional Algorithm.........................14
Table 3-2 The time complexity of Blakely’s Algorithm15
Table 3-3 The time and storage complexity of Chiou & Yang’s

Algorithm..19
Table 3-4 The time complexity of Leong, Tan &Tan’s Algorithm..........21
Table 3-5 The time complexity of Morita & Yang’s Algorithm..............24
Table 4-1 The computational effort of Proposed Algorithm.....................35
Table 4-2 Comparing with other iterative algorithm by weighted clock

cycles consumption...36

 1

Chapter 1 Introduction

1.1 Modular Multiplication

Diffie & Hellman[15] proposed the public key concepts in 1976.

Since then, a lot of famous elegant public key crypto-systems had

been proposed, such as ElGamal [14], in which the security is based

on the difficulty of discrete logarithm problem, and RSA[9], in which

the security is based on the large prime problem. Those

cryptosystems open a new era of cryptology. Nowadays,

crypto-system can provide not only confidential of information but

also authenticity, integrity, and nonrepudiation. The progression of

public key cryptosystems provides variety usages, for example,

sharing key between strangers, making e-transaction reliably, and

authenticating the issuer of information.

The core operation of some important public key cryptosystems,

such as RSA, ELGamal, and DSA[4] is modular exponentiation.

Executing a modular exponentiation takes the longest time running a

public key encryption or decryption. As a result, improving the

performance of executing modular exponentiation becomes a key

point.

There are two main schemes to achieve higher performance of

executing a modular exponentiation. First, reduce the amount of

modular multiplications, such as Knuth’s[3] M-ary approach and

Chiou’s Parallel scheme[1]. Second, improve the performance of

executing a modular multiplication, such as [2][5][6].

 2

1.2 The Goal of This Thesis

Nowadays, because of the rapid progressive of wireless

communication, a variety of mobile computational platforms are

emerged, such as mobile phone, PDA, and notebook. The medium

between mobile stations and base stations is air. As a result, to

protect information of mobile platform becomes an important issue.

TI TMS320c55x’ DSP is a high performance CPU. It can handle

multimedia, voice compression, voice communication, and highly

performance with low power consumption. Therefore, it is a

multipurpose CPU that can be introduced to mobile platform.

Our research is to introduce a systemic model to estimate the

performance of executing the modular multiplications on TI

TMS320c55x’ DSP. Moreover, we propose a new modular

multiplication algorithm which achieves higher performance than

Morita & Yang’s Algorithm.

 3

Chapter 2 Implementation of the Basic Arithmetic of Modular
Multiplication Algorithm on TI TMS320c55x’ DSP

MS320C55x’ DSP takes only one clock cycle to execute an addition,

a subtraction, or a multiplication instruction. Therefore, we need a new

method to evaluation a modular multiplication algorithm for the DSP.

In this chapter, we will briefly introduce the architecture of TI

TMS320c55x’ DSP in Section 2.1 and Section 2.2. Then, we discuss the

implementation issues of some frequent used arithmetic of modular

multiplication algorithms in Section 2.3.

2.1 Architecture of TI TMS320c55x’ DSP

The architecture of TI TMS320c55x’ DSP is shown as Fig. 2-1.

The pipeline of TI TMS320c55x’ DSP has four stages. There are,

Figure 2-1 The CPU Diagram[13]

 4

1. Instruction buffer unit ： Machine codes of the instruction set of

TI TMS320c55x’ DSP are variety length. As a result, an

instruction buffer is needed to smoothen the executing of

programs.

2. Program flow unit ： This unit handles branch, conditional

operation and pipeline protection. Pipeline protection is an

automatic mechanism to avoid read-write hazard[7].

3. Address data flow unit ： This unit controls data addresses for

data reading and writing. TI TMS320c55x’ provides three data

read buses and two data write buses.

4. Data computation unit ： This unit performs arithmetic and logic

operations. There are two 17-bit by 17-bit MAC, a 40-bit ALU

and a Shifter shown in Fig, 2-2.

Figure 2-2 The Data Computation Unit Diagram[13]

 5

2.2 Arithmetic Instructions of TI TMS320c55x’ DSP

2.2.1 The Registers

1. There are four 40-bit Accumulators AC0, AC1, AC2, AC3.

Accumulators are used to execute arithmetic and logic operations.

The highest 8-bit of the accumulator is used for sign-extended

purpose. As a result, the accumulators can perform 16-bit and

32-bit operations.

2. There are eight 24-bit auxiliary registers XAR0~XAR7.

The auxiliary registers can used to execute arithmetic and logic

operations. The other purpose of auxiliary registers is data

addressing. Only the lower 16-bit of auxiliary registers, also called

as AR0~AR7, can be used to perform arithmetic and logic operations.

3. There are four 16-bit temporary registers T0, T1, T2, and T3.

Temporary registers are used for data addressing and to execute

arithmetic and logic operations.

