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異常光學穿透現象於兆赫波段之研究 

 

學生：黃品維              指導教授：李建平 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

 

    本論文針對近年來相當熱門的一個研究主題－異常光學穿透 (EOT) 現象

－在兆赫波段上進行深入的物理探討。目前已知的是在金屬上週期性排列的孔洞

會造成 EOT，但此現象的物理機制仍在爭論中，而在 THz 波段，一些導電性好

金屬可視為完美導體，因此表面電漿子理論在此波段的解釋並不適當。 

    第一個部分為理論推導，我們將整個系統的電磁場做模態展開，此電磁場滿

足馬克斯威爾方程式及其所推演出的荷姆霍茲方程式，計算的結果與實驗結果十

分穩合。此結果排除了表面電漿子理論在此波段的解釋。 

    第二個部分我們探討孔洞的形狀大小對穿透頻譜的影響。結果顯示：1) 孔

洞的面積愈小絕對穿透效率愈高，2) 孔洞的寬長比會對頻譜造成非單調的紅移

現象，3) 孔洞和晶格的對稱性關係亦會對頻譜造成顯著的影響，這些特性可以

為日後的兆赫波微光學元件應用提供一個新的指引。 
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                         Abstract 

This thesis studies the physical origin of a very popular research theme, 

extraordinary optical transmission (EOT) phenomenon, in THz region. It is known 

that 2D periodic metal hole arrays can cause EOT; however, the real physical 

mechanism of this phenomenon is under debate. In THz region, good conductors can 

be seen as perfect electric conductor and therefore the explanation based on theory of 

surface plasmon ploariton (SPP) is improper. 

The first part of this thesis is theoretical formalism. We expand the EM fields of 

the system by eigenfunctions of Helmholtz’s equations in each sub-system, and then 

match the boundary condition obeying Maxwell’s equations. The simulation results 

match very well with experiment results, and so that we can exclude the SPP effect in 

THz region. 

In the second part we investigate the influence of hole shape and size on 

transmission spectrum. It is shown that, 1) the smaller the hole area, the higher the 

absolute transmission efficiency, 2) the aspect ratio of holes can cause shift in the 

peak transmission spectrum non-monotonously, and 3) the symmetry difference 

between hole and unit cell also has influence on transmission spectrum. These 

properties can be taken as a guide for future micro-optic THz device.  
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Chapter 1 Introduction 

Terahertz (THz) radiation lies between 0.1-10 THz in frequency region or 

3mm-30 mμ  in wavelength region or 3 -1cm -300 -1cm  in wavenumber region. The 

region is between the microwave and infrared portion of the electromagnetic spectrum. 

Most materials in Nature don’t have a useful electronic and/or photonic response in 

THz region. This results in hard challenges in the creation of the devices for 

generation, filter and detection of THz wave. This is the well-known “THz gap”. 

However, researchers never stop looking for novel THz devices in order to take 

advantages of THz region. The promising advantages include sensing, communication, 

and imaging. Therefore, our goal of this study is to utilize an ordinary material (say, 

metal) with ordinary structure (say, periodic array) to achieve extraordinary effect in 

THz region. In this thesis we will focus on how a periodic structure interacts with 

THz wave.  

 

1.1 Diffraction Theory of Gratings 

Theory of diffraction grating can be traced back to the beginning of 19th century 

when T. Young and J. Fraunhofer made the first optical diffraction gratings and 

revealed the role of optical diffraction in their behavior. The scattering behaviors of 

diffraction gratings can be described basically by the conservation law of wave 

momentum such as scatt inc= +k k G , where scattk , inck  are the momentums of 

scattered and incident wave momentum respectively, and G  is the reciprocal lattice 

vector of the grating such that 2 mπ⋅ =G a , where a  is the basis vector of the  

lattice in real space and m  is an arbitrary integer. For example, Fig. 1.1 depicts a 
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reflecting grating showing an incident wave being scattered by the grating into three 

orders, 0,  1,  and 1m m m= = = − . The idea of diffraction on grating didn’t be 

challenged until Ebbesen’s findings [1]. Up to our best knowledge, before Ebbesen’s 

experiment, all studies had focused on the transmission of band-pass metal hole arrays 

occurring in the region, cd λ λ< < , where d  is the lattice constant of the arrays, 

cλ  is the cut-off wavelength for electromagnetic modes inside the holes, and λ  is 

the incoming wavelength. The long wavelength filtering is due to the cutoff by the 

holes, and the short wavelength filtering is due to occurring of energy redistribution 

when the first diffraction mode becomes propagating. However, Ebbesen found an 

unexpected transmission spectra in the regime, c dλ λ< < . Thus there must be a 

different mechanism responsible for this unexpected transmission spectra and 

promoted a study resurgence of such grating structures. 

 

1.2 Wood’s Anomalies                                                           

“Wood’s anomalies” is observed by R. W. Wood, who discovered some 

unexpected patterns in the spectrum of light resolved by optical diffraction gratings, 

in 1902 [2]. Later than Wood’s discovery, Rayleigh and U. Fano explained the 

phenomenon respectively [3][4]. It is explained by Rayleigh that the energy of 

diffracted wave can be redistributed at specific diffracted orders. For instance, 

considering the case of Fig. 1.1, we note that the diffracted order, 1m =  in the figure, 

becomes tangent to the grating surface just before its vanishing. In this case, the 

normal momentum zk  of diffracted wave becomes imaginary right after being zero. 

Then the order ( 1m = ) becomes evanescent in the direction of OZ  axis. The energy 

of this order will be redistributed to other orders not satisfying the condition, 
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22
0 0// 0k − + =k G  and then be reflected. Therefore, there will be minima at the 

transmission spectrum. We call it “Rayleigh’s anomaly”, and the wavelengths at 

which the minima occur are called “Rayleigh’s wavelengths”. Explanation to the peak 

of the spectrum is first proposed by U. Fano around 1938. He related the anomalies 

(peak) to a resonance effect. The resonances arise from the coupling between a 

discrete eigenmode of the grating and continuous diffraction modes. They occur right 

after the Rayleigh wavelengths. We call it “resonant anomalies”, or “Fano’s 

anomalies”. 

 

 
 

Fig. 1.1 The schematic description of the process of diffraction. “m” is the diffraction  
order. 
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1.3 Surface Plasmon Polaritons 

    Surface plasmon is a surface wave due to collective oscillation of carriers 

(electrons) in conducting materials such as metals or doped semiconductors at optical 

frequency [5]. This surface mode is confined at the interface between materials with 

positive and negative dielectric constants respectively. Furthermore, if 

electromagnetic wave is coupled with the carriers at the surface, we call it surface 

plasmon polariton (SPP). To get a simple physical picture, we can consider the 

following situation: a stimulating electric field creates two opposite electric 

displacements in phase with each other across the interface. From Maxwell’s 

equations, we can see that these two opposite displacements act to attract and confine 

an AC current to the interface, and thus generate the collective oscillation of electrons. 

The mathematical description of the phenomenon of SPP can be referred to Ref. [5]. 

Then a dispersion relation of this non-radiative electromagnetic mode can be derived. 

