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研究生：何亞謙            指導教授：黃俊達 博士 

國立交通大學 

電子工程學系 電子研究所 

 

摘  要 

 

當製程進入深次微米尺寸，全局接線成為現今的系統單晶片設計

中最關鍵性的難題之一。延遲容忍系統(LIS)被提出來用於解決易變

的接線延遲且不需要改變原有的矽智財設計，延遲容忍系統避免掉了

在產品發展過程中會浪費大量時間的延遲調整，所以延遲容忍系統是

個很好的方法去加速產品設計過程。但是在不同接線上有不平衡的延

遲以及後端的停止要求都會讓延遲容忍系統的效能有所衰退。我們提

出了一個整數線性規劃公式去改善效能至最佳值並且使用最少量的

緩衝器，我們也發展了我們的圖形表示法—量化圖。並用依據量化圖

的特性，我們發展了一套降階流程去減小圖形大小但依舊維持正確

性。我們也考慮了實際上晶片上會有不同的頻寬。實驗結果顯示我們

的方法可以大幅降低圖形大小並且省下至少 20%的緩衝器。 
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ABSTRACT 
 

As manufacturing process proceeds to deep submicron (DSM) technology, global 

interconnect delay becomes one of the most critical obstacles in system-on-chip (SoC) 

design nowadays. Latency insensitive system (LIS) is a method proposed to solve 

variant interconnect delay without modifying pre-designed IP cores. In other words, 

LIS avoids modified delay iterations in product developed period. LIS offers a 

solution for time-to-market. However, the imbalance delay and back-pressure in LISs 

cause performance degradation. We propose an ILP formulation to improve 

performance to optimal value while maintaining minimal buffer size. We also propose 

a graph representation called quantitative graph (QG). Then we develop the reduction 

procedure on QG to decrease graph size while maintaining correctness of 

performance. We also consider practical situation which chip have different channel 

bit width on it. From the experimental results, our method reduces graph size greatly 

and our method saves more than 20% of buffer size than pervious works. 
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Chapter 1 

 Introduction 
 

 As the manufacturing process proceeds to deep submicron (DSM) technology, 

device size and interconnect width continuously scale down. This evolutionary 

scaling makes individual device speed become significantly faster; however, it also 

makes the delay of interconnect become worse. As a result, interconnect delay 

problem has become one of the most critical obstacles for designs nowadays. 

Interconnect delay problem suffers from increased resistance due to a decrease in 

conductor cross-sectional area and also suffers from increased capacitance when 

metal height is not reduced with conductor spacing [1]. Another reason that 

interconnect delay problem turns into the boundary of designs is the failure of global 

interconnect scaling. The length of global interconnects can not shrink down as 

devices and local interconnects. As Figure 1-1 [2] shows, global interconnects must 

pass through multiple IPs in order to connect them together. From the figure, global 

interconnects keep unchanged while local interconnects and devices shrink down with 

process scaling.   

Figure 1-1. Un-scaling global interconnect as device size shrinking down. 
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Due to the un-scalable characteristic of global interconnects, the relative delay 

difference between global interconnects and local interconnects broadens. Figure 1-2, 

which is cited from [3], shows the trend for relative delay gap in different process 

generation. The global interconnect delay is about twenty times slower than gate 

delay and is about sixteen times slower than local interconnects delay in 65nm 

process. The circumstance gets worse in 32nm, where global interconnects delay is 

one hundred and twenty times slower than local interconnects delay. 

 

 
Figure 1-2. Delay for global interconnects, local interconnects and gate. (cited from 

[3]) 

 

Figure 1-2 implies that length of global interconnects has grown rapidly 

compared to local interconnects so a signal can not arrive from one side to the other 

side within a clock cycle. Hence, it is unavoidable that the data transfers between IPs 

require multiple clock cycles to deliver. Such multi-cycle communication can 

seriously degrade the performance improvement originally obtained from advanced 

fabrication technology. The acceleration of individual devices and the multi-cycle 
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communication bottleneck force designers to shift design paradigm from 

computation-bound to communication-bound.  

 

There has developed some technologies to ease the communication burden 

caused from global interconnects delay. In physical design level, wire sizing, buffer 

insertion…and so on, help to relax the delay constraints. In system design level, many 

research works try to not only conquer the communication bottleneck but also 

maintain the functional behavior unchanged. 

 

One approach is to utilize asynchronous handshake protocols for global 

inter-core communication. This is called globally-asynchronous locally-synchronous 

(GALS) systems [4]–[6]. Another one is network-on-chip (NoC) platform in [7] and 

[8], which constructs an on-chip interconnection network for global signals 

transmission. The data transmission in NoC passes through every module’s router 

with helping of those on-chip network interfaces. [9] and [10] propose a regular 

distributed register (RDR) microarchitecture which is composed of array of islands. 

Communication inside an island can be finished in a single clock cycle. For 

multi-cycle communication between islands, layout-driven architectural synthesis 

algorithms have been developed. 

 

There is another method called Latency Insensitive System (LIS) reported in [11] 

and [12] which is receiving many attentions recently. The LIS approach does not alter 

original system architecture but it wraps every IP with a special interface and adds 

small pipeline elements to systems. By using those additional elements and interfaces, 

LISs cope with variant interconnect delay without changing any IP in the system. 

Inserting pipeline elements into global interconnects, like LIS design paradigm, is the 
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design mainstream for synchronous system nowadays [13]. Timing constraints are 

relaxed after inserting pipeline elements into long interconnects so that loose timing 

constraints can lead to operating frequency acceleration. For example, the 

interconnects shown in Figure 1-3, the input/output timing constraints of all 

interconnects are needed to be smaller than 1 clock cycle. For instance, the delay of 

interconnect A is 0.9 clock cycle such that it needs no pipelining. On the other size the 

delay of interconnect B is 2.4 clock cycles such that it needs two pipeline elements 

inserted into interconnect B. Because of it, the input/output timing constraints of 

interconnect B are feasible.  

 

 
Figure 1-3. An example of the pipeline element insertion. 

 

1.1 Motivation 

As the complexity of system-on-chip (SoC) keeps growing, it is impossible to 

redesign each IP for a new system. According to that reason, IP reuse becomes the 

most promising way in present SoC design. However, length of interconnects is 
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unpredictable at early design stage. It makes engineers hard to determine the exact 

time when IPs should receive and send data. Interconnect length information remains 

unknown until the floorplanning is actually performed. In other words, how many 

clock cycles are needed for data communication is dependent on the result of 

floorplanning. If the timing after floorplanning do not meet the requirement, it may 

jeopardize system performance, or even worse, ruin the overall system behavior. 

Therefore, engineers need to adjust floorplanning appropriately or redesign IPs to 

accommodate multi-cycle communication. Time wasted on adjusting floorplanning or 

redesigning IPs is significantly long that may be a terrible damage to project schedule. 

