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Abstract

In this thesis, we study the problem of spectrum trading in-cognitive radio (CR)
networks from a game theoretical perspective. Particularly, we consider a CR network
with multiple primary_services (PSs) and multiple secondary services (SSs), where all
PSs are sellers targeting. at setting the prices for spectrum leasing and SSs are buyers
deciding how much spectrum are demanded from each PS in the trading game. Aiming at
dealing with the trading behaviors, we propose using a multistage Bayesian game based
trading model to account for possible unknown private information in each player, and
obtain the perfect Bayesian equilibrium (PBE) sequentially under a bandwidth constraint,
which requires all SSs' demanded bandwidth not exceeding that the PS can possibly offer
and each SS's demand should not be negative. Following the backward induction
principle, we transfer the Karush-Kuhn-Tucker (KKT) condition of the SSs into each PS's
optimization constraint, and collectively form joint KKT conditions that satisfy the
bandwidth constraint. We present an active-set based algorithm to solve the joint KKT
conditions, and analyze the corresponding complexity. Furthermore, the convergence
behaviors of the action profiles and the beliefs of the unknown information are also
investigated in the work. Finally, in the simulations, we compare the proposed approach

with earlier work and numerically study the convergence behaviors of the proposed



multistage game.
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Chapter 1

Int roduction

1.1 Significance of the-Research

Nowadays we are facing @ more congested spectrum than ever before. Most spectrum
for long-distance radio transmissions has been allocated to licensed users, and there’s no
much room for emerging wireless applications. However, large temporal and geograph-
ical variations existin licensed spectrum utilization, and almost @fdyare always in

use according to thessurvey in [1]. That is, the efficiency of spectrum utilization is unac-
ceptably low, so researchers start to think different spectrum allocation policies in order
to tackle the problem. There’re two main approaches to.this issue. One is that unlicensed
users can opportunistically utilize licensed spectrum if not interfering with licensed users,
while the other is that spectrum trading (or active negotiation) between licensed and un-
licensed users would be a promising solution [2, 3]. We attempt to address several is-
sues in the spectrum trading problem in this thesis. The idea of spectrum trading comes
from economic point of view because of the success of economical world. Both schemes
are considered as possible solutions in dynamic spectrum management. Apparently both
schemes could enhance the efficiency of spectrum utilization, but how the network be-
haves, how much efficiency can be increased, and how the fairness is guaranteed are open

issues to be studied.



1.2 Motivation

The promise of providing anytime and anywhere multimedia services demands a large
spectrum for broadband wireless communications. On one hand, this drives the advance
of radio technology to faster, convenient and reliable communications. On the other hand,
the enormous demand also unveils the problem of insufficiency and under-utilized ineffi-
ciency of current radio spectrum. Useful radio spectrum is a scarce resource in that the
characteristic of spectrum on different frequency is different, e.g. the communication on
60 GHz is only suitable for short distance because of the absorption of radio signal by
oxygen of the Atmosphere. Nowadays, the most useful spectrum band for median and
long distance communication is below 5 GHz due to the characteristic of spectrum and
current circuit technology. Totacklethe problem, the idea of exploiting under-utilized
licensed spectrum for more flexible and efficient transmissions is receiving significant at-
tentions lately. In particular, the-concept of cognitive radio (CR) [4] is considered as a
promising technique to improve the efficiency-of current radio spectrum.

A cognitive radio (CR) Is a software-defined radio capable. of intelligently sensing,
adapting and responding to constantly varying environments, particularly the available
spectrum temporarily not used by licensed users. However, there still exist many technical
challenges before cognitive radios can be practically deployed. One critical challenge is
how to invite the licensed service operators to accept coexistence with cognitive users so
that they are willing to share their unused spectrumto unlicensed cognitive (secondary)
services. Leasing available spectrum to unlicensed services is an attractive solution that
provides an incentive for legitimate licensed operators to support deploying cognitive
radios [3]. This gains monetary profits for licensed operators, while fulfilling unlicensed

services’ satisfaction requirements by renting.

1.2.1 Why Game Theory?

Conventional Media Access Control (MAC) theory is based on optimization, and the ob-
jective function it aims at optimizing is the network system utility or the network system

utility in terms of fairnesse.g. proportional fairness. Although some problem formula-



tions using optimization theory can be decomposed to problems to optimize network and
use utility separately by dual-primal method [5], which makes distributed decision mak-
ing possible, the solution for the optimization problem inherently couldn’t always satisfy
each user’s individual utility.

In contrast to optimization-based approach, game theory is a mathematical tool to deal
with interactions between multiple entities, each of which has its own utility function,
and intrinsically looks for equilibrium solutions that maximizes each user’s individual
utility. Though the network system utility may not be optimized, the strategy obtained
from the game theoretical perspective provides a solution that achieves efficiency and

fairness under certain criteria.

1.2.2 Related Work and OurApproach

An overview of the general idea and recent developments about dynamic spectrum shar-
ing games can be found in [6]. The-auction mechanism for spectrum band in CR networks
with multiple primary and multiple secondary users is considered in [7], where the authors
discuss competitive equilibrium, cheating behaviors which may deteriorate the efficiency
of of the spectrum sharing and propose using reserve prices and beliefs to prevent collu-
sion. The work in [8]:and [9] consider a game model-which incorporates both monetary
gain and quality-of-service (QoS) satisfaction of wireless services in utility functions. The
authors in [9] explicitly model the price for available bandwidth as a function of demand,
and obtain the Nash equilibrium (NE) for the spectrum sharing strategy in a network con-
sisting of a single primary service (PS) and multiple secondary services (SS). The work
in [8] considers the spectrum trading game in a CR network with multiple PS’s and a
single SS, and models the utilities of the PS and SS separately, wherein the demand of SS
implicitly affects the price. However, under certain circumstances, the equilibrium band-
width demand for the SS would be negative, and the corresponding NE turns out to be
infeasible, though theoretically solvable. The work in [10] discusses the same problem as
in [8], and compare different features such as market equilibrium as well as competitive
and cooperative pricing strategies. In [11], the authors investigate the spectrum trading

behaviors with a more general model in which multiple primary users (PUs) and multi-
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ple secondary users (SUs) are considered in the CR network. However, the utility model
corsidered in [11] may not capture different QoS requirements of SUs and assumes that
each PU sets the same price for all SUs. One key assumption underlying all the above
work is that each player in the modeled game have complete knowledge about the other
players’ private information. This is in general not a realistic assumption. To account for
the unknown private information within each player, one can resort to tools in Bayesian
game or stochastic game to study the behaviors of spectrum trading in a sequential (dy-
namic) manner [12, 13]. In [12], we formulate the spectrum trading behaviors for a CR
network with multiple PS’s and a single SS as a Bayesian game, and study the correspond-
ing solution concept,e. the perfect Bayesian equilibrium, sequentially. The work in [13]
proposes to characterize the dynamics of spectrum access strategies under a stochastic
game framework with the introduction of state transitions. The authors also propose to
predict the future dynamics using approaches.in learning theory in order to obtain better
strategies for spectrum bidding:

In this work, extending the studies in [12], we address the problem of spectrum trad-
ing in a CR network consisting of multiple PS’s and multiple SS’s. We assume each
player (PS or SS) in the game has its own private information, such as the number of
active connections within each service or the channel conditions, that is unknown to other
players. With the assumption, we formulate ‘a multistage trading model based on the
Bayesian game to statistically account for the unknewn private information (incomplete
information), and sequentially obtain-the perfect Bayesian equilibrium (PBE) in the trad-
ing process. We further assume that each PS is allowed to set different prices to the SS’s
with different QoS, and SS’s with different QoS can demand different bandwidth sizes to
a particular PS in the considered model. Particularly, we consider a bandwidth constraint
on the aggregate bandwidth demand from all SS’s such that the total demand has to be

within feasible supply regions provided by each PS.



