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A lisfruct -The problem of detecting permanent faults in sequential 
circuits by random testing is analysed utilizing a continuous parameter 
Markov model. Given a sequential circuit with certain stuck faults speci- 
fied, the original state table and its error version can be readil! derived 
from an analysk of the circuit under fault-free and faulty conditions, 
respectively. By simulation of these two tables on a computer, the parame- 
ters of the desired Markov model can be obtained. The present approach 
does not require formulation of a product state table corresponding to the 
fault-free state table and its faulty version, which is rather difficult while 
dealing with large circuits. For a specified confidence degree, it is easy to 
derive the parameters of the model and to calculate either the required 
lengths of random test patterns or the maximum testing time. A complete 
mathematical analysis of the model is given that provides some useful 
insights into the nature of faults in relation to random testing and the 
associated confidence degree. 

I. INTRODUCTION 
The increasing complexity of today's digital devices has ren- 

dered the problem of fault detection, fault analysis, and test 
generation [1]-[29] not only an important and indispensable part 
of the manufacturing and maintenance process but at the same 
time extremely difficult. The test generation of both combina- 
tional and sequential logic circuits can be broadly classified as 
either deterministic or prohuhilistic. There are two distinctly dif- 
ferent approaches to the problem of fault detection and deter- 
ministic test generation in sequential circuits [3]-[IO], [22]. The 
first approach is called the circuit testing upprouch, which requires 
an exact knowledge of the circuit realization, and also the faults 
that can possibly occur. The second approach is called the 
trunsition checking upprouch , which assumes no knowledge what- 
soever of the circuit realization, but does assume knowledge of 
the desired state transitions. In this approach, the investigator 
just considers the given circuit as a hkuck box, and takes recourse 
to terminal experimentation based on external observations. 

The random test generation techniques that come under the 
category of probabilistic test generation can reduce computation 
time and costs, and can be effectively used for fault detection in 
relatively complex digital systems. Conventionally, in random 
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testing, the effect of a failure in a logic network is propagated to 
the network output by applying random patterns to the primary 
inputs of the network. By using a simulutor, the outputs of the 
fault-free and faulty networks are then compared. If the compari- 
son fails, the applied random input pattern is retained as a test. 
For complete fault detection, the experiment is continued until 
every network fault has been detected by ut least one input 
pattern. The accuracy of the random testing method depends on 
the length of the applied bit stream; thus it is important to 
investigate the relationship between the random test length and 
the associated confidence degree. 

The use of probabilistic models to characterize the behavior of 
digital circuits in the presence of faults was discussed in the 
literature. Some of these models were introduced for the detec- 
tion of intermittent faults, while some others were proposed for 
the detection of permanent or nontransient faults by random 
patterns. For describing the behavior of circuits with intermittent 
faults, Breuer [ll] introduced a discrete parameter Markov model 
of first order, whereas Kamal and Page [12] presented a discrete 
parameter Markov model of zero order, which was subsequently 
used by Savir [17], and also by Koren and Kohavi [18]. Su et ul. 
[21] proposed a continuous parameter Markov model with two 
states to characterize the behavior of digital systems in the 
presence of intermittent faults. 

A fault in a digital circuit need not cause an immediute error in 
the circuit output; there is typically a dehy between the occur- 
rence of a fault and the first error to appear in the circuit output. 
The delay is the error Iutenq of the fault. The error latency is an 
attribute of the fault: it depends on the circuit, the fault, and the 
input pattern applied to the circuit. Shedletsky and McCluskey 
[15] analyzed random testing of digital circuits using the error- 
latency model (ELM). This model proved very useful for the 
analysis of random testing procedures in sequential circuits. In 
earlier works [13] it was shown that the error latency in combina- 
tional circuits in certain cases may be comparable to the mean 
time between failures (MTBFs). Such a large error latency basi- 
cally indicates the presence of correct output sequences long after 
a fault has occurred in a circuit. 

When random inputs generated by a stutionuty multinomiul 
process are applied to a sequential circuit, the probability of the 
circuit of being in a given state at time n depends on4 on the 
state of the circuit at time. n - 1, and the probabilities of the 
input vectors at time n - 1. The operation of the circuit under 
these conditions may be described by a finite, first order Markov 
process [2], [30], [31]. The Markov process is also ergodic and 
stationary if the circuit is strongly connected, and the input 
probabilities do not change with time [15]. 

A fault occurring in a sequential circuit transforms the state 
table from the correct version into a faulty version. Any model to 
determine the error latency of a particular fault must take into 
consideration the correct behavior of the fault-free circuit as well 
as the actual behavior of the faulty circuit. A normal procedure is 
to form a product stute tuhle, called ELM stute tuhle, using the 
state tables of the fault-free and faulty circuits. The state diagram 
corresponding to the ELM state table is next transformed into a 
Markov chain by assigning probabilities to the different state 
transitions. An additional uhsorbing stute S ,  is added for the 
detection of the fault. By calculating the probability distribution 
function of the error latency of the fault, the relation between the 
desired quulity of test and necessary length of the random test 
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pattern can be obtained. The ELM is obviously very efficient for 
small or medium size digital circuits; however, for large digital 
circuits the ELM approach may prove somewhat difficult be- 
cause of the complexity involved in generating the product state 
tables, and forming their corresponding transition matrices. 

