
國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

高編碼率之 CP-PEG LDPC 解碼器設計與實做

Design and Implementation of High Code-Rate LDPC

Decoder based on CP-PEG Code Construction

學生：林高守

 指導教授：張錫嘉 方偉騏 教授

中華民國九十八年七月

高編碼率之 CP-PEG LDPC 解碼器設計與實做

Design and Implementation of High Code-Rate LDPC

Decoder based on CP-PEG Code Construction

研 究 生：林高守 Student：Kao-Shou Lin

指導教授：張錫嘉教授 Advisor：Hsie-Chia Chang

方偉騏教授 Wai-Chi Fang

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering
July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

高編碼率之 CP-PEG LDPC 解碼器設計與實做

學生：林高守 指導教授：張錫嘉 教授

方偉騏 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

本論文提出了高編碼率之 CP-PEG 低密度同位元碼解碼器。我們使用

CP-PEG 演算法建造了一個(2048,1920) 非規則低密度同位元碼，錯誤更正能力

勝過其他 PEG-BASED 的演算法所建造的碼。 然而，高字碼 15/16 將會導致大的

Check node degree，也會成為硬體實做上的困難點。我們使用了 VSS 排程降低

解碼圈數，並提出單級管線架構減少訊息的儲存量，同時我們又更進一步最佳化

CNU 減少所需的暫存器。比起傳統架構，總共 73%的訊息可以省去不用儲存。此

解碼器在 90nm 製程下，當供應電壓為 1.4V，最高能達到 11.5Gbps 的解碼速度，

晶片的面積是 3.78mm2。當供應電壓為 0.8V, 能源效率為 0.033 nJ/bit 解碼速度

為 5.77Gbps。根據實驗結果，此 CP-PEG 解碼器的解碼速度達到 IEEE 802.15.3c

(1440,1344)碼的要求，並且 CP-PEG 解碼器擁有與(1440,1344)類似的編碼率。所

以我們所提出的方法可以有效的用於設計出高編碼率低密度同位元檢查碼的實

做上。

 i

Design and Implementation of High Code-Rate LDPC

Decoder based on CP-PEG Code Construction

Student：Kao-Shou Lin Advisor：Dr. Hsie-Chia Chang

Dr. Wai-Chi Fang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

 In this thesis, a LDPC decoder chip based on CP-PEG code construction is

presented. The (2048, 1920) irregular LDPC code generated by CP-PEG algorithm

has better performance than other PEG-based codes; however, the large check node

degrees introduced by high code-rate 15/16 become the implementation bottleneck.

To design such high code-rate LDPC decoder, our approach features

variable-node-centric sequential scheduling to reduce iteration number, single

pipelined decoder architecture to lessen the message storage memory size, as well as

optimized check node unit to further compress the register number. Overall 73%

message storage memory is saved compared to traditional architecture. Fabricated in

90nm CMOS technology, a test decoder chip could achieve maximum 11.5 Gbps

throughput under 1.4V supply voltage with core area of 3.78 mm2. While the

throughput meets IEEE 802.15.3c (1440, 1344) LDPC code requirement. In addition,

CP-PEG (2048, 1920) LDPC code own the similar code rate as the (1440, 1344) code.

Thus our proposed methodology is proven to be effective in high code rate decoder

design and implementation.

 ii

誌 謝

感謝交通大學，讓我在短短兩年的碩士生涯加上四年的大學生涯收穫許多，

在許多師長的提攜以及同學朋友的鼓勵幫助下，讓我的研究路程順利且平穩，首

先我要感謝的是我的共同指導教授方偉騏老師，謝謝他給我最大的空間做自己有

興趣的研究，並且對我相當的包容與體諒。接著我要感謝我另一個指導教授張錫

嘉老師，親切的老師不僅能和我們討論到研究內容，也能和我們聊一些八卦有趣

的事，老師不只在研究上，或在待人處事上，都是讓我覺得自己遠遠不及並需要

再學習的。

再來要感謝 Ocean group 的全部成員，很高興的能成為 Ocean group 的一分

子。尤其要感謝帶我的陳志龍學長，無私的指導，讓我在專業領域中獲益良多。

而在遇到瓶頸問題時，學長的耐心指導，也幫助了我很順利完成各項研究進度。

當然也感謝 OASIS 實驗室的每位學長同學和學弟妹們，讓我度過了一個充實又

開心的研究生涯。

另外要感謝碩士班生涯陪伴我的大學同學，時穎，政寬，品為，俊豪，狗狗，

圈片，標哥，翰平，聖凱，威良，小獸，謝謝你們的陪伴與嘴砲，一起 Play Ball

等，讓我的研究生涯不至於太苦悶。

我要感謝一直在背後支持我的女友郁涵，當我遇到挫折或壓力大的時候，你

總是能聽我的苦水，鼓勵我，給我力量。最後，僅將此論文獻給疼愛我的父母與

哥哥，謝謝你們的愛與支持讓我能夠無憂無慮的學習。

 iii

To my family and Yu-Han for their love and support,

and my country Taiwan

iv

Contents
中文摘要 i

英文摘要 ii

誌謝 iii

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation 1

1.2 Thesis Organization . 2

2 Decoding Algorithm and Code Structure 3

2.1 LDPC decoding algorithm . 3

2.1.1 Standard BP Algorithm 3

2.1.2 Variable -node-centric Sequential Scheduling 5

2.2 CP -PEG LDPC Code . . . 7

2.2.1 CP -PEG LDPC Code C onstruction 7

2.2.2 Parity Check Matrix Permutation and Division 7

3 Proposed Decoder Architecture 10

3.1 Single Pipelined Architecture . 10

3.2 Check Node Unit . 12

3.3 Variable Node Unit . 15

3.4 Comparison and Discussion . 16

3.4.1 Evaluation of Different Sorter Architecture 16

3.4.2 Comparison With Conventional Architecture 17

 v

4 Simulation and Implementation Results 20

4.1 Code Performance . 20

4.2 Implementation . 20

5 Conclusion and Future Work 25

5.1 Conclusion . 25

5.2 Future Work . 26

A AWGN Core 27

A.1 Motivation . 27

A.2 Box-Muller Algorithm . 28

A.3 Architecture . 28

A.4 FPGA emulation . 33

vi

List of Figures

2.1 Illustration of standard BP. 4

2.2 Illustration of VSS . 6

2.3 Parity-check matrix of (2048, 1920) LDPC code. 7

2.4 Permuted parity-check matrix of (2048, 1920) LDPC code. 9

3.1 Proposed architecture and scheduling. 11

3.2 Accumulative sorter . 12

3.3 Sign operation unit . 13

3.4 Reduced storeage accumulative sorter . 14

3.5 Reduced storeage accumulative sorter 2 . 15

3.6 VNU architcture . 16

3.7 Convergence speed of different sorter architecture. 18

4.1 Performance. 21

4.2 Chip micrograph. 23

4.3 Measured maximum throughput and power consumption. 24

A.1 Linear feedback shift register . 28

A.2 R.() versus u1 . 31

A.3 box-muller architecture . 32

A.4 Hybrid (logarithmic and uniform) segmentation of u1 ∈ (0, 1) 33

A.5 BPSK emulation using FPGA:DN9200K10PCI 34

A.6 The interface of the UART program . 35

A.7 Emulation result: BPSK with Viterbi decoder performance curve 36

vii

List of Tables

2.1 Mux reduction statistics . 8

3.1 Comparison between different sorter architectures 17

4.1 Comparison with state-of-the-art . 22

A.1 Function of UART . 34

A.2 Comparison the simulation time . 34

viii

Chapter 1

Introduction

1.1 Motivation

Low-density parity-check (LDPC) code is a famous error control code with near Shan-