1.3 Contribution

Aiming at dealing with the trading behaviors with that each play has its own private
information, we propose using a multistage Bayesian game based trading model to ac-
count for possible unknown private information in each player, and obtain the perfect
Bayesian equilibrium (PBE) sequentially under a bandwidth constraint, which requires
all SS’s demanded bandwidth not exceeding that the PS can possibly offer and each SS’s
demand should not be negative. We formulate the considered problermakistage
game, since one-shot game can’t capture the time-varying demands for resources due to
the dynamic nature of wireless channels and wireless services. In multistage game, the
allocation is performed repeatedly, and belief updates through observing others’ actions
can also be made possible. Our formulation captures different pricing and demand strate-
gies for different seller and buyer pairs based on their QoS’s. More specifically, on one
hand we allow a primary service set different prices per unit bandwidth to different sec-
ondary services based on their operating conditions and QoS requirements. On the other
hand, different secondary services can demand different bandwidth sizes from the same
primary service. Following the backward induction principle, we transfer the Karush-
Kuhn-Tucker (KKT) condition of the SS’s into each PS’s optimization constraint, and
collectively form joint KKT conditions that satisfy the bandwidth constraint to guaran-
tee our PBE is physically feasible. We present an active-set based algorithm to solve the
joint KKT conditions, and analyze the.corresponding complexity. Furthermore, we illus-
trate the spectrum trading game by an example with specific utility functions of PS’s and
SS’s. The convergence behaviors of the action profiles and the beliefs of the unknown
information are also investigated in the work. In the simulations, we compare the pro-
posed approach with that in [8] and numerically study the convergence behaviors of the
proposed multistage game.

As a final remark in the section, we would like to emphasize the general applicability
of the joint KKT approaches to solve a game with constraints. Mathematically, we formu-
late the problem considered in the thesis as a game with constraints, which is often very

difficult to solve. Relevant approaches are rarely seen in the field of pure game theory,



not to mention in the literature related to wireless networks. In most studies that consider
games with constraints, their problems usually have certain mathematical structure so that
the solutions are always on the boundary set by the constraints. In this thesis, we attempt
to solve a bandwidth-constrained game, where the constraints include budgets and feasi-
ble bandwidths, using the proposed joint KKT conditions. It is worthwhile to note that
joint KKT condition is generally applicable to solve a constrained game. The solutions

generally need not be on the boundary of the constraints.



Chapter 2

Cognitive Radio and Game Theory

Preliminary

2.1 Cognitive'Radio

Cognitive radio, which first appeared in Joseph Mitola’s doctoral dissertation in 2000 [4],
is defined as an intelligent wireless communication system that are capable of achieving
highly reliable communication wheneverand wherever needed by adjusting its own trans-
mission parameters according to the radio environmental conditions it senses. CR is called
"cognitive” in that it's equipped with structures supporting a cognition cycle consisting
of Observe, Orient, Plan, Decide;.and Act phases as Fig: shdws. As for realistic
implementation, CR is built based on software defined radio and wide-band RF front end
to achieve that. There're prototypes of CR already built, such as the first prototype CR1
by Mitola [4], CR and networking by Virginia Tech [14].

Although the initial aim of CR is not to efficiently utilize the radio spectrum, it serves
as the natural candidate for the problem of spectrum under-utilization. CR can either
opportunistically detect the spectrum hole and transmit or actively negotiate with primary
users,i.e the existing licensed users, to access the spectrum. In recent years, there're

tremendous amount of researches on CR-related topic. They can be classified into three

1Thisfigure is adapted From Mitola, "Cognitive Radio: An Integrated Agent Architecture for Soft-ware

Defined Radio”, Doctor of Technology, Royal Inst. Technol. (KTH), 2000, pp 48
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fundamental tasks [3];

1. Radio-scene analysis, which includes estimation of interference temperature of the

radio environment and detection of spectrum holes.

2. Channel state estimation and predictive modeling, which encompasses estimation
of channel-state information and prediction of channel capacity for use by the trans-

mitter.

3. Transmit power control and dynamic spectrum management.

Our work is focus on dynamic spectrum management, which we adopt game theoretic

approach to tackle with.

2.2 Game Theory

Game theory is a mathematical tool to predict the result of rational interactive decision

makers. Predicting the result of such players has great merit in many fields such as chess,
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card game, gambling, business and economics, politics, international diplomatics, and
also in wireless network in which we are interested since in those fields no player can
achieve his goal or gain his own maximal profit without considering the competitors’ be-
havior. Although sometimes the explicit model is difficult to be defined (e.g. politics) or
too complex to predict the result and to derive the winning stratégyg. in chess game,
the problem can't easily be formulated as the math form with which we are familiar and
strategy space is discrete, making it both not differentiable and too complex in number
to examine the all strategy profile), game theory stands a important tool to provide either
a solution to simplified problem or an insight. As for wireless network, applying game
theory to predict and further to regulate the network is anticipated since the increasing
complexity of wireless network results in significant interference and foreseeable dynam-
ics of interactive users in cognitive network.

In this section, we introduce some basic knowledge of noncooperative game theory
that are necessary for understanding our. work, while interested reader can refer to [15]

or [16] for deeper materials.

2.2.1 A Basic Game — Definitions and Theorems

A game in essence is that there're multiple players-and each player possesses its own
strategy €.g. variable) which.it can freely adjust and its-own objective functierg(
function) which depends on.its and.other players” strategy. In mathematics, a game is

defined as

Definition 1 A gamel’ is

= (T, {A}aer, {uakeer ), @.1)

whereZ = {1,2,--- , N} is the set of playersi, is the set of actions available for player
x, and we denote the set of all available actions for all playerdas A; x Ay x- - - x Ay.
A action taken by player is a, € A,, and the action profile of all players is =

a; X ay X -+ X ay € A. For notational simplicity, we denote_, as the action profile

2Actually, game theory predicts the equilibrium strategy instead of winning strategy, but one can pick

out the equilibrium strategy most beneficial to him as winning strategy.

9



taken by all players except player u, is playerz’s utility function which is a function

of a, and ofa_,.

There’re some assumptions in game theory. First, each player is rational and selfish
so that each want to maximize its own utility. Readers should mind that "selfish” doesn’t
mean "malicious”. A selfish player cares about its utility, while a malicious player aims
at harming other players. It's also assumed that all players know the rules of the game,
i.e. each knows all players’ action set and utility, and each knows that other players know
that and so on, and the action is perfectly observable by all. Indeed, the scenario is too
ideal due to those assumptions, so other different kind of game models are developed
by mathematicians to make the model more practical. For instance, Bayesian game, the
game model we apply in this thesis, is-a game that there’re some private parameters in
each player’s utility function. The private parameters are not known to all in this kind of
game, and it's also called game of incomplete information. The detail of Bayesian game
will be introduced in the latter section. Lets go on the basic game.

What action or strategy would each player take? Apparently, each player choose the
action that are best for it given the other players’ action, and that action that player

would take is definedas follows,

Definition 2 The best responde(a_,) of playerz to the action profilea_, is a action

a, such that:

b.(al,) = arg max wg(ay,a ;) (2.2)
Ay €Ay

Since best response is the best for playgrlayerz would stick to it.

Each knows that each player would take best response, so the result of game is the
action profile that is best response for all, if it exists. This mutual best response point,
which was found by the Nobel Laureate John Forbes Nash, is a equilibrium since every

player would stick to it. The formal definition is as below,

Definition 3 The pure strategy profile* constitutes a Nash equilibrium (NE) if, for each

playerz,

uz(ay,a* ) > uz(az,a* ), Va, € A, (2.3)

10



Note that this definition is for pure strategy, and there’s corresponding NE for mixed
strategy 3. In the following, we address the condition for the existence of pure-strategy

NE under different conditions,

Theorem 1 (Debrew 1952; Glicksberg 1952; Fan 1952 [16)Fonsider a strategic-form
game whose strategy spacés are nonempty compact convex subsets of an Euclidean
space. If the payoff are continuous ahand quasi-concave in,, ther exists a pure-

strategy Nash equilibrium.

Theorem 2 (Dasgupta and Maskin [16])Let A, be a nonempty, convex and compact
subset of a finite-dimensional Euclidean space, foralf, for all x, u,. is quasi-concave
in a,, IS upper semi-continuous i, and. has.a continuous maximum , there exists a

pure-strategy Nash equilibrium.

The definition of quasiconcave, upper semi-continuous and continuous maximum are

illustrated as follows.

Definition 4 If f(Az+ (1 —=X)y) = min(f(z), f(y)) forall z;y-€ domf and0 < A < 1,

anddomf is convex [17], thery is quasiconcave.

Definition 5 A functienu,(-) on'S is upper semi-continuost s, if, for any sequence”

converging tcs, [16]

limsup u;(s™) < u(s) (2.4)

n—-+oo
Definition 6 A functionu; has acontinuous maximunt u}(s_;) = max;, u;(s;,s_;) IS

continuous irs_;. [16]

NE is thought to be theolution concepti.e. the rule for predicting how the game
will be played, of static game of complete and perfect information, and interested read-
ers can find the corresponding theorem for mixed-strategy version in [16]. It's notable
that there're differensolution concept$or different kind of games, for exampfpeerfect

Bayesian equilibriunfior Bayesian game.