In this paper the problem of detecting permanent faults in 
sequential logic circuits by random testing is analyzed utilizing a 
continuous parameter Markov model with three states. The se- 
quential circuits considered here are deterministic and syn- 
chronous, and can be represented by state diagrams with transi- 
tion assigned outputs, or by equivalent state tables (i.e., Mealy 
model circuits). The circuits are also assumed to be strongly 
connected such that there exists a path, not necessarily of length 
1, from any state to any other state. 

Given a sequential circuit with certain faults specified, the 
original state table and its error version can be readily derived 
from an analysis of the circuit under fault-free and faulty condi- 
tions, respectively. By simulation of these two tables on a com- 
puter, the parameters of the desired Markov model can be 
obtained. For a specified confidence degree, it is fairly straight- 
forward to derive the model, and to calculate the lengths of the 
test-input patterns required for fault detection. Using the model, 
it is also possible to determine the maximum testing time needed 
so that the probability of a wrong conclusion is smaller than or 
equal to some prespecified value a. A complete mathematical 
analysis of the model is given that provides some useL 1 insights 
into the nature of faults in relation to random testing and the 
associated confidence degree. Unlike the ELM approach, the 
present approach does not require formation of a product state 
table corresponding to the fault-free state table and its faulty 
version, which may be rather difficult while dealing with large 
circuits. The approach is valid for any sequential circuit with 
faults that result in a deterministic state table. Incidentally, all 
logical stuck faults in synchronous sequential circuits and certain 
internal stuck faults in flip-flops that are commonly used as 
memory devices have this property. 

11. CONTINUOUS PARAMETER MARKOV MODEL 
OF A FAULTY SEQUENTIAL CIRCUIT 

In order to describe the behavior of a sequential circuit in the 
presence of a fault while subjected to random inputs, we propose 
a continuous parameter Markov model with three states desig- 
nated as: state 0, state 1, and state 2, as shown in Fig. 1. The 
state transition probabilities depend Irneurlv on the infinitesimal 
time step At: X,s and p s are the constants of proportionalities. 
Clearly, these probabililies should increase as the time step A t 
increases. Once a random pattern is applied, the circuit may stay 
in any of the aforementioned three states. We assume that the 
circuit is in state 0, if the fault exists, but causes no error in the 
output and state; the circuit is in state 1, if the fault causes an 
error output at the output terminals: and the circuit is in state 2, 
if the fault causes only error state transition, but no error output 
results at the output terminals. 

To represent the interactions among the three states 0, 1. and 2 
for the infinitesimal time step A t  in the circuit, we can now 
define the different state transition probabilities. Let pr[(S = x, 
T =  t + Ar)((S = v ,  T =  t)] denote the probability of the circuit 
staying in state y at time t ,  but going to state x at time t + At. 
Then we have the following. 

A,At: pr[(S =1, T =  t + At)l(S = 0, T =  r ) ]  = pr[(fault causes 
an error output at time t + At)l(fault causes no error 
output and error state transition at time t)]. 

XIAt: p r [ (S=2,  T = t + A t ) ( ( S = l ,  T=t)]=pr[(fault  causes 
only error state transition at time t + At)l(fault causes 
an error output at time t)]. 

h,At: pr[(S=O. T = t + A t ) I ( S = 2 ,  T=t)]=pr[(faul t  causes 
no error output and error state transition at time t + 
At)((fault causes only error state transition at time r ) ] ,  

1-A A t - p 2 A t  

4Y 1 

1 - A  A t - u  A t  2 1  

1 -U A t - h l A t  

h A t  

Fig. 1. Continuous paranictcr Markov inodcl 

poAt: pr[( S = 0. T = t + A t ) ] (  S = 1, T = t ) ]  = pr[(fault causes 
no error output and error state transition at time t + 
At)l(fault causes an error output at time t ) ] .  

plAt: p r [ (S= l .  T = r + A t ) J ( S = 2 ,  T=t)]=pr[(faul t  causes 
an error output at time t + At)l(fault causes only error 
state transition at time t ) ] .  

p2At: p r [ (S=2 .  T = t + A t ) ( ( S = O ,  T=t)]=pr[(faul t  causes 
only error state transition at time t + At)l(fault causes 
no error output and error state transition at time t)]. 

1 - XoAt - pZAt: pr[(S = 0, T =  t + A t ) ( ( S  = 0, T =  t)] = 

pr[(fault causes no error output and error state transi- 
tion at time t + At)l(fault causes no error output and 
error state transition at time t)]. 

1 - poAt - X,At: pr[(S = 1, T = t + At)((S = 1, T = t)] = 
pr[(fault causes an error output at time t + At))(fault 
causes an error output at time t ) ] .  

l -A2At-p lAt :  p r [ ( S = 2 ,  T = t + A t ) l ( S = 2 ,  T = t ) ] =  
pr[(fault causes only error state transition at time t + 
At)l(fault causes only error state transition at time t ) ] .  

