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摘要 

在本篇論文，我們以賽局理論的角度來研究感知無線電網路頻譜買賣。我們考

慮一個由多主要服務者(primary service)和多的次要服務者(secondary service)所構成

的感知無線電網路。主要服務者是此買賣賽局中的頻譜賣家，它們可以設定租借頻

帶給次要服務者的單位頻帶價格；次要服務者是該賽局中的買家，它們要決定跟買

家買多少頻帶。我們提出以多層級貝氏賽局為基礎的買賣模型來建立每個玩家可能

未公開的私人資訊的情況，並在符合頻帶限制下依序地求得完美貝氏平衡點(perfect 

Bayesian equilibrium)。所謂的頻帶限制其實就是所有買家所要求的頻帶量加起來不

能超過賣家所能負荷，而每個買家所要求的頻帶量也不能是負值。由倒推歸納原則，

我們將買家的 Karush-Kuhn-Tucker (KKT) condition 轉化為賣家的最佳化問題之條

件，並將所有賣家的 KKT condition 集合起來成為 joint KKT condition，符合該 joint 

KKT condition 的解即為此賽局的解。我們並提出以 active-set algorithm 來解該 joint 

KKT condition，並分析它的複雜度。此論文也探討了玩家的行動和對未知資訊的信

念是否會收斂。在模擬中，我們比較了我們的作法和前人的作法，並且數值上探討



了該賽局之收斂行為。 
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Abstract 

 

In this thesis, we study the problem of spectrum trading in cognitive radio (CR) 

networks from a game theoretical perspective. Particularly, we consider a CR network 

with multiple primary services (PSs) and multiple secondary services (SSs), where all 

PSs are sellers targeting at setting the prices for spectrum leasing and SSs are buyers 

deciding how much spectrum are demanded from each PS in the trading game. Aiming at 

dealing with the trading behaviors, we propose using a multistage Bayesian game based 

trading model to account for possible unknown private information in each player, and 

obtain the perfect Bayesian equilibrium (PBE) sequentially under a bandwidth constraint, 

which requires all SSs' demanded bandwidth not exceeding that the PS can possibly offer 

and each SS's demand should not  be negative. Following the backward induction 

principle, we transfer the Karush-Kuhn-Tucker (KKT) condition of the SSs into each PS's 

optimization constraint, and collectively form joint KKT conditions that satisfy the 

bandwidth constraint. We present an active-set based algorithm to solve the joint KKT 

conditions, and analyze the corresponding complexity. Furthermore, the convergence 

behaviors of the action profiles and the beliefs of the unknown information are also 

investigated in the work. Finally, in the simulations, we compare the proposed approach 

with earlier work and numerically study the convergence behaviors of the proposed 



multistage game. 
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Chapter 1

Int roduction

1.1 Significance of the Research

Nowadays we are facing a more congested spectrum than ever before. Most spectrum

for long-distance radio transmissions has been allocated to licensed users, and there’s no

much room for emerging wireless applications. However, large temporal and geograph-

ical variations exist in licensed spectrum utilization, and almost only2% are always in

use according to the survey in [1]. That is, the efficiency of spectrum utilization is unac-

ceptably low, so researchers start to think different spectrum allocation policies in order

to tackle the problem. There’re two main approaches to this issue. One is that unlicensed

users can opportunistically utilize licensed spectrum if not interfering with licensed users,

while the other is that spectrum trading (or active negotiation) between licensed and un-

licensed users would be a promising solution [2, 3]. We attempt to address several is-

sues in the spectrum trading problem in this thesis. The idea of spectrum trading comes

from economic point of view because of the success of economical world. Both schemes

are considered as possible solutions in dynamic spectrum management. Apparently both

schemes could enhance the efficiency of spectrum utilization, but how the network be-

haves, how much efficiency can be increased, and how the fairness is guaranteed are open

issues to be studied.
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1.2 Motivation

The promise of providing anytime and anywhere multimedia services demands a large

spectrum for broadband wireless communications. On one hand, this drives the advance

of radio technology to faster, convenient and reliable communications. On the other hand,

the enormous demand also unveils the problem of insufficiency and under-utilized ineffi-

ciency of current radio spectrum. Useful radio spectrum is a scarce resource in that the

characteristic of spectrum on different frequency is different, e.g. the communication on

60 GHz is only suitable for short distance because of the absorption of radio signal by

oxygen of the Atmosphere. Nowadays, the most useful spectrum band for median and

long distance communication is below 5 GHz due to the characteristic of spectrum and

current circuit technology. To tackle the problem, the idea of exploiting under-utilized

licensed spectrum for more flexible and efficient transmissions is receiving significant at-

tentions lately. In particular, the concept of cognitive radio (CR) [4] is considered as a

promising technique to improve the efficiency of current radio spectrum.

A cognitive radio (CR) is a software-defined radio capable of intelligently sensing,

adapting and responding to constantly varying environments, particularly the available

spectrum temporarily not used by licensed users. However, there still exist many technical

challenges before cognitive radios can be practically deployed. One critical challenge is

how to invite the licensed service operators to accept coexistence with cognitive users so

that they are willing to share their unused spectrum to unlicensed cognitive (secondary)

services. Leasing available spectrum to unlicensed services is an attractive solution that

provides an incentive for legitimate licensed operators to support deploying cognitive

radios [3]. This gains monetary profits for licensed operators, while fulfilling unlicensed

services’ satisfaction requirements by renting.

1.2.1 Why Game Theory?

Conventional Media Access Control (MAC) theory is based on optimization, and the ob-

jective function it aims at optimizing is the network system utility or the network system

utility in terms of fairness,e.g. proportional fairness. Although some problem formula-
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tions using optimization theory can be decomposed to problems to optimize network and

user utility separately by dual-primal method [5], which makes distributed decision mak-

ing possible, the solution for the optimization problem inherently couldn’t always satisfy

each user’s individual utility.

In contrast to optimization-based approach, game theory is a mathematical tool to deal

with interactions between multiple entities, each of which has its own utility function,

and intrinsically looks for equilibrium solutions that maximizes each user’s individual

utility. Though the network system utility may not be optimized, the strategy obtained

from the game theoretical perspective provides a solution that achieves efficiency and

fairness under certain criteria.

1.2.2 Related Work and Our Approach

An overview of the general idea and recent developments about dynamic spectrum shar-

ing games can be found in [6]. The auction mechanism for spectrum band in CR networks

with multiple primary and multiple secondary users is considered in [7], where the authors

discuss competitive equilibrium, cheating behaviors which may deteriorate the efficiency

of of the spectrum sharing and propose using reserve prices and beliefs to prevent collu-

sion. The work in [8] and [9] consider a game model which incorporates both monetary

gain and quality-of-service (QoS) satisfaction of wireless services in utility functions. The

authors in [9] explicitly model the price for available bandwidth as a function of demand,

and obtain the Nash equilibrium (NE) for the spectrum sharing strategy in a network con-

sisting of a single primary service (PS) and multiple secondary services (SS). The work

in [8] considers the spectrum trading game in a CR network with multiple PS’s and a

single SS, and models the utilities of the PS and SS separately, wherein the demand of SS

implicitly affects the price. However, under certain circumstances, the equilibrium band-

width demand for the SS would be negative, and the corresponding NE turns out to be

infeasible, though theoretically solvable. The work in [10] discusses the same problem as

in [8], and compare different features such as market equilibrium as well as competitive

and cooperative pricing strategies. In [11], the authors investigate the spectrum trading

behaviors with a more general model in which multiple primary users (PUs) and multi-
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ple secondary users (SUs) are considered in the CR network. However, the utility model

considered in [11] may not capture different QoS requirements of SUs and assumes that

each PU sets the same price for all SUs. One key assumption underlying all the above

work is that each player in the modeled game have complete knowledge about the other

players’ private information. This is in general not a realistic assumption. To account for

the unknown private information within each player, one can resort to tools in Bayesian

game or stochastic game to study the behaviors of spectrum trading in a sequential (dy-

namic) manner [12, 13]. In [12], we formulate the spectrum trading behaviors for a CR

network with multiple PS’s and a single SS as a Bayesian game, and study the correspond-

ing solution concept,i.e. the perfect Bayesian equilibrium, sequentially. The work in [13]

proposes to characterize the dynamics of spectrum access strategies under a stochastic

game framework with the introduction of state transitions. The authors also propose to

predict the future dynamics using approaches in learning theory in order to obtain better

strategies for spectrum bidding.

In this work, extending the studies in [12], we address the problem of spectrum trad-

ing in a CR network consisting of multiple PS’s and multiple SS’s. We assume each

player (PS or SS) in the game has its own private information, such as the number of

active connections within each service or the channel conditions, that is unknown to other

players. With the assumption, we formulate a multistage trading model based on the

Bayesian game to statistically account for the unknown private information (incomplete

information), and sequentially obtain the perfect Bayesian equilibrium (PBE) in the trad-

ing process. We further assume that each PS is allowed to set different prices to the SS’s

with different QoS, and SS’s with different QoS can demand different bandwidth sizes to

a particular PS in the considered model. Particularly, we consider a bandwidth constraint

on the aggregate bandwidth demand from all SS’s such that the total demand has to be

within feasible supply regions provided by each PS.

4



1.3 Contribution

Aiming at dealing with the trading behaviors with that each play has its own private

information, we propose using a multistage Bayesian game based trading model to ac-

count for possible unknown private information in each player, and obtain the perfect

Bayesian equilibrium (PBE) sequentially under a bandwidth constraint, which requires

all SS’s demanded bandwidth not exceeding that the PS can possibly offer and each SS’s

demand should not be negative. We formulate the considered problem as amultistage

game, since one-shot game can’t capture the time-varying demands for resources due to

the dynamic nature of wireless channels and wireless services. In multistage game, the

allocation is performed repeatedly, and belief updates through observing others’ actions

can also be made possible. Our formulation captures different pricing and demand strate-

gies for different seller and buyer pairs based on their QoS’s. More specifically, on one

hand we allow a primary service set different prices per unit bandwidth to different sec-

ondary services based on their operating conditions and QoS requirements. On the other

hand, different secondary services can demand different bandwidth sizes from the same

primary service. Following the backward induction principle, we transfer the Karush-

Kuhn-Tucker (KKT) condition of the SS’s into each PS’s optimization constraint, and

collectively form joint KKT conditions that satisfy the bandwidth constraint to guaran-

tee our PBE is physically feasible. We present an active-set based algorithm to solve the

joint KKT conditions, and analyze the corresponding complexity. Furthermore, we illus-

trate the spectrum trading game by an example with specific utility functions of PS’s and

SS’s. The convergence behaviors of the action profiles and the beliefs of the unknown

information are also investigated in the work. In the simulations, we compare the pro-

posed approach with that in [8] and numerically study the convergence behaviors of the

proposed multistage game.

