B EEEEEWEF L AP ES

AT Ay Bx 13 b

Throughput Optimization for Latency Insensitive

System with Minimal Buffer Size

Throughput Optimization for Latency Insensitive

System with Minimal Buffer Size

Foyo4 L wmEk Student: Ya-Chien Ho
hErE R kE £4 Advisor: Dr. Juinn-Dar Huang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Electronics Engineering & Institute of Electronics

July 2009

Hsinchu, Taiwan, Republic of China

dOER R LN E S

Fid ek Gy e gl

2|
|4
pag
(=
40

=M
4y
=}
B
%
=H
4y
-Pa
o+
1T
4

202]

FAARE N EAGE T A ERELIR S P RE 8 PR
dOBM A aERAT s - o wfdRE L R A(LISAE Nk w bR g %

R REEY AT RERRG W MR BT L LR

BASEEEARY €U X R et B LB F L kS
Bl 22 i A R PER R LA PRRT F AT Ry
B2 SNk b & RN g R YT F TR T AP

)
dgE > NP FE T - BRERFLAED RO BA) Rk BRF T R
Podipe TRIFEL RS EF A RAIEE - FRESH AP

’ 2

R T LK B CRASA 3E E T D0 20%eniE R o

Throughput Optimization for Latency Insensitive

System with Minimal Buffer Size

Student: Ya-Chien Ho Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering &
Institute of Electronics
National Chiao Tung University

ABSTRACT

As manufacturing process.proceeds to.deep submicron (DSM) technology, global
interconnect delay becomes one’of the most-eritical obstacles in system-on-chip (SoC)
design nowadays. Latency insensitive’ system (LIS) is a method proposed to solve
variant interconnect delay without modifying pre-designed IP cores. In other words,
LIS avoids modified delay iterations in product developed period. LIS offers a
solution for time-to-market. However, the imbalance delay and back-pressure in LISs
cause performance degradation. We propose an ILP formulation to improve
performance to optimal value while maintaining minimal buffer size. We also propose
a graph representation called quantitative graph (QG). Then we develop the reduction
procedure on QG to decrease graph size while maintaining correctness of
performance. We also consider practical situation which chip have different channel
bit width on it. From the experimental results, our method reduces graph size greatly

and our method saves more than 20% of buffer size than pervious works.

il

Acknowledgment

e RGO » TN & PRI e v
AL FTRRIZDEES I * SSRGS H PRI PR - R b

RpTE R o

—fi
=

FIATSRIRBITS % - 1 S0 2l 3 WD (=0 BN 355 WA &
RRORUR BRI T e PR (R b e SR 2 T R

Y G Y R RIS U lﬁﬁﬁﬁjﬁ SRS 5 ZHpU R iR
BT o 257 kR 25 S PR RGE -

FI RS ol B 1ol ot Bl oS o P AU El@’ﬁiz[‘a‘f& i S
F“*f‘wf'ﬁ LRSI o YRR E | IR R R~ 1] B i B I [
ORI =5 PP ORI E P ERRLETH Y BT | 2 | RGBS i g

PG RS BIPORL I BR A T E USRI W I H LT r%m:fpwm
Sl PRI ST PO R Y) R RO A O
T RS PRI > o0) RS O MR TS T
(SR PRI » B IO T o fER RS - T e -
T R BRI - SR PR -

B - (Y O S TR LS L] D RRLE B R kLR
[ORI N S R~ SRS T AR B

b];”jJJH b S ﬁ,ﬁlﬁsﬁpﬁ—&ﬁf

il

Contents

ADSITACT(CRINESE) ..vvveeiiiieciiie ettt et e et e et e e et eeebaeeeaaeeesaseeeeaseeennseeeareeas i
PN o3 111 237§]) USSR i
ACKNOWISAZMENLiiiiiiiiieeiii ettt ettt e s et e b e enseenneas il
COMEEIILS ...ttt ettt et e sh e bt e s b et et e e bt e et e e beeeabeesbeeenbeesbeesnbeenbeeenbeanns v
LSt OF FIGUIES ..ttt ettt ettt et s e et e s eebeesnaeenseesnseenseen vi
LSt OF TADIES ...ttt sttt viil
Chapter 1 INtrodUCTIONcueiiiieeiieiieie et ettt seaeebeesaee e 1
1.1 MOTIVALION ...ttt ettt ettt et e et e saneens 4

1.2 CONtribULION ..o ittt et 5

1.3 ThesiS OrganizZation ... e . . ecciarsd e asinbe e hunaeeeeeessseeessseeessseesssseeesssesssssessssseesnes 6
Chapter 2 Preliminari@s..... ... foeshueeee s dasastaitassnnesteetangeresseeeseessseenseessseesseesseesseesseenseesnne 7
2.1 Latency Insensitive System (LIS).......cc e 7

2.2 Throughput Optimization for Latency Insensitive System...........cccccveverennnene 12

2.2.1 Relay Station INSErtion..........ceeevieeeiiieeiiie e 13

2.2.2 QUEUE SIZING....eeiuvieiieeiiietieeieeieeeteesteeeteeeteesteeaeesseessaesseenseesnseensnas 14

2.3 Related WOTKS.....cooueiiiiiiiee e e 15
Chapter 3 Throughput Optimization for LIS with Minimal Buffer Size....................... 18
3.1 Marked Graph and Quantitative Graph (QG)ccceevvreeiiiieniiieeeiieeciee e 18

3.2 Quantitative Graph Reductionccceeviieiiiniiiiiienieeieese e 22

3.2.1 Path Condensation..........cc.eeiuieieenieeiiienieeiee et 23

3.2.2 Edge UnifiCationccceouieiiieiiieiiieiieeeeeiee et 24

3.3 Problem Formulation of Our Approach...........cccccveeviieeeiieiiieeiee e 28

3.4 Bit Width of Channelscccooiiiiriiniiiiieeeeeee e 29

v

Chapter 4 Experimental ReSUILS..........ccciiiiiiiiiiiiiiiiiiiccieee e 32

4.1 Environment Setup and Benchmarks............cccoeeviiieiiieniiiicieceee e 32

4.2 Weight and Channel Latency ASSIZNMENt.........cc.eeeeeeviierieeniienieeiienieeeeenens 33

4.3 RESULILS ..ottt ettt et 33

4.3.1 EXPeriment Toccoooviiiiiiiiieiieeie ettt et s 34

4.3.2 EXPeriment IIcccooiiniiiiiiiiiieiceienieeeeeee ettt 35

4.3.3 EXperiment Tlcoooieeiieriieiieeie ettt e s 37

4.4 DISCUSSION ...ttt ettt ettt ettt et e et e st e e bt e s bt e e abeesabeeabeesbtesabeesaeeenbeenaee 38
Chapter 5 Future Works and Conclusionsccceeviieriieiiieiieeiienie e 40
RETEIEIICES ...ttt ettt ettt 42

List of Figures

1-1

1-2

1-3

2-1

2-2

2-4

2-5

2-6

2-7

2-8

2-9

3-1

3-3

3-4

3-5

3-6

3-8

3-9

3-10

3-11

Un-scaling global interconnect as device size shrinking down...........c.ccceceevenee 1
Delay for global interconnects, local interconnects and gate (cited from [3]) 2
An example of the pipeline element INSETtioNcccevvierieririeniineiienicreene 4
Shell encapsulation and RS insertion in an LIScccccooieiiiiiiiinieeeee e, 8
Block diagram of an encapsulated [P COTecccoevvieiieiiienieniieieeeeeeeeeen 9
Progressive trace of @ sSimple LISccooooiiiiiiiiiie e 9
Output data sequence at core C in Figure 2-3coooieiieniieiiinieeiecieeee 10
Simple LIS example with inserted relay station and back-pressure.................... 11
Output data sequence of core. C AN FIgUre-2-5........cccoovvieiiiniieieeieeeeeee e 12
Optimize throughput by inserting relay station..............ccoeceveeveecieneeneeieenne. 13
Counter example of relay station ISEIION ..ol . .eeveereiieiieeieeiie e 14
Optimize throughput by qUEUE S1ZING.......co0trueieiiieeeiie e e 15
Modeling relay station and shell with marked graph representation................... 18
Transformation from original LIS graph to marked graph representation.......... 19
Queue sizing problem reflects to marked graph representation 20
Transformation from a marked graph to a quantitative graph...........cc.ccccuveenneen. 21
Two graphs are equivalent in throughput calculationccoceveeverincennnnn. 23
Operation of edge UNIfiCationc.cceviieeiiieiiiiecee e 25
Total reduction procedure of an LIS example.........ccoeoveeviiniiiiniiniienieeiceene, 26
An example of recovered procedure step 1coocvvveviiiirciiieniie e, 27
An example of recovered procedure Step 2cocvveevvieriieeiiienieeiienie et 27
Queues are added to different POSIIONScc.eeveuvieeiieeeiireeiieeeee e 29
Changes in the reduction procedurecoccueerieriierienieeieeie e 30

vi

4-1

The flowchart of our experiments

vii

List of Tables

4-2

4-3

4-4

Number of cycles degradation after the reduction procedure performed............ 34
Experimental results when channel latency locates on [1, 3]......ccccceeveeenieenneen. 35
Experimental results when channel latency locates on [1, 5].....c.cccceevieeiiennnnne. 36