The symbols of the instruction set of TI TMS320c55x’ DSP are

denoted as:

dst, src represent ACn, ARn, and Tn

Smem、Xmem、Ymem means the value of an address

k4, k8, k16 means 4-bit, 8-bit, and 16-bit constants

2.2.2 Left Shift

The left-shift instructions of TI TMS320c55x’DSP with each

left-shift instruction taking only one clock cycle are shown in Fig.

2-3. Note that only some of the left-shift instructions can be

 6

performed a 32-bit left-shit.

Figure 2-3 Left Shift Instructions[11]

2.2.3 Addition

The addition instructions of TI TMS320c55x’DSP with each

addition instruction taking only one clock cycle are shown in Fig. 2-4.

Note that only some of the addition instructions can be performed a

32-bit addition.

Figure 2-4 Addition Instructions[11]

2.2.4 Subtraction

The subtraction instructions of TI TMS320c55x’DSP with each

 7

subtraction instruction taking only one clock cycle are shown in Fig.

2-5. Note that only some of the subtraction instructions can be

performed a 32-bit subtraction.

Figure 2-5 Subtraction Instructions[11]

2.2.5 Multiplication

The multiplication instructions of TI TMS320c55x’DSP with

each multiplication instruction taking only one clock cycle are shown

in Fig. 2-6 and Fig. 2-7. Note that only 16-bit by 16-bit

multiplication can be performed.

 8

Figure 2-6 Multiplication Instructions (1) [11]

Figure 2-7 Multiplication Instructions (2) [11]

 9

2.3 The Implementation issues of Frequent Used Arithmetic of
Modular Multiplication Algorithm on TI TMS320c55x’ DSP

The implementations in this chapter are also referred to section

5.1 and section 5.4 in TMS320C55x DSP Programmer's Guide[12].

The fixed-point arithmetic is in section 5.1 and the division is in

section 5.4.

2.3.1 Pipeline Protection Issue

TI TMS320c55x’ DSP provides an automatic pipeline

protection mechanism to prevent read-write hazard. However, it

also causes the extra clock cycles. We use a 1024-Bit addition as an

example shown in Fig. 2-8.
01 AMOV #(VarA), XAR1
02 AMOV #(VarB), XAR2
03 AMOV #(AResult), XAR3
04 MOV #62, T0
05 MOV #64, T1
06 MOV40 dbl(*AR1(T0)), AC0
07 ADD dbl(*AR2(T0)), AC0
08 MOV AC0,dbl(*AR3(T1))
09 SFTS AC0, #-32
10 || MOV #30, BRC0
11 RPTBLocal Adder_Loop
12 SUB #2, T0
13 MOV40 dbl(*AR1(T0)), AC1
14 SUB #2, T1
15 ADD #1, T0
16 ADD uns(*AR2(T0)),AC1
17 ADD AC1, AC0
18 SUB #1, T0
19 ADD uns(*AR2(T0))<< #16, AC0
20 MOV AC0, dbl(*AR3(T1))
21 Adder_Loop:
22 SFTS AC0, #-32
23 SUB #1, T1
24 MOV AC0, *AR3(T1)

Figure 2-8 1024-Bit addition code with RAW hazard

 10

The above program contains some RAW hazards. The

Adder_loop is from the line 12 through the line 22. The loop uses

10 instructions. As we learn from Section 2.2, there must be only

10 clock cycles needed for each loop. However, 20 clock cycles are

consumed for each loop. We discover that the extra clock cycles are

affected by the lines 12, 13, 15, 16, 18, and 19. Let’s analyze the

codes of the lines 12 to 13.

12 SUB #2, T0

13 MOV40 dbl(*AR1(T0)), AC1

The result of T0 at the line 12 will be used by the line 13 immediately.

As a result, it causes a RAW hazard[7]. Therefore, the automatic

pipeline protection mechanism of TMS320c55x’ inserts the four

NOPs, i.e. the four bubbles into the pipeline to assure the correct

value of T0 will be used by the line 13. The extra NOPs cause the

extra clock cycles. At this case, running a 1024-bit addition costs

about 650 clock cycles. It’s almost 6 times of executing a 1024-bit

by 16-bit multiplication.

We rewrite the codes in Fig. 2-9. The adder_loop is from the

line 12 through the line 22. The new loop uses 8 instructions and

costs 10 clock cycles. To finish, a 1024-bit addition it costs about

350 clock cycles.
01 AMOV #(VarA), XAR1
02 AMOV #(VarB), XAR2
03 AMOV #(AResult), XAR3
04 ADD #2, AR3
05 MOV #62, T0
06 MOV #63, T1
07 MOV40 dbl(*AR1(T0)), AC0
08 ADD dbl(*AR2(T0)), AC0
09 MOV AC0,dbl(*AR3(T0))

 11

10 SFTS AC0, #-32
11 || MOV #30, BRC0
12 RPTBLocal Adder_Loop
13 SUB #2, T0
14 SUB #2, T1
15 MOV40 dbl(*AR1(T0)), AC1
16 ADD uns(*AR2(T1)),AC1
17 ADD AC1, AC0
18 ADD uns(*AR2(T0))<< #16, AC0
19 MOV AC0, dbl(*AR3(T0))
20 Adder_Loop:
21 SFTS AC0, #-32
22 SUB #1, T0
23 MOV AC0, *AR3(T0)

Figure 2-9 1024-Bit addition code with less RAW hazard

It spent 11 clock cycles running a 64-bit addition in

TMS320C55x DSP Programmer's Guide[12] costs only 11 clock

cycles. As a result, if the loop unrolling skill[7] is adopted, running

a 1024-Bit addition may cost 190 clock cycles only. However, this

approach will be much larger source code and make source code

difficult to maintain.