As a final remark in the section, we would like to emphasize the general applicability

of the joint KKT approaches to solve a game with constraints. Mathematically, we formu-

late the problem considered in the thesis as a game with constraints, which is often very

difficult to solve. Relevant approaches are rarely seen in the field of pure game theory,

5



not to mention in the literature related to wireless networks. In most studies that consider

games with constraints, their problems usually have certain mathematical structure so that

the solutions are always on the boundary set by the constraints. In this thesis, we attempt

to solve a bandwidth-constrained game, where the constraints include budgets and feasi-

ble bandwidths, using the proposed joint KKT conditions. It is worthwhile to note that

joint KKT condition is generally applicable to solve a constrained game. The solutions

generally need not be on the boundary of the constraints.

6



Chapter 2

Cognitive Radio and Game Theory

Preliminary

2.1 Cognitive Radio

Cognitive radio, which first appeared in Joseph Mitola’s doctoral dissertation in 2000 [4],

is defined as an intelligent wireless communication system that are capable of achieving

highly reliable communication whenever and wherever needed by adjusting its own trans-

mission parameters according to the radio environmental conditions it senses. CR is called

”cognitive” in that it’s equipped with structures supporting a cognition cycle consisting

of Observe, Orient, Plan, Decide, and Act phases as Fig. 2.11 shows. As for realistic

implementation, CR is built based on software defined radio and wide-band RF front end

to achieve that. There’re prototypes of CR already built, such as the first prototype CR1

by Mitola [4], CR and networking by Virginia Tech [14].

Although the initial aim of CR is not to efficiently utilize the radio spectrum, it serves

as the natural candidate for the problem of spectrum under-utilization. CR can either

opportunistically detect the spectrum hole and transmit or actively negotiate with primary

users,i.e the existing licensed users, to access the spectrum. In recent years, there’re

tremendous amount of researches on CR-related topic. They can be classified into three

1Thisfigure is adapted From Mitola, ”Cognitive Radio: An Integrated Agent Architecture for Soft-ware

Defined Radio”, Doctor of Technology, Royal Inst. Technol. (KTH), 2000, pp 48

7



Figure 2.1: Simplified Cognition Cycle.

fundamental tasks [3],

1. Radio-scene analysis, which includes estimation of interference temperature of the

radio environment and detection of spectrum holes.

2. Channel state estimation and predictive modeling, which encompasses estimation

of channel-state information and prediction of channel capacity for use by the trans-

mitter.

3. Transmit power control and dynamic spectrum management.

Our work is focus on dynamic spectrum management, which we adopt game theoretic

approach to tackle with.

2.2 Game Theory

Game theory is a mathematical tool to predict the result of rational interactive decision

makers. Predicting the result of such players has great merit in many fields such as chess,

8



card game, gambling, business and economics, politics, international diplomatics, and

also in wireless network in which we are interested since in those fields no player can

achieve his goal or gain his own maximal profit without considering the competitors’ be-

havior. Although sometimes the explicit model is difficult to be defined (e.g. politics) or

too complex to predict the result and to derive the winning strategy2 (e.g. in chess game,

the problem can’t easily be formulated as the math form with which we are familiar and

strategy space is discrete, making it both not differentiable and too complex in number

to examine the all strategy profile), game theory stands a important tool to provide either

a solution to simplified problem or an insight. As for wireless network, applying game

theory to predict and further to regulate the network is anticipated since the increasing

complexity of wireless network results in significant interference and foreseeable dynam-

ics of interactive users in cognitive network.

In this section, we introduce some basic knowledge of noncooperative game theory

that are necessary for understanding our work, while interested reader can refer to [15]

or [16] for deeper materials.

2.2.1 A Basic Game – Definitions and Theorems

A game in essence is that there’re multiple players and each player possesses its own

strategy (e.g. variable) which it can freely adjust and its own objective function (e.g.

function) which depends on its and other players’ strategy. In mathematics, a game is

defined as

Definition 1 A gameΓ is

Γ =
〈
I, {Ax}x∈I , {ux}x∈I

〉
, (2.1)

whereI ≡ {1, 2, · · · , N} is the set of players,Ax is the set of actions available for player

x, and we denote the set of all available actions for all players asA = A1×A2×· · ·×AN .

A action taken by playerx is ax ∈ Ax, and the action profile of all players isa =

a1 × a2 × · · · × aN ∈ A. For notational simplicity, we denotea−x as the action profile

2Actually, game theory predicts the equilibrium strategy instead of winning strategy, but one can pick

out the equilibrium strategy most beneficial to him as winning strategy.
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taken by all players except playerx. ux is playerx’s utility function which is a function

of ax and ofa−x.

There’re some assumptions in game theory. First, each player is rational and selfish

so that each want to maximize its own utility. Readers should mind that ”selfish” doesn’t

mean ”malicious”. A selfish player cares about its utility, while a malicious player aims

at harming other players. It’s also assumed that all players know the rules of the game,

i.e. each knows all players’ action set and utility, and each knows that other players know

that and so on, and the action is perfectly observable by all. Indeed, the scenario is too

ideal due to those assumptions, so other different kind of game models are developed

by mathematicians to make the model more practical. For instance, Bayesian game, the

game model we apply in this thesis, is a game that there’re some private parameters in

each player’s utility function. The private parameters are not known to all in this kind of

game, and it’s also called game of incomplete information. The detail of Bayesian game

will be introduced in the latter section. Lets go on the basic game.

What action or strategy would each player take? Apparently, each player choose the

action that are best for it given the other players’ action, and that action that playerx

would take is defined as follows,

Definition 2 The best responsebx(a−x) of playerx to the action profilea−x is a action

ax such that:

bx(a−x) = arg max
ax∈Ax

ux(ax, a−x) (2.2)

Since best response is the best for playerx, playerx would stick to it.

Each knows that each player would take best response, so the result of game is the

action profile that is best response for all, if it exists. This mutual best response point,

which was found by the Nobel Laureate John Forbes Nash, is a equilibrium since every

player would stick to it. The formal definition is as below,

Definition 3 The pure strategy profilea∗ constitutes a Nash equilibrium (NE) if, for each

playerx,

ux(a
∗
x, a

∗
−x) ≥ ux(ax, a

∗
−x), ∀ax ∈ Ax (2.3)
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Note that this definition is for pure strategy, and there’s corresponding NE for mixed

strategy 3. In the following, we address the condition for the existence of pure-strategy

NE under different conditions,

Theorem 1 (Debrew 1952; Glicksberg 1952; Fan 1952 [16])Consider a strategic-form

game whose strategy spacesAx are nonempty compact convex subsets of an Euclidean

space. If the payoff are continuous ina and quasi-concave inax, ther exists a pure-

strategy Nash equilibrium.

Theorem 2 (Dasgupta and Maskin [16])Let Ax be a nonempty, convex and compact

subset of a finite-dimensional Euclidean space, for allx. If, for all x, ux is quasi-concave

in ax, is upper semi-continuous ina, and has a continuous maximum , there exists a

pure-strategy Nash equilibrium.

The definition of quasiconcave, upper semi-continuous and continuous maximum are

illustrated as follows.

Definition 4 If f(λx + (1− λ)y) ≥ min(f(x), f(y)) for all x,y ∈ domf and0 ≤ λ ≤ 1,

anddomf is convex [17], thenf is quasiconcave.

Definition 5 A functionui(·) onS is upper semi-continuousat s, if, for any sequencesn

converging tos, [16]

lim sup
n→+∞

ui(s
n) ≤ ui(s) (2.4)

Definition 6 A functionui has acontinuous maximumif u∗
i (s−i) ≡ maxsi

ui(si, s−i) is

continuous ins−i. [16]

NE is thought to be thesolution concept, i.e. the rule for predicting how the game

will be played, of static game of complete and perfect information, and interested read-

ers can find the corresponding theorem for mixed-strategy version in [16]. It’s notable

that there’re differentsolution conceptsfor different kind of games, for exampleperfect

Bayesian equilibriumfor Bayesian game.

3Mixed strategy is randomization of pure strategy, which can be viewed as more general strategy than

pure one. The condition for existence of mixed-strategy NE is also looser than for pure-strategy NE. How-

ever, we often like to find pure-strategy NE since it’s more physically achievable.
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2.2.2 Multistage Bayesian Game

Considering each player contains its own private information without knowing others’

one, NE is not a suitable solution concept in such game due to the unknown information.

This kind of problem happens often, for example, say two competing firms whose strategy

is to determine the quantity of goods, what’s the best strategy for each of them without

knowing the other’s operation cost details? Or more generally, how would the game

proceed if there’s some uncertainty about players’ information? Bayesian game is a type

of game aiming at this kind of situation. The Bayesian approach forms belief about the

unknown information and allows each player to update its posterior beliefs,i.e. posterior

probabilities, about the other players’ private information by observing their actions in

prior stages. Each player can act accordingly in the current stage based on the updated

beliefs, and then the game proceeds in a way that each player maximizes its expected

profit according to its belief.