non limit performance [1] and can be described by its parity-check matrix H. The rows

and columns of H are mapped to check nodes and variable nodes of a bipartite graph, on

which the belief-propagation (BP) algorithm exchange messages between nodes iteratively

to decode LDPC codes [2]. The message exchanging order between nodes is called schedul-

ing, which will influence the convergence speed of the decoding algorithm. In standard

BP algorithm, simultaneous update of all check node messages or variable node messages

is named as flooding scheduling. Alternatively, the layered BP algorithm [3] [4] preform-

ing message update along different check node groups is a method of check-node-centric

sequential scheduling (CSS). Researches have revealed that CSS could reduce maximum

iteration to approximate half of the standard BP with similar performance.

Recently, LDPC codes adopted in high-throughput systems have high code-rate prop-

erty to increase channel efficiency. However, the introduced large check node degree dc will

cause implementation difficulties. For example, the largest check node degree of (2048,

1723) LDPC code adopted in IEEE 802.3an [5] equals 32, leading to routing difficulty and

low chip density. Even though the CSS could reduce the iteration number, the throughput

is still degraded due to long critical path of check node unit (CNU). The situation will

become worse for the (1440, 1344) LDPC code of IEEE 802.15.3c [6] with dc = 45.

In this thesis, the proposed decoder aims at providing a high-throughput and hardware-

1

efficient solution to the high code-rate LDPC with large check node degrees. In order to

reduce iteration number, the decoding scheduling is based on the variable-node-centric

sequential scheduling (VSS; also known as shuffled decoding [7]), where the messages are

updated along different variable node groups. Since the inputs of CNU operation are

also divided into several subgroups, the complexity and critical path delay of CNU are

reduced. Furthermore, single pipelined approach and modified CNU are proposed to

minimize the message storage memory. Using a (2048,1920) LDPC code constructed by

circulant permutation progressive edge-growth (CP-PEG) algorithm [8] as a design ex-

ample, the overall decoder chip implemented in 90nm technology will show its advantages

in terms of throughput, energy efficiency, and hardware efficiency.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter II introduces the code structure

and the decoding algorithm with VSS. In Chapter III, we propose a modified scheduling

algorithm and an improved decoder architecture. Performance simulation and implemen-

tation result are shown in Chapter IV. The conclusion is given in Chapter V. In order to

investigate the error floor of the CP-PEG code, we build a AWGN core to speed up the

simulation process, and the AWGN core is introduced in Appendix A.

2

Chapter 2

Decoding Algorithm and Code

Structure

2.1 LDPC decoding algorithm

2.1.1 Standard BP Algorithm

The log-likelihood ratio (LLR) of intrinsic information of n-th variable node is denoted

by Pn. The message from n-th variable node to m-th check node is denoted by zmn. The

message from m-th check node to n-th variable node is denoted by εmn. The a posteriori

LLR of n-th bit is denoted by zn. The standard BP is carried out as followed.

1. Initialization: Set i = 1,maximum number of iterations to IMax. For each m, n,

set z
(0)
mn = Pn,

2. Iterative Decoding:

(a) Check node to variable node update step, for 1 ≤ n ≤ N and each m ∈ M(n),

process

τ (i)
mn =

∏

n′∈N(m)\n

tanh(
z

(i−1)
mn′

2
) (2.1)

ε(i)
mn = log

1 + τ
(i)
mn

1 − τ
(i)
mn

(2.2)

3

(b) variable node to check node update step, for 1 ≤ n ≤ N and each m ∈ M(n),

process

z(i)
mn = Pn +

∑

m′∈M(n)\m

ε
(i−1)
m′n (2.3)

z(i)
n = Pn +

∑

m∈M(n)

ε(i−1)
mn (2.4)

3. Hard Decision: Let Xn be the n-th bit of decoded codeword. If z
(i)
n ≥ 0, Xn = 0,

else if z
(i)
n < 0, Xn = 1. If H(x(i))t = 0 or IMax is reached, stop and output the code

word. Otherwise,set i = i + 1 and go to Iterative Decoding.

The iterative decoding processes for one iteration of standard BP is illustrated below.

The messages are updated in parallel way between check nodes and variable nodes. The

process are shown in Fig. 2.1(a) and 2.1(b).

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1

V1

()

11

iε

V2 V4

()

12

i
z

()

14

i
z

(a) check node to variable node update

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1

V1

()

11

i
z

1P

C3()

31

iε

(b) variable nod to check node update

Figure 2.1: Illustration of standard BP.

4

2.1.2 Variable-node-centric Sequential Scheduling

In VSS approach, the initialization, stopping criterion test, and output steps remain

the same as the standard BP algorithm. The only difference between two algorithms lies

in the updating procedure. Assume the N bits of a codeword are divided into G groups,

so each group contains N/G = NG bits. The messages are only exchanged between one

group of variable nodes and check nodes which are connected the group of variable nodes

at a time. In addition, each group of messages is updated in order. Furthermore, it count

one iteration when all groups have been updated. For G = 1, the VSS scheduling becomes

standard BP.

The normalized min-sum (NMS) algorithm which compensates the approximation er-

ror in check node update step can also be applied to our VSS approach with normalized

factor β = 0.75. The updating procedure of NMS algorithm with VSS approach is carried

out as follows.