3Mixed strategy is randomization of pure strategy, which can be viewed as more general strategy than
pure one. The condition for existence of mixed-strategy NE is also looser than for pure-strategy NE. How-

ever, we often like to find pure-strategy NE since it's more physically achievable.
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2.2.2 Multistage Bayesian Game

Corsidering each player contains its own private information without knowing others’
one, NE is not a suitable solution concept in such game due to the unknown information.
This kind of problem happens often, for example, say two competing firms whose strategy
is to determine the quantity of goods, what’s the best strategy for each of them without
knowing the other’'s operation cost details? Or more generally, how would the game
proceed if there’s some uncertainty about players’ information? Bayesian game is a type
of game aiming at this kind of situation. The Bayesian approach forms belief about the
unknown information and allows each player to update its posterior belefppsterior
probabilities, about the other players’ private information by observing their actions in
prior stages. Each player can.act accordingly in the current stage based on the updated
beliefs, and then the game proceeds in a way that.each player maximizes its expected

profit according to its belief.

Game Formulation

A multistage Bayesian ganiecan be formulated as follows,

r— <z, (A, ()}, {0oe ©.}, Lus, f@somn®ylwe T bt Ht,t = 0,1,2, - - ,T>,

(2.5)
whereZ = {1,2,---, N} is the set of playersA,(h!) is the set of actions available
for playerz given a historyh! = (a% a';«--a’~!) at the beginning of stagewith the

notationa” = a] x aj x --- x a}, the action profile at stagewith a] € A;(h") being

the action of theth player at stage, 7! is the set of all historyx! with h° = @. T'is

the length of game. We denote the set of all available actions for all players atrséage
A(hT) = A1 (A7) x Ay(h7) x --- x Ax(h7). 6, is the private information, also known as
type, of playerz. Type, which is the incomplete information in Bayesian game, cannot
be known but can be inferred by other players. The type préfded, x 0, x --- x Oy,

and @_, denotes the type profil@ excludingf,. The actual type value for playeris
denoted by?m, and the corresponding type profileas The utility functionu, of player

x isamapping:, : H™ x 8 — R from the spac&{” x 0 to the set of real numbeiR. In

12



other wordsy, is afunction of all players’ types, past and current actiongd_..|0,., h°)

is playerz’s belief about other players’ typ@_, given its own typed, at historyh®. In
contrast with the static game of incomplete information, the belief about others can be
updated stage by stage. Bayesian game defines the rule of how players update their belief
stage by stage, and the players’ actions can change according to the newly updates of

beliefs.

Solution Concept and Belief System

In the game theory literature, tre®lution conceptn a multistage game of incomplete
information is called the perfect Bayesian equilibrium (PBE), which is a parallel to the
subgame perfect equilibrium (SPE) in a multistage game of complete information. As
SPE serves as a refinement of the Nash equilibrium in-a multistage game of complete
information, PBE is a refinement of the Bayesian NE (BNE) in a multistage game of
incomplete information. To obtain-PBE, some restrictions and assumptions on the belief
system must be satisfied; and players’ behaviors musegeentially rationa[16]. For

the purpose of self-contained exposition of this thesis, we list the definition for the pure-

strategy PBE. The mixed-strategy version can also be found'in [16].
Definition 7 A perfect Bayesian equilibrium is(a*, x) that satisfies (P) and B(i)-B(iv).

B(i) Posterior beliefs are independent, and all types of playleave the same beliefs.

For all @, t, andh!, we have

(64100, 1) = [ ] 12 (6 ]1"). (2.6)
y#T
B(ii) Bayes' rule is used to update beliefs from(6,|h') to p..(6,|h"*") whenever pos-
sible. For allz, y, k', anda, € A,(h'), if there existsJ, with 1, (6,|h') > 0 and
at*(0,) = aty*(@), then, for allg,

Y

120, |R0)6 (atf (6) — ol (8,))

, 2.7)
20 0y)=atr 0 (0 11)

(B[ A) =
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where

)

- 1, if al*(0,) = a}y(0,) ,
; (“Z*(%)—ai*wy)){ o) =) .9

0, otherwise.

wherea* (6,) denotes the best action for playecorresponds to type, at stage.
Note that B(ii) doesn'’t restrict the way belief about playeare updated if player
y's staget action had conditional probability O, which is the very difference from
SE.

B(iii) Forallh!, z,y, 6,, a’, anda’,

e (6,11 2%)) = (6,1, &) if o= (2.9)

This condition means that'even if playgrdoes deviate at stage the updating

process should not be influenced by the action.of ether players.

B(iv) Forallh!, 6., andx £y # z,

pa(0:|1") = gy (0:1(R")) = p(0:](R)) (2.10)

the belief of player:, y about third player are the same.
This condition implies that the posterior-beliefs-are consistent with a common joint

distribution on® givenh! with
(0= W) (0| (h2))="1(O] (R')) (2.11)
(P) Sequentially rationalFor each player, typed,, and historyh?,

at*(0,) = arg max Zux (0_.|h)u,(al,a™ (0_,)|0,h"), (2.12)

at,€A

Here we assume thé&i is discrete set. For continuous set, we replace the summa-
tion with integral for the condition (P), or we can do approximation by quantizing

continuous set into discrete one.
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Chapter 3

Mult istage Bayesian Spectrum Trading

Game

3.1 Problem Setup

We consider a cognitive radio network witfi primary servicesd.g. the existing cellu-

lar services) and// 'secondary serviceg(g. an-SS can be'a small network with a CR
base-station and multiple CR users), as shown in Fig. 3.1.:ffhES operates on its

own exclusive spectrui@;, from which theith PS can-ease available unused bandwidth

b;; to the jth SS who doesn’t own the legal right to use the spectrum. To maximize each
PS’s profit, each PS offers different prices to different SS’s. In the trading process, all
PS’s compete with each other in‘the prices offering to the SS’s, and each SS decides from
whom and how much of the available spectrum to rent. Specifically, we model the spec-
trum trading process as a multistage game in a manner that all PS’s simultaneously set
their own prices;;, for all i andj, in the first stage. And, in the subsequent stage the
jth SS requests bandwidth from theith PS, fori = 1,2,--- ,Nandj =1,2,---, M.
Practically, however, each player (PS or SS) may possess its own private information that
is unknown to other players. Therefore, each player cannot predict the overall trading
behaviors correctly, which makes the decisions of optimal strategies a challenging task.
In this incomplete information game, we propose using the theory of multistage Bayesian

game to deal with the problem. The dynamic Bayesian approach allows each player to

15
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Figure 3.1: The cognitive radio network with multiple . primary services and multiple

semondary services.

update its posterior.beliefsg. posterior probabilities, about the other players’ private in-
formation by observing their actions in prior stages. And, each player can act accordingly
in the current stage based on the updated beliefs.

We assume that each playerisselfish, but rational in the considered multistage sequen-
tial Bayesian game [16]. And the.objective is to find the perfect Bayesian equilibrium for
all players actions in a way that'each player maximizes its expected profit as the game
evolves sequentially.

As the private information may not be updated promptly and the channel conditions
may change, we study a repeated version of the multistage Bayesian. The evolution of
the repeated multistage game is illustrated in Fig. 3.2 with that one unit game composed
of two stage is finished in one period.

Rather than learning in game to reach equilibrium, which spends time and energy
on signaling and evolving, we believe that computing optimal strategy in one shot is
more suitable for our scenario by the following reasons. First, the decision making of

primary/secondary service is done by each primary/secondary base station, so the com-
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3 Period t 3 Period t+1 R
Action Stage 2t , Stage 2t+1 i Stage 2(t+1) . Stage 2(t+1)+1
PS’s act SS’s PS’s act SS's
simultaneously!  démand i itaneously! | demand
simultaneously simultaneously Time
A //v
|
Belief !

All players -~
update « (6 ,)

All players
update ¢ (6,)

Figure 3.2: The evolution of the multistage sequential game.

plexity of computing optimizationproblem is affordable for. them. Also, since the players
are BS, the numbeWN and M is' not as much as the number of terminal wireless users in

a normal cell.

3.2 Game Formulation

In this section, we describe the proposed multistage Bayesian game for spectrum trading
with a general utility function. We will illustrate the idea by a specific example in Sec.
3.4.

