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摘  要 

 
 在本篇研究論文中，我們構思並成功地驗證一種簡易且具經濟效益的製作流

程。此技術無需借助昂貴的微影設備與製程，即可製作出新式奈米線通道的薄膜

電晶體。此技術運用一獨特的二階段乾式蝕刻技巧，可在一閘電極的兩側形成奈

米極尺寸孔洞，並在沉積一矽膜將其填滿後，利用異向性蝕刻，自我對準地形成

奈米線通道。運用此流程，可完成具有獨立雙閘極奈米線電晶體結構，在電性分

析上可賦予更有彈性的操作模式，也可讓吾人針對各種操作模式進行比較與分

析。我們也加入二氧化矽-氮化矽-二氧化矽(ONO)堆疊薄膜作為閘極介電層，及

利用原生摻雜複晶矽作為源極/汲極(in situ doped source/drain)的技巧，可以有效

提升閘極控制能力並且改善元件特性。基於此結構製作的記憶體元件，其特性上

在具有更多彈性的雙閘極操作下，可提升元件基本電性及寫入/抹除速度。 

 

 
 
 
 

 I



A Novel Double-Gated Poly-Si Nanowire Thin Film 

Transistor and SONOS Memory 

 
 
Student：Yu-Chia Chang       Advisors：Dr. Horng-Chih Lin 
            Dr. Tiao-Yuan Huang 
 
 

Department of Electronics Engineering and Institute of Electronics 
National Chiao Tung University, Hsinchu, Taiwan 

 
 

ABSTRACT 
 

In this thesis, a simple and cost-effective method for fabricating poly-Si 

nanowire (NW) thin film transistor (TFT) without the necessity of advanced 

lithography tools is proposed and demonstrated.  In this scheme, a unique two-step 

etching is developed to form nano cavities at the sidewalls of an electrode.  After 

filling the cavities with a Si film, an anisotropic etch is subsequently performed to 

define the NW structures in a self-aligned manner. With the proposed scheme, 

independent double-gated NW devices could be constructed.  With such 

configuration, more flexibility in device operation could be provided.  

Characteristics of different operation mode are compared and analyzed.  With the 

implementation of oxide-nitride-oxide (ONO) gate dielectrics and in-situ doped 

source/drain (S/D), dramatic improvements in device characteristics can be achieved.  

Based on the proposed scheme, NW TFT-SONOS memory devices were also 

fabricated and characterized.  The two independent gates are shown to increase the 

flexibility and improve the programming/erasing efficiency.  
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Chapter1 
Introduction 

 

1-1 Overview of Multiple-Gated Structure and 

Nanowire Technology   

With the gate dimension scaled from 10 μm in the 1970’s to the present-day of 

less than 100 nm, the drain bias has affected significantly the potential distribution 

inside the channel, leading to the occurrence of short channel effects (SCEs) such as 

threshold voltage (Vth) roll-off, drain-induced barrier lowering (DIBL), and the 

increase in the OFF current.  Thus, it has cost lots of engineers’ efforts to maintain 

the controllability of the gate over the channel for suppressing the short-channel 

effects.   Effective methods including shrinking gate oxide thickness (tox), increasing 

substrate doping concentrations (NS), use of high dielectric constant materials 

(high-κ), and so on [1-1][1-2][1-3]. 

An alternative approach to address the SCEs is the adoption of a 3-dimensional 

configuration for construction of the scaled devices.  Available techniques include 

raised S/D [1-4] and multiple gate (MG) configuration [1-5].  The investigation of 

double-gate (DG) operation indicated that the MG configuration can significantly 

reduce the drain-induced barrier lowering (DIBL) by shielding the field originating 
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from the drain [1-6].  Therefore, the MG configuration equipped with an ultra-thin 

channel such as tri-gate [1-7], Ω-gate [1-8] and gate-all-around (GAA) [1-9] is 

promising for 32 nm node and beyond.  

Nanowire (NW), a stripe structure with its diameter or feature size smaller than 

100 nm, has a large surface-to volume ratio.  Since the material properties and 

carrier transport in the NW are strongly affected by the surface condition, the NW can 

be applied to diverse areas ranging from electronics [1-10], optoelectronics [1-11], 

and energy [1-12], to healthcare [1-13].  For the NW field-effect transistors (FET) 

with GAA configuration [1-14], superior electrostatic control of the channel for 

suppressed of SCEs has been demonstrated [1-3].  For memory devices, NWs 

possess desirable features like high programming efficiency and low voltage 

operation [1-15]. 

The techniques for creating nanowires are typically divided into two groups.  

One is “top-down”, and the other is “bottom-up”.  Top-down approach usually 

involves advanced lithography, etching, and deposition to form functional devices 

[1-16].  However, this method has equipment limitation and flexibility issue in 

selecting the NW materials.  The bottom-up approach, in which functional structures 

are assembled from well-defined chemically and physically synthesized 

nanometer-scale building blocks, represents a potential alternative approach to the 
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top-down methods [1-17].  The most common growth mechanism is the 

vapor-liquid-solid (VLS) method which briefly includes three stages: (Ι) metal 

alloying, (Ⅱ) crystal nucleation, and (Ⅲ) axial growth to form nanowires [1-18] 

[1-19].  Bottom-up approach, however, suffers from the significant fluctuation in 

device characteristics owing to the poor control of device structural parameters.  