Bit width is assigned to 8, 16, 32, and 64 randomly............cccovveveviercieeniirennn. 37

viii

Chapter 1

Introduction

As the manufacturing process proceeds to deep submicron (DSM) technology,
device size and interconnect width continuously scale down. This evolutionary
scaling makes individual device speed become significantly faster; however, it also
makes the delay of interconnect become worse. As a result, interconnect delay
problem has become one of the most critical obstacles for designs nowadays.
Interconnect delay problem suffers from increased resistance due to a decrease in
conductor cross-sectional area and also suffers from increased capacitance when
metal height is not reduced withy’conductor, spacing [1]. Another reason that
interconnect delay problem turns into the-boundary of designs is the failure of global
interconnect scaling. The length of global interconnects can not shrink down as
devices and local interconnects. As Figure 1-1 [2} shows, global interconnects must
pass through multiple IPs in order to connect them together. From the figure, global
interconnects keep unchanged while local interconnects and devices shrink down with

process scaling.

Global interconnect

/ \

Scaling
) g

/
T ¥

Local interconnect

: device/IP core

Figure 1-1. Un-scaling global interconnect as device size shrinking down.

1

Due to the un-scalable characteristic of global interconnects, the relative delay
difference between global interconnects and local interconnects broadens. Figure 1-2,
which is cited from [3], shows the trend for relative delay gap in different process
generation. The global interconnect delay is about twenty times slower than gate
delay and is about sixteen times slower than local interconnects delay in 65nm
process. The circumstance gets worse in 32nm, where global interconnects delay is

one hundred and twenty times slower than local interconnects delay.

e G ate Delay =
(Fan cut 4)

=i~ Local
[Scaled)

10 [~ =—=Global with Repeaters

i Global wio Repeaters

Relative Delay

250 180 120 a0 65 45 32

Process Technology Node (nm)

Figure 1-2. Delay for global interconnects, local interconnects and gate. (cited from

[3D)

Figure 1-2 implies that length of global interconnects has grown rapidly
compared to local interconnects so a signal can not arrive from one side to the other
side within a clock cycle. Hence, it is unavoidable that the data transfers between IPs
require multiple clock cycles to deliver. Such multi-cycle communication can
seriously degrade the performance improvement originally obtained from advanced

fabrication technology. The acceleration of individual devices and the multi-cycle

communication bottleneck force designers to shift design paradigm from

computation-bound to communication-bound.

There has developed some technologies to ease the communication burden
caused from global interconnects delay. In physical design level, wire sizing, buffer
insertion...and so on, help to relax the delay constraints. In system design level, many
research works try to not only conquer the communication bottleneck but also

maintain the functional behavior unchanged.

One approach is to utilize asynchronous handshake protocols for global
inter-core communication. This is called globally-asynchronous locally-synchronous
(GALS) systems [4]-[6]. Another;one is network-on-chip (NoC) platform in [7] and
[8], which constructs an on-chip interconnection network for global signals
transmission. The data transmission:in-NeC passes through every module’s router
with helping of those on-chip network interfaces. [9] and [10] propose a regular
distributed register (RDR) microarchitecture which is composed of array of islands.
Communication inside an island can be finished in a single clock cycle. For
multi-cycle communication between islands, layout-driven architectural synthesis

algorithms have been developed.

There is another method called Latency Insensitive System (LIS) reported in [11]
and [12] which is receiving many attentions recently. The LIS approach does not alter
original system architecture but it wraps every IP with a special interface and adds
small pipeline elements to systems. By using those additional elements and interfaces,
LISs cope with variant interconnect delay without changing any IP in the system.

Inserting pipeline elements into global interconnects, like LIS design paradigm, is the

3

design mainstream for synchronous system nowadays [13]. Timing constraints are
relaxed after inserting pipeline elements into long interconnects so that loose timing
constraints can lead to operating frequency acceleration. For example, the
interconnects shown in Figure 1-3, the input/output timing constraints of all
interconnects are needed to be smaller than 1 clock cycle. For instance, the delay of
interconnect A is 0.9 clock cycle such that it needs no pipelining. On the other size the
delay of interconnect B is 2.4 clock cycles such that it needs two pipeline elements
inserted into interconnect B. Because of it, the input/output timing constraints of

interconnect B are feasible.

delay = 0.9 clock cycle
LA 5, .

..'a'__,fil‘i" - .d-'
delay = 2.4 clock'cycles

Interconnect B

PE | : pipeline element/repeater

Figure 1-3. An example of the pipeline element insertion.

1.1 Motivation

As the complexity of system-on-chip (SoC) keeps growing, it is impossible to
redesign each IP for a new system. According to that reason, IP reuse becomes the

most promising way in present SoC design. However, length of interconnects is

unpredictable at early design stage. It makes engineers hard to determine the exact
time when IPs should receive and send data. Interconnect length information remains
unknown until the floorplanning is actually performed. In other words, how many
clock cycles are needed for data communication is dependent on the result of
floorplanning. If the timing after floorplanning do not meet the requirement, it may
jeopardize system performance, or even worse, ruin the overall system behavior.
Therefore, engineers need to adjust floorplanning appropriately or redesign IPs to
accommodate multi-cycle communication. Time wasted on adjusting floorplanning or
redesigning IPs is significantly long that may be a terrible damage to project schedule.
Hence, it is urgent that we need an efficient method to solve multi-cycle
communication and IP reuse dilemma. Latency Insensitive System 1is a
correct-by-construction methodology and seems to be a promising solution that can
solve both problems at the same time. As a.result, we consider LIS as the greatest
time-to-market method in the incoming era-of-high speed synchronous design and we

adopt LIS to achieve optimal performance while maintaining minimal area cost.

1.2 Contribution

In this thesis, we propose an ILP formulation to solve LISs for optimal
throughput solution with minimal area. We follow the marked graph representation to
model LIS and we transform original marked graph to quantitative graph for latter
reduction operations. When we use marked graph to during ILP formulation, number
of cycles in the graph are the limitation to the ILP formulation. It needs a lot of time
to get the optimal solution for larger practical cases. This may be the obstacle of
project schedule. We propose a procedure which contains two operations to deal with

this obstacle. Path condensation and edge unification are used to reduce graph size so

that we can handle bigger design cases. All benchmarks can be solved within 20
minutes in our experiments after the reduction procedure is performed. Then, our
proposed ILP formulation finds the minimal buffer size to achieve optimal
performance. To reflect real situation in the SoC system, we take bit width issue into
consideration. In the end, we obtain optimal solution on buffer size while maintaining

optimal performance and have faster computation speed to get that optimal solution.

According to the experimental results, it is concluded that the reduction
procedure decreases graph size greatly. Furthermore, our approach performs better
when interconnect delay becomes worse. Finally, when bit width issue is also
considered, the difference of results between our approach and previous works

become larger.

1.3 Thesis Organization

This thesis is organized as follows."In Chapter 2 we give the preliminaries of our
work. It includes the introduction of latency insensitive system, how to fix system
performance degradation of LIS caused by multi-cycle communication, and some
related works. The proposed strategy for performance optimization with minimal
buffer size is given in Chapter 3. The experimental results and related analyses are

provided in Chapter 4. Chapter 5 concludes this thesis and lists probable future works.

