

國立交通大學

電子工程學系 電子研究所

碩 士 論 文

使用最少量緩衝器於延遲容忍系統中達成

效能最佳化

Throughput Optimization for Latency Insensitive

System with Minimal Buffer Size

研 究 生：何亞謙

 指導教授：黃俊達 博士

中 華 民 國 九 十 八 年 七 月

使用最少量緩衝器於延遲容忍系統中達成

效能最佳化

Throughput Optimization for Latency Insensitive

System with Minimal Buffer Size

研 究 生：何亞謙 Student: Ya-Chien Ho

指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in
Electronics Engineering & Institute of Electronics

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

 i

使用最少量緩衝器於延遲容忍系統中達成

效能最佳化

研究生：何亞謙 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所

摘 要

當製程進入深次微米尺寸，全局接線成為現今的系統單晶片設計

中最關鍵性的難題之一。延遲容忍系統(LIS)被提出來用於解決易變

的接線延遲且不需要改變原有的矽智財設計，延遲容忍系統避免掉了

在產品發展過程中會浪費大量時間的延遲調整，所以延遲容忍系統是

個很好的方法去加速產品設計過程。但是在不同接線上有不平衡的延

遲以及後端的停止要求都會讓延遲容忍系統的效能有所衰退。我們提

出了一個整數線性規劃公式去改善效能至最佳值並且使用最少量的

緩衝器，我們也發展了我們的圖形表示法—量化圖。並用依據量化圖

的特性，我們發展了一套降階流程去減小圖形大小但依舊維持正確

性。我們也考慮了實際上晶片上會有不同的頻寬。實驗結果顯示我們

的方法可以大幅降低圖形大小並且省下至少 20%的緩衝器。

 ii

Throughput Optimization for Latency Insensitive

System with Minimal Buffer Size

Student: Ya-Chien Ho Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering &

Institute of Electronics
National Chiao Tung University

ABSTRACT

As manufacturing process proceeds to deep submicron (DSM) technology, global

interconnect delay becomes one of the most critical obstacles in system-on-chip (SoC)

design nowadays. Latency insensitive system (LIS) is a method proposed to solve

variant interconnect delay without modifying pre-designed IP cores. In other words,

LIS avoids modified delay iterations in product developed period. LIS offers a

solution for time-to-market. However, the imbalance delay and back-pressure in LISs

cause performance degradation. We propose an ILP formulation to improve

performance to optimal value while maintaining minimal buffer size. We also propose

a graph representation called quantitative graph (QG). Then we develop the reduction

procedure on QG to decrease graph size while maintaining correctness of

performance. We also consider practical situation which chip have different channel

bit width on it. From the experimental results, our method reduces graph size greatly

and our method saves more than 20% of buffer size than pervious works.

 iii

Acknowledgment

 從進入研究所到這份論文的完成，我得到非常多人的幫忙以及關懷。我在此

對這些曾經幫助過我的人表達我的感謝之意，如果沒有你們的援手，也許這份論

文就無法完成。

 首先我要感謝我的家人們。我的父母，辛苦的工作並養育我，給我一個衣食

無缺的環境，讓我能專注在自己的研究工作上。在研究的過程中也全力的支持

我，讓我無後顧之憂的完成我的研究，這篇論文能夠完成，我的父母佔了很大一

部份的功勞，我在此表達我對他們的感謝。

 再來我要感謝我的指導教授─黃俊達教授。他提供了良好的研究環境並且鼓

勵我們多吸收新的知識。如果沒有阿達老師的教導、解惑、以及每個星期不間斷

的討論，我的研究勢必是沒有辦法順利完成的。所以在此再次感謝我的指導教授。

 另外要感謝的是實驗室所有的學長姐及同學，尤其是耿維學長從我進研究所

後就不斷幫助我了解、修正研究的內容，小形、莎莉，克莉絲塔兒學姐在課業及

研究上給我的建議跟幫助，家宏、步青、篤雄、建德、瀚蔚學長在我遇到困難時

的提攜跟解決問題，還有同屆的同學們一路上的互相扶持，彥廷、智宏、毓翔、

于翔、婉玲，謝謝你們陪我一起度過兩年愉快的研究所生活。

 最後，一份論文的產生實在需要很多很多的助力，不管是直接的，或是間接

的，我受到的幫助實在太多，無法一一列舉感謝，所以最後還是要對這一路上曾

幫助過我的人表示最真誠的感謝。

 iv

Contents

Abstract(Chinese) .. i

Abstract(English) .. ii

Acknowledgment ... iii

Contents ... iv

List of Figures .. vi

List of Tables ...viii

Chapter 1 Introduction .. 1

1.1 Motivation... 4

1.2 Contribution .. 5

1.3 Thesis Organization .. 6

Chapter 2 Preliminaries... 7

2.1 Latency Insensitive System (LIS)... 7

2.2 Throughput Optimization for Latency Insensitive System............................. 12

2.2.1 Relay Station Insertion... 13

2.2.2 Queue Sizing.. 14

2.3 Related Works... 15

Chapter 3 Throughput Optimization for LIS with Minimal Buffer Size 18

3.1 Marked Graph and Quantitative Graph (QG) ... 18

3.2 Quantitative Graph Reduction .. 22

3.2.1 Path Condensation... 23

3.2.2 Edge Unification ... 24

3.3 Problem Formulation of Our Approach.. 28

3.4 Bit Width of Channels .. 29

 v

Chapter 4 Experimental Results.. 32

4.1 Environment Setup and Benchmarks.. 32

4.2 Weight and Channel Latency Assignment.. 33

4.3 Results... 33

4.3.1 Experiment Ⅰ .. 34

4.3.2 Experiment Ⅱ .. 35

4.3.3 Experiment Ⅲ .. 37

4.4 Discussion... 38

Chapter 5 Future Works and Conclusions .. 40

References... 42

 vi

List of Figures

1-1 Un-scaling global interconnect as device size shrinking down............................. 1

1-2 Delay for global interconnects, local interconnects and gate (cited from [3]) 2

1-3 An example of the pipeline element insertion ... 4

2-1 Shell encapsulation and RS insertion in an LIS .. 8

2-2 Block diagram of an encapsulated IP core .. 9

2-3 Progressive trace of a simple LIS .. 9

2-4 Output data sequence at core C in Figure 2-3 ... 10

2-5 Simple LIS example with inserted relay station and back-pressure.................... 11

2-6 Output data sequence of core C in Figure 2-5 ... 12

2-7 Optimize throughput by inserting relay station ... 13

2-8 Counter example of relay station insertion.. 14

2-9 Optimize throughput by queue sizing.. 15

3-1 Modeling relay station and shell with marked graph representation................... 18

3-2 Transformation from original LIS graph to marked graph representation 19

3-3 Queue sizing problem reflects to marked graph representation 20

3-4 Transformation from a marked graph to a quantitative graph............................. 21

3-5 Two graphs are equivalent in throughput calculation ... 23

3-6 Operation of edge unification .. 25

3-7 Total reduction procedure of an LIS example ... 26

3-8 An example of recovered procedure step 1 ... 27

3-9 An example of recovered procedure step 2 ... 27

3-10 Queues are added to different positions .. 29

3-11 Changes in the reduction procedure .. 30

 vii

4-1 The flowchart of our experiments ... 32

 viii

List of Tables

4-1 Number of cycles degradation after the reduction procedure performed............ 34

4-2 Experimental results when channel latency locates on [1, 3].............................. 35

4-3 Experimental results when channel latency locates on [1, 5].............................. 36

4-4 Bit width is assigned to 8, 16, 32, and 64 randomly.. 37

 1

Chapter 1

 Introduction

 As the manufacturing process proceeds to deep submicron (DSM) technology,

device size and interconnect width continuously scale down. This evolutionary

scaling makes individual device speed become significantly faster; however, it also

makes the delay of interconnect become worse. As a result, interconnect delay

problem has become one of the most critical obstacles for designs nowadays.