 

1-2 Overview of Nonvolatile Memory 

 As digital appliances are prevailing in our daily lives, the nonvolatile memory 

suitable for these diversified applications becomes indispensable elements.  There 

are essentially two dominant technologies which compete for an expanding world 

market: (1) floating gate EEPROM’s and (2) SONOS or floating-trap EEPROM’s 

[1-20]. 

The storage region for the floating-gate structure is the conducting polysilicon 

floating-gate electrode and represents the mainstream of the flash memory, while the 

SONOS uses a silicon-nitride film for charge storage.  However, for highly dense 

device array presenting in modern chips with nano-scale storage devices, the narrow 

spacing between two adjacent memory cells would lead to strong coupling 

interference between them, resulting in undesirable threshold voltage shift.  

Moreover, with a thinner gate dielectric, it easily suffers from the stress-induced 
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leakage current (SILC) which may eventually destroy the storage capability of the 

devices.  This occurs when a single defect is generated in the gate oxide responsible 

for the conduction of SILC, all charges stored in the conductive poly-Si FG would 

flow to the channel through the defect.  Owing to these scaling limits, it has been 

pointed out that the next-generation flash memory chip would resort to 

charge-trapping flash (CTF) type [1-21]. 

 SONOS, denoted for silicon-oxide-nitride-oxide-silicon, is a multi-layer storage 

structure for CTF.  Since nitride is an insulator, the charges are discretely stored in 

the traps of nitride.  So unlike the FG devices, the stored charges would not 

completely leak out through individual SILC path for the SONOS devices.  Hence, 

SONOS structure can maintain data retention characteristics even after the FG 

technology reaches its scaling limit.  

Nowadays, there are lots of studies dedicated to the development of high 

performance and high reliable SONOS.  For example, Bandgap-Engineered SONOS 

uses an ONO stack as the tunneling oxide to improve the data retention [1-22].  The 

use of high-κ material as the tunneling oxide to increase the field strength and thus the 

P/E efficiency [1-23] has also been proposed.  The feasibility of applying SONOS 

structure to thin-film-transistor for the purpose of system-on-chip (SOC) or 

system-on-panel (SOP) integration has been explored as well [1-24]. 
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1-3 Motivation of this Study 

 As mentioned above, NW channel combined with multiple-gated configuration 

has demonstrated impressive electrical characteristics.  Previously, our group had 

proposed several simple and cost-effective methods in fabricating poly-Si NW TFTs 

without the necessity of advanced lithography tools [1-25][1-26].  Nevertheless, they 

all suffer from the irregular cross-sectional shapes (triangular) of NWs, which may 

lead to problems such as non-uniform carrier distribution inside the channel and 

difficulty in theoretical analysis and simulation.  This concern is relaxed by a new 

method proposed and demonstrated in this thesis, which can fabricate DG NW 

devices with a rectangle-shaped NW channels.  In addition to the novel structure, we 

also developed an in situ doped S/D scheme to further enhance the device 

performance.  Such new design may increase its feasibility in logic and NVM device 

applications.  
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1-4 Organization of the Thesis 

 There are five chapters in this thesis.  In addition to the brief introduction given 

in this chapter, structure and fabrication of NW thin-film transistors (NWTFT) and 

NW-SONOS memory devices characterized in this work are described in detail in 

Chapter 2.   Two S/D formation schemes, namely, implanted-S/D and in-situ 

doped-S/D, are also described.  In Chapter 3, the measured data of basic electrical is 

presented and discussed. Then, NVM characteristics are analyzed and discussed in 

Chapter4.   Finally, we summarize the conclusions of this study and suggestions for 

future work in Chapter 5. 
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Chapter2 
Device Structure, Fabrication, and 

Measurement Schemes 
 

 In this thesis, two types of devices were fabricated and characterized.  The first 

type is embedded poly-Si nanowire TFTs (NWTFTs).  The other is NWTFT- 

SONOS memory devices.  Furthermore, we also adopted two different types of 

source/drain (S/D) formation techniques in the fabrication of embedded NWTFT 

devices and studied their impacts on the device characteristics.  The two splits are 

denoted as implanted-S/D and in situ doped-S/D types, respectively. 

 

2-1 Structure and Fabrication of Embedded Poly-Si 

Nanowire TFT Devices 

Figures 2-1(a) and (b) show the top and the cross-sectional views of the 

embedded NWTFT, respectively. From Fig.2-1(b), it can be seen that the two 

rectangular-shaped poly-Si NW channels are embedded snugly at the two sides of the 

gate structure capped with a nitride hardmask (HM).  Fig.2-1(c) shows the enlarged 

view of the structural cross-section centered at one of the two NW channels showing 

the definition of channel thickness and width.  In order to improve the device 
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performance, the channel thickness needs to be scaled into sub-40 nm regime [2-1].  