Chapter 2

Preliminaries

2.1 Latency Insensitive System (LI1S)

The concept to design a system which is insensitive to arbitrary variation in
interconnect delay was first presented in [14]. The proposed approach Latency
insensitive design (LID) is a design methodology for SoC that enables automatic
adjustment to original system in order to make new system get with variant delay.
LID encapsulates each IP core (the pearl) with an automatically-synthesized interface
(the shell) and inserts repeaters to pipeline long interconnects. Those repeaters are
called relay stations (RS) in LIS. By:using LID;,one can derive an LIS from original
synchronous system. IP cores may be synchronous sequential logic blocks of any
complexity as long as they ‘satisfy, the stallability, i.e., their operation can be
temporarily stalled [12]. Relay Stations are clocked buffers with two-fold storage
capacity used to pipeline every long interconnect in order to let them meet the target
clock period. After doing those movements, an LIS is latency-equivalent to original
synchronous system [12]. It means that when we ignore stalling (void) events in
timestamps, the rest informative (valid) events on each channel of an LIS are exactly
the same with the informative events on each channel of the original system. To
summarize contribution of LID is it guarantees that it can cope with any amount of
interconnect delay without redesign of any IP core. Figure 2-1 illustrates the typical
structure of an LIS implementation. Four pre-designed IP cores are encapsulated
within the shells and five relay stations are inserted to long interconnects. IP cores
communicate with each other by a set of point-to-point, pipelined channels. The

encapsulated IP cores, relay stations, and point-to-point channels form the entire LIS.

Relay Relay

Station Station
Pearl 1
»

Station

Pearl 4
Relay Relay

Station Station

Figure 2-1. Shell encapsulation and RS insertion in an LIS.

Figure 2-2 shows detailed architecture of encapsulated IP core. Block diagram in
the example contains two input chanﬁels, oﬁé output channel, a controller to drive
each element, and a stallable IP core. Each‘inlr:)ut channel has two end points. One is
direct to input port of stallabk IP icote, and-the other goes to the storage element
queue located in every channel. 1P cére takes data either from input channel directly
or from storage element controlled by multiplexer. A controller is accompanied with
each encapsulated IP core, and it determines many vital controlling signals, such as
select signal for multiplexer, stalling signal for IP core, and operation signals for
queue. The details of the shell and relay station RTL logic designs are listed in [15].
Each shell and each relay station follow universal communication protocol. The
protocol which allows shells and relay stations exchanging data on variant length
channels is latency insensitive protocol (LIP) [11]. LIP defines the data exchanged
by the shell as either valid or void and keeps the shells to ignore the existence of
void data. The shell fires or executes the IP if and only if the IP can get a valid data
from each input channel. The valid data from each input channel can be acquired

from channel directly or from storage element queue. If the condition is not satisfied,

8

the shell stalls the core otherwise. The architecture of relay station is similar to the

encapsulated IP. We can view the IP core of relay station as a simple edge triggered

flip-flop.

Shell

Ihput channel 1 N~

Y

mux]

i Output channel

Thput channd 2 Stallable IP core

Y

\

Y

muxj »

Queue

A /I/— .

Control

\4

Figure 2-2. Block diagram of an encapsulated IP core.

System throughput is the. primary-evaluation ‘metric of system performance.
Throughput is usually calculated by valid data generation rate. Figure 2-3 and 2-4

show how to calculate throughput of LISs.

1 } 7 b
~ A Timel [[C: A Time2 [[C |
[[]
1 DBl LDB 2 J
3/.\ Time 3 &C ji Time 4 &C
ime 3 ime 4

3 DB 3 LDB 4 f
A | : IP core
] :Queueon

channel

Figure 2-3. Progressive trace of a simple LIS.

Figure 2-4. Output data sequence at core C in Figure 2-3.

In Figure 2-3, the big white rectangles represent IP cores in a system. The small
white rectangles inside IP cores are queues on each input channel. [P A and B both
have only one input channel and queue size on each input channel is all equal to 1. IP
C has two input channels and queue size on each input channel is equal to 1, too. A
channel queue, whose size is 1, is called a minimum queue so Figure 2-3 is an LIS
with minimum queue on every channel. Red numbers in Figure 2-3 represent valid

73t
1

data and a positive integer denotes the i-th- valid data generated by the IP core.
Note that when an IP core takes(i-1)-th valid data from its input channels, it outputs
its i-th valid data to output channels if IP-fires. Otherwise, a shell stores the valid data
in queue when an IP stalls. We trace i-th valid data to get the valid data generation rate.
This trace of data produced by IPs is called a progressive trace [16]. Since IP C is the
only output of the simple LIS, system throughput can be derived by analyzing the data
generation of output channel of IP C. Figure 2-4 shows the result of output data
sequence at output channel of IP C. We find that IP C produces a valid data at every
clock cycle so throughput of this LIS is 1 obviously. However, this simple LIS
example does not consider the effect of inserted relay stations and back-pressure
mentioned in [17] and [18]. A more realistic LIS example is showed in Figure 2-5.
The shaded rectangle indicates a relay station and a relay station simply passes
received data to its output channel at next clock cycle. Red numbers are valid data, the

same definition as in Figure 2-3, and blue numbers mean void data. Since a relay

station only passes the received data, it never generates new valid data. We assign a

10

symbol ‘T’ to represent a non-generated and void data which a relay station outputs at

timestamp 1.

1P : Relay
core station

: Queue on

channel

Figure 2-5. Simple LIS example with inserted relay station and back-pressure.

In timestamp 1, all IP cores produce:their. first valid data, while relay station can
only stall and release void data 7. In timestamp 2, IP € only receives a valid data from
one of its input channel, but IP € needs two first valid data from each of its input
channels to generate second valid data. Therefore, IP C stalls and outputs a void data.
The first valid data generated by IP B is not processed, so it is stored in the queue of
the lower input channel of IP C. As a result, lower input channel of IP C becomes full
in the end of timestamp 2. In order to avoid valid data loss due to queue overflow, it
forces IP B to stall at timestamp 3. The stop signal used to request source IP to stall at
next timestamp 1is called back-pressure. The occurrence of back-pressure is
highlighted by coloring the occurred channel red. In timestamp 3, IP C gets all
required data from its input channels, so it can generate next valid data. IP B needs to
stall, since the occurred back-pressure at timestamp 2. Note that since the queue of
lower input channel of IP C is full at timestamp 2, the data sent by IP B at timestamp

2 will be discarded by the shell of IP C. This reason forces IP B to re-send generated

11

data at timestamp 3 although it stalls at timestamp 3. Another thing needed to be
noticed is that the queue of IP B is full at timestamp 3. IP B sends a stop signal to IP A
to request IP A to stall at next timestamp. In timestamp 4, all IPs produce their next
valid data except IP A. IP A stalls at timestamp 4 but still re-sends data to IP B, like IP
B does in timestamp 3. In timestamp 5, all IP cores fire to produce valid data and
relay station passes a received void data. We find that the system behavior in
timestamp 5 is identical to system behavior in timestamp 1. By progressive trace, we
infer that the LIS example has a period of four clock cycles, as shown shows in Figure
2-6. Figure 2-6 is the output data sequence of IP C, and system behavior clearly
repeats every four clock cycles. This LIS outputs three valid data in every four clock

cycles, so throughput of LIS is obviously three fourth.

Output data sequence at core C

Figure 2-6. Output data sequence of core C in Figure 2-5

Finally, we summarize the advantages of LIS. LIS is a great solution to variant
global interconnects length which is unknown in early design stage. By adding relay
stations and encapsulating IP cores, LIS approach guarantees robustness for system
behavior under LIP. However, LIS approach does not guarantee the same robustness
for the throughput affected by back-pressure mechanism. There are two proposed
technologies to deal with the throughput optimization problem of LIS. One is relay

station insertion and the other is queue sizing of channel queue.

12

2.2 Throughput Optimization for Latency Insensitive System

The advantage and disadvantage of LIS have been discussed. Next, we discuss

two related technologies used to optimize throughput of LIS.

2.2.1 Relay Station Insertion

In Figure 2-5, we discover that one of the reasons cause the occurrence of
back-pressure is the imbalance of channel latency. Data transmitted from IP A to IP C
on upper path has experienced one clock delay but data transmitted on lower channel
has not. The imbalance of channel latency results in occurrence of back-pressure and
degrades throughput of LIS. Casu and Macchiarulo suggest equalization which
basically equalizes all paths by insertihg enough relay stations to make them have the
same latency [19]. Therefore, there are|two"reasons that relay stations need to be
added to an LIS. The first is to break up long channels to meet target clock period.
The second reason is to optimize ‘throughput by balancing latency of channels. Figure

2-7 demonstrates how to balance latency by inserting relay stations.