1. Initialization: z
(0)
mn = Pn

2. Iterative Decoding: For 0 ≤ g ≤ G − 1, perform the following two steps.

(a) Check node to variable node update step, for g ·NG ≤ n ≤ (g +1) ·NG − 1 and

each m ∈ M(n), process

ε(i)
mn ≈

∏

n′∈N(m)\n
n′≤g·NG−1

sign(z
(i)
mn′) ×

∏

n′∈N(m)\n
n′≥g·NG

sign(z
(i−1)
mn′)

×min







min
n′∈N(m)\n
n′≤g·NG−1

{∣

∣

∣
z

(i)
mn′

∣

∣

∣

}

, min
n′∈N(m)\n
n′≥g·NG

{∣

∣

∣
z

(i−1)
mn′

∣

∣

∣

}







× β (2.5)

(b) variable node to check node update step, for g · NG ≤ n ≤ (g + 1) · NG − 1,

process

z(i)
mn = Pn +

∑

m′∈M(n)\m

ε
(i−1)
m′n (2.6)

z(i)
n = Pn +

∑

m∈M(n)

ε(i−1)
mn (2.7)

5

3. Hard Decision: Let Xn be the n-th bit of decoded codeword. If z
(i)
n ≥ 0, Xn = 0,

else if z
(i)
n < 0, Xn = 1.

The decoding processes for one iteration of VSS is illustrated in Fig. 2.1.2 with G = 3

as example. The arrows with red color represent check node to variable node messages to

be updated. The arrows with purple color represent variable node to check node messages

to be updated. On the other hand, gray arrows represent that messages are not updated.

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1 C2 C3

V1 V2 V3 V4 V5 V6

(a) Update first group

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1 C2 C3

V1 V2 V3 V4 V5 V6

(b) Update second group

C1 C2 C3

V1 V2 V3 V4 V5 V6

C1 C2 C3

V1 V2 V3 V4 V5 V6

(c) Update third group

Figure 2.2: Illustration of VSS

6

2.2 CP-PEG LDPC Code

2.2.1 CP-PEG LDPC Code Construction

The (2048, 1920) irregular LDPC code, rate-15/16, used in this paper was constructed

by CP-PEG algorithm and shown in Fig. 2.3. The constructed parity-check matrix H

consists of p × p circulant permutation (CP) and all-zero matrices. A CP matrix is a

cyclic square matrix with constant row and column weight of one. The number of each

CP matrix indicates the cyclic shift amount and −1 means all zero matrix. By setting

p = 32, there are 4×p check nodes and 64×p variable nodes in bipartite graph, where each

check node has uniform degree 46, and 16×p, 24×p, 24×p variable nodes have degrees of

4, 3, 2 respectively. The performance of this code was proven to have better performance

than other PEG-based structure LDPC codes [8]; nevertheless, the high check node degree

required suitable decoder architecture to overcome implementation difficulties.

64p

…
…
…
…

3

-1

17

31

31 31

2916

28 19

1 1

28

-1

-131

26

31

192

17

31

14

…
…
…
…

-1

30

1

-128

-1

-1

31

…
…
…
… 31-1

4p

31

1

27

14

Dv = 4 Dv = 3 Dv = 2

…
…
…
…

16p 24p 24p

P

P

offset=16

1's
Others are 0

16

-1

All Zero

Matrix

Approximate

Lower

Triangular

(ALT) Form

Circulant

Permutation

(CP) Matrix

-1

31

31

0 -1

0

0

-1

-1

Figure 2.3: Parity-check matrix of (2048, 1920) LDPC code.

2.2.2 Parity Check Matrix Permutation and Division

We can observe equation (2.6) and (2.7), only one group of variable node units (VNUs)

are required to update the messages from variables node to check nodes.

As shown in Fig. 2.4, the codeword is divided into 4 groups (i.e. G = 4) for VSS,

therefore the parity-check matrix H is divided and permuted into 4 submatrices (H1 to

7

H4).

In order to fully reuse the same VNUs when updating different groups, each submatrix

consists of equal number of variable nodes with the same degree to reduce the hardware

cost of VNU and unnecessary control. Moreover, the submatrices with the same shift

amounts (shaded blue CP matrices) are arranged in the same position which makes the

same connections between CNUs and VNUs when updating different groups. By utilizing

this method, number of mux could be reduced, and the routing and control could be

further simplified. The reduced number of mux is shown in Table 2.1.

However, if the other parity check matrix does not contain many submatrices with

same shift amount, there is still a technique to permute the submatrix to reduce the

number of mux. We could permute each submatrix in the same position to make the sub-

matrix with same shift amount. Take the 5th column of each submatrix H1, H2, H3, H4

as example which is shown in Fig. 2.4(c). The offset of submatrix in 5th column and 3rd

row of H3 is 6, and we could permute the column to let the offset become 31. In con-

sequence, the submatrix in 5th column and 3rd row of H1, H2, H3, H4 become the same.

Thus the mux could be reduced. In addition, the permutation will not cause performance

degradation because the structure (local girths or global girths) of the tanner graph still

remains the same.

Table 2.1: Mux reduction statistics

Direction VNU to CNU CNU to VNU

Original number of MUX2 128 N/A

Reduced number of MUX2 32 N/A

Original number of MUX4 1408 1472

Reduced number of MUX4 224 224

8

64p

…
…
…
…

31

-1

-1-1

-1

0

016

31 31

2916

28 19

1 1

31

22

-1-1

31

0

-1-1

31 31

276

16 7

23 1

…
…
…
…

31

-1

31-1

0

-1

-127

31 31

2129

11 9

26 22

…
…
…
…

31

14

0-1

-1

-1

31-1

31 31

316

30 4

3 12

…
…
…
…

p

p

4p

(a) overview of permuted matrix

Deg=4 Deg=3 Deg=2

-1 31

-1

-1

31

16 -1

-1

0

0-1 16

-1

11

31

-1

31

-1

-1

16

31 31

18

12

24

-1 26

-1

31

-115 -1

-1 31

-1

-1

31

4 1

31

17

1410 30

31

15

-1

11

14

25

31

29

31 31

29

29

16

28 19

3

31

71 1

-1 31

22

-1

-1

31 -1

31

0

-121 -1

-1

28

31

-1

31

-1

-1

15

31 26

31

22

26

-1 8

-1

31

-119 -1

-1 12

-1

-1

30

1 31

23

31

928 1

31

25

-1

17

15

15

31

29

31 31

27

10

6

16 7

29

31

223 1

-1 31

-1

31

31

28 -1

0

-1

-1-1 27

-1

12

31

-1

31

-1

-1

20

31 7

16

-1

9

5 31

31

-1

11-1 -1

17 6

-1

-1

-1

3 31

5

31

431 0

6

31

-1

26

31

20

31

24

31 31

21

0

29

11 9

7

31

1126 22

-1 31

14

0

-1

31 -1

-1

-1

3122 -1

-1

0

31

-1

31

-1

-1

31

31 31

31

-1

2

20 3

31

-1

9-1 -1

31 28

-1

-1

-1

8 31

31

20

717 2

31

29

-1

29

27

1

31

14

31 31

3

21

16

30 4

29

31

03 12

16p

4p

(b) Permuted and divided into four groups

-1

15

31

11

-1

25

31

17

-1

31

6

26

-1

29

31

29

-1

24

31

19

-1

15

31

11

-1

25

31

17

-1

29

31

29

Offset+25

(c) Further MUX reduction technique

Figure 2.4: Permuted parity-check matrix of (2048, 1920) LDPC code.

