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Abstract

This thesis studies the physical origin of a very popular research theme,
extraordinary optical transmission(EOT) phenomenon; in THz region. It is known
that 2D periodic metal “hole arrays: can cause EOT;, however, the real physical
mechanism of this phenemenon: is-under debate.In THz region, good conductors can
be seen as perfect electric conductor and-therefore the explanation based on theory of
surface plasmon ploariton’(SPP),is impropetr.

The first part of this thesis is.theoretical formalism. We expand the EM fields of
the system by eigenfunctions of Helmhaoltz’s equations in each sub-system, and then
match the boundary condition obeying Maxwell’s equations. The simulation results
match very well with experiment results, and so that we can exclude the SPP effect in
THz region.

In the second part we investigate the influence of hole shape and size on
transmission spectrum. It is shown that, 1) the smaller the hole area, the higher the
absolute transmission efficiency, 2) the aspect ratio of holes can cause shift in the
peak transmission spectrum non-monotonously, and 3) the symmetry difference
between hole and unit cell also has influence on transmission spectrum. These

properties can be taken as a guide for future micro-optic THz device.
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Chapter 1 Introduction

Terahertz (THz) radiation lies between 0.1-10 THz in frequency region or
3mm-30 #m in wavelength region or 3cm™-300cm™ in wavenumber region. The
region is between the microwave and infrared portion of the electromagnetic spectrum.
Most materials in Nature don’t have a useful electronic and/or photonic response in
THz region. This results in hard challenges in the creation of the devices for
generation, filter and detection of THz wave. This is the well-known “THz gap”.
However, researchers never stop looking. for novel THz devices in order to take
advantages of THz region. The promising advantages inelude sensing, communication,
and imaging. Therefore, our goal-of-this study is to utilizeran ordinary material (say,
metal) with ordinary structure.(say; periodic-array) to achieve extraordinary effect in
THz region. In this thesis we will focus on how a periodicsstructure interacts with

THz wave.

1.1 Diffraction Theory of Gratings

Theory of diffraction grating can be traced back to the beginning of 19" century
when T. Young and J. Fraunhofer made the first optical diffraction gratings and
revealed the role of optical diffraction in their behavior. The scattering behaviors of

diffraction gratings can be described basically by the conservation law of wave

k.~ are the momentums of

scatt ! Inc

momentum such as K, =K,.+G, where Kk

scatt

scattered and incident wave momentum respectively, and G is the reciprocal lattice
vector of the grating such that G-a=2zm, where a is the basis vector of the

lattice in real space and m is an arbitrary integer. For example, Fig. 1.1 depicts a



reflecting grating showing an incident wave being scattered by the grating into three
orders, m=0, m=1 andm=-1. The idea of diffraction on grating didn’t be
challenged until Ebbesen’s findings [1]. Up to our best knowledge, before Ebbesen’s

experiment, all studies had focused on the transmission of band-pass metal hole arrays

occurring in the region, d <A</, where d is the lattice constant of the arrays,

A, is the cut-off wavelength for electromagnetic modes inside the holes, and A is

C

the incoming wavelength. The long wavelength filtering is due to the cutoff by the
holes, and the short wavelength filtering is due to occurring of energy redistribution

when the first diffraction mode becomes _propagating. However, Ebbesen found an

unexpected transmission spectrain the regime, "4, <@ <A. Thus there must be a

different mechanism responsible=for 'this “unexpected. transmission spectra and

promoted a study resurgence of such grating structures.

1.2 Wood’s Anomalies

“Wood’s anomalies” is «observed. by R«W., Wood, who discovered some
unexpected patterns in the spectrum of light resolved by optical diffraction gratings,
in 1902 [2]. Later than Wood’s discovery, Rayleigh and U. Fano explained the
phenomenon respectively [3][4]. It is explained by Rayleigh that the energy of
diffracted wave can be redistributed at specific diffracted orders. For instance,
considering the case of Fig. 1.1, we note that the diffracted order, m =1 in the figure,

becomes tangent to the grating surface just before its vanishing. In this case, the
normal momentum K, of diffracted wave becomes imaginary right after being zero.

Then the order (m =1) becomes evanescent in the direction of OZ axis. The energy

of this order will be redistributed to other orders not satisfying the condition,



,/k§—|k0,,+G|2 =0 and then be reflected. Therefore, there will be minima at the

transmission spectrum. We call it “Rayleigh’s anomaly”, and the wavelengths at
which the minima occur are called “Rayleigh’s wavelengths”. Explanation to the peak
of the spectrum is first proposed by U. Fano around 1938. He related the anomalies
(peak) to a resonance effect. The resonances arise from the coupling between a
discrete eigenmode of the grating and continuous diffraction modes. They occur right
after the Rayleigh wavelengths. We call it “resonant anomalies”, or “Fano’s

anomalies”.

incident m=

Fig. 1.1 The schematic description of the process of diffraction. “m” is the diffraction
order.



1.3 Surface Plasmon Polaritons

Surface plasmon is a surface wave due to collective oscillation of carriers
(electrons) in conducting materials such as metals or doped semiconductors at optical
frequency [5]. This surface mode is confined at the interface between materials with
positive and negative dielectric constants respectively. Furthermore, if
electromagnetic wave is coupled with the carriers at the surface, we call it surface
plasmon polariton (SPP). To get a simple physical picture, we can consider the
following situation: a stimulating electric field creates two opposite electric
displacements in phase with each other across the interface. From Maxwell’s
equations, we can see that these two'opposite. displacements act to attract and confine
an AC current to the interface, and thus generate the collective oscillation of electrons.
The mathematical description of the-phenomenon of SPP.can be referred to Ref. [5].
Then a dispersion relation of this non-radiative electromagnetic mode can be derived.
We don’t derive the dispersion relation-here because in fact'it is not the mechanism

responsible for the phenomenon'in our system.

