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R ( n )  in (A.l) is 

C(n) =R(n)-’=(R+6R)-’~~-’-R-’SRR-’. (A.9) 

Taking the expectation of (A.9) results in 

E [ C ( n ) ]  = R - ’ - R - ’ E [ G R ] R - ’ .  (A.lO) 

Since we assume that E[6R] = 0, (A.lO) simplifies to 

E [  c( n)] = R-’  = E [  R (  n)] -’ (A.ll)  
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The Signal Delay in Interconnection Lines 
Considering the Effects of Small-Geometry 

CMOSInverters 

MING-CHUEN SHIAU AND CHUNG-YU WU 

Abstract -A new physical timing model for small-geometry CMOS 
inverters with interconnection lines has been developed. Large-signal 
equivalent circuits of CMOS inverters and 10-section RC ladder networks 
for interconnection lines are considered together with nonstep input wave- 
forms and initial delay times. Due to more realistic and complete consider- 
ations, the model accuracy is expected to be higher than the conventional 
delay models. Extensive comparisons between model calculations and 
SPICE simulations have shown that the model has a maximum relative 
error of 16% on the delay times of CMOS inverters with interconnection 
lines of different R and C values and section numbers N, different gate 
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sizes, device parameters, and even input excitation waveforms. Reasonable 
accuracy, wide applicable range, and high computation efficiency make the 
developed timing models quite attractive in MOS VLSI timing verification 
and auto-sizing. 

I. INTRODUCTION 

As device dimensions are scaled down, the delay of intercon- 
nection lines among logic gates becomes as important as the 
logic-gate delay in determining the overall speed performance of 
a VLSI chip. It has been shown in [l]  that the optimal speed can 
be achieved only when the interconnection delay is equal to the 
gate delay. This means neither of them can be overlooked in 
determining the total delay. 

Generally, accurate and efficient gate/interconnection delay 
models are useful in various CAD applications in VLSI, such as 
timing verification, optimization, logic simulation, and auto- 
sizing. 

Recently, many interconnection delay models [2]-[ 81 have been 
developed. However, there are some problems to be solved. The 
first problem is that the effect of a logic gate on the interconnec- 
tion delay and the effect of interconnection on the gate delay [9] 
were not characterized appropriately. Modeling these effects sep- 
arately [2], [5]-[8] or modeling a logic gate by a single linear RC 
circuit [3], [4] may lead to a significant error or untolerant 
inaccuracy in high performance design [lo]. 

The second problem is related to input excitation waveforms. 
Since the actual internal voltage waveforms in an IC chip are 
some sort of characteristic waveform [11]-[13] rather than step 
waveforms, and the input signal waveform has a strong influence 
on delay times [14], the step-response models [2]-[8] are not 
accurate enough in characterizing the internal delay times of 
an IC. 

In some modeling approaches [15], [16], the RC values used in 
a simplified gate model can be adjusted according to the input 
waveforms and the device operating regions to obtain a higher 
delay accuracy. This, however, leads to limited applicable ranges 
and numerical difficulties in optimization or design automation 
[lo]. For efficient design automation, good analytical delay 
macromodels are required [lo], [12], [13]. 

The third problem is on the initial delay. When a logic gate is 
excitated by an input voltage, its output voltage shows a certain 
delay time before the suitable response occurs. This delay is 
called the initial delay [12], [13], which strongly affects the 
transient behavior of an interconnection line. Thus it has to be 
considered in modeling the interconnection delay. 

Taking the above-mentioned effects into consideration, a new 
modeling technique is developed in this paper to accurately 
characterize the signal timing of small-geometry CMOS inverters 
with interconnection lines [17] for the above mentioned applica- 
tions. In this modeling approach, the large-signal equivalent 
circuits of a logic gate and the lumped multisection RC ladder 
equivalent circuit of an interconnection line are considered to- 
gether. The waveforms under characterization are of the non-step 
characteristic waveforms with the initial delay times. Using the 
mathematical linearization techniques, the analytical delay equa- 
tions are derived and some fundamental transient behaviors are 
also explored. Through extensive comparisons with SPICE simu- 
lation results, it is shown that the maximum relative error of the 
developed model is below 16%. Circuit examples are also pre- 
sented to demonstrate the applications of the developed model in 
timing verification. 
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Fig. 1. A chain of identical CMOS inverters each with 10 sections of RC ladder interconnection network. 