Interconnect delay problem suffers from increased resistance due to a decrease in

conductor cross-sectional area and also suffers from increased capacitance when

metal height is not reduced with conductor spacing [1]. Another reason that

interconnect delay problem turns into the boundary of designs is the failure of global

interconnect scaling. The length of global interconnects can not shrink down as

devices and local interconnects. As Figure 1-1 [2] shows, global interconnects must

pass through multiple IPs in order to connect them together. From the figure, global

interconnects keep unchanged while local interconnects and devices shrink down with

process scaling.

Figure 1-1. Un-scaling global interconnect as device size shrinking down.

 2

Due to the un-scalable characteristic of global interconnects, the relative delay

difference between global interconnects and local interconnects broadens. Figure 1-2,

which is cited from [3], shows the trend for relative delay gap in different process

generation. The global interconnect delay is about twenty times slower than gate

delay and is about sixteen times slower than local interconnects delay in 65nm

process. The circumstance gets worse in 32nm, where global interconnects delay is

one hundred and twenty times slower than local interconnects delay.

Figure 1-2. Delay for global interconnects, local interconnects and gate. (cited from

[3])

Figure 1-2 implies that length of global interconnects has grown rapidly

compared to local interconnects so a signal can not arrive from one side to the other

side within a clock cycle. Hence, it is unavoidable that the data transfers between IPs

require multiple clock cycles to deliver. Such multi-cycle communication can

seriously degrade the performance improvement originally obtained from advanced

fabrication technology. The acceleration of individual devices and the multi-cycle

 3

communication bottleneck force designers to shift design paradigm from

computation-bound to communication-bound.

There has developed some technologies to ease the communication burden

caused from global interconnects delay. In physical design level, wire sizing, buffer

insertion…and so on, help to relax the delay constraints. In system design level, many

research works try to not only conquer the communication bottleneck but also

maintain the functional behavior unchanged.

One approach is to utilize asynchronous handshake protocols for global

inter-core communication. This is called globally-asynchronous locally-synchronous

(GALS) systems [4]–[6]. Another one is network-on-chip (NoC) platform in [7] and

[8], which constructs an on-chip interconnection network for global signals

transmission. The data transmission in NoC passes through every module’s router

with helping of those on-chip network interfaces. [9] and [10] propose a regular

distributed register (RDR) microarchitecture which is composed of array of islands.

Communication inside an island can be finished in a single clock cycle. For

multi-cycle communication between islands, layout-driven architectural synthesis

algorithms have been developed.

There is another method called Latency Insensitive System (LIS) reported in [11]

and [12] which is receiving many attentions recently. The LIS approach does not alter

original system architecture but it wraps every IP with a special interface and adds

small pipeline elements to systems. By using those additional elements and interfaces,

LISs cope with variant interconnect delay without changing any IP in the system.

Inserting pipeline elements into global interconnects, like LIS design paradigm, is the

 4

design mainstream for synchronous system nowadays [13]. Timing constraints are

relaxed after inserting pipeline elements into long interconnects so that loose timing

constraints can lead to operating frequency acceleration. For example, the

interconnects shown in Figure 1-3, the input/output timing constraints of all

interconnects are needed to be smaller than 1 clock cycle. For instance, the delay of

interconnect A is 0.9 clock cycle such that it needs no pipelining. On the other size the

delay of interconnect B is 2.4 clock cycles such that it needs two pipeline elements

inserted into interconnect B. Because of it, the input/output timing constraints of

interconnect B are feasible.

Figure 1-3. An example of the pipeline element insertion.

1.1 Motivation

As the complexity of system-on-chip (SoC) keeps growing, it is impossible to

redesign each IP for a new system. According to that reason, IP reuse becomes the

most promising way in present SoC design. However, length of interconnects is

 5

unpredictable at early design stage. It makes engineers hard to determine the exact

time when IPs should receive and send data. Interconnect length information remains

unknown until the floorplanning is actually performed. In other words, how many

clock cycles are needed for data communication is dependent on the result of

floorplanning. If the timing after floorplanning do not meet the requirement, it may

jeopardize system performance, or even worse, ruin the overall system behavior.

Therefore, engineers need to adjust floorplanning appropriately or redesign IPs to

accommodate multi-cycle communication. Time wasted on adjusting floorplanning or

redesigning IPs is significantly long that may be a terrible damage to project schedule.

Hence, it is urgent that we need an efficient method to solve multi-cycle

communication and IP reuse dilemma. Latency Insensitive System is a

correct-by-construction methodology and seems to be a promising solution that can

solve both problems at the same time. As a result, we consider LIS as the greatest

time-to-market method in the incoming era of high speed synchronous design and we

adopt LIS to achieve optimal performance while maintaining minimal area cost.

1.2 Contribution

 In this thesis, we propose an ILP formulation to solve LISs for optimal

throughput solution with minimal area. We follow the marked graph representation to

model LIS and we transform original marked graph to quantitative graph for latter

reduction operations. When we use marked graph to during ILP formulation, number

of cycles in the graph are the limitation to the ILP formulation. It needs a lot of time

to get the optimal solution for larger practical cases. This may be the obstacle of

project schedule. We propose a procedure which contains two operations to deal with

this obstacle. Path condensation and edge unification are used to reduce graph size so

 6

that we can handle bigger design cases. All benchmarks can be solved within 20

minutes in our experiments after the reduction procedure is performed. Then, our

proposed ILP formulation finds the minimal buffer size to achieve optimal

performance. To reflect real situation in the SoC system, we take bit width issue into

consideration. In the end, we obtain optimal solution on buffer size while maintaining

optimal performance and have faster computation speed to get that optimal solution.

 According to the experimental results, it is concluded that the reduction

procedure decreases graph size greatly. Furthermore, our approach performs better

when interconnect delay becomes worse. Finally, when bit width issue is also

considered, the difference of results between our approach and previous works

become larger.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2 we give the preliminaries of our

work. It includes the introduction of latency insensitive system, how to fix system

performance degradation of LIS caused by multi-cycle communication, and some

related works. The proposed strategy for performance optimization with minimal

buffer size is given in Chapter 3. The experimental results and related analyses are

provided in Chapter 4. Chapter 5 concludes this thesis and lists probable future works.

 7

Chapter 2

 Preliminaries

2.1 Latency Insensitive System (LIS)

 The concept to design a system which is insensitive to arbitrary variation in

interconnect delay was first presented in [14]. The proposed approach Latency

insensitive design (LID) is a design methodology for SoC that enables automatic

adjustment to original system in order to make new system get with variant delay.

LID encapsulates each IP core (the pearl) with an automatically-synthesized interface

(the shell) and inserts repeaters to pipeline long interconnects. Those repeaters are

called relay stations (RS) in LIS. By using LID, one can derive an LIS from original

synchronous system. IP cores may be synchronous sequential logic blocks of any

complexity as long as they satisfy the stallability, i.e., their operation can be

temporarily stalled [12]. Relay stations are clocked buffers with two-fold storage

capacity used to pipeline every long interconnect in order to let them meet the target

clock period. After doing those movements, an LIS is latency-equivalent to original

synchronous system [12]. It means that when we ignore stalling (void) events in

timestamps, the rest informative (valid) events on each channel of an LIS are exactly

the same with the informative events on each channel of the original system. To

summarize contribution of LID is it guarantees that it can cope with any amount of

interconnect delay without redesign of any IP core. Figure 2-1 illustrates the typical

structure of an LIS implementation. Four pre-designed IP cores are encapsulated

within the shells and five relay stations are inserted to long interconnects. IP cores

communicate with each other by a set of point-to-point, pipelined channels. The

encapsulated IP cores, relay stations, and point-to-point channels form the entire LIS.

