% S#8 ¥ 2. CP-PEG LDPC f2#8 B& &9 in

Design and Implementation of High Code-Rate LDPC
Decoder based on CP-PEG Code Construction

B4R R
IR REE S Ta R

PER R4 L NE S

® Sn#g 52 CP-PEG LDPC j##8 BK 325 i

Design and Implementation of High Code-Rate LDPC
Decoder based on CP-PEG Code Construction

R Student : Kao-Shou Lin

do ¥4k B E&KHE Advisor : Hsie-Chia Chang

ok S Wai-Chi Fang

RS R
TI1AEEE TEETT AL

ML o e

A Thesis
Submitted to Department of Electronics Engineering & Institute Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in

Electronics Engineering

July 2009
Hsinchu, Taiwan, Republic of China

PR R4 L NES D

% %85 % 2. CP-PEG LDPC #248 Bk 9 A

T4 1 Ha= B s R KR

S joi

AT RN B EmABIFTL CP-PEC MR RR - AEME o N
CP-PEG /& & 233 7 - B(2048,1920) 22RP| MR F s8> 4525 & #
i 8 PEG-BASED sy & 2 ik b crfg o 2 > % 345 15/16 46 R 0
Check node degree > + € = 5 AR F it cnFEpeh o A e @ * 7 VSS A2 7F i<
jRrg Bl X RN E S RFRRF AL FE FFEAP L& Hhidi
CNU > 97 F enti iz B o A B A4 » 3% TR L7 00 g 3 2 % §57% o ot
2ES E £ 00nm AT 0 F LT R S 14V B 4 & 7| 11.5Gbps 2 iE A& -
go 7 Om R 2.3.78mm? - ¥ T R L 0.8V, akrcd L 0.033 ndibit [EF R
% 5.77Gbps - 19453 % & % » o' CP-PEG jiaf5 E chjass & & i 7| IEEE 802.15.3¢
(1440,1344)75 eh& 4> ¥ ¥ CP-PEG 245 B4+ £7(1440,1344) 4 12 chifadh & o o7
AP ATR N E T UG Rt RN B HB I MBAER AR BT

W

Design and Implementation of High Code-Rate LDPC
Decoder based on CP-PEG Code Construction

Student : Kao-Shou Lin Advisor : Dr. Hsie-Chia Chang
Dr. Wai-Chi Fang

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

In this thesis, a LDPC decoder chip based on CP-PEG code construction is
presented. The (2048, 1920) irregular LDPC code generated by CP-PEG algorithm
has better performance than other PEG-based codes; however, the large check node
degrees introduced by high code-rate 15/16 become the implementation bottleneck.
To design such high code-rate LDPC decoder, our approach features
variable-node-centric sequential scheduling to reduce iteration number, single
pipelined decoder architecture to lessen the message storage memory size, as well as
optimized check node unit to further compress the register number. Overall 73%
message storage memory is saved compared to traditional architecture. Fabricated in
90nm CMOS technology, a test decoder chip could achieve maximum 11.5 Gbps
throughput under 1.4V supply voltage with core area of 3.78 mm? While the
throughput meets IEEE 802.15.3c (1440, 1344) LDPC code requirement. In addition,
CP-PEG (2048, 1920) LDPC code own the similar code rate as the (1440, 1344) code.
Thus our proposed methodology is proven to be effective in high code rate decoder

design and implementation.

RHILEAAF FALEES oL 2 B b e £t B4 RS
SRRk dh A B B A iR T o E A L RAREI Y TR

AN L RS E A hk e dg E RS L R R AR h B R 2
AR 0 T DA G he FREMG o BRFALLMAY - By FRREH
EEF R XA TR A PHBIFEL N F S e - A4 g 4s
S XEFF R AL A RF A RE A RAE T R 2 F TR
LY o

£ k& g B Ocean group sh2 %= [» f%® #ehiw = 5 Ocean group - 4
F oo £ H B R BA A AT %v\’ﬂf‘m#ﬁ% EALBEREY EF LT o
f o PR AR Fhafedp Foos FE 0 AROT{IR A L AT ERR -
B EHOASIS %A REERE{eR 4 RARET - B
CE R X

yoob @ p /g,j—gﬁ_lfri,[j}:_f%,i\.m«xgﬂ?v% EEETF"J’EE‘ W?a&?\ 3\3]3\’]’

B8 fRF T e & 0 [o PRIE PR & — 4z Play Ball
EOoBANGEEF ARSI o
AR W DA A F AL LG AGTIRATA RS A A

® ﬁﬁaﬁg¢,g@a,¢¢4§0&@,;%&%¢%$%§ﬂﬁ€4&

B oHHEPOE AL FEA T ERARTEY -

To my family and Yu-Han for their love and support,

and my country Taiwan

v

Contents

Fl1Id }]%]EI i
Y i i
Bl ii
Contents %
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2

2 Decoding Algorithm and Code Structure 3

2.1 LDPC decoding algorithm o 3
2.1.1 Standard BP Algorithm 3
2.1.2 Variable-node-centric Sequential Scheduling)
2.2 CP-PEG LDPC Code o o e 7
2.2.1 CP-PEG LDPC Code Construction 7
2.2.2 Parity Check Matrix Permutation and Division 7

3 Proposed Decoder Architecture 10

3.1 Single Pipelined Architecture L. 10
3.2 Check Node Unit 12
3.3 Variable Node Unit 15
3.4 Comparison and Discussion 16
3.4.1 Evaluation of Different Sorter Architecture 16
3.4.2 Comparison With Conventional Architecture 17

4 Simulation and Implementation Results
4.1 Code Performance

4.2 Implementation

5 Conclusion and Future Work
5.1 Conclusion

5.2 Future Work

A AWGN Core
A1 Motivation
A.2 Box-Muller Algorithm
A.3 Architecture
A4 FPGA emulation

vi

20
20
20

25
25
26

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

Al
A2
A3
A4
A5
A6
AT

Mlustration of standard BP. 4
Mlustration of VSS o 6
Parity-check matrix of (2048, 1920) LDPC code. 7
Permuted parity-check matrix of (2048, 1920) LDPC code. 9
Proposed architecture and scheduling. 11
Accumulative sorter 12
Sign operation unito Lo 13
Reduced storeage accumulative sorter 14
Reduced storeage accumulative sorter 2 15
VNU architcture . . . 2.0 . o 16
Convergence speed of different sorter architecture. 18
Performance. L 21
Chip micrograph. 23
Measured maximum throughput and power consumption. 24
Linear feedback shift registero 28
Ro()versusul 31
box-muller architecture 32
Hybrid (logarithmic and uniform) segmentation of u; € (0,1) 33
BPSK emulation using FPGA:DN9200K10PCT 34
The interface of the UART program 35
Emulation result: BPSK with Viterbi decoder performance curve 36