Hence, it is urgent that we need an efficient method to solve multi-cycle 

communication and IP reuse dilemma. Latency Insensitive System is a 

correct-by-construction methodology and seems to be a promising solution that can 

solve both problems at the same time. As a result, we consider LIS as the greatest 

time-to-market method in the incoming era of high speed synchronous design and we 

adopt LIS to achieve optimal performance while maintaining minimal area cost. 

 

1.2 Contribution 

    In this thesis, we propose an ILP formulation to solve LISs for optimal 

throughput solution with minimal area. We follow the marked graph representation to 

model LIS and we transform original marked graph to quantitative graph for latter 

reduction operations. When we use marked graph to during ILP formulation, number 

of cycles in the graph are the limitation to the ILP formulation. It needs a lot of time 

to get the optimal solution for larger practical cases. This may be the obstacle of 

project schedule. We propose a procedure which contains two operations to deal with 

this obstacle. Path condensation and edge unification are used to reduce graph size so 
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that we can handle bigger design cases. All benchmarks can be solved within 20 

minutes in our experiments after the reduction procedure is performed. Then, our 

proposed ILP formulation finds the minimal buffer size to achieve optimal 

performance. To reflect real situation in the SoC system, we take bit width issue into 

consideration. In the end, we obtain optimal solution on buffer size while maintaining 

optimal performance and have faster computation speed to get that optimal solution. 

 

    According to the experimental results, it is concluded that the reduction 

procedure decreases graph size greatly. Furthermore, our approach performs better 

when interconnect delay becomes worse. Finally, when bit width issue is also 

considered, the difference of results between our approach and previous works 

become larger.  

 

1.3 Thesis Organization 

This thesis is organized as follows. In Chapter 2 we give the preliminaries of our 

work. It includes the introduction of latency insensitive system, how to fix system 

performance degradation of LIS caused by multi-cycle communication, and some 

related works. The proposed strategy for performance optimization with minimal 

buffer size is given in Chapter 3. The experimental results and related analyses are 

provided in Chapter 4. Chapter 5 concludes this thesis and lists probable future works. 
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Chapter 2 

 Preliminaries 
 

2.1 Latency Insensitive System (LIS) 

    The concept to design a system which is insensitive to arbitrary variation in 

interconnect delay was first presented in [14]. The proposed approach Latency 

insensitive design (LID) is a design methodology for SoC that enables automatic 

adjustment to original system in order to make new system get with variant delay. 

LID encapsulates each IP core (the pearl) with an automatically-synthesized interface 

(the shell) and inserts repeaters to pipeline long interconnects. Those repeaters are 

called relay stations (RS) in LIS. By using LID, one can derive an LIS from original 

synchronous system. IP cores may be synchronous sequential logic blocks of any 

complexity as long as they satisfy the stallability, i.e., their operation can be 

temporarily stalled [12]. Relay stations are clocked buffers with two-fold storage 

capacity used to pipeline every long interconnect in order to let them meet the target 

clock period. After doing those movements, an LIS is latency-equivalent to original 

synchronous system [12]. It means that when we ignore stalling (void) events in 

timestamps, the rest informative (valid) events on each channel of an LIS are exactly 

the same with the informative events on each channel of the original system. To 

summarize contribution of LID is it guarantees that it can cope with any amount of 

interconnect delay without redesign of any IP core. Figure 2-1 illustrates the typical 

structure of an LIS implementation. Four pre-designed IP cores are encapsulated 

within the shells and five relay stations are inserted to long interconnects. IP cores 

communicate with each other by a set of point-to-point, pipelined channels. The 

encapsulated IP cores, relay stations, and point-to-point channels form the entire LIS.  
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Figure 2-1. Shell encapsulation and RS insertion in an LIS. 

 

Figure 2-2 shows detailed architecture of encapsulated IP core. Block diagram in 

the example contains two input channels, one output channel, a controller to drive 

each element, and a stallable IP core. Each input channel has two end points. One is 

direct to input port of stallable IP core, and the other goes to the storage element 

queue located in every channel. IP core takes data either from input channel directly 

or from storage element controlled by multiplexer. A controller is accompanied with 

each encapsulated IP core, and it determines many vital controlling signals, such as 

select signal for multiplexer, stalling signal for IP core, and operation signals for 

queue. The details of the shell and relay station RTL logic designs are listed in [15]. 

Each shell and each relay station follow universal communication protocol. The 

protocol which allows shells and relay stations exchanging data on variant length 

channels is latency insensitive protocol (LIP) [11]. LIP defines the data exchanged 

by the shell as either valid or void and keeps the shells to ignore the existence of 

void data. The shell fires or executes the IP if and only if the IP can get a valid data 

from each input channel. The valid data from each input channel can be acquired 

from channel directly or from storage element queue. If the condition is not satisfied, 
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the shell stalls the core otherwise. The architecture of relay station is similar to the 

encapsulated IP. We can view the IP core of relay station as a simple edge triggered 

flip-flop. 

 

 

Figure 2-2. Block diagram of an encapsulated IP core. 

 

    System throughput is the primary evaluation metric of system performance. 

Throughput is usually calculated by valid data generation rate. Figure 2-3 and 2-4 

show how to calculate throughput of LISs.  

 

Figure 2-3. Progressive trace of a simple LIS. 
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1 2 3 4 5 6 7 8 9

T1 T2 T3 T4 T5 T6 T7 T8 T9
 

Figure 2-4. Output data sequence at core C in Figure 2-3. 

 

    In Figure 2-3, the big white rectangles represent IP cores in a system. The small 

white rectangles inside IP cores are queues on each input channel. IP A and B both 

have only one input channel and queue size on each input channel is all equal to 1. IP 

C has two input channels and queue size on each input channel is equal to 1, too. A 

channel queue, whose size is 1, is called a minimum queue so Figure 2-3 is an LIS 

with minimum queue on every channel. Red numbers in Figure 2-3 represent valid 

data and a positive integer “i” denotes the i-th valid data generated by the IP core. 

Note that when an IP core takes (i-1)-th valid data from its input channels, it outputs 

its i-th valid data to output channels if IP fires. Otherwise, a shell stores the valid data 

in queue when an IP stalls. We trace i-th valid data to get the valid data generation rate. 

This trace of data produced by IPs is called a progressive trace [16]. Since IP C is the 

only output of the simple LIS, system throughput can be derived by analyzing the data 

generation of output channel of IP C. Figure 2-4 shows the result of output data 

sequence at output channel of IP C. We find that IP C produces a valid data at every 

clock cycle so throughput of this LIS is 1 obviously. However, this simple LIS 

example does not consider the effect of inserted relay stations and back-pressure 

mentioned in [17] and [18]. A more realistic LIS example is showed in Figure 2-5. 