9

Chapter 3

Proposed Decoder Architecture

In this chapter, a complete decoder architecture will be presented, including datapath,

scheduling, and VLSI structure of CNU and optimized CNU.

3.1 Single Pipelined Architecture

The entire decoder depicted in Fig. 3.1(a) is composed of fully-parallel CNUs and

partial-parallel VNUs, where the VNU2, VNU3, and VNU4 will handle variable node

operations with degree 2, 3, and 4 respectively. Let α
(i)
g denotes the sorted messages sent

from variable nodes in the g-th group to one specific check node at i-th iteration, which

is:

α(i)
g = min

n′∈N(m)\n
g·NG≤n′≤(g+1)·NG−1

{∣

∣

∣
z

(i)
mn′

∣

∣

∣

}

(3.1)

Then the magnitude part of check node to variable node message in (2.5) could be com-

puted by the following equation:

∣

∣ε(i)
mn

∣

∣ = min

{

{

α
(i)
j

}

j<g
, α(i)

g ,
{

α
(i−1)
k

}

k>g

}

(3.2)

Fig. 3.1(b) demonstrates the timing diagram of proposed decoder. There are G ini-

tialization cycles required to calculate α0
g for 0 ≤ g ≤ G − 1. Since only one subgroup

of the message z
(i)
mn is updated in g-th cycle of one iteration, the main operation of CNU

could be simplified to calculate α
(i)
g (local sorting) in each cycle and then perform global

sorting like equation (3.2).

10

From the propose single pipelined architecture, only messages α
(i)
g and ε

(i)
mn are stored.

The sorted results could be represented by min value, second min value, and the index of

min value in NMS algorithm. Therefore, the proposed decoder only latches two values,

one index, and sign part of messages in each subgroup, while the variable node to check

node message z
(i)
mn is on-the-fly calculated. The single pipelined architecture is feasible

because the CNU could be updated immediately after VNU’s operations in VSS approach.

Output buffer

min
2ndmin

CNU
#1

min
2ndmin

CNU
#2

…

min
2ndmin

CNU
#4p

reg

R
o
u
ti
n
g

VNU2
#1

VNU2
#6p

…

VNU3
#1

…

VNU3
#6p

VNU4
#1

…

VNU4
#4p

… …

…

…
…

…

R
o
u
ti
n
g

Input buffer

Codeword

(a) Single pipelined LDPC decoder architecture

H1 H2 H3 H4 H1' H2' H3' H4' H1''

CLK

Initialization

Iteration 1

Update

group V C V C V C V C V C V C V C V C V C

1

0α 1

1α 1

2α 1

3α …0

0α 0

1α 0

2α 0

3α

1 0 0 0 0

0 1 2 3min(, , ,), 0 1
mn G

n Nε α α α α= ≤ ≤ −
1 1 0 0 0

0 1 2 3min(, , ,), 2 1
mn G G

N n Nε α α α α= ≤ ≤ −
1 1 1 0 0

0 1 2 3min(, , ,), 2 3 1
mn G G

N n Nε α α α α= ≤ ≤ −
1 1 1 1 0

0 1 2 3min(, , ,), 3 4 1
mn G G

N n Nε α α α α= ≤ ≤ −

…

1

2

3

4

1 2 3 4

(b) variable-node-centric sequential scheduling

Figure 3.1: Proposed architecture and scheduling.

11

3.2 Check Node Unit

This section presents detail CNU architecture based on VSS scheduling. The CNU

architectures are further optimized to reduce storage requirement and the number of

sorter. Different CNU architectures will also influence different convergence speed which

will be discussed in the following subsections.

The messages sent from VNU are converted from two’s complement format to sign-

magnitude format for efficient computation of CNU. Therefore, the operation of check

node to variable node update could be divided into magnitude part and sign part.

For our proposed CP-PEG LDPC codes with dc = 46, The VSS approach with G = 4

could divide 46 inputs of the CNU into four part. Because 46 could not be divisible by 4,

the number of messages need to be computed in different groups will be 11 or 12. This

could be handled by little extra circuit which determines the number of messages which

should be computed by CNU when updating different groups.

The detail will be presented including accumulative sorter, Accumulative Sign Op-

eration Unit, Reduced Memory Accumulative Sorter 1, Reduced Memory Accumulative

Sorter 2.

3.2.1 Accumulative Sorter

Fig. 3.2 illustrates the magnitude part of CNU, which is an accumulative sorter com-

posed of a local sorter and a global sorter. The local sorter is used to find the local min

and second min values in each subgroups, and global min and second min values of a

check node will be found by a global sorter.

…

min

2ndmin

12 to 2
Comparator

D

m
in

2
n
d
m
in

D D

GLOBAL

SORTER

D D D

Local min in different groups

Global

min

Global

Second min

Local second min in different groups

LOCAL

SORTER

8
 t
o
 2
 C
o
m
p
a
ra
to
r

D

D

Figure 3.2: Accumulative sorter

12

3.2.2 Accumulative Sign Operation Unit

Fig. 3.3 shows the sign part of CNU. Similarly, the sign operation can be computed

in an accumulative way like the accumulative sorter. The XOR12 is used to find the

local sign in each subgroups, and global sign could be found by XOR4. Since only dc/4

messages are computed by CNU in a cycle, dc/4 messages’s signs are queued in a cycle.

After the global sign is available, the dc/4 messages’s signs are computed with global sign

by xor and sent to VNUs.

XOR12 D D D

XOR4

6 D D D
D

5(Magnitud

e)

1(Sign

D D D
D

D

D

Local Sign

Global Sign

Figure 3.3: Sign operation unit

3.2.3 Reduced Memory Accumulative Sorter 1

In order to further reduce the storage overhead of each subgroup, we propose a reduced

memory accumulative sorter 1 as shown in Fig. 3.4. The basic idea is to simplify the local

min and local second min of G − 1 subgroups into only one group. Some extra control

circuits are needed to open or close the feedback loop in Fig. 3.4. This sorter architecture

is beneficial since the complexity reduction of storage registers and global sorters is higher

than the overhead of control circuits. The algorithm of Reduced Memory Accumulative

Sorter 1 is listed below. The open loop operation can be implemented by selecting the

value of feedback loop to maximum value(ex:5’b11111) which make the value invalid in

comparison. The performance and hardware complexity will be discussed in following

subsection.