 8

Figure 2-1. Shell encapsulation and RS insertion in an LIS.

Figure 2-2 shows detailed architecture of encapsulated IP core. Block diagram in

the example contains two input channels, one output channel, a controller to drive

each element, and a stallable IP core. Each input channel has two end points. One is

direct to input port of stallable IP core, and the other goes to the storage element

queue located in every channel. IP core takes data either from input channel directly

or from storage element controlled by multiplexer. A controller is accompanied with

each encapsulated IP core, and it determines many vital controlling signals, such as

select signal for multiplexer, stalling signal for IP core, and operation signals for

queue. The details of the shell and relay station RTL logic designs are listed in [15].

Each shell and each relay station follow universal communication protocol. The

protocol which allows shells and relay stations exchanging data on variant length

channels is latency insensitive protocol (LIP) [11]. LIP defines the data exchanged

by the shell as either valid or void and keeps the shells to ignore the existence of

void data. The shell fires or executes the IP if and only if the IP can get a valid data

from each input channel. The valid data from each input channel can be acquired

from channel directly or from storage element queue. If the condition is not satisfied,

 9

the shell stalls the core otherwise. The architecture of relay station is similar to the

encapsulated IP. We can view the IP core of relay station as a simple edge triggered

flip-flop.

Figure 2-2. Block diagram of an encapsulated IP core.

 System throughput is the primary evaluation metric of system performance.

Throughput is usually calculated by valid data generation rate. Figure 2-3 and 2-4

show how to calculate throughput of LISs.

Figure 2-3. Progressive trace of a simple LIS.

 10

1 2 3 4 5 6 7 8 9

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 2-4. Output data sequence at core C in Figure 2-3.

 In Figure 2-3, the big white rectangles represent IP cores in a system. The small

white rectangles inside IP cores are queues on each input channel. IP A and B both

have only one input channel and queue size on each input channel is all equal to 1. IP

C has two input channels and queue size on each input channel is equal to 1, too. A

channel queue, whose size is 1, is called a minimum queue so Figure 2-3 is an LIS

with minimum queue on every channel. Red numbers in Figure 2-3 represent valid

data and a positive integer “i” denotes the i-th valid data generated by the IP core.

Note that when an IP core takes (i-1)-th valid data from its input channels, it outputs

its i-th valid data to output channels if IP fires. Otherwise, a shell stores the valid data

in queue when an IP stalls. We trace i-th valid data to get the valid data generation rate.

This trace of data produced by IPs is called a progressive trace [16]. Since IP C is the

only output of the simple LIS, system throughput can be derived by analyzing the data

generation of output channel of IP C. Figure 2-4 shows the result of output data

sequence at output channel of IP C. We find that IP C produces a valid data at every

clock cycle so throughput of this LIS is 1 obviously. However, this simple LIS

example does not consider the effect of inserted relay stations and back-pressure

mentioned in [17] and [18]. A more realistic LIS example is showed in Figure 2-5.

The shaded rectangle indicates a relay station and a relay station simply passes

received data to its output channel at next clock cycle. Red numbers are valid data, the

same definition as in Figure 2-3, and blue numbers mean void data. Since a relay

station only passes the received data, it never generates new valid data. We assign a

 11

symbol ‘τ’ to represent a non-generated and void data which a relay station outputs at

timestamp 1.

Figure 2-5. Simple LIS example with inserted relay station and back-pressure.

 In timestamp 1, all IP cores produce their first valid data, while relay station can

only stall and release void data τ. In timestamp 2, IP C only receives a valid data from

one of its input channel, but IP C needs two first valid data from each of its input

channels to generate second valid data. Therefore, IP C stalls and outputs a void data.

The first valid data generated by IP B is not processed, so it is stored in the queue of

the lower input channel of IP C. As a result, lower input channel of IP C becomes full

in the end of timestamp 2. In order to avoid valid data loss due to queue overflow, it

forces IP B to stall at timestamp 3. The stop signal used to request source IP to stall at

next timestamp is called back-pressure. The occurrence of back-pressure is

highlighted by coloring the occurred channel red. In timestamp 3, IP C gets all

required data from its input channels, so it can generate next valid data. IP B needs to

stall, since the occurred back-pressure at timestamp 2. Note that since the queue of

lower input channel of IP C is full at timestamp 2, the data sent by IP B at timestamp

2 will be discarded by the shell of IP C. This reason forces IP B to re-send generated

 12

data at timestamp 3 although it stalls at timestamp 3. Another thing needed to be

noticed is that the queue of IP B is full at timestamp 3. IP B sends a stop signal to IP A

to request IP A to stall at next timestamp. In timestamp 4, all IPs produce their next

valid data except IP A. IP A stalls at timestamp 4 but still re-sends data to IP B, like IP

B does in timestamp 3. In timestamp 5, all IP cores fire to produce valid data and

relay station passes a received void data. We find that the system behavior in

timestamp 5 is identical to system behavior in timestamp 1. By progressive trace, we

infer that the LIS example has a period of four clock cycles, as shown shows in Figure

2-6. Figure 2-6 is the output data sequence of IP C, and system behavior clearly

repeats every four clock cycles. This LIS outputs three valid data in every four clock

cycles, so throughput of LIS is obviously three fourth.

Figure 2-6. Output data sequence of core C in Figure 2-5

Finally, we summarize the advantages of LIS. LIS is a great solution to variant

global interconnects length which is unknown in early design stage. By adding relay

stations and encapsulating IP cores, LIS approach guarantees robustness for system

behavior under LIP. However, LIS approach does not guarantee the same robustness

for the throughput affected by back-pressure mechanism. There are two proposed

technologies to deal with the throughput optimization problem of LIS. One is relay

station insertion and the other is queue sizing of channel queue.

 13

2.2 Throughput Optimization for Latency Insensitive System

The advantage and disadvantage of LIS have been discussed. Next, we discuss

two related technologies used to optimize throughput of LIS.

2.2.1 Relay Station Insertion

 In Figure 2-5, we discover that one of the reasons cause the occurrence of

back-pressure is the imbalance of channel latency. Data transmitted from IP A to IP C

on upper path has experienced one clock delay but data transmitted on lower channel

has not. The imbalance of channel latency results in occurrence of back-pressure and

degrades throughput of LIS. Casu and Macchiarulo suggest equalization which

basically equalizes all paths by inserting enough relay stations to make them have the

same latency [19]. Therefore, there are two reasons that relay stations need to be

added to an LIS. The first is to break up long channels to meet target clock period.

The second reason is to optimize throughput by balancing latency of channels. Figure

2-7 demonstrates how to balance latency by inserting relay stations.

 Figure 2-7. Optimize throughput by inserting relay station.

Left of Figure 2-7 is the same LIS example in Figure 2-5. We know that

back-pressure occurs in this LIS architecture. Now, we insert a relay station to the

channel connected IP B and IP C as shown in the right of Figure 2-7. As a result, all

data arrived IP C have experienced the same latency, so back-pressure will not occur.

 14

Throughput of the LIS improves to 1 finally. This is how we optimize throughput by

relay station insertion. Nevertheless, relay station insertion still has its limitation. Lu

and Koh have proved that equalization does not work for all systems [20]. Figure 2-8

illustrates a counter example. To balance the latency at paths from IP A to E a relay

station must be added to either channel (A, C) or channel (C, E), but this ends up

unbalancing either path from IP C to A or paths from IP E to C. Next, more relay

stations need to be inserted to balance them. As a result, we find that throughput will

never improve to 1 by doing exhaustive progressive trace.

 Figure 2-8. Counter example of relay station insertion

 From the discussed counter example, we know that relay station insertion still

has some restrictions. Since relay station insertion is not a general solution for all

LISs, the demand for better solutions rises.