—PDQ «
!

Figure 2-7. Optimize throughput by inserting relay station.

Left of Figure 2-7 is the same LIS example in Figure 2-5. We know that
back-pressure occurs in this LIS architecture. Now, we insert a relay station to the
channel connected IP B and IP C as shown in the right of Figure 2-7. As a result, all

data arrived IP C have experienced the same latency, so back-pressure will not occur.

13

Throughput of the LIS improves to 1 finally. This is how we optimize throughput by
relay station insertion. Nevertheless, relay station insertion still has its limitation. Lu
and Koh have proved that equalization does not work for all systems [20]. Figure 2-8
illustrates a counter example. To balance the latency at paths from IP A to E a relay
station must be added to either channel (A, C) or channel (C, E), but this ends up
unbalancing either path from IP C to A or paths from IP E to C. Next, more relay
stations need to be inserted to balance them. As a result, we find that throughput will

never improve to 1 by doing exhaustive progressive trace.

liDh_L Pl

Figure 2-8. Counter example of relay station insertion

From the discussed counter example, we know that relay station insertion still
has some restrictions. Since relay station insertion is not a general solution for all

LISs, the demand for better solutions rises.

2.2.2 Queue Sizing

Another reason which causes back-pressure to happen is size of queue. When
queue is full, the shell needs to send a stop signal to stall source IP. This creates a
motivation to increase size of queue so back-pressure will not happen. Without
happening of back-pressure, performance of LIS can be optimized. Figure 2-9

illustrates the effect after increasing queue size of lower channel of IP C to 2. Left of

14

Figure 2-9 is the exact example in Figure 2-5 of timestamp 2. Back-pressure occurs
when queue is full at this timestamp. After we adding one queue to lower channel of
IP C, like the right of Figure 2-9, there always leaves one unused queue and hence

back-pressure will never happen. Throughput of the example also improves to 1.

i1
5> A Time2 H A Time 2!

|
—B 2) 2 —B2

Figure 2-9. Optimize throughput by queue sizing

i

We view relay station insertion as another kind of queue sizing because relay
station is a clocked storage element like queue. The difference of relay station and
normal queue is that relay station forces.all-received data to delay one clock cycle but
queue will not. The advantage of queue sizing is it will not potentially impact
elsewhere in the system like relay station insertion since it only delays data by queue
when needed. Increasing size of queue only causes slight additional hardware cost
that will not influence whole system architecture in most of systems. Based on the
characteristics, queue sizing becomes the mainstream of LIS throughput optimization.
To be summarized, queue sizing offers a trade-off between performance optimization

and area overhead.

2.3 Related Works

LIS has been discussed frequently in recent years. Many research works are

made under different hardware architecture assumptions and different physical

15

information assumptions. Next, we are going to introduce two important research
works on LIS topic. Earlier works before 2003 only considered ideal LISs (LISs with
infinite queues and no back-pressure). Lu and Koh are the first people who proposed
the method to solve LIS with back-pressure problem by queue sizing [17]. They
showed that performance of a practical LIS with finite queues and back-pressure can
reach the performance of an ideal LIS if proper queue sizing is adopted. They also
proposed an approach to analyze complex LISs. Lis graph and extended lis graph
were presented to model LISs. Throughput of an LIS was decided by the most critical
cycles called the system cycles. Throughput calculation of those LISs has been shown
in equation (1).

W(Ci),
il)

1- rnaXCieC (

Where C is the set of all cycles-in.the lis graph. W(€1) is the sum of edge weights of

W (Ci)

cycle Ci, and |Ci| is the number of edgesincycle Ci. Cil
|

is called the cycle mean

of cycle Ci. System cycles are cycles with max cycle mean and those cycles
determine throughput upper bound. Throughput can not be further improved by queue
sizing when it reaches throughput upper bound which is equal to 1 in most cases.
Finally, Lu and Koh proposed a mixed integer linear programming (MILP) solution

for queue sizing.

Collins and Carloni proposed a heuristic for queue sizing that produces solutions
close to optimal solution in shorter time reported in [21] and [22]. A marked graph is a
bipartite directed graph and Collins et al. use it to model LISs. Performance of LISs in
marked graph is represented by maximal sustainable throughput (MST) 6. MST is

determined by cycles with lowest tokens to places ratio. This ratio is similar to cycle

16

mean in [17]. The details of marked graph and MST will be introduced in Section 3.1.
Token deficit problem (TDP) is the problem of filling the token (queue) deficit of
cycles in an LIS. Collins et al. claimed that their heuristic algorithm for TDP is
guaranteed to produce a performance-wise optimal solution that may require more
queue space. Additionally, Collins et al. proposed two trends of LISs. One is that the
position where relay station inserted affects throughput seriously. The other is the
efficiency of fixed queue size. Collins et al. claimed that assigning every queue size to
5, and throughput is above 90% of the optimal solution. Collins et al. also make a
different hardware architecture assumption with Lu et al. proposed in [17]. In our

opinion, Collins’ hardware architecture assumption is closer to practical situation.

There are some different methods to solve LIS problem for different purposes.
For instance, Casu and Macchiarulo avoided queue sizing issue by scheduling the
activation of IPs [23]. A limitationtof their-work 1s that building schedules needs
knowledge about the global system behavior..Bufistov et al. proposed the method that
combines both queue sizing and relay station insertion techniques to achieve optimal
throughput [24]. However, they made an assumption that the increase of queue size
will also cause the increase of channel delay. This assumption will not happen in the

hardware architecture we used.

17

Chapter 3
Throughput Optimization for LIS with Minimal
Buffer Size

3.1 Marked Graph and Quantitative Graph (QG)

We introduce details of the marked graph first. Marked graph is a proposed
modeling architecture for synchronous systems. Their simplicity makes them quite
amenable to analyze synchronous systems which have a periodic behavior like LIS. A
marked graph has two kinds of vertices: places and transitions. By definition, each
place has exactly one incoming edge and one outgoing edge that both connect to
transitions. Places have the ability:'to hold 0 or'mere tokens. Transitions cannot hold
tokens, but they can fire and move.tokens around in the graph. Each outgoing edge
from a place connects to a transition, and-each incoming edge connects to a place
coming from a transition. A transition is.enabled to fire when the place on each of its
incoming edges has at least one token as the fire condition we described. All
components of a marked graph fire to produce valid according to global clock.

Detailed definitions of the marked graph are reported in [21], [22], and [25].

Relay station Shell

Figure 3-1. Modeling relay station and shell with marked graph representation.

Figure 3-1 shows the marked graph representation of a relay station and a shell.

18

The large white circles represent places, the small black circles represent tokens, the
black vertical bars represent transitions, and the number q represents the channel has q
tokens. Initially, the relay station’s place on solid edge has no token since the relay
station produces a void data in timestamp 1, and its dashed edge has two tokens on
place corresponding to the two available storage spaces in the queue. Recall that relay
station is a clocked buffer with two storage capacity. The shell’s place on solid edge
has one token since the shell produces a valid data in timestamp 1, and its dashed
edge has q tokens on place. Number q is a positive integer. Using a marked graph
representation, valid or void data are presented by tokens on the solid edges. The

tokens on the dashed edges represent available spaces of queue in the channel [21].

(O place

® token

transition

Figure 3-2. Transformation from original LIS graph to marked graph representation.

Figure 3-2 illustrates how to transform original LIS graph to a marked graph
representation. All queue size of shells are set to 1 in this case. It is convenient to
calculate MST after we transform LIS to marked graph. We used to compute system
throughput by progressive trace as mentioned in Section 2.1, but progressive trace
spends a lot of time to simulate IP behavior on every timestamp, so it is unpractical to
calculate throughput by progressive trace in complex system. However, based on
Section 2.3, we can compute the MST of the graph by finding the cycles with the
lowest ratio of tokens to places. In Figure 3-2, the most critical cycle {A, D, C, B, A}

has four places but only three tokens on it, so the system has MST of three fourth.

19

Another convenience of marked graph representation is that it can reflect queue sizing
problem easily. Figure 3-3 shows how to reflect queue sizing problem to the marked
graph. If we want to add an extra queue to IP B, we only need to put an additional
token on dashed edge of IP B. Finally, the most critical cycle {A, D, C, B, A} of the

system has ratio equal to 1, so the system has optimal MST 1.