Besides, the NW channels are sandwiched laterally by two independently biased gate 

electrodes.  Such double-gate (DG) configuration allows high flexibility in device 

operation.  

 Fabrication flow of the NWTFT is illustrated in Figs. 2-2(a) ~ (f). The device 

fabrications in this thesis all started on 6-inch silicon wafers capped with 100-nm 

silicon dioxide.  First, a layer of 50-nm nitride was deposited on the oxidized wafer. 

A gate stack which consists of 100-nm in situ-doped n+ poly (1st gate) and 50-nm 

nitride (hard mask layer) was then deposited (Fig.2-2(a)).  These stacked layers were 

all grown by low pressure chemical vapor deposition (LPCVD).  Next, the gate stack 

was patterned by standard I-line lithographic and subsequent dry etching steps (Fig. 

2-2(b)).  Following the gate stack patterning, highly selective plasma etching was 

used for lateral etching of n+ poly-Si.  These lateral cavities were formed at the two 

sides of the gate stack structure while the remaining n+ poly-Si would serve as the 

first gate once the device was completed (Fig. 2-2(c)).  Afterwards, a 16.5nm-thick 

LP-TEOS oxide serving as the gate dielectric of the first gate and a 100-nm 

amorphous Si were deposited sequentially and then underwent an annealing at 600 ℃ 

in N2 ambient for 24 hours.  After this solid phase crystallization (SPC) process, the 

amorphous-Si was consequently transformed into poly-Si (Fig. 2-2(d)).   
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 Next, the wafers were split into two groups receiving different S/D doping 

processes.  In the first split, denoted as the implanted-S/D split, S/D doping was 

conducted by P+ implantation at energy of 15 keV with a dose of 5E15 cm-2 (Fig. 

2-2(e)).  The other split, the in situ doped-S/D split, the poly-Si layer was removed 

with an endpoint-mode dry etching to leave portion of the poly-Si at the sidewalls of 

the gate stack structure (Fig. 2-2(e-1-1)), followed by the deposition of 100 nm-thick 

in situ doped n+ poly-Si (Fig. 2-2(e-1-2)).   

 After the aforementioned S/D doping process, an I-line lithographic step was 

then performed on the two splits to generate S/D photoresist patterns.  NWs and S/D 

were defined simultaneously by a reactive plasma etching step. Note that this etching 

completely removed poly-Si film outside the hard mask and the portion that resided 

underneath the hard mask would remain intact forming a rectangular NW channel. 

Figures 2-2(f) and 2-2(f-1) illustrate the implanted-S/D and the in-situ-doped-S/D 

splits after this step.  Another 14.5-nm LP-TEOS was deposited to serve as the 2nd 

gate dielectric, followed by the deposition of a 100-nm in situ doped poly-Si which 

was subsequently patterned to form the 2nd gate electrode (Fig. 2-2(f)).  All devices 

were then covered with a 300-nm oxide passivation layer.  Contact pads were thern 

formed with a standard metallization scheme. Before characterization, all devices 

received an 1-hour NH3 plasma treatment.  
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 Figure 2-3 shows the cross-sectional TEM image of an embedded NW TFT 

device along the line AB shown in Fig.2-1(a).  It could be seen that the shape of the 

nanowires was nearly rectangular.  The sizes of channel height and thickness are 

approximately 70 nm and 30 nm, respectively. 

 

2-2 Fabrication of NWTFT- SONOS Memory Devices  

 The structure of NWTFT SONOS memory device is identical to that of the 

embedded NWTFT except that an oxide-nitride-oxide (ONO) stack is used as the gate 

dielectric.  The three layers in the ONO stack were deposited sequentially with 

LPCVD.  Figures 2-4(a) and (b) show the schematics of the stack layer near the 1st 

gate or 2nd gate, respectively.  For the gate dielectric of the 1st gate, the O/N/O 

consists of 5 nm LP-TEOS, 7 nm LP-silicon nitride, and 7 nm LP-TEOS.  While for 

the gate dielectric of the the 2nd gate, the O/N/O consists of 5 nm LP-TEOS, 6.5nm 

LP-silicon nitride, and 8 nm LP-TEOS.  Unlike the NWTFTs stated in the former 

section, the SONOS devices did not receive any plasma treatment before 

characterization.   

 The TEM image of a SONOS memory device is shown in Fig. 2-5.  It is found 

that the channel thickness is 30 nm while the channel width is about 56 nm.  

Different composition in the ONO layer can be clearly recognized by the color 
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contrast in the gate dielectric. The dark region in the figure corresponds to the 

LP-silicon nitride layer.  

 

2-3 The Measurement Setup 

 An automated system consisted of a semiconductor parameter analyzer-HP4156, 

a pulse generator Agilent-8110A, and a Visual Engineering Environment (VEE) was 

employed in this work to probe the electrical characteristics.  These equipments 

integrated in the system were controlled with the interactive characterization software 

(ICS) program.  During the measurements a dehumidifier was used to keep the 

humidity at the same level, while the temperature was also accurately controlled by a 

temperature regulated heater. 