1.4 Extraordinary Optical Transmission (EOT) through Sub-Wavelength

Metallic Hole Arrays

In 1998, Ebbesen et al. reported the surprising property of optical transmission
on metallic gratings [1]. They drilled cylindrical holes (150nm for the diameter) in
optically thick (200nm) metallic films in fashion of 2D lattice (900nm for the lattice
constant) on a glass. Although bi-dimensional metallic gratings have been studied
over many years before 1998, the most attractive characteristic of their findings was
the distinct spectrum of transmission, as shown in the Fig. 1.2. In Fig. 1.2, the

peculiar part of the spectrum is the transmission intensity at the wavelengths above



the periodicity, a,. We have already known that the minimum at a, is the result of

Rayleigh type of Wood’s anomalies, and the peak right after a, can, in general, be

explained by the Fano type. However, the peculiarity is that another peak occurs at
even longer wavelength (1370nm) which is nearly ten times the hole diameter.
Furthermore, if focusing on the transmission efficiency, one can find that the absolute
transmission efficiency obtained by taking the ratio of total transmittance (zero-order)
to the fraction of surface area occupied by the holes is larger than 2. That is, more
than twice as much as energy can be transmitted through the holes when the light
illuminates directly on hole area. This_new phenomenon cannot be explained by

Bethe’s theory which states. that the transmission efficiency of a single
sub-wavelength aperture.can’ be described as. (r/A)’ [6]. Apparently, the existence

of grating does change the whole situation. Ebbesen attributed-this phenomenon to the
resonant excitation ofw=surface .plasmon® polaritons (SPP).wAfter Ebbesen, many
researchers backed up«this ‘explanation . by .investigating this SPP-enhanced
phenomenon both theoretically [7]+[8] and experimentally [9]. However, there are
other researchers questioning this SPP explanation. Theoretically they found that even
a structure such as perfect electrical conductor (PEC) which cannot support surface
plasmon on it also has a bounded surface wave on its surface [10][11], and hence can
causes an extraordinary optical transmission [12]. Additionally, even both matter
waves [13] and sound waves [14][15] through holey slabs show extraordinary

transmission phenomenon.

In this thesis, we focus on the EOT phenomenon with nearly perfect electrical
conductor (PEC). In fact, no PEC exists in real world. However, our experiments were
conducted in the THz region and for some highly conducting metals, Ag, Au and Al,

5



the skin depths of those metals can be calculated to be several tens of nanometers, and

can be negligible when compared to the incident wavelength.
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Fig. 1.2 Zero-order transmission spectrum.of-hoe array on Ag [1].



1.5 Spoof Surface Plasmon

In 2004, J. B. Pendry, et al. reported an original work showing that even a perfect
conductor cam support confined surface wave as long as the surface are not purely flat
[10]. The authors call this surface mode “Spoof Surface Plasmon”. Because such
spoof surface plasmon (SSP) involves no carriers in the metal, they concluded that it
is simply the geometry of the structure responsible for this surface mode. They also
suggested that there will be a hybrid surface mode, which is the mixture of surface
plasmon and spoof surface plasmon, on real metals. In their derivation, the
long-wavelength approximation is assumed, i.e., the characteristic length of the
structure are much smaller than the:wavelength, and therefore the structured metal can
be described as a homogeneous medium_with, effective dielectric constant and
permeability. If a structure with=—characteristic length comparable to incoming
wavelength is considered, the spoof surface plasmon still exists. In this case, the
diffracted modes have also to be considered, and the main effect of the diffraction is
to couple the confined spoof surface plasmon to free space. Therefore, an anomaly
optical transmission can also «oceur when_the-incident light resonantly excites this
surface mode. In the following part of the thesis, our theoretical ground will base on

this result.



Chapter 2 Method of Measurement

We used Fourier Transform Infrared Spectroscopy (FTIR) as our measurement
method to analyze the transmission spectra of the devices under study in THz region.
In this chapter, we will briefly introduce the fundamentals of FTIR method and the
details of this measurement instrument. Fig. 2.1 is the basic schematics of a
Michelson interferometer. A mercury lamp is used as the far-infrared light source.
When light impinges on the beam splitter (50% transmitted and 50% reflected), the
differences of light path can be adjusted by moving the mirrors, M1 and M2. In our
instrument, M1 is held fixed while M2 is-varied. As'Fig. 2.1 shows, the reflected part
of the light that goes to the'fixed M1 in adistance L is reflected there and impinges on
the beam splitter again-after a total path of 2L. The same action happens to the
transmitted part of the beam. Nevertheless, since the reflecting mirror M2 is not held
fixed but can be moved-very precisely back and forth around L by a distance x, the
total path length of this light is consequently 2(L+X) .- Then, when the two halves of
the light recombine again on the beam.splitter, they possess a path length difference of
2x and thus show a interference pattern. The light leaving the interferometer is then
passed through the sample under test and is finally focused on the detector. In fact, the
quantity measured by the detector is the intensity 1(x) which is a function of moving
mirror displacement x, the so-called interferogram. Here we use the zero crossings of

the interferogram of He-Ne laser to sample that of the sample under measurement.