Y

i
Y
[

Y
[

/
Y
(]

Figure 3-3. Queue sizing problem reflects:to marked graph representation.

We prefer to adopt marked graph-tepresentation on our LIS research. This is
because: (1) it is easy to transform original LIS graph to marked graph representation.
All we need to do is to find all channels and IP cores in LIS, and then transforms them
to relay station or shell representation, as shown in Figure 3-1. (2) throughput of LIS
is easy to calculate in marked graph, since we only need to find the cycles with lowest
tokens to places ratio in the marked graph. (3) it is easy to decide which places in the
marked graph should have more tokens. This greatly helps us find the optimal

solution.

Although marked graph representation is convenient, there still exist some
drawbacks in it. One is that we used to calculate throughput with pure integer number.
Using tokens and places is easy to operate at graph, but it is indirect in calculating

throughput. Since that, we propose a new graph representation quantitative graph (QG)

20

which can handle those problems properly. Figure 3-4 shows the flow how we
transform from a marked graph to a quantitative graph. First, we want to quantify
number of places and tokens into integers. Now we get an intermediate graph which
only contains four integers in each channel. Second, we transform every transition
into a vertex and get rid of all dashed edges in the intermediate graph. This is feasible
because each dashed edge corresponds to a solid edge in the marked graph. Whenever
there exists a solid edge, there must exists a corresponding dashed edge. In the end,
we create a new graph with vertices and four weightings in each channel. Those
weightings represent number of places and tokens on solid edge and dashed edge of

the channel. We call this new graph quantitative graph.

A D A D C
<-———8:I:F——__@ ““@‘: __i
v T | [e e T
- B

s. ts [ps(e), ts(e), pd(e), td(e)]
d

ts(e) : tokens of solid edge
pd(e) : places of dashed edge

td(e) : tokens of dashed edge

[1,1,1,1] [L,1,1,1]

B
(pd, t _ [1,0,1,2]—»@—[1,1,1,1]
ps(e) : places of solid edge

Figure 3-4. Transformation from a marked graph to a quantitative graph.

Definition of quantitative graph: A quantitative graph Go= (Vq, Eq, ps, ts, pd, td)
is a weighted directed graph, where
Vg is the set of vertices.

Eq is the set of edges, and each edge carries four weightings ps, ts, pd, and td.

21

ps: E-Z" shows the number of places of the corresponding solid edge.
ts: E—N represents the number of tokens of the corresponding solid edge.
pd: E=Z" identifies the number of places of the corresponding dashed edge.

td: E>Z" is the number of tokens of the corresponding dashed edge.

Formal transformation from a specified marked graph to the quantitative graph is
described as follows. Each transition t; in the marked graph converts to a vertex v; in
the quantitative graph. Each edge (v;,v;j) in the quantitative graph corresponds to a pair
of edges in the marked graph, including a solid edge (t;,t;) and a dashed edge (t;,t;).
Places and tokens of solid edges transform to weightings ps and ts in the quantitative
graph. Places and tokens of dashed edges transform to weightings pd and td. For
example, ps((vi, vj))=1, ts((vi, vi))=0, pd((v;, vi))=1, and td((vj, vi))=2 represent an
input channel of relay station in the'quantitative graph. System throughput of QG is
decided by cycles with lowest ratio of tokens-to places, which is identical to original
marked graph. However, tokens and places.in the marked graph are transformed to

weightings in the quantitative graph. Throughput calculation of QG is modified to

find lowest ratio of Zts(e)+ th(e) / Zps(e)+ Zpd(e) in the graph.

eeCnS eeCnD eeCnS eeCnD

Summation of ts and td represent total tokens in cycle C. Summation of ps and pd are
total places in cycle C. S represent set of solid edges and D represent set of dashed

edges. We define this ratio as T(C).

3.2 Quantitative Graph Reduction

There still exist some vital problems unsolved even after we transform marked
graph to QG. One of them is when global interconnects latency becomes worse, and

we will need more relay stations to pipeline interconnects, so graph size becomes

22

huge. Some LISs may be unsolvable due to huge graph size. That urges us to try to

further reduce graph size.

3.2.1 Path Condensation

If there exists a simple path in the QG and every vertex inside the path all have
only one input edge and only one output edge. We find that it is equivalent in
calculating throughput after we combine all edges and vertices in the simple path into
a single edge. And all weightings of the single edge are the summation of weightings

of all combined edges.

Q\ p,\?«*@—[g L1 I [2,1,2,3]\
{1, I,]’]]$@_‘\\7\7\7\\

[1,1,1,1]

[2529292]

[17171’1]

System throughput : 2/3 System throughput : 2/3

Figure 3-5. Two graphs are equivalent in throughput calculation.

Figure 3-5 illustrates the concept of combination. Left graph of Figure 3-5 is
original QG and right graph of Figure 3-5 is the graph after combinative operation.
The pink vertex represents relay station and the two red edges correspond to two
combinative paths in the left graph. Left graph has two cycles when we consider solid
edges only. T(C) of those two cycles are two third and one. Since system throughput
is determined by cycles with lowest T(C), system throughput of left graph is two third
finally. Right graph also has two cycles with T(C) equals two third and one. System

throughput of right graph is also two third. In the end, two graphs are equivalent in

23

system throughput but right graph has fewer vertices and edges. In other words, right
graph is more efficient in counting cycles in the graph, this is to say, more efficient in
calculating system throughput. We define this combinative operation as path
condensation. By path condensation operation, we can eliminate all the relay stations

and some IPs in the QG without influencing system throughput.

Definition of path condensation: We call a simple path p,, <u,vy,...vy,v>
condensable if the path satisfies the following two conditions.

The length of path |p,|=3, orn>1

For each intermediate vertex {vi,v,...,vn}, its input degree and output degree

must both equal to 1

Each condensable path p, y-can.be replaced by a-condensed edge e. (u, v) without
affecting the overall system throughput;, and for each condensed edge

ps(ec)=pd(e.)=n+1, ts(e.)= Zts(e), td(e.)= th(E). E(puy) is the set of edges

eek(pu,v) ecE(py,)

belonging to condensable path p,, that is (u, vi), (Vi, V2)......(Vn, V).

3.2.2 Edge Unification

After we doing path condensation operation, we find the rest graph can be further
reduced in number of edges. We observe that one of two red edges is dominating in
calculating throughput in Figure 3-5. We observe left of Figure 3-6, and we know
system throughput is two third. In other words, the cycle contains upper red edge
dominating system throughput. That is to say, we can eliminate the other one red edge
without affecting correctness of throughput calculation. The activity is showed in

right of Figure 3-6 which dominating edge is kept and the other is eliminated. We

24

define this operation as edge unification.

[2,1,2,3] (2,1,2,3]

T T

(2,2,2,2]

[(1,1,1,1] [1,1,1,1]

System throughput : 2/3 System throughput : 2/3

Figure 3-6. Operation of edge unification.

Definition of edge unification: For any two vertices vi, v; in the quantitative
graph, if there exist multiple edges from vi to v;, we group those edges into an
En. Each E, can be unified, intoja 'dominating edge ey, and we keep the
dominating edge and get-rid of others edges belonging to the same E;,. This
unification maintains systém throughput: Each dominating edge eq4 is the edge

with max(ps(e)-ts(e)), where e€E,.

In Figure 3-6, the graph has only one E,, which contains two red edges. From the
definition, we know that upper red edge is the dominating edge of E,,, so we eliminate
the lower edge to decrease number of cycles in the graph. By edge unification, QG
can de further reduced on graph size. Figure 3-7 demonstrates an example of total

reduction procedure.

25

|
v
(J

A
\ 4

\

7 ¥
@
A
A
g) (@
A

[1.1,1.al]—>@[1.0.1.2]»@[1.1.1.a2]»@—[1,1.1,a,,]
QG
H [l.],l,eu]—b@—[],l,l,a;]
arKed

Graph

[1,0,1,2]—>@[1.0,1,2]»@[1,1,13(,]»@4—[1al.l,a7]
()< (9 afu-1{a)

d] @Condense
I r3 Ve

[473a4sb|]

[4,3,4,b|] Unify
<:| vy [2.22.b)]
[3, 1 ’3’b3]4>@<—[l > 1 s 1 7b4]

[3,1.3,bs——————(Vgr=[1,1,1b;]

Figure 3-7. Total reduction procedure of an LIS example.