We don’t derive the dispersion relation here because in fact it is not the mechanism 

responsible for the phenomenon in our system. 

 

1.4 Extraordinary Optical Transmission (EOT) through Sub-Wavelength 

Metallic Hole Arrays 

In 1998, Ebbesen et al. reported the surprising property of optical transmission 

on metallic gratings [1]. They drilled cylindrical holes (150nm for the diameter) in 

optically thick (200nm) metallic films in fashion of 2D lattice (900nm for the lattice 

constant) on a glass. Although bi-dimensional metallic gratings have been studied 

over many years before 1998, the most attractive characteristic of their findings was 

the distinct spectrum of transmission, as shown in the Fig. 1.2. In Fig. 1.2, the 

peculiar part of the spectrum is the transmission intensity at the wavelengths above 
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the periodicity, 0a . We have already known that the minimum at 0a  is the result of 

Rayleigh type of Wood’s anomalies, and the peak right after 0a  can, in general, be 

explained by the Fano type. However, the peculiarity is that another peak occurs at 

even longer wavelength (1370nm) which is nearly ten times the hole diameter. 

Furthermore, if focusing on the transmission efficiency, one can find that the absolute 

transmission efficiency obtained by taking the ratio of total transmittance (zero-order) 

to the fraction of surface area occupied by the holes is larger than 2. That is, more 

than twice as much as energy can be transmitted through the holes when the light 

illuminates directly on hole area. This new phenomenon cannot be explained by 

Bethe’s theory which states that the transmission efficiency of a single 

sub-wavelength aperture can be described as 4( / )r λ  [6]. Apparently, the existence 

of grating does change the whole situation. Ebbesen attributed this phenomenon to the 

resonant excitation of surface plasmon polaritons (SPP). After Ebbesen, many 

researchers backed up this explanation by investigating this SPP-enhanced 

phenomenon both theoretically [7] [8] and experimentally [9]. However, there are 

other researchers questioning this SPP explanation. Theoretically they found that even 

a structure such as perfect electrical conductor (PEC) which cannot support surface 

plasmon on it also has a bounded surface wave on its surface [10][11], and hence can 

causes an extraordinary optical transmission [12]. Additionally, even both matter 

waves [13] and sound waves [14][15] through holey slabs show extraordinary 

transmission phenomenon.  

 

In this thesis, we focus on the EOT phenomenon with nearly perfect electrical 

conductor (PEC). In fact, no PEC exists in real world. However, our experiments were 

conducted in the THz region and for some highly conducting metals, Ag, Au and Al, 
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the skin depths of those metals can be calculated to be several tens of nanometers, and 

can be negligible when compared to the incident wavelength. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.2 Zero-order transmission spectrum of hoe array on Ag [1].  
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1.5 Spoof Surface Plasmon 

In 2004, J. B. Pendry, et al. reported an original work showing that even a perfect 

conductor cam support confined surface wave as long as the surface are not purely flat 

[10]. The authors call this surface mode “Spoof Surface Plasmon”. Because such 

spoof surface plasmon (SSP) involves no carriers in the metal, they concluded that it 

is simply the geometry of the structure responsible for this surface mode. They also 

suggested that there will be a hybrid surface mode, which is the mixture of surface 

plasmon and spoof surface plasmon, on real metals. In their derivation, the 

long-wavelength approximation is assumed, i.e., the characteristic length of the 

structure are much smaller than the wavelength, and therefore the structured metal can 

be described as a homogeneous medium with effective dielectric constant and 

permeability. If a structure with characteristic length comparable to incoming 

wavelength is considered, the spoof surface plasmon still exists. In this case, the 

diffracted modes have also to be considered, and the main effect of the diffraction is 

to couple the confined spoof surface plasmon to free space. Therefore, an anomaly 

optical transmission can also occur when the incident light resonantly excites this 

surface mode. In the following part of the thesis, our theoretical ground will base on 

this result.  
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Chapter 2 Method of Measurement 

We used Fourier Transform Infrared Spectroscopy (FTIR) as our measurement 

method to analyze the transmission spectra of the devices under study in THz region. 

In this chapter, we will briefly introduce the fundamentals of FTIR method and the 

details of this measurement instrument. Fig. 2.1 is the basic schematics of a 

Michelson interferometer. A mercury lamp is used as the far-infrared light source. 

When light impinges on the beam splitter (50% transmitted and 50% reflected), the 

differences of light path can be adjusted by moving the mirrors, M1 and M2. In our 

instrument, M1 is held fixed while M2 is varied. As Fig. 2.1 shows, the reflected part 

of the light that goes to the fixed M1 in a distance L is reflected there and impinges on 

the beam splitter again after a total path of 2L. The same action happens to the 

transmitted part of the beam. Nevertheless, since the reflecting mirror M2 is not held 

fixed but can be moved very precisely back and forth around L by a distance x, the 

total path length of this light is consequently 2(L+x) . Then, when the two halves of 

the light recombine again on the beam splitter, they possess a path length difference of 

2x and thus show a interference pattern. The light leaving the interferometer is then 

passed through the sample under test and is finally focused on the detector. In fact, the 

quantity measured by the detector is the intensity I(x) which is a function of moving 

mirror displacement x, the so-called interferogram. Here we use the zero crossings of 

the interferogram of He-Ne laser to sample that of the sample under measurement.  

 

One of the advantages of FTIR is its measurement accuracy. The accuracy of the 

sampling spacing between two zero crossings is only determined by the precision of 

the laser wavelength itself. And the common FTIR spectrometers have a built-in 
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wavenumber calibration of high precision of about 0.01 -1cm . Besides its high 

accuracy, FTIR has others prior features to conventional IR grating spectrometers: the 

signal intensity. Because the circular apertures used in FTIR spectrometers have a 

larger area than the linear slit used in grating spectrometers, the throughput of light 

can be enhanced considerably. It is especially useful to the far-infrared measurement 

since the power density of general far-infrared light source is very weak. After data 

acquisition, we cannot directly read the spectrum information. The digitized, discrete 

and equidistant interferogram ( )I x  must be converted to a spectrum ( )S kv  by 

discrete Fourier transformation (DFT): 
1

0

( ) ( )exp( 2 / )
N

n

S k v I n x i nk Nπ
−

=

⋅Δ = ⋅Δ∑ , 

where ( )S k v⋅Δ  is the magnitude of the spectrum, ( )I n x⋅Δ  is the magnitude of  

 

 

Fig. 2.1 Schematics of a Michelson interferometer. S: light source. D: detector. M1: 
fixed mirror. M2: movable mirror. X: mirror displacement. 
 
 
 

(2.1)
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interferogram, xΔ  is the sampling distance, and vΔ  is the interval of the 

frequency of the spectrum. The relation between vΔ  and xΔ  is as the following, 

1v
N x

Δ =
⋅Δ

, 

where N  is the number of sampling points. 

The interferogram ( )I n x⋅ Δ  can be reconstructed by inverse discrete Fourier 

transformation (IDFT): 
1

0

1 2( ) ( )exp( )
N

n

i nkI n x S k v
N N

π−

=

⋅ Δ = ⋅Δ −∑ . 