vii

List of Tables

2.1 Mux reduction statistics L 8
3.1 Comparison between different sorter architectures 17
4.1 Comparison with state-of-the-art 22
A.1 Function of UART 34
A.2 Comparison the simulation time, 34

viil

Chapter 1

Introduction

1.1 Motivation

Low-density parity-check (LDPC) code is a famous error control code with near Shan-
non limit performance [1] and can be described by its parity-check matrix H. The rows
and columns of H are mapped to check nodes and variable nodes of a bipartite graph, on
which the belief-propagation (BP) algorithm exchange messages between nodes iteratively
to decode LDPC codes [2]. The message exchanging order between nodes is called schedul-
ing, which will influence the convergence speed of the decoding algorithm. In standard
BP algorithm, simultaneous update of all check node messages or variable node messages
is named as flooding scheduling. Alternatively, the layered BP algorithm [3] [4] preform-
ing message update along different check node groups is a method of check-node-centric
sequential scheduling (CSS). Researches have revealed that CSS could reduce maximum
iteration to approximate half of the standard BP with similar performance.

Recently, LDPC codes adopted in high-throughput systems have high code-rate prop-
erty to increase channel efficiency. However, the introduced large check node degree dc will
cause implementation difficulties. For example, the largest check node degree of (2048,
1723) LDPC code adopted in IEEE 802.3an [5] equals 32, leading to routing difficulty and
low chip density. Even though the CSS could reduce the iteration number, the throughput
is still degraded due to long critical path of check node unit (CNU). The situation will
become worse for the (1440, 1344) LDPC code of IEEE 802.15.3¢ [6] with dc = 45.

In this thesis, the proposed decoder aims at providing a high-throughput and hardware-

efficient solution to the high code-rate LDPC with large check node degrees. In order to
reduce iteration number, the decoding scheduling is based on the wariable-node-centric
sequential scheduling (VSS; also known as shuffled decoding [7]), where the messages are
updated along different variable node groups. Since the inputs of CNU operation are
also divided into several subgroups, the complexity and critical path delay of CNU are
reduced. Furthermore, single pipelined approach and modified CNU are proposed to
minimize the message storage memory. Using a (2048,1920) LDPC code constructed by
circulant permutation progressive edge-growth (CP-PEG) algorithm [8] as a design ex-
ample, the overall decoder chip implemented in 90nm technology will show its advantages

in terms of throughput, energy efficiency, and hardware efficiency.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter II introduces the code structure
and the decoding algorithm with VSS. In Chapter 111, we propose a modified scheduling
algorithm and an improved decoder architecture. Performance simulation and implemen-
tation result are shown in Chapter IV. The conclusion is given in Chapter V. In order to
investigate the error floor of the CP-PEG code, we build a AWGN core to speed up the

simulation process, and the AWGN core is introduced in Appendix A.

Chapter 2

Decoding Algorithm and Code

Structure

2.1 LDPC decoding algorithm

2.1.1 Standard BP Algorithm

The log-likelihood ratio (LLR) of intrinsic information of n-th variable node is denoted
by P,. The message from n-th variable node to m-th check node is denoted by z,,,. The
message from m-th check node to n-th variable node is denoted by &,,,,,. The a posteriori

LLR of n-th bit is denoted by z,. The standard BP is carried out as followed.

1. Initialization: Set ¢ = 1,maximum number of iterations to Is.,. For each m, n,

set z,(,% =P,
2. Iterative Decoding:

(a) Check node to variable node update step, for 1 <n < N and each m € M(n),

process

(b) variable node to check node update step, for 1 < n < N and each m € M(n),

process

A =P+ Y ey (2.3)
m/eM(n)\m

WP Y e (2.4
meM(n)

3. Hard Decision: Let X, be the n-th bit of decoded codeword. If 2 >0, X, =0,
else if 2 < 0, X, = 1. If H(z®)! = 0 or I)s4, is reached, stop and output the code

word. Otherwise,set ¢ =i + 1 and go to Iterative Decoding.

The iterative decoding processes for one iteration of standard BP is illustrated below.
The messages are updated in parallel way between check nodes and variable nodes. The

process are shown in Fig. 2.1(a) and 2.1(b).

(b) variable nod to check node update

Figure 2.1: Illustration of standard BP.

2.1.2 Variable-node-centric Sequential Scheduling

In VSS approach, the initialization, stopping criterion test, and output steps remain
the same as the standard BP algorithm. The only difference between two algorithms lies
in the updating procedure. Assume the N bits of a codeword are divided into G' groups,
so each group contains N/G = N¢ bits. The messages are only exchanged between one
group of variable nodes and check nodes which are connected the group of variable nodes
at a time. In addition, each group of messages is updated in order. Furthermore, it count
one iteration when all groups have been updated. For G = 1, the VSS scheduling becomes
standard BP.

The normalized min-sum (NMS) algorithm which compensates the approximation er-
ror in check node update step can also be applied to our VSS approach with normalized
factor 4 = 0.75. The updating procedure of NMS algorithm with VSS approach is carried

out as follows.
1. Initialization: z,ﬂ% =P,
2. Iterative Decoding: For 0 < g < G — 1, perform the following two steps.

(a) Check node to variable node update step, for g- No <n < (g+1)-Ng—1 and

each m € M(n), process

e~ I signGzl) < I sign(=50)

n’€N(m)\n n'€N(m)\n
n'<g-Ng—1 n’>g-Ng
X min min {‘zfé)n, }, min {‘szl;,l) } x (3 (2.5)
n'€N(m)\n n'€N(m)\n
n’'<g-Ng—1 n’'>g-Ng

(b) variable node to check node update step, for g- Ng <n < (g+1) - Ng — 1,

process

A =P+ Y ey (2.6)
m/e€M (n)\m
=P+ Y el (2.7)
meM(n)

3. Hard Decision: Let X,, be the n-th bit of decoded codeword. If z,(f) >0, X,=0,
else if 24 < 0, X, =1.

The decoding processes for one iteration of VSS is illustrated in Fig. 2.1.2 with G = 3
as example. The arrows with red color represent check node to variable node messages to
be updated. The arrows with purple color represent variable node to check node messages

to be updated. On the other hand, gray arrows represent that messages are not updated.

(¢) Update third group

Figure 2.2: Illustration of VSS

2.2 CP-PEG LDPC Code

2.2.1 CP-PEG LDPC Code Construction

The (2048, 1920) irregular LDPC code, rate-15/16, used in this paper was constructed
by CP-PEG algorithm and shown in Fig. 2.3. The constructed parity-check matrix H
consists of p X p circulant permutation (CP) and all-zero matrices. A CP matrix is a
cyclic square matrix with constant row and column weight of one. The number of each
CP matrix indicates the cyclic shift amount and —1 means all zero matrix. By setting
p = 32, there are 4 x p check nodes and 64 x p variable nodes in bipartite graph, where each
check node has uniform degree 46, and 16 X p, 24 X p, 24 X p variable nodes have degrees of
4, 3, 2 respectively. The performance of this code was proven to have better performance
than other PEG-based structure LDPC codes [8]; nevertheless, the high check node degree

required suitable decoder architecture to overcome implementation difficulties.