One of the advantages of FTIR is its measurement accuracy. The accuracy of the
sampling spacing between two zero crossings is only determined by the precision of

the laser wavelength itself. And the common FTIR spectrometers have a built-in



wavenumber calibration of high precision of about 0.01cm™. Besides its high
accuracy, FTIR has others prior features to conventional IR grating spectrometers: the
signal intensity. Because the circular apertures used in FTIR spectrometers have a
larger area than the linear slit used in grating spectrometers, the throughput of light
can be enhanced considerably. It is especially useful to the far-infrared measurement
since the power density of general far-infrared light source is very weak. After data
acquisition, we cannot directly read the spectrum information. The digitized, discrete
and equidistant interferogram 1(x) must be converted to a spectrum S(kv) by

discrete Fourier transformation (DFT):

S(k-Av) =§I(n-Ax)exp(i27znk/ N), (2.1)

n=0

where S(k-Av) is the magnitude of the spectrum, . I(n:Ax) is the magnitude of

: | M2
T , L]
| r £l
e X il - *
(] ” i N " x
. » ?—-—-———- <
z" X
[l & "
f L]
L "

Fig. 2.1 Schematics of a Michelson interferometer. S: light source. D: detector. M1.:
fixed mirror. M2: movable mirror. X: mirror displacement.



interferogram, Ax is the sampling distance, and Av is the interval of the

frequency of the spectrum. The relation between Av and Ax is as the following,

B 1
N-AX'

AV (2.2)

where N is the number of sampling points.

The interferogram 1(n-Ax) can be reconstructed by inverse discrete Fourier

transformation (IDFT):

i277nk
N

I(n-AXx) =%NiS(k -Av)exp(— ). (2.3)

The above is the mathematical fundamental of DFT. Fig. 2.2 shows some examples of
Fourier Transform. The final transmittance spectrum can be obtained by three steps: a)
an interferogram measured without-sample in the.optical path is Fourier transformed
and generates the single channel reference spectrum. R(v) (referred to Fig. 2.3(a)); b)

an interferogram with=a  samplein .the -optical path. is“measured and Fourier

transformed and generate the single channel-.sample spectrumy S(v) (referred to Fig.

2.3(b)); c) the final transmittace spectrum T (v)= is-defined as T (V) :w (referred

R(v)

to Fig. 2.3(c)). To further eliminate the..H,O-and" CO, absorptions in THz region

of the optical path, we vacuum the chamber for every measurement. Some typical

spectrums are shown in Fig. 2.3.
The type of FTIR instrument in our lab is “Bruker IFs66vs”, and the measurement

wavenumber range of liquid-He-cooled bolometer is from 50cm™ to 700cm™ which

is equal to 14 gm to 200 #m in wavelength.

10
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Fig. 2.3 Three kinds of transmission spectra: (a) reference spectrum, (b) spectrum of
absorbing sample, (c) transmittance spectrum obtained by dividing (b) by (a).
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Chapter 3 Sample Design and Fabrication

Fig. 3.1 depicts the general profile of the samples fabricated by standard
microlithography process. We defined the pattern by photolithography after coating

the substrate surface with photoresist and then deposited 20nm-thick titanium for

adhesive layer on intrinsic lcmxlcm GaAs ( &g =13.7 ) substrate and

200nm-thick gold successively. Finally, a 2D hole array was perforated on the metal
by lift-off process. The pattern on the metal was indeed a 2D Bravais lattice. It is
known that there are five types of 2D Bravais lattices. Here we chose four types of
lattices, which are square, rectangular, oblique, and triangular, to investigate the EOT
phenomenon. To investigate therinfluence of hole shape on' the transmission spectra,
we varied the hole shape:of the.array-with fixed periodicity. Especially we focused on
square array with different hole shapes../AsFig. 3.2(a) shows, for square arrays, we
varied the hole widths from 18 um to 3 #m and with the hele lengths unchanged. In
Fig. 3.2(b) we did the same"work but started the shrinking from 14 zm. It is shown
that both spectra in Fig. 3.2 have non-monotonous redshifts as the aspect ratios of
holes are very large. On the other hand, we made the same pattern as Fig. 3.2(b) but
with different metal, titanium, of 200nm thickness to see the influence of finite
conductivity, as shown in Fig. 3.3. The finite conductivity effect can result in larger
loss and enlarge the cutoff wavelength of the holes [26]. In Fig. 3.4, we kept the
aspect ratio of the holes unchanged but shrank hole area gradually, and we found that
the peak positions of the spectrum blueshift with decreasing full width at half
maximum (FWHM). Moreover, we also studied the effect of symmetry difference
between hole and lattice. It is known that any Bravais lattice has its unique primitive

unit cell which is called Wigner-Seitz cell. A Wigner-Seitz cell has the full symmetry

12



of the Bravais lattice, i.e., the Wigner-Seitz cell is as symmetrical as the Bravais
lattice. Therefore, for each lattice, we defined the hole by Wigner-Seitz cell of the
lattice. We found that if we kept the same symmetry but shrank the hole area, the peak
position would be unchanged. The results are shown in Fig. 3.5(a)-(d). There is one
thing that has to be mentioned: in Fig. 3.5(b), Fig. 3.5(c) and Fig. 3.5(d) the substrate
material is changed to intrinsic silicon and the metal we use is 200nm-thick aluminum
for economic consideration. The detailed discussion about these measurement results

can be postponed until Chapter 5.

13



Fig. 3.1(a) Top-view of the sample under measurement. The gray region represents
the substrate while the yellow regi

Fig. 3.1(b) Side-view of the sample under measurement. (colors)
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Measurement: Square Lattice
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Fig. 3.5 (a) Evolution of transmittance with same symmetry.between hole and lattice.

(colors) Measurement: Rectangular Lattice
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50 100 150 200 250
_ _ Wavenumber (cm-1) _
Fig. 3.5 (b) Evolution of transmittance with same symmetry between hole and lattice.

“A” and “B” represent the rectangular lattice constants in x- and y-direction
respectively. “a” and “b” represent the hole sides with the same direction as “A” and
“B” respectively. (colors)

Transmittance
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Measurement: Oblique Lattice

1.0 —
0.9 | Substrate: S ! —— A24B12a16b8660"
1 Metal: Al | ——— A24B12a12b6q60°
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00F . .
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Fig. 3.5 (c) Evolution of transmittance with same symmetry.between hole and lattice.
(colors)

Transmittance

Measurement: Triangular Lattice
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00F .
50 100 150 200 250
Wavenumber (cm-1)
Fig. 3.5 (d) Evolution of transmittance with same symmetry between hole and lattice..