We formulate the spectrum/trading process as a multistage Bayesian game

r= <z, (A, (W)Y, {0, € O}, {P.}, {1a(0_u|0,, B0} o € T, 0t € H!,t = 0,1, 2, T>
(3.1)

whereZ = 7, U Z, is the set of players witl, = {pi,p»,...,py} being the set of all

PS’s andZ, = {sy, s2, . -

for playerx given a historyh! =

., sy} the set of all SS'sA, (k') is the set of actions available

(a al,---  a'"!) at the beginning of stagewith

T XaT

a SM

— T T . T T T R 1 1 1cti
= a; xaj X X aj X al Xal X the action profile consisting of

the actions from all players (including PS’'s and SS’s) at stagith a] € A, (h") and
a; € A, (h") being the action of théth PS and thgth SS at stage, respectively. The

setH' contains all possible historiég’s at timet with 7° the null set. We denote the set

17



of all available actions for all players agh™) = A,, (h7) x A, (A7) x --- x A
A (h7) x Agy(R7) x -+ - x Ag,, (R7).
We denotep; = (pui, pais - -+ > Pasa) T+ P = (Dj1, Dy2s - -+ in) o Y = (b1, bag, -+, bari)

b3 = (b1, bjo, - - o), pT = pY T xphT X xphyT, andb” = by xby" x- - -xbj/. In

(h7) x

PN

each time period, P8sets pricen,, = p! at the even stage and stays silérd.(,, = ¢)
at the odd stage [16]. On the contrary, $erforms "do nothing”ice. a,, = ¢) at the
even stage and demanals = b; for bandwidth at the odd stage. Therefaie= p™ x ¢
at even stage, and = ¢ x b” at odd stage wherg is the action profile of "do nothing”.

©, is the set of possible private informatién for playerxz. The type profiled, =
(Op,, 6y, -+ .0,y ), @andO, = (6,,,6,,.--- ,05,,). 6, , denotes the type profi@, exclud-
ing d,,. Similarly, 8,_, denotes the type profi, excludingd,,. The overall type profile
is@ = (0,,0,). The actual type value for playeris-denoted bﬁx, and the actual type
profile for PS’s, SS’s and overall players zﬁle §5, 0, respectively.P, standing for the
profit function {.e. the net utility)-of-player: is a mappingP,. : H>x 6 — R from the
spaceH”™ x 0 to the set of real-numbei®. 1. (6 ,|0,,h") is playerz’s beliefs about
other players’ types given its tygg with history/.'s More details about the beliefs will
be described in the next section.

In contrast with the static game of incomplete infoermation, the belief about others can
be updated stage by stage, and the players’actions can change according to the newly

updates of beliefs.

3.3 General Formulation for Multiple Sellers and Multi-

ple Buyers

3.3.1 Utility Model

As mentioned in the system model, P®ases bandwidth;; to SSj The amount ob;;
affects the remaining available bandwidth of R8nd thus affects the corresponding QoS
satisfaction, which for P8is denoted by the utility function,, (b?|@, h'). The monetary

gain of trading iszj piibji = (pY)"bY, where the superscrifit means vector transpose.
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And the total profit of PS is given by
Ppi(p}, b7]0) = u,, (b7|6) + (PF)" 7, (3.2)

whereu,, (b?|0, h') is denoted as,, (b |@) for notational simplicity, also the condition
on historyh! will be omitted inP,,. We assume th&®,, (p?, b”|@) is a concave function
of (p?, bY). Although such assumption is made, we will show in the explicit system that
the assumption may not be the same as general formulation does to guarantee the joint
KKT condition. © is assumed a discrete space in the formulation.

For secondary service, the utility of QaS, (b;|0) is modeled as a concave function
of b?. The cost of buying bandwidth s ; p;:b;; = (pj)Tbj. The total profit of secondary
service is

Py, (53 0510) = u, (b5]6) =(p})" b (3.3)

which is still a concave function dffj-.

3.3.2 Self-Optimization and KKT Translation

Since S§ is a follower of the game, it can observe the sellers’ aq:i;n(m?p) = (p;1(6,,),
Pi2(0y2), -+ . pin(px))T. Note thatp?(8,) is the optimal price corresponds to type pro-
file ép, and SS just observes the prices without the knowled@.oThat is, SS may still
don't knowép correctly @;is still.random), but the prices correspondsé};ds determin-
istic. Based on that, S of type ésj would maximize its expected profit which can be
formulated as

bi* = argmax Eo, g, [Py, (P}(6,), b510,0,_,6,)] (3.4)

J

The KKT condition [17] for the profit maximization of Sgof typeésj is

Vb; Ees—j p [st (p;(ép), b;‘ésﬂ 03*1 0p>]

bs=bs* = 0, (3.5)
which is equivalent to

Vs Ee, 0, [us, (b} |ésj, 0, ,,0,)]

bi=b3* = p;’(ép)u (3.6)
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here we observe thdi:* is a function of ésj and ép, hence it can be can denote as
bj.*(ésj, 6,). Another observation is that SS’s self-optimization are not coupled each other,
namely, the profit maximization for SSdepends on all PS’s and S$tself but not other
SS’s. Hence, to be sequentially rational for St only needs to solve (3.5) or (3.6)
without taking other SS’s action into consideration.

But, how would PS’s move with knowing that each SS is sequentially rational? It's
widely known that the techniqueackward inductiorj16] is useful in solving finite dy-
namic game of perfect information. Here we apply the similar idea in solving trading
game. All primary services know that §Svould ask the best demariq*(ésj, ép), or
equivalently, they know the KKT condition for all SS’s (3.6). However, since 8&esn'’t
know the exact typé,, and,_, exactly, PS viewsb:*(6,,,6,,.6,_,) as a random vari-
able with uncertairf;, and@,, .. Here, the objective of P&is to maximize its expected

profit based on the beliefg6,.0, .

h') about other players’ private information, consid-

ering the KKT condition of SS’s.-The optimization for R 8f type?i is therefore given
by

p?*(ép) = argmax Eo. 0, ,[Pp (p7, b7 (0 ‘91017 0, .)16s.0,,.0, )], (3.7)
s.t.0 gb’f.(es.,é N’ 7.),vsj,vesj & Mg (hh)s V05 < TT, L(RY), (3.8)
W, >Z s 00, VO, €11V, €11, _(h'), (3.9)

D; (0., 6,_,) =V Eo, . 6,[us,(b]|0)]

bi=b2*(fs, ,épi,ep_i)7vsj7vesj = Hsj (ht)vvepfi € Hp—i(ht)v
(3.10)

wherell,, (h') is the set of all possiblé,,’s that satisfyu(6,,|h") > 0, IL, is the set of all
possibled,’s that satisfyu(0,|h') > 0 andIl, ,(h') is the set of all possiblé,_.’s that
satisfyu(0,_,|h") > 0. The constraints in (3.8) and (3.9) limit the demand to be within
the physically realizable spectrum region afforded byi B8der all possible type profiles

of the other players. Note that there are numbers of inequalities in (3.8) and (3.9), but we
can reduce them by finding the minimal &&t, ;(2") and©,, (k") to represent these two
inequalities. The determination 6f,, ;(h') and®©,,,;(h") depends largely on the utility
model. The constraint (3.10) is the KKT condition (3.6) for all SS’s for any possible type
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profile. In this work, we call this approach th&KT translation In this optimization
problem, with the assumptions we've made, if the constraints (3.10) are affine functions,
then the problem is a convex optimization problem, otherwise it's a optimization problem
[17]. The difference lies in whether KKT condition is sufficient and necessary or purely

necessary for the problem.

3.3.3 Perfect Bayesian Equilibrium and Joint KKT Condition

We are now ready to find the PBE at stagd the multistage Bayesian game modeled in
the considered cognitive radio network. The posterior belief is obtained by PBE updating

rule B(i)-B(iv). With that, the condition (P) of PBE at any stage is

pf* (‘9:02) = arg m%x E0870p_7: [sz (pfv bf*<087 ‘9101‘7 Hp-i) )]7 (311)
p;

S.t.0 <b%(0s,00p,.0,_,) V55, 5(0,,, 0, ). € Opmy(hY), (3.12)

W; >Zb* (0s;.0p:,0,_,),¥(05,6,_,) € Orri(hD), (3.13)

P} (0, 0p_.) =Vbs Ligs 6, [s; (D510 l65bs(0., 05,05 ) V55 Y05, (€L, (1), V6, _, € 11, (h'),
(3.14)

0, € 11, (h"),Vp; € T,

It is clear that if the constraint (3.14).is affine and the price prgfifg 6, ) for all type
profiles is known, then the KKT condition is sufficient and necessary for solving the
convex optimization problem. However, finding the optimal strategy prefiléo, ,)
for all possiblef,_, needs the information q§?*(6,,) for all possibled,. It follows that
each player has to jointly solve all PS’s KKT conditions simultaneously. The joint KKT

conditions are given by
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—b7,(0s,,0,) < 0,Y(0s,,0, ) € Opi(h'),Vs; € T,
SV 5(6,,,8,) — Wi < 0,Y(6,,6,_) € Oui(ht)
Kir(0s;) = pix(0p,), V05, € 1L, (h"),

)\Z-yj,gsjﬂp >0,Y(0s,,0,_,) € On(h"),Vs; € T,
Vie.e, > 0,V(05,0, )€ 9Mz(ht)
)\,-jgé 0,05 V(0s,,6,_,) € Oni(h'),Vs; € T,
v(

Vi0,.8, (31 Ui(6s,,60,) — Wi) =
foﬁz ==

0
0
(0,,,6,) =0,
0
0

VO, € 1L, (h")s¥p; € Z,.