The shaded rectangle indicates a relay station and a relay station simply passes 

received data to its output channel at next clock cycle. Red numbers are valid data, the 

same definition as in Figure 2-3, and blue numbers mean void data. Since a relay 

station only passes the received data, it never generates new valid data. We assign a 
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symbol ‘τ’ to represent a non-generated and void data which a relay station outputs at 

timestamp 1.  

 

 

Figure 2-5. Simple LIS example with inserted relay station and back-pressure. 

 

    In timestamp 1, all IP cores produce their first valid data, while relay station can 

only stall and release void data τ. In timestamp 2, IP C only receives a valid data from 

one of its input channel, but IP C needs two first valid data from each of its input 

channels to generate second valid data. Therefore, IP C stalls and outputs a void data. 

The first valid data generated by IP B is not processed, so it is stored in the queue of 

the lower input channel of IP C. As a result, lower input channel of IP C becomes full 

in the end of timestamp 2. In order to avoid valid data loss due to queue overflow, it 

forces IP B to stall at timestamp 3. The stop signal used to request source IP to stall at 

next timestamp is called back-pressure. The occurrence of back-pressure is 

highlighted by coloring the occurred channel red. In timestamp 3, IP C gets all 

required data from its input channels, so it can generate next valid data. IP B needs to 

stall, since the occurred back-pressure at timestamp 2. Note that since the queue of 

lower input channel of IP C is full at timestamp 2, the data sent by IP B at timestamp 

2 will be discarded by the shell of IP C. This reason forces IP B to re-send generated 
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data at timestamp 3 although it stalls at timestamp 3. Another thing needed to be 

noticed is that the queue of IP B is full at timestamp 3. IP B sends a stop signal to IP A 

to request IP A to stall at next timestamp. In timestamp 4, all IPs produce their next 

valid data except IP A. IP A stalls at timestamp 4 but still re-sends data to IP B, like IP 

B does in timestamp 3. In timestamp 5, all IP cores fire to produce valid data and 

relay station passes a received void data. We find that the system behavior in 

timestamp 5 is identical to system behavior in timestamp 1. By progressive trace, we 

infer that the LIS example has a period of four clock cycles, as shown shows in Figure 

2-6. Figure 2-6 is the output data sequence of IP C, and system behavior clearly 

repeats every four clock cycles. This LIS outputs three valid data in every four clock 

cycles, so throughput of LIS is obviously three fourth.  

 

 
Figure 2-6. Output data sequence of core C in Figure 2-5 

 

Finally, we summarize the advantages of LIS. LIS is a great solution to variant 

global interconnects length which is unknown in early design stage. By adding relay 

stations and encapsulating IP cores, LIS approach guarantees robustness for system 

behavior under LIP. However, LIS approach does not guarantee the same robustness 

for the throughput affected by back-pressure mechanism. There are two proposed 

technologies to deal with the throughput optimization problem of LIS. One is relay 

station insertion and the other is queue sizing of channel queue. 
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2.2 Throughput Optimization for Latency Insensitive System 

The advantage and disadvantage of LIS have been discussed. Next, we discuss 

two related technologies used to optimize throughput of LIS. 

 

2.2.1 Relay Station Insertion 

    In Figure 2-5, we discover that one of the reasons cause the occurrence of 

back-pressure is the imbalance of channel latency. Data transmitted from IP A to IP C 

on upper path has experienced one clock delay but data transmitted on lower channel 

has not. The imbalance of channel latency results in occurrence of back-pressure and 

degrades throughput of LIS. Casu and Macchiarulo suggest equalization which 

basically equalizes all paths by inserting enough relay stations to make them have the 

same latency [19]. Therefore, there are two reasons that relay stations need to be 

added to an LIS. The first is to break up long channels to meet target clock period. 

The second reason is to optimize throughput by balancing latency of channels. Figure 

2-7 demonstrates how to balance latency by inserting relay stations.  

 

 

  Figure 2-7. Optimize throughput by inserting relay station. 

 

Left of Figure 2-7 is the same LIS example in Figure 2-5. We know that 

back-pressure occurs in this LIS architecture. Now, we insert a relay station to the 

channel connected IP B and IP C as shown in the right of Figure 2-7. As a result, all 

data arrived IP C have experienced the same latency, so back-pressure will not occur. 
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Throughput of the LIS improves to 1 finally. This is how we optimize throughput by 

relay station insertion. Nevertheless, relay station insertion still has its limitation. Lu 

and Koh have proved that equalization does not work for all systems [20]. Figure 2-8 

illustrates a counter example. To balance the latency at paths from IP A to E a relay 

station must be added to either channel (A, C) or channel (C, E), but this ends up 

unbalancing either path from IP C to A or paths from IP E to C. Next, more relay 

stations need to be inserted to balance them. As a result, we find that throughput will 

never improve to 1 by doing exhaustive progressive trace.  

 

 

   Figure 2-8. Counter example of relay station insertion 

     

    From the discussed counter example, we know that relay station insertion still 

has some restrictions. Since relay station insertion is not a general solution for all 

LISs, the demand for better solutions rises. 

 

2.2.2 Queue Sizing 

    Another reason which causes back-pressure to happen is size of queue. When 

queue is full, the shell needs to send a stop signal to stall source IP. This creates a 

motivation to increase size of queue so back-pressure will not happen. Without 

happening of back-pressure, performance of LIS can be optimized. Figure 2-9 

illustrates the effect after increasing queue size of lower channel of IP C to 2. Left of 
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Figure 2-9 is the exact example in Figure 2-5 of timestamp 2. Back-pressure occurs 

when queue is full at this timestamp. After we adding one queue to lower channel of 

IP C, like the right of Figure 2-9, there always leaves one unused queue and hence 

back-pressure will never happen. Throughput of the example also improves to 1. 

 

 

Figure 2-9. Optimize throughput by queue sizing 

 

    We view relay station insertion as another kind of queue sizing because relay 

station is a clocked storage element like queue. The difference of relay station and 

normal queue is that relay station forces all received data to delay one clock cycle but 

queue will not. The advantage of queue sizing is it will not potentially impact 

elsewhere in the system like relay station insertion since it only delays data by queue 

when needed. Increasing size of queue only causes slight additional hardware cost 

that will not influence whole system architecture in most of systems. Based on the 

characteristics, queue sizing becomes the mainstream of LIS throughput optimization. 

To be summarized, queue sizing offers a trade-off between performance optimization 

and area overhead. 