Game Formulation

A multistage Bayesian gameΓ can be formulated as follows,

Γ =
〈
I, {Ax(h

t)}, {θx ∈ Θx}, {ux}, {µx(θ−x|θx, h
0)}
∣∣∣x ∈ I, ht ∈ Ht, t = 0, 1, 2, · · · , T

〉
,

(2.5)

whereI ≡ {1, 2, · · · , N} is the set of players,Ax(h
t) is the set of actions available

for playerx given a historyht = (a0, a1, · · · , at−1) at the beginning of staget with the

notationaτ = aτ
1 × aτ

2 × · · · × aτ
N the action profile at stageτ with aτ

i ∈ Ai(h
τ ) being

the action of theith player at stageτ , Ht is the set of all historyht with h0 = Ø. T is

the length of game. We denote the set of all available actions for all players at stageτ as

A(hτ ) = A1(h
τ ) × A2(h

τ ) × · · · × AN(hτ ). θx is the private information, also known as

type, of playerx. Type, which is the incomplete information in Bayesian game, cannot

be known but can be inferred by other players. The type profileθ = θ1 × θ2 × · · · × θN ,

andθ−x denotes the type profileθ excludingθx. The actual type value for playerx is

denoted bŷθx, and the corresponding type profile iŝθ. The utility functionux of player

x is a mappingux : Hτ × θ → R from the spaceHτ × θ to the set of real numbersR. In
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other words,ux is afunction of all players’ types, past and current actions.µx(θ−x|θx, h
0)

is playerx’s belief about other players’ typeθ−x given its own typeθx at historyh0. In

contrast with the static game of incomplete information, the belief about others can be

updated stage by stage. Bayesian game defines the rule of how players update their belief

stage by stage, and the players’ actions can change according to the newly updates of

beliefs.

Solution Concept and Belief System

In the game theory literature, thesolution conceptin a multistage game of incomplete

information is called the perfect Bayesian equilibrium (PBE), which is a parallel to the

subgame perfect equilibrium (SPE) in a multistage game of complete information. As

SPE serves as a refinement of the Nash equilibrium in a multistage game of complete

information, PBE is a refinement of the Bayesian NE (BNE) in a multistage game of

incomplete information. To obtain PBE, some restrictions and assumptions on the belief

system must be satisfied, and players’ behaviors must besequentially rational[16]. For

the purpose of self-contained exposition of this thesis, we list the definition for the pure-

strategy PBE. The mixed-strategy version can also be found in [16].

Definition 7 A perfect Bayesian equilibrium is a(a∗, µ) that satisfies (P) and B(i)-B(iv).

B(i) Posterior beliefs are independent, and all types of playerx have the same beliefs.

For allθ, t, andht, we have

µx(θ−x|θx, h
t) =

∏

y 6=x

µx(θy|h
t). (2.6)

B(ii) Bayes’ rule is used to update beliefs fromµx(θy|h
t) to µx(θy|h

t+1) whenever pos-

sible. For allx, y, ht, andat
y ∈ Ay(h

t), if there exists̆θy with µx(θ̆y|h
t) > 0 and

at∗
y (θ̆y) = at∗

y (θ̂y), then, for allθy

µx(θy|h
t+1) =

µx(θy|h
t)δ
(
at∗

y (θy) − at∗
y (θ̂y)

)

∑
θ′y:at∗

y (θ′y)=at∗
y (θ̂y) µx(θ′y|h

t)
, (2.7)
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where

δ
(
at∗

y (θy) − at∗
y (θ̂y)

)
=





1, if at∗

y (θy) = at∗
y (θ̂y) ,

0, otherwise.
(2.8)

whereat∗
y (θy) denotes the best action for playery corresponds to typeθy at staget.

Note that B(ii) doesn’t restrict the way belief about playery are updated if player

y’s stage-t action had conditional probability 0, which is the very difference from

SE.

B(iii) For allht, x, y, θy, at, andãt,

µx(θy|(h
t, at)) = µx(θy|(h

t, ãt)) if at
y=ãt

y (2.9)

This condition means that even if playery does deviate at staget, the updating

process should not be influenced by the action of other players.

B(iv) For allht, θz, andx 6= y 6= z,

µx(θz|h
t) = µy(θz|(h

t)) = µ(θz|(h
t)) (2.10)

the belief of playerx, y about third playerz are the same.

This condition implies that the posterior beliefs are consistent with a common joint

distribution onΘ givenht with

µ(θ−x|h
t)µ(θx|(h

t)) = µ(θ|(ht)) (2.11)

(P) Sequentially rational: For each playerx, typeθx, and historyht,

at∗
x (θx) = arg max

at
x∈Ax

∑

θ−x

µx(θ−x|h
t)ux(a

t
x, a

t∗
−x(θ−x)|θ, ht), (2.12)

Here we assume thatΘ is discrete set. For continuous set, we replace the summa-

tion with integral for the condition (P), or we can do approximation by quantizing

continuous set into discrete one.

14



Chapter 3

Mult istage Bayesian Spectrum Trading

Game

3.1 Problem Setup

We consider a cognitive radio network withN primary services (e.g. the existing cellu-

lar services) andM secondary services (e.g. an SS can be a small network with a CR

base-station and multiple CR users), as shown in Fig. 3.1. Theith PS operates on its

own exclusive spectrumWi, from which theith PS can lease available unused bandwidth

bji to thejth SS who doesn’t own the legal right to use the spectrum. To maximize each

PS’s profit, each PS offers different prices to different SS’s. In the trading process, all

PS’s compete with each other in the prices offering to the SS’s, and each SS decides from

whom and how much of the available spectrum to rent. Specifically, we model the spec-

trum trading process as a multistage game in a manner that all PS’s simultaneously set

their own pricespji, for all i andj, in the first stage. And, in the subsequent stage the

jth SS requests bandwidthbji from theith PS, fori = 1, 2, · · · , N andj = 1, 2, · · · , M .

Practically, however, each player (PS or SS) may possess its own private information that

is unknown to other players. Therefore, each player cannot predict the overall trading

behaviors correctly, which makes the decisions of optimal strategies a challenging task.

In this incomplete information game, we propose using the theory of multistage Bayesian

game to deal with the problem. The dynamic Bayesian approach allows each player to
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Figure 3.1: The cognitive radio network with multiple primary services and multiple

secondary services.

update its posterior beliefs,i.e. posterior probabilities, about the other players’ private in-

formation by observing their actions in prior stages. And, each player can act accordingly

in the current stage based on the updated beliefs.

We assume that each player is selfish, but rational in the considered multistage sequen-

tial Bayesian game [16]. And the objective is to find the perfect Bayesian equilibrium for

all players actions in a way that each player maximizes its expected profit as the game

evolves sequentially.

As the private information may not be updated promptly and the channel conditions

may change, we study a repeated version of the multistage Bayesian. The evolution of

the repeated multistage game is illustrated in Fig. 3.2 with that one unit game composed

of two stage is finished in one period.

Rather than learning in game to reach equilibrium, which spends time and energy

on signaling and evolving, we believe that computing optimal strategy in one shot is

more suitable for our scenario by the following reasons. First, the decision making of

primary/secondary service is done by each primary/secondary base station, so the com-
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Figure 3.2: The evolution of the multistage sequential game.

plexity of computing optimization problem is affordable for them. Also, since the players

are BS, the numberN andM is not as much as the number of terminal wireless users in

a normal cell.

3.2 Game Formulation

In this section, we describe the proposed multistage Bayesian game for spectrum trading

with a general utility function. We will illustrate the idea by a specific example in Sec.

3.4.

We formulate the spectrum trading process as a multistage Bayesian game

Γ =
〈
I, {Ax(h

t)}, {θx ∈ Θx}, {Px}, {µx(θ−x|θx, h
0)}
∣∣∣x ∈ I, ht ∈ Ht, t = 0, 1, 2, ..., T

〉
,

(3.1)

whereI , Ip ∪ Is is the set of players withIp = {p1, p2, . . . , pN} being the set of all

PS’s andIs = {s1, s2, . . . , sM} the set of all SS’s,Ax(h
t) is the set of actions available

for player x given a historyht = (a0, a1, · · · , at−1) at the beginning of staget with

aτ = aτ
p1

× aτ
p2

× · · · × aτ
pN

× aτ
s1

× aτ
s2

× · · · × aτ
sM

the action profile consisting of

the actions from all players (including PS’s and SS’s) at stageτ with aτ
pi

∈ Api
(hτ ) and

aτ
sj

∈ Asj
(hτ ) being the action of theith PS and thejth SS at stageτ , respectively. The

setHt contains all possible historiesht’s at timet with H0 the null set. We denote the set
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of all available actions for all players asA(hτ ) = Ap1
(hτ ) ×Ap2

(hτ )× · · · ×ApN
(hτ )×

As1
(hτ ) × As2

(hτ ) × · · · × AsM
(hτ ).

We denotepp
i = (p1i, p2i, · · · , pMi)

T , ps
j = (pj1, pj2, · · · , pjN)T , bp

i = (b1i, b2i, · · · , bMi)
T ,

bs
j = (bj1, bj2, · · · , bjN)T , pτ = p

p,τ
1 ×p

p,τ
2 ×· · ·×p

p,τ
N , andbτ = b

s,τ
1 ×b

s,τ
2 ×· · ·×b

s,τ
M . In

each time period, PSi sets priceapi
= p

p
i at the even stage and stays silent (i.e. api

= φ)

at the odd stage [16]. On the contrary, SSj performs ”do nothing” (i.e. asj
= φ) at the

even stage and demandsasj
= bs

j for bandwidth at the odd stage. Therefore,aτ = pτ ×φ

at even stage, andaτ = φ×bτ at odd stage whereφ is the action profile of ”do nothing”.

Θx is the set of possible private informationθx for playerx. The type profileθp =

(θp1
, θp2

, · · · , θpN
), andθs = (θs1

, θs2
, · · · , θsM

). θp−i
denotes the type profileθp exclud-

ing θpi
. Similarly,θs−j

denotes the type profileθs excludingθsj
. The overall type profile

is θ = (θs, θp). The actual type value for playerx is denoted bŷθx, and the actual type

profile for PS’s, SS’s and overall players areθ̂p, θ̂s, θ̂, respectively.Px standing for the

profit function (i.e. the net utility) of playerx is a mappingPx : Hτ × θ → R from the

spaceHτ × θ to the set of real numbersR. µx(θ−x|θx, h
t) is playerx’s beliefs about

other players’ types given its typeθx with historyht. More details about the beliefs will

be described in the next section.