13

Algorithm: Reduced Memory Accumulative Sorter 1

1: Initialization

2: inner feed back loop closed

3: outer feed back loop open

4: find global min and global second min

5: Decoding

6: inner feed back loop open

7: if(global min in current Group or current Group == 4)

8: global min outer feed back loop open

9: else

10: global min outer feed back loop closed

11: if (global second min in current Group or current Group== 4)

12: global second min outer feed back loop open

13: else

14: global second min outer feed back loop closed

…

min

2ndmin

14 to 2
Comparator

m
in

2
n
d
m
in

GLOBAL

SORTER

Global

min

Global

Second min

LOCAL

SORTER

4
 t
o
 2
 C
o
m
p
a
ra
to
r

D

D

D

D

previous global

second min

previous global min

Inner feedback loop

Outer feedback loop

Figure 3.4: Reduced storeage accumulative sorter

14

3.2.4 Reduced Memory Accumulative Sorter 2

For the same purpose, we propose a reduced storage accumulative sorter 2 as shown

in Fig. 3.5. The basic idea is to store only local min values in each group, and use 4-to-2

sorter to find global min and global second min values. Clearly, global min value will be

correctly sorted in comparison with original accumulative sorter; nevertheless, the global

second min could be sorted incorrectly if the global second min and global min are located

in the same group1.

Compared to reduced memory accumulative sorter 1, this sorter architecture is more

beneficial in hardware complexity. The first reason is that the input number of local sorter

is fewer and only min value need to be found by local sorter. The second reason is that

the second min index does not need to be stored. The third reason is that control circuit

to open or close the feedback loop is not required .

…

min

12 to 1
Comparator

D
m
in

2
n
d
m
in

D D

GLOBAL

SORTER
Local min in different groups

Global

min

Global

Second min

LOCAL

SORTER

4
 t
o
 2
 C
o
m
p
a
ra
to
r

D

D

Figure 3.5: Reduced storeage accumulative sorter 2

3.3 Variable Node Unit

Fig. 3.6 shows the VNU4, where SM to TC represents sign-magnitude to two’s-

complement conversion, and TC to SM represent two’s-complement to sign-magnitude

conversion. Since the parity check matrix is permuted carefully, the 16×p VNU’s contain

4×p VNU4s, 6×p VNU3s and 6×p VNU2s, and there is no any redundant VNUs appear-

ing in variable node to check node update. In Fig. 3.2, the four registers correspond to

1Intuitively, the the expected value of second min of this architecture is larger than the accumulative

sorter. Different scaling factor or other mechanic could be applied to make the performance close to the

original accumulative sorter. However, it require further investigation.

15

four different channel values in the four different groups. For example, when the variable

node to check node operation is performed in H3(g = 3), the channel values in H3 will

be shifted to be computed. Similarly, the decoded bits are stored in the four register and

shifted to the corresponding group decoding bits.

D D D D

6

Channel

 value

SM to TC
6

SM to TC

SM to TC

SM to TC

6

6

6

6

6

6

6

9

TC to SM
8

TC to SM

TC to SM

TC to SM

8

8

8

Clipping
8

Clipping

Clipping

Clipping

8

8

8

6

6

6

6

D D D D

1

MSB

Decoded

bits

Input Buffer
Output Buffer

Figure 3.6: VNU architcture

3.4 Comparison and Discussion

3.4.1 Evaluation of Different Sorter Architecture

Three sorter architecture has been proposed. The convergence speed and hardware

complexity of different architecture will be discussed in this sub section. The whole de-

coder with different sorter architecture has been implemented by standard-cell design flow

and synthesized by utilizing 90-nm 1P9M CMOS technology. AS decoder denote whole

decoder which CNU is implemented by original accumulative sorter. RMAS1 decoder

denote whole decoder which CNU is implemented by Reduced Memory Accumulative

Sorter 1. RMAS2 decoder denote whole decoder which CNU is implemented by Reduced

Memory Accumulative Sorter 2. The sign part of CNU of three decoders are implemented

in same architecture(accumulative sign operation unit).

The synthesis result (whole decoder) is shown in table 3.1; each decoder is synthesize

by Synopsys design compiler with same tickle file. The convergence speed of different

architecture is shown in Fig. 3.7. We found that the performance of RMAS1 decoder is

16

almost equivalent to AS decoder. The convergence speed of RMAS2 decoder is slightly

lower than RMAS1 decoder and AS decoder. Of the three architecture, RMAS2 decoder

provides lowest hardware cost;however, the performance of RMAS2 degrade. RMAS 1 de-

coder provides lower hardware cost and own almost equivalent performance in comparison

with AS decoder.

Table 3.1: Comparison between different sorter architectures

Architecture1 AS Decoder RMAS1 Decoder RMAS2 Decoder

Gate Count2 727k 661k 570k

1 Synthesis result

2 The clock period is set to 9ns during synthesis

3.4.2 Comparison With Conventional Architecture

In single pipelined architecture, more subgroup number G will result in fewer inputs

of local sorter but more inputs of global sorter; the storage for min, second min, and index

values of each subgroup will increase. The mux (G inputs mux) number will be around

2×N/G between CNU and VNU. In addition, the critical path will be longer when G is

larger. However, single pipelined architecture is suitable for high code rate design with

proper chosen G.

In traditional two-stage pipelined architecture, both z
(i)
mn and ε

(i)
mn messages are kept in

registers or memory. Assume the bit-width w of messages is 6 and variable node degree

is dv, then the required memory size (or registers) is as follows:

MEMV NU + MEMCNU

= (
∑

dv) · w +

(N − K) · (Min + 2ndMin + Index + Sign)

= (
∑

dv) · w + (N − K) · (2 · (w − 1) + log2⌈dc⌉ + dc)

= 5888 · 6 + 128 · (2 · 5 + log2⌈46⌉ + 46) = 43264 (3.3)

For the proposed single pipelined RMAS 1 decoder in Fig. 3.4, the memory size is

17

1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

Convergence Speed Comparisom @ SNR=6

Iteration

B
E

R
AS Decoder, fixed point (6,1), scaling factor 0.75
RMAS 1 Decoder, fixed point (6,1), scaling factor 0.75
RMAS 2 Decoder, fixed point (6,1), scaling factor 0.75

(a) comparison at SNR=6

1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

Convergence Speed Comparisom @ SNR=5.5

Iteration

B
E

R

AS Decoder, fixed point (6,1), scaling factor 0.75

RMAS 1 Decoder, fixed point (6,1), scaling factor 0.75

RMAS 2 Decoder, fixed point (6,1), scaling factor 0.75

(b) comparison at SNR=5.5

Figure 3.7: Convergence speed of different sorter architecture.

18

reduced to

MEMCNU

= (N − K) ·

(2 · (Min + 2ndMin + Index + 2ndIndex) + Sign)

= (N − K) · (4 · (w − 1) + 4 · log2⌈dc⌉ + dc)

= 128 · (4 · 5 + 4 · log2⌈46⌉ + 46) = 11520 (3.4)

Therefore the overall register reduction of proposed architecture is 73%, leading to the

following advantages: fewer registers, higher utilization of fuctional units, and reduced

complexity. Since high-rate LDPC codes usually have more VNUs than CNUs (in our

case: 512 VNUs and 128 CNUs), the elimination of registers from VNU to CNU not only

reduces hardware cost but also lowers power consumption of clock tree.