Obviously, the parameters of the model depend on the circuit, 
and faults under consideration. Once we have the fault-free state 
table of the circuit and its error version corresponding to the 
faults specified, we may proceed to find all the parameters of the 
model. A rather simple way is to apply a large number of input 
patterns to the circuit under test with the occurrence of input 
signal values 0,l with a constunt probability. Under this condi- 
tion, the behavior of the circuit may be characterized by a 
Markov process, and the probability of the circuit staying in a 
specified state assumes a constant value after long input patterns 
are applied [2], [15]. This property makes our estimation of 
parameters approach stable values. 

In order to simulate the transition behavior of the circuit in 
respect of the model, we note that we have nine different counts 
provided to store the information regarding the circuit after a 
large number of input patterns are applied. Let CO, = N(circuit 
going from state U to state h ) ;  U = 0.1,2; h = 0,1,2, where N 
denotes the total occurrence number or count of the event under 
reference. Specifically, for example, with U = 2, h = 1, we have: 
C,, = N(circuit going from state 2 to state 1) = N(fau1t causing 
only error state transition in input pattern r ,  while causing an 
error output in input pattern r + 1). All counts are cleared to zero 
initially. By using a random number generator we can generate 
an input value on the interval [0,1]. and then apply it to the 
circuit with a certain constant probability. However, instead of 
physical inputs to the circuit, we may also simulate the stirnuh- 
tion with respect to the fault-free state table of the circuit and its 
corresponding faulty table. On comparing the status of these two 
state tables next on each application of a random pattern, we will 
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Fig. 2. Example of synchronous sequential circuit with corresponding state table and statc diagram. (a) Synchronous sequential 

circuit. (b) State table M. ( c )  State diagram. 

have any of the following three different cases in the compared 
result. 

The circuit is evidently in state 0 initially, since at the begin- 
ning of test no differences ever occurred. After the first random 
pattern is applied, we compare the outcomes with respect to the 
two different tables, and then decide upon which one of the 
aforementioned three cases occurs: the state of the circuit in 
respect of the current input pattern is thus determined. Assume 
that on application of the first input pattern we have determined 
the circuit to be in state i, 0 < I Q 2: then CO, = CO, + 1. Next we 

Cuse 1 Neither output nor state transition is different, and the 

Cuse 2 Output is different, and the circuit is in state 1. 
Cuse 3 Only state transition is different, but output is not 

circuit is in state 0. 

different, and the circuit is in state 2. 



Fig. 3 Statc tahlc M ’  of sequential circuit of Fig. 2 with the fault 1.1/1 

TABLE I 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.x 
0.9 

1352 
1163 
10x7 
9x1 
x33 
602 
364 
176 
47 

0 1215 
0 1679 
0 2132 
0 2577 
0 2910 
0 3310 
0 3715 
0 4116 
0 4557 

x4x 
848 
837 
766 
646 
4x9 
297 
153 
40 

1271 
930 
593 
364 
193 
x1 
27 
5 
0 

1552 
1315 
1091 
921 
899 
X 4 4  
765 
632 
379 

366 
X30 
1294 
1811 
2264 
2x21 
341X 
3962 
4517 

2401 995 
2163 1072 
192X 103X 
16x7 X93 
1545 710 
1333 520 
1062 352 
785 171 
419 41 

apply the second random pattern to the circuit and determine 
which state it is in. If it is now in state j ,  O Q  j <  2, then 
C,/ = ClJ + 1. This process is repeated until a large number of 
input patterns are applied to the circuit. Suppose a total of n 
input patterns are applied. Hence we have 

2 2  

n = ci,. 
i-01-0 

Let pII  denote the probability that the circuit is transferred 
from state i to state J after an input pattern is applied. By law of 
large numbers [31], we have 

pr( ~ C l ~ / n - - p l 1 ~ < ~ )  =l ,asn+w,foranyarbi traryc>O.  

Exuniple: As an illustration, consider the synchronous sequen- 
tial circuit as shown in Fig. 2, with its corresponding state table 
M and state diagram [15]. 

For the circuit of Fig. 2, if we assume a stuck-at-1 fault in line 
L1 (L l / l ) ,  then the state table M’ of the circuit subject to this 
fault can be obtained as shown in Fig. 3. We now simulate the 
fault-free state table M and its faulty version M’ on a VAX 
11/750 system, and apply random patterns generated by a ran- 
dom number generator to these simulated state tables. After 
lo001 input patterns are applied, we have the results as given in 
Table I for the different ClJ values with different probabilities of 
a 1 input, p(1). For each value of p(l), we have chosen a 
different initial value of the random number generator. 

From an analysis of the above results, we may observe that the 
error estrmution is less than 1 %. However, if we desire to increase 
the accuracy of estimation further, we just increase the length of 
the random test-input patterns. 

The transition frequency count is a basic element of parame- 
ters inference. If we generate lo00 input patterns per ms, we have 
the rates (parameters) of our model derived as follows (based on 
the results of Table I). 

A, = O.O/ms; A, = 0.844/ms; h,  = 2.821/ms; 

po = 0.489/ms; pl =1.333/ms: p2 = 3.31/ms 

The relation between these different parameters and each input 

large number of random input patterns and stationary input 
signal probability assignment. 

