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R(n) in (A1) is
C(n)=R(n)"'=(R+8R)'=R'-RBRR"'. (A9)
Taking the expectation of (A.9) results in

E[C(n)]=R'-R'E[SR]R". (A.10)
Since we assume that E[8R]= 0, (A.10) simplifies to
E[C(n)] =R~ = E[R(n)] ", (A11)
REFERENCES
[1] S. Haykin, Array Signal Processing. Englewood Cliffs, NJ: Prentice

Hall, 1985.

{2] V. F. Pisarenko, “The retrieval of harmonics from a covariance
function,” Geophys. J. Roy. Astro. Soc., vol. 33, pp. 347-366, 1973.

[3]1 S. Y. Kung and H. J. Whitehouse, VLSI and Modern Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1985.

[4] P. Thompson, “An adaptive spectral analysis technique for unbiased
frequency estimation in the presence of white noise,” 13th Asilomar
Conf. Circuit, Syst., Comp., pp. 529-533, Nov. 1979.

[5] V. U. Reddy, B. Egardt, and T. Kailath, “LS type algorithm for adaptive
implementation of Pisarenko’s harmonic retrieval method,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 399-405, June
1982.

[6] F. K. Soong and A. M. Peterson, “On the high resolution and unbiased
frequency estimates of sinusoids in white noise,” in TEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, pp. 1362-1365, 1982.

{71 Y. H. Hu and P. K. Chou, “Effective adaptive Pisarenko spectrum
estimate,” in JEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing, pp. 577-580, 1986.

[8] M. H. Hayes and M. A. Clements, “An efficient algorithm for comput-
ing Pisarenko’s harmonic decomposition using Levinson’s recursion,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34,
pp- 485-491, June 1986.

[9] D. G. Luenberger, Optimization by Vector Space Method. New York:
Wiley, 1969.

[10] S. T. Alexander, Adaptive Signal Pr
New York: Springer-Verlag, 1986.

[11} P. Fabre and C. Gueguen, “Fast recursive least squares algorithms:
Preventing divergence,” in JEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, pp. 1149-1152, 1985.

{12] J. M. Cioffi and T. Kailath, “Fast, recursive least squares transversal
filters for adaptive filtering,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-32, pp. 304-337, Apr. 1984.

[13] P. Lancaster, The Theory of Matrices with Application. New York:
Academic, 1985.

[14] B. Noble and J. W. Daniel, Applied Linear Algebra. Englewood Cliffs,
NIJ: Prentice Hall, 1977.

: Theory and Applications.

The Signal Delay in Interconnection Lines
Considering the Effects of Small-Geometry
CMOS Inverters

MING-CHUEN SHIAU aNnp CHUNG-YU WU

Abstract — A new physical timing model for small-geometry CMOS
inverters with interconnection lines has been developed. Large-signal
equivalent circuits of CMOS inverters and 10-section RC ladder networks
for interconnection lines are considered together with nonstep input wave-
forms and initial delay times. Due to more realistic and complete consider-
ations, the model accuracy is expected to be higher than the conventional
delay models. Extensive comparisons between model calculations and
SPICE simulations have shown that the model has a maximum relative
error of 16% on the delay times of CMOS inverters with interconnection
lines of different R and C values and section numbers N, different gate
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sizes, device parameters, and even input excitation waveforms. Reasonable
accuracy, wide applicable range, and high computation efficiency make the
developed timing models quite attractive in MOS VLSI timing verification
and auto-sizing.

I. INTRODUCTION

As device dimensions are scaled down, the delay of intercon-
nection lines among logic gates becomes as important as the
logic-gate delay in determining the overall speed performance of
a VLSI chip. It has been shown in [1] that the optimal speed can
be achieved only when the interconnection delay is equal to the
gate delay. This means neither of them can be overlooked in
determining the total delay.

Generally, accurate and efficient gate/interconnection delay
models are useful in various CAD applications in VLSI, such as
timing verification, optimization, logic simulation, and auto-
sizing.