2.3.2 Arithmetic of Modular Multiplication Algorithm on TI
TMS320c55x’ DSP

According to our implementation and taking of pipeline

protection, the Clock Cycles Consumption of Frequent Used

Arithmetic of Modular Multiplication is shown in Table. 2-1.
Table 2-1 The clock cycles consumption of

frequent used arithmetic of modular multiplication algorithm

Operation Clock cycles Loop Unrolling
1024 bits shift 110
1024 bits + 1024 bits 360 190
1024 bits - 1024 bits 300 130
1024 bits × 16 bits 140
32 bits ÷ 16 bits 50
1024 bits comparison 15~650

 12

We use the 1024-bit by 16-bit multiplication as the baseline and

weight other arithmetic for evaluation. The weighted clock cycles

consumption is shown in Table 2-2. Table 2-2 will be used to

evaluate modular multiplication algorithms in chapter 4.
Table 2-2 The weighted clock cycles consumption of frequent used
arithmetic of modular multiplication algorithm on TI TMS320c55’

Operation Real Unrolling
1024 bits shift .75
1024 bits + 1024 bits 2.15 0.95
1024 bits - 1024 bits 2.15 0.95
1024 bits × 16 bits 1
32 bits ÷ 16 bits 0.5
1024 bits comparison 0~6

 13

Chapter 3 Background on Iterative Modular Multiplication

In this chapter, we will go through some well know iterative

modular multiplication algorithm. Our goal is to re-evaluate those

algorithms computational complexity in general purpose CPU and TI

TMS320c55x’ DSP. We try to make a guideline for choosing a properly

modular-multiplication algorithm for TI TMS320c55x’ DSP.

3.1 Single Precision Left-to-Right Convention Algorithm

Single precision means “perform a modular multiplication bit

by bit”. Left-to- right convention means “perform a modular

multiplication from the most significant bit to the less significant bit”.

All the single precision left-to-right convention algorithms are

suitable for hardware implementation.

3.1.1 Traditional Algorithm of Modular Multiplication

Algorithm Modula_Multiplication (X, Y, D)
//Input: X, Y and D are the n-bit positive integers
//Output: P= X × Y mod D, P is an n-bit positive integer
1: P 0;
2: for j:= n-1 downto 0 do
3: begin
4: P 2 × P;
5: if (P ≧ D) then
6: P P – D;
7: if(yj = 1) then
8: begin
9: P P + X;
10: if (P ≧ D) then
11: P P – D;

 14

12: end;
13: end;
14: return(P);

Time Complexity

This algorithm is suitable for hardware because left shift costs

nothing in hardware. Assume that P has 50% possibility larger

than D. As a result, this algorithm needs n times of n-bit shift, n

times of n-bit addition, and n times of n-bit subtraction.
Table 3-1 The time complexity of Traditional Algorithm

Operation Times
n-bit Left Shift n
n-bit Addition n
n-bit subtraction n
n-bit comparison 2n

Storage Complexity

We need n+1 bits for storing P.

 15

3.1.2 Blakley Algorithm[5]

Algorithm Blakley(X, Y, D)
//Input: X, Y and D are the n-bit positive integers
//Output: P= X × Y mod D, P is an n+1-bit positive integer
1: P 0;
2: e D – X;
3: for j:= n-1 downto 0 do
4: begin
5: if (P ≧ D) then
6: P 2 × (P – D);
7: else
8: P 2 × P;
9: if(yj = 1) then
10: if (P ≧ D) then
11: P P – e;
12: else
13: P P + X;
14: end;
15: if (P ≧ D) then
16: P P – D;
17: return(P);

Blakley Algorithm introduced a pre-computed integer e. As a

result, it costs less than the traditional modular multiplication

algorithm.

Time Complexity

Assume that P has 50% possibility larger than D. As a result,

this algorithm needs n times of n-bit shift, 1/2n times of n-bit

addition, and n times of n-bit subtraction.
Table 3-2 The time complexity of Blakely’s Algorithm

 16

Operation Times
n-bit Left Shift n
n-bit Addition 1/2 n
n-bit subtraction n
n-bit comparison 2n

Storage Complexity

The lengths of P and e are n+1 bits and n bits, respectively.

Note that in process are need n+1 bits for the length of P, but we

only output n bits for the length of P.