VO, , €11, ,(h'),Vs; € I,,Vp, € I,

(3.15)

wherel; ;. 0, ,» Vio.6,4,8007: ;0. o, -are Lagrange multipliersC;,(6;,) represents

righthand part of equation (3.14),-which is

OEe, —o,lus; (B510)] s —ns(0x 0,
chk(esJ‘) - — a]b,k e )’VP’C eIp
J

L; is Lagrangian function of P&of typed,,. , which is

VprLi = Vor Eo, 0, [Py (P} bi"(0)|6)]
- Z )‘ZJGS epv ( b* (95J70 ))

s;€TLs, (65 ,0p_;)EOm i(h?)

_ Z Vi,ﬂs,Op (Z b* 8337 0 )

(93 ep )G@M L(ht)

— Z Mhe,5,05s,,6p Vp?; [ij(epk) - chk(esy‘)]

PrETp,5;€Ts 05, €MLs (h1),0,_, €11, (ht)

The solution of joint KKT specifiep?”(6,,) for all possibles,, for all p;.
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3.4 Explicit System For Multiple Sellers and Multiple Buy-

ers

3.4.1 Utility Model
In this part, we adopt and modify the utility models in [8]. The profit function ofithe
PS is given by

Py,

7

Wi =M b\
(pﬁ’, bf|9 ) = (pf)Tbﬁ’ + clﬁpi — 0 . <B§Cq k;(p @> , (3.21)

wherec; andc, are constant weight$;* is the bandwidth requirement for a primary

1.5'y§7

i () _
connection,k;”’ = log, (1 + @2 BER)

) denotes the spectral efficiency of wireless
transmission for théth PS with+? being the signal-to-noise ratio (SNR) at thle PS’s
receivers andBER™ being the target bit-error-rate (BER) for tith PS’s local connec-

tion [18]. The private‘informatio#,,, taking values in the séd,,, represents the number

of connections in théth PS. The first term in righthand side of (3.21) is the monetary
gain of selling bandwidths. The second term is the revenue of maintaining primary con-
nections that is proportional #),. The third term is the cost of sharing the spectrum with
SS’s, the square term-could be interpreted as magnification of the difference between re-
quired throughput and actual serving throughput per terminal uséh &S. Instead of
single SS scenario in [8], the profit function (3.21) considers multiple SS’s.

The profit function of SS is given by

P, (05, b510s,) = [Z bk, - ( (b5)"b5 +2¢; Zb]kbﬂﬂ —(p5)"h5,

i (3.22)
where¢; € [-1.0,1.0] is jth SS’s spectrum substitutability is defined as follows. When
¢; = 1, SSj could switch among the spectrum rent from all PS’s freely. Wfea 0,

SS; can't switch among the operating spectrumé;lif< 0, spectrum sharing by S5is
complementary, that is, it will need to buy one or more additional spectrum simultane-
ously. We consided < ¢; < 1 for the rest of the thesis, the other case < ¢; < 0

is straightforward. k"’ = log, <1 T -

W) denotes the the spectral efficiency
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acquired byjth SS's secondary user on the baikd owned by PS. The first two term

in righthand side of (3.22) are QoS satisfaction function ofjS®hich is modeled as

a concave function db;. The last term is the payment for buying bandwidths from all
PS’s. Compared with the utility in [8], we introduce the private informatigrof jth SS

in this paper to represent the factor leveraging the weighting between QoS and the spec-
trum trading expense. This weighting factor is implicitly related to the number of active
connections within SS. When there is no connections requested by the cognitive users in

jth SS,jth SS must have zero profit in terms of QoS and the correspordingoc.

3.4.2 Solving for Perfect Bayesian Equilibrium

To obtain the optimal strategy gth SS of type/9\5j, the KKT condition of the maximiza-

tion of jth SS’s profit function.is

Vb;Ees,j,ep[st(Pg( b)s b |9s])]lbs ne =V Ps, (D5(6;), b $105,)

bs=bs» = 0, (3.23)

In this example, the close form solution of the best demand ffttmSS toith PS is

obtained as follows

-~

b5:(0s,,0,) = D;i(p3(8,), 0,,) = Diji(psi(05):05) — 04p3i0,)D2 5, (3.24)
wherep:_, (8, ,) is p;(8,) with the exclusion of;;(f,,) and

Cji I gjé;j Zk;«éi pjk’(é\m)
A; A;
(&GN =2)+1)

J

Dy ji(p5_i(8,._,),0,,) = (3.25)

with A; = (1 —&;)(&(NV

“D 4D 20, = KGOV - 2) +1) = § X by
We observe tha‘Dﬂ(pJ(é)

s;) is an affine function op$. It would increase as
p]—k(é)pk) increases for alp, € 7,, pr # p; and would decrease agi(A ) increases.
The minimum oﬂ)ji(pi(é\p) ts;) happens whepﬂ(e ;) is highest angb; ( ) IS low-
est. However, the dependency@m is not clear, which also depends pf_,( pﬂ.) and

pﬂ(e .). Similar reasoning could be applied for the mammurﬂ?glf(pj( b), ) s;). Hence,
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the minimal set for bandwidth constraint (3.8) and (3.9) are

Oni(h') = {(65,0,",)|(65); = 6 or 6.1, Vs; € T} (3.28)

whered" is minimum off; with .(07'|h") > 0, 61 is maximum oft,, with (6} [1") >
0, 0"  is elementwise minimum d,_, with ;(0" |n") > 0, 8] is elementwise maxi-
mum of@,,_, with 1.(6)" |h) > 0.

Then, we examine the objective function of PF%, (p?, bl (05, 6,,,0,_,)|0) is not a
concave function ofp”, b?) in this explicit case, but with!" (6, 6,,., 8,_,) being replaced

with D?(p(6,), 8;) , the new functiorP,, (p!, D! (p(6,), 6;)|6,,) is concave op”, where

,Dg)<p<910>7 08) = (,Dli<pf(0p)7 ‘981)7 8 7,Dji(p§(0p)7 03]‘)7 & 7DMi(p7\/[(9p>7 QSM))T' To-
gether withb?,; (6, 0,,, 8,,_,) in (3:12) and (3.13) being.replaced with; (p3(6,), 0,,), we

3

can drop the equation (3:14), and the equation (3.11)- (3.13) becomes,

P! (60,,) =ar'gmax Eo, g, 1Py, (pL, DE(p(6,),0)16,,)], (3.29)
s.t.0 <Dji(p5(0,).0s,), Vs; €Z,Y(0s,,0,_,) € Opm(h"), (3.30)

M
Wi >3 D;i(pi(0,):0.,). (6,6, ) € O,.(h'), (3.31)

J=ll

0, € 11,,(h"),Vp; € T,.