Dv=4 |, Dv=3 . Dv=2

<—16p—>:<—24p—>:<—24p—>
V4 H Z . o e ': """"""" STt E
4 3131 # 1311717 --- 17128131 -11%1-1101]-11-1 EAppFOXImateE
H — g e T erfae [{303i o [-1] § _ Lower
— PRIl 127 a3 131 131111113110 Triangular
v Lo [aaBi o 121916 [28]-L | -1 [31]™.; (ALT)Form
P2 7 . 07 7 N trmmmmmmmmmmmemmomenees
- ,’/ ‘\‘ 64p .‘ ________ >
P SRRt L] 4 396 [-~ S
All Zero A~ SO UUUUOUUUROI e
_____ Matrix i |le—p—»| Circulant

ﬁ'* Permutation
T offsef=16 \\ (CP) Matrix !

s |
Others are 0 ;

Figure 2.3: Parity-check matrix of (2048, 1920) LDPC code.

2.2.2 Parity Check Matrix Permutation and Division

We can observe equation (2.6) and (2.7), only one group of variable node units (VNUs)
are required to update the messages from variables node to check nodes.
As shown in Fig. 2.4, the codeword is divided into 4 groups (i.e. G = 4) for VSS,

therefore the parity-check matrix H is divided and permuted into 4 submatrices (H1 to

H4).

In order to fully reuse the same VNUs when updating different groups, each submatrix
consists of equal number of variable nodes with the same degree to reduce the hardware
cost of VNU and unnecessary control. Moreover, the submatrices with the same shift
amounts (shaded blue CP matrices) are arranged in the same position which makes the
same connections between CNUs and VNUs when updating different groups. By utilizing
this method, number of mux could be reduced, and the routing and control could be
further simplified. The reduced number of mux is shown in Table 2.1.

However, if the other parity check matrix does not contain many submatrices with
same shift amount, there is still a technique to permute the submatrix to reduce the
number of mux. We could permute each submatrix in the same position to make the sub-
matrix with same shift amount. Take the 5;, column of each submatrix H1, H2, H3, H4
as example which is shown in Fig. 2.4(c). The offset of submatrix in 54, column and 3,4
row of H3 is 6, and we could permute the column to let the offset become 31. In con-
sequence, the submatrix in 5;, column and 3,4 row of H1, H2, H3, H4 become the same.
Thus the mux could be reduced. In addition, the permutation will not cause performance
degradation because the structure (local girths or global girths) of the tanner graph still

remains the same.

Table 2.1: Mux reduction statistics

Direction VNU to CNU | CNU to VNU
Original number of MUX2 128 N/A
Reduced number of MUX2 32 N/A
Original number of MUX4 1408 1472
Reduced number of MUX4 224 224

-
an
N
an
W
.
~

D
stat]3t]of3t[31]=[3t]o 3131~ [3t1][-1}31[31]*[31]-1]pk
H — [defool[-1[-1}e Jo7] - [2[3r}a0)o1] - [-1[o}ie} s [a[-1T
28|19 |-1[-1}16]7 [[-t]-1ftr[9o[--[-1[31{30] 4 -1]0
Lt Ji6foy23] 1 |- [-1[-1§26[22[--[27]-1]3 [12 131 v
27 27 27 27
< 64p >

(a) overview of permuted matrix

[] [] [] []
:'—> Deg=4 <—°—>: Deg=3 4—-—): Deg=2 4—':
31313131 -1 [-1 [31[17[31[31|31[-1[3L]-L[31] 0| 4
Hl 1612913 [25[15 [3T[-T[3T[24 8T T|Tr[3r]-I[-T],
28|19 291431 4 | 1 |-1]-1 |26 12|31 -1]16]-1]-1] P
1|1 |7 [29]11]10[30 1415 -1[-1[16]-1[-1[16] 0]}y
. . . .
311313131]-1]-1]12]31]31|26]31]-1|31]-1]31}| 0
H2 6 [27129] 152530 [-1 [23[26[31]-1 [-1]28]-1[22]31
167 [10[15[31[1 [31[-1[-1]8 [22[31[-1[31]-1]1
231 [2 [29]17 281 [9 191 [-1[15[-1 [21]-1[-1
. . . .
313131 |31]|-1|17| 6 |31)131 7 |-1|-1]31]-1]31]-1
H3 2912117 12031f-1]-1]|519|16|31]|-1]12]31|-1| 0O
11191031163 |31|-1]5|31]-1]31]-1]28]-1]31
26(22111124126(31]10 4 |-1|-1|11]20]-1]-11(27]-1
. [}] .
311313131]-1]31(28]20]31|31]-1]-1}31]-1]31]-1
H4 161312911 |129|-1]-1|31]2 |31|31]|-110]-1]14]|-1
3014 |21127131| 8 |31]-112013|-1|31]-1]31|-1|20
311210 14129172 |7 |-1]-1|19 |31]-1]22]-1]31

- 16p >

(b) Permuted and divided into four groups

Offset+25

IR EIREI I REINENNE

15| [25] 131] [29] |15] |25 [24])[29
|

31| [31]1]6 1|31 |31 31()31])(31
i |

11| [17]726] |29 [11] [17]Y19] |29

N/

(¢) Further MUX reduction technique

Figure 2.4: Permuted parity-check matrix of (2048, 1920) LDPC code.

Chapter 3

Proposed Decoder Architecture

In this chapter, a complete decoder architecture will be presented, including datapath,

scheduling, and VLSI structure of CNU and optimized CNU.

3.1 Single Pipelined Architecture

The entire decoder depicted in Fig. 3.1(a) is composed of fully-parallel CNUs and
partial-parallel VNUs, where the VNU2, VNU3, and VNU4 will handle variable node
operations with degree 2, 3, and 4 respectively. Let aé,i) denotes the sorted messages sent
from variable nodes in the g-th group to one specific check node at i-th iteration, which
is:

ol = min { 20
g n'€N(m)\n mn

g-Ng<n’<(g+1)-Ng—1

} (3.1)

Then the magnitude part of check node to variable node message in (2.5) could be com-

puted by the following equation:

el | = 4 , ,)
} mn| mm{ o i ay’,qay . (3.2)

Fig. 3.1(b) demonstrates the timing diagram of proposed decoder. There are G ini-
tialization cycles required to calculate ag for 0 < g < G — 1. Since only one subgroup
of the message 29, s updated in g-th cycle of one iteration, the main operation of CNU
could be simplified to calculate Osz) (local sorting) in each cycle and then perform global

sorting like equation (3.2).