“d” represents the lattice constant. “a” represents the side length of Wigner-Seitz cell
of triangular lattice. (colors)

Transmittance
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Chapter 4 Theoretical Formalism

In order to analyze the experimental data and understand the physics involved in
the 2D structure, we have to do the calculation based on modal expansion. The unit

system we adapt here is SI units.

First of all, we divide the whole system into three regions which arel, Il, and Il
respectively as shown in Fig. 4.1(b). Region| is the region of reflection where the
EM fields can be expanded by the eigenmodes of Helmholtz’s equations in free space
and the incident light is given inthis region.-Region |l is the structure region where
the EM fields inside the hole can be expanded by rectangular waveguide modes of
perfect electrical conductor (PEC).-Region Il is_the substrate region which can be
seen as another kind of-free space except the light velocity there has to be divided by
refraction index of the substrate/material. The 2D structure under study is an infinite
array of holes drilled periodically in a metal film of thicknessh. Fig. 4.1(a) depicts
the definition of the primitive ‘unit-cell.“The primitive unit cell is defined as a
rectangular with length and width being A, B respectively, while the length and width

of the rectangular hole inside the unit cell is denoted by a, b respectively.

We start from the Maxwell’s equations for complex time-harmonic fields in

source free case:

VxH(r) —iaowE(r) =0 (4.7)
V xE(r) +iwg,e(r)H(r) =0 (4.2)
V-H(r)=0 (4.3)
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V- £,e(r)E(r)=0, (4.4)

where the related coefficients are the same as the standard notations in any
electromagnetic textbook. In the following derivation, the only approximation we
make is that the metal is considered to be perfect electrical conductor (PEC). This is a
good approximation because our system is operated in THz region, where the skin
depth of the metal with good conductivity is about only several tens of nanometer.

Combine (4.1) and (4.2), we obtain

1 o)
\Y/ X(gog(r) V x HJ = (?j H (4.5)

2
Vx(VxE)zgog(r)(ﬂj E. (4.6)
C
After further manipulation we can-obtain two Helmholtz’s equations,
) 2

V2E(r) +&4¢(r) [?) E(r)=0 (4.7)

and
@ 2
VZH(r)+ (F} H(r)=0 . (4.8)

Both electric and magnetic fields satisfy the above two Helmholtz’s equations in each
region. At any boundary the EM fields in between the regions satisfy the following

boundary conditions,

n-(mH, - 1,H,) =0 (4.9)
nx(H,—H,)=J, (4.10)
n-(&E, - &E,)=p. (4.12)
nx(E,~E,)=0, (4.12)
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where the numbers of subscripts mean different regions, n is the unitary vector

normal to the surface, and J, and p, are surface current and surface charge

respectively. In the following, we will first attack this problem at each region
individually and then match the boundary conditions at the interface of each region.

All EM fields at each region are governed by (4.7) and (4.8). To simplify the
derivation, we learned from Garcia’s paper in 2008 [16] to use Dirac’s notation for

representation of each field, or eigenfunction. For example, the electric field can be

written as E(r)=(r,|E)E(z) . The reason why we deliberately separate the

z-dependent function from Dirac’s notation will be apparent in our derivation soon. To
further simplify the derivation, according to Gareiay for the same mode E-field and

H-field have the followingurelation

|_Z xH mode> = iYmode | Emode> y (413)

where Y. . is the modal admittance< The choice of’ +“or — depends on the

propagation direction +z ar =z, respectively. Consequently-we can consider only the

eigenmodes of electric field.

Basically, we can categorize the system into two types, the free space type and the
inside hole type. In free space, the eigenmodes of (4.7) are plane waves obeying

Bragg diffraction law, i.e., K=K,+G, where K, and Kk are incident and reflected

: m_n : .
wavevectors respectively, and G = Zﬂ(xx+gy) . In the previous expression (m,n)

denoting the diffraction order is a pair of arbitrary integers. Moreover, the plane wave
eigenmodes can be further decomposed to two orthogonal functions based on the
directions of polarization, p and s. The definitions of p- and s-polarizations are shown

in Fig. 4.1(c). Thus the eigenmodes in free space region is denoted by |mnp) and

|mns) . Inside the hole, the eigenmodes of (4.7) are rectangular waveguide modes
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A

Fig. 4.1(a) Top view of unit cell of the rectangular lattice.

p-polarization X s-polarization

Fig. 4.1(c) Schematics of the system with incident light.
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which can be denoted by |TE,pq) and |TM,pg), where (p,q) represents a certain

order of waveguide mode.

After choosing the expansion basis with consideration of Bloch’s theorem, we
can write down the EM fields in different regions:
® Regionl, (z<0)

Given a normal incident wave, the EM fields can be expressed as follows,

‘ EI (Z)> a(l) p |OO p> a(l) |OOS>} eik;lgo(zle) +

Inc, Inc,s

o el 4.14
Z|:b(1)p | mnp> ik (2-7,) n br(nlgs | mns> e—lkz(v%n(z—zl):| ( )
[-2xH'(@) = (3R¥EH100p) + a2 Yo OOS) " -
(4.15)

mnp mns = mns

Z|:b(l) |mnp>Y(1) ik -2) | @y O |mns>e—ik§%n(2—21)]
np

mn

where
2 2 2
KO = (gj _(Zﬂ'mj _(ZEHJ (4.16)
c A B
&
\ s k<1>0 (4.17)
k®
YO =—2m (4.18)
22
and b, bY) are coefficients to be calculated.
® Regionll, (z,<z<1Z,)
-7 k{2 (z-2,
DI, R) a4 4By o
E"(2)) =Y e"" (4.19)

@ k1) | W@ ok (2-22)
" Z|Tqu R)(aTque M b
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2 2 ikz(?) (z-7) 2 —ik;z) (z-12,)
E YT(I‘ ’I),pq| | M,pq, R>(aT(,\3|‘pqe m v— (,)que . 2 )+
‘—Z X HII (Z)> = E e'k"' P

2 2) AkD-n) @) -k (2-z)
T I TEpaR) (a2 b2 o)
pq
, Where
o 2 zp 2 q 2
k@ — & | 28| |23 4.21
@ - A - (4.21)
@ _ &
Vi =t (4.22)
Z,pq
k(2)
Yiehy =5 (4.23)
Oty
R is the position vector on.the’x-y plane and- a%y, ., ai2 ., b& . b2 are

coefficients to be calculated.