19

Chapter 4

Simulation and Implementation

Results

4.1 Code Performance

Under AWGN channel with BPSK modulation, the performance curves are simulated

to determine the required bit-width and maximum iteration number. The simulation

parameters of proposed algorithm are 6-bit input quantization (5-bit integer and 1-bit

decimal fraction), scaling factor 0.75 for NMS algorithm, and 4 iterations. In Fig. 4.1,

the bit-error rate (BER) curves indicate that 4 iterations for the proposed algorithm

are sufficient to achieve similar performance of standard BP algorithm with 7 iterations.

Furthermore, in the aspect of almost the same code-rate and better error-correcting capa-

bility, our CP-PEG LDPC codes outperforms 1.2 dB better than the (255, 239) RS code

at BER euqal to 10−5, which reveals the potential of CP-PEG LDPC codes for storage

applications and fiber optical communication systems. The overall SNR loss between this

work and Shannon limit is only 1.6dB.

4.2 Implementation

The proposed RMAS1 decoder is implemented by standard-cell design flow and fab-

ricated in 90-nm 1P9M CMOS technology. The core occupied 3.84 mm2 area with 68%

utilization. The die photo is shown in Fig. 4.2, and the distribution of CNUs and VNUs is

20

3.5 4.0 4.5 5.0 5.5 6.0 6.5

10
-6

10
-5

10
-4

10
-3

10
-2

B
it
 E
rr
o
r
R
a
te

Eb/N0 (dB)

10
-7

10
-1
BPSK; AWGN Channel; (2048,1920) LDPC Codes

(255, 239) RS

Code

Iteration=6

BP Algorithm,

Floating Point

Iteration=7

RMAS 1 Decoder,

Fixed Point (6,1),

Scaling Factor 0.75

Iteration=4

Iteration=5

Shannon Limit

of Rate 0.9375

7.0

Figure 4.1: Performance.

auto-determined by APR tool. Since required decoding cycles of one LDPC codeword is 4

initialization cycles plussing 4 iterations, the throughput is (1920bit/20cycles)×frequency.

Fig. 4.3(b) shows the measured maximum throughput and power dissipation under dif-

ferent SNR conditions and supply voltages. The measurement result indicates that the

test chip can achieve 11.5 Gbps throughput under 1.4V supply voltage, where the average

power dissipation for Eb/N0 ranging from SNR 3 to 10 dB is 1037mW. The through-

put could be scaled down to 5.77Gbps with 0.8V supply voltage to meet the throughput

requirement of IEEE 802.15.3c standard and the energy efficiency will be 0.033 nJ/bit.

Compared with the state-of-the-art in literatures Table 4.1, the proposed LDPC de-

coder outperforms others in the aspects of throughput, hardware efficiency, and power

efficiency. Since the LDPC code specification of these designs are different, the SNR loss

between each work to their Shannon limit is also listed for reference.

21

Table 4.1: Comparison with state-of-the-art

RMAS1 decoder CICC’07 [9] SOVC’07 [10] SOVC’09 [11]

Process 90-nm 0.13-µm 0.13-µm 65-nm

Code Spec (2048, 1920) (660,480) Wimax (2048,1723)

Code Rate 0.9375 0.73 0.5 0.84

Core Area 3.84 mm2 7.3 mm2 4.45 mm2 5.35 mm2

Gate Count 708k 690k 420k N.A

Iteration 4 15 2 - 8 2-8

Input Quantization 6 bits 4 bits 8 bits 4 bits

Clock Frequency
120 MHz 1 300 MHz 83.3 MHz 700 MHz 3

60 MHz 2 100 MHz 4

Max. Throughput
11.5 Gbps @ 1.4v 1

2.44 Gbps 222Mbps
47.7 Gbps 3,8

5.77 Gbps @ 0.8v 2 6.67 Gbps 4,8

Power
1037 mW 1

1383 mW5 52 mW
2800 mW 3

191.2 mW 2 144 mW 4

Energy Efficiency 0.09 nJ/bit 1

0.566 nJ/bit 5 0.23 nJ/bit
0.058 nJ/bit 3

0.033 nJ/bit 2 0.02 nJ/bit 4

Hardware Efficiency 6 12.1 3.5 0.53 N.A

SNR loss to
1.6 dB 2.8 dB 2.9 dB 1.4 dB

Shannon limit 7

1 1.4V supply voltage

2 0.8V supply voltage

3 1.2V supply voltage

4 0.7V supply voltage

5 when Eb/N0=5.5dB

6 Throughput/Gate count (Mbps/K-gate)

7 when BER=10−5

8 Early termination is applied. Average decoding iteration is used to calculate throughput.

22

VNUs

CNUs

CNUs

CNUs

VNUs

Figure 4.2: Chip micrograph.

23

b 0

(a) at different SNR conditions

(b) under different supply voltages

Figure 4.3: Measured maximum throughput and power consumption.

24

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a VSS scheduling high code-rate LDPC decoder is first proposed. The

VSS approach results in higher convergence speed. Maximum number of decoding iter-

ation can be reduced to increase the throughput. By utilizing the characteristic of the

VSS scheduling, the single pipelined architecture is proposed to enable the messages from

CNU to VNU and the messages from VNU to CNU to be computed in one cycle, thus the

throughput is almost doubled. Three types of CNU architecture combined with the single

pipelined architecture are proposed. In magnitude part, the computation in accumula-

tive way reduces the sorter complexity. In sign part, the sign can be also computed in

accumulative way which decrease the input number of XOR gate. Therefore, the compu-

tation of CNU in accumulative way results in an area-efficient design. In addition, single

pipelined architecture combined with RMAS1 CNU can save 73% message storage mem-

ory compared to the conventional partial parallel decoder. The reduction of the registers

lowers the power consumption of the clock tree and result in energy-efficient design. Mux

reduction technique is proposed by dividing the variable nodes into each group carefully,

which can make the connections between CNU and VNU remain the same when different

group of VNUS are updated. Therefore, the input of the mux will be the same and the

mux is redundant and removable. After implementation in 90nm technology, the test chip

occupies 3.84 mm2 area and supports maximum 11.5 Gbps data rate under 1.4V supply

voltage with energy efficiency 0.090 nJ/bit.