Once the model is established, and all the parameters of the 
model are calculated by computer simulation, we can write the 
undernoted set of differential equations involving the state prob- 
abilities. on the assumption that at time T = 0, the fault causes no 
error output and error state transition in the circuit: 

4 0  ( t > / d f  = PI( 1) Po + P2 ( t )  A 2  - Po ( t )  ( A0 + P 2 )  

~ P l ~ ~ ~ / ~ ~ = P o ~ ~ ~ ~ o + P 2 ~ ~ ~ P l - P l ~ ~ ~ ~ P o + ~ l ~ .  

d P , ( t ) / d t = P o ( ‘ ) P z  +Pl ( t )Al -  P2(t)(A,+Pl),  
with po(0)  = 1, p,(O) = p2(0)  = 0, and p J t )  being the probability 
at time t for the circuit of staying in state i ,  0 Q i Q 2. 

After solving this linear, homogeneous system of differential 
equations, we have 

Po( 1) = ( D o / B )  4 t )  

B -  Do)/B)cos( B -  A2/4)l/’t 

+( (2BC0-  AB- AD0)/2B( B -  A2/4)ll2) 

. sin ( B - A2/4) 1/2 I ]  , 

pl( t )  = ( Dl/B) U( t )  + [ ( - D l / B )  cos( B - A2/4)ll2t 

+((2BCl-ADl)/2B( B -  A2/4)1/2)sin( B-A2/4)l/’t], 

p2(  t )  = ( D 2 / B )  u( t )  + e-(A/2)‘ [ ( - D 2 / B )  cos( B - A2/4)ll2t 

+ ( ( 2 BC, - A D2)/2 B(  B - A2/4) ‘I2) sin ( B - A2/4) 1/2t] . 
where 

A = A 0  + h i +  A2 + P O  + 111 + 1123 

B = A O A l  + AOA2 + A l X 2  + POP1 + POP2 

+ P1P2 + AOPl+ A1112 + A2P03 

CO = A1 + A 2  + Po + P17 Do = 4 x 2  + A2Po + POP1 9 

c 2  = Pz 3 4 = A O h +  4 P 2  + POP2 7 

C1= A0 7 D1= A o A 2  + A o ~ i +  ~ 1 ~ 2 ,  

and u(  t )  =1 ,  for t >, 0, u( t )  = 0, for t < 0. 

Obviously. 

t - m  t + m  r - m  

may have three different cases. 

lim po( t )  + Iim pl( t )  + Iim p2(  t )  = ( Do + D, + D 2 ) / B  = I .  

With respect to the term B - A2/4 in the above solutions, we 

Cuse 1: B - A2/4 = 0. 

In this case, the expressions for p o ( t ) ,  p l ( t ) ,  and p 2 ( t )  are 
given as 

po( t )  = ( Do/B) U( t )  +( ( B - D o ) / B )  

+ ( (2BC0 - AB - AD0)/2B) te-(A/2)‘, 

p l ( t )  = (  D l / B ) u ( t ) + ( - D l / B ) e - ( A / 2 ) ‘  

+ ( ( ~ B c , -  ~ D , ) / 2 ~ ) t e - ( ~ / ~ ) ‘ ,  

p 2 ( r )  = (  D 2 / B ) u ( t ) + (  - D2/B)ep(A/2)‘ 

+((2BC2 - A4)/2B) te- (A/2) r .  

Thus, for B - A2/4 = 0, or A = 2fi. the probabilities of the 
three states converge to their stable values in a nonoscillatory 

vector is stochastically independent under the condition of a manner very quickly, as depicted in Fig. 4. 
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P O ( t )  

t 

t 

(4 
Fig. 4. Rapid convergence of btate prohabilities to thcir stable values in 

nonoscillatory manner. 

Cuse 2: B - A 2 / 4  > 0. 

In the present case, damping exists, and po(t), p l ( t ) ,  and 
p 2 ( t )  decay exponentially in an oscillatory manner, as shown in 
Fig. 5. 

Cuse 3: B - A 2 / 4  < 0. 

In this case, the expressions for state probabilities can be 
derived as 

po( r )  = ( D o / B )  U( r )  + K1e-'lr + K2e-'Zr, 

pl( r )  = ( D l / B )  U( t )  + K{e-'I' + K;e-'Z', 

p 2 (  t )  = ( D 2 / B )  U( t )  + K;'e-'l' + Kjre-'Zr, 

where 

Sl= A / 2 - ( A 2 / 4 -  B ) l l 2 ,  S 2 = A / 2 + ( A 2 / 4 -  B ) 1 / 2 ,  

Kl  = (CO - Sl - D o / S 1 ) / 2 (  A 2 / 4 -  B ) 1 / 2 ,  

K2 = ( CO - S, - D0/S2) /  - 2( A 2 / 4  - B )  1'2, 

K;  = ( C ,  - D 1 / S 1 ) / 2 (  A 2 / 4 -  B ) l 1 2 .  

K;  = ( C ,  - D1/S,)/-2( A 2 / 4 -  B ) l 1 2 ,  

K;' = ( C2 - 4 / S 1 ) / 2 (  A 2 / 4 -  B ) l 1 2 ,  

K;' = (C ,  - D 2 / S , ) / - 2 (  A 2 / 4 -  

Here also the probabilities of the three states converge to their 
stable values in the same nonoscillatory manner as in Case 1, but 
at a much slower pace. 

