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對於抑制高斯雜訊、脈衝雜訊與壓縮缺陷之研究 

研究生：張瑞男      指導教授：王聖智 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

在現今許多電子消費產品中，高畫質數位影像成為主流的資訊來

源，對於影像品質要求也愈來愈高。因此，處理影像中的雜訊便成為

首要解決的課題。本論文針對常見的高斯雜訊、脈衝雜訊以及壓縮缺

陷，設計幾個簡單的處理方法。首先我們對於未知雜訊類型之影像作

壓縮缺陷與脈衝雜訊之偵測，再使用我們所提出的演算法抑制雜訊以

提升影像品質。為了符合實際應用需求，對於影像中之壓縮缺陷，我

們所設計之處理方法不需任何原始影像壓縮的編碼資訊，僅處理解壓

縮後的影像資料，而且演算法不需太多花費計算時間與硬體資源，以

適用於彩色影像與視訊的處理。
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A Study on Reduction of Gaussian Noise, Impulse 
Noise and Compression Artifacts 

 
Student : Jui-Nan Chang   Advisor : Dr. Sheng-Jyh Wang 
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National Chiao Tung University 

 

Abstract 

 In many of today's consumer electronics products, high-definition 

digital images have become a main source of information. As the demand 

of high quality of images keeps increasing, the reduction of image noise 

becomes a primary topic. In this thesis, we design several approaches for 

the reduction of Gaussian noise, impulse noise, and compression artifacts. 

First, images with unknown type of noise would be processed for the 

detection of compression artifact and impulse noise. The proposed 

methods are then used to enhance image quality. For practical 

applications, the proposed algorithms do not require any coding 

information, and can be directly applied over decompressed data. The 

proposed methods require low computational loads and hardware 

resources, and can be efficiently applied to various kinds of color images 

and videos.  
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Chapter 1. Introduction 
Noise in digital images can be easily created during image acquisition and 

transmission. Nowadays, noise reduction has become a typical problem in image 
processing. Additive Gaussian noise and impulse noise can adequately represent most 
corrupting image noise. Many noise-removal methods depend on a specific type of 
noise. For example, classical linear filters, such as mean filter and Gaussian filter, can 
suppress Gaussian noise. For impulse noise, rank statistics and order information are 
usually used. These nonlinear methods have nice performance in noise reduction, but 
require higher computational cost. In this thesis, we aim to design algorithms that are 
simple but can still effectively eliminate noise for color images and videos. 

 
On the other hand, with the wide-spreading usage of compressed images and 

videos, compression artifacts have become another noise problem for low bit-rate 
images and video streams. Based on modern coding standards, from the early JPEG to 
the latest H.264/AVC, these codecs usually apply non-overlapping block discrete 
cosine transform (BDCT). The quantization error or loss of high frequency components 
of DCT coefficients will result in blocking and ringing artifacts for highly compressed 
images and videos. The compression artifacts can be dealt with at the encoding end as 
well as the decoding end. Many pre-processing or BDCT-based methods require the 
information of the codec and the uncompressed data. However, for general digital 
storage, such as DVD videos and internet streams, the only information that is available 
is the decompressed data. Hence, for practical applications, we aim to develop 
algorithms that operate over decompressed images and videos to suppress compression 
artifacts.  

 
The rest of the thesis is organized as follows. In Chapter 2, we introduce the noise 

models and several existing noise reduction methods. In Chapter 3, we discuss the 
purposed de-noising methods. Experiment results are showed in Chapter 4. Finally, we 
make the conclusions in Chapter 5. 

 
 



Chapter 2. Backgrounds 
 

In this chapter, related concepts and papers about noise reduction will be discussed. 
Firstly, we will introduce the noise models in Section 2.1. Several reduction methods 
for Gaussian noise, impulse noise and Compression artifacts will be introduced in 
Section 2.2, 2.3 and 2.4, respectively. 
 

2.1 Noise Models 
 

2.1.1 Additive Gaussian Noise 
 

There are different sources of noise in a digital image. In the image acquisition of 
CCD sensors, dark current noise is generated due to the thermally excited electrons at the 
sensor side. The level of dark noise is proportional to the exposure time and is highly 
dependent on sensor temperature. On the other hand, shot noise, which is characterized 
by a Poisson distribution, is also observed due to the quantum uncertainty in 
photoelectron generation. Moreover, there are some other types of noise during image 
acquisition. According to the central limit theorem, the overall noise effect can be 
generally modeled as a Gaussian distribution. It is characterized by adding to each 
image pixel a random value with a zero-mean Gaussian distribution. Figure 2-1(b) 
shows an example of degraded image with additive Gaussian noise. 

 

(a) (b) 

Figure 2-1  (a) The pure image and (b) the degraded image with additive Gaussian noise 
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Here, we use the standard notation to model the degradation process. For example, 
u(i, j) represents the intensity value of an image u at the pixel location (i, j). For the case 
of additive Gaussian noise, the noisy image u is related to the original image uo by  
 

( , ) ( , ) ( , ),ou i j u i j n i j= +  2 ( , ) ~ (0, )where n i j N σ Eq. 2-1

 
In Eq.2-1, each noise value n is drawn from a zero-mean Gaussian distribution. The 
varianceσ2 of this distribution determines the power of the corrupting noise. The 
zero-mean property allows removing such noise by locally averaging the pixel values. 
 

2.1.2 Impulse Noise 
 
 Impulse noise is caused by errors in noisy sensors, the data transmission process 
in the communication channel, or by errors during the data capture from the digital 
camera. Figure 2-2 (b) shows an example of degraded image with impulse noise. 
 