TIME (ns) 

Fig. 2 .  Typical fall characteristic waveforms of a CMOS inverter with 10 sections of RC ladder network. 

11. TIMING MODELS tion node j ,  the falling waveform of the node voltage V,,, has an - I 

initial time t!,,, fall time TF/,  and fall delay time TP,,( / ,  as 
indicated in Fig. 2, 

If the fall time of the outDut voltage V ,  at the fifth intercon- 

2-1. Waveform Generation, Timing Definition, and MOSFET 
Region Location 

I ,,.. 
It has been shown in [2] that the ladder network with at least 

10 lumped RC sections can be used to accurately simulate the 
nection node is to be characterized, the operating regions of the 
MOSFET's Mp and Mn and those in the load stage are first 

behaviors of an interconnection line under various operating 
conditions. Consider a string of identical 1.5-pm CMOS inverters 
with interconnection lines represented by lumped RC ladder 
circuits as shown in Fig. 1, where the section number N of the 
RC ladder is 10. The typical characteristic waveforms obtained 
from SPICE simulations for the rising input voltage r/; and the 
falling output voltages V,, and V,,, at the interconnection nodes 
0 and 10, respectively, are plotted in Fig. 2. At any interconnec- 

determined from their drain-source voltages V,, and 
drain-source saturation voltages VDsAr. According to the MOS- 
FET operating regions, the falling waveform of v,, during the 
fall-time period T,, can be divided into Regions I and I1 as 
indicated in Fig. 2. In Region I, Mp is nearly off and Mn is 
saturated. In Region 11, however, Mp is off and Mn is linear. 
For the load stage in both regions, its PMOS is saturated and the 
NMOS is linear. 
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On the waveform of Voo, the boundary point between Regions 
I and I1 can be determined by letting Voo( = V,,,) be equal to 
the saturation voltage VDsATN which can be calculated from the 
VDSAT equation in the level-2 model of SPICE with the corre- 
sponding K( = VGsN). The time period t fs /  during which the 
voltage C o ( t )  lowers from VDD to VDSA, can then be calculated 
from the equation of V, , ( t )  to be derived later. From the 
calculated t f s / ,  the corresponding boundary point on each voltage 
waveform can be found. In this way the voltage V , 5 ( t f s / )  of 
C s ( t )  at the boundary point between Regions I and I1 can be 
calculated. 

2-2. Large Signal Equivalent Circuit Generation and 
Current/Capacitance Linearization 

The overall large-signal equivalent circuit during T,, is given 
in Fig. 3 where the linearized equations of the drain current Id,, 
in Region I (saturation) and Region I1 (linear) are given in Table 
I. The linearized saturation drain current is obtained by using the 
lambda model [18] with a fixed value of the parameter A.  In 
Region I, this value is determined by the slope of the drain 
currents between V,, = VDs,, and V,, = (V,, + VDSAm)/2 
which is calculated from SPICE level-2 equations with the aver- 
aged value of VGsN in this region. In Region 11, the value of X 
can be determined by the slope of the drain currents between 

= 0.0 and V,, = VDsA,/2. As compared to SPICE simula- 
tions, the linearized drain current equation has a maximum error 
of 10 percent at the saturation-linear boundary. 

The load capacitance C,,,, and the device capacitances C,  and 
C, are all voltage-dependent. All the voltage-dependent capaci- 
tances as well as the voltage-dependent device parameters and 
the input voltage r/; in the drain current equation are further 
linearized by fixing their values at the linearization point. The 
linearization point in Region I is optimally determined at the 
center point with t = tfse where J&(tfs,) = ( VDD + VDS,TN)/~, 
whereas that in Region I1 is at the center point t = trle where 
5, (t,,,) = VDsATN /2. The times t f I e  and t f l e  and the linearized 
input voltages y ( t f s e )  and y ( t f / e )  have their equations listed in 
Table I. Their derivations will be described later. After lineariza- 
tion, the equivalent circuit of Fig. 3 becomes a linear circuit. 

2-3. Effective Dominant Pole Calculation 

equivalent circuit in Fig. 3 can be written in a matrix form as 
The S-domain nodal equations of the linearized large-signal 

- G  

0 

0 

. . .  