The above is the mathematical fundamental of DFT. Fig. 2.2 shows some examples of 

Fourier Transform. The final transmittance spectrum can be obtained by three steps: a) 

an interferogram measured without sample in the optical path is Fourier transformed 

and generates the single channel reference spectrum ( )R v (referred to Fig. 2.3(a)); b) 

an interferogram with a sample in the optical path is measured and Fourier 

transformed and generate the single channel sample spectrum ( )S v  (referred to Fig. 

2.3(b)); c) the final transmittace spectrum ( )T v  is defined as 
( )( )
( )

S vT v
R v

=  (referred 

to Fig. 2.3(c)). To further eliminate the 2H O  and 2CO  absorptions in THz region 

of the optical path, we vacuum the chamber for every measurement. Some typical 

spectrums are shown in Fig. 2.3. 

 

   The type of FTIR instrument in our lab is “Bruker IFs66vs”, and the measurement 

wavenumber range of liquid-He-cooled bolometer is from 50 -1cm  to 700 -1cm  which 

is equal to 14 mμ  to 200 mμ  in wavelength. 

(2.2)

(2.3)
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Fig. 2.2 Examples of spectra (left side) and their corresponding interferograms (right 
side). 
 
 
  

 
 
Fig. 2.3 Three kinds of transmission spectra: (a) reference spectrum, (b) spectrum of 
absorbing sample, (c) transmittance spectrum obtained by dividing (b) by (a).   
 
 

(a) (b) (c)
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Chapter 3 Sample Design and Fabrication 

    Fig. 3.1 depicts the general profile of the samples fabricated by standard 

microlithography process. We defined the pattern by photolithography after coating 

the substrate surface with photoresist and then deposited 20nm-thick titanium for 

adhesive layer on intrinsic 1cm 1cm×  GaAs ( 13.7GaAsε = ) substrate and 

200nm-thick gold successively. Finally, a 2D hole array was perforated on the metal 

by lift-off process. The pattern on the metal was indeed a 2D Bravais lattice. It is 

known that there are five types of 2D Bravais lattices. Here we chose four types of 

lattices, which are square, rectangular, oblique, and triangular, to investigate the EOT 

phenomenon. To investigate the influence of hole shape on the transmission spectra, 

we varied the hole shape of the array with fixed periodicity. Especially we focused on 

square array with different hole shapes. As Fig. 3.2(a) shows, for square arrays, we 

varied the hole widths from 18 mμ  to 3 mμ  and with the hole lengths unchanged. In 

Fig. 3.2(b) we did the same work but started the shrinking from 14 mμ . It is shown 

that both spectra in Fig. 3.2 have non-monotonous redshifts as the aspect ratios of 

holes are very large. On the other hand, we made the same pattern as Fig. 3.2(b) but 

with different metal, titanium, of 200nm thickness to see the influence of finite 

conductivity, as shown in Fig. 3.3. The finite conductivity effect can result in larger 

loss and enlarge the cutoff wavelength of the holes [26]. In Fig. 3.4, we kept the 

aspect ratio of the holes unchanged but shrank hole area gradually, and we found that 

the peak positions of the spectrum blueshift with decreasing full width at half 

maximum (FWHM). Moreover, we also studied the effect of symmetry difference 

between hole and lattice. It is known that any Bravais lattice has its unique primitive 

unit cell which is called Wigner-Seitz cell. A Wigner-Seitz cell has the full symmetry 
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of the Bravais lattice, i.e., the Wigner-Seitz cell is as symmetrical as the Bravais 

lattice. Therefore, for each lattice, we defined the hole by Wigner-Seitz cell of the 

lattice. We found that if we kept the same symmetry but shrank the hole area, the peak 

position would be unchanged. The results are shown in Fig. 3.5(a)-(d). There is one 

thing that has to be mentioned: in Fig. 3.5(b), Fig. 3.5(c) and Fig. 3.5(d) the substrate 

material is changed to intrinsic silicon and the metal we use is 200nm-thick aluminum 

for economic consideration. The detailed discussion about these measurement results 

can be postponed until Chapter 5. 
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Fig. 3.1(a) Top-view of the sample under measurement. The gray region represents 
the substrate while the yellow region is the metal. (colors) 

 
 
 
 

 

 
Fig. 3.1(b) Side-view of the sample under measurement. (colors) 
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Fig. 3.2(a) Evolution of transmittance with various aspect ratios. d: lattice constant. a: 
the length of rectangular hole. b: the width of rectangular hole. (colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.2(b) Evolution of transmittance with various aspect ratios. d: lattice constant. a: 
the length of rectangular hole. b: the width of rectangular hole. (colors) 
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Fig. 3.3 Evolution of transmittance with low-conductive metal. d: lattice constant. a: 

the length of rectangular hole. b: the width of rectangular hole. (colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.4 Transmission spectra with fixed aspect ratio of the holes. d: lattice constant. a: 
the length of rectangular hole. b: the width of rectangular hole. (colors) 
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Fig. 3.5 (a) Evolution of transmittance with same symmetry between hole and lattice. 
(colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.5 (b) Evolution of transmittance with same symmetry between hole and lattice. 
“A” and “B” represent the rectangular lattice constants in x- and y-direction  
respectively. “a” and “b” represent the hole sides with the same direction as “A” and  
“B” respectively. (colors) 
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Fig. 3.5 (c) Evolution of transmittance with same symmetry between hole and lattice. 
(colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.5 (d) Evolution of transmittance with same symmetry between hole and lattice.. 
“d” represents the lattice constant. “a” represents the side length of Wigner-Seitz cell 
of triangular lattice. (colors) 
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Chapter 4 Theoretical Formalism 

In order to analyze the experimental data and understand the physics involved in 

the 2D structure, we have to do the calculation based on modal expansion. The unit 

system we adapt here is SI units. 

  

First of all, we divide the whole system into three regions which are I, II, and III  

respectively as shown in Fig. 4.1(b). Region I is the region of reflection where the 

EM fields can be expanded by the eigenmodes of Helmholtz’s equations in free space 

and the incident light is given in this region. Region II  is the structure region where 

the EM fields inside the hole can be expanded by rectangular waveguide modes of 

perfect electrical conductor (PEC). Region III  is the substrate region which can be 

seen as another kind of free space except the light velocity there has to be divided by 

refraction index of the substrate material. The 2D structure under study is an infinite 

array of holes drilled periodically in a metal film of thickness h . Fig. 4.1(a) depicts 

the definition of the primitive unit cell. The primitive unit cell is defined as a 

rectangular with length and width being A, B respectively, while the length and width 

of the rectangular hole inside the unit cell is denoted by a, b respectively.  

 

We start from the Maxwell’s equations for complex time-harmonic fields in 

source free case: 

0( ) ( ) 0iωμ∇× − =H r E r  

0( ) ( ) ( ) 0iωε ε∇× + =E r r H r  

( ) 0∇⋅ =H r  

(4.1)

(4.2)

(4.3)
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0 ( ) ( ) 0ε ε∇⋅ =r E r , 

where the related coefficients are the same as the standard notations in any 

electromagnetic textbook. In the following derivation, the only approximation we 

make is that the metal is considered to be perfect electrical conductor (PEC). This is a 

good approximation because our system is operated in THz region, where the skin 

depth of the metal with good conductivity is about only several tens of nanometer. 