® Regionlll, (z>2,)

mn

ik® (72— ik® (72—
‘ Elll (Z)> 1] Z|:ar(T]3r3p | mnp>e|kz,mn (z-2,) + ars?r?s | mns>e|kz,mn(z ZZ):| (4.24)

mns,. mns

(4.20)

ik®)(z= ik® (72—
‘—z < H" (z)> = Z[aﬁp | mnp)Yﬂfﬁ;e'kz.m(z %) | 4@y |mns>elkz‘mn(z Zz)j| ’ (4.25)

mn

where

K® (gjzg _(ZEmT_(ZnnJZ (4.26)
z,mn c GaAs A B '

mnp = kT (427)
5 k(3)
Vi = (4.28)
Oy

and al’ , al% are coefficients to be calculated.

Now we write down the real space expression for each eigenmode explicitly:
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. 2zm 27N

1 )
A e

r,|mnp) = AB (4.29)
i) \/ Hzan (mﬂ 2zn
AB + B
A B

=27n
2zm_ 27zn
(ry|mns) = . B e a e (4.30)
' 2zmY (2zn Y’ 27m
JABK Aj+( B” A
, if 'm, n are nonzero.
1. |1 4.31
<r//|00P>EE[O} (@31
1 [0 (4.32)
r,100s) = ——
CE eI
. 2%cos(%(x—Rx)jsin(q—(y—Ry)j
(ry|TM,pa,R) = - - 18961 o . (4.33)
ab ”pj Wl 29 —sin(—(x—Rx)jcos(—(y—Ry)j
if p, g are nonzero.
, %‘”qcos(%(x—Rx)jsin(q%(y—Ry)J
(r,|TE,pq,R) = , (4.34)

e ] Zowzecne(o-e)

if p, g are nonzero.

There is one important thing that has to be mentioned. For TE waveguide modes,

(r,|TEpg), if p=0orqg=0, the normalization must be amended by multiplication

: : 1 o
of the right-hand side of (4.34) by —. Now it is time to match the boundary

N

conditions. Using (4.10) and (4.12) we know that the electric fields parallel to the
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surface have to be continuous everywhere on the surface and magnetic fields parallel
to the surface have to be continuous on the holes area. Therefore, as Garcia did, we
project the matching equations onto plane wave eigenmodes for electric fields and
rectangular waveguide eigenmodes for magnetic fields. Besides, we can match the
boundary only on one Wigner-Seitz unit cell, i.e., R =0, because our structure has

perfect periodicity and thus satisfies Bloch’s theorem. Therefore we can abbreviate
|TM,pg,R=0) and |TE,pg,R=0) to |TMpg) and |TE,pq) respectively. The

boundary conditions are matched at two interfaces:

At 2=z (z,-2,=-h):
For E-field,

‘ E'(z= zl)> = ‘ E'(z= zl)> : (4.35)
Then multiply (4.35) by <mnp| and (mns| separately and do integration over an

area of unit cell to obtain

{88 10100000, + B 8100,005 ) £ D=

inc,p~"m0™~'n inc,s~m0~'n mno
2 o\, (4.36
3 T ) (8 6L )+ 2 T o) (a2, 52,50 4%
pg pq
where
| ifm=n (4.38)
™00, ifm=n
For H-field,
|-zxH'(z=2))=|-zxH"(z=1)) (4.39)

Then multiply (4.39) by (TM,pg| and (TE,pq| separately and do integration over
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an area of a hole to obtain

{2l Y (|00 p) +af). Y, (x| 00s)} -

inc,p inc,s

TR 4.40
5[0 () b, () =% 2, e )

where
a=TM, TE. (4.42)
At z=12, (z,—-z,=h):
For E-field,
‘E”' (z= zz)> = ‘ E'(z= 22)> (4.42)

Then multiply (4.42) by (mnpj~and (mns| separately and integrate over the area

of unit cell to obtain

al = Z<mna|TM,pq>(a$2&’pqeik§?3qh i (3’pq)+
pa
y , (4.43)
Dl TE e, e b

pa

where
o=p.s. (4.44)
For H-field,
‘—ZX H"(z= 22)> = ‘—zx H"(z= 22)> (3.45)
> [a9Y (a|mnp)+afY.e) (a|mns) | =Y.2, (af;qe"‘z‘?ﬁqh ~b®, ) (4.46)
where

a=TM, TE. (4.47)

With the four simultaneous equations (4.36), (4.40), (4.43), and (4.46) , we can
determined the coefficients b® , a®  b® andb®

mno ! a,pq? “a,pq? mno *

Now we express (4.36), (4.40), (4.43), and (4.46) in matrix forms:
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(mnp| TM,pq)

[M]= <mns|'l:'M,pq>

W@
e|kz‘pqh

[bZ] = [bﬁ\z,pq
[3.3] = [ar(:gp

[b3] = I:brﬁ])p

(mnp|TE,pg)
(mns|TE,pq)
.
0
eikz(,z;ah 0
0 N
0
0o :
Yoe O
0
o 0
0 :
Yiet O
0
e 0
0
Y0
3\
0 ai(r}():s 0
|
.
a®,. ]
@ ]T
0 T
h® ]T