10

(4)

From the propose single pipelined architecture, only messages oy’ and el are stored.

The sorted results could be represented by min value, second min value, and the index of

min value in NMS algorithm. Therefore, the proposed decoder only latches two values,

one index, and sign part of messages in each subgroup, while the variable node to check

(4)

node message zmn is on-the-fly calculated. The single pipelined architecture is feasible

because the CNU could be updated immediately after VNU’s operations in VSS approach.

Output buffer
Codeword

YIVY VYWY VYV VYV VY VYV

Routing

Input buffer
e]

CNU . NS #1
min VNU2

min—| . T
2ndmin — — VNU3
1 ¢ 1

VNU3 #oP

ﬁ% ﬁ%

Routing

| | | |
VNU4#!
v 1

VNU4 #p

-
2ndmin—>/\—,r—> $—l—> I 3 I
— #6p
CNU #2 - | YNU2

CNU P
min —>
2ndmin —> A ﬂ"

a) Single pipelined LDPC decoder architecture

- ﬁ%

— Initialization -«—
Splipipiplipipipiginl
— Iteration 1 «—>

Update| HI1 H2 H3 H4 | HI' | H2' | H3' | H4' | H1"
group | V Vic VQ viclvic| Vi VicC

v

Y a, ¥V a

c o410

- o0

2 o0
-

— _4__

a a a

<D|£1 |=min(a(§’,al°,af,a3°), OSI’ZSNG -1

1 — ' 1 0 0 0
@le),|= min(a;.a),a).ay), N, <n<2N, -1

®len,|= min(as.al.a),al), 2N, <n <3N, -1

®

El

mn

=min(a,,qa,,a,,a;), 3N, <n<4N, -1

(b) variable-node-centric sequential scheduling

Figure 3.1: Proposed architecture and scheduling.

11

3.2 Check Node Unit

This section presents detail CNU architecture based on VSS scheduling. The CNU
architectures are further optimized to reduce storage requirement and the number of
sorter. Different CNU architectures will also influence different convergence speed which
will be discussed in the following subsections.

The messages sent from VNU are converted from two’s complement format to sign-
magnitude format for efficient computation of CNU. Therefore, the operation of check
node to variable node update could be divided into magnitude part and sign part.

For our proposed CP-PEG LDPC codes with dc = 46, The VSS approach with G = 4
could divide 46 inputs of the CNU into four part. Because 46 could not be divisible by 4,
the number of messages need to be computed in different groups will be 11 or 12. This
could be handled by little extra circuit which determines the number of messages which
should be computed by CNU when updating different groups.

The detail will be presented including accumulative sorter, Accumulative Sign Op-
eration Unit, Reduced Memory Accumulative Sorter 1, Reduced Memory Accumulative

Sorter 2.

3.2.1 Accumulative Sorter

Fig. 3.2 illustrates the magnitude part of CNU, which is an accumulative sorter com-
posed of a local sorter and a global sorter. The local sorter is used to find the local min
and second min values in each subgroups, and global min and second min values of a

check node will be found by a global sorter.

LOCAL
SORTER
—
—
1. |12 to 2
i+ |Comparator
! . Global
: > 2ndmin Second min

Local second min in different groups

Figure 3.2: Accumulative sorter

12

3.2.2 Accumulative Sign Operation Unit

Fig. 3.3 shows the sign part of CNU. Similarly, the sign operation can be computed
in an accumulative way like the accumulative sorter. The XOR12 is used to find the
local sign in each subgroups, and global sign could be found by XOR4. Since only d./4
messages are computed by CNU in a cycle, d./4 messages’s signs are queued in a cycle.

After the global sign is available, the d./4 messages’s signs are computed with global sign

BB
D2~
DDl

by xor and sent to VNUs.

Global Sign
R)

= —
n R
— —

} A Local Sign
6 1D
—/—&5(Magnitud E E
S-S

Figure 3.3: Sign operation unit

3.2.3 Reduced Memory Accumulative Sorter 1

In order to further reduce the storage overhead of each subgroup, we propose a reduced
memory accumulative sorter 1 as shown in Fig. 3.4. The basic idea is to simplify the local
min and local second min of G — 1 subgroups into only one group. Some extra control
circuits are needed to open or close the feedback loop in Fig. 3.4. This sorter architecture
is beneficial since the complexity reduction of storage registers and global sorters is higher
than the overhead of control circuits. The algorithm of Reduced Memory Accumulative
Sorter 1 is listed below. The open loop operation can be implemented by selecting the
value of feedback loop to maximum value(ex:5'b11111) which make the value invalid in
comparison. The performance and hardware complexity will be discussed in following

subsection.

13

Algorithm: Reduced Memory Accumulative Sorter 1

1:

2:

Initialization

inner feed back loop closed

- outer feed back loop open

: find global min and global second min

: Decoding

. inner feed back loop open

. if (global min in current Group or current Group == 4)
. global min outer feed back loop open

. else

: global min outer feed back loop closed

. if (global second min in current Group or current Group== 4)
: global second min outer feed back loop open

. else

: global second min outer feed back loop closed

Inner feedback loop

previous global min //
L GLOBAL

SORTER

—>14 to 2

il 2ndmin

’

(]
> .) :
> min ia: | : I,-' : -E-)E—o-» Global
‘ : min
Comparator

» Global
Second min

td

P
Y
LS s

oy
=)
@]
>
-

1]

SORTER previous global
second min

Outer feedback loop

Figure 3.4: Reduced storeage accumulative sorter

14

3.2.4 Reduced Memory Accumulative Sorter 2

For the same purpose, we propose a reduced storage accumulative sorter 2 as shown
in Fig. 3.5. The basic idea is to store only local min values in each group, and use 4-to-2
sorter to find global min and global second min values. Clearly, global min value will be
correctly sorted in comparison with original accumulative sorter; nevertheless, the global
second min could be sorted incorrectly if the global second min and global min are located
in the same group!.

Compared to reduced memory accumulative sorter 1, this sorter architecture is more
beneficial in hardware complexity. The first reason is that the input number of local sorter
is fewer and only min value need to be found by local sorter. The second reason is that
the second min index does not need to be stored. The third reason is that control circuit

to open or close the feedback loop is not required .

LOCAL
SORTER

12to 1
Comparator

Figure 3.5: Reduced storeage accumulative sorter 2

3.3 Variable Node Unit

Fig. 3.6 shows the VNU4, where SM to TC represents sign-magnitude to two’s-
complement conversion, and TC to SM represent two’s-complement to sign-magnitude
conversion. Since the parity check matrix is permuted carefully, the 16 x p VNU’s contain
4xp VNU4s, 6 xp VNU3s and 6 x p VNU2s, and there is no any redundant VNUs appear-

ing in variable node to check node update. In Fig. 3.2, the four registers correspond to

Mntuitively, the the expected value of second min of this architecture is larger than the accumulative
sorter. Different scaling factor or other mechanic could be applied to make the performance close to the

original accumulative sorter. However, it require further investigation.

