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Band Discontinuities : A Simple Electrochemical 
Approach 

Abstract-A new, simple but general analytic description of the band 
discontinuities at a semiconductor heterojunction is derived from the 
fundamental electrochemical principle. We include the effects of non- 
uniform band structure and carrier degeneracy (Fermi-Dirac statis- 
tics), dielectric image forces, quantum-mechanical exchange-correla- 
tion forces, and dipole forces across the interface. These nonideal effects 
(band model parameters) are expressed in terms of the activity coeffi- 
cients (thermodynamic parameters) of the carriers. Furthermore, we 
find a simple but general correlation between the energy band discon- 
tinuities and the activity coefficients of the carriers. Such a mathemat- 
ical link between the two quantities shows that the thermodynamic pa- 
rameters are important to the physics that determines the band 
discontinuities. 

I .  INTRODUCTION 
HE interface band discontinuities play a crucial role T in carrier transport across a semiconductor hetero- 

junction and in the behavior and response of heterojunc- 
tion devices [ 13. Accurate knowledge of the band discon- 
tinuities is thus necessary for the design and modeling of 
such device applications. Several theoretical approaches 
based on the physics point of view, as reviewed by Kroe- 
mer [2], are used to predict the lineup of the bands at the 
interface. These include the Harrison atomic orbital the- 
ory [3], the Frensley-Kroemer pseudopotential theory [4], 
the Anderson electron affinity rule [5], and the self-con- 
sistent interface potential theories [6]-[ 101. It was found 
that none of these predictive rules meets the needs of the 
device physicist. 

Recently, Unlu and Nussbaum [ 1 13 use the fact that the 
difference in electrostatic potentials for a system in equi- 
librium is equal to the difference in chemical potentials 
[ 121, and they obtained the band discontinuities AEc and 
AE, for nondegenerate systems as the difference in the 
effective potentials defined by including the macroscopic 
and microscopic forces across a heterojunction. The pre- 
dicted results are in good agreement with experiments 
cited by Kroemer [ 13 and Wang and Stern [ 131 as serving 
as a test of the predicting theories. It is noted that Unlu 
and Nussbaum [ 1 11 use the formula for a doubly-intrinsic 
heterojunction to predict the nondegenerate systems. As 
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shown below, however, the exact expressions for the non- 
degenerate systems are given by (29) and (30), neglecting 
the camer degeneracy effect. 

In this paper, we present a general analysis that stands 
on the electrochemical foundation of equilibria. The 
model includes the effects of the nonuniform band struc- 
ture, the influence of Fermin-Dirac statistics, and the 
other potential energy, e.g., due to dipole forces, besides 
the electrochemical potential. These nonideal effects are 
expressed in terms of the activity coefficients of the car- 
riers through the electrochemical potential equation and 
by proper choice of the reference potential. To simplify 
the analysis, the carrier densities are written in a simple 
Boltzmann-like form in which the effects associated with 
nonuniform band structures and carrier degeneracy are 
described by two quantities: the effective bandgap shrink- 
age and the effective asymmetry factor (as defined be- 
low). We then find a simple relation between the energy- 
band discontinuities and the activity coefficients of the 
camers. Finally, the relation between the built-in poten- 
tial and the energy-band discontinuities is also discussed. 

11. MODEL DEVELOPMENT 
Fig. 1 shows the energy-band diagram of an arbitrarily 

doped semiconductor. The validity of this energy-band 
model has been discussed by Marshak and van Vliet [ 141. 
From Fig. 1, we have 

= Eo + $(.) ( 1 )  

E&) = EL(4 - x(x> = Eo - x(x> + kw ( 2 )  

= - E G ( x )  ( 3 )  

and 

where Eo is the field-free vacuum level, EL is the local 
vacuum level, and x is the electron affinity. is the po- 
tential energy and is given by 

$(x) = - q v ( x )  + $other (x )  (4) 

(5)  

and 

+other (x )  = $h(x) + +xc(x) + $irn(x) + J/b(x) 

where V (  x ) is the macroscopic continuous electrostatic 
potential, $h (x) is the effective potential energy associ- 
ated with the (graded) heterojunction discontinuity, $xc (x) 
is the local exchange-correlation potential energy, $irn (x )  
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Fig. 1. Energy bands for inhomogeneous material. 

is the classical dielectric image force, and &(x)  is the 
interface dipole bond energy. The first three terms on the 
right-hand side of (5) is discussed in more detail by Stern 
and Das Sarma [ 151, while the last term is included in the 
calculation of the band discontinuity by Unlu and Nuss- 
baum [ 113. 

If we consider Fermi-Dirac statistics and write a 
Shockley-like form for the equilibrium carrier densities as 

and 

where 

is the position-dependent intrinsic carrier concentration 

(9) 

and 

In thermal equilibrium, the carrier concentrations no and 
po are related to the electrostatic potential by (6), (7), and 
(9) as 

[-* :v"l n o ( x )  = n i ( 0 )  exp 

and 

where 

and 

When deriving (13) and (14), we choose x = 0 as the 
reference position for the potential and $ ( O )  = kT In 

N A  (O)] /2ni (0)  , N A  (0)  - NA (0)  = net doping den- 
sity at x = 0)  , and apply the neutrality condition at x = 
0. It is clear from Fig. 1 that both AE, and A are positive 
quantities. AEg is called the effective bandgap shrinkage, 
and A is called the asymmetry factor [16], which mea- 
sures the fraction of the reduction in bandgap that occurs 
in the condition band, 0 I A I 1. 