In contrast with the static game of incomplete information, the belief about others can

be updated stage by stage, and the players’ actions can change according to the newly

updates of beliefs.

3.3 General Formulation for Multiple Sellers and Multi-

ple Buyers

3.3.1 Utility Model

As mentioned in the system model, PSi leases bandwidthbji to SSj The amount ofbji

affects the remaining available bandwidth of PSi, and thus affects the corresponding QoS

satisfaction, which for PSi is denoted by the utility functionupi
(bp

i |θ, ht). The monetary

gain of trading is
∑

j pjibji = (pp
i )

Tb
p
i , where the superscriptT means vector transpose.
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And the total profit of PSi is given by

Ppi
(pp

i ,b
p
i |θ) = upi

(bp
i |θ) + (pp

i )
Tb

p
i , (3.2)

whereupi
(bp

i |θ, ht) is denoted asupi
(bp

i |θ) for notational simplicity, also the condition

on historyht will be omitted inPpi
. We assume thatPpi

(pp
i ,b

p
i |θ) is a concave function

of (pp
i ,b

p
i ). Although such assumption is made, we will show in the explicit system that

the assumption may not be the same as general formulation does to guarantee the joint

KKT condition.Θ is assumed a discrete space in the formulation.

For secondary service, the utility of QoSusj
(bs

j |θ) is modeled as a concave function

of bs
j . The cost of buying bandwidth is

∑
i pjibji = (ps

j)
Tbs

j . The total profit of secondary

service is

Psj
(ps

j ,b
s
j |θ) = usj

(bs
j |θ) − (ps

j)
Tbs

j (3.3)

which is still a concave function ofbs
j .

3.3.2 Self-Optimization and KKT Translation

Since SSj is a follower of the game, it can observe the sellers’ actionps
j(θ̂p) = (pj1(θ̂p1

),

pj2(θ̂p2), · · · , pjN(θ̂pN
))T . Note thatps

j(θ̂p) is the optimal price corresponds to type pro-

file θ̂p, and SS just observes the prices without the knowledge ofθ̂p. That is, SS may still

don’t knowθ̂p correctly (θp is still random), but the prices corresponds toθ̂p is determin-

istic. Based on that, SSj of type θ̂sj
would maximize its expected profit which can be

formulated as

bs∗
j = arg max

bs
j

Eθs
−j

,θp
[Psj

(ps
j(θ̂p),b

s
j |θ̂sj

θs−j
θp)] (3.4)

The KKT condition [17] for the profit maximization of SSj of type θ̂sj
is

∇bs
j
Eθs

−j
,θp

[Psj
(ps

j(θ̂p),b
s
j |θ̂sj

θs−j
θp)]|bs

j=bs∗
j

= 0, (3.5)

which is equivalent to

∇bs
j
Eθs

−j
,θp

[usj
(bs

j |θ̂sj
, θs−j

, θp)]|bs
j=bs∗

j
= ps

j(θ̂p), (3.6)
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here we observe thatbs∗
j is a function of θ̂sj

and θ̂p, hence it can be can denote as

bs∗
j (θ̂sj

, θ̂p). Another observation is that SS’s self-optimization are not coupled each other,

namely, the profit maximization for SSj depends on all PS’s and SSj itself but not other

SS’s. Hence, to be sequentially rational for SSj, it only needs to solve (3.5) or (3.6)

without taking other SS’s action into consideration.

But, how would PS’s move with knowing that each SS is sequentially rational? It’s

widely known that the techniquebackward induction[16] is useful in solving finite dy-

namic game of perfect information. Here we apply the similar idea in solving trading

game. All primary services know that SSj would ask the best demandbs∗
j (θ̂sj

, θ̂p), or

equivalently, they know the KKT condition for all SS’s (3.6). However, since PSi doesn’t

know the exact typêθsj
andθ̂p−i

exactly, PSi viewsbs∗
j (θsj

, θ̂pi
, θp−i

) as a random vari-

able with uncertainθsj
andθp−i

. Here, the objective of PSi is to maximize its expected

profit based on the beliefsµ(θs, θp−i
|ht) about other players’ private information, consid-

ering the KKT condition of SS’s. The optimization for PSi of type θ̂pi
is therefore given

by

p
p∗
i (θ̂pi

) = arg max
p

p
i

Eθs,θp
−i

[Ppi
(pp

i ,b
p∗
i (θs, θ̂pi

, θp−i
)|θs, θ̂pi

, θp−i
)], (3.7)

s.t.0 ≤b∗ji(θsj
, θ̂pi

, θp−i
), ∀sj , ∀θsj

∈ Πsj
(ht), ∀θp−i

∈ Πp−i
(ht), (3.8)

Wi ≥
∑

j

b∗ji(θsj
, θ̂pi

, θp−i
), ∀θs ∈ Πs, ∀θp−i

∈ Πp−i
(ht), (3.9)

ps
j(θ̂pi

, θp−i
) =∇bs

j
Eθs

−j
,θp

[usj
(bs

j |θ)]|
bs

j=bs∗
j (θsj

,θ̂pi
,θp

−i
), ∀sj , ∀θsj

∈ Πsj
(ht), ∀θp−i

∈ Πp−i
(ht),

(3.10)

whereΠsj
(ht) is the set of all possibleθsj

’s that satisfyµ(θsj
|ht) > 0, Πs is the set of all

possibleθs’s that satisfyµ(θs|h
t) > 0 andΠp−i

(ht) is the set of all possibleθp−i
’s that

satisfyµ(θp−i
|ht) > 0. The constraints in (3.8) and (3.9) limit the demand to be within

the physically realizable spectrum region afforded by PSi under all possible type profiles

of the other players. Note that there are numbers of inequalities in (3.8) and (3.9), but we

can reduce them by finding the minimal setΘm,i(h
t) andΘM,i(h

t) to represent these two

inequalities. The determination ofΘm,i(h
t) andΘM,i(h

t) depends largely on the utility

model. The constraint (3.10) is the KKT condition (3.6) for all SS’s for any possible type
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profile. In this work, we call this approach theKKT translation. In this optimization

problem, with the assumptions we’ve made, if the constraints (3.10) are affine functions,

then the problem is a convex optimization problem, otherwise it’s a optimization problem

[17]. The difference lies in whether KKT condition is sufficient and necessary or purely

necessary for the problem.

3.3.3 Perfect Bayesian Equilibrium and Joint KKT Condition

We are now ready to find the PBE at staget of the multistage Bayesian game modeled in

the considered cognitive radio network. The posterior belief is obtained by PBE updating

rule B(i)-B(iv). With that, the condition (P) of PBE at any stage is

p
p∗
i (θpi

) = arg max
p

p
i

Eθs,θp
−i

[Ppi
(pp

i ,b
p∗
i (θs, θpi

, θp−i
)|θ)], (3.11)

s.t.0 ≤b∗ji(θsj
, θpi

, θp−i
), ∀sj , ∀(θsj

, θp−i
) ∈ Θm,i(h

t), (3.12)

Wi ≥
∑

j

b∗ji(θsj
, θpi

, θp−i
), ∀(θs, θp−i

) ∈ ΘM,i(h
t), (3.13)

ps∗
j (θpi

, θp−i
) =∇bs

j
Eθs

−j
,θp

[usj
(bs

j |θ)]|bs
j=bs∗

j (θsj
,θpi

,θp
−i

), ∀sj , ∀θsj
∈ Πsj

(ht), ∀θp−i
∈ Πp−i

(ht),

(3.14)

∀θpi
∈ Πpi

(ht), ∀pi ∈ Ip

It is clear that if the constraint (3.14) is affine and the price profilep
p∗
−i(θp−i

) for all type

profiles is known, then the KKT condition is sufficient and necessary for solving the

convex optimization problem. However, finding the optimal strategy profilep
p∗
−i(θp−i

)

for all possibleθp−i
needs the information ofpp∗

i (θpi
) for all possibleθpi

. It follows that

each player has to jointly solve all PS’s KKT conditions simultaneously. The joint KKT

conditions are given by
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




−b∗ji(θsj
, θp) ≤ 0, ∀(θsj

, θp−i
) ∈ Θm,i(h

t), ∀sj ∈ Is

∑M
j=1 b∗ji(θsj

, θp) − Wi ≤ 0, ∀(θs, θp−i
) ∈ ΘM,i(h

t)

Kjk(θsj
) = pjk(θpk

), ∀θsj
∈ Πsj

(ht),

∀θp−i
∈ Πp−i

(ht), ∀sj ∈ Is, ∀pk ∈ Ip

λi,j,θsj
,θp

≥ 0, ∀(θsj
, θp−i

) ∈ Θm,i(h
t), ∀sj ∈ Is

νi,θs,θp
≥ 0, ∀(θs, θp−i

) ∈ ΘM,i(h
t)

λi,j,θsj
,θp

b∗ji(θsj
, θp) = 0, ∀(θsj

, θp−i
) ∈ Θm,i(h

t), ∀sj ∈ Is

νi,θs,θp
(
∑M

j=1 b∗ji(θsj
, θp) − Wi) = 0, ∀(θs, θp−i

) ∈ ΘM,i(h
t)

∇p
p
i
Li = 0

∀θpi
∈ Πpi

(ht), ∀pi ∈ Ip. (3.15)

whereλi,j,θsj
,θp

−i
, νi,θs,θp

−i
andηk,j,θsj

,θp
−i

are Lagrange multipliers.Kjk(θsj
) represents

righthand part of equation (3.14), which is

Kjk(θsj
) ≡

∂Eθs
−j

,θp
[usj

(bs
j |θ)]|bs

j
=bs∗

j
(θsj

,θp)

∂bjk
, ∀pk ∈ Ip (3.16)

Li is Lagrangian function of PSi of typeθpi
, which is

∇p
p
i
Li = ∇p

p
i
Eθs,θp

−i
[Ppi

(pp
i ,b

p∗
i (θ)|θ)] (3.17)