Thus (4.36), (4.40), (4.43), and (4.46) can be expressed as

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)



[a,]+[b,] =[M][a,]+[M][E][b,] (4.59)

[M] Y. ){[a] - [b.]} =Y ]{[2.]- [E][b. ]} (4.60)
[as]:[M]{[E][az]+[b2]} (4.61)
[M] [ ][] =Y, J{[E][a,] - [b.]} (4.62)

With (4.53) being given and the four matrix equations (4.59), (4.60), (4.61) and
(4.62) , we can determine the four column matrices (4.54), (4.56), (4.57) and (4.58).
The last step is to calculate the transmittance of this system. Because the system is
considered to be lossless, the transmittance in each region must be equal. We use
Poynting’s theorem to calculate. the energy flux through a unit cell at a given z,

J(z2) =%Re{ ” 5 .[E(x, y,z)xH (X, z)}dxdy}. (4.63)

unit cell

Finally, the transmittance can be obtained by dividing J(z) 'by incoming energy flux

Js.
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Chapter 5 Simulation Results and Discussions

5.1 Preamble

In Chapter 4, our formalism is based on rectangular (or square) Bravais lattice
and rectangular (or square) lattice basis (hole) for simplicity. Therefore, in this chapter,
we will compare our simulation results with measurement ones restricted only to

rectangular (or square) case. The dielectric constants of the substrate will be chosen to

be either &5 =119 or &g, =13.7, just for matching the measurement conditions.

The real dielectric constants of substrate .imply_that the substrate is assumed to be
lossless material. The incident light in our simulationis.set to be 45°-polarized for
including the two possible polarizations. Besides, let.us recall the two assumptions of
calculation presented in Chapter 4. The first assumption.is that the metal is a perfect
electric conductor, so there is no EM field-penetrating into, the metal and apparently
no surface plasmon polariton effect is considered. This is a good assumption because
in our case the light frequency is at. THz regime and-the skin depth of the field into the

metal with good conductivity can be‘calculated as the following [17],

5= 2 (5.1)
HO,@

where x4 is the magnetic permeability of the metal, o is the angular frequency,

and o, isthe real part of conductivity which can be related to imaginary part of

dielectric constant &, by [18]

o = 9%
1 (47[)2 '

(5.2)

Since ¢, of gold is a very large value (larger than 80000) in THz regime [19], the
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skin depth can be calculated to be approximately 35nm which is around 1/10000 of
the incident wavelength. The second assumption is that the substrate thickness is
assumed to be infinite, i.e., we don’t consider the dielectric waveguide effect and
interference of three layer system caused by the substrate. This also can be neglected
because the accuracy Ak in our measurement is set to be large enough (say, 4cm™)
to make the interference due to substrate thickness unresolved in the spectrum. As to

dielectric waveguide effect, our definition of transmittance® can minimize this effect.

! The transmittance is defined to be ratio of the transmission with 2D-metal-hole array on substrate to
that without 2D-metal-hole array. In addition, because of the limit to our measurement, we only focus

on zero-order transmittance.
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5.2 Simulation Results Compared with Measurement Results:

EOT Phenomenon

Fig. 5.1 shows the (zero-order) transmittance spectra of both simulation and
experiment results. We can see that the simulation gives a very good agreement with
the measured spectrum position of peak transmittance. However, there still is
discrepancy between simulation and measurement results in the magnitude of peak
transmittance and linewidth, or FWHM. The reason should be that we didn’t consider
the loss of metal in our calculation and in practice the 2D hole array can never be

ideally periodic.

In order to see the EOT phenomenon, we first:define the absolute transmission

efficiency [1]:
Tabs ~ (53)
where T is the measured (or calculated) transmittance and F is the fraction of

surface area occupied by the:heles. The absolute transmission efficiencies T,

abs

are

1.4 and 1.3 for simulation and measurement results in Fig. 5.1 respectively. T, "s

abs

being larger than 1 means that the transmitted light is more than that impinges on the
holes directly. This is exactly the so-called EOT phenomenon. The peak positions
occur near the lattice periodicity with consideration of substrate refraction index.
Therefore we know that it is mainly the lattice periodicity of the structure that makes
such EOT phenomenon. Again we have to emphasize that it is a purely geometric
effect because our metal is seen as PEC. No surface plasmon polariton is considered.
The absolute transmission efficiency becomes larger when we reduce the hole area, as
shown in Fig. 5.2. In Fig. 5.2, we reduce the hole widths from 14um to 0.5um
gradually of the 2D structure with lattice constant, d=22um, and fixed hole length,
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a=14um, on a substrate of dielectric constant, &g, =13.7. The transmission

efficiency will be very large if we let the hole area be very small. This high efficiency
implies that the strength of EM field is very large inside the holes. Or we can say that
the energy of light impinging on the metal surface with 2D hole array is “squeezed”
into the holes. In fact, this phenomenon is similar to resonant tunneling in quantum
mechanics. In the case of resonant tunneling, as shown in Fig. 5.3, if L1 is equal to L2,
namely, the system is symmetric in the direction of transmission, there will be a 100%
transmission regardless of the barrier heights and barrier widths, as shown in Fig. 5.8.
Corresponding to our 2D metal hole array case which is assumed to be symmetric in
the direction of transmission (i.e:, free standing film), then no matter how small the
holes area is, if the incoming wave can exactly couplesto an isolated state of the
system, the transmission«of the wave can reach 100%, as shown in Fig. 5.4. If the
system in the transmission direction is not symmetric (i.e., metal on a GaAs substrate),
the transmittance will .not. reach, 100%._anymore, but still.can have a very high
transmission efficiency. We can see from Fig. 5.7 for‘instance. We can also see this
non-100% transmission for resonant-tunneling-in_guantum mechanics, as shown in
Fig. 5.5. Thus in principle it is convenient to make an analogy to resonant tunneling in
quantum mechanics for our EOT phenomenon. With extremely large field inside the
holes, an interesting application arises. That is, we can fill some optically linear
materials into the holes. Those materials inside the holes will experience a remarkably

large EM field, leading to non-linear optical response.
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Fig. 5.3 L1 and L2 are the widths of the two barriers respectively. W is the width of
the well..V is the barrier height.
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Fig. 5.4 Transmittance spectrum for free standing (the upper and lower dielectric
constants are equal) case.
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5.3 Simulation Results Compared with Measurement Results:

Non-Monotonous Red-Shift Phenomenon

In Fig. 3.2, we see that the spectrum positions of peak transmittance are mostly
red-shifted with increase of the aspect ratio of the holes. This red-shifted evolution
has been shown and partially explained in the previous literatures [20][21][22]. While
the authors in Ref. [22] attributed the red-shifted effect to the coupling between a
discrete resonant state and continuum non-resonant states which is based on
Fano-type resonance [23], others in Ref. [20][21] attributed the shifts to the localized
resonance (or shape resonance). However, in our experiment, we found that the shift
evolution is not monotonous.@s a function of the-aspect ratio of the holes. When we
continue to shrink the hole widths;-i-e:, to increase the aspect ratio of the holes, the
peak positions eventually wshift--to -blue.-Our_simulations also confirm this
non-monotonous phenamenon, as showninFig. 5.6(a)-(d). In:Fig. 5.6(a)-(d) we can
also note that there aresminima occurring soon after the peaks. It is the so-called

“Wood’s anomaly” of Rayleigh’sitype (referred to Chapter 1). This is because that the

incoming light satisfies the relation, 4/k; = |k, +G|2 =0 and then becomes grazing

to the surface, where K, is the incident wavevector in free space, K,, is the

in-plane component of the incident wavevector, and G is the reciprocal lattice
vector. Thus the spectrum positions of the minima only depend on the lattice
periodicity, as can be seen in Fig. 5.6(b). In 2005, F. J. Garcia, et al. derived that even
a “single” hole perforated on PEC film can show a resonance near the cut-off
wavelength of the hole [24]. Moreover, they made a conclusion that a rectangular hole
(with aspect ratio larger than 1) will resonate “more” than a square (with aspect ratio

equal to 1) or a circular hole. Consequently, a single hole on PEC can also have EOT
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phenomenon. This result confirmed that there is surely a localized resonance at
individual hole. In fact, the hole can be seen as an open-ended metallic
low-quality-factor (low-Q) resonator [25]. This localized resonance is leakier than the
discrete resonant mode caused by lattice periodicity, and it will affect the spectrum
position of peak transmittance and the linewidth. In order to obtain a more physical
picture, we consider this phenomenon in a simpler way. First of all, the EOT
phenomenon in our case (normal incidence) is not because of a surface EM wave

resonance but because of the constructive interference of evanescent wave. The

reason is that our incident light is normal to the surface of the 2D structure (k, , =0),

corresponding to the I'" point of the band structure of the system. The band structure
of PEC film with 2D hole array perforated on it has been calculated by Z. Ruan and M.
Qiu [25]. From the bandsstructure-in-Ref. [25] we see that there are modes at the I
point and the frequencies of those modes are very close to the spectrum position of
transmission peak at nermal incidence. However, what they considered is the free
standing metallic film with'Symmetry in the z-direction'while in our case the system is
asymmetric (with substrate) in the z--direction.-Thus it is no necessary to take into
account the odd and even modes. The role of each hole can be seen as the source of
evanescent field in the z-direction. Then each evanescent field forms constructive
interference through the 2D periodicity. Basically the periodicity (lattice constant)
determines the spectrum position of transmission peak. The hole shapes (lattice basis)
will modify the band structure of the system. An apparent influence on the
transmission spectrum by the holes is the linewidth. The larger the hole area, the more
broadening the spectrum. This can be seen in Fig. 5.7. An analogy of
two-barrier-one-well band structure in quantum mechanics can illustrate this idea. The

transmission characteristics of such structure with different barriers are shown in Fig.
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5.8. This is the well-known resonant tunneling in quantum mechanics. We can see that
the resonant mode is leakier (wider linewidth, as in Fig. 5.8(a)) with narrower
potential barrier. In our structure, the larger hole corresponds to narrower potential

barrier while the smaller hole corresponds to wider potential barrier.

To be more detailed, we still have to distinguish the total mechanism into hole
resonance and periodicity resonance. We take Fig. 5.6 for illustrating example. Before
that, in particular, one point has to be mentioned: the polarization preference. In our
simulation, we found that as the hole width b (referred to Fig. 4.1) decreases, the
transmittance will prefer the y-axis-polarized €lectric field of the incident light. This
result is common to Ref. [21]. Therefore, as the holewidth is kept shrinking, the
structure shall allow only=one direction (y-axis) of the polarization of incoming light

eventually. This polarization-selective characteristic can be shown in Fig. 5.9.

Therefore, the cut-off wavelength® 4y, + of a rectangular PEC waveguide is

determined by its long length,.a (referred to Fig. 4.1). Invour example (Fig. 5.6(c)),

A

cut-off

=28um, which is larger‘than the-lattice constant, d=22um. Based on Ref.