Recently, many interconnection delay models [2}-[8] have been
developed. However, there are some problems to be solved. The
first problem is that the effect of a logic gate on the interconnec-
tion delay and the effect of interconnection on the gate delay [9]
were not characterized appropriately. Modeling these effects sep-
arately [2], [5]-[8] or modeling a logic gate by a single linear RC
circuit [3], [4] may lead to a significant error or untolerant
inaccuracy in high performance design [10].

The second problem is related to input excitation waveforms.
Since the actual internal voltage waveforms in an IC chip are
some sort of characteristic waveform [11]-[13] rather than step
waveforms, and the input signal waveform has a strong influence
on delay times [14], the step-response models [2]-[8] are not
accurate enough in characterizing the internal delay times of
an IC.

In some modeling approaches [15], [16], the RC values used in
a simplified gate model can be adjusted according to the input
waveforms and the device operating regions to obtain a higher
delay accuracy. This, however, leads to limited applicable ranges
and numerical difficulties in optimization or design automation
{10]. For efficient design automation, good analytical delay
macromodels are required [10], [12], [13].

The third problem is on the initial delay. When a logic gate is
excitated by an input voltage, its output voltage shows a certain
delay time before the suitable response occurs. This delay is
called the initial delay [12], {13], which strongly affects the
transient behavior of an interconnection line. Thus it has to be
considered in modeling the interconnection delay.

Taking the above-mentioned effects into consideration, a new
modeling technique is developed in this paper to accurately
characterize the signal timing of small-geometry CMOS inverters
with interconnection lines [17] for the above mentioned applica-
tions. In this modeling approach, the large-signal equivalent
circuits of a logic gate and the lumped multisection RC ladder
equivalent circuit of an interconnection line are considered to-
gether. The waveforms under characterization are of the non-step
characteristic waveforms with the initial delay times. Using the
mathematical linearization techniques, the analytical delay equa-
tions are derived and some fundamental transient behaviors are
also explored. Through extensive comparisons with SPICE simu-
lation results, it is shown that the maximum relative error of the
developed model is below 16%. Circuit examples are also pre-
sented to demonstrate the applications of the developed model in
timing verification.
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A chain of identical CMOS inverters each with 10 sections of RC ladder interconnection network.
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II. TIMING MODELS

2-1. Waveform Generation, Timing Definition, and MOSFET
Region Location

It has been shown in [2] that the ladder network with at least
10 lumped RC sections can be used to accurately simulate the
behaviors of an interconnection line under various operating
conditions. Consider a string of identical 1.5-pm CMOS inverters
with interconnection lines represented by lumped RC ladder
circuits as shown in Fig. 1, where the section number N of the
RC ladder is 10. The typical characteristic waveforms obtained
from SPICE simulations for the rising input voltage ¥, and the
falling output voltages V,, and V,,, at the interconnection nodes
0 and 10, respectively, are plotted in Fig. 2. At any interconnec-

Large-signal equivalent circuit of a CMOS inverter with 10 sections of RC ladder network during the fall-time period.

tion node j, the falling waveform of the node voltage V,;, has an
initial time t,., fall time T, and fall delay time T, . as
indicated in Fig. 2.

If the fall time of the output voltage V, s at the fifth intercon-
nection node is to be characterized, the operating regions of the
MOSFET’s Mp and Mn and those in the load stage are first
determined from their drain-source voltages Vg and
drain-source saturation voltages V7. According to the MOS-
FET operating regions, the falling waveform of V,; during the
fall-time period Ty can be divided into Regions I and II as
indicated in Fig. 2. In Region I, Mp is nearly off and Mn is
saturated. In Region II, however, Mp is off and Mn is linear.
For the load stage in both regions, its PMOS is saturated and the
NMOS is linear.
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On the waveform of V,,, the boundary point between Regions
I and II can be determined by letting V,(( = Vpgy) be equal to
the saturation voltage Vigary Which can be calculated from the
Vbsat €quation in the level-2 model of SPICE with the corre-
sponding V,(=Vgsn). The time period 1, during which the
voltage V() lowers from Vp,p, to Vpgay can then be calculated
from the equation of V,,(¢) to be derived later. From the
calculated ¢, the corresponding boundary point on each voltage
waveform can be found. In this way the voltage V,s(¢,) of
V,s(t) at the boundary point between Regions I and II can be
calculated.