25

CSS approach [4] which was applied to LDPC decoder implementation results in higher

convergence speed, lower memory requirement and lower complexity of VNU. Compared

to CSS, VSS approach has the same property in memory requirement and convergence

speed, but CNU has lower complexity instead of VNU. Moreover, the architecture with

CSS approach utilize parallel VNU and partial parallel CNU (one group of CNU). On the

contrary, the architecture with VSS approach utilize partial parallel VNU(one group of

VNU) and parallel CNU. After reviewing many LDPC codes in different specs or design

cases, degree of variable nodes is still small(ex:3,4,5). If there is a LDPC code with large

variable node degree, CSS approach will be the suitable candidate to alleviate the VNU

complexity.

5.2 Future Work

This thesis has provided the methodology to optimize high code-rate LDPC decoder.

However, the decoder architecture is only optimized to support a high code-rate LDPC

code. A multi-mode LDPC decoder in future wireless devices may be required to support

different code rate. For example, the code rate ranges from 15/16 to 1/2, and maybe the

check node degree ranges from 6 to 46. How to design an area-efficient CNU architecture

for each code rate will be essential. In addition, code construction methods could be in-

vestigated to develop a LDPC code which is more suitable for multi-mode VSS scheduling

architecture.

Conventionally, the error correcting codes, such as RS code or BCH code, are required

to be applied on FLASH memory to increase the reliability. High code rate LDPC code

is also suitable for FLASH memory application because the error correcting ability of

LDPC code is better than RS code or BCH code with the similar code rate. The channel

in FLASH memory can be considered as higher SNR in AWGN channel, therefore the

error floor of LDPC code needs to be investigated to insure that the error correcting

ability in high SNR region is also better than RS code or BCH code. As a result, we build

a AWGN platform, which will be introduced in Appendix, to investigate the error floor

efficiently.

26

Appendix A

AWGN Core

A.1 Motivation

The CP-PEG LDPC code yield excellent error-correction which is demonstrated in

Fig. 4.1; however, many LDPC codes exhibit an error floor, which corresponds to a

decrease in the slope in the plot of bit error rate (BER) versus signal-to-noise ratio (SNR).

Therefore, error floor of CP-PEG LDPC code should be investigated if the codes are

applied for application such as wire line communication or FLASH memory.

Error floor of some LDPC codes appear at very high SNR which correspond to low

BER such as 10−11. In addition, some recent standards give maximum allowable BERs

of only 10−12 for specified SNRs (e.g., IEEE 802.3 10 Gbit/s Ethernet [5]). At least

1014 bit of should be to simulated to estimate the BER appropriately. Generally, the

performance(BER versus SNR) of LDPC code is obtained by simulation on computer.

Nevertheless, 109 noise generated by a dual core Pentium processor running at 3.0 GHz

with a 1-MB L2 cache takes about 2.5 hour. Therefore, to investigate the error floor

efficiently, hardware AWGN generator should be implemented to speed up the simulation

process.

Notice: The AWGN core is implemented based on the paper. [12], therefore, the fol-

lowing material in this chapter will be similar to the material in [12] .

27

A.2 Box-Muller Algorithm

Given two independent radon variable, U1 and U2, with standard uniform distribution

over [0, 1)

θ = 2πU2 (A.1)

R =
√

−2 ln(U1) (A.2)

X = R cos(θ) (A.3)

Y = R sin(θ) (A.4)

Then, X and Y are two independent Gaussian distribution N(0, 1)

A.3 Architecture

• Uniform Distribution Generation

U1 and U2 can be implemented by utilizing Linear feedback shift register (LFSR)

which depicted in Fig. A.1. Due to the finite length of LFSR, the precision of the

standard uniform variates is limited to 2−WL.

0 1 1 00 . 1

WL (Word Length)

12− 22− 2 WL−

Figure A.1: Linear feedback shift register

• Tail Accuracy

The normal distribution is an open-ended distribution [−∞, +∞] in which values

of increasing magnitude occur with increasingly small probabilities. We can observe

equations(A.3) and (A.4), then we can find the maximum magnitude of variate

x and y is decided by r in equation(A.2). For the same reason, the precision of

standard normal variate x, y is limited by r. Fig. A.2 shows that r become bigger

when u1 become smaller.Therefore,the tail accuracy can be decided by the word

length (WL) of u1.When u1 = 2−WL which is minimum value can be represented in

28

u1, the maximum value of r is
√

2WL ln 2. In this work,WL is set to 32, and the

tail accuracy is
√

64 ln 2 = 6.66. In addition, the LFSR is implemented using the

method [13] which guarantee the period is 2113.

• Efficient Look-Up Table Implementation

Once the WL of LFSR is decided, the tail accuracy is decided. As shown in

Fig. A.2(a), the R() is a non linear function, so the R() need to be implemented by

look up table. However, the look up table’s output number is 2WL, which result in

high complexity and long critical path. Therefore, our goal is to approximate the

look-up table with high accuracy and low complexity, and the detail methods will

be introduced in the following paragraphs.

• Linear Polynomial Curve Fitting We adopted a linear polynomial curve fitting ap-

proach to approximate R() function between (0, 1). In other word, a period of curve

R(u1) can be approximated by p(u1) = a·u1+b over interval [α, β) with p(α) = R(α)

and p(β) = R(β). Take α = 0.9 and β = 1 as example which is shown in Fig. A.2(c).

• Hybrid (Logarithmic and Uniform) Segmentation

As shown in Fig. A.2(a) and Fig. A.2(b), the function R(u1) has two regions with

higher slope. One region is in the vicinity of u1 = 0, and the other is in the

in the vicinity of u1 = 1. In the middle part of the curve where it is relatively

linear. Therefore, it would be beneficial to utilize large segments for the linear

region(middle), and small segments for non-linear region(both side). As shown in

Fig. A.4, logarithmic segmentation is suitable for R() implementation. Furthermore,

we can compensate the approximation error by dividing logarithmic segmentation

uniformly into L = 2l subsegments where each each subsegment is demoted by sr,w,l.

Each segment could be approximated by p(u1) = ar,w,l · u1 + br,w,l.

• Scaling Factor The coefficient (ar,w,l, br,w,l) of each segment is stored in memory or

look up table;When u1 falls on corresponding segment, p(u1) is computed by the

linear equation.The coefficient which can be represented in two’s complement 16-bit

fixed-point with 12-bit fraction , i.e.,in Q(16,12). Large amount of coefficient need

to be stored;therefore, the appropriate bit width of coefficient to represented with

29

low approximation error is important. The scaling factor method could be applied

to enhanced hardware efficiency.

When u1 lies within r0 and in segment sr,w,l, a new scaled variable û1,w is defined

as û1,w = 2wu1. To compensate for scaling of u1, the a0,w,l slope of segment s0,w,l is

shifted to the right w bit positions as â0,w,l = 2−wa0,w,l. Thus, the large slope values

which appear when u1 is in the vicinity of 0 and 1(shown in Fig. A.2(a)) could be

scaled down by 2−WL+2. Similarly, when u1 resides in segment s1, w, l, the large

value of a1, w, l can be scaled by 2−w and b1,w,l can be adjusted as a1,w,l + b1, w, l+.