[24], it is shown that the more the aspect ratio of the hole, the stronger the localized
resonance (higher quality factor). Therefore, the spectrum positions of the peak
transmittance will redshift with the increasing aspect ratio. Nevertheless, if the cut-off
wavelength of the hole is equal to or smaller than the lattice periodicity, the peak can
hardly shift, as shown in Fig. 5.10. Now let’s go back to Fig. 5.6. As we continue to
shrink the hole widths, the peak positions eventually shift back. In general, we know
that the higher the quality factor, the lower the coupling strength. So we

attribute this non-monotonous phenomenon to the decrease of the coupling strength

between the plane wave mode (|mno)) and waveguide mode (|TE,pqg) or
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|TM,pq> )%. When the coupling strength decreases to a certain degree, the influence of

the hole resonance becomes minor and periodicity resonance dominates. In fact, it is
hard to separate the hole resonance and periodicity resonance in this system because
they are coupled together. However, we can obtain some clues when we change the
lattice constant but fix the hole size and shape. As can be seen in Fig. 5.11, the
minima of the spectra change exactly with the lattice constant while the peaks change
more slowly. Notice that the labeled wavelengths have to be divided by refraction
index of the substrate. Also, we can see that when the difference in dimension
between the lattice constant and hole gets larger, the peaks is more indifferent to the
changes of lattice constant. This' signals-the<weaker coupling between hole and

periodicity resonance.

% The detailed description of these Dirac’s notations can be referred to Ch. 4.
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5.4 Simulation Results Compared with Measurement Results:

Symmetry Effect

In section 5.3, we know that the various aspect ratios of the holes can shift the
peak spectrum position. However, this is not always the case. Fig. 5.12 (a) is an
example of the holes with fixed aspect ratio 2 but various hole areas. As we can see,
the spectrum position of peak transmittance does shift, and our simulation Fig. 5.12 (b)
also confirms this result. On the other hand, if we let the hole shape be of the
Wigner-Seitz cell (say, square hole) which has the same symmetry as the lattice
(square lattice), the peak positions will be unchanged, as shown in Fig. 5.13. The
magnitude difference of the peakvtransmittances between the measurement and
simulation data is mainly due to‘the limited measurement resolution in wavenumber.
If we enhance the wavenumber-accuracy, the peak:.transmittance will enhance, as
shown in Fig. 5.13 (c)."However, if we keep enhancing the wavenumber accuracy, the
spectrum will be rippled-because of the interference due to finite substrate thickness.
Thus we have to take a trade-off. Based on the results in‘Fig. 5.12 and Fig. 5.13, we
can make a hypothesis that if the symmetry of.the holes is equal or better than the
symmetry of the lattice, the peak position will be fixed with various hole areas. In
order to back up this hypothesis, we examined three other 2D Bravais lattices in
addition to square lattice. The measurement results are shown in Fig. 3.5. Fig. 5.13
shows the square lattice with square hole, Fig. 5.14 shows the rectangular lattice
(aspect ratio 2) with rectangular hole (aspect ratio 2), and Fig. 5.15 (a) and Fig. 5.15
(b) show the rectangular lattice (aspect ratio 2) with circular and square holes
respectively, indicating that the peak positions are fixed when the symmetry of the
hole are higher than the lattice. To explain this symmetry effect qualitatively, we
calculate the eigenfrequencies of TE modes of a 2D dielectric photonic crystal by
finite difference method (FDM). The general structure of unit cell of PC for
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calculation is shown in Fig. 5.16 (a). Fig. 5.16 (b) shows the eigenfrequencies
distribution of two dielectric photonic crystals (PCs) with different holes but same
lattice. The red dots are for the PC with the same symmetry between hole and lattice,
while the blue dots are for the PC with the same hole as the red one but rotated by 90°.
As we can see in Fig. 5.14, there is a degeneracy of eigenfrequency in the PC (red
dots) with same symmetry between hole and lattice while the PC (blue dots) with
different symmetry has no degeneracy. Thus we can have a physical picture that in the
bandstructure of the metallic 2D hole array the one with the same symmetry between
hole and lattice also has degeneracy and the mode frequency at I'-point doesn’t
change. However, for the same latticé; if\we 'fotate the hole by 90° we will lift the

degeneracy and shift the mode frequency at I'-point.
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Fig. 5.16 (a) The general structure of PC for calculation of finite difference method.
The blue region defines the unit cell and-the-dark red.region defines the hole in a unit
cell. (colors)
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Fig. 5.16 (b) The eigenfrequency distributions of two dielectric photonic crystals with
different structures. In this figure, x-axis represents the orders of eigenfrequency and
y-axis represents the magnitude of eigenfrequency. The yellow circle marks the
degeneracy. (colors)
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Chapter 6 Conclusion

Extraordinary optical transmission (EOT) phenomenon can occur in a 2D hole
array perforated on perfect electric conductor (PEC). Although there is no PEC in
Nature, the PEC approximation gives a very good physical interpretation for good
conductors in THz region. If the incident EM wave is normal to the surface, no
surface mode is excited and the EOT phenomenon is due to constructive interference
of evanescent wave caused by the subwavelength hole. Manipulating the hole shape
can cause strong influence on the transmittance spectrum. If we decrease the hole area,
the transmission efficiency will increase rapidly. Moreover, each hole acts as a low-Q
resonator, and such resonantsmode-will couple*with' the periodicity resonant mode,
and then results in shifts of the spectrum position of transmission peak. The shifts are
not monotonous because the.magnitude of coupling strength has to be considered.
Therefore, if the hole area becomes too small, the red-shifted effect will be suppressed.
We also studied the symmetry effect on transmittance spectrum. If we let the holes
have the same symmetry as the lattice, i.e., let them be the Wigner-Seitz cell of the
lattice, the peak position doesn’t shift, In fact, the peak position will keep unchanged
as long as the symmetry of the holes is equal to or better than the lattice. In this thesis,
we corroborate that in THz region EOT is not due to resonantly excitation of surface
plasmon polariton but due to simply the geometric effect. And the above properties of
EOT phenomenon on 2D metallic hole arrays can help engineers design more

elaborate THz devices.
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