2-2. Large Signal Equivalent Circuit Generation and
Current /Capacitance Linearization

The overall large-signal equivalent circuit during 75 is given
in Fig. 3 where the linearized equations of the drain current I,
in Region I (saturation) and Region II (linear) are given in Table
I. The linearized saturation drain current is obtained by using the
lambda model [18] with a fixed value of the parameter A. In
Region I, this value is determined by the slope of the drain
currents between V,,=Vpsarn and Vo= (Vpp + Vpsatn)/2
which is calculated from SPICE level-2 equations with the aver-
aged value of Vg in this region. In Region II, the value of A
can be determined by the slope of the drain currents between
V.o =0.0 and V,, = Vpsatn /2. As compared to SPICE simula-
tions, the linearized drain current equation has a maximum error
of 10 percent at the saturation-linear boundary.

The load capacitance C,.,, and the device capacitances C; and
C, are all voltage-dependent. All the voltage-dependent capaci-
tances as well as the voltage-dependent device parameters and
the input voltage ¥, in the drain current equation are further
linearized by fixing their values at the linearization point. The
linearization point in Region I is optimally determined at the
center point with t=1,, where V ,(t;.) = (Vpp + Vpsatn)/2,
whereas that in Region II is at the center point ¢ =1, where
Voo(t.) = Vpsarn /2. The times ¢, and ¢, and the linearized
input voltages V(1) and V(t;,) have their equations listed in
Table I. Their derivations will be described later. After lineariza-
tion, the equivalent circuit of Fig. 3 becomes a linear circuit.

2-3. Effective Dominant Pole Calculation

The S-domain nodal equations of the linearized large-signal
equivalent circuit in Fig. 3 can be written in a matrix form as
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where V(07 ) represents the initial voltage at the interconnec-
tion node j and G=1/R. The feedthrough current from the
input node ¥, to any output node is negligibly small so that the
last term of (1) can be neglected. Then the voltage V, () at any
node can be solved from (1) and written as

(b1, S + b8P+ -+ + 5,82+ b S+1) by

v, (S) =
«(S) S(ayS" +a S0+ - + 4,87+ 4 S+1)a,

(2

where b, and a, are positive and real coefficients which can be
formulated from (1). Dividing the denominator by the numera-
tor, we have

by
1+(a,— b)) S+(ay — by~ aby +b3) S+ -+ |
(3)
The effective finite dominant pole of V,.(S) can be calculated
from (3) as [19]
1

— —[(a - b)) =2x(as— by — ab, + 63)]
fi

V;;J’(S)= aOS[

=[(a? -2xa,) - (B ~2x8,)]"". (4
In this expression, the second term in the square root represents
the dominant zero. Since this method takes the dominant zero
into consideration in finding the effective dominant pole and
differs from the previously proposed dominant-pole-dominant-
zero (DPDZ) method, it is called the modified DPDZ (MDPDZ)
method. Using the MDPDZ method, the effective dominant
poles in Regions I and II can be found similarly.

2-4. Voltage Waveform Function Calculation

Using the single-pole-response approximation in each region,
the output voltage waveform at any interconnection node can be
analytically expressed in terms of its initial delay, effective domi-
nant pole, and initial and final voltages of Regions I and IL
During the fall time period, the initial and final values of the
output voltage waveform in Region I are Vp, and —1/An,
respectively, as may be calculated from (2). However, in Region
II they are V,;(#;,) and O where V,(#,,) is the voltage of V,; at
the boundary point between Regions I and II, which will be
formulated later. If the beginning point of the input voltage
waveform is chosen as the origin of time axis, the output voltage

S(C+G)+Gpyos+ G -G 0 : 0
-G SC+2G6 -G 0 0
0 0 -G S(C+Cueu)*t26 -G O 0
0 0 -G SC+2G -G
0 0 -G S(C+Goex)+ G |11m
Voo (S) S(CL+ G Voo (07 ) = Igno G
Va(S) SCXVy(07) 0
VoS(S) =§ S(C+Cnext)V05(O_) +S 0 Vt(s) (1)
Voo (S) SC X V,e(07) 0
0 dnx1