 Because all test devices are double-gated, several modes of operations could be 

implemented.  In this thesis, the 1st gate is defined as SG-1 gate and the 2nd gate as 

SG-2 gate.  The SG-1-mode of operation refers to the mode when the sweeping 

voltage (serving as the driving gate) is applied to the SG-1 gate while SG-2 gate is 

grounded.  The SG-2-mode of operation interchanges the bias condition applied to 

the two gates in SG-1 mode.  The DG-mode refers to the operation when the two 

gates are connected together to serve as the driving gate.  Table 2-1 summarizes the 

conditions of the three operation modes. 
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 The performance parameters of the NW devices such as subthreshold swing (S.S.) 

and threshold voltage (Vth) are extracted from the ID-VG curve at VD = 0.5 V.  The 

definition of these parameters is as follows:   

 Subthreshold swing (S.S.) can be calculated from the diffusion-dominated 

current in the weak region by 

                  
1
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Threshold voltage (Vthc) is calculated by constant current method,    

 nA
L

WIVV DGthc 10@ ×== (V)               (2-2)[2-2],   

in which W and L are the channel width and length, respectively. 

 Another major parameter is the series resistance (Rseries) which is extracted from 

the ID-VD curve [2-3].  It requires a set of devices with the same channel width but 

different channel length.  In this approach, VD/ID ratio measured at a fixed VD of 0.1 

V and VG -Vthc ranging from 0.1 V to 0.5 V as a function of drawn channel length 

(Lmask) for devices with various channel width.  Each curve can be fitted with a line 

and all lines intersect at a common point.  The values of intercepts with two axis are 

Rseries and ΔL: 

             )( LLAR
I
VR maskseries

D

D
channel Δ−+==  (Ω)             (2-3)[2-3] 

ΔL is the shift between the real channel length and the drawn channel length. 
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Chapter3 
Effects of Operational Modes, Gate Dielectric 

Materials, and Source/Drain Doping Processes 

on Device Characteristics  

 

3-1 Characteristics of NW Devices with Implanted 

Source/drain 

 Typical ID-VG characteristics of NW TFTs with implanted S/D are shown in Fig. 

3-1.  Channel length of the device is 1 m, and the NW thickness is 30 nm. The 　

measurements were performed at VD = 0.5 and 2 V.  The gate dielectric is TEOS 

CVD oxide, and the device characterized in Fig.1 is with the 1st gate oxide thickness 

of 14.5nm and the 2nd gate oxide thickness of 16.5nm.  Ideally, SG-1 and SG-2 

modes of operation are expected to display identical characteristics based on the 

nearly symmetric structure of NW, but obviously the expectation fails to realize in the 

figure.  It is seen that the SG-2 mode exhibits better performances in terms of larger 

ON current, less OFF current, and smaller S.S, as compared with the SG-1 mode.   

 Such disparities in the transfer characteristics can be attributed to the different 

conduction path of carriers during device operation.  To make it clear, in Fig. 2(a) 

we plot the top view of the device structure and Fig. 2(b) the cross-sectional view of 
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the device along the C-D lines shown in Fig. 2(a).  During SG-1 mode of operation, 

the conduction electrons have to transport across the offset (i.e., ungated) regions 

between the S/D and the inner conduction channels, therefore the S/D series 

resistance is increased.  Furthermore, the overlap area between the 2nd gate and 

source/drain is obviously larger than that of the 1st gate.  Considering the low 

implant energy executed in the S/D step, the portions of the S/D regions near the 

channel are expected to be with a low dopant concentration.  The larger overlapping 

of the 2nd gate tends to reduce the parasitic S/D resistance during the SG-2 mode of 

operation.  Accounting for the aforementioned two factors, a much higher ON 

current of SG-2 mode over SG-1 mode becomes reasonable.  

The ungated regions illustrated in Fig. 2(b) also degrade the S.S. of the SG-1 

mode of operation.  As can bee seen in Fig.1, the S.S. is 544 mV/dec for SG-1 mode 

and is improved to 304 mV/dec for SG-2 mode.  This is because the existence of the 

ungated regions between the source and the channel introduces a parasitic barrier for 

carriers to be injected from the source to the channel.  The parasitic barrier needs a 

higher gate voltage to suppress and thus the S.S. is degraded.   

In Fig. 1, we can also see that the device characteristics can be significantly 

improved with the double-gated scheme.  In addition to exhibiting the largest ON 

current, the DG mode also shows the smallest S.S. (216 mV/dec) and threshold 
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voltage (Vth) among the three modes.  Figure 3-3(a), (b) show the Vth roll-off and 

subthreshold swing characteristics, respectively, under different operational modes for 

devices with channel length of 5 μm, 2 μm, 1 μm, 0.7 μm and 0.4 μm.  The threshold 

voltage is extracted at VD = 0.5V.  Not only Vth roll-off but also S.S. degradation 

shows with scaling down the devices. Apparently the DG mode is much superior to 

the two single-gate modes in reducing the short channel effect (SCE).  