 

2.3 Related Works 

    LIS has been discussed frequently in recent years. Many research works are 

made under different hardware architecture assumptions and different physical 



 16

information assumptions. Next, we are going to introduce two important research 

works on LIS topic. Earlier works before 2003 only considered ideal LISs (LISs with 

infinite queues and no back-pressure). Lu and Koh are the first people who proposed 

the method to solve LIS with back-pressure problem by queue sizing [17]. They 

showed that performance of a practical LIS with finite queues and back-pressure can 

reach the performance of an ideal LIS if proper queue sizing is adopted. They also 

proposed an approach to analyze complex LISs. Lis graph and extended lis graph 

were presented to model LISs. Throughput of an LIS was decided by the most critical 

cycles called the system cycles. Throughput calculation of those LISs has been shown 

in equation (1). 

)
||
)((max1

Ci
CiW

CCi∈−                        (1) 

Where C is the set of all cycles in the lis graph. W(Ci) is the sum of edge weights of 

cycle Ci, and |Ci| is the number of edges in cycle Ci. 
||
)(

Ci
CiW  is called the cycle mean 

of cycle Ci. System cycles are cycles with max cycle mean and those cycles 

determine throughput upper bound. Throughput can not be further improved by queue 

sizing when it reaches throughput upper bound which is equal to 1 in most cases. 

Finally, Lu and Koh proposed a mixed integer linear programming (MILP) solution 

for queue sizing. 

 

    Collins and Carloni proposed a heuristic for queue sizing that produces solutions 

close to optimal solution in shorter time reported in [21] and [22]. A marked graph is a 

bipartite directed graph and Collins et al. use it to model LISs. Performance of LISs in 

marked graph is represented by maximal sustainable throughput (MST) θ. MST is 

determined by cycles with lowest tokens to places ratio. This ratio is similar to cycle 
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mean in [17]. The details of marked graph and MST will be introduced in Section 3.1. 

Token deficit problem (TDP) is the problem of filling the token (queue) deficit of 

cycles in an LIS. Collins et al. claimed that their heuristic algorithm for TDP is 

guaranteed to produce a performance-wise optimal solution that may require more 

queue space. Additionally, Collins et al. proposed two trends of LISs. One is that the 

position where relay station inserted affects throughput seriously. The other is the 

efficiency of fixed queue size. Collins et al. claimed that assigning every queue size to 

5, and throughput is above 90% of the optimal solution. Collins et al. also make a 

different hardware architecture assumption with Lu et al. proposed in [17]. In our 

opinion, Collins’ hardware architecture assumption is closer to practical situation.  

 

    There are some different methods to solve LIS problem for different purposes. 

For instance, Casu and Macchiarulo avoided queue sizing issue by scheduling the 

activation of IPs [23]. A limitation of their work is that building schedules needs 

knowledge about the global system behavior. Bufistov et al. proposed the method that 

combines both queue sizing and relay station insertion techniques to achieve optimal 

throughput [24]. However, they made an assumption that the increase of queue size 

will also cause the increase of channel delay. This assumption will not happen in the 

hardware architecture we used. 
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Chapter 3 

 Throughput Optimization for LIS with Minimal 

Buffer Size 
 

3.1 Marked Graph and Quantitative Graph (QG) 

    We introduce details of the marked graph first. Marked graph is a proposed 

modeling architecture for synchronous systems. Their simplicity makes them quite 

amenable to analyze synchronous systems which have a periodic behavior like LIS. A 

marked graph has two kinds of vertices: places and transitions. By definition, each 

place has exactly one incoming edge and one outgoing edge that both connect to 

transitions. Places have the ability to hold 0 or more tokens. Transitions cannot hold 

tokens, but they can fire and move tokens around in the graph. Each outgoing edge 

from a place connects to a transition, and each incoming edge connects to a place 

coming from a transition. A transition is enabled to fire when the place on each of its 

incoming edges has at least one token as the fire condition we described. All 

components of a marked graph fire to produce valid according to global clock. 

Detailed definitions of the marked graph are reported in [21], [22], and [25].  

 

 

Figure 3-1. Modeling relay station and shell with marked graph representation. 

 

    Figure 3-1 shows the marked graph representation of a relay station and a shell. 
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The large white circles represent places, the small black circles represent tokens, the 

black vertical bars represent transitions, and the number q represents the channel has q 

tokens. Initially, the relay station’s place on solid edge has no token since the relay 

station produces a void data in timestamp 1, and its dashed edge has two tokens on 

place corresponding to the two available storage spaces in the queue. Recall that relay 

station is a clocked buffer with two storage capacity. The shell’s place on solid edge 

has one token since the shell produces a valid data in timestamp 1, and its dashed 

edge has q tokens on place. Number q is a positive integer. Using a marked graph 

representation, valid or void data are presented by tokens on the solid edges. The 

tokens on the dashed edges represent available spaces of queue in the channel [21].  

 

 

Figure 3-2. Transformation from original LIS graph to marked graph representation. 

 

    Figure 3-2 illustrates how to transform original LIS graph to a marked graph 

representation. All queue size of shells are set to 1 in this case. It is convenient to 

calculate MST after we transform LIS to marked graph. We used to compute system 

throughput by progressive trace as mentioned in Section 2.1, but progressive trace 

spends a lot of time to simulate IP behavior on every timestamp, so it is unpractical to 

calculate throughput by progressive trace in complex system. However, based on 

Section 2.3, we can compute the MST of the graph by finding the cycles with the 

lowest ratio of tokens to places. In Figure 3-2, the most critical cycle {A, D, C, B, A} 

has four places but only three tokens on it, so the system has MST of three fourth. 
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Another convenience of marked graph representation is that it can reflect queue sizing 

problem easily. Figure 3-3 shows how to reflect queue sizing problem to the marked 

graph. If we want to add an extra queue to IP B, we only need to put an additional 

token on dashed edge of IP B. Finally, the most critical cycle {A, D, C, B, A} of the 

system has ratio equal to 1, so the system has optimal MST 1. 

 

 

Figure 3-3. Queue sizing problem reflects to marked graph representation. 

 

     We prefer to adopt marked graph representation on our LIS research. This is 

because: (1) it is easy to transform original LIS graph to marked graph representation. 

All we need to do is to find all channels and IP cores in LIS, and then transforms them 

to relay station or shell representation, as shown in Figure 3-1. (2) throughput of LIS 

is easy to calculate in marked graph, since we only need to find the cycles with lowest 

tokens to places ratio in the marked graph. (3) it is easy to decide which places in the 

marked graph should have more tokens. This greatly helps us find the optimal 

solution.  

 

    Although marked graph representation is convenient, there still exist some 

drawbacks in it. One is that we used to calculate throughput with pure integer number. 

Using tokens and places is easy to operate at graph, but it is indirect in calculating 

throughput. Since that, we propose a new graph representation quantitative graph (QG) 
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which can handle those problems properly. Figure 3-4 shows the flow how we 

transform from a marked graph to a quantitative graph. First, we want to quantify 

number of places and tokens into integers. Now we get an intermediate graph which 

only contains four integers in each channel. Second, we transform every transition 

into a vertex and get rid of all dashed edges in the intermediate graph. This is feasible 

because each dashed edge corresponds to a solid edge in the marked graph. Whenever 

there exists a solid edge, there must exists a corresponding dashed edge. In the end, 

we create a new graph with vertices and four weightings in each channel. Those 

weightings represent number of places and tokens on solid edge and dashed edge of 

the channel. We call this new graph quantitative graph. 