When u1 resides in segment s0,w,l,then p(û1) will be computed as

p(û1) = â0,w,lû1 + b0,w,l = 2wâ0,w,lu1 + b0,w,l (A.5)

When u1 resides in segment s1,w,l,then p(û1) will be computed as

p(û1) = −2wa1,w,lû1 + (a1,w,l + b1,w,l) (A.6)

• Address Generator(AG) and Cosine Sine Function

AG is used to address the coefficient memory(a, b, û1) when u1 is located at cor-

respond range. The cos and sin function is implemented by only look up table.

The quarter cycle of the sin function is partitioned into 1024 segments;Using the

symmetry of sin and cos function the cos and sin could be approximated compactly.

• Overall Architecture

Fig. A.3 shows the overall six-stage pipelined architecture of AWGN noise generator.

The Box-Muller method generate N(0, 1) from stage 1 to stage 5. The sixth stage is

used to multiply variance(σ) to N(0, 1) variate to generate N(0, σ) variate. The σ

with corresponding SNR of is configured in the beginning of noise generation. The

bit-width of each part of AWGN generator is plotted in Fig. A.3.

30

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

U1

R

(a) U1 range (0, 1)

0.999 0.9992 0.9994 0.9996 0.9998 1 1.0002
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

U1

R

(b) U1 range (0.999, 1)

0.9 0.92 0.94 0.96 0.98 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

U1

(c) Curve fitting example; red line represent

p(u1), and blue line represent R(u1)

Figure A.2: R.() versus u1

31

REG REG REG REG REG

X

REG REG

REG

REG REG

REG REG

X

REG

X

REG

Q(16,12) Q(16,12) Q(16,15) Q(16,15)

Q(16,15) Q(16,15)Q(16,12) Q(16,12)

Q(16,12) Q(16,15) Q(16,15)

Q(16,12) Q(16,12)

REG

VARIANCE

X

REG

X

REG

Q(16,12) Q(16,12)

Figure A.3: box-muller architecture

32

12−

21 2−−22−

32− 31 2−−

(2)2 WL− − (2)1 2 WL− −−

(1)1 2 WL− −−(1)2 WL− −

0r 1r

0,0s

0,1s

0, 4WL
s −

0, 3WL
s −0, 2WL

s −

1,0s

1,1s

1, 4WL
s −

1, 3WL
s − 1, 2WL

s −

Figure A.4: Hybrid (logarithmic and uniform) segmentation of u1 ∈ (0, 1)

A.4 FPGA emulation

The AWGN core is implemented and verified on workstation. Then, we prototype the

AWGN core with BPSK and Viterbi Decoder on FPGA. As shown in Fig. reffpga, we

could download our design via USB and Cinfigure FPGA via COM port. The FPGA

platform contain software(UART1) which is used to communicate between FPGA and

computer and which could support real time performance curve plot.

Through UART, we could configure FPGA and set emulation parameter conveniently

and get the emulation result in real time. When the FPGA emulation is done, the

error number will be sent from FPGA to UART, then the BER could be computed by

computer.Fig.A.6 shows the UART interface.

The detail function is listed in table A.1. As shown in Fig.A.7, the performance

of viterbi decoder is emulated with AWGN core and BPSK mapping. In table A.2,

we could observe that the emulation time of FPGA is 60 times faster than computer

simulation;thus, we could investigate the performance at very low BER region.

1Uart is mainly accomplished by Jia-Lung Lin, Kin-Chu Ho and Chih-Lung Chen

33

Table A.1: Function of UART

COM Set com port number and Baud Rate between PC and FPGA

Deliver Set the function to be execute

AWGN Simulation Set the SNR of AWGN channel and number of transmitted data

Pattern Set the binary data to configure GPIO

Figure A.5: BPSK emulation using FPGA:DN9200K10PCI

Table A.2: Comparison the simulation time

Platform Intel Xeon(TM) CPU 3.20GHz Xilinx virtex5

ram: 2048 KB clk frequency: 50Mhz1

decode 107 bit 12 second 0.2 second

decode 1011 bit 12000 sec = 33 hr 2000 sec = 0.5 hr

1 Due to baud rate limit of COM port, actually, AWGN core can operate

around 100 Mhz

34

Figure A.6: The interface of the UART program

35

Figure A.7: Emulation result: BPSK with Viterbi decoder performance curve

36

Bibliography

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,

1963.

[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density

parity check codes,” Electron. Lett., vol. 33, no. 6, pp. 457–458, Mar. 1997.

[3] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE Trans. on

VLSI Systems, vol. 11, no. 6, pp. 976–996, Dec. 2003.

[4] D. Hocevar, “A reduced complexity decoder architecture via layered decoding of ldpc

codes,” in Proc. IEEE Workshop on Signal Processing Systems (SiPS’04), Oct. 2004,

pp. 107–112.

[5] Part 3: carrier sense multiple access with collision detection (CSMA/CD) access

method and physical layer specificaions, IEEE Std. P802.3an-2006, Sept. 2006.

[6] Part 15.3: wireless medium access control (MAC) and physical layer (PHY) specifica-

tions for high rate wireless personal area networks (WPANs), IEEE Std. P802.15.3c-

DF8, 2009.

[7] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Transactions on

Communications, vol. 53, no. 2, pp. 209–213, Feb. 2005.

[8] Y. K. Lin, C. L. Chen, Y. C. Liao, and H. C. Chang, “Structured LDPC codes

with low error floor based on peg tanner graphs,” in IEEE Int. Sympo. Circuits and

Systems (ISCAS’08), May 2008, pp. 1846–1849.

37

[9] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A 3.3-Gbps bit-serial block-

interlaced min-sum LDPC decoder in 0.13-µm CMOS,” in Proc. IEEE CICC’07,

Sept. 2007, pp. 459–462.

[10] X. Y. Shih, C. Z. Zhan, C. H. Lin, and A. Y. Wu, “A 19-mode 8.29mm2 52-mW

LDPC decoder chip for IEEE 802.16e system,” in Proc. Int. Sympo. VLSI Circuits

(SOVC’07), June 2007, pp. 16–17.

[11] Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “A 47 gb/s LDPC de-

coder with improved error rate performance,” in Proc. Int. Sympo. VLSI Circuits

(SOVC’09), June 2009.

[12] B. F. C. A. Alimohammad, S. F. Fard and C. Schlege, “A compact and accurate

gaussian variate generator,” IEEE Trans. on VLSI Systems, vol. 16, no. 5, pp. 517–

527, May 2008.

[13] P. LEcuyer, “Tables of maximally equidistributed combined lfsr generators,” Math.

Comput. Archive, vol. 68, no. 225, pp. 261–269, 1999.

38