−
∑

sj∈Is,(θsj
,θp

−i
)∈Θm,i(ht)

λi,j,θsj
,θp

∇p
p
i
(−b∗ji(θsj

, θp)) (3.18)

−
∑

(θs,θp
−i

)∈ΘM,i(ht)

νi,θs,θp
∇p

p
i

(
M∑

j=1

b∗ji(θsj
, θp) − Wi

)
(3.19)

−
∑

pk∈Ip,sj∈Is,θsj
∈Πsj

(ht),θp
−i

∈Πp
−i

(ht)

ηk,j,θsj
,θp

∇p
p
i
[pjk(θpk

) −Kjk(θsj
)] (3.20)

The solution of joint KKT specifiespp∗
i (θpi

) for all possibleθpi
for all pi.
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3.4 Explicit System For Multiple Sellers and Multiple Buy-

ers

3.4.1 Utility Model

In this part, we adopt and modify the utility models in [8]. The profit function of theith

PS is given by

Ppi
(pp

i ,b
p
i |θpi

) = (pp
i )

Tb
p
i + c1θpi

− c2θpi

(
Breq

i − k
(p)
i

Wi −
∑M

j=1 bji

θpi

)2

, (3.21)

wherec1 andc2 are constant weights,Breq
i is the bandwidth requirement for a primary

connection,k(p)
i = log2

(
1 +

1.5γp
i

ln(0.2/BERtar

i )

)
denotes the spectral efficiency of wireless

transmission for theith PS withγp
i being the signal-to-noise ratio (SNR) at theith PS’s

receivers andBERtar
i being the target bit-error-rate (BER) for theith PS’s local connec-

tion [18]. The private informationθpi
, taking values in the setΘp, represents the number

of connections in theith PS. The first term in righthand side of (3.21) is the monetary

gain of selling bandwidths. The second term is the revenue of maintaining primary con-

nections that is proportional toθpi
. The third term is the cost of sharing the spectrum with

SS’s, the square term could be interpreted as magnification of the difference between re-

quired throughput and actual serving throughput per terminal user ofith PS. Instead of

single SS scenario in [8], the profit function (3.21) considers multiple SS’s.

The profit function of SSj is given by

Psj
(ps

j ,b
s
j |θsj

) =
1

θsj

[
N∑

i

bjik
(sj)
i −

1

2

(
(bs

j)
Tbs

j + 2ξj

∑

k 6=i

bjkbji

)]
− (ps

j)
Tbs

j ,

(3.22)

whereξj ∈ [−1.0, 1.0] is jth SS’s spectrum substitutability is defined as follows. When

ξj = 1, SSj could switch among the spectrum rent from all PS’s freely. Whenξj = 0,

SSj can’t switch among the operating spectrum. Ifξj < 0, spectrum sharing by SSj is

complementary, that is, it will need to buy one or more additional spectrum simultane-

ously. We consider0 ≤ ξj ≤ 1 for the rest of the thesis, the other case−1 ≤ ξj ≤ 0

is straightforward.k(sj)
i = log2

(
1 +

1.5γs
ji

ln(0.2/BERtar

j )

)
denotes the the spectral efficiency
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acquired byjth SS’s secondary user on the bandWi owned by PSi. The first two term

in righthand side of (3.22) are QoS satisfaction function of SSj, which is modeled as

a concave function ofbs
j . The last term is the payment for buying bandwidths from all

PS’s. Compared with the utility in [8], we introduce the private informationθsj
of jth SS

in this paper to represent the factor leveraging the weighting between QoS and the spec-

trum trading expense. This weighting factor is implicitly related to the number of active

connections within SS. When there is no connections requested by the cognitive users in

jth SS,jth SS must have zero profit in terms of QoS and the correspondingθsj
is∞.

3.4.2 Solving for Perfect Bayesian Equilibrium

To obtain the optimal strategy ofjth SS of typêθsj
, the KKT condition of the maximiza-

tion of jth SS’s profit function is

∇bs
j
Eθs

−j
,θp

[Psj
(ps

j(θ̂p),b
s
j |θ̂sj

)]|bs
j=bs∗

j
= ∇bs

j
Psj

(ps
j(θ̂p),b

s
j|θ̂sj

)|bs
j=bs∗

j
= 0, (3.23)

In this example, the close form solution of the best demand fromjth SS toith PS is

obtained as follows

b∗ji(θ̂sj
, θ̂p) = Dji(p

s
j(θ̂p), θ̂sj

) = D1,ji(p
s
j−i(θ̂p−i

), θ̂sj
) − θ̂sj

pji(θ̂pi
)D2,j , (3.24)

whereps
j−i(θ̂p−i

) is ps
j(θ̂p) with the exclusion ofpji(θ̂pi

) and

D1,ji(p
s
j−i(θ̂p−i

), θ̂sj
) =

Cji

Aj
+

ξj θ̂sj

∑
k 6=i pjk(θ̂pk

)

Aj
(3.25)

D2,j =
(ξj(N − 2) + 1)

Aj

> 0, if 0 ≤ ξj ≤ 1 (3.26)

with Aj = (1 − ξj)(ξj(N − 1) + 1) ≥ 0, Cji = k
(sj)
i (ξj(N − 2) + 1) − ξj

∑
k 6=i k

(sj)
k .

We observe thatDji(p
s
j(θ̂p), θ̂sj

) is an affine function ofps
j . It would increase as

pjk(θ̂pk
) increases for allpk ∈ Ip, pk 6= pi and would decrease aspji(θ̂pi

) increases.

The minimum ofDji(p
s
j(θ̂p), θ̂sj

) happens whenpji(θ̂pi
) is highest andps

j−i(θ̂p−i
) is low-

est. However, the dependency onθ̂sj
is not clear, which also depends onps

j−i(θ̂p−i
) and

pji(θ̂pi
). Similar reasoning could be applied for the maximum ofDji(p

s
j(θ̂p), θ̂sj

). Hence,
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the minimal set for bandwidth constraint (3.8) and (3.9) are

Θm,i,j(h
t) = {(θm

sj
, θm

p−i
), (θM

sj
, θm

p−i
)} (3.27)

ΘM,i(h
t) = {(θc

s, θ
M
p−i

)
∣∣(θc

s)j = θm
sj

or θM
sj

, ∀sj ∈ Is} (3.28)

whereθm
sj

is minimum ofθsj
with µ(θm

sj
|ht) > 0, θM

sj
is maximum ofθsj

with µ(θM
sj
|ht) >

0, θm
p−i

is elementwise minimum ofθp−i
with µ(θm

p−i
|ht) > 0, θM

p−i
is elementwise maxi-

mum ofθp−i
with µ(θM

p−i
|ht) > 0.

Then, we examine the objective function of PS’s.Ppi
(pp

i ,b
p∗
i (θs, θpi

, θp−i
)|θ) is not a

concave function of(pp
i ,b

p
i ) in this explicit case, but withbp∗

i (θs, θpi
, θp−i

) being replaced

with Dp
i (p(θp), θs) , the new functionPpi

(pp
i ,D

p
i (p(θp), θs)|θpi

) is concave ofpp
i , where

Dp
i (p(θp), θs) = (D1i(p

s
1(θp), θs1

), · · · ,Dji(p
s
j(θp), θsj

), · · · ,DMi(p
s
M(θp), θsM

))T . To-

gether withb∗ji(θsj
, θpi

, θp−i
) in (3.12) and (3.13) being replaced withDji(p

s
j(θp), θsj

), we

can drop the equation (3.14), and the equation (3.11)- (3.13) becomes,

p
p∗
i (θpi

) =arg max
p

p
i

Eθs,θp
−i

[Ppi
(pp

i ,D
p
i (p(θp), θs)|θpi

)], (3.29)

s.t.0 ≤ Dji(p
s
j(θp), θsj

), ∀sj ∈ Is, ∀(θsj
, θp−i

) ∈ Θm,i,j(h
t), (3.30)

Wi ≥
M∑

j=1

Dji(p
s
j(θp), θsj

), ∀(θs, θp−i
) ∈ ΘM,i(h

t), (3.31)

∀θpi
∈ Πpi

(ht), ∀pi ∈ Ip.

The optimization of PS’s in the explicit system is a convex optimization problem. And

the joint KKT condition now becomes





−Dji(p
s
j(θp), θsj

) ≤ 0, ∀sj ∈ Is, ∀(θsj
, θp−i

) ∈ Θm,i,j(h
t)

∑M
j=1 Dji(p

s
j(θp), θsj

) − Wi ≤ 0, ∀(θs, θp−i
) ∈ ΘM,i(h

t)

λi,j,θsj
,θp

≥ 0, ∀sj ∈ Is, ∀(θsj
, θp−i

) ∈ Θm,i,j(h
t)

νi,θs,θp
≥ 0, ∀(θs, θp−i

) ∈ ΘM,i(h
t)

λi,j,θsj
,θp

Dji(p
s
j(θp), θsj

) = 0, ∀sj ∈ Is, ∀(θsj
, θp−i

) ∈ Θm,i,j(h
t)

νi,θs,θp

(∑M
j=1 Dji(p

s
j(θp), θsj

) − Wi

)
= 0, ∀(θs, θp−i

) ∈ ΘM,i(h
t)

∇p
p
i
Li(θpi

) = 0

∀θpi
∈ Πpi

(ht), ∀pi ∈ Ip, (3.32)
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whereLi(θpi
) is the Lagrangian function for maximization ofith PS of typeθpi

, and the

n-th element of∇p
p
i
Li(θpi

) is

[
∇p

p
i
Li(θpi

)
]

n
=

∂Li(θpi
)

∂pni

=
∂E [Ppi

(pp
i ,D

p
i (p

s(θp), θs)|θpi
)]

∂pni

− λi,n,θm
sn

,θm
p
−i

θm
sn

D2,ni − λi,n,θM
sn

,θm
p
−i

θM
sn

D2,ni +
∑

(θs,θp
−i

)∈ΘM,i(ht)