 

A D

B

C

(1,0)
(1,2)

(1,1)
(1,1)

(1,1)
(1,1)

(1,1)
(1,1)

A

D

B

C

[1,0,1,2]

[1,1,1,1]

[1,1,1,1]

[1,1,1,1]

●
●

●

●

●

●

●

●

A D

B

C

(ps, ts)
(pd, td)

ps(e) : places of solid edge

ts(e) : tokens of solid edge
pd(e) : places of dashed edge
td(e) : tokens of dashed edge

[ps(e), ts(e), pd(e), td(e)]

 
Figure 3-4. Transformation from a marked graph to a quantitative graph. 

 

    Definition of quantitative graph: A quantitative graph GQ = (VQ, EQ, ps, ts, pd, td) 

is a weighted directed graph, where 

‧ VQ is the set of vertices. 

‧ EQ is the set of edges, and each edge carries four weightings ps, ts, pd, and td. 
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‧ ps: E→Z+ shows the number of places of the corresponding solid edge.  

‧ ts: E→N represents the number of tokens of the corresponding solid edge. 

‧ pd: E→Z+ identifies the number of places of the corresponding dashed edge. 

‧ td: E→Z+ is the number of tokens of the corresponding dashed edge. 

 

    Formal transformation from a specified marked graph to the quantitative graph is 

described as follows. Each transition ti in the marked graph converts to a vertex vi in 

the quantitative graph. Each edge (vi,vj) in the quantitative graph corresponds to a pair 

of edges in the marked graph, including a solid edge (ti,tj) and a dashed edge (tj,ti). 

Places and tokens of solid edges transform to weightings ps and ts in the quantitative 

graph. Places and tokens of dashed edges transform to weightings pd and td. For 

example, ps((vi, vj))=1, ts((vi, vj))=0, pd((vj, vi))=1, and td((vj, vi))=2 represent an 

input channel of relay station in the quantitative graph. System throughput of QG is 

decided by cycles with lowest ratio of tokens to places, which is identical to original 

marked graph. However, tokens and places in the marked graph are transformed to 

weightings in the quantitative graph. Throughput calculation of QG is modified to 

find lowest ratio of ∑∑∑∑
∩∈∩∈∩∈∩∈

++
DCeSCeDCeSCe

epdepsetdets )()()()( in the graph. 

Summation of ts and td represent total tokens in cycle C. Summation of ps and pd are 

total places in cycle C. S represent set of solid edges and D represent set of dashed 

edges. We define this ratio as T(C). 

 

3.2 Quantitative Graph Reduction 

    There still exist some vital problems unsolved even after we transform marked 

graph to QG. One of them is when global interconnects latency becomes worse, and 

we will need more relay stations to pipeline interconnects, so graph size becomes 
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huge. Some LISs may be unsolvable due to huge graph size. That urges us to try to 

further reduce graph size. 

 

3.2.1 Path Condensation 

    If there exists a simple path in the QG and every vertex inside the path all have 

only one input edge and only one output edge. We find that it is equivalent in 

calculating throughput after we combine all edges and vertices in the simple path into 

a single edge. And all weightings of the single edge are the summation of weightings 

of all combined edges.  

 

 

Figure 3-5. Two graphs are equivalent in throughput calculation. 

 

    Figure 3-5 illustrates the concept of combination. Left graph of Figure 3-5 is 

original QG and right graph of Figure 3-5 is the graph after combinative operation. 

The pink vertex represents relay station and the two red edges correspond to two 

combinative paths in the left graph. Left graph has two cycles when we consider solid 

edges only. T(C) of those two cycles are two third and one. Since system throughput 

is determined by cycles with lowest T(C), system throughput of left graph is two third 

finally. Right graph also has two cycles with T(C) equals two third and one. System 

throughput of right graph is also two third. In the end, two graphs are equivalent in 
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system throughput but right graph has fewer vertices and edges. In other words, right 

graph is more efficient in counting cycles in the graph, this is to say, more efficient in 

calculating system throughput. We define this combinative operation as path 

condensation. By path condensation operation, we can eliminate all the relay stations 

and some IPs in the QG without influencing system throughput. 

 

    Definition of path condensation: We call a simple path pu,v <u,v1,…vn,v> 

condensable if the path satisfies the following two conditions. 

‧ The length of path |pu,v|≥ 3, or n≥ 1 

‧ For each intermediate vertex {v1,v2,…,vn}, its input degree and output degree 

must both equal to 1 

 

Each condensable path pu,v can be replaced by a condensed edge ec (u, v) without 

affecting the overall system throughput, and for each condensed edge 

ps(ec)=pd(ec)=n+1, ts(ec)= ∑
∈ )( ,

)(
vupEe

ets , td(ec)= ∑
∈ )( ,

)(
vupEe

etd . E(pu,v) is the set of edges 

belonging to condensable path pu,v,, that is (u, v1), (v1, v2)…...(vn, v). 

 

3.2.2 Edge Unification 

    After we doing path condensation operation, we find the rest graph can be further 

reduced in number of edges. We observe that one of two red edges is dominating in 

calculating throughput in Figure 3-5. We observe left of Figure 3-6, and we know 

system throughput is two third. In other words, the cycle contains upper red edge 

dominating system throughput. That is to say, we can eliminate the other one red edge 

without affecting correctness of throughput calculation. The activity is showed in 

right of Figure 3-6 which dominating edge is kept and the other is eliminated. We 



 25

define this operation as edge unification. 

 

v1 v3

[1,1,1,1]

[2,1,2,3]

v1 v3

[1,1,1,1]

[2,1,2,3]

[2,2,2,2]

System throughput : 2/3 System throughput : 2/3
 

Figure 3-6. Operation of edge unification. 

 

Definition of edge unification: For any two vertices vi, vj in the quantitative 

graph, if there exist multiple edges from vi to vj, we group those edges into an 

Em. Each Em can be unified into a dominating edge ed, and we keep the 

dominating edge and get rid of others edges belonging to the same Em. This 

unification maintains system throughput. Each dominating edge ed is the edge 

with max(ps(e)-ts(e)), where e∈Em. 

 

    In Figure 3-6, the graph has only one Em which contains two red edges. From the 

definition, we know that upper red edge is the dominating edge of Em, so we eliminate 

the lower edge to decrease number of cycles in the graph. By edge unification, QG 

can de further reduced on graph size. Figure 3-7 demonstrates an example of total 

reduction procedure.  
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Figure 3-7. Total reduction procedure of an LIS example. 

