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Band Discontinuities: A Simple Electrochemical
Approach

KOW-MING CHANG, MEMBER, IEEE

Abstract—A new, simple but general analytic description of the band
discontinuities at a semiconductor heterojunction is derived from the
fund tal electroch 1 principle. We include the effects of non-
uniform band structure and carrier degeneracy (Fermi-Dirac statis-
tics), dielectric image forces, quantum-mechanical exchange-correla-
tion forces, and dipole forces across the interface. These nonideal effects
(band model parameters) are expressed in terms of the activity coeffi-
cients (thermodynamic parameters) of the carriers. Furthermore, we
find a simple but general correlation between the energy band discon-
tinuities and the activity coefficients of the carriers. Such a mathemat-
ical link between the two quantities shows that the thermodynamic pa-
rameters are important to the physics that determines the band
discontinuities.

I. INTRODUCTION

HE interface band discontinuities play a crucial role

in carrier transport across a semiconductor hetero-
junction and in the behavior and response of heterojunc-
tion devices [1]. Accurate knowledge of the band discon-
tinuities is thus necessary for the design and modeling of
such device applications. Several theoretical approaches
based on the physics point of view, as reviewed by Kroe-
mer [2], are used to predict the lineup of the bands at the
interface. These include the Harrison atomic orbital the-
ory [3], the Frensley-Kroemer pseudopotential theory [4],
the Anderson electron affinity rule [5], and the self-con-
sistent interface potential theories [6]-[10]. It was found
that none of these predictive rules meets the needs of the
device physicist.

Recently, Unlu and Nussbaum [11] use the fact that the
difference in electrostatic potentials for a system in equi-
librium is equal to the difference in chemical potentials
[12], and they obtained the band discontinuities AE, and
AE, for nondegenerate systems as the difference in the
effective potentials defined by including the macroscopic
and microscopic forces across a heterojunction. The pre-
dicted results are in good agreement with experiments
cited by Kroemer [1] and Wang and Stern [13] as serving
as a test of the predicting theories. It is noted that Unlu
and Nussbaum [11] use the formula for a doubly-intrinsic
heterojunction to predict the nondegenerate systems. As
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shown below, however, the exact expressions for the non-
degenerate systems are given by (29) and (30), neglecting
the carrier degeneracy effect.

In this paper, we present a general analysis that stands
on the electrochemical foundation of equilibria. The
model includes the effects of the nonuniform band struc-
ture, the influence of Fermin-Dirac statistics, and the
other potential energy, e.g., due to dipole forces, besides
the electrochemical potential. These nonideal effects are
expressed in terms of the activity coefficients of the car-
riers through the electrochemical potential equation and
by proper choice of the reference potential. To simplify
the analysis, the carrier densities are written in a simple
Boltzmann-like form in which the effects associated with
nonuniform band structures and carrier degeneracy are
described by two quantities: the effective bandgap shrink-
age and the effective asymmetry factor (as defined be-
low). We then find a simple relation between the energy-
band discontinuities and the activity coefficients of the
carriers. Finally, the relation between the built-in poten-
tial and the energy-band discontinuities is also discussed.

II. MopEL DEVELOPMENT

Fig. 1 shows the energy-band diagram of an arbitrarily
doped semiconductor. The validity of this energy-band
model has been discussed by Marshak and van Vliet [14].
From Fig. 1, we have

Ei(x) = Ey + ¥(x) (1)
E(x) = EL(x) — x(x) = By — x(x) + ¥(x) (2)

and |
Ev(x) = Er(x) - EG(X) (3)

where E; is the field-free vacuum level, E; is the local
vacuum level, and x is the electron affinity. ¢ is the po-
tential energy and is given by

¢('x) —qV(x) + J/other(x) (4)

and
‘Lother(x) ¢h(x) + 'l/xc(x) + \bim(x) + ¢b(x) (5)

where V(x) is the macroscopic continuous electrostatic
potential, ¥, (x) is the effective potential energy associ-
ated with the (graded) heterojunction discontinuity, ¥, (x)
is the local exchange-correlation potential energy, ¥, (x)

0018-9383/90/0400-0883%01.00 © 1990 IEEE



884 [EEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 37. NO. 4. APRIL 1990

R—

Electron energy —

e Position (x) ———=

Fig. 1. Energy bands for inhomogeneous material.

is the classical dielectric image force, and ¥, (x) is the
interface dipole bond energy. The first three terms on the
right-hand side of (5) is discussed in more detail by Stern
and Das Sarma [15], while the last term is included in the
calculation of the band discontinuity by Unlu and Nuss-
baum [11].