2.2.2 Queue Sizing

 Another reason which causes back-pressure to happen is size of queue. When

queue is full, the shell needs to send a stop signal to stall source IP. This creates a

motivation to increase size of queue so back-pressure will not happen. Without

happening of back-pressure, performance of LIS can be optimized. Figure 2-9

illustrates the effect after increasing queue size of lower channel of IP C to 2. Left of

 15

Figure 2-9 is the exact example in Figure 2-5 of timestamp 2. Back-pressure occurs

when queue is full at this timestamp. After we adding one queue to lower channel of

IP C, like the right of Figure 2-9, there always leaves one unused queue and hence

back-pressure will never happen. Throughput of the example also improves to 1.

Figure 2-9. Optimize throughput by queue sizing

 We view relay station insertion as another kind of queue sizing because relay

station is a clocked storage element like queue. The difference of relay station and

normal queue is that relay station forces all received data to delay one clock cycle but

queue will not. The advantage of queue sizing is it will not potentially impact

elsewhere in the system like relay station insertion since it only delays data by queue

when needed. Increasing size of queue only causes slight additional hardware cost

that will not influence whole system architecture in most of systems. Based on the

characteristics, queue sizing becomes the mainstream of LIS throughput optimization.

To be summarized, queue sizing offers a trade-off between performance optimization

and area overhead.

2.3 Related Works

 LIS has been discussed frequently in recent years. Many research works are

made under different hardware architecture assumptions and different physical

 16

information assumptions. Next, we are going to introduce two important research

works on LIS topic. Earlier works before 2003 only considered ideal LISs (LISs with

infinite queues and no back-pressure). Lu and Koh are the first people who proposed

the method to solve LIS with back-pressure problem by queue sizing [17]. They

showed that performance of a practical LIS with finite queues and back-pressure can

reach the performance of an ideal LIS if proper queue sizing is adopted. They also

proposed an approach to analyze complex LISs. Lis graph and extended lis graph

were presented to model LISs. Throughput of an LIS was decided by the most critical

cycles called the system cycles. Throughput calculation of those LISs has been shown

in equation (1).

)
||
)((max1

Ci
CiW

CCi∈− (1)

Where C is the set of all cycles in the lis graph. W(Ci) is the sum of edge weights of

cycle Ci, and |Ci| is the number of edges in cycle Ci.
||
)(

Ci
CiW is called the cycle mean

of cycle Ci. System cycles are cycles with max cycle mean and those cycles

determine throughput upper bound. Throughput can not be further improved by queue

sizing when it reaches throughput upper bound which is equal to 1 in most cases.

Finally, Lu and Koh proposed a mixed integer linear programming (MILP) solution

for queue sizing.

 Collins and Carloni proposed a heuristic for queue sizing that produces solutions

close to optimal solution in shorter time reported in [21] and [22]. A marked graph is a

bipartite directed graph and Collins et al. use it to model LISs. Performance of LISs in

marked graph is represented by maximal sustainable throughput (MST) θ. MST is

determined by cycles with lowest tokens to places ratio. This ratio is similar to cycle

 17

mean in [17]. The details of marked graph and MST will be introduced in Section 3.1.

Token deficit problem (TDP) is the problem of filling the token (queue) deficit of

cycles in an LIS. Collins et al. claimed that their heuristic algorithm for TDP is

guaranteed to produce a performance-wise optimal solution that may require more

queue space. Additionally, Collins et al. proposed two trends of LISs. One is that the

position where relay station inserted affects throughput seriously. The other is the

efficiency of fixed queue size. Collins et al. claimed that assigning every queue size to

5, and throughput is above 90% of the optimal solution. Collins et al. also make a

different hardware architecture assumption with Lu et al. proposed in [17]. In our

opinion, Collins’ hardware architecture assumption is closer to practical situation.

 There are some different methods to solve LIS problem for different purposes.

For instance, Casu and Macchiarulo avoided queue sizing issue by scheduling the

activation of IPs [23]. A limitation of their work is that building schedules needs

knowledge about the global system behavior. Bufistov et al. proposed the method that

combines both queue sizing and relay station insertion techniques to achieve optimal

throughput [24]. However, they made an assumption that the increase of queue size

will also cause the increase of channel delay. This assumption will not happen in the

hardware architecture we used.

 18

Chapter 3

 Throughput Optimization for LIS with Minimal

Buffer Size

3.1 Marked Graph and Quantitative Graph (QG)

 We introduce details of the marked graph first. Marked graph is a proposed

modeling architecture for synchronous systems. Their simplicity makes them quite

amenable to analyze synchronous systems which have a periodic behavior like LIS. A

marked graph has two kinds of vertices: places and transitions. By definition, each

place has exactly one incoming edge and one outgoing edge that both connect to

transitions. Places have the ability to hold 0 or more tokens. Transitions cannot hold

tokens, but they can fire and move tokens around in the graph. Each outgoing edge

from a place connects to a transition, and each incoming edge connects to a place

coming from a transition. A transition is enabled to fire when the place on each of its

incoming edges has at least one token as the fire condition we described. All

components of a marked graph fire to produce valid according to global clock.

Detailed definitions of the marked graph are reported in [21], [22], and [25].

Figure 3-1. Modeling relay station and shell with marked graph representation.

 Figure 3-1 shows the marked graph representation of a relay station and a shell.

 19

The large white circles represent places, the small black circles represent tokens, the

black vertical bars represent transitions, and the number q represents the channel has q

tokens. Initially, the relay station’s place on solid edge has no token since the relay

station produces a void data in timestamp 1, and its dashed edge has two tokens on

place corresponding to the two available storage spaces in the queue. Recall that relay

station is a clocked buffer with two storage capacity. The shell’s place on solid edge

has one token since the shell produces a valid data in timestamp 1, and its dashed

edge has q tokens on place. Number q is a positive integer. Using a marked graph

representation, valid or void data are presented by tokens on the solid edges. The

tokens on the dashed edges represent available spaces of queue in the channel [21].

Figure 3-2. Transformation from original LIS graph to marked graph representation.

 Figure 3-2 illustrates how to transform original LIS graph to a marked graph

representation. All queue size of shells are set to 1 in this case. It is convenient to

calculate MST after we transform LIS to marked graph. We used to compute system

throughput by progressive trace as mentioned in Section 2.1, but progressive trace

spends a lot of time to simulate IP behavior on every timestamp, so it is unpractical to

calculate throughput by progressive trace in complex system. However, based on

Section 2.3, we can compute the MST of the graph by finding the cycles with the

lowest ratio of tokens to places. In Figure 3-2, the most critical cycle {A, D, C, B, A}

has four places but only three tokens on it, so the system has MST of three fourth.

 20

Another convenience of marked graph representation is that it can reflect queue sizing

problem easily. Figure 3-3 shows how to reflect queue sizing problem to the marked

graph. If we want to add an extra queue to IP B, we only need to put an additional

token on dashed edge of IP B. Finally, the most critical cycle {A, D, C, B, A} of the

system has ratio equal to 1, so the system has optimal MST 1.

Figure 3-3. Queue sizing problem reflects to marked graph representation.

 We prefer to adopt marked graph representation on our LIS research. This is

because: (1) it is easy to transform original LIS graph to marked graph representation.

All we need to do is to find all channels and IP cores in LIS, and then transforms them

to relay station or shell representation, as shown in Figure 3-1. (2) throughput of LIS

is easy to calculate in marked graph, since we only need to find the cycles with lowest

tokens to places ratio in the marked graph. (3) it is easy to decide which places in the

marked graph should have more tokens. This greatly helps us find the optimal

solution.

 Although marked graph representation is convenient, there still exist some

drawbacks in it. One is that we used to calculate throughput with pure integer number.