 

    Figure 3-7 starts from a marked graph with seven channels where size of queue 

need to be decided. Those variables are indexed as a1 to a7. This is because queue size 

of the relay station is fixed to 2 in marked graph. Marked graph make this assumption 

to keep the relay station small and consistent. Therefore, we only need to view size of 

queue in each shell as a variable. In other words, now we have seven variables in this 

example. Next, we transform marked graph representation to QG representation. Then, 

we do the reduction procedure to the QG. From the definition of path condensation 

and edge unification, we know those procedures will not affect correctness of 

throughput. Finally we acquire a reduced graph which has the same throughput with 

the original marked graph while eliminating variables from seven to three. This makes 

throughput calculation in the reduced graph faster than with initial marked graph. 

After getting result of system throughput, we need to recover from reduced graph to 

original QG to get the correct number of queues in whole system. We show this 

recovered procedure in Figure 3-8 and Figure 3-9. 
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Figure 3-8. An example of recovered procedure step 1 

v1

v2 r1 v3

v4

[1,1,1,2] [1,0,1,2] [1,1,1,2] [1,1,1,2]

r2 r3 v6[1,0,1,2] [1,1,1,3][1,0,1,2] [1,1,1,1]

v5[1,1,1,3] [1,1,1,3]v1 v4

[4,3,4,8]

v6[3,1,3,7] [1,1,1,1]

[2,2,2,6]
Recover_2

 

Figure 3-9. An example recovered procedure step 2. 

 

    In Figure 3-8, we illustrate recovered procedure step 1. In step 1, we recover 

reduced graph from edge unification first. To maintain the optimal throughput in 

recovered procedure, there is a condition must be satisfied. The condition is to make 

all edges belong to the same Em have equal td(e)-pd(e). That is to say, for all e∈Em, 

we make their td(e)-pd(e) equal. This is because all e∈Em needs to have the same 

number of extra queues. Whenever a cycle passes throughput the dominating edge of 

Em, there must exist other cycles pass throughput other edges belonging to the same 

Em in the original QG. When the cycle passes throughput dominating edge needs extra 

queues to achieve optimal throughput, we infer that other edges belonging to the same 

Em will also need the same number of extra queues to maintain optimal throughput. 

For instance, we assign td(e) of the dominating edge in left of Figure 3-8 to be 8. 

Then, we know td(e) of the other one edge is equal to 6, since 8-4 = 6-2. In step 2, we 

recover reduced graph from path condensation as showed in Figure 3-9. We already 

know that queue size of relay station is fixed to 2 so we only need to distribute rest 

queues to the shells equally. For instance, a condensed edge with 6 queues in the left 

of Figure 3-9 is recovered into corresponding two edges (v1, v5) and (v5, v4) in the 
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right of Figure 3-9. Each edge is allotted with 3 queues. We distribute queues equally 

in order to make every shell with similar area in hardware. As a result, we acquire 

final correct queue size solution in right of Figure 3-9. 

 

3.3 Problem Formulation of Our approach  

By the path condensation and edge unification, we can decrease graph size 

extremely and still keep the correctness of system throughput. It helps a lot in 

counting cycles in the graph for throughput calculation. Hence, we can find the 

optimal throughput quickly with the reduced QG. Then we propose an integer linear 

programming (ILP) to find the minimal queue size while maintaining optimal 

throughput. Following are proposed problem formulation: 

 

Given: 

‧ A quantitative graph GQ(VQ, EQ, ps, ts, pd, td). 

Objective : 

‧ Minimize total queues ∑
∈ QEe

etd )(  while maintaining maximum throughput. 

Constraints : 

‧ For each cycle C, 1))()()()(()( ≥++= ∑∑∑∑
∩∈∩∈∩∈∩∈ DCeSCeDCeSCe

epdepsetdetsCT , 

where S represents set of solid edges and D represents set of dashed edges. 

 

    The proposed ILP formulation for the minimal queue size is very efficient 

because it has only |E| integer variables, and |C| constraints. |C| is number of cycles. 

The flow of our approach is separate into three main processes that are discussed as 

following: 

1. Initial setup: In this process, we set the parameters of graphs, including 
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constructing graphs from the benchmark, assigning the length latency of 

each channel, reducing graph size by path condensation and edge 

unification. All works make the graph can be handled easily and faster. 

2. Find cycles: In this process, we identify all the cycles in the graph. By the 

helping of reduction procedure, cycles in the graph will be decreased greatly. 

Hence, the time spent in this process will be shortened greatly, too. We use 

Johnson’s algorithm [26] to help us to find all the cycles in the graph. 

3. ILP process: This is the main process of our approach. We take cycles 

obtained from process 2. And for each cycle, we decide queue size of each 

shell to make all cycles’ T(C) bigger or equal to 1 while minimizing total 

queue size. 

 

3.4 Bit Width of Channels 

    In practical SoC system, channels usually have bit width on them. For example, a 

32-bit CPU may has 32, 16, and 1-bit channels on it. Therefore, we take channel bit 

width issue into consideration. In LISs, queues are put to different positions will make 

different area cost when bit width is considered. Figure 3-10 illustrates the different 

area costs are made by different queues added positions. 

 

Figure 3-10. Queues are added to different positions. 
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    To take bit width of channels into consideration, we only need to modify our 

graph representation slightly. We add an extra width weighting w(e) to every edge in 

the QG. In other words, we modify four weightings (ps(e), ts(e), pd(e), td(e)) in each 

edge into five weightings (ps(e), ts(e), pd(e), td(e), w(e)). Since our purpose is to 

maintain optimal throughput with minimal queue size, the reduction procedure and 

formulations need to be changed for consistency of system throughput. For path 

condensation, ps, ts, pd, td are still the same like in Section 3.2, and w(e) is assigned 

to minimal width among the edges of condensable path. This is because we prefer to 

put queues in edges with lower bit width to achieve minimal queue size. For edge 

unification, ps, ts, pd, td of dominating edge are still the same like in Section 3.2, and 

w(e) is assigned to summation of w(e) of all edges belong to the same Em. This is 

because we need to let all e∈Em have equal extra queues. Whenever the dominating 

edge needs an extra queue, other edges belonging to the same Em will need an extra 

queue, too. Figure 3-11 shows the changes in path condensation and edge unification. 

In upper graphs of Figure 3-11, w(e) of condensed edge is the smaller w(e) of edge of 

condensable path <v1, v4>. In lower graphs in Figure 3-11, w(e) of dominating edge is 

the w(e) summation of two edges from v1 to v4. 

 

 

Figure 3-11. Changes in the reduction procedure. 



 31

    Some changes are made to our proposed ILP formulation. The modified 

formulation show as follows: 

Given: 

‧ A quantitative graph GQ(VQ, EQ, ps, ts, pd, td, w). 