 Fig. 3-4 displays the drain current as a function of drain voltage.  In the 

measurements gate overdrive (VG-VTH) is varied from 1 to 5 V.  It is interesting to 

see that the ON current of DG mode is actually larger than the sum of the ON currents 

of SG-1 and SG-2 modes, as shown in Fig. 3-5.  Possible origins for this observation 

are the significant reduction of resistance and the possible occurrence of volume 

inversion effect.  The latter phenomenon has been reported to commonly occur in 

devices with ultra-thin body and multiple-gate devices [3-1].  

 

3-2 Effects of ONO Gate Dielectric on Device 

Characteristics  

 When we replace the gate dielectric with the ONO stack layer, the device depicts 

some improvements in comparison with devices characterized in previous section.  

The cross-sectional TEM images of two different devices are illustrated previously in 
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Fig. 2-3 and 2-5. The NW channel body thickness of the two splits is almost equal and 

around 30 nm. The thickness of O/N/O stack layer is 5 nm/7 nm/7 nm for the gate 

dielectric of the 1st gate, and 5 nm/6.5nm/8 nm for the 2nd gate. The estimated 

equivalent oxide thickness (EOT) is 15.6 nm for the 1st gate and 16.4 nm for the 2nd 

gate. Table 3-1 briefly summarizes these devices with different gate dielectric.  

 The transfer characteristics of a NW device with ONO dielectrics are shown in 

Fig. 3-6.  Compared with the SG-1 mode of operation of the oxide split shown in Fig. 

3-1, the S.S. is promoted from 544 mv/dec to 233 mv/dec for the ONO device shown 

in this figure, although the two devices have almost the same EOT (Table 3-1).   

Besides, the characteristics of SG-1 mode and SG-2 mode look much more symmetric 

in the present case.  For DG-mode, the value of S.S. can be less than 100 mV/dec 

with ONO gate dielectrics.  Such improvements are postulated to be due to the 

additional passivation effect by the high hydrogen content contained in the nitride 

film which can effectively reduce the amount of active defects presenting inside the 

poly-Si NW and at Si/SiO2 interface.  The high hydrogen content in the nitride layer 

is related to the use of H-related reaction gases during deposition, e.g., SiH4 and NH3 

[3-2].   
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3-3 Effects of in situ Doped Source/Drain on Device 

Characteristics  

 Figure 3-7 is the characteristics of an NW device with in-situ doped S/D.  The 

gate dielectrics are ONO identical to the devices characterized in last section, so here 

we can investigate and understand the difference between different S/D schemes by 

comparing Fig. 7 with Fig. 6.  Obviously, the device performance is further 

enhanced with the implementation of in situ doped S/D.  In DG mode, the S.S. of the 

device with implanted S/D is 89 mV/dec.  For in-situ doped S/D, it is improved to 73 

mV/dec.  To more clearly illustrate the impacts, these ID-VG curves are plotted 

together in Fig. 3-8.  As can be seen in the figure, for each operation mode the in-situ 

doped S/D split always exhibits larger ON current than the implanted-S/D counterpart.  

In addition, the OFF current is also dramatically reduced with in-situ doped S/D, 

resulting in a high ION/IOFF ratio of around 108, which is one order of magnitude larger 

than the device with implanted S/D.   

Statistical analysis and comparison of ION-IOFF characteristics between implanted 

and in-situ doped S/D splits are shown in Fig. 3-9.  In this figure ION is the current 

measured at VG = 5 V and VD = 2 V and IOFF is the minimum current.  According to 

the result, the enhancement of ION at IOFF = 2 x 10-13 A is about 1.4X with the in-situ 

doped S/D.  Output curves of both devices with gate overdrive from 1 to 5V are 
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given in Fig. 3-10, again demonstrating much reduced series resistance with in-situ 

doped S/D.  

The reason for these improvements can be explained as follows: In the implanted 

split, S/D regions were formed by a low-energy ion implantation such that dopants 

were situated near the top surface and would not dope the NW channel.  Though this 

method attains good gate controllability over NW channels, it is achieved at the 

expense of an increase in S/D resistance as only a small portion of S/D (upper portion) 

is heavily doped, and insufficient doping of the S/D regions close to the channel is 

expected.  Such issue is resolved with the in-situ doped scheme where almost the 

whole S/D regions including those close to the channel are heavily doped, thus ON 

current is improved. To confirm this point, S/D series resistance is extracted using 

linear regression method, and the results are shown in Fig. 3-11.  It is seen that the 

series resistance is 45 kΩ for the implanted splits (Fig. 3-11 (a)), and significantly 

improved to 8.1kΩ with in-situ doped S/D (Fig. 3-11(b)).  

In a previous paper [3-3], the off-state leakage current has be found to be the 

gate-induced drain leakage (GIDL) component which is also closely related to the 

dopant concentration of deep S/D region.  With the high dopant concentration 

pertaining to the in-situ doped S/D, the GIDL can be suppressed, as evidenced in Fig. 