15

four different channel values in the four different groups. For example, when the variable
node to check node operation is performed in H3(g = 3), the channel values in H3 will
be shifted to be computed. Similarly, the decoded bits are stored in the four register and
shifted to the corresponding group decoding bits.

Input Buffer Output Buffer
Ve T ' | i i P Decoded
: ; : l I ; bits
chamnet} = H2 M8 HeH e hir RyRge
value i ; O '
6 6 8 8 6
——| SM to TC |—X _t@—\—b TC to SM | Clipping [~
6 6 8 8 6
—\—| SM to TC |——¢ 1>£__> TC to SM =\ Clipping =\
9
)
6 6) 8 8 6
——{ SM to TC [} "@—\—» TC to SM [\ Clipping x>
6 6 8 8 6
—| sMm o TC X (O] 1C o sM || Clipping [

Figure 3.6: VNU architcture

3.4 Comparison and Discussion

3.4.1 Evaluation of Different Sorter Architecture

Three sorter architecture has been proposed. The convergence speed and hardware
complexity of different architecture will be discussed in this sub section. The whole de-
coder with different sorter architecture has been implemented by standard-cell design flow
and synthesized by utilizing 90-nm 1P9M CMOS technology. AS decoder denote whole
decoder which CNU is implemented by original accumulative sorter. RMAS1 decoder
denote whole decoder which CNU is implemented by Reduced Memory Accumulative
Sorter 1. RMAS2 decoder denote whole decoder which CNU is implemented by Reduced
Memory Accumulative Sorter 2. The sign part of CNU of three decoders are implemented
in same architecture(accumulative sign operation unit).

The synthesis result (whole decoder) is shown in table 3.1; each decoder is synthesize
by Synopsys design compiler with same tickle file. The convergence speed of different

architecture is shown in Fig. 3.7. We found that the performance of RMAS1 decoder is

16

almost equivalent to AS decoder. The convergence speed of RMAS2 decoder is slightly
lower than RMAS1 decoder and AS decoder. Of the three architecture, RMAS2 decoder
provides lowest hardware cost;however, the performance of RMAS2 degrade. RMAS 1 de-

coder provides lower hardware cost and own almost equivalent performance in comparison

with AS decoder.

Table 3.1: Comparison between different sorter architectures

Architecture!'|| AS Decoder | RMAS1 Decoder | RMAS2 Decoder

Gate Count? 727k 661k 570k

I Synthesis result

2 The clock period is set to 9ns during synthesis

3.4.2 Comparison With Conventional Architecture

In single pipelined architecture, more subgroup number G will result in fewer inputs
of local sorter but more inputs of global sorter; the storage for min, second min, and index
values of each subgroup will increase. The mux (G inputs mux) number will be around
2 x N/G between CNU and VNU. In addition; the critical path will be longer when G is
larger. However, single pipelined architecture is suitable for high code rate design with
proper chosen G.

In traditional two-stage pipelined architecture, both z,(ﬁ)n and 5%)” messages are kept in
registers or memory. Assume the bit-width w of messages is 6 and variable node degree

is dv, then the required memory size (or registers) is as follows:

MEMyny + MEMcony

= O dv)-w+

(N — K) - (Min+ 2ndMin + Index + Sign)
= O dv)-w+ (N—=K)- (2 (w—1)+log,[dc] + dc)
— 58886+ 128 (25 + logy[46] + 46) = 43264 (3.3)

For the proposed single pipelined RMAS 1 decoder in Fig. 3.4, the memory size is

17

BER
)

BER

10

Figure 3.7: Convergence speed of different sorter architecture.

Convergence Speed Compansom @ SNR=6

-O-AS Decoder fixed p0|nt (6,1), scahng factor 0 75]
=f= RMAS 1 Decoder, fixed point (6,1), scaling factor 0.75 |
=40= RMAS 2 Decoder, fixed point (6,1), scaling factor 0.75

1

2 3 4 5 6
Iteration

(a) comparison at SNR=6
Convergence Speed Comparisom @ SNR=5.5

=@= AS Decoder, fixed point (6,1), scaling factor 0.75]
== RMAS 1 Decoder, fixed point (6,1), scaling factor 0.75 |]
==RMAS 2 Decoder, fixed point (6,1), scaling factor 0.75 ||

1

2 3 4 5 6
Iteration

(b) comparison at SNR=5.5

18

reduced to

MEM cnu
= (N—-K)-

(2 - (Min 4+ 2ndMin + Index 4+ 2ndIndex) + Sign)
= (N=-K)-(4-(w—=1)44-logy[dc] + dc)

= 128 (4-5+44-log,[46] + 46) = 11520 (3.4)

Therefore the overall register reduction of proposed architecture is 73%, leading to the
following advantages: fewer registers, higher utilization of fuctional units, and reduced
complexity. Since high-rate LDPC codes usually have more VNUs than CNUs (in our
case: 512 VNUs and 128 CNUs), the elimination of registers from VNU to CNU not only

reduces hardware cost but also lowers power consumption of clock tree.

19

Chapter 4

Simulation and Implementation

Results

4.1 Code Performance

Under AWGN channel with BPSK modulation, the performance curves are simulated
to determine the required bit-width and maximum iteration number. The simulation
parameters of proposed algorithm are 6-bit input quantization (5-bit integer and 1-bit
decimal fraction), scaling factor 0.75 for NMS algorithm, and 4 iterations. In Fig. 4.1,
the bit-error rate (BER) curves indicate that 4 iterations for the proposed algorithm
are sufficient to achieve similar performance of standard BP algorithm with 7 iterations.
Furthermore, in the aspect of almost the same code-rate and better error-correcting capa-
bility, our CP-PEG LDPC codes outperforms 1.2 dB better than the (255, 239) RS code
at BER euqal to 107, which reveals the potential of CP-PEG LDPC codes for storage
applications and fiber optical communication systems. The overall SNR loss between this

work and Shannon limit is only 1.6dB.