Objective : 

‧ Minimize total queue ∑
∈

×
QEe

ewetd )()(  while maintaining maximum 

throughput. 

Constraints : 

‧ For each cycle C, 1))()()()(()( ≥++= ∑∑∑∑
∩∈∩∈∩∈∩∈ DCeSCeDCeSCe

epdepsetdetsCT , 

where S represents set of solid edges and D represents set of dashed edges. 

 

    We only slightly modify objective function of our ILP formulation in Section 3.3. 

It is easy to take bit width issue into consideration on our graph representation and 

ILP formulation. This makes our proposed graph representation and formulation 

useful among the system with bit width all equal to 1 or the system with different bit 

width. 
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Chapter 4 

 Experimental Results 

 

4.1 Environment Setup and Benchmarks 

    The benchmarks we used contain three sets, MCNC, GSRC, and ISCAS89. 

However, MCNC and GSRC lack of transfer direction information. In order to add 

data dependency between the IPs in each benchmarks, we break each net on those 

benchmarks into a 2-pin net and randomly assign it with a direction. To provide more 

realistic cases, we take two cases of ISCAS89 as another benchmark set. Those 

ISCAS89 benchmarks already have direction information. The experiments are 

processed on a computer with an AMD 1.81GHz CPU and 2GB DRAM. We use the 

non-commercial LP/ILP solver lp_solver [27] to solve the proposed ILP formulation. 

Figure 4-1 shows the flowchart of our experiments. 

 

Figure 4-1. The flowchart of our experiments. 
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4.2 Weight and Channel Latency Assignment 

    Since latency of each channel is generated randomly in our experiments, more 

precisely, channel latency is a random real number obtained from an interval [1, A]. In 

other words, 0~A-1 relay stations are inserted to pipeline channel into 1~A parts. For 

example, if the random generated number is 2.4, it means that data need 2.4 clock 

cycles to transmit data along the channel, and two relay stations need to be inserted. 

Each relay station in the experiments has 2 fixed queues like mentioned in Section 3.2. 

The queue size of each shell is assigned to be one initially.  

 

    The bit width of each channel in a benchmark is assigned to be one initially. This 

means that each channel is a one-bit communication channel. To test the influence of 

bit width on channels, we assign a set of different bit width to channels. Then we 

compare the difference between those two bit width assignments. To model the worst 

case of benchmarks, we assume that every benchmark can achieve optimal throughput 

1. This is the worst case because we need to consider every cycle and make its T(C) 

bigger or equal to 1 when throughput upper bound is 1. If throughput is a real number 

smaller than 1, cycles with tokens to places ratio bigger than throughput upper bound 

can be omitted.  

 

4.3 Results 

For each benchmark, we make three experiments on it. We find the efficiency of 

the reduction procedure in experiment Ⅰ. In other words, how many cycles are 

omitted after path condensation and edge unification are performed. In experiment Ⅱ, 

we compare our approach and heuristic algorithm proposed in [21] and we verify the 

variation when channel latency becomes worse. Finally, we compare our approach 
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and heuristic algorithm when bit width issue is considered. 

 

4.3.1 Experiment Ⅰ 

    In experiment Ⅰ, we count number of cycles in original marked graph and in 

reduced QG. We use Johnson’s algorithm [26] to help us to count all cycles in both 

two graph representations. Channel latency locates on interval [1, 3]. In other words, 

0~2 vertices are added to every edge in graphs. 

 

Table 4-1. Number of cycles degradation after the reduction procedure performed.  

Original QG Reduced QG Benchmark 

Set 
Case Name 

(V,E) # Cycles (V,E) # Cycles 

apte (30,45) 2965 (7,16) 350 

xeorx (31,40) 357 (8,15) 193 

hp (28,33) 66 (10,13) 37 

ami33 (82,99) 8962 (29,44) 7782 

MCNC 

ami49 (172,314) * (17,49) 234972 

n10 (27,34) 2468 (7,14) 176 

n30 (76,97) 137647 (21,39) 16512 

n50 (107,146) * (29,50) 29926 

n100 (184,207) * (64,74) 10583 

n200 (301,327) * (128,135) 19169 

GSRC 

n300 (482,636) * (122,183) 38443 

s344 (297,397) 96588 (44,61) 488 
ISCAS89 

s349 (299,402) 74713 (44,61) 404 

 

From Table 4-1, we show five MCNC benchmarks, six GSRC benchmarks, and 

two ISCAS89 benchmarks. Each Benchmark’s name and its experimental results are 

listed in Table 4-1. Column (V, E) under marked graph represents vertices and edges 

in original marked graph. Column # Cycles under marked graph represents number of 

cycles in marked graph representation. Column (V, E) and # Cycles under reduced 
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QG have the same meaning with definitions under marked graph. * represents number 

of cycles exceed one million so that is too hard to solve problem with this size. The 

reduction procedure decreases graph size from unsolvable to solvable size in one of 

five benchmarks of MCNC. And it decreases four benchmarks of GSRC to solvable 

size. We make the conclusion that reduction procedure is useful in decreasing cycles 

in the graph. 

 

4.3.2 Experiment Ⅱ 

    In experiment Ⅱ, we verify the difference between our proposed method and 

Collins’ method in [21]. We make two different set of channel latency assignments in 

two experiments in experiment Ⅱ. The results of channel latency located on [1, 3] are 

showed in Table 4-2. The results of channel latency located on [1, 5] are showed in 

Table 4-3. All bit width is assigned to 1 in experiment Ⅱ. 

Table 4-2. Experimental results when channel latency locates on [1, 3]. 

Proposed Method Collins Method Benchmark 

Set 
Case Name 

# Queues Run Time(s) # Queues Run Time(s) 

apte 19 0 27 0 

xeorx 43 0 43 0 

hp 19 0 19 0 

ami33 41 1 61 1 

MCNC 

ami49 520 747 548 319 

n10 14 1 17 0 

n30 57 6 74 2 

n50 58 23 87 7 

n100 85 4 104 2 

n200 101 12 150 5 

GSRC 

n300 182 54 241 24 

s344 95 0 116 0 
ISCAS89 

s349 107 0 132 0 

Ratio   1 1 1.22 0.42 
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From Table 4-2, we show the experimental results of two methods. Column # 

Queues represents number of queues needed to maintain optimal throughput in our 

proposed method and in Collins’ method. Run time represents time needed to 

compute this solution. Run time is counted by seconds. Our method saves 22% 

number of queues than Collins’ method on average, but run time of our method is 2.5 

times than Collins’ method on average. 

 

Table 4-3. Experimental results when channel latency locates on [1, 5]. 