If we consider Fermi-Dirac statistics and write a
Shockley-like form for the equilibrium carrier densities as

Nc(x) Fl/Z[nc(x)]

ny(x)

Er — E;(x)
= n;(x) §(x) exp [T] (6)
and

pO(x) = Nu(x) FI/Z[nv(x)]

E/(x) — Ef
n; (x) u(x) exp T (7)

where

1/2 —Eg(x
ne(x) = [N, () Ne()]'"” exp {—2;‘;)} ®)

is the position-dependent intrinsic carrier concentration

E(x) = B — x(x) = 3 Es (%)

kT | No(x)
+ > In [Nc(x)} + ¥ (x) (9)
and
G(x) = Fip(ni(x)]/exp [m:(x)], i=c v (10)

and F) /; is the Fermi-Dirac integral of order one-half with

EF - EC X
nc(x) = —kTQ (11)
and
E,/ X) — EF
) = 2 (12)

In thermal equilibrium, the carrier concentrations n, and
Py are related to the electrostatic potential by (6), (7), and
(9) as

no(x) = ;(0) exp F‘”—Z;‘—‘XE] (13)
and
() = m(@ enp | LU ZAEE
where
B - {Nv(x) Nc(x)}
AE, = —[Eg(x) = Eg(0)] + kT'In N.(0) N.(0)
+ kTin [ (%) §(x)] (15)
and
[x(x) = x(0)] + kT'In D_c%ﬂ + kTIn [{(x)]
4= AE,
(16)
When deriving (13) and (14), we choose x = 0 as the

reference position for the potential and ¢ (0) = kT In
[(=D +VD? + £.(0) £,(0))/¢.(0)1 (D = [N5(0) —
N;(0)1/2n;(0), Nj(0) — N7 (0) = net doping den-
sity at x = 0), and apply the neutrality condition at x =
0. It is clear from Fig. 1 that both AE, and A are positive
quantities. AE, is called the effective bandgap shrinkage,
and A is called the asymmetry factor [16], which mea-
sures the fraction of the reduction in bandgap that occurs
in the condition band, 0 < 4 < 1.

To relate the band discontinuities to the activity coef-
ficients of the carriers at the semiconductor heterojunc-
tions, we consider a one-dimensional p-n junction with
ohmic contacts at x = 0 on the p-side and x = W on the
n-side, and with the junction at x;. The activity coefficient
of the carriers is defined in a straightforward manner by
the electrochemical potential equation [17]. The electro-
chemical potential ( fi;), or Gibbs energy per charged
particle, of a charged species / in phase « is defined as
the sum of its chemical potential and its electric potential
energy [17]

A=l + gV = ut + kT In (yfcl) + zigV*®
(17)

where u¢ is the chemical potential, u}'® is the reference
state chemical potential (and is a function only of tem-
perature, pressure, and choice of reference state [18]),
¥ is the activity coefficient, c¢{ is the concentration (c;
= n for electrons), and z; (z; = 1 for holes; z; = —1 for
electrons) is the elemental charge of species i. The poten-
tial ¥* is the macroscopic continuous electrostatic poten-
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tial, which is obtained through integration of Poisson’s
equation [15]. It is important to note that the chemical
potential in (17) is a function of temperature, of pressure,
of the composition and of the other potential energy be-
sides electrostatic potential energy.

The results of a self-consistent analysis between Pois-
son’s equation and the electrochemical potential equation
give [19]

i (T) = E;(0) = kT In [1,(0)] — q¥(0)

po(T) =

(18)
~E(0) — kT1n [r,(0)] + q¥(0) (19)

—AAE, + ll’ohf:r
Yo = EXP lih;T : } (20)
and
—( I - A) AE - kb()thcr
Ypo = €Xp |: kT : (21)

where AE,, A, and Yo, are defined by (15), (16), and
(5), respectively. From (5), (15), (16), and (20), we ob-

tain
N.(x} )}
Ne(x;")

J

AE.(x;) = kTIn [T,(x;)] + kT In [

+ kTIn [ii—i}ﬂ = AYoumer (X;) (22)
where
AE(x) = x(x") = x(x]) = AE(x] = x]")
(23)
A’l/other(xj) = lpo[her(xj_) - 1I/other(ijr) (24)
and
Yno (xjk )
I‘n() ) = T 25
(x ) Yo (xj+ ) ( )

represents the relative nonideal behavior of electrons at
the junction interface. In a similar way, the valence band
discontinuity is obtained from (5), (15), (16), and (21) as