 17

3.1.3 Chiou & Yang’s Algorithm[2]

Algorithm Chiou_Yang1(X, Y, D)
//Input: X, Y and D are the n-bit positive integers
//Output: P= X × Y mod D, P is an n+1-bit positive integer
1: P 0;
2: R 2n mod D;
3: for j:= n-1 downto 0 do
4: begin
5: P 2 × P;
6: if (carry(P)) then
7: P P + R;
8: if(yj = 1) then
9: begin
10: P P + X;
11: if (carry(P)) then
12: P P + R;
13: end;
14: end;
15: if (P ≧ D) then
16: P P – D;
17: return(P);

Algorithm Chiou_Yang 2(X, Y, D)
//Input: X, Y and D are the n-bit positive integers
//Output: P= X × Y mod D, P is an n-bit positive integer
1: P 0;
2: C 0;
3: R1 2n mod D;
4: R2 2 × 2n mod D;
5: R3 3 × 2n mod D;
6: T1 (2n + X) mod D;
7: T2 (2× 2n + X) mod D;

 18

8: T3 (3 × 2n + X) mod D;
9: for j:= n-1 downto 0 do
10: begin
11: P 2 × P;
12: if (carry(P)) then
13: c c + 1;
14: if(yj = 1) then
15: case c of
16: 0: z z + X;
17: 1: z z + T1;
18: 2: z z + T2;
19: 3: z z + T3;
20: end case;
21: else
22: case c of
23: 1: z z + S1;
24: 2: z z + S2;
25: 3: z z + S3;
26: end case;
27: if (carry(P)) then
28: c 2;
29: else
30: c 0;
31: end;
32: if (P ≧ D) then
33: P P – D;
34: return(P);

Chiou & Yang’s Algorithm 1 uses Carry(P ≧ 2n) and

pre-computed table to perform the modular-multiplication. The

time complexity for the algorithm is n times “n-bit left shift” and

2/3n times “n-bit addition”. It also requires 2n+1 bits storage

space for P and R.

 19

Later Chiou & Yang proposed another algorithm, called

Algorithm 2, to improve the performance. The major difference

between them is that Algorithm 2 using six-element pre-computed

table instead of using one-element in Algorithm 1. In algorithm 2

it requires 7n+2 bits storage space for P and pre-computed table.

Time and Storage Complexity

The comparison between two Algorithms are shown in table

3-3.
Table 3-3 The time and storage complexity of

Chiou & Yang’s Algorithm

Operation Algorithm 1 Algorithm 2
n-bit Left Shift n n
n-bit Addition 3/2n n
Space required(bits) 2n+1 7n+2

 20

3.2 Multi-Precision Left-to-Right Convention Algorithm

Multi-precision means “perform modular multiplication block

by block”. Left-to-right convention means “perform modular

multiplication from the most significant block to the less significant

block”. All the multi-precision algorithms are more suitable for

software implementation.

3.2.1 Leong, Tan &Tan’s Algorithm [8]

Algorithm Leong_Tan_Tan(X, Y, D)
// DYXwhereDYXP <≤×= ,0,mod

// ∑
−

=

− +=
2

0

1 22
n

i

i
i

n dD , ∑
−

=

=
1

0
2

n

i

i
ixX

// ∑
−

=

=
1

0

2
n

i

i
iyY , ∑

−

=

=
1

0

2
n

i

i
ipP ,

//w is the bit amount of a digit
1: ;2]0[De n −←
2:)1,,1(+←≤= iiwiifor
3: begin
4:);2]1[(][×−← ieie
5: thenDieif ≥][
6: ;2mod])0[][(][neieie +←
7: end;

8: ;0←P

9:)1,0,(−←>⎥⎥
⎤

⎢⎢
⎡= iii

w
nifor

10: begin
 11: w

wiwiwiw PyyyXP 2...21 ×+×← −−−

12:)1,,0(+←≤= jjwjjfor
13: begin
14: thenpif nj+

 21

15: begin
16:];[2 jePP nj +−← +
17:];0[21 ePPthenpif n

n +−←=

18: end;

19: end;

20: end;

21: ;mod])0[(DePPthenDPif +←≥
22: return(P);

Leong, Tan &Tan’s Algorithm is suitable for software

implementing. Even though they claim that the algorithm is a

multi-precision algorithm, but it looks like a single precision. The

algorithm does not reduce the time complexity significantly.

Time Complexity

Let n’= ⎥⎥
⎤

⎢⎢
⎡

w
n .

The time spent on operating a multiplication is much larger than

operating an addition. Then measuring the time complexity, we

always neglect the addition part. Then, Leong, Tan &Tan’s

Algorithm needs only 2'2n multiplications.

For a realistic estimate, the operation of Leong, Tan &Tan’s

Algorithm list in Table 3-6.
Table 3-4 The time complexity of Leong, Tan &Tan’s Algorithm

Operation Times
n-bit By w-bit Multiplication n’

n-bit Addition (2w+1)n’
n-bit Subtraction 2wn’

Storage Complexity

Leong, Tan &Tan’s Algorithm needs (w2+2w)n’+w bits.