From the aforementioned analysis we see that in order for a 
fault in a circuit to be detected quickly with a constant probabil- 
ity, it is necessary that the parameters or rates of the model 
should satisfy the condition specified by B - A 2 / 4  2 0. In case 
this condition is not met, we have simply to modify our input 
signal probability assignment for the circuit to change the param- 
eters of the model in a way that will increase the convergence 

(c) 
Fig. 5. Convergence of state probabilities in oscillatory manner. 

speed of the state probabilities so that the fault may be detected 
as fast as possible. The easiest way is to start with a reasonably 
low value for the input signal probability and then to steadily 
increase its value until the convergence criterion is met. In each 
stage, depending on the input signal probability, a new set of 
Markov parameters will have to be generated and checked to see 
if the model satisfies the condition B - A 2 / 4  0. In the ideal 
situation we should have p l ( t )  as large as possible, and 
p o ( t ) , p 2 ( t )  as small as possible; that is, we have to make 
4 x 2  + 4 ~ 0  + P O P ~ ( D O ) ~  and hoA1 + Alp2 + p O p 2 ( D 2 )  relatively 
small compared to A o A 2  + Aopl + plp2( Dl). 

To further analyze our model, we may develop transition 
probabilities among the states. Let p,,( t )  denote the probability 
of going from state i at time to to state j at time to + t .  We can 
hence write the following sets of differential equations in terms of 
the state transition probabilities: 

dPW( t > / d t  = - ( A0 + P 2 )  Poo( r )  + POPOl( t )  + A 2  P02( t )  7 

+Ol( ) / d f  = A O P d  1 )  - ( Po + 11) Pol( 2 )  + Pl Po2 ( t )  3 

dP02( r ) / d t  = P 2  Poo( t )  + A1 Pol( t )  - ( A 2  + P l )  P02( 1) 3 

with 

Poo(0) =1. POl(0) = P o 2 ( 0 )  =0.  

P o O ( ' ) + P O l ( ' ) + P 0 2 ( ' )  = I .  

&lo(  r ) / d t  = - ( A0 + P 2 )  PlO( t )  + PoP11( 1 )  + A2 P12( 1 )  

dPll(  r ) / d t  = X O P l O (  t )  - ( Po + 4) P11( t )  + Pl  P12( 1 )  7 

dP12 ( r ) / d t  = 112 PlO( 1 )  + 4 P11( t )  - ( A 2  + PI) Pl2(  t )  1 

P l l ( 0 )  = I .  PlO(0) = P l Z ( 0 )  = 0. 

P l o ( t ) + P l l ( t ) + P l 2 ( r )  = I .  

+ 2 0 ( t ) / d r =  - ( ~ o + P 2 ) P 2 o ( r ) + P o P 2 1 ( ~ ) + ~ 2 P 2 2 ( t ) .  

4 2 1 (  t ) / d t  = AOP20( t )  - ( Po + 4) P2l( t )  + Pl P22(  t >  * 

4 2 2 (  r ) / d t  = P 2  P20( t )  + A1 P 2 l (  t )  - ( A2 + P 1 )  P22( t )  

and 

with 

and 



with 

P 2 2 ( 0 )  = I .  P 2 0 ( 0 )  = P21(0) = 0. 

and 

P20( 2)  + P21( t )  + P22( 1) = I .  

The previous sets of equations are obviously isomorpliic with 
the set of equations involving p o ( t ) ,  p l ( t ) ,  and p 2 ( t )  derived 
previously. These systems of differential equations can be solved 
as before. The solutions corresponding to the different sets are as 
given as follows: 

poo( t )  = po( , t ) ,  p o l ( t )  = pl( t ) ,  and p O 2 ( t )  = p 2 ( t ) .  with the 
parameters being the same as those in p o ( t ) ?  p l ( t ) .  and p 2 ( t ) .  

PlO(‘) = P z ( t ) .  

P11( 2) = P o ( [ )  3 

Pi,( t )  = Pi( t )  7 

P20( t )  = Pi( f )  1 

P2l(l) = P 2 ( f ) ?  

P22( t )  = P o (  1 )  7 

with C; = p o ,  D; = A,A, + A2po + p o p , ,  

with C‘d = A, + A, + p ,  + p , ,  D,’ = AoA, + l o p l  + pip2. 

with C,’ = A,, Di = AoA, + Alp2 + p o p 2 .  

with C[’ = A,, 0;’ = AiA2 + A2po + pop1, 

with CT = pl, DT = A 0 A 2  + A,pl + plp2, 

with Cd’ = A, + A, + p ,  + p 2 ,  D/ = AoA, + Alp2 +.yop2. 
As in the case of state probabilities, the condition for rapid 

convergence to stable values for the state transition probabilities 
as well depends on the value of B - A2/4. If B - A2/4 > 0, all of 
the state transition probabilities quickly converge to their stable 
values. The result about poo( t )  = p o ( t ) ,  poi(t) = p l ( t ) ,  and 
p O 2 ( t )  = p2(t) appears to be reasonable outcome in view of the 
assumption that po(0)  = 1. 