θsn
D2,niνi,θs,θp

Since∇p
p
i
Eθs,θp

−i
[Ppi

] = Eθs,θp
−i

[∇p
p
i
Ppi

], we compute

[
∇p

p
i
Ppi

(pp
i ,D

p
i (p

s(θp), θs)|θpi
)
]

n
=

∂Ppi
(pp

i ,D
p
i (p

s(θp), θs)|θpi
)

∂pni

=

[
Cni

An

+ 2c2k
(p)
i θsn

D2,ni

(
Breq

i − k
(p)
i

Wi −
∑M

j=1
Cji

Aj

θpi

)]

︸ ︷︷ ︸
En,i(θpi

,θsn)

−

[

2θsn
D2,ni +

2c2(k
(p)
i θsn

D2,ni)
2

θpi

]

︸ ︷︷ ︸
Gn,i(θpi

,θsn)

pni(θpi
) −

2c2(k
(p)
i )2θsn

D2,ni

θpi︸ ︷︷ ︸
Hn,i(θpi

,θsn)

∑

j 6=n

θsj
pji(θpi

)D2,j

+

[
ξnθsn

An

+
2c2(k

(p)
i θsn

)2D2,niξn

θpi
An

]

︸ ︷︷ ︸
Fn,i(θpi

,θsn )

∑

k 6=i

pnk(θpk
) +

2c2(k
(p)
i )2θsn

D2,ni

θpi︸ ︷︷ ︸
In,i(θpi

,θsn)

∑

j 6=n

ξjθsj

Aj

∑

k 6=i

pjk(θpk
)

= En,i(θpi
, θsn

) − Gn,i(θpi
, θsn

)pni(θpi
) − Hn,i(θpi

, θsn
)
∑

j 6=n

θsj
pji(θpi

)D2,j

+ Fn,i(θpi
, θsn

)
∑

k 6=i

pnk(θpk
) + In,i(θpi

, θsn
)
∑

j 6=n

ξjθsj

Aj

∑

k 6=i

pjk(θpk
), ∀sn ∈ Is.

Therefore,

Eθs,θp
−i

[
∂Ppi

(pp
i ,D

p
i (p

s(θp), θs)|θpi
)

∂pni

]
= En,i − Gn,ipni(θpi

) − Hn,i

∑

j 6=n

θsj
· pji(θpi

)D2,j

+ Fn,i

∑

k 6=i

pnk(θpk
) + In,i

∑

j 6=n

ξjθsj

Aj

∑

k 6=i

pjk(θpk
).

3.4.3 Algorithm for Solving Joint KKT Condition

The joint KKT conditions can be solved by active-set method [19], which is summarized

in Algorithm 1.
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Algorithm 1 Active-set method for solving joint KKT condition

0: Define: S ,
⊔

i,j Θm,i,j(h
t) ∪ ΘM,i(h

t), andW is the working set.

1: Initialize : SetW = ∅.

2: Repeat: Solve the joint KKT conditions with thatλi,j,θsj
,θp

= 0 and

νi,θs,θp
= 0 for those constraints/∈ W.

3: Condition 1: Check whether equation (3.30) is satisfied forθM
pi

, ∀pi ∈ Ip

4: Condition 2: Check whether equation (3.31) is satisfied forθm
pi

, ∀pi ∈ Ip

5: Condition 3: Check whetherλi,j,θsj
,θp

≥ 0 andνi,θs,θp
≥ 0 for

those constraints∈ W,

6: If conditions 1, 2, and 3 all are satisfied,then

we obtain the optimalpp∗
i (θpi

) for all θpi
∈ Πpi

(ht) and for allpi. We finish.

7: Elsechoose anotherW ⊂ S.

8: End repeat

The complexity of this algorithm depends on two factors, one is how you choose next

working set, and the other is how you solve the linear equations. If the simplest working

set choosing,i.e. linear choosing, is implemented, then the worst case searching number

would be22MN+N2M

. It’s because there’re2MN + N2M constraints in total, therefore

22MN+N2M

combinations of working set are possible. The number of linear equations

for given working setW is (N ∗ M ∗ |Θp| + |W|), where|W| is the number of active

constraints, which ranges from 0 to22MN+N2M

.

To make this algorithm more practical, we can reduce the complexity by quantizing

Θp. For instance, if nowΘp ≡ {1, 2, · · · , 10}, then we can quantize it into 2 subsets, the

upper set and the lower set, and let8 be the representative element for upper set, and3 be

the representative element for lower set. For all elements greater than 5, they are viewed

8; for all elements less or equal to 5, they are viewed 3. Now the algorithm is performed

with the quantized type spaceΘq
p ≡ {3, 8}. After the current period game is finished and

the opponents’ type are classified into either upper set or lower set, the upper or lower set

could be further quantized for the next period game. In this way, the type space is now of
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size 2 for every time calculation, so the complexity is greatly reduced.

3.5 Convergence of Beliefs and Actions

In this section, we discuss the convergence of beliefs and actions. We’ll conclude that 1.

the belief update always tends to lead to a correct one, but may not converge; 2. although

the belief may not converge, the action would converge to the one of actual type.

Proposition 1 The belief of playerx 6= y about the actual type of playerz at staget

would be greater or equal to the belief at staget′ if t > t′.

µi(θ̂j |h
t) ≥ µi(θ̂j |h

t′) (3.33)

Proof 1

µi(θ̂j |h
t′+1) =

µi(θ̂j |h
t′)δ(at∗

j (θ̂j) − at∗
j (θ̂j))∑

θ′j :a
t∗
j (θ′j)=at∗

j (θ̂j)
µi(θ

′
j |h

t′)
(3.34)

=
µi(θ̂j |h

t′)∑
θ′j :a

t∗
j (θ′j)=at∗

j (θ̂j)
µi(θ

′
j |h

t′)
≥ µi(θ̂j |h

t′) (3.35)

According to the above statement, the updating of belief is never a misleading updat-

ing. But it doesn’t address about whether the updating converges to the actual one or not,

perhaps the improvement stops before converging to the actual one. Fortunately, even

the belief may not converge to actual profile, the action profile taken by all players con-

verges, and it would converge to the action profile same as the one taken in the complete

information game. The reasoning is as follows.

Given thatpj−i(θp−i
) are taken by joint KKT method, PSi knows that the optimal

demand from SSj of typeθsj
is b∗ji(θsj

, θ̂pi
, θp−i

) by solving (3.10). The optimal pricing

p∗unc
ji (θ̂pi

) of (3.7) without constraint (3.8) and (3.9) may result in feasible or infeasible

demandb∗unc
ji (θsj

, θ̂pi
, θp−i

). However, the demand must be feasible. Ifp∗unc
ji (θ̂pi

) makes

the i-th demand negative, then by joint KKT condition,b∗ji(θsj
, θ̂pi

, θp−i
) would be fixed

to 0, and that would reversely generate new optimali-th pricingp∗ji(θ̂pi
) by solving the
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following equations

p∗ji(θ̂pi
) =

∂Eθp
[usj

(bs
j |θ)]|bs

j=bs∗
j (θ)

∂bji
, (3.36)

pjk(θpk
) =

∂Eθp
[usj

(bs
j |θ)]|bs

j=bs∗
j (θ)

∂bjk

, ∀k 6= i, (3.37)

where the i-th term ofbs∗
j (θ) is b∗ji(θsj

, θ̂pi
, θp−i

) = 0. Note that sinceb∗ji(θsj
, θ̂pi

, θp−i
) =

0, Solving (3.37) obtainsb∗j−i for givenpj−i(θp−i
), which means thatb∗j−i is irrelevant to

p∗ji(θ̂pi
) if p∗unc

ji (θ̂pi
) gives negative demand. Then, sinceb∗ji(θs, θ̂pi

, θp−i
) = 0, b∗j−i is

determined bypj−i(θp−i
) solely, andp∗ji(θ̂pi

) is determined byb∗j−i completely. The rela-

tion between the newly generated optimal pricingp∗ji(θ̂pi
) and typeθ̂pi

lies onp∗unc
ji (θ̂pi

).

If p∗unc
ji (θ̂pi

) results in feasibleb∗unc
ji (θsj

, θ̂pi
, θp−i

), thenp∗ji(θ̂pi
) = p∗unc

ji (θ̂pi
), which de-

pends on̂θpi
. If p∗unc

ji (θ̂pi
) results in negativeb∗unc

ji (θsj
, θ̂pi

, θp−i
), thenp∗ji(θ̂pi

) is deter-

mined bypj−i(θp−i
) completely, which is independent ofθpi

. Here, we defineΘj,i,neg ≡

{θpi
exceptθ̂pi

|p∗unc
ji (θpi

) results in negative demand} to proceed the discussion. For those

θpi
∈ Θj,i,neg, thei-th demandb∗ji(θsj

, θpi
, θp−i

) = 0 by joint KKT andp∗ji(θpi
) will also be

constrained as (3.36). Following the same reasoning,pj−i(θp−i
) determinesp∗ji(θpi

) com-

pletely, and the constrained pricingp∗ji(θpi
) is independent ofθpi

. Therefore, ifp∗unc
ji (θ̂pi

)

results in negative demand, thenp∗ji(θ̂pi
) is the same asp∗ji(θpi

) for θpi
∈ Θj,i,neg given

the samepj−i(θp−i
) (hence for the sameθ−i). Clearly, ifΘj,i,neg is nonempty, then PSi’s

opponents couldn’t tell what the actual type PSi is since the best strategy for those type

are the same, but we should note that the best strategy still corresponds to the actual type.

It’s similar to apply the reasoning for the case that the demand more thanWi, then by

joint KKT condition,b∗ji(θsj
, θ̂pi

, θp−i
) would be fixed toWi, and that would reversely gen-

erate new optimali-th pricingp∗ji(θ̂pi
) by (3.36) with the i-th term ofb∗(θ) is b∗ji(θsj

, θ̂pi
, θp−i

) =

Wi.