3-7. 
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Chapter4 
Characteristics of Nanowire TFT-SONOS 

Memory  

 
4-1 Program/Erase Operation Principles and 

Characteristics 

 For non-volatile memory (NVM), it usually refers to the “0” state or “1” state by 

modulating the threshold voltage (Vth) via trapping or de-trapping of carriers in the 

storage layer.  The program/erase (P/E) mechanisms briefly include 

channel-hot-electron injection (CHEI), Fowler-Nordheim tunneling (FN tunneling) 

and band-to-band tunneling (BTBT).  The CHEI method is appropriate for 

programming operation of the NOR flash but not suitable for the TFT-SONOS 

memory in this thesis [4-1].  Owing to the grain boundaries contained in the poly-Si 

NW channels which would scatter the transporting electrons, it is difficult to have 

electrons possessing sufficient energy to cause impact ionization with an acceptable 

programming bias condition.  Hence the memory devices in this chapter are 

programmed and erased by FN tunneling. 

 Fig. 4-1(a), (b) illustrate the energy band diagrams of the programming operation 

with the FN tunneling mechanism.  Fig. 4-1(a) represents the band diagram in the 
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flat-band condition where eVq 1.31 =φ and eVq 05.12 =φ  are the barrier height of 

conduction band between oxide and Si substrate, and between nitride and oxide, 

respectively.  When applying a highly positive voltage to the control gate with 

source and drain grounded to render the electric field larger than 
oxt

q 1φ , a large amount 

of electrons in the channel can tunnel through the oxide and then be trapped in the 

nitride layer, as shown in Fig. 4-1(b) [4-2].  The erasing operation is to de-trap 

electrons from the nitride layer to the channel by biasing the control gate with a 

highly negative voltage. 

 As shown in previous chapter that the 1st gate shows poorer gate controllability 

than the 2nd one due to the existence of the ungated channel regions.  Therefore, in 

the following analysis the 2nd gate is employed as the major control gate to which a 

high voltage is applied for manipulating the P/E operations, while an auxiliary voltage 

would be applied to the 1st gate to help optimize the P/E efficiencies.  Figure 4-2 (a) 

is the schematic of the proposed NW SONOS with an ONO gated with the 2nd gate 

and an oxide gated with the 1st gate.  According to the results of one of our previous 

studies, the small volume NW channel with independent gates, P/E efficiency can be 

affected by the bias voltages applied to the two independent gates [4-3].  Fig. 4-2 (b) 

shows the transfer ID-VG curves of one programmed and two erased states. The O/N/O 

consists of 5 nm LP-TEOS, 6.5nm LP-silicon nitride, and 8 nm LP-TEOS and channel 
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body thickness is 30nm. The programmed state is obtained with programming 

voltages of VSG-1 / VSG-2= 5V/15V and programming time (tP) = 1 ms, while the two 

different erasing states are obtained with the following two erasing condition: (1) 

VSG-1 / VSG-2= 5V/-9V, erasing time (tE) = 100 ms; and (2) E1: VSG-1 / VSG-2= 8V/-9V, 

tE = 100 ms. It can be seen that the applied 1st-gate bias can indeed affect the Vth shift.  

The memory window enlarges from 0.23 V to 0.41 V with the 1st-gate bias varied 

from 5 V to 8 V.  The programming and erasing characteristics as a function of time 

are shown in Figs. 4-3 (a) and (b), respectively.  In Fig. 4-3(a) the programming 

efficiency can be enhanced by applying a positive voltage to the 1st-gate.  In the 

figure VSG-2= 15 V and ΔVth is around 3 V after 5 ms (point A) for VSG-1= 0 V, and 

improves to 0.5 ms (point B) for VSG-1= 5 V.  This is because by applying a positive 

voltage during programming, more electrons could be generated in NW channel. For 

erasing characteristics shown in Fig. 4-3(b) with VSG-1 =-9 V, an increase in VSG-1 also 

improves the erasing efficiency.  As can be seen in the figure, the erasing state at the 

VSG-1 / VSG-2= 8 V/-9 V is the fastest erasing condition.  Note the conditions with 

VSG-1 = 0 V or 5 V, the curves exhibit saturation phenomenon as erasing time is larger 

than 1 ms.  This is postulated to be caused by the electron injection from the 2nd gate. 

Nonetheless, such phenomenon is absent with VSG-1 = 9 V.  More efforts are in 

progress to understand such interesting behavior.   
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4-2 Reliability Characteristics and Issues 

 The reliability of memory devices is also crucial for practical applications.  

Data retention for commercial memories refers to the ability to keep trapped charges 

from loss after ten years at a temperature range from 0 °C to 85 °C [4-4].  The 

migration of lost charge includes thermal excitation (TH), trap-to-trap tunneling (TT), 

band-to-trap tunneling (BT), trap-to-band tunneling (TB) and Frenkel-Poole emission 

(FP).  The tunneling mechanisms consider tunneling of the trapped electrons in the 

nitride back to the conduction band of Si substrate or to the interface traps at Si 

channel/oxide interface [4-4].  The Frenkel-Poole emission is the movement of 

trapped charges from site to site with levels inside the bandgap of the nitride [4-5]. 

Details about the data lost paths are shown in Fig. 4-4.  