Figure 3-7 starts from a marked graph with s€ven channels where size of queue
need to be decided. Those variables are indexed as a;-to a;. This is because queue size
of the relay station is fixed to 2 in marked-graph. Marked graph make this assumption
to keep the relay station small and consistent: Therefore, we only need to view size of
queue in each shell as a variable. In other words, now we have seven variables in this
example. Next, we transform marked graph representation to QG representation. Then,
we do the reduction procedure to the QG. From the definition of path condensation
and edge unification, we know those procedures will not affect correctness of
throughput. Finally we acquire a reduced graph which has the same throughput with
the original marked graph while eliminating variables from seven to three. This makes
throughput calculation in the reduced graph faster than with initial marked graph.
After getting result of system throughput, we need to recover from reduced graph to
original QG to get the correct number of queues in whole system. We show this

recovered procedure in Figure 3-8 and Figure 3-9.

26

Recover_1
C> v —2,2,2.6]
(3,1,3,7]

3 [1,1,1,1]
[3,1,3,7——»(vsa1,1,1,1]

Figure 3-8. An example of recovered procedure step 1

[4,3,4,8] 11,123V 10,12 111,120V —[1.1,1.2]
Recover_2 *

vy —[2,22,6———» :> v, [1,1,1,3} >@ [1,1,1,3] (V)

[3,1,3,7] >o[1,1,1,1] [1,0,1 2]—»@—[1 0,1 2]»@—[1 11 3]4—[1 L11]

Figure 3-9. An example recovered procedure step 2.

In Figure 3-8, we illustrate recovered procedure step 1. In step 1, we recover
reduced graph from edge unification first. Tormaintain the optimal throughput in
recovered procedure, there is a condition:must be satisfied. The condition is to make
all edges belong to the same Ej have equal td(e)-pd(e). That is to say, for all ecE,,
we make their td(e)-pd(e) equal’“This is because-all ecE;, needs to have the same
number of extra queues. Whenever a cycle passes throughput the dominating edge of
En, there must exist other cycles pass throughput other edges belonging to the same
E. in the original QG. When the cycle passes throughput dominating edge needs extra
queues to achieve optimal throughput, we infer that other edges belonging to the same
E., will also need the same number of extra queues to maintain optimal throughput.
For instance, we assign td(e) of the dominating edge in left of Figure 3-8 to be 8.
Then, we know td(e) of the other one edge is equal to 6, since 8-4 = 6-2. In step 2, we
recover reduced graph from path condensation as showed in Figure 3-9. We already
know that queue size of relay station is fixed to 2 so we only need to distribute rest
queues to the shells equally. For instance, a condensed edge with 6 queues in the left

of Figure 3-9 is recovered into corresponding two edges (v, vs) and (vs, v4) in the

27

right of Figure 3-9. Each edge is allotted with 3 queues. We distribute queues equally
in order to make every shell with similar area in hardware. As a result, we acquire

final correct queue size solution in right of Figure 3-9.

3.3 Problem Formulation of Our approach

By the path condensation and edge unification, we can decrease graph size
extremely and still keep the correctness of system throughput. It helps a lot in
counting cycles in the graph for throughput calculation. Hence, we can find the
optimal throughput quickly with the reduced QG. Then we propose an integer linear
programming (ILP) to find the minimal queue size while maintaining optimal

throughput. Following are proposed problem.formulation:

Given:
A quantitative graph Go(Vo; Egs ps,ts,pd, td).
Objective :

* Minimize total queues th (e) while maintaining maximum throughput.
eeEq

Constraints :

For each cycle C,T(C)=(Y ts(e)+ > td(e) / D ps(e)+ D pd(e) =1,

eeCnS eeCnD eeCnS eeCnD

where S represents set of solid edges and D represents set of dashed edges.

The proposed ILP formulation for the minimal queue size is very efficient
because it has only |E| integer variables, and |C| constraints. |C| is number of cycles.
The flow of our approach is separate into three main processes that are discussed as
following:

1. Initial setup: In this process, we set the parameters of graphs, including

28

constructing graphs from the benchmark, assigning the length latency of
each channel, reducing graph size by path condensation and edge
unification. All works make the graph can be handled easily and faster.

2. Find cycles: In this process, we identify all the cycles in the graph. By the
helping of reduction procedure, cycles in the graph will be decreased greatly.
Hence, the time spent in this process will be shortened greatly, too. We use
Johnson’s algorithm [26] to help us to find all the cycles in the graph.

3. ILP process: This is the main process of our approach. We take cycles
obtained from process 2. And for each cycle, we decide queue size of each
shell to make all cycles” T(C) bigger or equal to 1 while minimizing total

queue size.

3.4 Bit Width of Channels

In practical SoC system, channels usually-haye bit width on them. For example, a
32-bit CPU may has 32, 16, and 1-bit‘channels on it. Therefore, we take channel bit
width issue into consideration. In LISs, queues are put to different positions will make
different area cost when bit width is considered. Figure 3-10 illustrates the different

area costs are made by different queues added positions.

16-bi / 41 6-bit const ‘
h:;z_bly @

ﬁl’]/
X 1—32-bi» < ¢

16-bit constajim—

Figure 3-10. Queues are added to different positions.

29

To take bit width of channels into consideration, we only need to modify our
graph representation slightly. We add an extra width weighting w(e) to every edge in
the QG. In other words, we modify four weightings (ps(e), ts(e), pd(e), td(e)) in each
edge into five weightings (ps(e), ts(e), pd(e), td(e), w(e)). Since our purpose is to
maintain optimal throughput with minimal queue size, the reduction procedure and
formulations need to be changed for consistency of system throughput. For path
condensation, ps, ts, pd, td are still the same like in Section 3.2, and w(e) is assigned
to minimal width among the edges of condensable path. This is because we prefer to
put queues in edges with lower bit width to achieve minimal queue size. For edge
unification, ps, ts, pd, td of dominating edge are still the same like in Section 3.2, and
w(e) is assigned to summation of w(e) of all edges belong to the same E,,. This is
because we need to let all eeE,, have equal extra.queues. Whenever the dominating
edge needs an extra queue, other edges belonging to the same E,, will need an extra
queue, too. Figure 3-11 shows the changes.in.path condensation and edge unification.
In upper graphs of Figure 3-11, w(e).of condensed edge is the smaller w(e) of edge of
condensable path <v;, v4>. In lower graphs in Figure 3-11, w(e) of dominating edge is

the w(e) summation of two edges from v; to va.

[4,3,4,b,,32]

[l,l,l,a|,32]—>@—[].0.].2.32}@-[1,l,l,a;,}Z}@—[l.l.l.a;,}Z]

Condense

[1.l.l.a...lG]—»@—[l.l.l.a_;JZ]—» |::> V) —12.2,2,b,,16]
[1.0.1.2.16]—»@—[1.0.1.2.16}@-[1.1.1.@1(,.16[I.I.I.a7.16] [3,1,3,b3,16] »g=[1.1.1.b:.16]

[4.3,4,b1,32]

Unify [4,3.4,b,,48]

————————[2.22,b,,16} C>
[3,1,3,bz,16]—N:;)<[1,1,1,b4,16]

Figure 3-11. Changes in the reduction procedure.

=

[3,1,3,b3,16]—>(::g)<[1, 1,1,b4,16]

30

Some changes are made to our proposed ILP formulation. The modified
formulation show as follows:
Given:
A quantitative graph Go(Vq, Eq, ps, ts, pd, td, w).
Objective :

Minimize total queue th (e)xw(e) while maintaining maximum
eekq

throughput.
Constraints :
For each cycle C,T(C)=(Y. ts(e)+ > td(e) / D ps(e)+ > pd(e) =1,
eeCnS eeCnD eeCnS eeCnD

where S represents set of solid edges and D represents set of dashed edges.

We only slightly modify objective function of our ILP formulation in Section 3.3.
It is easy to take bit width issge into consideration on our graph representation and
ILP formulation. This makes our proposed graph representation and formulation
useful among the system with bit width all equal to 1 or the system with different bit

width.