4.2 Implementation

The proposed RMAS1 decoder is implemented by standard-cell design flow and fab-
ricated in 90-nm 1P9M CMOS technology. The core occupied 3.84 mm? area with 68%
utilization. The die photo is shown in Fig. 4.2, and the distribution of CNUs and VNUs is

20

. BPSK; AWGN Channel; (2048,1920) LDPC Codes

10 (255, 239) RS
" Code
5 = Shannon Limit
10 of Rate 0.9375
BP Algorithm,
3 Floating Point
e 10 -O- Iteration=6
é I Iteration=7
510 RMAS 1 Decoder,
= Fixed Point (6,1),
= Scaling Factor 0.75
=10° <X Iteration=4
= O Iteration=5
10°°
107 4

Figure 4.1: Performance.

auto-determined by APR tool. Since required decoding cycles of one LDPC codeword is 4
initialization cycles plussing 4 iterations, the throughput is (1920bit/20cycles) x frequency.
Fig. 4.3(b) shows the measured maximum throughput and power dissipation under dif-
ferent SNR conditions and supply voltages. The measurement result indicates that the
test chip can achieve 11.5 Gbps throughput under 1.4V supply voltage, where the average
power dissipation for E,/Ngy ranging from SNR 3 to 10 dB is 1037mW. The through-
put could be scaled down to 5.77Gbps with 0.8V supply voltage to meet the throughput
requirement of IEEE 802.15.3¢ standard and the energy efficiency will be 0.033 nJ /bit.
Compared with the state-of-the-art in literatures Table 4.1, the proposed LDPC de-
coder outperforms others in the aspects of throughput, hardware efficiency, and power
efficiency. Since the LDPC code specification of these designs are different, the SNR. loss

between each work to their Shannon limit is also listed for reference.

21

Table 4.1: Comparison with state-of-the-art

RMASI1 decoder | CICC’07 [9] | SOVC’07 [10] | SOVC’09 [11]
Process 90-nm 0.13-pm 0.13-pm 65-nm
Code Spec (2048, 1920) (660,480) Wimax (2048,1723)
Code Rate 0.9375 0.73 0.5 0.84
Core Area 3.84 mm? 7.3 mm? 4.45 mm? 5.35 mm?
Gate Count 708k 690k 420k N.A
[teration 4 15 2-8 2-8
Input Quantization 6 bits 4 bits 8 bits 4 bits
120 MHz ! 300 MHz 83.3 MHz 700 MHz 3
Clock Frequency
60 MHz 2 100 MHz *
11.5 Gbps @ 1.4v ! 47.7 Gbps 38
Max. Throughput 2.44 Gbps 222Mbps
5.77 Gbps @ 0.8v 2 6.67 Gbps 8
1037 mW 1 2800 mW 3
Power 1383 mW? 52 mW
191.2 mW 2 144 mW *
Energy Efficiency 0.09 nJ/bit ! 0.058 nJ/bit 3
0.566 nJ/bit ®| 0.23 nJ/bit
0.033 nJ/bit 2 0.02 nJ/bit *
Hardware Efficiency © 12.1 3.5 0.53 N.A
SNR loss to
1.6 dB 2.8 dB 2.9 dB 1.4 dB

Shannon limit 7

1 1.4V supply voltage
2 0.8V supply voltage
3 1.2V supply voltage
4 0.7V supply voltage
® when Ey,/Ny=>5.5dB

¢ Throughput/Gate count (Mbps/K-gate)

” when BER=10"°

8 Early termination is applied. Average decoding iteration is used to calculate throughput.

22

ENENNEREN]

11

Figure 4.2: Chip micrograph.

23

e

11

1 VTS) ST T N T

Supply Voltage=1.1V

—_
o

o0

n

Throughput (Gbps)
(@)

-©- Max throughput|
- Power

)
J

3 4 5 6 7 8 9 10
E,/N, (dB)

(a) at different SNR conditions
SNR =6 dB

Throughput (Gbps)

-©- Max throughput |
2) 24 Power 200

0.7 0.8 09 1.0 1.1 1.2 13 14
Supply Voltage (V)

(b) under different supply voltages

Figure 4.3: Measured maximum throughput and power consumption.

24

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a VSS scheduling high code-rate LDPC decoder is first proposed. The
VSS approach results in higher convergence speed. Maximum number of decoding iter-
ation can be reduced to increase the throughput. By utilizing the characteristic of the
VSS scheduling, the single pipelined architecture is proposed to enable the messages from
CNU to VNU and the messages from VNU to CNU to be computed in one cycle, thus the
throughput is almost doubled. Three types of CNU architecture combined with the single
pipelined architecture are proposed. In magnitude part, the computation in accumula-
tive way reduces the sorter complexity. In sign part, the sign can be also computed in
accumulative way which decrease the input number of XOR gate. Therefore, the compu-
tation of CNU in accumulative way results in an area-efficient design. In addition, single
pipelined architecture combined with RMAST CNU can save 73% message storage mem-
ory compared to the conventional partial parallel decoder. The reduction of the registers
lowers the power consumption of the clock tree and result in energy-efficient design. Mux
reduction technique is proposed by dividing the variable nodes into each group carefully,
which can make the connections between CNU and VNU remain the same when different
group of VNUS are updated. Therefore, the input of the mux will be the same and the
mux is redundant and removable. After implementation in 90nm technology, the test chip
occupies 3.84 mm? area and supports maximum 11.5 Gbps data rate under 1.4V supply

voltage with energy efficiency 0.090 nJ/bit.

25

CSS approach [4] which was applied to LDPC decoder implementation results in higher
convergence speed, lower memory requirement and lower complexity of VNU. Compared
to CSS, VSS approach has the same property in memory requirement and convergence
speed, but CNU has lower complexity instead of VNU. Moreover, the architecture with
CSS approach utilize parallel VNU and partial parallel CNU (one group of CNU). On the
contrary, the architecture with VSS approach utilize partial parallel VNU(one group of
VNU) and parallel CNU. After reviewing many LDPC codes in different specs or design
cases, degree of variable nodes is still small(ex:3,4,5). If there is a LDPC code with large
variable node degree, CSS approach will be the suitable candidate to alleviate the VNU

complexity.

5.2 Future Work

This thesis has provided the methodology to optimize high code-rate LDPC decoder.
However, the decoder architecture is only optimized to support a high code-rate LDPC
code. A multi-mode LDPC decoder in future wireless devices may be required to support
different code rate. For example, the code rate ranges from 15/16 to 1/2, and maybe the
check node degree ranges from 6 to 46. How to design an area-efficient CNU architecture
for each code rate will be essential. In addition, code construction methods could be in-
vestigated to develop a LDPC code which is more suitable for multi-mode VSS scheduling
architecture.

Conventionally, the error correcting codes, such as RS code or BCH code, are required
to be applied on FLASH memory to increase the reliability. High code rate LDPC code
is also suitable for FLASH memory application because the error correcting ability of
LDPC code is better than RS code or BCH code with the similar code rate. The channel
in FLASH memory can be considered as higher SNR in AWGN channel, therefore the
error floor of LDPC code needs to be investigated to insure that the error correcting
ability in high SNR region is also better than RS code or BCH code. As a result, we build
a AWGN platform, which will be introduced in Appendix, to investigate the error floor
efficiently.