Using tokens and places is easy to operate at graph, but it is indirect in calculating

throughput. Since that, we propose a new graph representation quantitative graph (QG)

 21

which can handle those problems properly. Figure 3-4 shows the flow how we

transform from a marked graph to a quantitative graph. First, we want to quantify

number of places and tokens into integers. Now we get an intermediate graph which

only contains four integers in each channel. Second, we transform every transition

into a vertex and get rid of all dashed edges in the intermediate graph. This is feasible

because each dashed edge corresponds to a solid edge in the marked graph. Whenever

there exists a solid edge, there must exists a corresponding dashed edge. In the end,

we create a new graph with vertices and four weightings in each channel. Those

weightings represent number of places and tokens on solid edge and dashed edge of

the channel. We call this new graph quantitative graph.

A D

B

C

(1,0)
(1,2)

(1,1)
(1,1)

(1,1)
(1,1)

(1,1)
(1,1)

A

D

B

C

[1,0,1,2]

[1,1,1,1]

[1,1,1,1]

[1,1,1,1]

●
●

●

●

●

●

●

●

A D

B

C

(ps, ts)
(pd, td)

ps(e) : places of solid edge

ts(e) : tokens of solid edge
pd(e) : places of dashed edge
td(e) : tokens of dashed edge

[ps(e), ts(e), pd(e), td(e)]

Figure 3-4. Transformation from a marked graph to a quantitative graph.

 Definition of quantitative graph: A quantitative graph GQ = (VQ, EQ, ps, ts, pd, td)

is a weighted directed graph, where

‧ VQ is the set of vertices.

‧ EQ is the set of edges, and each edge carries four weightings ps, ts, pd, and td.

 22

‧ ps: E→Z+ shows the number of places of the corresponding solid edge.

‧ ts: E→N represents the number of tokens of the corresponding solid edge.

‧ pd: E→Z+ identifies the number of places of the corresponding dashed edge.

‧ td: E→Z+ is the number of tokens of the corresponding dashed edge.

 Formal transformation from a specified marked graph to the quantitative graph is

described as follows. Each transition ti in the marked graph converts to a vertex vi in

the quantitative graph. Each edge (vi,vj) in the quantitative graph corresponds to a pair

of edges in the marked graph, including a solid edge (ti,tj) and a dashed edge (tj,ti).

Places and tokens of solid edges transform to weightings ps and ts in the quantitative

graph. Places and tokens of dashed edges transform to weightings pd and td. For

example, ps((vi, vj))=1, ts((vi, vj))=0, pd((vj, vi))=1, and td((vj, vi))=2 represent an

input channel of relay station in the quantitative graph. System throughput of QG is

decided by cycles with lowest ratio of tokens to places, which is identical to original

marked graph. However, tokens and places in the marked graph are transformed to

weightings in the quantitative graph. Throughput calculation of QG is modified to

find lowest ratio of ∑∑∑∑
∩∈∩∈∩∈∩∈

++
DCeSCeDCeSCe

epdepsetdets)()()()(in the graph.

Summation of ts and td represent total tokens in cycle C. Summation of ps and pd are

total places in cycle C. S represent set of solid edges and D represent set of dashed

edges. We define this ratio as T(C).

3.2 Quantitative Graph Reduction

 There still exist some vital problems unsolved even after we transform marked

graph to QG. One of them is when global interconnects latency becomes worse, and

we will need more relay stations to pipeline interconnects, so graph size becomes

 23

huge. Some LISs may be unsolvable due to huge graph size. That urges us to try to

further reduce graph size.

3.2.1 Path Condensation

 If there exists a simple path in the QG and every vertex inside the path all have

only one input edge and only one output edge. We find that it is equivalent in

calculating throughput after we combine all edges and vertices in the simple path into

a single edge. And all weightings of the single edge are the summation of weightings

of all combined edges.

Figure 3-5. Two graphs are equivalent in throughput calculation.

 Figure 3-5 illustrates the concept of combination. Left graph of Figure 3-5 is

original QG and right graph of Figure 3-5 is the graph after combinative operation.

The pink vertex represents relay station and the two red edges correspond to two

combinative paths in the left graph. Left graph has two cycles when we consider solid

edges only. T(C) of those two cycles are two third and one. Since system throughput

is determined by cycles with lowest T(C), system throughput of left graph is two third

finally. Right graph also has two cycles with T(C) equals two third and one. System

throughput of right graph is also two third. In the end, two graphs are equivalent in

 24

system throughput but right graph has fewer vertices and edges. In other words, right

graph is more efficient in counting cycles in the graph, this is to say, more efficient in

calculating system throughput. We define this combinative operation as path

condensation. By path condensation operation, we can eliminate all the relay stations

and some IPs in the QG without influencing system throughput.

 Definition of path condensation: We call a simple path pu,v <u,v1,…vn,v>

condensable if the path satisfies the following two conditions.

‧ The length of path |pu,v|≥ 3, or n≥ 1

‧ For each intermediate vertex {v1,v2,…,vn}, its input degree and output degree

must both equal to 1

Each condensable path pu,v can be replaced by a condensed edge ec (u, v) without

affecting the overall system throughput, and for each condensed edge

ps(ec)=pd(ec)=n+1, ts(ec)= ∑
∈)(,

)(
vupEe

ets , td(ec)= ∑
∈)(,

)(
vupEe

etd . E(pu,v) is the set of edges

belonging to condensable path pu,v,, that is (u, v1), (v1, v2)…...(vn, v).

3.2.2 Edge Unification

 After we doing path condensation operation, we find the rest graph can be further

reduced in number of edges. We observe that one of two red edges is dominating in

calculating throughput in Figure 3-5. We observe left of Figure 3-6, and we know

system throughput is two third. In other words, the cycle contains upper red edge

dominating system throughput. That is to say, we can eliminate the other one red edge

without affecting correctness of throughput calculation. The activity is showed in

right of Figure 3-6 which dominating edge is kept and the other is eliminated. We

 25

define this operation as edge unification.

v1 v3

[1,1,1,1]

[2,1,2,3]

v1 v3

[1,1,1,1]

[2,1,2,3]

[2,2,2,2]

System throughput : 2/3 System throughput : 2/3

Figure 3-6. Operation of edge unification.

Definition of edge unification: For any two vertices vi, vj in the quantitative

graph, if there exist multiple edges from vi to vj, we group those edges into an

Em. Each Em can be unified into a dominating edge ed, and we keep the

dominating edge and get rid of others edges belonging to the same Em. This

unification maintains system throughput. Each dominating edge ed is the edge

with max(ps(e)-ts(e)), where e∈Em.

 In Figure 3-6, the graph has only one Em which contains two red edges. From the

definition, we know that upper red edge is the dominating edge of Em, so we eliminate

the lower edge to decrease number of cycles in the graph. By edge unification, QG

can de further reduced on graph size. Figure 3-7 demonstrates an example of total

reduction procedure.

 26

Figure 3-7. Total reduction procedure of an LIS example.

 Figure 3-7 starts from a marked graph with seven channels where size of queue

need to be decided. Those variables are indexed as a1 to a7. This is because queue size

of the relay station is fixed to 2 in marked graph. Marked graph make this assumption

to keep the relay station small and consistent. Therefore, we only need to view size of

queue in each shell as a variable. In other words, now we have seven variables in this

example. Next, we transform marked graph representation to QG representation. Then,

we do the reduction procedure to the QG. From the definition of path condensation

and edge unification, we know those procedures will not affect correctness of

throughput. Finally we acquire a reduced graph which has the same throughput with

the original marked graph while eliminating variables from seven to three. This makes

throughput calculation in the reduced graph faster than with initial marked graph.

After getting result of system throughput, we need to recover from reduced graph to

original QG to get the correct number of queues in whole system. We show this

recovered procedure in Figure 3-8 and Figure 3-9.