 22

3.2.2 b-ary number system

Let b be a positive integer and B={0,1,…b-1}

We denote Z, Q, R be the set of integers, the set of rational numbers,

and the set of real numbers, respectively.

Any number r in Q can be represent by ∑
=

=
s

di

i
ibrr for each ir in B.

We have ZQrifdZrifd −∈<∈≥ 0;0 . Usually, we take

∞<<∞− sd , .

Let ∑
−

=

=
1

0

n

i

i
ibdD and 1

2 1 −≤≤ − bdb
n

Let ∑
−

=

=
1

0

n

i

i
ibxX and ∑

−

=

=
1

0

n

i

i
ibyY

Let ∑
+

=

=
1

0

n

i

i
ibpP and nnL pbpP +×= +1

Let ∑
=

=
n

i

i
ibpP

0

' and 1' −+×= nnL pbpP

3.2.3 Morita & Yang’s Algorithm[6]

Algorithm Morita_Yang(X, Y, D)
//Input: X, Y and D are n digits, DYXwhere <≤ ,0

//Output: P= X × Y mod D. P is n+2 digits

1: P 0;
2: for j:= 1−n downto 0 do
3: begin
4: P b × P + X × yi;

5: ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 11n

L

d
P

q ;

6: P P – b × q × D;

7: ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 11n

L

d
P

q ;

 23

8: if (q=1) then
9: P P – b × D;
10: if(q=2) then
11: P P – b × (2 × D);
12: if(LP' ≧ (b – 1) × (dn-1+1)) then
13: P P – (b – 1) × D;
14: end;
15: if (P ≧ D) then
16: begin

17: ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 11n

L

d
P

q ;

18: P P – q × D;
19: While (P ≧ D) do
20: P P – D;
21: end;
22: return(P);

Morita & Yang’s Algorithm is suitable for implementing in

software for a low storage and computational power CPU. The

advantages of the algorithm are:

i) Using an approximation value of q. It can lower the execution

time.

ii) Using lookahead determinate approach. It can restrict the value

in the small range, then it can guess an estimation value shortly.

Actually, the above two condition can also lower the running

time and shorter the storage space.

Time Complexity

We should notice that n presents the number of b-ary digit.

The time spent on operating a multiplication is much larger than

operating an addition. Then measuring the time complexity, we

 24

always neglects the addition part. Then, Morita & Yang’s

Algorithm needs nn 22 2 + multiplications.

For a realistic estimate, the operations of Morita & Yang’s

Algorithm list in Table 3-5.
Table 3-5 The time complexity of Morita & Yang’s Algorithm

Operation Times
n-bit By w-bit Multiplication n

2w-bit By w-bit Division 2n
n-bit Addition n
n-bit Subtraction 2n

Storage Complexity

Morita & Yang’s Algorithm needs n+2 digits.

 25

Chapter 4 A New Iterative Modular Multiplication Algorithm

We combine both of the algorithms described in the previous chapter

to derive a new iterative modular multiplication algorithm. Our

algorithm need less pre-computed table space than Leong, Tan & Tan’s

Algorithm and achieve the same performance like Morita & Yang’s

Algorithm. Furthermore, our proposed algorithm is better than Morita

& Yang’s Algorithm.

4.1 The New Modular Multiplication Algorithm

The proposed algorithm is given in Section 4.1.1 and its

correctness is shown in Section 4.1.2

4.1.1 Procedure

Algorithm New_Modular_Multiplication(X, Y, D)

//Input: X, Y and D are n digits, DYXwhere <≤ ,0

//Output: P= X × Y mod D. P is n digits.

1: e Pre-computation(D);

2: P
)

Approximate(X, Y, D, e);

3: doDPwhile)(≥
)

// The length of P
)

 is n+2 digits.
4: ;DPP −←

))

5: ;PP
)

←
6: return(P);

Algorithm Pre-computation(D)

//Input:D is n digits

// Output: Dbiie n mod][1+×= , 61 ≤≤ i

1: ;mod]1[1 Dbe n+←

 26

2:)1,6,2(+←≤= iiiifor
3: begin
4:]);1[]1[(][eieie +−←
5: thenDieif ≥][;][][Dieie −←
6: end;

7: return(e);

Algorithm Approximation(X, Y, D, e)
// Input: X, Y and D are n digits, DYXwhere <≤ ,0
// Output: P= X × Y mod D. P is n+2 digits
1: ;0←P
2:)1,0,1(−←>−= iiinifor
3: begin
4: ;PbyXP i ×+×←

5: ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 1
'

1n

L

d
P

q

6: ;'' DqPP ×−←
7: thenpif n 01 >+];[' 1++← npePP

8: end;
9: return(P);

The Algorithm Pre-computation calculates six pre-computed

elements, i.e. 1+nb , 12 +× nb , 13 +× nb , 14 +× nb , 15 +× nb ,and 16 +× nb

mod D. The pre-computed elements store in e.