Combine (4.1)  and (4.2) , we obtain 

2

0

1
( ) c

ω
ε ε

⎛ ⎞ ⎛ ⎞∇× ∇× =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

H H
r

 

( )
2

0 ( )
c
ωε ε ⎛ ⎞∇× ∇× = ⎜ ⎟
⎝ ⎠

E r E . 

After further manipulation we can obtain two Helmholtz’s equations, 

2
2

0( ) ( ) ( ) 0
c
ωε ε ⎛ ⎞∇ + =⎜ ⎟
⎝ ⎠

E r r E r  

and 

2
2

0( ) ( ) 0
c
ωμ ⎛ ⎞∇ + =⎜ ⎟
⎝ ⎠

H r H r  . 

Both electric and magnetic fields satisfy the above two Helmholtz’s equations in each 

region. At any boundary the EM fields in between the regions satisfy the following 

boundary conditions, 

( )1 1 2 2 0μ μ⋅ − =n H H   

 ( )1 2 s× − =n H H J   

( )1 1 2 2 sε ε ρ⋅ − =n E E   

( )1 2 0× − =n E E ,  

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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where the numbers of subscripts mean different regions, n  is the unitary vector 

normal to the surface, and sJ  and sρ  are surface current and surface charge 

respectively. In the following, we will first attack this problem at each region 

individually and then match the boundary conditions at the interface of each region. 

All EM fields at each region are governed by (4.7)  and (4.8) . To simplify the 

derivation, we learned from Garcia’s paper in 2008 [16] to use Dirac’s notation for 

representation of each field, or eigenfunction. For example, the electric field can be 

written as //( ) ( )E z=E r r E . The reason why we deliberately separate the 

z-dependent function from Dirac’s notation will be apparent in our derivation soon. To 

further simplify the derivation, according to Garcia, for the same mode E-field and 

H-field have the following relation 

mode mode modeY− × = ±z H E ,                        

where modeY  is the modal admittance. The choice of + or – depends on the 

propagation direction +z or –z respectively. Consequently we can consider only the 

eigenmodes of electric field. 

 

Basically, we can categorize the system into two types, the free space type and the 
inside hole type. In free space, the eigenmodes of (4.7)  are plane waves obeying 

Bragg diffraction law, i.e., 0= +k k G , where 0k  and k  are incident and reflected 

wavevectors respectively, and 2 ( )m n
A B

π= +G x y . In the previous expression ( , )m n  

denoting the diffraction order is a pair of arbitrary integers. Moreover, the plane wave 
eigenmodes can be further decomposed to two orthogonal functions based on the 
directions of polarization, p and s. The definitions of p- and s-polarizations are shown 

in Fig. 4.1(c). Thus the eigenmodes in free space region is denoted by mnp  and 

mns . Inside the hole, the eigenmodes of (4.7)  are rectangular waveguide modes  

(4.13)
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Fig. 4.1(a) Top view of unit cell of the rectangular lattice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1(b) Schematics of the system under study. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1(c) Schematics of the system with incident light. 
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which can be denoted by TE,pq  and TM,pq , where ( , )p q  represents a certain 

order of waveguide mode.  

 

After choosing the expansion basis with consideration of Bloch’s theorem, we 

can write down the EM fields in different regions: 

 Region I, ( 0z < ) 

Given a normal incident wave, the EM fields can be expressed as follows, 

{ } (1)
1,00

(1) (1)
, 1 , 1

( )I (1) (1)
inc, inc,

( ) ( )(1) (1)

( ) 00 00

               

z

z mn z mn

ik z z
p s

ik z z ik z z
mnp mns

mn

z a p a s e

b mnp e b mns e

−

− − − −

= + +

⎡ ⎤+⎣ ⎦∑

E
  

{ } (1)
1,00

(1) (1)
, 1 , 1

( )I (1) (1) (1) (1)
inc, 00 inc, 00

( ) ( )(1) (1) (1) (1)

( ) 00 00

                      

z

z mn z mn

ik z z
p p s s

ik z z ik z z
mnp mnp mns mns

mn

z a Y p a Y s e

b mnp Y e b Y mns e

−

− − − −

− × = + −

⎡ ⎤+⎣ ⎦∑

z H
, 

where  

2 2 2
(1)
,

2 2
z mn

m nk
c A B
ω π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  

(1) 0
(1)
,

mnp
z mn

Y
k
ωε

=   

(1)
,(1)

0

z mn
mns

k
Y

ωμ
=   

and (1)
mnpb , (1)

mnsb  are coefficients to be calculated. 

 Region II, ( 1 2z z z< < ) 

( )
( )

( 2) ( 2)
, 1 , 2

0

( 2) ( 2)
, 1 , 2

( ) ( )(2) (2)
TM, TM,

II

( ) ( )(2) (2)
TE, TE,

TM, ,
( )

TE, ,

z pq z pq

z pq z pq

ik z z ik z z
pq pq

pqi

ik z z ik z z
pq pq

pq

pq a e b e
z e

pq a e b e

− − −

⋅

− − −

⎡ ⎤+ +⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥⎣ ⎦

∑
∑

∑
k R

R

R
E

R
  

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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( )
( )

( 2) ( 2)
, 1 , 2

0

( 2) ( 2)
, 1 , 2

( ) ( )(2) (2) (2)
TM, TM, TM,

II

( ) ( )(2) (2) (2)
TE, TE, TE,

TM, ,
( )

TE, ,

z pq z pq

z pq z pq

ik z z ik z z
pq pq pq

pqi

ik z z ik z z
pq pq pq

pq

Y pq a e b e
z e

Y pq a e b e

− − −

⋅

− − −

⎡ ⎤− +⎢ ⎥
⎢ ⎥− × =
⎢ ⎥−
⎢ ⎥⎣ ⎦

∑
∑

∑
k R

R

R
z H

R
 

, where  

2 2 2
(2)
,z pq

p qk
c a b
ω π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  

(2) 0
TM, (2)

,
pq

z pq

Y
k
ωε

=   

(2)
,(2)

TE,
0

z pq
pq

k
Y

ωμ
=   

R  is the position vector on the x-y plane and (2)
TM,pqa , (2)

TE,pqa , (2)
TM,pqb , (2)

TE,pqb  are 

coefficients to be calculated. 

 Region III, ( 2z z> ) 

(3) (3)
, 2 , 2( ) ( )III (3) (3)( ) z mn z mnik z z ik z z

mnp mns
mn

z a mnp e a mns e− −⎡ ⎤= +⎣ ⎦∑E   

(3) (3)
, 2 , 2( ) ( )III (3) (3) (3) (3)( ) z mn z mnik z z ik z z

mnp mnp mns mns
mn

z a mnp Y e a Y mns e− −⎡ ⎤− × = +⎣ ⎦∑z H ,  

where  

2 2 2
(3)
,

2 2
z mn GaAs

m nk
c A B
ω π πε⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  

(3) 0
(3)
,

GaAs
mnp

z mn

Y
k

ωε ε
=   

 
(3)
,(3)

0

z mn
mns

k
Y

ωμ
=                              

and (3)
mnpa , (3)

mnsa  are coefficients to be calculated. 