To sum up, although the belief may not converge to the actual type, the actions always

converge to the actual value.
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Chapter 4

Simulations

4.1 Simulation Setup

The explicit model developed in Section 3.4 is adopted for simulation. In the first section,

we show the effectiveness of the proposed joint KKT method for several cases and com-

pare it with other existing work. In the second section, we examine the players’ actions

and the belief about players’ type as time evolves and numerically analyze the result.

The type space of PS’s is set to beΘP = {10, 11, 12}, and the type space of SS’s is

set asΘS = {1, 2, 3}. The initial beliefs are assumed uniformly distributed over the type

space,µ(θpi
|h0) = 1

3
for all pi andµ(θsj

|h0) = 1
3

for all sj. The constants in the PS’s

utility are chosen asc1 = 2 andc2 = 2, and the spectrum substitutabilityξj is 0.4 for all

sj. Note that some parameters may change depending on different simulation scenarios,

and the remaining parameters will be specified in each simulation scenario.

4.2 Numerical Results

4.2.1 Effectiveness of The Joint KKT Conditions

In the section, we simulate the multistage game with complete information,i.e. µx(θ̂y) =

1 for all x, y, and compare the results of the proposed joint KKT conditions with those

in [8] that corresponds to the unconstrained (unc) spectrum sharing to observe the effec-
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tiveness with effectiveness of joint KKT conditions.

2 PSvs. 1 SS

First, we simulate the game with 2 PS and 1 SS with complete information, and compare

the results of the proposed joint KKT conditions with those in [8] that correspond to

unconstrained (unc) game. Since there’s only one SS,bi denotesb1i for simplicity, andpi

denotesp1i. Note that the constraint forbi in (3.8) is denoted here asfi,1, and that in (3.9)

is denoted here asfi,2. We show the best responses (BR), Nash equilibrium (NE) and the

corresponding feasible regions in both Fig. 4.1 and Fig. 4.3. The intersection of the best

responses is the NE which is the result of sequential rationality when the information is

complete.

In Fig. 4.1, with parametersW1 = 15 MHz andW2 = 15 MHz, Breq
1 = 2 Mbps and

Breq
2 = 2 Mbps, θ̂p1

= 10 and θ̂p2
= 10, θ̂s1

= 1, and the received SNR’sγp
1 = 15 dB,

γp
2 = 15 dB, γs

11 = 22 dB, andγs
12 = 22 dB, the unc solution satisfies the bandwidth

constraints, so it agrees with the solution of the proposed joint KKT conditions. Fig.

4.2(a) shows the profit function of PS1 given PS2 acting equilibrium strategy obtained

by solving joint KKT condition and SS taking best demand. Fig. 4.2(b) shows the profit

function of PS2 on similar condition. In this case, we observe that the feasible region

on each PS’s profit function cover the unconstrained best response point. Fig. 4.2(c)

shows the contour plot of the profit of SS given that PS1 and PS2 act equilibrium strategy

obtained by solving joint KKT condition, and it shows that SS’s highest profit lies in

strictly feasible region.

In Fig. 4.3, with parametersW1 = 5 MHz, W2 = 5 MHz, Breq
1 = 2 Mbps and

Breq
2 = 2 Mbps, θ̂p1

= 10 and θ̂p2
= 10, θ̂s1

= 1, and the received SNR’sγp
1 = 15 dB,

γp
2 = 15 dB, γs

11 = 22 dB, γs
12 = 10 dB, the unc solution lies outside the bandwidth

constraints, while the optimal strategiesb∗1 = 0 andb∗2 = 0 of the joint KKT conditions

satisfy the constraint. Fig. 4.4(a) shows the profit function of PS1 given that PS2 acting

equilibrium strategy obtained by solving joint KKT condition and SS taking best demand.

Fig. 4.4(b) shows the profit function of PS2 on similar condition. Fig. 4.4(c) shows the

contour plot of the profit of SS given that PS1 and PS2 act equilibrium strategy obtained
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Figure 4.1: The best response, Nash equilirium and feasible region for PS’s withW1 = 15

MHz andW2 = 15 MHz, γp
1 = 15 dB, γp

2 = 15 dB, γs
11 = 22 dB, andγs

12 = 22 dB.

by solving joint KKT condition. In this case, we observe that the feasible region on each

PS’s profit function is exactly one point which is also the mutual best response point.

Correspondingly on Fig. 4.4(c), SS’s profit is highest whenb1 = 0 , b2 = 0.

2 PS vs. 3 SS and 2 PS vs. 4 SS

Secondly, we look the case with 2 PS’s and 3 SS’s, and the parameters areθ̂p1
= 10,

θ̂p2
= 10, θ̂s1

= θ̂s2
= θ̂s3 = 1, γp

1 = γp
2 = 15, γs

ji = 22 for all pi, sj , Breq
1 = 0.5

Mbps andBreq
2 = 0.5 Mbps, W1 = W2 = 6 MHz, andξ1 = ξ2 = ξ3 = 0. Due to

the difficulty of drawing picture with a dimension more than 3, the actions evolving with

time are plotted instead of the feasible region and best response curves. Basically, since

all PS’s have the same parameters, they would ask same price to each SS, and all SS’s

would ask same demand to each PS. Under these parameters, as shown in Fig. 4.5(a)

and 4.5(b), the demand and unconstrained demand are the same for the case of 3 SS’s,

and also the sum of those demand are affordable for each PS, which is strictly inside the

feasible region.

The case of 2 PS’s and 4 SS’s is also shown in Fig. 4.5(a) and 4.5(b), with the param-

etersθ̂p1
= 10, θ̂p2

= 10, θ̂s1
= θ̂s2

= θ̂s3 = θ̂s4 = 1, γp
1 = γp

2 = 15, γs
ji = 22 for all pi, sj,
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Breq
1 = 0.5 Mbps andBreq

2 = 0.5 Mbps,W1 = W2 = 6 MHz, andξ1 = ξ2 = ξ3 = ξ4 = 0.

Since the sum of the unconstrained demands exceeds the bandwidth available for each PS,

each PS would ask a price such that the demand obtained by joint KKT method shrinks to

meet bandwidth requirement. While some might wonder that whether the infeasible equi-

librium strategy of [8] can be modified into a feasible one by directly setting excessive

total demands into affordable demand, the answer is negative. Even if the total demands

were set into affordable one, the pricing strategy of [8] aren’t PBE strategy and are still

different from our result. It is because when the demands meet some boundary conditions,

the Lagrange multipliers corresponding to those active conditions start to function. It is

the function of the Lagrange multipliers that differentiate the feasible equilibrium from

the infeasible one.

Summary of Effectiveness of Joint KKT Conditions

To sum up, sometimes the parameters may intrinsically result in solution strictly inside the

feasible region. In that case, both joint KKT method and the method in [8] have the same

equilibrium strategy. Another case is, the parameters may result in equilibrium strategies

on the boundary of nonnegative constraints. In this situation, joint KKT method gives
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feasible solution while the method in [8] has negative demand. While some might wonder

that whether the infeasible equilibrium strategy of [8] can be modified into a feasible one

by directly setting excessive total demands into affordable demand (or setting the negative

demands into 0), the answer is negative. It is because when the demands meet some

boundary conditions, the Lagrange multipliers corresponding to those active conditions

start to function and make the solution feasible. Clearly, joint KKT method guarantees

physically practical solution.

4.2.2 Evolutions of Beliefs and Actions

In this section, we simulate and show the evolution of action profile over stage. The simu-

lation scenarios are classified into three different cases, they’re 1. all action of all players

profile are strictly feasible, which is shown in Fig. 4.6(a), 4.6(b), 4.6(c); 2. some action

profile of some players are on the boundary of bandwidth constraints, which is shown in

Fig. 4.7(a), 4.7(b), 4.7(c); 3. all action profile of some player are on the boundary of

bandwidth constraints, which is shown in Fig. 4.8(a), 4.8(b), 4.8(c).

Fig. 4.6(a), 4.7(a) and 4.8(a) show the equilibrium pricing profile of the actual type

corresponding to the one with proposed joint KKT condition and one which uses the same

belief as the proposed one at each stage instant but without considering the constraint

(unc). Fig. 4.6(b), 4.7(b) and 4.8(b) show the equilibrium demand profile of the actual

type corresponding to the one with joint KKT condition and one which uses the same

belief as the proposed one at each stage instant but without considering the constraint

(unc). Fig. 4.6(c), 4.7(c) and 4.8(c) show the possible minimal equilibrium demand

profile corresponding to the one with joint KKT condition and one which uses the same

belief as the proposed one at each stage instant but without considering the constraint

(unc). The belief update over stage about player of the three cases is also presented in

TABLE 4.1, 4.2, 4.3, respectively. Numerical analysis about the action and the belief on

the three cases are discussed.
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Figure 4.6: The equilibrium strategies over stages of Case 1. (a) Of PS’s. (b) Of SS’s. (c)

The possible minimal equilibrium strategies of SS’s.
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Case 1: When All Actions Are Strictly Inside Constraints

Next, we study the behavior of the sequence of equilibrium strategies as stage evolves

underW1 = 15MHz and W2 = 15MHz, θ̂p1
= 10, θ̂p2

= 10, θ̂s1
= 1, θ̂s2

= 2,

γp
1 = 15 dB, γp

2 = 15 dB, γs
11 = 22, γs

12 = 18, γs
21 = 18, γs

22 = 22, Breq
1 = 2 Mbps

andBreq
2 = 2 Mbps. Fig.4.6(a) and Fig.4.6(b) show the equilibrium pricings and the

equilibrium demands. Sinceγs
11 = 22 is larger thanγs

12 = 15, SS1 demands more from

PS1 than from PS2. Correspondingly, PS1 sets higher price to SS1 than PS2 does. On

the other hand, SS2 demands more from PS2 than from PS1 sinceγs
22 = 22 is larger than

γs
21 = 15. Therefore, PS2 sets higher price to SS2 than PS1 does. PS1 asks lower price

to SS2 than to SS1 sinceγs
11 is larger thanγs

21, while with thatγs
22 is larger thanγs

12, PS2

also asks lower price to SS2 than to SS1 since SS2 is withθ̂s = 2 and puts less emphasis

on the QoS satisfaction, or equivalently, is more concerned with the monetary expense.