The Algorithm Approximation uses approximation method and

pre-computed table to calculate P= X × Y mod D. The

approximation method uses ⎥
⎦

⎥
⎢
⎣

⎢
+− 1

'

1n

L

d
P instead of ⎥⎦

⎥
⎢⎣
⎢

D
P to calculate

quotient q. The approximation method reduces great amount of

computational time. Certainly, the approximate quotient is not

 27

equal to the real quotient. The difference in value between the

approximate value and the real value of quotient causes that P may

great than D. We use the pre-computed table to limit P to 6D.

However, the output of Algorithm Approximation, i.e. P
)

, may

still larger than D. The line 3 and 4 of Algorithm

New_Modular_Multiplication truncate the P
)

 to P
)

<D.

4.1.2 Correctness

Let ⎥
⎦

⎥
⎢
⎣

⎢
+

=
− 1
'

1n

L

d
P

ε

Let 1

2

0
−

−

=
∑

= n

n

i

i
i

b

bp
t , we have 10 <≤ t .

we have 1)'(' −×+= n
L btPP ,

and 10'')1'(11 <≤×>>×+ −− tfrombPPbP n
L

n
L

Let 1

2

0
−

−

=
∑

= n

n

i

i
i

b

bd
a , we have 10 <≤ a .

It implies 1
1

1
1

1
1)1()(−

−
−

−
−

− ×≥>×+×+= n
n

n
n

n
n bdDbdandbadD

For ZMcb ∈,,

McbcMb mod)()(mod +≡+

We consider DPbpDP n
n mod)'(mod 1

1 +×= +
+

DPDbp n
n mod'mod1

1 +×≡ +
+

We compute Dpn mod1+ by using table look-up and

 28

compute DP mod' by using approximation method.

Theorem 1 : DD
d

PP
n

L 5
1

''0
1

<×⎥
⎦

⎥
⎢
⎣

⎢
+

−≤
−

Proof:

From DbdandbPP n
n

n
L >×+×≥ −

−
− 1

1
1)1(''

We have ε=⎥
⎦

⎥
⎢
⎣

⎢
×+

×
≥

×+
×

≥ −
−

−

−
−

−

1
1

1

1
1

1

)1(
'

)1(
''

n
n

n
L

n
n

n
L

bd
bP

bd
bP

D
P

It implies 0' ≥×− DP ε ·· (1)

We have DbP n
L >×+ −1)1'(

1
1

1

)(')1'(−
−

−

×+=>
+
+

⇒ n
n

n

L badDfrom
D
P

ad
P

⎥
⎦

⎥
⎢
⎣

⎢
+

−>⎥
⎦

⎥
⎢
⎣

⎢
+

−
+
+

⇒
−−− 1
''

1
')1'(

111 n

L

n

L

n

L

d
P

D
P

d
P

ad
P ······························· (2)

1
'1'

}
1

')1'(
{

1111 +
−

+
+

=
+

−
+
+

−−−− n

L

n

L

n

L

n

L

a d
P

ad
P

d
P

ad
P

Max

2
64

2
24}

1
'1'

{ 2

2

1110;1
2

2
1 +

−=
+

+
×=

+
−

+
+

−−−<≤−<≤ −
bbb

bb

d
P

ad
P

Max
n

L

n

L

bPbdb
Ln

We know 4,1
2

60 ≥<
+

< bif
b

Then 4
2

643 <
+

−<
b

Thus
1

')1'(
4

11 +
−

+
+

>
−− n

L

n

L

d
P

ad
P

⎥
⎦

⎥
⎢
⎣

⎢
+

−
+
+

>⇒
−− 1
')1'(

5
11 n

L

n

L

d
P

ad
P ·· (3)

From (2) and (3)

We have 5
1

''

1

<⎥
⎦

⎥
⎢
⎣

⎢
+

−
−n

L

d
P

D
P

 29

Thus, DD
d

P
P

n

L 5
1

'
'

1

<×⎥
⎦

⎥
⎢
⎣

⎢
+

−
−

·· (4)

From (1) and (4)

We have DD
d

P
P

n

L 5
1

'
'0

1

<×⎥
⎦

⎥
⎢
⎣

⎢
+

−≤
−

In Algorithm Approximation we need six elements for out

pre-computed table.

 30

4.2 Implement Issues

The proposed algorithm is easy to be implemented. However,

there are two conditions must to be handle. First, the quotient q is

some times greater than one digit in the Algorithm Approximation.

Then, there are no other instructions to compute Dbn mod1+

directly in the Algorithm Pre-computation. We discuss the two

issues at Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Calculate DqPP ×−← '' with two-digit q

Lemma 1: Let ⎥
⎦

⎥
⎢
⎣

⎢
+

=+×
−)1(
'

1
01

n

L

d
P

qbq Then we get 11 ≤q .