26

Appendix A

AWGN Core

A.1 Motivation

The CP-PEG LDPC code yield excellent error-correction which is demonstrated in
Fig. 4.1; however, many LDPC codes exhibit an error floor, which corresponds to a
decrease in the slope in the plot of bit error rate (BER) versus signal-to-noise ratio (SNR).
Therefore, error floor of CP-PEG LDPC code should be investigated if the codes are
applied for application such as wire line communication or FLASH memory.

Error floor of some LDPC codes appear at very high SNR which correspond to low
BER such as 107!, In addition, some recent standards give maximum allowable BERs
of only 107'? for specified SNRs (e.g., IEEE 802.3 10 Gbit/s Ethernet [5]). At least
10 bit of should be to simulated to estimate the BER appropriately. Generally, the
performance(BER versus SNR) of LDPC code is obtained by simulation on computer.
Nevertheless, 10° noise generated by a dual core Pentium processor running at 3.0 GHz
with a 1-MB L2 cache takes about 2.5 hour. Therefore, to investigate the error floor
efficiently, hardware AWGN generator should be implemented to speed up the simulation
process.

Notice: The AWGN core is implemented based on the paper. [12], therefore, the fol-

lowing material in this chapter will be similar to the material in [12] .

27

A.2 Box-Muller Algorithm

Given two independent radon variable, U; and Us,, with standard uniform distribution

over [0,1)

0 = 27U, (A.1)
R=/—2In(0)) (A.2)
X = Rcos(f) (A.3)
Y = Rsin(6) (A.4)

Then, X and Y are two independent Gaussian distribution N (0, 1)

A.3 Architecture

e Uniform Distribution Generation

U; and U, can be implemented by utilizing Linear feedback shift register (LFSR)
which depicted in Fig. A.1. ‘Due to the finite length of LFSR, the precision of the

standard uniform variates is limited to 2="7%.

~ WL (Word Length) ~
0.f0[1]1]0 1
2—1 2—2 2—WL

Figure A.1: Linear feedback shift register

e Tail Accuracy

The normal distribution is an open-ended distribution [—oc0, +00] in which values
of increasing magnitude occur with increasingly small probabilities. We can observe
equations(A.3) and (A.4), then we can find the maximum magnitude of variate
x and y is decided by 7 in equation(A.2). For the same reason, the precision of
standard normal variate x,y is limited by r. Fig. A.2 shows that r become bigger
when u; become smaller.Therefore,the tail accuracy can be decided by the word

length (WL) of u;.When u; = 2="L which is minimum value can be represented in

28

u1, the maximum value of r is vV2W LIn2. In this work,W L is set to 32, and the
tail accuracy is v641n2 = 6.66. In addition, the LFSR is implemented using the

method [13] which guarantee the period is 2'13.

Efficient Look-Up Table Implementation

Once the WL of LFSR is decided, the tail accuracy is decided. As shown in
Fig. A.2(a), the R() is a non linear function, so the R() need to be implemented by

2WL which result in

look up table. However, the look up table’s output number is
high complexity and long critical path. Therefore, our goal is to approximate the
look-up table with high accuracy and low complexity, and the detail methods will

be introduced in the following paragraphs.

Linear Polynomial Curve Fitting We adopted a linear polynomial curve fitting ap-
proach to approximate R() function between (0, 1). In other word, a period of curve
R(uy) can be approximated by p(u1) = a-u;+b over interval [, 3) with p(a) = R(«)
and p(f) = R(f). Take & = 0.9 and 3 = 1 as example which is shown in Fig. A.2(c).

Hybrid (Logarithmic and Uniform) Segmentation

As shown in Fig. A.2(a) and Fig. A.2(b), the function R(u;) has two regions with
higher slope. One region is in the vicinity of u; = 0, and the other is in the
in the vicinity of uw; = 1. In the middle part of the curve where it is relatively
linear. Therefore, it would be beneficial to utilize large segments for the linear
region(middle), and small segments for non-linear region(both side). As shown in
Fig. A.4, logarithmic segmentation is suitable for R() implementation. Furthermore,
we can compensate the approximation error by dividing logarithmic segmentation
uniformly into L = 2! subsegments where each each subsegment is demoted by s, ;.

Each segment could be approximated by p(uy) = @y - U1 + by -

Scaling Factor The coefficient (a; ., brw,) of each segment is stored in memory or
look up table;When u; falls on corresponding segment, p(u;) is computed by the
linear equation.The coefficient which can be represented in two’s complement 16-bit
fixed-point with 12-bit fraction , i.e.,in Q(16,12). Large amount of coefficient need
to be stored;therefore, the appropriate bit width of coefficient to represented with

29

low approximation error is important. The scaling factor method could be applied

to enhanced hardware efficiency.

When v, lies within 7y and in segment s, ,,;, a new scaled variable 4 ,, is defined
as Uy 4 = 2"u;. To compensate for scaling of uy, the ag,,; slope of segment s, is
shifted to the right w bit positions as ag,; = 27" ag 4. Thus, the large slope values
which appear when w; is in the vicinity of 0 and 1(shown in Fig. A.2(a)) could be
scaled down by 2="I*2 Similarly, when u; resides in segment s;,w,[, the large
value of ay,w, [can be scaled by 27 and by ,,; can be adjusted as ay ,,; + b1, w, [+.

When wu; resides in segment sg ,,,then p(u,) will be computed as

P(U1) = G001 + bo.wi = 200w, 1u1 + bowy (A.5)

When u; resides in segment s ,,,then p(4;) will be computed as

p(l) = —2%a1,0401 + (a1, + b1,w,1) (A.6)

Address Generator(AG) and Cosine Sine Function

AG is used to address the coefficient memory(a,b, @;) when w; is located at cor-
respond range. The cos and sin function is implemented by only look up table.
The quarter cycle of the sin function is partitioned into 1024 segments;Using the

symmetry of sin and cos function the cos and sin could be approximated compactly.

Overall Architecture

Fig. A.3 shows the overall six-stage pipelined architecture of AWGN noise generator.
The Box-Muller method generate N (0, 1) from stage 1 to stage 5. The sixth stage is
used to multiply variance(o) to N(0,1) variate to generate N(0,0) variate. The o
with corresponding SNR of is configured in the beginning of noise generation. The

bit-width of each part of AWGN generator is plotted in Fig. A.3.