The optimization of PS’s in the explicit-system is a convex optimization problem. And

the joint KKT condition now becomes

(

~D;i(pi(8,),6,) <0,Vs; € Z,Y(0,,,0, ) € O (h)
SN Dii(p5(6,),05,) — Wi < 0,¥(65,6,_,) € Oxri(h')
Nijos 0, = 0,V85 € L, ¥(0s,,0,_,) € Oprij(R)
Vi 6,0, = 0,V(0s,0,_,) € Opi(h')
Xijo.,,0, Dji(P5(6y),05,) =0,Vs; € L, ¥(0s,,0,_,) € O (1)
Viono, (210 Dis(P}(6,),6,,) = ;) =0,Y(6,,6, ) € Ori(h')
foﬁi(epi) =0

vepz‘ = Hpi(ht)>vpi S Ipa (332)
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whereZ;(6,,) is the Lagrangian function for maximization &th PS of type/,,, and the

n-th element oV » £;(6,,) is

OL:(0,)  OE [P, (07, D'(p*(6,),0,)|0,,
] = 2l OF P D0, 005)
. )\i,nﬂ?ﬁwegi/_ H;ZDZ,ni - )‘i,nﬁ%,@;’:_ eﬁDZm’ + Z 957LD2,7liVi703,9p

(05,6p_;)€ON,i(RhY)

SinceV» Eg, 0, .[Pp] = Eo. 6, ,[VprPp], we compute

|:V psz(pz7 ( S(Op)> 08)|9 L)] 8sz<pz7 épifeil?)? es>|8 z)

4 W=y
i | 9ek 0, Dy [ Brod — 1 A
A, 7 Op,

En,i (epi 7esn)

202(]{72@)83”1)2’”@')2 202(k ®) ) esnD2 ni
- 293nD2,m + ) pni<6pz) epl Z esjpﬂ Pz)D2J

pi

L L N _J#En
Gn 1(9172 05m) Hp i(epives‘n)
-§n98n 262( )2D2 mgn 262( esnD2 ni 5 5;
+ + > pur(Bp,) + ZJ S pil6y,)
A, 9p A, A;
L ! k;éz N ~ _JF#n k#i
Fnyi(e‘?:;’esn) n,i(epi 798n)
= En,i(epm esn) - Gn,i(epm esn)pni(epi) = Hn,i(epw 98n) Z 98jpji(9pi)D2,j
J#Fn
6'98]-
Foi(Opi: 05.) D ok (Opd 4 i (0, 05,) D 22>~ pielO), Vs € T,
ki j#En T ki
Therefore,
Py (Pi, D7 (P*(6,). 65)[60,) |
Eesﬁp,i [ b apnl P = n i Gn anz(‘gpz n i Z ‘98] Dji ‘9;02>D2 7
J#n
§ils; N ——
+ Fhi ank(epk) + Lo Z 1 ijk(epk)-
ki j#n T ki

3.4.3 Algorithm for Solving Joint KKT Condition

The joint KKT conditions can be solved by active-set method [19], which is summarized

in Algorithm 1.
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Algorithm 1 Active-set method for solving joint KKT condition
0: Define S £ Lli.; Om.ii (") UOni(h'), andW is the working set.
1: Initialize : SetW = 0.

2: Repeat Solve the joint KKT conditions with that; ; ¢, ¢, = 0 and
V0,0, = 0 for those constraintg V.
3: Condition 1: Check whether equation (3.30) is satisfiedforvp; € Z,
4: Condition 2: Check whether equation (3.31) is satisfied/favp; € Z,
5: Condition 3: Check whethéri,jﬂsj 6, > 0andy; g g, > 0 for
those constraints W,
6: If conditions 1, 2, and 3 all are satisfieden

we obtain the optimab?”(6,,) for all 4,, € I1,:(h") and for allp;. We finish.

7

\l

. Elsechoose anothen’ S.

oo

: End repeat

The complexity of this algorithm depends on two factors, one.is how you choose next
working set, and the other is how you solve the linear equations. If the simplest working
set choosingi.e. linear choosing, iIsimplemented, then the worst case searching number
would be22MN+N2" ¢s pecause therer8M N +-N2M constraints in total, therefore
22MN+N2Y combinations of working set are possible. - The number of linear equations
for given working setV is (N x M *1{0,| + [W]|); where|)W| is the number of active
constraints, which ranges from 028" N+N2%

To make this algorithm more practical, we can reduce the complexity by quantizing
©,. For instance, if nowd, = {1,2,---,10}, then we can quantize it into 2 subsets, the
upper set and the lower set, andddie the representative element for upper set,3inel
the representative element for lower set. For all elements greater than 5, they are viewed
8; for all elements less or equal to 5, they are viewed 3. Now the algorithm is performed
with the quantized type spa€¥ = {3,8}. After the current period game is finished and
the opponents’ type are classified into either upper set or lower set, the upper or lower set

could be further quantized for the next period game. In this way, the type space is now of
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size 2 for every time calculation, so the complexity is greatly reduced.

3.5 Convergence of Beliefs and Actions

In this section, we discuss the convergence of beliefs and actions. We’'ll conclude that 1.
the belief update always tends to lead to a correct one, but may not converge; 2. although

the belief may not converge, the action would converge to the one of actual type.

Proposition 1 The belief of player: # y about the actual type of player at staget

would be greater or equal to the belief at stagé ¢ > t'.
ui(@iI0). 2 B ) (3.33)

Proof 1

LG 0) 2l (6y)
B Al AV ACATRY

(0,0 |-
) = (O 3.35
Z%:az*w;->=a;*@>M(@Hht’)—“(J' ) (3.35)

(05 | WEYY (3.34)

According to the above statement, the updating of belief is never a misleading updat-
ing. But it doesn’t address about whether the updating converges to the actual one or not,
perhaps the improvement stops before converging to the actual one. Fortunately, even
the belief may not converge to actual profile; the action profile taken by all players con-
verges, and it would converge to the action profile same as the one taken in the complete
information game. The reasoning is as follows.

Given thatp;_;(8, _,) are taken by joint KKT method, PSknows that the optimal

—1

%

demand from S§ of typed,, is b;i(esj,épi, 0, .) by solving (3.10). The optimal pricing

p;i"(0p,) of (3.7) without constraint (3.8) and (3.9) may result in feasible or infeasible
demand;i™c(0s,, 0,.,0,_.). However, the demand must be feasiblepjtf“‘f(épi) makes
thei-th demand negative, then by joint KKT conditidrj, (0, épi, 0, .) would be fixed

to 0, and that would reversely generate new optirAtl pricingpj.i(épi) by solving the
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following equations

2 OEg, [us, (b5]60)][bs—bs+ ()
p;(@n) = ajb i3 7 (336)
ji

OEg, [us, (b3]0)]
b

DO £, (3.37)

Pik(Op,) =

where the i-th term ob:*(8) is b%;(6,,,8,,,0,_,) = 0. Note that sincé;(6,,,6,,.0, ,) =

—1

0, Solving (3.37) obtains;_; for givenp; ,(6,_,), which means that;_, is irrelevant to

P5i(Op,) if pj.;mc(épi) gives negative demand. Then, sirﬁ;ﬂes,épi,epfi) = 0,0;_;is
determined by,_,(8, _,) solely, ancboj-i(épi) is determined by}, completely. The rela-

tion between the newly generated optimal pric;hjgépi) and typed,, lies onp;ie(6y,).
If p5(6,,) results in feasiblé’™ (6 0,11 65 ) sthenp,(6,,) = pii™(d,,), which de-

pends orf,,. If p;in(0p,) results.in negativé? (¢, . 6,46, ,), thenp:,(0,,) is deter-

mined byp;_;(6, ) completely, which is.independent 6f,. Here, we defin®, ; .., =

—1

{6,, exceptd

7

piinc(0y,) results innegative demaptb proceed the discussion. For those

%

Op; € Oj.incg, thei-th demanad’; (0,,,0,,, 0,-;) =0by joint KKT andp’;(¢,,) will also be

7

constrained as (3.36). Following the same reasoning(@,_,) determineg?,(0,,) com-

A

pletely, and the constrained pricipg (0, ) is independent of,,.. Therefore, ifp;i"(6,,)

results in negative demand, thpp(épi) is.the same.agy; (0,,) foré;, € ©;; .., given

the samey,_;(0,,_,) (hence for the sam@_;). Clearly, if ©, ; ,.4,iS honempty, then P8s

opponents couldn't tell what the actual type PS since the best strategy for those type

are the same, but we should note that the best strategy still corresponds to the actual type.
It's similar to apply the reasoning for the case that the demand morédihahen by

erate new optimakth pricingp?; (6,,) by (3.36) with the i-th term of*(6) is b7, (0, 6,,,, 0,_,) =
Wi.

joint KKT condition, b3, (0, , 0,.,0, ) would be fixed td¥;, and that would reversely gen-

To sum up, although the belief may not converge to the actual type, the actions always

converge to the actual value.
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Chapter 4

Simulations

4.1 Simulation Setup

The explicit model developed in Section 3.4 is adopted for simulation. In the first section,
we show the effectiveness of the-proposed joint KKT. method for several cases and com-
pare it with other existing.work. In the second section, we examine the players’ actions
and the belief about players’ type as time evolves and numerically analyze the result.