111. FAULT TESTING STRATEGY 
The faults in a digital circuit are detected by applying test 

patterns to the primary inputs of the circuit, and observing the 
output response with respect to these input patterns. In the 
strategy of random testing, a large number of input patterns are 
generated randomly. However, if a fault is not sensitive to these 
generated test patterns, a wrong conclusion may be drawn re- 
garding the existence of the fault. One way to minimize the 
probability of such a wrong conclusion is to apply a large 
number of test patterns to the circuit until either the fault is 
detected, or the confidence about the circuit being error free is 
larger than or equal to some prespecified value. In order to 
increase our confidence in the testing procedure, we must there- 
fore minimize the probability that a fault exists, but is not 
detected. 

Assume that the test patterns are applied to the circuit under 
test (CUT) continuously from time to to time to + s, and the 
testing is terminated prior to to + s, if the fault is detected. We 
determine the maximum testing time s(max) so that the probabil- 
ity of a wrong conclusion is smaller than or equal to some 
precalculated value a, that is, 

pr(fau1t exists, but is not detected during the interval [ to ,  
to + sllfault exists) < a. This probability may be decomposed and 
expressed as [31]: 

pr(fau1t exists, but is not detected during the interval Itn, 

where X ,  Vi. Y,. Z are the events, of which X is fault exists in the 
circuit. Y, is fault causes no error output and error state transi- 
tion at time t,, Y2 is fault causes only error state transition at 
time to. and Z is fault causes no error output from time to to 
time to + s. 

We then have 

pr( X n Y , n Z ) + p r ( X n Y , n Z )  

=P‘(ZIXnYl) .Pr(Y,IX).Pr(  X )  

+ P r ( Z l X n  Y,) .Pr( Y,IX).pr( X ) .  

With reference to our model, we can now compute the afore- 
said probabilities as 

Pr( ZIX n Yl) 

= 1 -  Pol(”) 

= 1 - ( D,/B) u( s) + [ 
.(-( D,/B)cos( B - A 2 / 4 y 2 s  

+ ( (  2BC, - A D1)/2B( B - A2/4) ’”) 

= ((  B - Di)/B) U( S )  - e- (A”2)s  

.( - (  D,/B)cos( B -  A2/4)l/,s 

+ ( ( 2 B C 1 -  AD1)/2B( B -  A2/4)1/2) 

.sin( B - ~ 2 / 4 )  ‘/,s) 

p r (ZIXnY2)  =1-p21(s) 

= 1 - ( D;’/B) U( s )  + [ 
.( -(  Di’/B)cos( B - A2/4y2s  

t ( ( 2 B C ; ’ -  AD;’)/ZB(B- A2/4) l I2 )  

.sin( B -  A2/4) 1/2s) ] 
=( ( B - D;’)/B) U( S) - e- (A”2)s  

. ( - ( D;’/B) cos ( B - A2/4) 1”2s 

+((2BC;’- AD;’)/2B( B-A2/4)’/’) 

To determine pr(Yl(X) and pr(Y,(X), assume that the fault 
existed for a long time prior to to so that the circuit is in a stable 
condition, and the steady state probabilities can be used. Hence 

pr(  Y,lX) = lim po( t )  = D,/B, 

pr( Y,lX) = lim p 2 (  t )  = D,/B. 

f + W  

t - m  

to + s](fault exists) = pr ( X  n Yi n Z )  + pr CX n Y2 n 2 )  d & Finally, let the U priori probability pr( X )  = pr(fau1t exists) = p 



We have 

pr( X n Yl n Z )  + pr( X n Y2 n Z )  
This equation gives us  an upper bound of testing time after the 

parameters of the model and a are determined. The necessary 
condition for this equation to hold is 

= p .( D,/B)  . 

.( - (  D l / B )  cos( B - A2/4)l12s 

( B - D , ) / B )  u( s) - e-('/')' 
a > ( p / B 2 )  [ Do( B - Dl) + 4( B - D;)]. 

If it is not satisfied. then no test is needed, because the quality 
of the circuit is good enough to pass the error probability a 
without any testing. 

For a given circuit, with each line i stuck-at-k, k = 0,1, we 
may have the corresponding testing time s( i ,  k)  calculated by the 
above equation. However, in order to test the circuit for an 
unknown single fault. we must take 

+((2BC1- AD1)/2B( B -  A2/4)l12) 

.sin( B - A2/4)l12s 

+ p . (  D ~ / B )  . [ (( B - D ; ' ) / B )  u( s )  - e-('/+ 

) I  
. ( - ( D;'/B) cos( B - A2/4) ' l 2 s  

+ (( 2BC," - AD;')/2B( B - A2/4)l12) 

.sin( B - ~2 /4 )~ / ' s} ]  <a. 

s(max) = max mix,( i ,  k ) .  
total lines i k = 0 

If we then apply test-input patterns with testing time at least 
s(max) to the circuit, we will have the confidence degree 1 - a 
that no detection error occurs. The procedure can be applied as 

the circuit. 