31

Chapter 4

Experimental Results

4.1 Environment Setup and Benchmarks

The benchmarks we used contain three sets, MCNC, GSRC, and ISCASS89.
However, MCNC and GSRC lack of transfer direction information. In order to add
data dependency between the IPs in each benchmarks, we break each net on those
benchmarks into a 2-pin net and randomly assign it with a direction. To provide more
realistic cases, we take two cases of ISCAS89 as another benchmark set. Those
ISCAS89 benchmarks already have direction information. The experiments are
processed on a computer with an®AMD, 1:81GHz CPU and 2GB DRAM. We use the
non-commercial LP/ILP solverdp "solver [27] to solve the proposed ILP formulation.

Figure 4-1 shows the flowchart 6f our experiments.

Get input test benchmark

v

Random assign channel
length and weight

rN Minimal buffer size YeSj

‘ Marked graph ‘ ‘ QG ‘

v
Path Condensation
and Edges Unification

v v

‘ Collins’ Method ‘ ‘ Proposed Method ‘
Channel width Channel width
No Yes No Yes
Not optimized final solutions Optimized final solutions

Figure 4-1. The flowchart of our experiments.

32

4.2 Weight and Channel Latency Assignment

Since latency of each channel is generated randomly in our experiments, more
precisely, channel latency is a random real number obtained from an interval [1, A]. In
other words, 0~A-1 relay stations are inserted to pipeline channel into 1~A parts. For
example, if the random generated number is 2.4, it means that data need 2.4 clock
cycles to transmit data along the channel, and two relay stations need to be inserted.
Each relay station in the experiments has 2 fixed queues like mentioned in Section 3.2.

The queue size of each shell is assigned to be one initially.

The bit width of each channel in a benchmark is assigned to be one initially. This
means that each channel is a one-bit communication channel. To test the influence of
bit width on channels, we assign a set of different bit width to channels. Then we
compare the difference between those two bit width assignments. To model the worst
case of benchmarks, we assume that every-benchmark can achieve optimal throughput
1. This is the worst case because we need to consider every cycle and make its T(C)
bigger or equal to 1 when throughput upper bound is 1. If throughput is a real number
smaller than 1, cycles with tokens to places ratio bigger than throughput upper bound

can be omitted.

4.3 Results

For each benchmark, we make three experiments on it. We find the efficiency of
the reduction procedure in experiment I. In other words, how many cycles are
omitted after path condensation and edge unification are performed. In experiment II ,
we compare our approach and heuristic algorithm proposed in [21] and we verify the

variation when channel latency becomes worse. Finally, we compare our approach

33

and heuristic algorithm when bit width issue is considered.

4.3.1 Experiment 1

In experiment I, we count number of cycles in original marked graph and in
reduced QG. We use Johnson’s algorithm [26] to help us to count all cycles in both
two graph representations. Channel latency locates on interval [1, 3]. In other words,

0~2 vertices are added to every edge in graphs.

Table 4-1. Number of cycles degradation after the reduction procedure performed.

Benchmark Original QG Reduced QG

Case Name
Set (V,E) |# Cycles (V,E) # Cycles

apte (30,45) 2965 (7,16) 350
Xeorx (31,40) 357 (8,15) 193

MCNC hp (28,33) 66 (10,13) 37
ami33 (82,99) 8962 (29,44) 7782
ami49 (172,314) * (17,49) 234972
nl0 (27,34) 2468 (7,14) 176
n30 (76,97) 137647 (21,39) 16512

ES

GSRC n50 (107,146) (29,50) 29926
nl00 (184,207) * (64,74) 10583
n200 (301,327) * (128,135) 19169
n300 (482,636) * (122,183) 38443

ISCASES s344 (297,397) 96588 (44,61) 488
s349 (299,402) 74713 (44,61) 404

From Table 4-1, we show five MCNC benchmarks, six GSRC benchmarks, and
two ISCAS89 benchmarks. Each Benchmark’s name and its experimental results are
listed in Table 4-1. Column (V, E) under marked graph represents vertices and edges
in original marked graph. Column # Cycles under marked graph represents number of
cycles in marked graph representation. Column (V, E) and # Cycles under reduced

34

QG have the same meaning with definitions under marked graph. * represents number
of cycles exceed one million so that is too hard to solve problem with this size. The
reduction procedure decreases graph size from unsolvable to solvable size in one of
five benchmarks of MCNC. And it decreases four benchmarks of GSRC to solvable
size. We make the conclusion that reduction procedure is useful in decreasing cycles

in the graph.

4.3.2 Experiment I

In experiment II, we verify the difference between our proposed method and
Collins’ method in [21]. We make two different set of channel latency assignments in
two experiments in experiment II . The results of channel latency located on [1, 3] are
showed in Table 4-2. The results'of, channel latency located on [1, 5] are showed in
Table 4-3. All bit width is assigtied'to 1 in experiment: 11 .

Table 4-2. Experimental results when-channel-latency locates on [1, 3].

Benchmark Proposed Method Collins Method

Case Name : :
Set # Queues [Run Time(s) |[# Queues [Run Time(s)

apte 19 0 27 0
Xeorx 43 0 43 0

MCNC |hp 19 0 19 0
ami33 41 1 61 1
ami49 520 747 548 319
nl0 14 1 17 0
n30 57 6 74 2

GSRC n50 58 23 g7 7
nl100 85 4 104 2
n200 101 12 150 5
n300 182 54 241 24

ISCASES s344 95 0 116 0
$349 107 0 132 0

Ratio 1 1 1.22 0.42

35

From Table 4-2, we show the experimental results of two methods. Column #
Queues represents number of queues needed to maintain optimal throughput in our
proposed method and in Collins’ method. Run time represents time needed to
compute this solution. Run time is counted by seconds. Our method saves 22%
number of queues than Collins’ method on average, but run time of our method is 2.5

times than Collins’ method on average.

Table 4-3. Experimental results when channel latency locates on [1, 5].

Benchmark Proposed Method Collins Method
Case Name : .
Set # Queues |[Run Time |# Queues [Run Time
apte 67 0 67 0
Xeorx 35 0 37 0
MCNC |hp 15 0 15 0
ami33 &5 1 151 1
ami49 618 047 691 371
nl0 38 L 44 0
n30 by 7 105 2
GSRC n50 167 35 242 10
nl100 126 5 142
n200 149 18 261
n300 459 73 545 31
ISCASR9 s344 182 0 240 0
s349 142 1 184 0
Ratio 1 1 1.25 0.39

Our method saves 25% number of queues than Collins’ method on average, but
run time of our method is still about 2.5 times than Collins’ method in Table 4-3.
Compared Table 4-2 and 4-3, we find when the channel latency becomes worse, the
difference between Collins’ method and our method enlarge. Our method will perform
better than pervious works when channel latency becomes worse. From Chapter 1, we

know that channel latency becomes worse as the manufacturing process scales down.

36

To be summarized, our method offers smaller area cost than Collins’ method with

acceptable extra time.

4.3.3 Experiment I

b

In experiment IIl, we verify the difference between our method and Collins
method when bit width is considered. Channel latency is limited to interval [1, 3]. Bit
width of channels is assigned to 8, 16, 32, and 64 randomly. Those bit numbers are

common used in practical chips.

Table 4-4. Bit width is assigned to 8, 16, 32, and 64 randomly.

Proposed Method Collins Method
Case Name |# Queues [Run Time [# Queues [Run Time
apte 816 1 1176 0
Xeorx 1048 0 1048 0
MCNC |hp 640 0 832 0
ami33 968 2 1768 1
ami49 14192 782 15568 327
nl0 472 0 568 0
n30 1296 6 2192 2
GSRC n50 1360 23 2344 7
nl100 3136 3 4320 2
n200 2000 13 4072 4
n300 5216 56 7256 25
ISCASES s344 3384 0 4664 0
$349 3104 0 4400 1
Ratio 1 1 1.33 0.41

From Table 4-4, our method saves 33% number of queues than Collins’ method
on average, but run time of our method is still about 2.5 times than Collins’ method.

Compared the experimental results in Table 4-2, which channel latency is assigned to

37

1, the difference between our method and Collins’ method enlarge greatly after taking
bit width issue into consideration. To be summarized, our method offers better area

cost than Collins’ method in more practical circuits.

4.4 Discussion

In experiment I, our proposed reduction procedure is efficient in decreasing
number of cycles in the graph. Since the number of cycles in a directed graph can
grow faster than the exponential 2", it is important to reduce the graph size of practical
circuits. Without the reduction procedure, we know from Table 4-1 that cycles in
some benchmarks exceed one million. The million order cycles are hard to process in
normal computers and waste time to count.all cycles. This is why reduction procedure

1S so important.