 27

Figure 3-8. An example of recovered procedure step 1

v1

v2 r1 v3

v4

[1,1,1,2] [1,0,1,2] [1,1,1,2] [1,1,1,2]

r2 r3 v6[1,0,1,2] [1,1,1,3][1,0,1,2] [1,1,1,1]

v5[1,1,1,3] [1,1,1,3]v1 v4

[4,3,4,8]

v6[3,1,3,7] [1,1,1,1]

[2,2,2,6]
Recover_2

Figure 3-9. An example recovered procedure step 2.

 In Figure 3-8, we illustrate recovered procedure step 1. In step 1, we recover

reduced graph from edge unification first. To maintain the optimal throughput in

recovered procedure, there is a condition must be satisfied. The condition is to make

all edges belong to the same Em have equal td(e)-pd(e). That is to say, for all e∈Em,

we make their td(e)-pd(e) equal. This is because all e∈Em needs to have the same

number of extra queues. Whenever a cycle passes throughput the dominating edge of

Em, there must exist other cycles pass throughput other edges belonging to the same

Em in the original QG. When the cycle passes throughput dominating edge needs extra

queues to achieve optimal throughput, we infer that other edges belonging to the same

Em will also need the same number of extra queues to maintain optimal throughput.

For instance, we assign td(e) of the dominating edge in left of Figure 3-8 to be 8.

Then, we know td(e) of the other one edge is equal to 6, since 8-4 = 6-2. In step 2, we

recover reduced graph from path condensation as showed in Figure 3-9. We already

know that queue size of relay station is fixed to 2 so we only need to distribute rest

queues to the shells equally. For instance, a condensed edge with 6 queues in the left

of Figure 3-9 is recovered into corresponding two edges (v1, v5) and (v5, v4) in the

 28

right of Figure 3-9. Each edge is allotted with 3 queues. We distribute queues equally

in order to make every shell with similar area in hardware. As a result, we acquire

final correct queue size solution in right of Figure 3-9.

3.3 Problem Formulation of Our approach

By the path condensation and edge unification, we can decrease graph size

extremely and still keep the correctness of system throughput. It helps a lot in

counting cycles in the graph for throughput calculation. Hence, we can find the

optimal throughput quickly with the reduced QG. Then we propose an integer linear

programming (ILP) to find the minimal queue size while maintaining optimal

throughput. Following are proposed problem formulation:

Given:

‧ A quantitative graph GQ(VQ, EQ, ps, ts, pd, td).

Objective :

‧ Minimize total queues ∑
∈ QEe

etd)(while maintaining maximum throughput.

Constraints :

‧ For each cycle C, 1))()()()(()(≥++= ∑∑∑∑
∩∈∩∈∩∈∩∈ DCeSCeDCeSCe

epdepsetdetsCT ,

where S represents set of solid edges and D represents set of dashed edges.

 The proposed ILP formulation for the minimal queue size is very efficient

because it has only |E| integer variables, and |C| constraints. |C| is number of cycles.

The flow of our approach is separate into three main processes that are discussed as

following:

1. Initial setup: In this process, we set the parameters of graphs, including

 29

constructing graphs from the benchmark, assigning the length latency of

each channel, reducing graph size by path condensation and edge

unification. All works make the graph can be handled easily and faster.

2. Find cycles: In this process, we identify all the cycles in the graph. By the

helping of reduction procedure, cycles in the graph will be decreased greatly.

Hence, the time spent in this process will be shortened greatly, too. We use

Johnson’s algorithm [26] to help us to find all the cycles in the graph.

3. ILP process: This is the main process of our approach. We take cycles

obtained from process 2. And for each cycle, we decide queue size of each

shell to make all cycles’ T(C) bigger or equal to 1 while minimizing total

queue size.

3.4 Bit Width of Channels

 In practical SoC system, channels usually have bit width on them. For example, a

32-bit CPU may has 32, 16, and 1-bit channels on it. Therefore, we take channel bit

width issue into consideration. In LISs, queues are put to different positions will make

different area cost when bit width is considered. Figure 3-10 illustrates the different

area costs are made by different queues added positions.

Figure 3-10. Queues are added to different positions.

 30

 To take bit width of channels into consideration, we only need to modify our

graph representation slightly. We add an extra width weighting w(e) to every edge in

the QG. In other words, we modify four weightings (ps(e), ts(e), pd(e), td(e)) in each

edge into five weightings (ps(e), ts(e), pd(e), td(e), w(e)). Since our purpose is to

maintain optimal throughput with minimal queue size, the reduction procedure and

formulations need to be changed for consistency of system throughput. For path

condensation, ps, ts, pd, td are still the same like in Section 3.2, and w(e) is assigned

to minimal width among the edges of condensable path. This is because we prefer to

put queues in edges with lower bit width to achieve minimal queue size. For edge

unification, ps, ts, pd, td of dominating edge are still the same like in Section 3.2, and

w(e) is assigned to summation of w(e) of all edges belong to the same Em. This is

because we need to let all e∈Em have equal extra queues. Whenever the dominating

edge needs an extra queue, other edges belonging to the same Em will need an extra

queue, too. Figure 3-11 shows the changes in path condensation and edge unification.

In upper graphs of Figure 3-11, w(e) of condensed edge is the smaller w(e) of edge of

condensable path <v1, v4>. In lower graphs in Figure 3-11, w(e) of dominating edge is

the w(e) summation of two edges from v1 to v4.

Figure 3-11. Changes in the reduction procedure.

 31

 Some changes are made to our proposed ILP formulation. The modified

formulation show as follows:

Given:

‧ A quantitative graph GQ(VQ, EQ, ps, ts, pd, td, w).

Objective :

‧ Minimize total queue ∑
∈

×
QEe

ewetd)()(while maintaining maximum

throughput.

Constraints :

‧ For each cycle C, 1))()()()(()(≥++= ∑∑∑∑
∩∈∩∈∩∈∩∈ DCeSCeDCeSCe

epdepsetdetsCT ,

where S represents set of solid edges and D represents set of dashed edges.

 We only slightly modify objective function of our ILP formulation in Section 3.3.

It is easy to take bit width issue into consideration on our graph representation and

ILP formulation. This makes our proposed graph representation and formulation

useful among the system with bit width all equal to 1 or the system with different bit

width.

 32

Chapter 4

 Experimental Results

4.1 Environment Setup and Benchmarks

 The benchmarks we used contain three sets, MCNC, GSRC, and ISCAS89.

However, MCNC and GSRC lack of transfer direction information. In order to add

data dependency between the IPs in each benchmarks, we break each net on those

benchmarks into a 2-pin net and randomly assign it with a direction. To provide more

realistic cases, we take two cases of ISCAS89 as another benchmark set. Those

ISCAS89 benchmarks already have direction information. The experiments are

processed on a computer with an AMD 1.81GHz CPU and 2GB DRAM. We use the

non-commercial LP/ILP solver lp_solver [27] to solve the proposed ILP formulation.

Figure 4-1 shows the flowchart of our experiments.

Figure 4-1. The flowchart of our experiments.

 33

4.2 Weight and Channel Latency Assignment

 Since latency of each channel is generated randomly in our experiments, more

precisely, channel latency is a random real number obtained from an interval [1, A]. In

other words, 0~A-1 relay stations are inserted to pipeline channel into 1~A parts. For

example, if the random generated number is 2.4, it means that data need 2.4 clock

cycles to transmit data along the channel, and two relay stations need to be inserted.

Each relay station in the experiments has 2 fixed queues like mentioned in Section 3.2.

The queue size of each shell is assigned to be one initially.