. . .  I 0 

where V,, (0- ) represents the initial voltage at the interconnec- 
tion node j and G = l / R .  The feedthrough current from the 
input node y to any output node is negligibly small so that the 
last term of (1) can be neglected. Then the voltage V , ( S )  at any 
node can be solved from (1) and written as 

( bl,S" + bl0S'O + . . .  + b,S2 + b1S + 1) bo 
' J ' , ( ~ ) =  S(a1,S1~+a, ,S '~+ . . .  + a 2 S 2 + a , S + l ) a ,  ( 2) 

where b, and a, are positive and real coefficients which can be 
formulated from (1). Dividing the denominator by the numera- 
tor, we have 

bo 
V , J ( S ) = a , S [ l + ( a , - b b , ) S + ( a , -  b 2 - a l b l + b ~ ) S 2 +  . . .  I '  

(3) 

The effective finite dominant pole of K J ( S )  can be calculated 
from (3) as [19] 

1 

PfJ 
- = [ ( a , -  

= [ ( a : -  

b,)2-2x( a2 - 

2 x  a,) - - (  b: - 

b2 - a, b, + b:)] 

- 2 X b,)] 'I2 

In this expression, the second term in the square root represents 
the dominant zero. Since this method takes the dominant zero 
into consideration in finding the effective dominant pole and 
differs from the previously proposed dominant-pole-dominant- 
zero (DPDZ) method, it is called the modified DPDZ (MDPDZ) 
method. Using the MDPDZ method, the effective dominant 
poles in Regions I and I1 can be found similarly. 

2-4. Voltage Waveform Function Calculation 

Using the single-pole-response approximation in each region, 
the output voltage waveform at any interconnection node can be 
analytically expressed in terms of its initial delay, effective domi- 
nant pole, and initial and final voltages of Regions I and 11. 
During the fall time period, the initial and final values of the 
output voltage waveform in Region I are VDD and - 1 / X n ,  
respectively, as may be calculated from (2). However, in Region 
I1 they are cJ(tfs,) and 0 where Vo,(tf5/)  is the voltage of V,, at 
the boundary point between Regions I and 11, which will be 
formulated later. If the beginning point of the input voltage 
waveform is chosen as the origin of time axis, the output voltage 

1 

S 
- _  - 

1x1 

(4) 

p(Cl+C,)+GM0,+G - G  o ' . .  
S C + 2 G  - G  0 

. . .  . . . . . .  

. . .  0 - G  S(C+Cn,,,)+2G - G  0 ' . .  0 
. . .  . . .  . . . . . .  

0 - G  S C + 2 G  - G  
. . .  0 - G  S(C+C,,,,)+G 

. . .  . . . . . .  

. . . . .  

. . . . .  

. . . . .  

0 
0 
. .  

T.1 . . .  y ( s )  
0 
0 11x1 

11x11 
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waveform c, ( t )  at any interconnection node j can be expressed 
as 

where PjsJ and Pt/J represent the effective dominant poles in 
Regions I and 11, respectively, at the interconnection node j ;  tejJ 
is the initial delay at the interconnection node j as shown in Fig. 
2. 

From the waveform function K , ( t ) ,  the equations of t f s / ,  t,,,, 
and fr!, as listed in Table I can be derived according to their 
defimtions given in Sections 2-1 and 2-2. Substituting the expres- 
sion of tfsl  into (5 ) ,  all the output voltages VoJ(tfs , )  in ( 5 )  for 
O <  j < l O  can be written as 

r 

2-5. Rise/Fall Time and Delay Time Formulation 

node j can be written as 
From ( 5 ) ,  the characteristic fall time TFj at any interconnection 

Similarly, the output voltage waveform during the rise time 
period and the characteristic rise time TRJ at any interconnection 
node J can be expressed in terms of the initial delay tdrI and the 
effective dominant poles of the two regions. 

In the calculation of T f i ,  q represents the rising characteristic 
input waveform which has also two different regions with differ- 
ent effective dominant poles. To formulate y ( t fSe )  and y(tfle), 
single-pole-response approximation is used and ( t )  can be 
expressed as 

C ( t )  =VDD(I -e -pr* ' )  ( 9)  
where 

1 
Pr,=-ln(9.0). (10)  

TR k 

In the above equations, P,,, is the characteristic rise pole at the 
interconnection node k .  Substituting the expressions of tfse and 
t / / ,  into (9), the equations of V;(t,,,) and V;( t fce)  in Table I can 
be derived. In these two equations, two empirical and universal 
constants are assigned to the pole-delay product prlOtd,O which 
has been proven to be a nearly constant physical parameter 
U21, Wl. 