The type space of PS’s is set to ¢ = {10, 11, 12}, and the type space of SS’s is
seta¥ds = {1,2,3}. Theinitial beliefs are assumed uniformly distributed over the type
spaceu(0,,|h°) = 1 foral p;andu(d,,|h") = 5 for al s, The constants in the PS’s
utility are chosen ag;, = 2 ande; =.2, and the spectrum substitutabilgyis 0.4 for all
s;. Note that some parameters may change depending on different simulation scenarios,

and the remaining parameters will be specified in each simulation scenario.

4.2 Numerical Results

4.2.1 Effectiveness of The Joint KKT Conditions

In the section, we simulate the multistage game with complete informeia.ﬁaonw(gy) =
1 for all x, y, and compare the results of the proposed joint KKT conditions with those

in [8] that corresponds to the unconstrained (unc) spectrum sharing to observe the effec-
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tiveness with effectiveness of joint KKT conditions.

2PSvs. 1SS

First, we simulate the game with 2 PS and 1 SS with complete information, and compare
the results of the proposed joint KKT conditions with those in [8] that correspond to
unconstrained (unc) game. Since there’s only onebS&noted,; for simplicity, andp;
denoteg;,. Note that the constraint féf in (3.8) is denoted here &s,, and that in (3.9)
is denoted here at,. We show the best responses (BR), Nash equilibrium (NE) and the
corresponding feasible regions in both Fig. 4.1 and Fig. 4.3. The intersection of the best
responses is the NE which is the result of sequential rationality when the information is
complete.

In Fig. 4.1, with parametef@’; = 15 MHz andWs5. =15MHz, B;** = 2 Mbps and
By = 2 Mbps, §,, = 10:andd,, = 10, 6, =1, and the received SNR’g’ = 15 dB,
vy = 15 dB, »;, = 22:dB, andvj,-= 22 dB, the unc solution satisfies the bandwidth
constraints, so it agrees with. the solution of the proposed joint KKT conditions. Fig.
4.2(a) shows the profit function of PS1 given PS2 acting equilibrium strategy obtained
by solving joint KKT.condition and SS taking best demand. Fig..4.2(b) shows the profit
function of PS2 on similar condition. In this case, we observe that the feasible region
on each PS’s profit funection cover the unconstrained best response point. Fig. 4.2(c)
shows the contour plot of the profit of SS given that PS1 and PS2 act equilibrium strategy
obtained by solving joint KKT condition;-and it shows that SS’s highest profit lies in
strictly feasible region.

In Fig. 4.3, with parameter®y; = 5 MHz, W, = 5 MHz, B} = 2 Mbps and
By = 2 Mbps, §,, = 10 andd,, = 10, §,, = 1, and the received SNR’g’ = 15 dB,
75 = 15dB, 7§, = 22 dB, 7§, = 10 dB, the unc solution lies outside the bandwidth
constraints, while the optimal strategigs= 0 andb; = 0 of the joint KKT conditions
satisfy the constraint. Fig. 4.4(a) shows the profit function of PS1 given that PS2 acting
equilibrium strategy obtained by solving joint KKT condition and SS taking best demand.
Fig. 4.4(b) shows the profit function of PS2 on similar condition. Fig. 4.4(c) shows the
contour plot of the profit of SS given that PS1 and PS2 act equilibrium strategy obtained
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Figure 4.1: The best response, Nash equilirium and feasible region for PSBAvith15
MHz andiV, = 15 MHz, ¥ =15 dB,#% = 15 dB, 7§, = 22 dB, andy;, = 22 dB.

by solving joint KKT condition. In-this case, we observe that the feasible region on each
PS’s profit function‘is exactly one point which is also the mutual best response point.

Correspondingly on:Fig. 4.4(c), SS’s profitis highest whee: 0, b= 0.

2PSvs.3SSand 2PSvs. 4SS

Secondly, we look the €case with 2 PS’s and 3 SS's, and the parameteﬁrzg arel0,
Oy, = 10, 0, = b, = O3’ = 1, 90= 75 = 15,93 = 22 for all p;, s;, B = 0.5
Mbps andB;™® = 0.5 Mbps, W, =1, = 6 MHz, and¢, = & = & = 0. Due to
the difficulty of drawing picture with a dimension more than 3, the actions evolving with
time are plotted instead of the feasible region and best response curves. Basically, since
all PS’s have the same parameters, they would ask same price to each SS, and all SS’s
would ask same demand to each PS. Under these parameters, as shown in Fig. 4.5(a)
and 4.5(b), the demand and unconstrained demand are the same for the case of 3 SS’s,
and also the sum of those demand are affordable for each PS, which is strictly inside the
feasible region.

The case of 2 PS’s and 4 SS’s is also shown in Fig. 4.5(a) and 4.5(b), with the param-

~

etersd,, = 10,0,, = 10,0, = 0,, = 05 = 0,4 = 1,4} = 4% = 15,~3, = 22 for all p;, s;,
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B;* = 0.5 Mbps andB5 = 0.5 Mbps, W} = W5'= 6 MHz, and§; = & = & =&, = 0.

Since the sum of the'unconstrained demands exceeds the bandwidth available for each PS,
each PS would askaprice such that the demand obtained by joint KKT method shrinks to
meet bandwidth requirement. While some might wonder that whether the infeasible equi-
librium strategy of [8] can be modified into a feasible one by directly setting excessive
total demands into affordable demand, the answer is negative. Even if the total demands
were set into affordable one, the pricing strategy of [8] aren’t PBE strategy and are still
different from our result. It is because when the demands meet some boundary conditions,
the Lagrange multipliers corresponding to those active conditions start to function. It is
the function of the Lagrange multipliers that differentiate the feasible equilibrium from

the infeasible one.

Summary of Effectiveness of Joint KKT Conditions

To sum up, sometimes the parameters may intrinsically result in solution strictly inside the
feasible region. In that case, both joint KKT method and the method in [8] have the same
equilibrium strategy. Another case is, the parameters may result in equilibrium strategies

on the boundary of nonnegative constraints. In this situation, joint KKT method gives
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feasible solution while the method in [8] has negative demand. While some might wonder
tha whether the infeasible equilibrium strategy of [8] can be modified into a feasible one
by directly setting excessive total demands into affordable demand (or setting the negative
demands into 0), the answer is negative. It is because when the demands meet some
boundary conditions, the Lagrange multipliers corresponding to those active conditions
start to function and make the solution feasible. Clearly, joint KKT method guarantees

physically practical solution.

4.2.2 Evolutions of Beliefs and Actions

In this section, we simulate and show the evolution of action profile over stage. The simu-
lation scenarios are classified into three different cases, they're 1. all action of all players
profile are strictly feasible, whichis shown in Fig. 4.6(a), 4.6(b), 4.6(c); 2. some action
profile of some players are on the boundary of bandwidth constraints, which is shown in
Fig. 4.7(a), 4.7(b), 4.7(c); 3. all-action profile of some player.are on the boundary of
bandwidth constraints, which is shown in Fig. 4.8(a), 4.8(b), 4.8(c).

Fig. 4.6(a), 4.7(a) and 4.8(a) show the equilibrium pricing profile of the actual type
corresponding to the one with proposed joint KKT condition and one which uses the same
belief as the proposed one at each stage instant but without considering the constraint
(unc). Fig. 4.6(b), 4.7(b) and 4.8(b) show the equilibrium demand profile of the actual
type corresponding to the one with.joint KKT condition and one which uses the same
belief as the proposed one at each stage instant but without considering the constraint
(unc). Fig. 4.6(c), 4.7(c) and 4.8(c) show the possible minimal equilibrium demand
profile corresponding to the one with joint KKT condition and one which uses the same
belief as the proposed one at each stage instant but without considering the constraint
(unc). The belief update over stage about player of the three cases is also presented in
TABLE 4.1, 4.2, 4.3, respectively. Numerical analysis about the action and the belief on

the three cases are discussed.
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Case 1: When All Actions Are Strictly Inside Constraints

Next, we study the behavior of the sequence of equilibrium strategies as stage evolves
underW; = 15MHz and W, = 15MHz, 6, = 10, 6,, = 10, 6,, = 1, 0,, = 2,

YW =15dB,v5 = 15dB, v, = 22, 75, = 18,75, = 18, 75, = 22, B[ = 2 Mbps

and By = 2 Mbps. Fig.4.6(a) and Fig.4.6(b) show the equilibrium pricings and the
equilibrium demands. Sincg, = 22 is larger thamy;, = 15, SS1 demands more from

PS1 than from PS2. Correspondingly, PS1 sets higher price to SS1 than PS2 does. On
the other hand, SS2 demands more from PS2 than from PS1ginee22 is larger than

75, = 15. Therefore, PS2 sets higher price to SS2 than PS1 does. PS1 asks lower price
to SS2 than to SS1 sineg, is larger thanys,, while with that~s, is larger thany;,, PS2

also asks lower price to SS2 than to SS1 since SS2 istwith2 and puts less emphasis

on the QoS satisfaction, or equivalently, is more concerned with the monetary expense.
Therefore, both PS’s set lower price to SS2 to stimulate the demand.