Therefore, both PS’s set lower price to SS2 to stimulate the demand.

We also observe that the difference between utilizing joint KKT condition and without

considering the constraints. Although the pricings and demands without considering the

constraints evolve into the same value as those considering joint KKT condition after the

belief update correctly since the solutions are strictly feasible, they are infeasible at the

beginning. It’s because the possible minimal demands of unconstrained case are negative

in the beginning stage as Fig.4.6(c) shows, while the minimal demands with joint KKT

condition are still feasible, being zero in this case.

The Bayesian game model allows the equilibrium strategies to update according to the

beliefs (TABLE 4.1) of all players’ private information. Since these actions are strictly

inside feasible region, then the belief and hence the behavior converges in the end.
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Table 4.1: Belief Updating versus Stage for Case 1

Belief about PS’s
Staget

0 1,2 3,4 t > 4

µ(θp1
= 10|ht) 1

3
1 1 1

µ(θp1
= 11|ht) 1

3
0 0 0

µ(θp1
= 12|ht) 1

3
0 0 0

µ(θp2
= 10|ht) 1

3
1 1 1

µ(θp2
= 11|ht) 1

3
0 0 0

µ(θp2
= 12|ht) 1

3
0 0 0

Belief about SS’s
Staget

1 2,3 4,5 t > 5

µ(θs1
= 1|ht) 1

3
1 1 1

µ(θs1
= 2|ht) 1

3
0 0 0

µ(θs1
= 3|ht) 1

3
0 0 0

µ(θs2
= 1|ht) 1

3
0 0 0

µ(θs2
= 2|ht) 1

3
1 1 1

µ(θs2
= 3|ht) 1

3
0 0 0

Case 2: When Some Actions of Some Players are on the Boundaries of Constraints

Next, we study the behavior of the sequence of equilibrium strategies as stage evolves

underW1 = 15MHz andW2 = 15MHz, θ̂p1
= 10, θ̂p2

= 12, θ̂s1
= 1, θ̂s2

= 2, γp
1 = 15

dB, γp
2 = 15 dB, γs

11 = 22 dB, γs
12 = 22 dB, γs

21 = 22 dB, γs
22 = 22 dB, Breq

1 = 2 Mbps

andBreq
2 = 2 Mbps.

Fig. 4.7(a) and Fig. 4.7(b) show that the equilibrium pricings and the equilibrium

demands. Each PS asks lower price to SS2 than to SS1 since SS2 is withθ̂s = 2 and so

puts less emphasis on the QoS satisfaction, or equivalently, is more concerned with the

monetary expense. The penalty, or the cost, of sharing spectrum for PS2 is higher than

that for PS1 since PS2 with a higher volume of local connections is more reluctant to

share the spectrum, in order to fulfill its primary users’ QoS satisfaction. Consequently,

PS2 would set a higher price, that yields lowerb12 andb22. Under this circumstance, SS1
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Figure 4.7: The equilibrium strategies over stages of Case 2. (a) Of PS’s. (b) Of SS’s. (c)

The possible minimal equilibrium strategies of SS’s.
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and SS2 demands moreb11 and b21 respectively to compensate the insufficiency ofb12 and

b22.

Under these parameter settings, the unconstrained demandbunc
22 would be negative

even when the belief is updated to the correct one, while the proposed one is always

feasible. Althoughb22 is 0, which is on the boundary of the nonnegative constraint of

PS2, the belief about PS2 still converges to the actual one. It is becauseb12 still isn’t

on the boundary, the opponents could still update the belief about PS2. Since the beliefs

(TABLE 4.2) could converge, the action profiles converge.

Table 4.2: Belief Updating versus Stage for Case 2

Belief about PS’s
Staget

0 1,2 3,4 t > 4

µ(θp1
= 10|ht) 1

3
1 1 1

µ(θp1
= 11|ht) 1

3
0 0 0

µ(θp1
= 12|ht) 1

3
0 0 0

µ(θp2
= 10|ht) 1

3
0 0 0

µ(θp2
= 11|ht) 1

3
0 0 0

µ(θp2
= 12|ht) 1

3
1 1 1

Belief about SS’s
Staget

1 2,3 4,5 t > 5

µ(θs1
= 1|ht) 1

3
1 1 1

µ(θs1
= 2|ht) 1

3
0 0 0

µ(θs1
= 3|ht) 1

3
0 0 0

µ(θs2
= 1|ht) 1

3
0 0 0

µ(θs2
= 2|ht) 1

3
1 1 1

µ(θs2
= 3|ht) 1

3
0 0 0

Case 3: When All Actions of Some player are on the Boundaries of Constraints

Next, we study the behavior of the sequence of equilibrium strategies as stage evolves

underW1 = 15MHz andW2 = 15MHz, θ̂p1
= 10, θ̂p2

= 10, θ̂s1
= 1, θ̂s2

= 1, γp
1 = 15
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Figure 4.8: The equilibrium strategies over stages of Case 3. (a) Of PS’s. (b) Of SS’s. (c)

The possible minimal equilibrium strategies of SS’s.
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dB, γp
2 = 15 dB, γs

11 = 22, γs
12 = 22, γs

21 = 22, γs
22 = 22, Breq

1 = 2 Mbps andBreq
2 = 4

Mbps. Basically, the parameters of SS1 and SS2 are the same, so PS1 would set the same

price to both SS’s, and so does PS2. Likewise, both SS’s would demand the same size of

bandwidth from the same PS. Therefore, we letbji denoteb1i andb2i andpji denotep1i

andp2i.

As Fig. 4.8(a) and Fig. 4.8(b) show, since PS2 has higher bandwidth requirement for

local connection, it asks high price to both SS’s than PS1 does, which makes the demands

from both SS’s be 0. The action of PS2 makes the opponents difficult to update the belief

about PS2 (TABLE 4.3), but the actions of PS2 converge to those of the actual type of

PS2 which is shown in the curves of complete information scenario. It justifies that even

thought the belief cannot converge to the actual one, the action profile still converges to

the one with correct belief,i.e. complete information, and thus it doesn’t influence the

result of the game.
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Table 4.3: Belief Updating versus Stage for Case 3

Belief about PS’s
Staget

0 2 4 t > 4

µ(θp1
= 10|ht) 1

3
1 1 1

µ(θp1
= 11|ht) 1

3
0 0 0

µ(θp1
= 12|ht) 1

3
0 0 0

µ(θp2
= 10|ht) 1

3
1
3

1
3

1
3

µ(θp2
= 11|ht) 1

3
1
3

1
3

1
3

µ(θp2
= 12|ht) 1

3
1
3

1
3

1
3

Belief about PS’s
Staget

1 2,3 4,5 t > 5

µ(θs1
= 1|ht) 1

3
1 1 1

µ(θs1
= 2|ht) 1

3
0 0 0

µ(θs1
= 3|ht) 1

3
0 0 0

µ(θs2
= 1|ht) 1

3
1 1 1

µ(θs2
= 2|ht) 1

3
0 0 0

µ(θs2
= 3|ht) 1

3
0 0 0
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We’ve studied the spectrum trading game with incomplete information in a sequential

manner for a cognitive radio network. The incomplete information game is modeled as

Bayesian game, which the incomplete information is viewed in Bayesian way. To ensure

that the trading is physically practical, we constrain the trading bandwidth. To solve the

optimization problem with bandwidth constraints in the multistage game, we’ve proposed

using the KKT translation and joint KKT conditions to yield the perfect Bayesian equi-

librium at each stage. We’ve demonstrated that the KKT translation technique provides

a general rule that can be applied to optimization problems of multistage game theory.

An algorithm for solving joint KKT condition is given, and the complexity of the algo-

rithm is analyzed. In addition, we’ve studied the convergence behaviors of belief and

action profiles, although belief profiles may not converge to the actual type, the action

profiles converge to actual optimal strategy, which means the result is the same as that of

complete information. In the simulations, we’ve justified the effectiveness of joint KKT

condition, numerically study the convergence of belief and action profiles, and also how

the parameters influences the action. Finally, we’ve concluded that the proposed multi-

stage Baysian game model with bandwidth constraints is robust and capable of providing

more reasonable strategy profiles for players.
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5.2 Future Work

In this thesis, although we’ve derived the solution conditions, proposed an algorithm to

solve the involved optimization problem for the constrained game, the efficiency and fair-

ness of the game have not been analyzed. In game theory, there’re several criteria for

efficiency, for example, it can be the maximization of the summation of all players’ utility

or Pareto efficiency [16]. As for fairness, proportional fairness criterion is often utilized

for resource allocation in wireless network. If the efficiency is not guaranteed, then we

may look for other possible strategies in terms of repeated game to induce cooperative

behaviors among PS’s and among SS’s for enhancing the efficiency. Also, the existence

of the solution PBE for the considered game has not been proven yet.

In a practical system, channel conditions of each player are also unknown to others,

or at least difficult to be obtained by others. The system model could be modified by

considering the unknown and random nature of the channel. To account for that, future

work could include concepts from stochastic game whose main feature is game with state.

By defining the state as levels of channel conditions, we can build a more realistic game

without requiring all players to know the exact channel state information. More specifi-

cally, we can apply finite state Markov channel proposed by [20] to divide the range of

received SNR in spectral efficiency into finite discrete sets. It’s worthy to note that the

work in [20] has detail about how to partition SNR and what the corresponding transition

probability is.

Another aspect for future work is to consider learning mechanisms in the constrained

game. In this work, all solutions are obtained based on the assumption that all actions

are observable and observed noiselessly by all players. Although the assumption is prac-

tically achievable, it would be more appreciated that the game can still attain the equi-

librium without the assumption. Thus, we think it would be a good direction of future

work to search learning algorithm guaranteeing that the constrained game converges to

the equilibrium with as less information needed as possible. It should be noted that the

difficulty lies mainly in ”constraints.” The work in [8] and [10] both propose learning

algorithm in a game but fail to take constraints into account.
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If both stochastic game and learning algorithm are combined, we think that learning

using a hidden Markov model could be an interesting approach.
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