Voro(S) Ji151

S(C + Cncxl) VolO(O_ )

11x1
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waveform ¥, ;(¢) at any interconnection node j can be expressed
as

1 1
(VDD + ﬂ)e— Projt=tag)) _ I Ly SE<tyy (Region I)

= Py (11
Voy (ta)e™ =i,

V(1) =
try <t <oo (RegionII)

(%)

where P, and P, represent the effective dominant poles in
Regions I and II, respectively, at the interconnection node j; 1,
is the initial delay at the interconnection node j as shown in Fig.
2.

From the waveform function ¥,(?), the equations of 1, t,,
and t,, as listed in Table I can be derived according to their
definitions given in Sections 2-1 and 2-2. Substituting the expres-
sion of t,, into (5), all the output voltages V(1) in (5) for
0 < j <10 can be written as

1 Pys;/ Prso
1% +—
1 DSATN ¥ 37 1
Voj(tfx!)=(VDD+—>\_n)X 1 SV (6)
Vop + —

An
2-5. Rise/Fall Time and Delay Time Formulation

From (5), the characteristic fall time T}, at any interconnection
node j can be written as

1
0.9V + —
1 b 1 [v(s,
ML Bt i VIS IR RAICA
0.Wp

J 1 P, .
151 Voj ( t/s/) + E 1

iV, (1) >0.pp (7)

[ 1
0.9Vpp + —
Ty = P In —>\1n s iV, (1) <0.Wpp.  (8)
fsi 1 0.Wpp + o
| n

Similarly, the output voltage waveform during the rise time
period and the characteristic rise time T ; at any interconnection
node j can be expressed in terms of the initial delay ¢,,; and the
effective dominant poles of the two regions.

In the calculation of Tj;, ¥; represents the rising characteristic
input waveform which has also two different regions with differ-
ent effective dominant poles. To formulate V(#,) and V;(ts,),
single-pole-response approximation is used and V;(f) can be
expressed as

Vi(1) =Vpp(1—e~Pn) (9
where
1
P,=—1n(9.0). (10)

Tk

In the above equations, P, is the characteristic rise pole at the
interconnection node k. Substituting the expressions of ¢/, and
1, into (9), the equations of V(t;,) and ¥(#;,) in Table I can
be derived. In these two equations, two empirical and universal
constants are assigned to the pole-delay product p,i4!,r Which
has been proven to be a nearly constant physical parameter
12}, [13].

T T
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TABLE I
THE LINEARIZED EQUATIONS OF THE NMOS DRAIN CURRENT [,
1N REGIONS 1 AND 11
TinOasn™s7 Yosn™Yo0? = Tano (1 * 20Y50) = Tang + Gyos¥oo
Region [
G5 Tan{ViCrse)s Upp* Vosard?/? ~ TanlViftese) Vosany’
S pp = Vpsarw) /2
LYt )Y )"no*vnsuu L vk ) vDD+vDSA‘[‘N)v
{ - .dn i fse’’’DSATN'T T dn i fse’'”Z " DSAWN
dno Yoo ~ Vpsary
e MOS
Tino
Region II [12]
Tan V5 (tpre)r Ypsamw/® = 1an(V3€01 01040
G, =
MOS " 2
DSATN
1,00
An = «

1

bD An ]
SR T
Vosarn® 3
i
vDD * an .,

T
-z Voo*Vpsamn) * ]

r 1
1
+ p— In(2)
] £10

1
tey= taent 1n
fsl™ “df0 Pfs(l [

t

B 1
fse” tafo* P10 T
fsO =

Yoo * 78

1
toa =t 4 In
fle” “dfo Pt’sO

psarn® =
_ 1 1
Pr1otaro 0 7 Vpo*psary)* 7w ]Prlﬂ/ Pts0 )

\/ L —

= 0.6 i An

Vilteged= Vpp {1 -

Priotaso

v + 1
DSATN AN

Voo o+
=0.6 DD An

“Priotaso

P 1o/F -P_,./P
. r10’Fgs0 _Pr10/Pr10
Viltped= Vppll - ( ] 2 }

Priotaso

Through V(1) and V(t;,), Tr; becomes a function of Tg,
and vice versa. Simple iterations are required to solve 7, and
Txi- Usually the resulting iteration number is less than 5.