Put - D;/B = gl? (2BC; - AD; - A2/4)1/2 = h f 3  well to test any of - - 0 and s - - 1 faults in 
( B - A2/4)'12s = 8. then 

- ( D F / B )  cos( B - A2/4) ' 1 2 s  
IV. EXPERIMENTATION 

A program was written in Fortran language for VAX 11/750 
system to simulate sequential circuits and to derive parameters 
for a continuous parameter Markov model. The parameters for 
the Markov model were obtained by varying input signal proba- 
bility values in a manner such that they meet the required 
convergence criterion, B - A2/4 2 0, as derived in the previous 
section. A simple algorithm for calculating the maximum testing 
time s(max) as used in the simulation is given below. 

Algorithni for Culculuting Testing Time 

+((2BCL-  AD;)/2B( B -  A2/4)ll2) 

. sin ( B - ~ 2 / 4 )  lI2s 

=g ,cosp+h , s inp  

= (g,' + hf)'12[ ( gJ( g,' + h y 2 ]  cosp 

+ (h , / (g? + hf)'12) sinp] 

= (g, '+hf)1'2[sin8cosp+cos~sinp~ 

= (g: + hf)l12 sin( 8 + p ) ,  
where 

sin8 = g f / (  g,'+ hf)l/', 

and 

case = h , / (  g,' + h;)lI2. 

Therefore 

- ( g ~ + h f ) 1 ' 2 f g , c o s ~ + h , s i n ~ ~  ( g ? + h f ) l I 2 ,  

and 
for I =1,2;  

pr( x n Y i n z ) + p r ( X n Y 2 n z )  

Q p .( D , / B )  . [ ( ( B - D , ) / B )  + e - ( ' / 2 ) s ~ l ]  

+ p .( D ~ / B ) .  [ ( (  B - D;)/B) + e - ( a / 2 ) s ~ 2 ]  

Q a ,  where 0, = (g,'+ hf) l I2 ,  I =1,2. 

Hence 

( p / ~ )  . e - ( A / 2 ) s . [  D,Q, + 4 Q 2 ]  

< a - ( p / B 2 )  . [ Do( B - Dl) + 4( B - 0; ) ]  . 
Consequently, 

e(A /2 )s  2 ( DOQl + D2Q2)( p / B ) /  

[ a - ( p / B 2  ) . { Do ( B - Dl ) + 4 ( B - 0; ) } ] = W ,  

and the testing time required is s = (2/A)ln W. 

Step I :  Set the error probability (a), total input patterns ( L )  
per millisecond, total number of simulation run (R), 
and the probability of stuck faults ( p ) .  
For the line i under consideration, assign the proba- 
bility of the line having logic 0 ( P f o )  to an initial 
value (possibly 0). 

Step 3: Simulate the circuit and perform Transition Fre- 
quency Count experiment. 

Step 4: Generate the set of Markov parameters X,s and p,s, 
and calculate B - A2/4. 

Step 5: Vary eo in appropriate direction (by varying step 
sizes, if necessary), and repeat Steps 3 and 4 until 
B - A2/4 approaches 0. 
Calculate the testing time (s). 

Step 2: 

Step 6: 

We simulated a simple IC (DM74LS164) for our experiment 
which is an 8-bit serial in/parallel out shift register, as shown in 
Fig. 6. This 8-bit shift register has gated serial inputs and an 
asynchronous clear. A low logic level at either input inhibits 
entry of the new data, and resets the flip-flop to the low level at 
the next clock pulse, thus providing complete control over the 
incoming data. To simplify the simulation, the following input 
conditions were assumed: 

1) 
2) 

Clear was connected to high for bit shift operation, and 
Serial inputs A and B were tied together to simulate single 
bit input. 

Since R S  flip-flops constituted the logic diagram, the case with 
R = S =1 was not allowed. Thus faults with Qi =1, for i = 
A;. . ,G, were considered. For each fault category, the rate of 
generating the input patterns was fixed at lo00 per ms, and a 
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Dual-In-Line Package 
OurPUTs 

CLEAR I 

W T P U I S  

(4 
Fig. 6. DM54LSl64/DM74LSl64 X-hit serial in/parallcl out shift rcgi>tcr\ ( a )  Connection diagrani. (h) Function tahle uhcrc 

I 1  = high level (steadv state). 1. = low lcvcl (stcadv state). X = don‘t care (an! input. including tran>itiona). T = transition from low 
t o  high level. QAO.QBO.QHO= the Icvel of Q A .  QB,  or  Q H .  rcspcctivcl!. hcfcirc the indicatcd steady-state input conditions were 
cstahlished. and QAn.QGn = thc level of QA or  QG hcforc the i n m t  recent T transition o f  thc clock: indicate> a one-hlt shift. ( c )  
Logic diagram (courtcav National Semiconductor Corporation). 