 During the retention measurements, all S/D and gates electrodes are grounded at 

room temperature.  Figure 4-5 depicts the retention characteristics of the embedded 

NW-SONOS device.  The window size at the beginning is about 0.83 V and after 10 

years it is about 0.78 V.  It seems that the capability of data retention can be further 

promoted.  The thickness of tunneling oxide for memory devices is 5 nm which can 

efficiently stop charges escaping by direct tunneling.  Moreover, the shape of NW 

channels is rectangular which depresses the irregular electric field occurring in the 

corners and suppresses the field-enhanced trap-assisted tunneling.  Consequently, 
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Frenkel-Poole emission through oxide-trap is considered to be the major loss 

mechanism in this device and can sustain almost the same specific window after a 

long duration. 

 Endurance is another important reliability topics, which is a measure of the 

number of program/erase (P/E) cycles that the device will still work without failure.  

The commercial specification for available NVM products is 106 P/E cycle times 

[4-6]. Fig. 4-6(a) and (b) are the endurance characteristics expressed with I-V transfer 

curves and Vth variation as a function of P/E cycles.  The bias condition for 

programming states is VSG-1 / VSG-2= 8 V/13 V, and tP = 1 ms, and for erasing states is 

VSG-1 / VSG-2= 8 V/-9 V, and tE = 100 ms. With increasing P/E cycle, the Vth for both 

program-state and erase-state moves upward and the memory window narrows.  The 

transfer curves are recorded after 1, 50, and 200 P/E cycles.  The memory window 

moves rightward and the S.S. is gradually degraded.  Since the device is stressed 

with high voltage conditions, the energetic carriers would cause damage in the 

tunneling oxide and more and more oxide traps and interface states would be 

generated, resulting in the degradation of the performance.  Certainly the oxide 

quality is an important parameter of the endurance.              
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4-3 Effects of NW Channel Thickness  

 Figure 4-7 illustrates the structural cross-section of NW-SONOS devices in 

which the channel thickness is defined.  Since the poly-Si NW channel thickness of 

the devices characterized in this thesis can be controlled by tuning the lateral etching 

time of the 1st gate in the fabrication (see Chap. 2).  To study the effect of the NW 

channel thickness we have fabricated NW-SONOS devices with two splits of lateral 

etching time, namely, 6 sec and 12 sec. Unlike the device structure presented in 

previous section, in this study the ONO layer is gated with the 1st gate. Thus, the high 

voltage during P/E operations is applied to the 1st gate. 

 Figures 4-8(a) and (b) show the transfer characteristics of devices with NW 

channel thickness of 10 and 50 nm, respectively.  The programming condition is 

VSG-1 / VSG-2= 15 V/5 V with tP of 1 ms.  In Fig. 4-8(a), after programming the 

window (ΔVth) of SG1-mode is 1.8 V.  While using SG-2 mode or DG-mode as the 

read mode, the ΔVth for the two modes are both about 1.4 V.  In contrast, in Fig. 

4-8(b) we can see that, although a window of 2 V is achieved for SG-1 mode, it’s just 

only 0.6 V for SG-2 and DG modes.  Besides, the subthreshold leakage is obviously 

larger as the NW channel thickness is larger.  The above results clearly indicate that 

a reduction in the NW thickness would enhance the gate controllability and coupling 

effect of the two gates.  Fig. 4-9 is the programming characteristics with different 
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channel body thickness under VSG-1 / VSG-2= 15 V/5 V.  The programming efficiency 

can be promoted to 250X as the channel thickness is reduced.   
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Chapter5 
Conclusions and Future Work 

 

5-1 Conclusions 

 In this study, a novel poly-Si NW TFT with a simple fabrication process is 

proposed and successfully developed.  Equipped with the independent double-gated 

structure, impressive device performance is obtained and effective threshold voltage 

modulation is demonstrated, which profoundly increases the flexibility of device 

operation.  By substituting ONO stack layer for silicon dioxide as gate dielectric, the 

gate controllability is improved which is postulated to be due to the passivation of 

channel defects with the hydrogen species contained in the nitride layer.  

Furthermore, by employing in-situ doped poly-Si as S/D, we demonstrate a high 

performance double-gated NW TFT with much reduced series resistance. Significant 

improvement in on-current and S.S. as low as 73 mv/dec are achieved.  Throughout 

the whole fabrication process, no advanced lithography tools are required.  The 

proposed NW devices show promising potential for reducing operation voltage and 

power consumption in practical applications with a low fabrication cost. 

 Regarding the NW TFT-SONOS memory, the independent double-gated 

structure provides flexibility for programming and reading operation.  Moreover, the 
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results indicate that, by applying an adequate auxiliary gate (i.e., other than the write 

gate) bias, the programming and erasing efficiency are both enhanced.  The data 

retention can be promoted as compared with the former work with triangle NW 

channel.  This is attributed to the rectangular shape of NW channels of the proposed 

devices which may suppress the irregular electric field in the corner and thus can 

effectively keep trapped charges from escaping by field emission.  The memory 

devices with thinner channel body can also improve the programming efficiency and 

has more flexible reading modes. 

 

5-2 Future Work    

   The preliminary investigation of embedded NW TFT devices and the 

application of the novel DG structure to SONOS memory are carried out in this thesis. 

The following topics can be further addressed.  First, the substitution of the gate 

oxide by high-κ material may improve the gate controllability of 1st gate and 2nd gate.  