Proof:

⎥
⎦

⎥
⎢
⎣

⎢
+

=+×
−)1(
'

1
01

n

L

d
P

qbq

⎥
⎦

⎥
⎢
⎣

⎢
+

=⇒
−)1(1

1
n

n

d
p

q ·· (5)

We knew 1' −+×= nnL pbpP , 1'0 2 −≤≤ bP L and 1
2 1 −≤≤ − bdb

n

It implies 10 −≤≤ bpn

2
12}

1
{

11
2

;10 1 +
−

×=
+−−≤≤−≤≤ −

b
b

d
p

Max
n

n

bdbbp nn

······································ (6)

1
2
10 <

+
−

≤
b
b , for all 1≥b

From (5), we have 1q is an integer.

From (6), we have 12
12 q

b
b

≥
+
−

×

 31

Thus, 11 ≤q

Base on the LEMMA, we modify the Algorithm Approximation

to Algorithm Approximation_M.

Algorithm Approximation_M(X, Y, D, e)
// Input: X, Y and D are n digits, DYXwhere <≤ ,0
// Output: P= X × Y mod D. P is n+2 digits
1: ;0←P
2:)1,0,1(−←>−= iiinifor
3: begin
4: ;PbyXP i ×+×←

5: ⎥
⎦

⎥
⎢
⎣

⎢
+

←
− 1
'

||
1

01
n

L

d
P

qq

6: thenqif 01 > ;'' DbPP ×−←
7: ;'' 0 DqPP ×−←

8: thenpif n 01 >+];[' 1++← npePP

9: end;
10: return(P);

4.2.2 Calculating Dbn mod1+

There are no other instruction to compute Dbn mod1+

directly. We use the approximation method to calculate

Dbn mod1+ .

Algorithm e1(D)
//Input:D is n digits

// Output: Dbe n mod]1[1+=

1: ;]1[1+← nbe

 32

2: ;
1

]1[||]1[||]1[

1

11
⎥
⎦

⎥
⎢
⎣

⎢
+

←
−

−+

n

nnn

d
eee

q

3: ;]1[]1[Dqee ×−←
4: doDewhile)]1[(≥
5: ;]1[]1[Dee −←
6: return(e[1]);

The line 2 of Algorithm e1 executes a three-digit dividend

divided by one-digit divisor. We know that the first digit of e[1] is

1 and 1
2 1 −≤≤ − bdb

n . Therefore, the expression e[1]-b × D

operation will make the first digit of e[1] equal to 0. It means that

only two-digit dividend divided by one-digit divisor is needed.

Then, referred to Lemma 1, we modify the Algorithm e1 to

Algorithm e1_M.

Algorithm e1_M(D)
//Input:D is n digits

// Output: Dbe n mod]1[1+=

1: ;]1[1+← nbe
2: ;]1[]1[Dbee ×−←

3: ;
1
]1[||]1[

||
1

1
01 ⎥

⎦

⎥
⎢
⎣

⎢
+

←
−

−

n

nn

d
ee

qq

4: thenqif 01 > ;]1[]1[Dbee ×−←
5: ;]1[]1[0 Dqee ×−←

6: doDewhile)]1[(≥
7: ;]1[]1[Dee −←
8: return(e[1]);

Using Algorithm e1_M, we can modify Algorithm

Pre-computation to Algorithm Pre-computation_M.

 33

Algorithm Pre-computation_M(D)

//Input:D is n digits

// Output: Dbiie n mod][1+×= , 61 ≤≤ i

1: e[1] e1_M(D);
2:)1,6,2(+←≤= iiiifor
3: begin
4:]);1[]1[(][eieie +−←
5: thenDieif ≥][;][][Dieie −←
6: end;

7: return(e);

4.2.3 Complete Algorithm

Consider implement issues, we modify the Algorithm

New_Modular_Multiplication to New_Modular_Multiplication_M.

Algorithm New_Modular_Multiplication_M(X, Y, D)

//Input: X, Y and D are n digits, DYXwhere <≤ ,0

//Output: P= X × Y mod D. P is n digits

1: e Pre-computation_M(D);

2: P
)

Approximate_M(X, Y, D, e);

3: doDPwhile)(≥
)

// The length of P
)

 is n+2 digits.
4: ;DPP −←

))

5: ;PP
)

←
6: return(P);

 34

4.3 Special Case

If 11 −=− bdn is used, bdn =+− 11 . As a result, no more

division operation is needed and no more 1q exist, nether. In

this condition, the Algorithm Approximation_M become Algorithm

Approximation_SPC.

Algorithm Approximation_SPC(X, Y, D, e)
// Input: X, Y and D are n digits, DYXwhere <≤ ,0
// Output: P= X × Y mod D. P is n+2 digits
1: ;0←P
2:)1,0,1(−←>−= iiinifor
3: begin
4: ;PbyXP i ×+×←

5: ;npq ←

6: ;'' 0 DqPP ×−←

7: thenpif n 01 >+];[' 1++← npePP

8: end;
9: return(P);

 35

4.4 Complexity

We discuss our new algorithm in general purpose CPU and the

TI MS3200 55x’ DSP, respectively.