Now we write down the real space expression for each eigenmode explicitly: 

(4.20)

(4.28)

(4.27)

(4.26)

(4.25)

(4.21)

(4.22)

(4.23)

(4.24)
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2 2( )

// 2 2

2
1

22 2

m ni x y
A B

m
Amnp e

nm nAB BA B

π π
π

ππ π

+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎡ ⎤ ⎢ ⎥⎛ ⎞ ⎛ ⎞+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

r  

, if ,  are nonzero.m n   

2 2( )

// 2 2

2
1

22 2

m ni x y
A B

n
Bmns e

mm nAB AA B

π π
π

ππ π

+

−⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎡ ⎤ ⎢ ⎥⎛ ⎞ ⎛ ⎞+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

r   

, if ,  are nonzero.m n  

//

1100
0

p
AB

⎡ ⎤
≡ ⎢ ⎥

⎣ ⎦
r   

//

0100
1

s
AB

⎡ ⎤
≡ ⎢ ⎥

⎣ ⎦
r   

( ) ( )

( ) ( )
// 2 2

2 cos sin
1TM, ,

2 sin cos

x y

x y

p p qx R y R
a a b

pq
q p qp q x R y Rab b a ba b

π π π

π π ππ π

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞ − −⎢ ⎥⎜ ⎟ ⎜ ⎟+⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

r R , 

if ,  are nonzero.p q  

( ) ( )

( ) ( )
// 2 2

2 cos sin
1TE, ,

2 sin cos

x y

x y

q p qx R y R
b a b

pq
p p qp q x R y Rab a a ba b

π π π

π π ππ π

⎡− ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞ − −⎢ ⎥⎜ ⎟ ⎜ ⎟+⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

r R , 

if ,  are nonzero.p q  

There is one important thing that has to be mentioned. For TE waveguide modes, 

// TE,pqr , if 0 or 0p q= = , the normalization must be amended by multiplication 

of the right-hand side of (4.34)  by 
1
2

. Now it is time to match the boundary 

conditions. Using (4.10)  and (4.12)  we know that the electric fields parallel to the 

(4.33)

(4.34)

(4.32)

(4.31)

(4.30)

(4.29)
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surface have to be continuous everywhere on the surface and magnetic fields parallel 

to the surface have to be continuous on the holes area. Therefore, as Garcia did, we 

project the matching equations onto plane wave eigenmodes for electric fields and 

rectangular waveguide eigenmodes for magnetic fields. Besides, we can match the 

boundary only on one Wigner-Seitz unit cell, i.e., 0=R , because our structure has 

perfect periodicity and thus satisfies Bloch’s theorem. Therefore we can abbreviate 

TM, , 0pq =R  and TE, , 0pq =R  to TM,pq  and TE,pq  respectively. The 

boundary conditions are matched at two interfaces: 

 

At 1z z=  1 2( )z z h− = − : 

For E-field, 

I II
1 1( ) ( )z z z z= = =E E .  

Then multiply (4.35)  by mnp  and mns  separately and do integration over an 

area of unit cell to obtain 

{ }
( ) ( )( 2) ( 2)

, ,

(1) (1) (1)
inc, 0 0 inc, 0 0

(2) (2) (2) (2)
TM, TM, TE, TE,TM, TE,z pq z pq

p m n p s m n sp mn

ik h ik h
pq pq pq pq

pq pq

a a b

mn pq a b e mn pq a b e

σ σδ δ δ δ δ δ

σ σ

+ + =

+ + +∑ ∑
,  

where  

, p sσ =   

1,  if 
0,  if mn

m n
m n

δ
=⎧

= ⎨ ≠⎩
 . 

For H-field, 

I II
1 1( ) ( )z z z z− × = = − × =z H z H   

Then multiply (4.39)  by TM,pq  and TE,pq  separately and do integration over 

(4.39)

(4.38)

(4.37)

(4.36)

(4.35)
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an area of a hole to obtain 

{ }
( )( 2)

,

(1) (1) (1) (1)
inc, 00 inc, 00

(1) (1) (1) (1) (2) (2) (2)
, , ,

00 00

z pq

p p s s

ik h
mnp mnp mns mns pq pq pq

mn

a Y p a Y s

b Y mnp b Y mns Y a b eα α α

α α

α α

+ −

⎡ ⎤+ = −⎣ ⎦∑
,  

where  

TM, TEα = . 

 

At 2z z=  2 1( )z z h− = : 

For E-field, 

III II
2 2( ) ( )z z z z= = =E E   

Then multiply (4.42)  by mnp  and mns  separately and integrate over the area 

of unit cell to obtain 

( )
( )

(2)
,

(2)
,

(1) (2) (2)
TM, TM,

(2) (2)
TE, TE,

TM,

                           TE,

z pq

z pq

ik h
mn pq pq

pq

ik h
pq pq

pq

a mn pq a e b

mn pq a e b

σ σ

σ

= + +

+

∑

∑
, 

where  

,  p sσ = . 

For H-field, 

III II
2 2( ) ( )z z z z− × = = − × =z H z H (3.45)  

( )( 2)
,(3) (3) (3) (3) (2) (2) (2)

, , ,
z pqik h

mnp mnp mns mns pq pq pq
mn

a Y mnp a Y mns Y a e bα α αα α⎡ ⎤+ = −⎣ ⎦∑  

where  

TM, TEα = . 

With the four simultaneous equations (4.36), (4.40), (4.43), and (4.46) , we can 

determined the coefficients (1) (2) (2) (3)
, ,,  ,  ,  and mn pq pq mnb a b bσ α α σ . 

Now we express (4.36), (4.40), (4.43), and (4.46) in matrix forms: 

(4.47)

(4.46)

(4.44)

(4.43)

(4.42)

(4.41)

(4.40)
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[ ]

TM, TE,

TM, TE,

mnp pq mnp pq

mns pq mns pq

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

L L

M O M O

L L

M O M O

 

[ ]

( 2)
,

( 2)
,

0 0
0 0

0 0
0 0

z pq

z pq

ik h

ik h

e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

E

L

O M

M

L O

 

[ ]

(1)

1 (1)

0 0
0 0

0 0
0 0

mnp

mns

Y

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y

L

O M

M

L O

 

[ ]

(2)
TM,

2 (2)
TE,

0 0
0 0

0 0
0 0

pq

pq

Y

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y

L

O M

M

L O

 

[ ]

(3)

3 (3)

0 0
0 0

0 0
0 0

mnp

mns

Y

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y

L

O M

M

L O

 

[ ] T(1) (1)
1 inc, inc,0 0 0 0 0p sa a⎡ ⎤= ⎣ ⎦a L L  

[ ] T(1) (1)
1 mnp mnsb b⎡ ⎤= ⎣ ⎦b L L  

[ ] T(2) (2)
2 TM, TE,pq pqa a⎡ ⎤= ⎣ ⎦a L L  

[ ] T(2) (2)
2 TM, TE,pq pqb b⎡ ⎤= ⎣ ⎦b L L  

[ ] T(3) (3)
3 mnp mnsa a⎡ ⎤= ⎣ ⎦a L L  

[ ] T(3) (3)
3 mnp mnsb b⎡ ⎤= ⎣ ⎦b L L . 