According to the delay definition in Fig. 2, the rise propaga-
tion delay 7p,,; and fall propagation delay Tp;,; between the
input node k and any output interconnection node ;j can be
expressed as

(11)
(12)

where Tpp, (Tro) stands for the time interval during which
V,; () (Vi (T)) rises from 0 to 0.5Vpp at the interconnection
node j (k), and Tgy; (Tro;) for the time interval during which
Vo (8) (Voi (1)) lowers from Vpp to 0.5Vpp,.

For simplicity, empirical laws for the initial delay times t,,;
and ¢,,; were found. As a result, the rise propagation delay T, y;
and fall propagation delay Tpp, ; at any interconnection node j
can be reformulated by the simple relations

Tppn; = (0.1152Tp, —0.0211T5, +0.5465T50; ) + Tro, — Trons

Torn; =tar; + Troj — Trok

Ton; =tag; + Tro; — Trok

j=01,2,---10; k=10 (13)
Topr,; = (0.3538T5,, —0.2346 T, +0.5962T50 )
+Tro, ~ Trows  J=0,1,2,-+-10; k=10. (14)

Note that the above equations are universal and can be used to
calculate the delay times under various conditions with satisfac-
tory accuracy.
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Fig. 4. (a) Calculated and simulated rise/fall delay as a function of channel

width ratio for 1.5-um CMOS inverters with 10-section R(2.0 kQ)C(1.0 pF)
ladders. (b) Calculated and simulated rise/fall delay as a function of
Wp/2.4 pm or Wn/12 pum for 1.5-um CMOS inverters with 10-section
R(0.02 KQ)C(0.01 pF) ladders.

III. CoMPARISON WITH SPICE SIMULATIONS

To verify the accuracy of the developed analytical delay mod-
els, extensive comparisons between theoretical calculations and
SPICE simulations were made for CMOS inverters with RC
ladder interconnection networks of different RC values and
section numbers N, different gate sizes, device parameters, and
even input excitations. Part of the comparisons are shown in Fig.
4(a) for the delay times of CMOS inverters with 10-section RC
ladder interconnection network (R =2.0 kQ and C=1.0 pF). It
is shown that the maximum relative error in the delay times is 16
percent for CMOS inverters with different channel width ratios.
Similar comparisons for the inverters with different size factors
from 1 to 20 are shown in Fig. 4(b). The error characteristics are
still the same. Since the delay times are expressed by equations in
the developed model, the CPU time consumed in the delay
calculation is about two orders of magnitude smaller than that in
point-by-point full transient analysis in SPICE.

The accuracy of the timing models in calculating the signal
timing at every interconnection node under device parameter
variations was also investigated. Fig 5(a) shows the calculated
and the simulated rise/fall delay times at all interconnection
nodes for inverters with 10-section equivalent R(2.0 k@)C(1.0
pF) ladder network. Fig. 5(b) shows the delay times at the tenth
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Fig. 5. (a) Calculated and simulated rise /fall delay as a function of intercon-

nection node positions for 1.5-um CMOS inverters with 10-section R(2.0
kQ)C(1.0 pF) ladders. (b) Calculated and simulated rise/fall delay for
1.5-um CMOS inverter with 10-section R(0.2 kQ)C(0.1 pF) ladders and
reduced threshold voltages Vygp and Vron.

interconnection node for inverters with different width ratios and
reduced threshold voltages V1op and Vigy. All the comparisons
show the same relative error characteristics.

Although a 10-section RC ladder is enough to characterize the
interconnection delay [2], the developed model can be applied to
the cases where the interconnection line is represented by a
N-section lumped RC ladder with N greater than 10. The
relative error is still the same.