Nv(xj_ ):|
Nv(xj+)

AE,(x;) = kTIn [T,,(x;)] + kT'In [

+ kT In {%} + Adomer(%;) (26)
where
AEv(xj) = EU(xj_) - E,,()C;) (27)
and
D) = 200 (28)

'Ypo(xj+ )
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represents the relative nonideal behavior of holes at the
junction interface. Equations (22) and (26) give the gen-
eral relation between the band discontinuities and the ac-
tivity coefficients of the carriers at the junction interface.
To obtain agreement with experiment, (22) and (26) will
be used with the definition AE, + AE, = AE for ‘strad-
dling’” lineups [2] and AE, — AE, = AE; for ‘‘stag-
gered’’ or ‘‘broken-gap’’ lineups [2].

It is noted that the band discontinuities AE(x;) and
AE,(x;) can be related to the carrier densities by (13),
(14), (20), (21), (22), and (26) as

AE(x;) = kT'n ["O(x’i)jl + kT'In {N‘(x"_)}
no(x;”) Ne(x})

g‘c(xj)ji
kT1 — | - A other xj' (29)
" “{rc(xf) o)

and

AE,(x;) = kT In [M] + kT In IZM}
po(x;) N.(x;")

g-v(xj_)

+
g-v X

+ kT'In [ } + Adoper(x;). (30)

Here, we use the fact that V(x; ) = V(xf ). Clearly,
AE (x;) and AE,(x;) are doping dependent for the de-
generate case.

III. SUMMARY AND DISCUSSION

Based on the irreversible thermodynamic point of view,
the relationship between the band discontinuities the ac-
tivity coefficients of the carriers at a semiconductor het-
erojunction is discussed. A simple but general formula-
tion of the results, which include the effects of energy-
bandgap narrowing, carrier degeneracy, the effective den-
sity of states, dielectric image forces, quantum-mechani-
cal exchange-correlation forces, and dipole forces across
the interface, was presented. The results imply that the
thermodynamic parameters are important to the physics
that determines band discontinuities. The approach pre-
sented here also allows convenient treatment of hetero-
junction devices in a manner that is both thermodynami-
cally consistent and consistent with the energy-band
parameters.

We note that, for a doubly-intrinsic heterojunction, (29)
and (30) are reduced to

AE.(x;) = kT'In [m} + kT In [M}
N((Xf)

Rn; Xj

- A‘pother(xj ) (31 )
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and
n(x; N.(x;
AE,(x;) = kT In L(—’ + kT'In [i——’—)
n (x; N.(x;")

+ A‘l/mhcr(xj ) - (32)

Furthermore, using (8) for the intrinsic concentration, (31)
and (32) become

AE(y) =3 [E(x) — Eo(x})]

LA [Nc(x;) N (x})

—A other { Xj
2 Nc(xf)N,,(xj_)} Vaner (%)

(33)

and
AE,(x;) = % [Ec(x;) — Eg(x;")]

AT [M(x,* ) No(x))

2 Ne(x;) N, (x; )} + A otner (%) -

(34)

Equations (31), (33), and (34) give the same results as
those given by Unlu and Nussbaum [11], but with a dif-
ferent treatment, as discussed here. The model has been
used to predict the heterojunction band discontinuities
found in good agreement with the experiment for many
systems [11].

It is of interest to note that the built-in potential is read-
ily derived from (13). After some algebraic manipulation,
the result is given by

qVei = ¥(0) — ¥(W) = AEL(x] = x)
w
47 | o )ii + kT'In {NC(O)]
ng 0 NC(W)
0
+ kT In { £l )} (35)
&(W)
where
AE((x = x]) = —AE.(xj = x}").
For the nondegenerate case, (35) reduces to
W)/NA(W
qVy = AE(x;] = x[) + kTn ["‘)(_)/(—)}
n9(0)/Nc(0)

(36)
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Equation (36) has been used to calculate the conduction
band discontinuity from the built-in potential for a
GaAs/AlGaAs HJ [20], [21] and gives a reasonably good
agreement with the value predicted from Dingle’s rule
[22]. Note that (35) should be used for degenerate carrier
statistics. For the nondegenerate case, comparing (29)
with (36) gives

n I:m—_)il + A‘Lother(xj)' (37)

The last two terms in (37) are the corrected quantities that
deviate from homojunctions.

Finally, it should be pointed out that all results pre-
sented here are quite general and can be used for n-N and
p-P heterojunctions. The results can also be readily ex-
tended to a self-consistent solution with Schrodinger’s
equation.
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