Thus (4.36), (4.40), (4.43), and (4.46) can be expressed as 

(4.58)

(4.57)

(4.56)

(4.55)

(4.54)

(4.53)

(4.52)

(4.51)

(4.50)

(4.49)

(4.48)
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[ ] [ ] [ ][ ] [ ][ ][ ]1 1 2 2+ = +a b M a M E b  

[ ] [ ] [ ] [ ]{ } [ ] [ ] [ ][ ]{ }†
1 1 1 2 2 2− = −M Y a b Y a E b  

[ ] [ ] [ ][ ] [ ]{ }3 2 2= +a M E a b  

[ ] [ ][ ] [ ] [ ][ ] [ ]{ }†
3 3 2 2 2= −M Y a Y E a b . 

With (4.53)  being given and the four matrix equations (4.59), (4.60), (4.61)  and 

(4.62) , we can determine the four column matrices (4.54), (4.56), (4.57) and (4.58) . 

The last step is to calculate the transmittance of this system. Because the system is 

considered to be lossless, the transmittance in each region must be equal. We use 

Poynting’s theorem to calculate the energy flux through a unit cell at a given z,  

( ) ( ) ( )*

unit cell

1 ˆRe , , , , d d
2

J z x y z x y z x y
⎧ ⎫

⎡ ⎤= ⋅ ×⎨ ⎬⎣ ⎦
⎩ ⎭
∫∫ z E H

v v
.  

Finally, the transmittance can be obtained by dividing ( )J z  by incoming energy flux 

0J . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4.63)

(4.62)

(4.61)

(4.60)

(4.59)
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Chapter 5 Simulation Results and Discussions 

5.1  Preamble 

In Chapter 4, our formalism is based on rectangular (or square) Bravais lattice 

and rectangular (or square) lattice basis (hole) for simplicity. Therefore, in this chapter, 

we will compare our simulation results with measurement ones restricted only to 

rectangular (or square) case. The dielectric constants of the substrate will be chosen to 

be either 11.9Siε =  or 13.7GaAsε = , just for matching the measurement conditions. 

The real dielectric constants of substrate imply that the substrate is assumed to be 

lossless material. The incident light in our simulation is set to be 045 -polarized for 

including the two possible polarizations. Besides, let us recall the two assumptions of 

calculation presented in Chapter 4. The first assumption is that the metal is a perfect 

electric conductor, so there is no EM field penetrating into the metal and apparently 

no surface plasmon polariton effect is considered. This is a good assumption because 

in our case the light frequency is at THz regime and the skin depth of the field into the 

metal with good conductivity can be calculated as the following [17], 

1

2δ
μσ ω

= , 

where μ  is the magnetic permeability of the metal, ω  is the angular frequency, 

and 1σ  is the real part of conductivity which can be related to imaginary part of 

dielectric constant 2ε  by [18]   

( )
2

1 24
ωεσ
π

= . 

Since 2ε  of gold is a very large value (larger than 80000) in THz regime [19], the 

(5.1)

(5.2)
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skin depth can be calculated to be approximately 35nm which is around 1/10000 of 

the incident wavelength. The second assumption is that the substrate thickness is 

assumed to be infinite, i.e., we don’t consider the dielectric waveguide effect and 

interference of three layer system caused by the substrate. This also can be neglected 

because the accuracy kΔ  in our measurement is set to be large enough (say, 4 -1cm ) 

to make the interference due to substrate thickness unresolved in the spectrum. As to 

dielectric waveguide effect, our definition of transmittance1 can minimize this effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
1 The transmittance is defined to be ratio of the transmission with 2D-metal-hole array on substrate to 

that without 2D-metal-hole array. In addition, because of the limit to our measurement, we only focus 

on zero-order transmittance.  
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5.2 Simulation Results Compared with Measurement Results:  

EOT Phenomenon 

Fig. 5.1 shows the (zero-order) transmittance spectra of both simulation and 

experiment results. We can see that the simulation gives a very good agreement with 

the measured spectrum position of peak transmittance. However, there still is 

discrepancy between simulation and measurement results in the magnitude of peak 

transmittance and linewidth, or FWHM. The reason should be that we didn’t consider 

the loss of metal in our calculation and in practice the 2D hole array can never be 

ideally periodic.  

 

In order to see the EOT phenomenon, we first define the absolute transmission 

efficiency [1]: 

abs
TT
F

= ,  

where T  is the measured (or calculated) transmittance and F  is the fraction of 

surface area occupied by the holes. The absolute transmission efficiencies absT  are 

1.4 and 1.3 for simulation and measurement results in Fig. 5.1 respectively. absT ’ s 

being larger than 1 means that the transmitted light is more than that impinges on the 

holes directly. This is exactly the so-called EOT phenomenon. The peak positions 

occur near the lattice periodicity with consideration of substrate refraction index. 

Therefore we know that it is mainly the lattice periodicity of the structure that makes 

such EOT phenomenon. Again we have to emphasize that it is a purely geometric 

effect because our metal is seen as PEC. No surface plasmon polariton is considered. 

The absolute transmission efficiency becomes larger when we reduce the hole area, as 

shown in Fig. 5.2. In Fig. 5.2, we reduce the hole widths from 14um to 0.5um 

gradually of the 2D structure with lattice constant, d=22um, and fixed hole length, 

(5.3)
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a=14um, on a substrate of dielectric constant, 13.7GaAsε = . The transmission 

efficiency will be very large if we let the hole area be very small. This high efficiency 

implies that the strength of EM field is very large inside the holes. Or we can say that 

the energy of light impinging on the metal surface with 2D hole array is “squeezed” 

into the holes. In fact, this phenomenon is similar to resonant tunneling in quantum 

mechanics. In the case of resonant tunneling, as shown in Fig. 5.3, if L1 is equal to L2, 

namely, the system is symmetric in the direction of transmission, there will be a 100% 

transmission regardless of the barrier heights and barrier widths, as shown in Fig. 5.8. 