Proposed Method Collins Method Benchmark 

Set 
Case Name 

# Queues Run Time # Queues Run Time 

apte 67 0 67 0 

xeorx 35 0 37 0 

hp 15 0 15 0 

ami33 85 1 151 1 

MCNC 

ami49 618 947 691 371 

n10 38 1 44 0 

n30 92 7 105 2 

n50 167 35 242 10 

n100 126 5 142 2 

n200 149 18 261 7 

GSRC 

n300 459 73 545 31 

s344 182 0 240 0 
ISCAS89 

s349 142 1 184 0 

Ratio  1 1 1.25 0.39 

 

    Our method saves 25% number of queues than Collins’ method on average, but 

run time of our method is still about 2.5 times than Collins’ method in Table 4-3. 

Compared Table 4-2 and 4-3, we find when the channel latency becomes worse, the 

difference between Collins’ method and our method enlarge. Our method will perform 

better than pervious works when channel latency becomes worse. From Chapter 1, we 

know that channel latency becomes worse as the manufacturing process scales down. 
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To be summarized, our method offers smaller area cost than Collins’ method with 

acceptable extra time. 

 

4.3.3 Experiment Ⅲ 

In experiment Ⅲ, we verify the difference between our method and Collins’ 

method when bit width is considered. Channel latency is limited to interval [1, 3]. Bit 

width of channels is assigned to 8, 16, 32, and 64 randomly. Those bit numbers are 

common used in practical chips. 

 

Table 4-4. Bit width is assigned to 8, 16, 32, and 64 randomly. 

    Proposed Method Collins Method 

  Case Name # Queues Run Time # Queues Run Time 

apte 816 1 1176 0 

xeorx 1048 0 1048 0 

hp 640 0 832 0 

ami33 968 2 1768 1 

MCNC 

ami49 14192 782 15568 327 

n10 472 0 568 0 

n30 1296 6 2192 2 

n50 1360 23 2344 7 

n100 3136 3 4320 2 

n200 2000 13 4072 4 

GSRC 

n300 5216 56 7256 25 

s344 3384 0 4664 0 
ISCAS89 

s349 3104 0 4400 1 

Ratio  1 1 1.33 0.41 

 

    From Table 4-4, our method saves 33% number of queues than Collins’ method 

on average, but run time of our method is still about 2.5 times than Collins’ method. 

Compared the experimental results in Table 4-2, which channel latency is assigned to 
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1, the difference between our method and Collins’ method enlarge greatly after taking 

bit width issue into consideration. To be summarized, our method offers better area 

cost than Collins’ method in more practical circuits. 

 

4.4 Discussion 

    In experiment Ⅰ, our proposed reduction procedure is efficient in decreasing 

number of cycles in the graph. Since the number of cycles in a directed graph can 

grow faster than the exponential 2n, it is important to reduce the graph size of practical 

circuits. Without the reduction procedure, we know from Table 4-1 that cycles in 

some benchmarks exceed one million. The million order cycles are hard to process in 

normal computers and waste time to count all cycles. This is why reduction procedure 

is so important.  

 

In experiment Ⅱ, our proposed method saves 22% of queues than Collins’ 

method on average. Even our method cost about 2.5 times on run time than Collins’ 

method, but additional time cost in our method is still acceptable. For instance, the 

benchmark with the most cycles in our experiment, ami49, only cost 947 seconds to 

solve it. So, we usually prefer to sacrifice acceptable time but saving valuable area in 

the chips. We make another experiment to verify what will happen if channel latency 

becomes worse. The experimental results show our method is more suitable than 

Collins’ method in worse channel latency. 

 

In experiment Ⅲ, our proposed method saves 33% of queues than Collins’ 

method on average if bit width is considered. With similar time overhead to 

experimental results showed in Table 4-2, our method saves more area than Collins’ 
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method when bit width is considered. The similar run time is because the only 

difference between those two formulations is the objective function. This makes our 

method more elastic to transform between different bit width assignments. 

 

    Since number of cycles determines efficiency of our method, decreasing number 

of cycles is the vital problem for our method. We propose the reduction procedure 

including path condensation and edge unification to decrease number of cycles. 

However, there are some experimental skills helping us further reduce number of 

cycles. One is to ignore the cycle if and only if its T(C)>1, since it is not the most 

critical cycle. Another is to collapse each strongly connected component (SCC) into a 

single vertex. This is because throughput upper bound in our experiment is 1, and 

each sub-system must finally have throughput 1, too. Hence, we can view each SCC 

as a sub-system with throughput 1, and then we collapse them into a single vertex. 

The final one is to ignore cycles containing only two edges, since it must the self-loop 

cycle in the original marked graph. 
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Chapter 5 

 Future Works and Conclusions  
     

    As the manufacturing process to deep submicron technology, length of 

interconnects becomes more unpredictable and uncontrollable. It makes designers 

hard to assembly pre-designed IP cores together at early design stage since the 

unknown signal transference time. Repeater insertion is the promising solution to 

solve this problem without heavily changing the designs. However, slight 

modifications on existed IP cores are unavoidable. This prolongs the product 

developed period on meaningless modification. And even worse, repeater insertion 

will degrade performance of overall system by multi-clock communication. LIS is a 

good solution for those existed problems. LIS handle the unpredictable interconnects 

problem by automatic inserting relay stations which is similar to mentioned repeater 

insertion. LIS avoids modified iterations by encapsulating every existed IP cores. 

Encapsulating is to add some additional hardware called shell to the existed IPs. This 

step makes all encapsulated IP cores and relay stations can follow the same 

communication protocol—latency insensitive protocol. LIS works out performance 

degradation mainly by queue sizing technology. Finally, product developed period 

shortens and company can earn more benefit. From those reasons, we know that LIS 

is a gorgeous solution for time-to-market. However, the physical parameters, like 

length of interconnects, positions of IPs…etc. are known after floorplanning 

performing. From Section 2.1, we know throughput upper bound of an LIS is 

determined by system architecture. In other words, poor system architecture limits the 

spaces that LIS can improve. In our experimental results, channel latency is assigned 

to a reasonable interval, not obtained from realist floorplanning results. There are 
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many research working on determining best system architecture on floorplanning 

stage reported in [28] and [29]. After those performance-aware floorplannng 

performing, we acquire real physical information which is closer to optimal 

architecture. So our future direction is to combine our proposed method with real 

physical information acquired from performance-wise floorplanning. 

 

    We propose an optimal throughput optimization technique for LIS with minimal 

queue size. First, we transform original marked graph to quantitative graph. Then, we 

develop the reduction procedure for graph size reduction. We use an ILP formulation 

to guarantee the minimal queue demand. After acquiring minimal queue solution from 

reduced quantitative graph, we develop a recovered procedure to transform reduced 

quantitative graph back to quantitative graph while maintaining correctness of 

minimal queue size. The experimental results show that our method outperforms 

Collins’ in terms of queue size (area cost). Runtime of our method is acceptable for 

real industrial systems. 
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