The high-κ material provides a thin EOT thus the gate controllability and subthreshold 

swing of the devices can be further improved.  In this regard, atomic-layer 

deposition (ALD) technique is suitable for the 3D NW device fabrication since it can 

provide conformal thin film deposition. 

 The fine-grain structure of the poly-Si affects the carrier transport and device 

 27



performance.  In this work, the poly-Si channel is formed by solid-phase 

crystallization (SPC) during the device fabrication, and the resultant grain size is 

small. By using the excimer laser annealing (ELA) or metal-induced lateral 

crystallization (MILC) methods to enlarge the grain, we expect that the device 

performance can be further enhanced.  

 For memory characterization, the erasing efficiency and the recognized window 

are poor in this study.  P/E efficiency can be improved by further thinning the 

channel body.  Furthermore, the use of high-κ materials as the tunneling oxide or 

block oxide may be helpful for improving performance.  The optimization of the 

high-κ structure and improvement of its quality worth more efforts to advance the 

NW device technology.   
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Fig. 2-1 (a) The layout and (b) Cross-sectional view of embedded NWTFT. 
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(e) S/D ion implantation. 
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(f) Definition of S/D and formation of NW channel. 
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Fig. 2-3 Cross-sectional TEM image of embedded NW TFT and NW  

channel profile along line AB of the layout. 
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(a) NWTFT-SONOS memory with the ONO storge layer near 1st gate. 
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(b) NWTFT-SONOS memory with the ONO storge layer near 2nd gate. 
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Table 2-1 Summary of the conditions of the three operation modes. 
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Fig. 2-5 Cross-sectional TEM image of the NWTFT-SONOS memory device 

and NW channel profile along line AB of the layout. 
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Fig. 3-1 Transfer characteristics of an NWTFT. 
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Fig.3-2 (a) Top view of the NW device, and (b) cross-sectional view of 

the device along the C–D lines shown in (a). Projection of the second 

gate (shaped by the dashed lines) is also shown. From the figure, it 

can be seen that ungated regions (indicated by the double-head 

arrows) exist between the inner conduction channel (gated by the 

first gate) and S/D. 
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Fig. 3-3 (a) Vth and (b) subthreshold swing of the NW devices under 

various operation modes as a function of the channel length. 
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Fig. 3-4 Output characteristics of an NW TFT under various 

operation modes. 
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Fig. 3-5 Comparisons of output drain current of DG mode with the 

sum of SG-1 and SG-2 modes. 
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Table 3-1 Summary of the two types of devices with different gate 

dielectrics. Type-A devices have silicon dioxide as gate dielectrics, 

while Type-B devices have ONO. 
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Fig. 3-7 Transfer characteristics of a device with in-situ doped S/D. 
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Fig. 3-9 ION-IOFF characteristics of the NWTFTs for  both implanted 

and in-situ doped S/D splits. 
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Fig. 3-10 Output characteristics of the NWTFTs with different types 

of S/D. 
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Fig. 3-11 S/D series resistance extraction for NWTFTs with (a) 

implanted and (b) in-situ doped S/D. 
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Fig. 4-1 Energy band diagrams of SONOS structure under (a) 

flat-band condition and (b) programming condition with FN 

tunneling mechanism.  

 51



 

 

Substrate 

Thermal oxide

Gate 
Nitride

Hard Mask

Gate 

Substrate 

Thermal oxide

Gate 
Nitride

Hard Mask

Gate 2nd gate

1st gate
ONO stake layer

Substrate 

Thermal oxide

Gate 
Nitride

Hard Mask

Gate 

Substrate 

Thermal oxide

Gate 
Nitride

Hard Mask

Gate 2nd gate

1st gate
ONO stake layer

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 Gate Voltage (V)

(b) 

Fig. 4-2 (a) Schematic of NW-SONOS memory devices with ONO 

gated with the 2nd gate. (b) Transfer characteristics with two different 

erasing conditions. 
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Fig. 4-3 (a) Programming and (b) erasing characteristics of memory 

devices with different 1st gate biases.  
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Fig. 4-4 Band diagram of trapped charges loss paths in the nitride 

layer: trap-to-band tunneling (TB), trap-to-trap tunneling (TT), 

band-to-trap tunneling (BT), thermal excitation (TH), and 

Frenkel-Poole emission (FP). 
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Fig. 4-5 Retention characteristics of NW-SONOS at room 

temperature. 
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(b) 

Fig. 4-6 Endurance characteristics expressed with (a) ID-VG curves 

and (b) Vth variation as a function of P/E cycles. 
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Fig. 4-7 The schematic of NW-SONOS memory devices with ONO 

gated with the 1st gate. The channel body thickness is the NW width 

indicated by the double-head arrow. 
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Fig. 4-8 ID-VG transfer curves with different read modes for SONOS 

devices with NW thickness of (a) 10 nm (b) 50 nm. 

Fig. 4-8 ID-VG transfer curves with different read modes for SONOS 

devices with NW thickness of (a) 10 nm (b) 50 nm. 
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Fig. 4-9 Programming characteristics of memory devices with 

different channel thickness. 
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