TABLE I 
THE LINEARIZED EQUATIONS OF THE NMOS DRAIN CURRENT Id,? 

IN REGIONS I AND I1 

Idn(VcsN=Vi. VDSN=VoO) = Idno (1 + Anvoo) = Idno + ~ s V o o  

Region I 

CMOS 

IdnO 
An = 

Region I1 [ 1 2 ]  

'DSATN' 

Idno=0.O 

An = - 

1 ) V , ( t i l e ) =  

Pr10tdfO=o'6 

( 1  - e-PrlOtdfO( 'DSATN + -& lprlO'pfsO 2-pr10/pf10 
OD 

VDD + A- 

Through q(rtse) and q(t t le ) ,  TFJ becomes a function of TRk 
and vice versa. Simple iterations are required to solve TF, and 
TRk.  Usually the resulting iteration number is less than 5 .  

According to the delay definition in Fig. 2, the rise propaga- 
tion delay TPLHl and fall propagation delay TPHL, between the 
input node k and any output interconnection node J can be 
expressed as 

T P L H ~  'drj + TRO, - TFOk ( 1 1 )  

T P H L ~  = 'dfj  + TFO~ - TROk (12 )  

where TRol (TRok) stands for the time interval during which 
t J ( t )  ( K k ( T ) )  rises from 0 to 0.5VDD at the interconnection 
node J ( k ) ,  and TFoJ (Tpok) for the time interval during which 
tJ ( t )  ( K k (  t ) )  lowers from VDD to 0.5VDD. 

For simplicity, empirical laws for the initial delay times fdr,  

and tdf, were found. As a result, the rise propagation delay TpLuJ 
and fall propagation delay TpHLJ at any interconnection node J 

can be reformulated by the simple relations 

TpLHJ = (0.1152TR0, -0.0211TF0, +0.5465TFo,) + TRo, - T&k, 

~ = 0 , 1 , 2 ; . . 1 0 ;  k = 1 0  (13)  

TpHLJ = (0.3538TF0, -0.2346TR0, +0.5962TROk) 

+ TFoJ - TRok , J = 0 , 1 , 2 ,  . . . l o  ; k = 10. ( 14) 

Note that the above equations are universal and can be used to 
calculate the delay times under various conditions with satisfac- 
tory accuracy. 
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Fig. 4. (a) Calculated and simulated rise/fall delay as a function of channel 
width ratio for 1.5-pm CMOS inverters with 10-section R(2.0 kO)C(1.0 pF) 
ladders. (b) Calculated and simulated rise/fall delay as a function of  
Wp/2.4 pm or Wn/1.2 pm for 1.5-pm CMOS inverters with 10-section 
R(0.02 KQ)C(O.Ol pF) ladders. 
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Fig. 5. (a )  Calculated and simulated rise/fall delay as a function of intercon- 

nection node positions for 1.5-pm CMOS inverters with 10-section R(2.0 
kO)C(1.0 pF) ladders. (b) Calculated and simulated rise/fall delay for 
1.5-pm CMOS inverter with 10-section R(0.2 kQ)C(O.l pF) ladders and 
reduced threshold voltages VTop and VTON. 

111. COMPARISON WITH SPICE SIMULATIONS interconnection node for inverters with different width ratios and 

To verify the accuracy of the developed analytical delay mod- 
els, extensive comparisons between theoretical calculations and 
SPICE simulations were made for CMOS inverters with RC 
ladder interconnection networks of different RC values and 
section numbers N, different gate sizes, device parameters, and 
even input excitations. Part of the comparisons are shown in Fig. 
4(a) for the delay times of CMOS inverters with 10-section RC 
ladder interconnection network ( R  = 2.0 kQ and C = 1.0 pF). It 
is shown that the maximum relative error in the delay times is 16 
percent for CMOS inverters with different channel width ratios. 
Similar comparisons for the inverters with different size factors 
from 1 to 20 are shown in Fig. 4(b). The error characteristics are 
still the same. Since the delay times are expressed by equations in 
the developed model, the CPU time consumed in the delay 
calculation is about two orders of magnitude smaller than that in 
point-by-point full transient analysis in SPICE. 