 The bit width of each channel in a benchmark is assigned to be one initially. This

means that each channel is a one-bit communication channel. To test the influence of

bit width on channels, we assign a set of different bit width to channels. Then we

compare the difference between those two bit width assignments. To model the worst

case of benchmarks, we assume that every benchmark can achieve optimal throughput

1. This is the worst case because we need to consider every cycle and make its T(C)

bigger or equal to 1 when throughput upper bound is 1. If throughput is a real number

smaller than 1, cycles with tokens to places ratio bigger than throughput upper bound

can be omitted.

4.3 Results

For each benchmark, we make three experiments on it. We find the efficiency of

the reduction procedure in experiment Ⅰ. In other words, how many cycles are

omitted after path condensation and edge unification are performed. In experiment Ⅱ,

we compare our approach and heuristic algorithm proposed in [21] and we verify the

variation when channel latency becomes worse. Finally, we compare our approach

 34

and heuristic algorithm when bit width issue is considered.

4.3.1 Experiment Ⅰ

 In experiment Ⅰ, we count number of cycles in original marked graph and in

reduced QG. We use Johnson’s algorithm [26] to help us to count all cycles in both

two graph representations. Channel latency locates on interval [1, 3]. In other words,

0~2 vertices are added to every edge in graphs.

Table 4-1. Number of cycles degradation after the reduction procedure performed.

Original QG Reduced QG Benchmark

Set
Case Name

(V,E) # Cycles (V,E) # Cycles

apte (30,45) 2965 (7,16) 350

xeorx (31,40) 357 (8,15) 193

hp (28,33) 66 (10,13) 37

ami33 (82,99) 8962 (29,44) 7782

MCNC

ami49 (172,314) * (17,49) 234972

n10 (27,34) 2468 (7,14) 176

n30 (76,97) 137647 (21,39) 16512

n50 (107,146) * (29,50) 29926

n100 (184,207) * (64,74) 10583

n200 (301,327) * (128,135) 19169

GSRC

n300 (482,636) * (122,183) 38443

s344 (297,397) 96588 (44,61) 488
ISCAS89

s349 (299,402) 74713 (44,61) 404

From Table 4-1, we show five MCNC benchmarks, six GSRC benchmarks, and

two ISCAS89 benchmarks. Each Benchmark’s name and its experimental results are

listed in Table 4-1. Column (V, E) under marked graph represents vertices and edges

in original marked graph. Column # Cycles under marked graph represents number of

cycles in marked graph representation. Column (V, E) and # Cycles under reduced

 35

QG have the same meaning with definitions under marked graph. * represents number

of cycles exceed one million so that is too hard to solve problem with this size. The

reduction procedure decreases graph size from unsolvable to solvable size in one of

five benchmarks of MCNC. And it decreases four benchmarks of GSRC to solvable

size. We make the conclusion that reduction procedure is useful in decreasing cycles

in the graph.

4.3.2 Experiment Ⅱ

 In experiment Ⅱ, we verify the difference between our proposed method and

Collins’ method in [21]. We make two different set of channel latency assignments in

two experiments in experiment Ⅱ. The results of channel latency located on [1, 3] are

showed in Table 4-2. The results of channel latency located on [1, 5] are showed in

Table 4-3. All bit width is assigned to 1 in experiment Ⅱ.

Table 4-2. Experimental results when channel latency locates on [1, 3].

Proposed Method Collins Method Benchmark

Set
Case Name

Queues Run Time(s) # Queues Run Time(s)

apte 19 0 27 0

xeorx 43 0 43 0

hp 19 0 19 0

ami33 41 1 61 1

MCNC

ami49 520 747 548 319

n10 14 1 17 0

n30 57 6 74 2

n50 58 23 87 7

n100 85 4 104 2

n200 101 12 150 5

GSRC

n300 182 54 241 24

s344 95 0 116 0
ISCAS89

s349 107 0 132 0

Ratio 1 1 1.22 0.42

 36

From Table 4-2, we show the experimental results of two methods. Column #

Queues represents number of queues needed to maintain optimal throughput in our

proposed method and in Collins’ method. Run time represents time needed to

compute this solution. Run time is counted by seconds. Our method saves 22%

number of queues than Collins’ method on average, but run time of our method is 2.5

times than Collins’ method on average.

Table 4-3. Experimental results when channel latency locates on [1, 5].

Proposed Method Collins Method Benchmark

Set
Case Name

Queues Run Time # Queues Run Time

apte 67 0 67 0

xeorx 35 0 37 0

hp 15 0 15 0

ami33 85 1 151 1

MCNC

ami49 618 947 691 371

n10 38 1 44 0

n30 92 7 105 2

n50 167 35 242 10

n100 126 5 142 2

n200 149 18 261 7

GSRC

n300 459 73 545 31

s344 182 0 240 0
ISCAS89

s349 142 1 184 0

Ratio 1 1 1.25 0.39

 Our method saves 25% number of queues than Collins’ method on average, but

run time of our method is still about 2.5 times than Collins’ method in Table 4-3.

Compared Table 4-2 and 4-3, we find when the channel latency becomes worse, the

difference between Collins’ method and our method enlarge. Our method will perform

better than pervious works when channel latency becomes worse. From Chapter 1, we

know that channel latency becomes worse as the manufacturing process scales down.

 37

To be summarized, our method offers smaller area cost than Collins’ method with

acceptable extra time.

4.3.3 Experiment Ⅲ

In experiment Ⅲ, we verify the difference between our method and Collins’

method when bit width is considered. Channel latency is limited to interval [1, 3]. Bit

width of channels is assigned to 8, 16, 32, and 64 randomly. Those bit numbers are

common used in practical chips.

Table 4-4. Bit width is assigned to 8, 16, 32, and 64 randomly.

 Proposed Method Collins Method

 Case Name # Queues Run Time # Queues Run Time

apte 816 1 1176 0

xeorx 1048 0 1048 0

hp 640 0 832 0

ami33 968 2 1768 1

MCNC

ami49 14192 782 15568 327

n10 472 0 568 0

n30 1296 6 2192 2

n50 1360 23 2344 7

n100 3136 3 4320 2

n200 2000 13 4072 4

GSRC

n300 5216 56 7256 25

s344 3384 0 4664 0
ISCAS89

s349 3104 0 4400 1

Ratio 1 1 1.33 0.41

 From Table 4-4, our method saves 33% number of queues than Collins’ method

on average, but run time of our method is still about 2.5 times than Collins’ method.

Compared the experimental results in Table 4-2, which channel latency is assigned to

 38

1, the difference between our method and Collins’ method enlarge greatly after taking

bit width issue into consideration. To be summarized, our method offers better area

cost than Collins’ method in more practical circuits.

4.4 Discussion

 In experiment Ⅰ, our proposed reduction procedure is efficient in decreasing

number of cycles in the graph. Since the number of cycles in a directed graph can

grow faster than the exponential 2n, it is important to reduce the graph size of practical

circuits. Without the reduction procedure, we know from Table 4-1 that cycles in

some benchmarks exceed one million. The million order cycles are hard to process in

normal computers and waste time to count all cycles. This is why reduction procedure

is so important.

In experiment Ⅱ, our proposed method saves 22% of queues than Collins’

method on average. Even our method cost about 2.5 times on run time than Collins’

method, but additional time cost in our method is still acceptable. For instance, the

benchmark with the most cycles in our experiment, ami49, only cost 947 seconds to

solve it. So, we usually prefer to sacrifice acceptable time but saving valuable area in

the chips. We make another experiment to verify what will happen if channel latency

becomes worse. The experimental results show our method is more suitable than

Collins’ method in worse channel latency.

In experiment Ⅲ, our proposed method saves 33% of queues than Collins’

method on average if bit width is considered. With similar time overhead to

experimental results showed in Table 4-2, our method saves more area than Collins’

 39

method when bit width is considered. The similar run time is because the only

difference between those two formulations is the objective function. This makes our

method more elastic to transform between different bit width assignments.