To relate the band discontinuities to the activity coef- 
ficients of the carriers at the semiconductor heterojunc- 
tions, we consider a one-dimensional p-n junction with 
ohmic contacts at x = 0 on the p-side and x = W on the 
n-side, and with the junction at x, . The activity coefficient 
of the carriers is defined in a straightforward manner by 
the electrochemical potential equation [ 171. The electro- 
chemical potential ( ii; ) , or Gibbs energy per charged 
particle, of a charged species i in phase CY is defined as 
the sum of its chemical potential and its electric potential 
energy [ 171 

[ (  -D + dD2 + !L(O> M O ) ) / L ( O ) l  ( D  = [ N , f ( O )  - 

where py is the chemical potential, p,?" is the reference 
state chemical potential (and is a function only of tem- 
perature, pressure, and choice of reference state [ 18]), 
yy is the activity coefficient, cy is the concentration (c, 
= n for electrons), and zi ( z ,  = 1 for holes; z; = - 1 for 
electrons) is the elemental charge of species i. The poten- 
tial V" is the macroscopic continuous electrostatic poten- 
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tial, which is obtained through integration of Poisson’s 
equation [15]. It is important to note that the chemical 
potential in (17) is a function of temperature, of pressure, 
of the composition and of the other potential energy be- 
sides electrostatic potential energy. 

The results of a self-consistent analysis between Pois- 
son’s equation and the electrochemical potential equation 
give [ 191 

P X T )  = E, (O)  - kTln [ n m l  - S$(O) 

P ; ( T )  = - E , ( o )  - k ~ l n  [ n i ( O ) ]  + q + ( O )  

(18) 

(19) 

1 [ -AAE;: $other 
Yfl” = exp 

and 

represents the relative nonideal behavior of holes at the 
junction interface. Equations (22) and (26) give the gen- 
eral relation between the band discontinuities and the ac- 
tivity coefficients of the carriers at the junction interface. 
To obtain agreement with experiment, (22) and (26) will 
be used with the definition AE, + AE,) = AEG for “strad- 
dling” lineups [2] and AEc - AE, = AEG for “stag- 
gered” or “broken-gap’’ lineups [2]. 

It is noted that the band discontinuities AE,(x,  ) and 
A E , ( x j )  can be related to the carrier densities by (13),  
(14L (20), (211, (221, and (26) as 

where AER, A ,  and $bother are defined by (15), (16), and 
(3, respectively. From (3, (15), (16), and (20), we ob- 
tain 

and 

AEc(x , )  = kTln [ r n 0 ( x , ) ]  + kTIn 

(22) 

represents the relative nonideal behavior of electrons at 
the junction interface. In a similar way, the valence band 
discontinuity is obtained from ( 5 ) ,  (15), (16), and (21) as 

r 7 

and 

Here, we use the fact that V ( x i  ) = V(xf ) .  Clearly, 
AEc(xj  ) and AE,(xj ) are doping dependent for the de- 
generate case. 

111. SUMMARY AND DISCUSSION 
Based on the irreversible thermodynamic point of view, 

the relationship between the band discontinuities the ac- 
tivity coefficients of the carriers at a semiconductor het- 
erojunction is discussed. A simple but general formula- 
tion of the results, which include the effects of energy- 
bandgap nairowing, carrier degeneracy, the effective den- 
sity of states, dielectric image forces, quantum-mechani- 
cal exchange-correlation forces, and dipole forces across 
the interface, was presented. The results imply that the 
thermodynamic parameters are important to the physics 
that determines band discontinuities. The approach pre- 
sented here also allows convenient treatment of hetero- 
junction devices in a manner that is both thermodynami- 
cally consistent and consistent with the energy-band 
parameters. 

We note that, for a doubly-intrinsic heterojunction, (29) 
and (30) are reduced to 
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and Equation (36) has been used to calculate the conduction 
band discontinuity from the built-in potential for a 
GaAs/AlGaAs HJ [20], [21] and gives a reasonably good 
agreement with the value predicted from Dingle's rule 
[22]. Note that (35) should be used for degenerate carrier 
statistics. For the nondegenerate case, comparing (29) 
with (36) gives 

N ,  (x, 1 AEt , (x , )  = kTIn ___ 

+ All'other(xj . 

k::::i1 + kT1n ia1 
(32) 

Furthermore, using (8) for the intrinsic concentration, (3 1) 
and (32) become 

n0(W)  
1 qvbi = kT In [x] 

A E ~ ( x , )  = 2 [ E G ( X / )  - E G ( X T ) ]  

(33 The last two terms in (37) are the corrected quantities that 

Finally, it should be pointed out that all results pre- 
sented here are quite general and can be used for n-N and 
p-P heterojunctions. The results can also be readily ex- 

and deviate from homojunctions. 

1 
A E ~ ( x j )  = 2 [EG(xj) - E G ( X f ) ]  

tended to a self-consistent solution with Schrodinger's 
equation. 

+A$other(Xj . 1 + - I n [  kT NC(Xf ) N v ( X j  

N J x j  ) N"(Xj+ ) 
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qvbi = $(o) - $(w) = A E : ( X ~  -, 
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where 

For the nondegenerate case, (35) reduces to 
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