In experiment II, our proposed . method saves 22% of queues than Collins’
method on average. Even our method ‘cost about 2.5 times on run time than Collins’
method, but additional time cost in our method is still acceptable. For instance, the
benchmark with the most cycles in our experiment, ami49, only cost 947 seconds to
solve it. So, we usually prefer to sacrifice acceptable time but saving valuable area in
the chips. We make another experiment to verify what will happen if channel latency
becomes worse. The experimental results show our method is more suitable than

Collins’ method in worse channel latency.

In experiment I, our proposed method saves 33% of queues than Collins’
method on average if bit width is considered. With similar time overhead to

experimental results showed in Table 4-2, our method saves more area than Collins’

38

method when bit width is considered. The similar run time is because the only
difference between those two formulations is the objective function. This makes our

method more elastic to transform between different bit width assignments.

Since number of cycles determines efficiency of our method, decreasing number
of cycles is the vital problem for our method. We propose the reduction procedure
including path condensation and edge unification to decrease number of cycles.
However, there are some experimental skills helping us further reduce number of
cycles. One is to ignore the cycle if and only if its T(C)>1, since it is not the most
critical cycle. Another is to collapse each strongly connected component (SCC) into a
single vertex. This is because throughput upper bound in our experiment is 1, and
each sub-system must finally have:throughput 1, too. Hence, we can view each SCC
as a sub-system with throughput 1,.and then we collapse them into a single vertex.
The final one is to ignore cycles-containing-only,two-edges, since it must the self-loop

cycle in the original marked graph.

39

Chapter 5

Future Works and Conclusions

As the manufacturing process to deep submicron technology, length of
interconnects becomes more unpredictable and uncontrollable. It makes designers
hard to assembly pre-designed IP cores together at early design stage since the
unknown signal transference time. Repeater insertion is the promising solution to
solve this problem without heavily changing the designs. However, slight
modifications on existed [P cores are unavoidable. This prolongs the product
developed period on meaningless modification. And even worse, repeater insertion
will degrade performance of overalls§ystem bysmulti-clock communication. LIS is a
good solution for those existed problems: LIS handle the unpredictable interconnects
problem by automatic inserting relay stations which:is similar to mentioned repeater
insertion. LIS avoids modified iterations by encapsulating every existed IP cores.
Encapsulating is to add some additional hardware called shell to the existed IPs. This
step makes all encapsulated IP cores and relay stations can follow the same
communication protocol—latency insensitive protocol. LIS works out performance
degradation mainly by queue sizing technology. Finally, product developed period
shortens and company can earn more benefit. From those reasons, we know that LIS
is a gorgeous solution for time-to-market. However, the physical parameters, like
length of interconnects, positions of IPs...etc. are known after floorplanning
performing. From Section 2.1, we know throughput upper bound of an LIS is
determined by system architecture. In other words, poor system architecture limits the
spaces that LIS can improve. In our experimental results, channel latency is assigned

to a reasonable interval, not obtained from realist floorplanning results. There are

40

many research working on determining best system architecture on floorplanning
stage reported in [28] and [29]. After those performance-aware floorplannng
performing, we acquire real physical information which is closer to optimal
architecture. So our future direction is to combine our proposed method with real

physical information acquired from performance-wise floorplanning.

We propose an optimal throughput optimization technique for LIS with minimal
queue size. First, we transform original marked graph to quantitative graph. Then, we
develop the reduction procedure for graph size reduction. We use an ILP formulation
to guarantee the minimal queue demand. After acquiring minimal queue solution from
reduced quantitative graph, we develop a recovered procedure to transform reduced
quantitative graph back to quantitative graph while.maintaining correctness of
minimal queue size. The experimental results show that our method outperforms
Collins’ in terms of queue size (area ¢ost)--Runtime of our method is acceptable for

real industrial systems.

41

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an
integration overview,” in Proceedings of IEEE, pp. 586-601, 2001.

R. Ho, K. W. Mai and M.A. Horowitz, “The future of wires,” in Proceedings of
IEEE, pp. 490-504, 2001.

International Technology Roadmap for Semiconductors, Semiconductor
Industry Association, 2005.

D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,” Ph.D.
dissertation, Stanford Univ., CA, 1984.

D. S. Bormann and P. Y. Cheung, “Asynchronous wrapper for heterogeneous
systems,” in Proc. ICCD, pp. 307-317,.1997.

J. Muttersbach, T. Villiger and “W. Eichtner, “Practical design of
globally-asynchronous locally-synchronous systems,” in Proc. ASYNC, pp.
52-59, 2000.

S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K.
Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in Proc Symposium on VLSI, pp. 117-124, 2002.

A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D.
Lindqvist, “Network on a chip: an architecture for billion transistor era,” in Proc.
of the IEEE NorChip Conf., 2002.

J. Cong, Y. Fan, G. Han, X, Yang, and Z. Zhang, “Architecture and synthesis for
on-chip multicycle communication,” in Proc. TCAD, pp. 550-564, 2004.

J. Cong, Y. Fan, Z. Zhang, “Architecture-level synthesis for automatic

interconnect pipelining,” in Proc. DAC, pp. 602—-607, 2004.

42

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. P. Carloni, K. L. McMillan, and A.L. Sangiovanni-Vincentelli,
“Latency-insensitive protocols,” in Proc. of the Computer-Aided Verification
(CAV), 1999.

L. P. Carloni, K. L. McMillan, and A.L. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” in IEEE Tran. CAD, vol. 20, no. 9, 2001.

V. Adler, E. G Friedman, “Repeater design to reduce delay and power in
resistive interconnect,” in IEEE Trans. Circuits Syst. Il: Analog Digital Signal
Process, vol. 45, no. 5, pp. 607-616, 1998.

L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli,
“A methodology for correct-by-construction latency insensitive design,” in Proc.
ICCAD, pp. 309-315, 1999.

C. Li, R. Collins, S. Sonalkat; and L. P. Catloni, “Design, implementation, and
validation of a new class of interface circuits for latency insensitive design,” in
Fifth ACM-IEEE International:Conference on Formal Methods and Models for
Codesign (MEMOCODE), 2007.

L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis and
optimization of latency insensitive systems,” in Proc. DAC, pp. 361-367, 2000.
R. Lu, and C. Koh, “Performance optimization of latency insensitive systems
through buffer queue sizing of communication channels,” in Proc. ICCAD, pp.
207-231, 2003.

L. P. Carloni, “The role of back-pressure in implementing latency-insensitive
systems,” in Electronic Notes in Theoretical Computer Science (ENTCS), vol.
146, no. 2, 2006.

M. R. Casu and L. Macchiarulo, “Issues in implementing latency insensitive
protocols,” in Proc. of the Conf. on Design, Automation and Test in Europe, pp.

1390-1391, 2004.

43

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Lu and C. Koh, “Performance analysis of latency-insensitive systems,” in
IEEE Trans. CAD, vol. 25, pp. 469-483, 2006.

C. Li, R. Collins, and L. P. Carloni, “Topology-based optimization of maximal
sustainable throughput in a latency-insensitive system,” in Proc. DAC, pp.
410-415, 2007.

C. Li, R. Collins, and L. P. Carloni, “Topology-based performance analysis and
optimization of latency-insensitive systems,” in IEEE Trans. CAD, vol. 27, pp.
2277-2290, 2008.

M. R. Casu and L. Macchiarulo, “A new approach to latency insensitive design,”
in Proc. DAC, pp. 576581, 2004.

D. Bufistov, J. Julvez, and J. Cortadella, “Performance optimization of elastic
systems using buffer resizing and buffer..insertion,” in Proc. ICCAD, pp.
442-448, 2008.

F. Commoner, A. W. Holt;S. Evens-and-As Pnueli, “Marked directed graphs,” in
J. Comput. Syst. Sci., pp. 511-523,.1971.

D. B. Johnson, “Finding All the Elementary Circuits of a Directed Graph,” in

SIAM J. Comput., 1975.

[27] “Ip_solver,” http://Ipsolve.sourceforge.net/5.5/

[28]

[29]

M. R. Casu and L. Macchiarulo, “Floorplanning for throughput,” in Proc. ISPD,
pp. 62-69, 2004.
J. Wang, H. Zhou and P. Wu, “Processing rate optimization by sequential system

floorplanning,” in Proc. ISQED, pp. 340-345, 2006.

44