30

3.5

2.5r 1

1.5¢ 1

0.5 1

0 Il Il Il I
0 0.2 0.4 0.6 0.8 1

U1

(a) Ul range (0,1)

0.045
0.041 b

0.035r 1

0.025r i

o
0.02 i
0.015¢ 1
0.01 b

0.005r 1

09999 0.9992 0.9994 0.9996 0.9998 1 1.0002

(b) Ul range (0.999, 1)

0.5

0.45¢ 1

0.351 i
0.3 1
0.25f b

0.2 i

0.1r b

0.051

8.9 0.92 0.94 0.96 0.98 1
U1

(¢) Curve fitting example; red line represent

p(u1), and blue line represent R(u;)

Figure A.2: R.() versus ul

31

Qmenzi Q(16,12) Q(16,15) Q(16,15)
y y y y
REG REG REG REG REG

Q(16,12) Q(16,12) Q(16,15) Q(16,15)

y y y
REG REG REG REG

VARIANCE Q(16,12) Q(16,12

REG REG

Q(16,12

REG REG

Figure A.3: box-muller architecture

32

0 % 27h g 1
| | |
i T L
0 T

L S RN B
l' L:;\I) I I)) /I/JQ'_3 '
¥ 2 RNy Pras B l
I |S0|I 1 ~| r.S‘i‘ 1 I Y
I 1 1 1 I I 1 1 1 I I
: —-(WL-2) —-(WL-2)!

S, s 2
{ : O:WLI—4 I I : 1,:WL_I4J| i
| =OKL1) //1/_/2—(WL—1) |
Y SorL-2) Iso,gVL—ls\ﬂ r: 1,:WL—:3 l SI,WL—ZI

Figure A.4: Hybrid (logarithmic and uniform) segmentation of u; € (0, 1)

A.4 FPGA emulation

The AWGN core is implemented and verified on workstation. Then, we prototype the
AWGN core with BPSK and Viterbi Decoder on FPGA. As shown in Fig. reffpga, we
could download our design via USB and Cinfigure FPGA via COM port. The FPGA
platform contain software(UART!) which is used to communicate between FPGA and
computer and which could support real time performance curve plot.

Through UART, we could configure FPGA and set emulation parameter conveniently
and get the emulation result in real time. When the FPGA emulation is done, the
error number will be sent from FPGA to UART, then the BER could be computed by
computer.Fig.A.6 shows the UART interface.

The detail function is listed in table A.1. As shown in Fig.A.7, the performance
of viterbi decoder is emulated with AWGN core and BPSK mapping. In table A.2,
we could observe that the emulation time of FPGA is 60 times faster than computer

simulation;thus, we could investigate the performance at very low BER region.

!Uart is mainly accomplished by Jia-Lung Lin, Kin-Chu Ho and Chih-Lung Chen

33

Table A.1: Function of UART

COM

Set com port number and Baud Rate between PC and FPGA

Deliver

Set the function to be execute

AWGN Simulation

Set the SNR of AWGN channel and number of transmitted data

Pattern

Set the binary data to configure GPIO

I COM port -4

Figure A.5: BPSK emulation using FPGA:DN9200K10PCI

Table A.2: Comparison the simulation time

Platform Intel Xeon(TM) CPU 3.20GHz Xilinx virtex5
ram: 2048 KB clk frequency: 50Mhz!
decode 107 bit 12 second 0.2 second
decode 10 bit 12000 sec = 33 hr 2000 sec = 0.5 hr

I Due to baud

rate limit of COM port, actually, AWGN core can operate

around 100 Mhz

34

COM Port

|coM1 j[nsmo | N0 PARITY -|

Status
Port: COM1 Rate: 115200

Set COM Port |

Deliver

'i Function I |

Close COM Port

Menu |

Log

Clear Log

A

| (1).Set Output GPIO

| (2).Print Input GPIO

| (3).Test Memory (Wnte & Read)
| (4). Write Pattern to Memory

| (5) Reading Memory

| (9).Test

Choose: 2
Input GPIO Status: 0x BAF

GPIO(@2-bit) | |

~AWGN Simulation

Pattern

Amount

Pattern: Browse

| (1).Set Output GPIO

| (2).Print Input GPIO

| (3).Test Memory (Write & Read)
| (4). Write Pattern to Memory

| (5).Reading Memory

| (9).Test

Deliver Patterns ‘

Clear

7607
Tnput_GPIO Status: 0z 24CD
4710
Input GPIO Stats: Ox 155D
2734
Input_GPIO Status: 0x BAF
1495

A

Choose:
2
Input_GPIO Status: Oz BAF

| (1).Set Output GPIO

| (2) Print Input GPIO

| (3).Test Memory (Write & Read)
| (4). Write Pattern to Memory

| (5).Reading Memory

| (%) Test

Choose

Figure A.6: The interface of the UART program

35

Form?2 D@E}

j10m

j1o~2

j10°3

o4

J10°s

106

j1o~7

Jose

]

j10tao

j1on

SNR

Figure A.7: Emulation result: BPSK with Viterbi decoder performance curve

36

Bibliography

1]

R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,
1963.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” Electron. Lett., vol. 33, no. 6, pp. 457-458, Mar. 1997.

M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE Trans. on
VLSI Systems, vol. 11, no. 6, pp. 976-996, Dec. 2003.

D. Hocevar, “A reduced complexity decoder architecture via layered decoding of Idpc
codes,” in Proc. IEEE Workshop on Signal Processing Systems (SiPS’04), Oct. 2004,
pp. 107-112.

Part 3: carrier sense multiple access with collision detection (CSMA/CD) access

method and physical layer specificaions, IEEE Std. P802.3an-2006, Sept. 2006.

Part 15.3: wireless medium access control (MAC) and physical layer (PHY) specifica-
tions for high rate wireless personal area networks (WPANs), IEEE Std. P802.15.3c-
DF'8, 2009.

J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEFEE Transactions on
Communications, vol. 53, no. 2, pp. 209-213, Feb. 2005.

Y. K. Lin, C. L. Chen, Y. C. Liao, and H. C. Chang, “Structured LDPC codes
with low error floor based on peg tanner graphs,” in IEEE Int. Sympo. Circuits and
Systems (ISCAS’08), May 2008, pp. 1846-1849.

37

[9]

[10]

[11]

[12]

[13]

A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A 3.3-Gbps bit-serial block-
interlaced min-sum LDPC decoder in 0.13-pm CMOS,” in Proc. IEEE CICC07,
Sept. 2007, pp. 459-462.

X. Y. Shih, C. Z. Zhan, C. H. Lin, and A. Y. Wu, “A 19-mode 8.29mm? 52-mW
LDPC decoder chip for IEEE 802.16e system,” in Proc. Int. Sympo. VLSI Circuits
(SOVC’07), June 2007, pp. 16-17.

Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “A 47 gh/s LDPC de-
coder with improved error rate performance,” in Proc. Int. Sympo. VLSI Circuits

(SOVC’09), June 2009.

B. F. C. A. Alimohammad, S. F. Fard and C. Schlege, “A compact and accurate
gaussian variate generator,” IEFE Trans. on VLSI Systems, vol. 16, no. 5, pp. 517—
527, May 2008.

P. LEcuyer, “Tables of maximally equidistributed combined lfsr generators,” Math.

Comput. Archive, vol. 68, no. 225, pp. 261-269, 1999.

38