IV. APPLICATIONS

As mentioned in the previous section, the developed model
equations contain the constant product of the input pole and the
initial delay. Moreover, the output fall(rise) time is a function of
the input rise(fall) time. Through these relations, the input wave-
form effect has been implicitly incorporated into the model. Thus
it can be applied to noncharacteristic waveform cases where the
input may be a step voltage or has a waveform two times slower
in rise/fall times than the characteristic waveform. The general
relative errors for the delay times are still below 16 percent. The
ability to calculate the noncharacteristic waveform timing makes
the developed timing models more practical and versatile.

Consider a string of 7 identical 1.5-um CMOS inverters each
with a 10-section RC ladder interconnection network. The first
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TABLE 1I
THE CALCULATED AND SIMULATED SIGNAL TIMING FOR
A STRING OF IDENTICAL 1.5-pm CMOS INVERTERS
EACH WITH A 10-SECTION RC LADDER

INTERCONNECTION NETWORK
Stage bata T TR(ns) TPLH(ns) Total
Number “Ype | o Tp{ns) | or Tyy, (ns) Delay
THEORY 17.0 9.37 9.37
1 SPICE 17.6 8.4 8.4 |
. ERROR 3.4 +11.5% +11.5% |
THEORY 17.6 12.3 21.67
2 SPICE 18.25 12.4 20.8
ERROR -3.6% -0.8% 14.2%
N THEORY 21.73 12.78 34.45
3 SPICE 20.4 12.5 33.3
ERROR ¥6.5% ¥32.2% +3.5%
THEORY 18.6 12.6 47.05
4 SPICE 18.5 12.6 45.9
ERROR +0.5% 0.0% +2.5%
THECRY 21.8 12.8 59.85
5 SPICE 20.65 12.4 58.3
ERROR +5.6% +3.2% +2.7%
TEEORY 18.7 12.6 72.45
6 SPICE -18.5 12.6 70.9
ERROR +1.1% 0.0% 72.2%
THEORY 21.6 12.7 85.15
7 SPICE 20.4 12.2 83.1
ERROR +5.9% +4.1% +2.5%
iti : = i = =1.2 =
Condition: Liask 1.50M Wp=2.4UM Wo=1.2UM N=10
R=0.20KQ C=0.10PF OUTPUT=NODE 10

stage is driven by a falling step-input voltage and the accumu-
lated delay at the tenth interconnection node in each stage is to
be calculated by using the developed model as an application
example. Table II shows the calculated and the simulated results
where the relative error in the total delay is as small as 2.5
percent.

V. CONCLUSION

Physical delay models for CMOS inverters with RC ladder
interconnection networks have been developed successfully. Based
upon this modeling technique, the delay models of various CMOS
static logic gates with interconnection trees as well as the applica-
tions of the models in auto-sizing and optimization are now
under development.
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A Realization Method of Two-Dimensional Rational
Transfer Functions

ATSUSHI KAWAKAMI

Abstract —In this paper, we propose a method for realizing the two-
dimensional transfer functions (TDTF). By using our method, realizations
can be directly obtained from the coefficients of the TDTF, without
performing canonical decomposition of the state equations and solving
nonlinear equations. Consider the possibility of reducing the realization
dimension in our realization method, and obtain conditions imposed on the
TDTEF for the reduction. Moreover, we present a class of TDTF that can
be realized with a minimal dimension with respect to both of the two
variables.

I. INTRODUCTION

The transfer characteristics of two-dimensional digital systems,
mixed lumped and distributed networks, networks containing
variable parameters, delay-differential systems, and systems with
time delays, can all be approximately expressed by two-dimen-
sional rational transfer functions.

A method for constructing the special class of mixed lumped
and distributed networks was reported in the past [1]. It is a very
effective method in the case of special network functions, but it
cannot be applied to the case of general two-dimensional transfer
functions (TDTF).

Various studies have also been done on the realization problem
of a separable-denominator TDTF [2]-[7]. However, they cannot
be applied to the case of general TDTF, similarly.
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