We also observe that the difference between utilizing joint KKT condition and without
considering the constraints. Although the pricings and demands without considering the
constraints evolve into the same value as those considering joint KKT condition after the
belief update correctly since the solutions are strictly feasible, they are infeasible at the
beginning. It's because the possible minimal demands of unconstrained case are negative
in the beginning stage as Fig.4.6(c) shows, while the minimal demands with joint KKT
condition are still feasible, being zero in this case:

The Bayesian game model allows the equilibrium strategies to update according to the
beliefs (TABLE 4.1) of all players’ private information. Since these actions are strictly

inside feasible region, then the belief and hence the behavior converges in the end.
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Table 4.1: Belief Updating versus Stage for Case 1

Belief about PS’s Stages
0/11,2|34|t>4
p(, =104 |31 1| 1 1
u(,, =11n") |11 00| O
w(,, =12|h") |51 0 | O 0
Wby, =100 |21 1| 1] 1
p(,, =1110% [+ 0] 0] O
w(fp, =12|0") | 51 0 | O 0
Belief about SS's Stager
1.2345(t>5
p(ly =1ry |1 1 a1
u0gq'=2/nt) |00, 0
(0, =3[y | 110 0 |40
p(fsy =10 |11 00| O
p(f, =20kt [l 11
u(b, =340 0| o

Case 2: When Some Actions of Some Players are on the Boundaries of Constraints

Next, we study the behavior. of the sequence of equilibrium strategies as stage evolves
underV; = 15MHz andW, = 15MHz, 0, =10, 0,, = 12,0,, = 1,0,, = 2,7 = 15
dB,~} = 15dB, §, = 22 dB, 7}, = 22 dB, 45, = 22 dB, 3, = 22 dB, B** = 2 Mbps
andB;™ = 2 Mbps.

Fig. 4.7(a) and Fig. 4.7(b) show that the equilibrium pricings and the equilibrium
demands. Each PS asks lower price to SS2 than to SS1 since SS2 fs withand so
puts less emphasis on the QoS satisfaction, or equivalently, is more concerned with the
monetary expense. The penalty, or the cost, of sharing spectrum for PS2 is higher than
that for PS1 since PS2 with a higher volume of local connections is more reluctant to
share the spectrum, in order to fulfill its primary users’ QoS satisfaction. Consequently,

PS2 would set a higher price, that yields lowgrandb,,. Under this circumstance, SS1
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and SS2 demands madrg and by; respectively to compensate the insufficiencygfand
bag.

Under these parameter settings, the unconstrained detjghdiould be negative
even when the belief is updated to the correct one, while the proposed one is always
feasible. Althoughb,, is 0, which is on the boundary of the nonnegative constraint of
PS2, the belief about PS2 still converges to the actual one. It is betausll isn't
on the boundary, the opponents could still update the belief about PS2. Since the beliefs

(TABLE 4.2) could converge, the action profiles converge.

Table 4.2: Belief Updating versus Stage for Case 2

Belief about PS’s 1a0e
0012(34/t>4
p(@p=10(nY) |1 1| 194
p(0p =1110%) | 5] 0 | 0 0
0, =12h5 | | 0| O 0
(0, =10lAY) | 51 0 | O 0
(0, = 11|A%) | 34 07| O 0
(0, =12[5) g 11 1
Belief about SS’ ke
1123[45|t>5
p(Of =0 3 | 11 1
p(0s, =2[WE) 15| 0|0 0
p(fs, =3ty |51 0| 0 0
p(fs, =10") |31 0| O 0
(s, =2/") |3 1|1 1
p(fs, =3n") |51 0|0 0

Case 3: When All Actions of Some player are on the Boundaries of Constraints

Next, we study the behavior of the sequence of equilibrium strategies as stage evolves
underi¥; = 15MHz andW, = 15MHz, §,, = 10,6,, = 10,0, = 1,0,, = 1,7 = 15
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dB, 7% = 15 dB, 7§, = 22,75, = 22,95, = 22, 75, = 22, B = 2 Mbps andBy® = 4

Mbps. Basically, the parameters of SS1 and SS2 are the same, so PS1 would set the same
price to both SS’s, and so does PS2. Likewise, both SS’s would demand the same size of
bandwidth from the same PS. Therefore, webletdenoteb;; andb,; andp;; denotep;;

andpo;.

As Fig. 4.8(a) and Fig. 4.8(b) show, since PS2 has higher bandwidth requirement for
local connection, it asks high price to both SS’s than PS1 does, which makes the demands
from both SS’s be 0. The action of PS2 makes the opponents difficult to update the belief
about PS2 (TABLE 4.3), but the actions of PS2 converge to those of the actual type of
PS2 which is shown in the curves of complete information scenario. It justifies that even
thought the belief cannot converge to the actual one, the action profile still converges to
the one with correct belief,e. complete information, and.thus it doesn’t influence the

result of the game.
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Table 4.3: Belief Updating versus Stage for Case 3
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We've studied the spectrum trading game with-incomplete information in a sequential
manner for a cognitive radio network. The incomplete information game is modeled as
Bayesian game, which the incomplete information is viewed in Bayesian way. To ensure
that the trading is physically practical, we constrain the trading bandwidth. To solve the
optimization problemwith bandwidth constraints in the multistage game, we've proposed
using the KKT translation and joint KKT conditions to yield the perfect Bayesian equi-
librium at each stage. We've demonstrated that the KKT translation technique provides
a general rule that can be applied.to optimization-problems of multistage game theory.
An algorithm for solving joint KKT condition is given, and the complexity of the algo-
rithm is analyzed. In addition, we've studied the convergence behaviors of belief and
action profiles, although belief profiles may not converge to the actual type, the action
profiles converge to actual optimal strategy, which means the result is the same as that of
complete information. In the simulations, we've justified the effectiveness of joint KKT
condition, numerically study the convergence of belief and action profiles, and also how
the parameters influences the action. Finally, we've concluded that the proposed multi-
stage Baysian game model with bandwidth constraints is robust and capable of providing

more reasonable strategy profiles for players.
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5.2 Future Work

In this thesis, although we've derived the solution conditions, proposed an algorithm to
solve the involved optimization problem for the constrained game, the efficiency and fair-
ness of the game have not been analyzed. In game theory, there’re several criteria for
efficiency, for example, it can be the maximization of the summation of all players’ utility

or Pareto efficiency [16]. As for fairness, proportional fairness criterion is often utilized
for resource allocation in wireless network. If the efficiency is not guaranteed, then we
may look for other possible strategies in terms of repeated game to induce cooperative
behaviors among PS’s and among SS’s for enhancing the efficiency. Also, the existence
of the solution PBE for the considered game has not been proven yet.

In a practical system, channel conditions of .each player are also unknown to others,
or at least difficult to be obtained by others. The system model could be modified by
considering the unknown and random nature of the channel.- To account for that, future
work could include concepts from stochastic game whose main feature is game with state.
By defining the state as levels of channel conditions, we can build a more realistic game
without requiring all players to know the exact channel state information. More specifi-
cally, we can apply finite state‘Markov-channel proposed by [20] to divide the range of
received SNR in spectral efficiency into finite-discrete sets. It's worthy to note that the
work in [20] has detail about how to partition SNR and what the corresponding transition
probability is.

Another aspect for future work is to consider learning mechanisms in the constrained
game. In this work, all solutions are obtained based on the assumption that all actions
are observable and observed noiselessly by all players. Although the assumption is prac-
tically achievable, it would be more appreciated that the game can still attain the equi-
librium without the assumption. Thus, we think it would be a good direction of future
work to search learning algorithm guaranteeing that the constrained game converges to
the equilibrium with as less information needed as possible. It should be noted that the
difficulty lies mainly in "constraints.” The work in [8] and [10] both propose learning

algorithm in a game but fail to take constraints into account.
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If both stochastic game and learning algorithm are combined, we think that learning

using a hidden Markov model could be an interesting approach.
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