4.4.1 General Purpose CPU

Usually executing a multiplication is much longer than

executing a addition. Then, we only consider time complexity of

running the multiplications. The other assumption is that a 2-digit

dividend divided by 1-digit divisor need about the same clock

cycles as a multiplication operation. The loop repeats n times and

each loop performs 2n+1 times multiplication. Totally, the new

algorithm will take 2n2+n times of multiplication. In the special

case, our algorithm needs only 2n2 times of multiplication.

4.4.2 TI MS3200C 55x’ DSP

Based on Fig. 4-9 the modified of Proposed Algorithm, the total

computational effort is list in Table 4-1.
Table 4-1 The computational effort of Proposed Algorithm

Operation Worst Case In Average

n-digit subtraction 2n 3/2n

2- digit by 1- digit division n n

n- digit by 1- digit multiplication 2n 2n

n- digit addition 2n 3/2n

4.4.3 Storage Complexity

The new proposed algorithm required 7n+2 digits of b-ary numbers.

 36

4.6 Compare with Other Algorithms

Base on table 2-2, and the estimated clock cycles consumption

results of chapter 3, we derive table 4-2. In this table, we assume n

is 1024, w is 16.
Table 4-2 Comparing with other iterative algorithm

 by weighted clock cycles consumption

Modular Multiplication Algorithm ideal real
Traditional Algorithm 8.650 n 11.050n
Blakely’s Algorithm 8.175 n 9.975n
Chiou & Yang’s Algorithm 1 2.175 n 3.975n
Chiou & Yang’s Algorithm 2 1.700 n 2.900n
Morita & Yang’s Algorithm 0.366 n 0.590n
Leong, Tan &Tan’s Algorithm 3.921 n 8.797n
New Proposed Algorithm (best case) 0.273 n 0.694n
New Proposed Algorithm (average case) 0.334 n 0.559n
New Proposed Algorithm (worst case) 0.394 n 0.461n

In average, our proposed algorithm will take the same time as

Morita & Yang’s Algorithm. In special case, new proposed

algorithm will be better than Morita & Yang’s Algorithm.

 37

Chapter 5 Conclusion

In this thesis, we study the architecture of TI TMS320c55x’ DSP and

its instruction set. We show that only consider multiplication as the

main computational complexity is not enough. And also, we derive a

evaluation model to estimate the computational complexity of modular

modulation algorithm for TI TMS320c55x’ DSP.

Moreover, we proposed a new iterative modular multiplication

algorithm. The new proposed algorithm can achieve the same

performance as Morita & Yang’s Algorithm in average, and have better

performance in certain cases.

Future work

Our modular multiplication evaluation model is based on TI

TMS320c55x’ DSP, now. In the feature we could extend the evaluation

model to other new proposed TI DSP family.

 38

REFERENCES
[1] C.W. Chiou, “Parallel Implementation of the RSA Public-Key

Cryptosystem” Intern. J. Computer Math., vol. 48, pp135-155,1993.

[2] C.W. Chiou & T.C. Yang, “Iterative modular multiplication algorithm

without magnitude comparison” Electronics Letters, vol. 30, no.24,

pp2017-2018, 1994.

[3] D.E. Knuth, “The Art of Computer Programming” Addition-Welsey,

2nd, 1981.

[4] “FIPS PUB 186-2: Digital Signature Standard (DSS)”, NIST, 2000.

[5] G.R Blakley, “A computer Algorithm for Calculating the Product AB

Modulo M” IEEE Transaction On Computer, vol. c-32. no. 5,

pp497-500, 1983.

[6] H. Morita & C.H. Yang, “A Modular-Multiplication Algorithm Using

Lookahead Determination” IEICE Trans. Fundamentals, vol.E76-A,

no.1, 1993.

[7] J.L. Hennessy & D.A. Patterson “Computer Architecture—A

Quantitative Approach” Morgan-Kaufmann, 2nd, 1995.

[8] P.C. Leong, E.C. Tan & P.C. Tan, “An Iterative Modular

Multiplication Algorithm”, Computers and Mathematics with

Applications vol.44, pp175-180, 2002.

[9] R. Rivest, A. Shamir, and L. Adleman, ″A method for obtaining

digital signature and public-key cryptosystems″, Commun. of ACM,

vol.21, no.2, pp.120-126, 1978.

[10] S.Y. Yan, “Number Theory for Computing”, Springer, 2000.

[11] “SPRU374 TMS320C55x DSP Mnemonic Instruction Set Reference

Guide”, Texas Instruments, 2001.

[12] “SPRU376 TMS320C55x DSP Programmer's Guide”, Texas

Instruments, 2000.

 39

[13] “SPRU393 TMS320C55x Technical Overview”, Texas Instruments,

2000.

[14] T. ElGamal, “A public Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms” IEEE Trans. On Info. Theory, vol.31,

pp469-472, 1985.

[15] W. Diffie & M. Hellman, “New Directions in Crytography” IEEE

Trans. On Info. Theory, vol.22, no.6, pp637-647,1976.