Corresponding to our 2D metal hole array case which is assumed to be symmetric in 

the direction of transmission (i.e., free standing film), then no matter how small the 

holes area is, if the incoming wave can exactly couple to an isolated state of the 

system, the transmission of the wave can reach 100%, as shown in Fig. 5.4. If the 

system in the transmission direction is not symmetric (i.e., metal on a GaAs substrate), 

the transmittance will not reach 100% anymore, but still can have a very high 

transmission efficiency. We can see from Fig. 5.7 for instance. We can also see this 

non-100% transmission for resonant tunneling in quantum mechanics, as shown in 

Fig. 5.5. Thus in principle it is convenient to make an analogy to resonant tunneling in 

quantum mechanics for our EOT phenomenon. With extremely large field inside the 

holes, an interesting application arises. That is, we can fill some optically linear 

materials into the holes. Those materials inside the holes will experience a remarkably 

large EM field, leading to non-linear optical response. 
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Fig. 5.1 The comparison between measured and calculated transmittance spectrum. 
(colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.2 The absolute transmission efficiencies with various holes. In this case we fix  
one side of the hole and vary the other side gradually. 
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Fig. 5.3 L1 and L2 are the widths of the two barriers respectively. W is the width of  
the well..V is the barrier height. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.4 Transmittance spectrum for free standing (the upper and lower dielectric  
constants are equal) case. 
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Fig. 5.5 Transmission spectrum of resonant tunneling in quantum mechanics with  
asymmetric barriers [27]. 
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5.3 Simulation Results Compared with Measurement Results:  

Non-Monotonous Red-Shift Phenomenon  

In Fig. 3.2, we see that the spectrum positions of peak transmittance are mostly 

red-shifted with increase of the aspect ratio of the holes. This red-shifted evolution 

has been shown and partially explained in the previous literatures [20][21][22]. While 

the authors in Ref. [22] attributed the red-shifted effect to the coupling between a 

discrete resonant state and continuum non-resonant states which is based on 

Fano-type resonance [23], others in Ref. [20][21] attributed the shifts to the localized 

resonance (or shape resonance). However, in our experiment, we found that the shift 

evolution is not monotonous as a function of the aspect ratio of the holes. When we 

continue to shrink the hole widths, i.e., to increase the aspect ratio of the holes, the 

peak positions eventually shift to blue. Our simulations also confirm this 

non-monotonous phenomenon, as shown in Fig. 5.6(a)-(d). In Fig. 5.6(a)-(d) we can 

also note that there are minima occurring soon after the peaks. It is the so-called 

“Wood’s anomaly” of Rayleigh’s type (referred to Chapter 1). This is because that the 

incoming light satisfies the relation, 22
0 0// 0k − + =k G  and then becomes grazing 

to the surface, where 0k  is the incident wavevector in free space, 0 //k  is the 

in-plane component of the incident wavevector, and G  is the reciprocal lattice 

vector. Thus the spectrum positions of the minima only depend on the lattice 

periodicity, as can be seen in Fig. 5.6(b). In 2005, F. J. Garcia, et al. derived that even 

a “single” hole perforated on PEC film can show a resonance near the cut-off 

wavelength of the hole [24]. Moreover, they made a conclusion that a rectangular hole 

(with aspect ratio larger than 1) will resonate “more” than a square (with aspect ratio 

equal to 1) or a circular hole. Consequently, a single hole on PEC can also have EOT 
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phenomenon. This result confirmed that there is surely a localized resonance at 

individual hole. In fact, the hole can be seen as an open-ended metallic 

low-quality-factor (low-Q) resonator [25]. This localized resonance is leakier than the 

discrete resonant mode caused by lattice periodicity, and it will affect the spectrum 

position of peak transmittance and the linewidth. In order to obtain a more physical 

picture, we consider this phenomenon in a simpler way. First of all, the EOT 

phenomenon in our case (normal incidence) is not because of a surface EM wave 

resonance but because of the constructive interference of evanescent wave. The 

reason is that our incident light is normal to the surface of the 2D structure ( 0,// 0=k ), 

corresponding to the Γ  point of the band structure of the system. The band structure 

of PEC film with 2D hole array perforated on it has been calculated by Z. Ruan and M. 

Qiu [25]. From the band structure in Ref. [25] we see that there are modes at the Γ  

point and the frequencies of those modes are very close to the spectrum position of 

transmission peak at normal incidence. However, what they considered is the free 

standing metallic film with symmetry in the z-direction while in our case the system is 

asymmetric (with substrate) in the z- direction. Thus it is no necessary to take into 

account the odd and even modes. The role of each hole can be seen as the source of 

evanescent field in the z-direction. Then each evanescent field forms constructive 

interference through the 2D periodicity. Basically the periodicity (lattice constant) 

determines the spectrum position of transmission peak. The hole shapes (lattice basis) 

will modify the band structure of the system. An apparent influence on the 

transmission spectrum by the holes is the linewidth. The larger the hole area, the more 

broadening the spectrum. This can be seen in Fig. 5.7. An analogy of 

two-barrier-one-well band structure in quantum mechanics can illustrate this idea. The 

transmission characteristics of such structure with different barriers are shown in Fig. 
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5.8. This is the well-known resonant tunneling in quantum mechanics. We can see that  

the resonant mode is leakier (wider linewidth, as in Fig. 5.8(a)) with narrower 

potential barrier. In our structure, the larger hole corresponds to narrower potential 

barrier while the smaller hole corresponds to wider potential barrier. 

 

     To be more detailed, we still have to distinguish the total mechanism into hole 

resonance and periodicity resonance. We take Fig. 5.6 for illustrating example. Before 

that, in particular, one point has to be mentioned: the polarization preference. In our 

simulation, we found that as the hole width b (referred to Fig. 4.1) decreases, the 

transmittance will prefer the y-axis-polarized electric field of the incident light. This 

result is common to Ref. [21]. Therefore, as the hole width is kept shrinking, the 

structure shall allow only one direction (y-axis) of the polarization of incoming light 

eventually. This polarization-selective characteristic can be shown in Fig. 5.9. 

Therefore, the cut-off wavelength cut-offλ  of a rectangular PEC waveguide is 

determined by its long length, a (referred to Fig. 4.1). In our example (Fig. 5.6(c)), 

cut-off 28 mλ μ= , which is larger than the lattice constant, d=22 mμ . Based on Ref. 

[24], it is shown that the more the aspect ratio of the hole, the stronger the localized 

resonance (higher quality factor). Therefore, the spectrum positions of the peak 

transmittance will redshift with the increasing aspect ratio. Nevertheless, if the cut-off 

wavelength of the hole is equal to or smaller than the lattice periodicity, the peak can 

hardly shift, as shown in Fig. 5.10. Now let’s go back to Fig. 5.6. As we continue to 

shrink the hole widths, the peak positions eventually shift back. In general, we know 

that the higher the quality factor, the lower the coupling strength. So we 

attribute this non-monotonous phenomenon to the decrease of the coupling strength 

between the plane wave mode ( mnσ ) and waveguide mode ( TE,pq  or   
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Fig. 5.6(a) Evolution of transmittance spectra with various aspect ratios. (colors) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.6(b) Evolution of transmittance spectra with various aspect ratios. (colors) 
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Fig. 5.6(c) Evolution of transmittance spectra with various aspect ratios. (colors) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.6(d) Evolution of transmittance spectra with various aspect ratios. (colors) 
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TM,pq )2. When the coupling strength decreases to a certain degree, the influence of 

the hole resonance becomes minor and periodicity resonance dominates. In fact, it is 

hard to separate the hole resonance and periodicity resonance in this system because 

they are coupled together. However, we can obtain some clues when we change the 

lattice constant but fix the hole size and shape. As can be seen in Fig. 5.11, the 

minima of the spectra change exactly with the lattice constant while the peaks change 

more slowly. Notice that the labeled wavelengths have to be divided by refraction 

index of the substrate. Also, we can see that when the difference in dimension 

between the lattice constant and hole gets larger, the peaks is more indifferent to the 

changes of lattice constant. This signals the weaker coupling between hole and 

periodicity resonance.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
2 The detailed description of these Dirac’s notations can be referred to Ch. 4. 
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Fig. 5.7 Evolution of transmittance spectra. (colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