TABLE I1 

Simulated Markov Maximum Testing 
Fault Kind Parameters (per ms) Time (ms) 

Q A / l  

Q s / l  

Qc/l 

Q D / l  

Q E / l  

Q F / l  

Q G / l  

A, = 0.0: h, = 0.023: h,  = 0.0: 

h,  = 0.0; h, = 0.029: h,  = 0.0: 
p o  = 0.038: p1 = 0.068: p2 = 0.039 
A, = 0.0: h, = 0.129: h,  = 0.0: 
p, = 0.205: p1 = 0.335: p, = 0.206 
h, = 0.0: A, = 0.161: h,  = 0.0: 

A, = 0.0: h, = 0.329: h, = 0.0: 
p o  = 0.394: p1 = 0.724: p, = 0.395 
h,  = 0.0; h, = 0.592: h,  = 0.0: 

A, = 0.0: A, =1.135: h,  = 0.0: 
p, = 1.354: p1 = 2.489: p, = 1.355 

p o  = 0.029: p1 = 0.053: p, = 0.030 47.35 

35.61 

6.41 

7.37 

4.17 

1.98 

1.24 

p, = 0.202: p1 = 0.335: p, = 0.203 

p o  = 0.751: p1 = 1.344: p2 = 0.752 

95% confidence interval for detecting the fault was used. The 
simulation program estimated the testing time for each kind of 
stuck fault. The results are summarized in Table 11. 

V. CONCLUSION 
A continuous parameter Markov model for detecting perma- 

nent faults in synchronous sequential circuits by random testing 
is proposed in this paper. The developed model and the related 
mathematical analysis provide some useful insights into the na- 
ture of faults in relation to random testing in sequential digital 
circuits and the associated confidence measure. The approach 
does not require formation of a product state table corresponding 
to the fault-free and faulty state tables of the circuit: instead, 
only the state tables of the fault-free circuit and of its faulty 
version are required to simulate the behavior of the faults. 
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System Lifecurves, Acceptability Regions 
and Reliability 

M. NOVAK 

Ahttruct -The investigation of the relationr between the lifecurver 
population and the acceptabilih regions of technical system can be used as 
a bark for the rystem life expectanc! analysis and optimization, which ir 
one of the main components of the system reliability optimization. 

I. INTRODUCTION 
In almost all areas of engineering activity the considerably 

large and complicated systems are used. With respect to their 
physical nature, one can distinguish two fundamental types of 
systems: the natural systems, and the technical systems. 

The natural systems exist independently on the human activity 
and the research interest is concentrated here to the analysis 
dominantly. 

On the contrary, the technical systems are created by man. 
Therefore, besides the analysis, before all their synthesis and 
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design optimization are in the focus of interest. Let us here 
concentrate to the technical systems only. Nevertheless, the gen- 
eral idea of the presented approach is applicable also on natural 
systems, of course often with non neglectable complications 
caused by their much higher complexity. 

Suppose that the fundamental synthesis of technical system 
was already made. 

This means, that such a system is known, which satisfies all the 
requirements given on the system functional properties. The goal 
of the subsequent optimization procedure is therefore to improve 
the system properties with respect to certain one or more sec- 
ondary (i.e., in the primary synthesis procedure not respected) 
criterion. Between such criteria, the minimization of production 
costs and/or maximization of production yield and operation 
reliability is of highest importance. 

Let a technical system, determined by its structure and by the 
value of the vector X =  { x, }, of the corresponding N real 
system parameters be considered. The properties of this system 
are represented by the set F =  { F k } K  of the K system func- 
tions Fk. 

For the purpose of this paper the following fundamental 
presumptions are to be made: 

1) Suppose, that for some system the realizations between the 
set F and the vector X are known, i.e., that the tool F = f (  X )  for 
the corresponding system analysis is at disposal (in the form of 
some set of mathematical formulae, or algorithms, graphs, tables, 
or any computer-realizable procedure). Therefore, one is able to 
determine for any point in the N-dimensional parameter space 
{ X } ,  the corresponding point on the K-dimensional system 
function surface { F } K .  Further on we shall suppose to deal with 
such systems only. 

2) Suppose further, that for practical use, the system can be 
considered as well operating, if 

F -  Fo < A F ,  

where A F  is the maximal allowed deviation of the real system 
properties from the ideal design. In (l), the minus sign can be 
taken in the strict algebraic sense in the case of real F and K = 1 
only. To the ideal designed system the so called nominal set 
F, = { Fko}K of K nominal systems functions Fko corresponds, 
which is in the N-dimensional parameter space { X } ,  repre- 
sented by some nominal vector X,, so that 

All the points in { X } ,  satisfying (1) are involved in the region 
of acceptability R A .  which is a part of the space { X } , .  The 
analysis of the shapes and sizes of this regions is one of the most 
important task of the system parameter tolerance theory. The 
intensive activity of several dozens authors (see [1]-[lo] e.g.) in 
this field in recent years has caused, that now many useful and 
powerful computer oriented methods for such analysis are at 
disposal. 

11. THE CONCEPT OF THE SYSTEM LIFECURVES 
Suppose further, that for the system under consideration the 

analysis of the regionpf acceptability R A  was already made and 
that its boundaries R A  in the space { X } ,  are known with 
satisfactory accuracy. If the system is “well designed”, for nomi- 
nal vector X ,  corresponding to F, the condition Xo E R A  holds. 
Suppose that more realizations (say M >> 1) of such system are 
considered. Because of the manufacturing imperfections, the 
properties of these systems will coincide with F, only exception- 
ally and the points X,  ( m  = 1.2; . ., M ) ,  representing these 
systems in the space [ X I ,  will differ from X,. The points X,  are 
distributed in the region of deviations R E ,  surrounding X,, 
according certain statistical distribution, expressed by the set 
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