 Since number of cycles determines efficiency of our method, decreasing number

of cycles is the vital problem for our method. We propose the reduction procedure

including path condensation and edge unification to decrease number of cycles.

However, there are some experimental skills helping us further reduce number of

cycles. One is to ignore the cycle if and only if its T(C)>1, since it is not the most

critical cycle. Another is to collapse each strongly connected component (SCC) into a

single vertex. This is because throughput upper bound in our experiment is 1, and

each sub-system must finally have throughput 1, too. Hence, we can view each SCC

as a sub-system with throughput 1, and then we collapse them into a single vertex.

The final one is to ignore cycles containing only two edges, since it must the self-loop

cycle in the original marked graph.

 40

Chapter 5

 Future Works and Conclusions

 As the manufacturing process to deep submicron technology, length of

interconnects becomes more unpredictable and uncontrollable. It makes designers

hard to assembly pre-designed IP cores together at early design stage since the

unknown signal transference time. Repeater insertion is the promising solution to

solve this problem without heavily changing the designs. However, slight

modifications on existed IP cores are unavoidable. This prolongs the product

developed period on meaningless modification. And even worse, repeater insertion

will degrade performance of overall system by multi-clock communication. LIS is a

good solution for those existed problems. LIS handle the unpredictable interconnects

problem by automatic inserting relay stations which is similar to mentioned repeater

insertion. LIS avoids modified iterations by encapsulating every existed IP cores.

Encapsulating is to add some additional hardware called shell to the existed IPs. This

step makes all encapsulated IP cores and relay stations can follow the same

communication protocol—latency insensitive protocol. LIS works out performance

degradation mainly by queue sizing technology. Finally, product developed period

shortens and company can earn more benefit. From those reasons, we know that LIS

is a gorgeous solution for time-to-market. However, the physical parameters, like

length of interconnects, positions of IPs…etc. are known after floorplanning

performing. From Section 2.1, we know throughput upper bound of an LIS is

determined by system architecture. In other words, poor system architecture limits the

spaces that LIS can improve. In our experimental results, channel latency is assigned

to a reasonable interval, not obtained from realist floorplanning results. There are

 41

many research working on determining best system architecture on floorplanning

stage reported in [28] and [29]. After those performance-aware floorplannng

performing, we acquire real physical information which is closer to optimal

architecture. So our future direction is to combine our proposed method with real

physical information acquired from performance-wise floorplanning.

 We propose an optimal throughput optimization technique for LIS with minimal

queue size. First, we transform original marked graph to quantitative graph. Then, we

develop the reduction procedure for graph size reduction. We use an ILP formulation

to guarantee the minimal queue demand. After acquiring minimal queue solution from

reduced quantitative graph, we develop a recovered procedure to transform reduced

quantitative graph back to quantitative graph while maintaining correctness of

minimal queue size. The experimental results show that our method outperforms

Collins’ in terms of queue size (area cost). Runtime of our method is acceptable for

real industrial systems.

 42

References
[1] R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an

integration overview,” in Proceedings of IEEE, pp. 586–601, 2001.

[2] R. Ho, K. W. Mai and M.A. Horowitz, “The future of wires,” in Proceedings of

IEEE, pp. 490–504, 2001.

[3] International Technology Roadmap for Semiconductors, Semiconductor

Industry Association, 2005.

[4] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,” Ph.D.

dissertation, Stanford Univ., CA, 1984.

[5] D. S. Bormann and P. Y. Cheung, “Asynchronous wrapper for heterogeneous

systems,” in Proc. ICCD, pp. 307–317, 1997.

[6] J. Muttersbach, T. Villiger and W. Fichtner, “Practical design of

globally-asynchronous locally-synchronous systems,” in Proc. ASYNC, pp.

52–59, 2000.

[7] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K.

Tiensyrja, and A. Hemani, “A network on chip architecture and design

methodology,” in Proc Symposium on VLSI, pp. 117–124, 2002.

[8] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D.

Lindqvist, “Network on a chip: an architecture for billion transistor era,” in Proc.

of the IEEE NorChip Conf., 2002.

[9] J. Cong, Y. Fan, G. Han, X, Yang, and Z. Zhang, “Architecture and synthesis for

on-chip multicycle communication,” in Proc. TCAD, pp. 550–564, 2004.

[10] J. Cong, Y. Fan, Z. Zhang, “Architecture-level synthesis for automatic

interconnect pipelining,” in Proc. DAC, pp. 602–607, 2004.

 43

[11] L. P. Carloni, K. L. McMillan, and A.L. Sangiovanni-Vincentelli,

“Latency-insensitive protocols,” in Proc. of the Computer-Aided Verification

(CAV), 1999.

[12] L. P. Carloni, K. L. McMillan, and A.L. Sangiovanni-Vincentelli, “Theory of

latency-insensitive design,” in IEEE Tran. CAD, vol. 20, no. 9, 2001.

[13] V. Adler, E. G. Friedman, “Repeater design to reduce delay and power in

resistive interconnect,” in IEEE Trans. Circuits Syst. II: Analog Digital Signal

Process, vol. 45, no. 5, pp. 607–616, 1998.

[14] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli,

“A methodology for correct-by-construction latency insensitive design,” in Proc.

ICCAD, pp. 309–315, 1999.

[15] C. Li, R. Collins, S. Sonalkar, and L. P. Carloni, “Design, implementation, and

validation of a new class of interface circuits for latency insensitive design,” in

Fifth ACM-IEEE International Conference on Formal Methods and Models for

Codesign (MEMOCODE), 2007.

[16] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis and

optimization of latency insensitive systems,” in Proc. DAC, pp. 361–367, 2000.

[17] R. Lu, and C. Koh, “Performance optimization of latency insensitive systems

through buffer queue sizing of communication channels,” in Proc. ICCAD, pp.

207–231, 2003.

[18] L. P. Carloni, “The role of back-pressure in implementing latency-insensitive

systems,” in Electronic Notes in Theoretical Computer Science (ENTCS), vol.

146, no. 2, 2006.

[19] M. R. Casu and L. Macchiarulo, “Issues in implementing latency insensitive

protocols,” in Proc. of the Conf. on Design, Automation and Test in Europe, pp.

1390–1391, 2004.

 44

[20] R. Lu and C. Koh, “Performance analysis of latency-insensitive systems,” in

IEEE Trans. CAD, vol. 25, pp. 469–483, 2006.

[21] C. Li, R. Collins, and L. P. Carloni, “Topology-based optimization of maximal

sustainable throughput in a latency-insensitive system,” in Proc. DAC, pp.

410–415, 2007.

[22] C. Li, R. Collins, and L. P. Carloni, “Topology-based performance analysis and

optimization of latency-insensitive systems,” in IEEE Trans. CAD, vol. 27, pp.

2277–2290, 2008.

[23] M. R. Casu and L. Macchiarulo, “A new approach to latency insensitive design,”

in Proc. DAC, pp. 576–581, 2004.

[24] D. Bufistov, J. Julvez, and J. Cortadella, “Performance optimization of elastic

systems using buffer resizing and buffer insertion,” in Proc. ICCAD, pp.

442–448, 2008.

[25] F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed graphs,” in

J. Comput. Syst. Sci., pp. 511–523, 1971.

[26] D. B. Johnson, “Finding All the Elementary Circuits of a Directed Graph,” in

SIAM J. Comput., 1975.

[27] “lp_solver,” http://lpsolve.sourceforge.net/5.5/

[28] M. R. Casu and L. Macchiarulo, “Floorplanning for throughput,” in Proc. ISPD,

pp. 62–69, 2004.

[29] J. Wang, H. Zhou and P. Wu, “Processing rate optimization by sequential system

floorplanning,” in Proc. ISQED, pp. 340–345, 2006.