The accuracy of the timing models in calculating the signal 
timing at every interconnection node under device parameter 
variations was also investigated. Fig 5(a) shows the calculated 
and the simulated rise/fall delay times at all interconnection 
nodes for inverters with 10-section equivalent R(2.0 kQ)C(1.0 
pF) ladder network. Fig. 5(b) shows the delay times at the tenth 

reduced threshold voltages Vrop and VToK. All the comparisons 
show the same relative error characteristics. 

Although a 10-section RC ladder is enough to characterize the 
interconnection delay [2], the developed model can be applied to 
the cases where the interconnection line is represented by a 
N-section lumped RC ladder with N greater than 10. The 
relative error is still the same. 

IV. APPLICATIONS 

As mentioned in the previous section, the developed model 
equations contain the constant product of the input pole and the 
initial delay. Moreover, the output fall(rise) time is a function of 
the input rise(fa1l) time. Through these relations, the input wave- 
form effect has been implicitly incorporated into the model. Thus 
it can be applied to noncharacteristic waveform cases where the 
input may be a step voltage or has a waveform two times slower 
in rise/fall times than the characteristic waveform. The general 
relative errors for the delay times are still below 16 percent. The 
ability to calculate the noncharacteristic waveform timing makes 
the developed timing models more practical and versatile. 

Consider a string of 7 identical 1.5-pm CMOS inverters each 
with a 10-section RC ladder interconnection network. The first 
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TABLE I1 
THE CALCULATED AND SIMULATED SIGNAL TIMING FOR 

A STRING OF IDENTICAL 1 . 5 - p m  CMOS INVERTERS 
EACH WITH A 10-SECTION RC LADDER 

INTERCONNECTION NETWORK 

THEORY 1 1 8 . 6  I 1 2 . 6  I 4 7 . 0 5  

ERROR I +0.5% 1 0.0% I + 2 . 5 %  
4 SPICE I 1 8 . 5  I 1 2 . 6  1 4 5 . 9  

THEORY I 2 1 . 8  I 1 2 . 8  I 5 9 . 8 5  

ERROR 1 +5 .6% I + 3 . 2 %  I +7 7 %  
5 S P I C E  I 2 0 . 6 5  1 1 2 . 4  1 5 8 . 3  

T E O R Y  7 2 . 4 5  

ERROR +l. 1% 0 . 0 %  + 2 . 2 %  
THEORY 1 2 . 7  85 .15  
S P I C E  2 0 . 4  1 2 . 2  8 3 . 1  
FRROR + 5 . 9 %  

Condition : Lmask=l.5UM Kp=2.4UM W = l . ? U P l  N=10 

R=C.ZOKR C = O . l O P F  OUTPUT=N3DE 10 

stage is driven by a falling step-input voltage and the accumu- 
lated delay at the tenth interconnection node in each stage is to 
be calculated by using the developed model as an application 
example. Table I1 shows the calculated and the simulated results 
where the relative error in the total delay is as small as 2.5 
percent. 

V. CONCLUSION 
Physical delay models for CMOS inverters with RC ladder 

interconnection networks have been developed successfully. Based 
upon this modeling technique, the delay models of various CMOS 
static logic gates with interconnection trees as well as the applica- 
tions of the models in auto-sizing and optimization are now 
under development. 
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A Realization Method of Two-Dimensional Rational 
Transfer Functions 

ATSUSHI KAWAKAMI 

Absfracf -In this paper, we propose a method for realizing the two- 
dimensional transfer functions (TDTF). By using our method, realizations 
can be directly obtained from the coefficients of the TDTF, without 
performing canonical decomposition of the state equations and solving 
nonlinear equations. Consider the possibilit~ of reducing the realization 
dimension in our realization method, and obtain conditions imposed on the 
TDTF for the reduction. Moreover, we present a class of TDTF that can 
be realized with a minimal dimension with respect to both of the two 
variables. 

I. INTRODUCTION 

The transfer characteristics of two-dimensional digital systems, 
mixed lumped and distributed networks, networks containing 
variable parameters, delay-differential systems, and systems with 
time delays, can all be approximately expressed by two-dimen- 
sional rational transfer functions. 

A method for constructing the special class of mixed lumped 
and distributed networks was reported in the past [l]. It is a very 
effective method in the case of special network functions, but it 
cannot be applied to the case of general two-dimensional transfer 
functions (TDTF). 

Various studies have also been done on the realization problem 
of a separable-denominator TDTF [2]-[7]. However, they cannot 
be applied to the case of general TDTF, similarly. 
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