60 80 100 120 140 160
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Substrate: ε=13.7
Metal: PEC
Lattice: square
Hole: Wigner-Seitz cell

 

 Simulation
Tr

an
sm

itt
an

ce

Wavenumber (cm-1)

 d22a18b18
 d22a14b14
 d22a12b12
 d22a11b11
 d22a10b10
 d22a9b9



 

44 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.8 (a) The transmission of resonant tunneling with narrower barriers [27]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.8 (b) The transmission of resonant tunneling with wider barriers [27]. 
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Fig. 5.9 Polarization dependence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.10 Weak coupling strength between plane wave mode and waveguide mode.  
Dielectric constant of the substrate is assumed to be 13.7 (GaAs) in this simulation. 
(colors) 
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Fig. 5.11 Decoupling of the periodicity resonance and hole resonance. Dielectric  
constant of the substrate is assumed to be 13.7 (GaAs) in this simulation. (colors) 
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5.4 Simulation Results Compared with Measurement Results: 

Symmetry Effect 

In section 5.3, we know that the various aspect ratios of the holes can shift the 

peak spectrum position. However, this is not always the case. Fig. 5.12 (a) is an 

example of the holes with fixed aspect ratio 2 but various hole areas. As we can see, 

the spectrum position of peak transmittance does shift, and our simulation Fig. 5.12 (b) 

also confirms this result. On the other hand, if we let the hole shape be of the 

Wigner-Seitz cell (say, square hole) which has the same symmetry as the lattice 

(square lattice), the peak positions will be unchanged, as shown in Fig. 5.13. The 

magnitude difference of the peak transmittances between the measurement and 

simulation data is mainly due to the limited measurement resolution in wavenumber. 

If we enhance the wavenumber accuracy, the peak transmittance will enhance, as 

shown in Fig. 5.13 (c). However, if we keep enhancing the wavenumber accuracy, the 

spectrum will be rippled because of the interference due to finite substrate thickness. 

Thus we have to take a trade-off. Based on the results in Fig. 5.12 and Fig. 5.13, we 

can make a hypothesis that if the symmetry of the holes is equal or better than the 

symmetry of the lattice, the peak position will be fixed with various hole areas. In 

order to back up this hypothesis, we examined three other 2D Bravais lattices in 

addition to square lattice. The measurement results are shown in Fig. 3.5. Fig. 5.13 

shows the square lattice with square hole, Fig. 5.14 shows the rectangular lattice 

(aspect ratio 2) with rectangular hole (aspect ratio 2), and Fig. 5.15 (a) and Fig. 5.15 

(b) show the rectangular lattice (aspect ratio 2) with circular and square holes 

respectively, indicating that the peak positions are fixed when the symmetry of the 

hole are higher than the lattice. To explain this symmetry effect qualitatively, we 

calculate the eigenfrequencies of TE modes of a 2D dielectric photonic crystal by 

finite difference method (FDM). The general structure of unit cell of PC for 
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calculation is shown in Fig. 5.16 (a). Fig. 5.16 (b) shows the eigenfrequencies 

distribution of two dielectric photonic crystals (PCs) with different holes but same 

lattice. The red dots are for the PC with the same symmetry between hole and lattice, 

while the blue dots are for the PC with the same hole as the red one but rotated by 900. 

As we can see in Fig. 5.14, there is a degeneracy of eigenfrequency in the PC (red 

dots) with same symmetry between hole and lattice while the PC (blue dots) with 

different symmetry has no degeneracy. Thus we can have a physical picture that in the 

bandstructure of the metallic 2D hole array the one with the same symmetry between 

hole and lattice also has degeneracy and the mode frequency at Γ -point doesn’t 

change. However, for the same lattice, if we rotate the hole by 900 we will lift the 

degeneracy and shift the mode frequency at Γ -point.  
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Fig. 5.12 (a) Evolution of transmission spectra. (colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.12 (b) Evolution of transmission spectra. (colors) 
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Fig. 5.13 (a) Evolution of transmission spectra. (colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.13 (b) Evolution of transmission spectra. (colors) 
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Fig. 5.13 (c) Evolution of transmission spectra. (colors) 
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Fig.5. 14 (a) Symmetry effect: evolution of transmission spectra. (colors) 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.14 (b) Symmetry effect: evolution of transmission spectra. (colors) 
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Fig. 5.15 (a) Symmetry effect: evolution of transmission spectra. The transmittance 
spectrum of rectangular lattice with circular basis. “r” represents the hole radius; “A” 
and “B” represents the lattice constant in x- and y-direction respectively. (colors) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.15 (b) Symmetry effect: evolution of transmittance spectra. (colors) 
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Fig. 5.16 (a) The general structure of PC for calculation of finite difference method. 
The blue region defines the unit cell and the dark red region defines the hole in a unit 
cell. (colors) 
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Fig. 5.16 (b) The eigenfrequency distributions of two dielectric photonic crystals with 
different structures. In this figure, x-axis represents the orders of eigenfrequency and 
y-axis represents the magnitude of eigenfrequency. The yellow circle marks the 
degeneracy. (colors)   
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Chapter 6 Conclusion 

Extraordinary optical transmission (EOT) phenomenon can occur in a 2D hole 

array perforated on perfect electric conductor (PEC). Although there is no PEC in 

Nature, the PEC approximation gives a very good physical interpretation for good 

conductors in THz region. If the incident EM wave is normal to the surface, no 

surface mode is excited and the EOT phenomenon is due to constructive interference 

of evanescent wave caused by the subwavelength hole. Manipulating the hole shape 

can cause strong influence on the transmittance spectrum. If we decrease the hole area, 

the transmission efficiency will increase rapidly. Moreover, each hole acts as a low-Q 

resonator, and such resonant mode will couple with the periodicity resonant mode, 

and then results in shifts of the spectrum position of transmission peak. The shifts are 

not monotonous because the magnitude of coupling strength has to be considered. 

Therefore, if the hole area becomes too small, the red-shifted effect will be suppressed. 

We also studied the symmetry effect on transmittance spectrum. If we let the holes 

have the same symmetry as the lattice, i.e., let them be the Wigner-Seitz cell of the 

lattice, the peak position doesn’t shift. In fact, the peak position will keep unchanged 

as long as the symmetry of the holes is equal to or better than the lattice. In this thesis, 

we corroborate that in THz region EOT is not due to resonantly excitation of surface 

plasmon polariton but due to simply the geometric effect. And the above properties of 

EOT phenomenon on 2D metallic hole arrays can help engineers design more 

elaborate THz devices.    
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