 

 

 

 (a) (b)  

Figure 2-2  (a) The pure image and (b) the degraded image with impulse noise 

 
The impulse noise is modeled by replacing a portion of the original pixel values 

of the image with intensity values drawn from a certain distribution, usually a uniform 
distribution over the whole intensity range or a discrete distribution at specific 
intensity values. Throughout this thesis, we consider only the uniform distribution 
model, although the proposed method may also be used without modification for the 
discrete distribution model. Hence, for images corrupted with impulse noise, the noisy 
image is related to the original image uo by 
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( , ),    with probability        
( , )

( , ),  with probability (1- )o

n i j p
u i j

u i j p
⎧

= ⎨
⎩

 Eq. 2-1

where n(i, j) has the uniform distribution over [Imin, Imax]. 
 

2.1.3 Compression Artifacts 
 Artifacts in compressed images are common. For block DCT based compression, 
an image is first segmented into blocks, and then transformed, quantized and coded. 
Since each block is treated separately, coarse quantization steps could cause annoying 
exotic edges around block boundaries, and it’s known as blocking artifacts. 
Furthermore, because of the quantization errors of different levels, annoying 
fluctuations may also be found on the regions near edges or corners. This 
phenomenon is called the ringing artifact. An example of the compression artifacts is 
showed in Figure 2-3. 
 

 

(a) 

 

(b) 

Figure 2-3 Compression artifacts: (a) original image (b) compressed image 

 

4 
 



2.2 Gaussian Noise Reduction Methods 
 

Ideally, removing Gaussian noise would involve smoothing the different areas of 
an image without degrading either the sharpness of the signal edges or details. However, 
classical linear filters, such as the Arithmetic Mean Filter (AMF) or the Gaussian Filter, 
smooth noise but may also blur edges significantly. Usually, nonlinear methods are 
used to relief this problem. The anisotropic diffusion, proposed by Perona and Malik, is 
a well-known method described in [1]. In this technique, local image variation is 
measured at every point and its neighboring pixels and differential equations are 
involved. This diffusion method is inherently iterative. Efficiency and stability could 
be the important issues, depending on the adopted computational architecture. 
 

2.2.1 Bilateral Filter 
 
 The bilateral filtering was originally represented by Tomasi and Manduchi [2]. 
They used Gaussian functions as the weighting functions to improve the filter’s 
performance, analyzed the interaction between the weighting functions, and proposed 
metrics for color images. Figure 2-4 shows an example of Gaussian noise reduction by 
bilateral filter. 
 

  
(a) (b) 

Figure 2-4 An image (a) with additive Gaussian noise and (b) processed by bilateral filter 
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2.3 Impulse Noise Reduction Methods 
 
Impulse noise is characterized by replacing a portion of an image’s pixel values 

with random values, leaving the remainder unchanged. Such noise can be introduced 
due to transmission errors. The most noticeable and least acceptable pixels in the noisy 
image are those intensities that are very different from their neighbors. 

 
The Gaussian noise removal methods mentioned above cannot adequately remove 

impulse noise because these methods interpret the impulse noise pixels as edges and 
need to be preserved. For this reason, a separate class of nonlinear filters has been 
developed specifically for the removal of impulse noise. Many of them are extensions 
of the median filter [3], or use rank statistics [4][5][6]. The common idea of these filters 
is to detect the impulse pixels and replace them with estimated values, while leaving the 
remaining pixels unchanged.  

 
Impulse noise removal methods use many different techniques to determine 

whether a given pixel is an impulse. These approaches vary in complexity from 
relatively simple to highly complex. The simplest impulse detectors are based on 
two-state methods that attempt to definitively characterize each image pixel as either an 
impulse or an unaffected pixel [7]. The underlying goal of these two-state methods is to 
find pixels that are significant outliers when compared to their neighbors. More 
complex methods are naturally more successful for detecting impulses in general, but 
there is a tradeoff between performance and complexity. The most complicated 
methods require training procedure to make an optimal classification based on 
measures of pixels and their neighbors. Methods that require training are bound to be 
less controllable and more unpredictable than simpler methods. An additional concern 
with existing methods arises from the fact that when impulse noise appears in an image, 
a portion of the corrupted pixels will be replaced with intensities only slightly different 
from their original values. In this case, impulse noise is still visible in the processed 
image. To handle this issue, a universal noise removal method in [13] used rank 
statistic from local pixels to detect the impulse strength for each pixel. This detector is 
combined with the bilateral filter and can remove both Gaussian noise and impulse 
noise. More discussion and comparisons would be introduced later in this thesis. 
 
  



2.4 Compression Artifacts Reduction 

Methods 
 
 There have been numerous methods proposed to reduce compression artifacts. 
Some methods are introduced as a part of the encoding process, such as the lapped 
transform. Since these methods require modification of the codec, alternative 
post-processing methods, which do not require any codec changes, have become a 
main focus in the field. These post-processing methods can be categorized into two 
types of approaches: spatial-domain approaches and transform-domain approaches, 
depending on which domain the image is processed on. There are also some methods 
that operate over both domains. In this section, we will introduce compression artifacts 
reduction methods in both domains. 
 

2.4.1 Reduction of Blocking Artifact  
 
 Basically, the blocking artifact represents the discontinuous pixels between 8×8 
image blocks. Thus, a simple method in the spatial domain is to use a low-pass filter to 
eliminate the discontinuity. [8] utilized a Gaussian low-pass filter to remove blockiness. 
The result is showed in Figure 2-5. 
 

 
 

(a) Original image (b) Deblocked by [8] 

Figure 2-5 Deblocked result [8] 
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Blocking artifact may be effectively removed by low-pass filtering, but inevitably 
the over-smooth problem would be found in fine regions of images. In [9], the authors 
proposed a method that is based on human visual sensitivity in detecting blocking 
artifact on different kinds of regions, like smooth regions or fine-detail regions. Based 
on the human visual perception, the blocking artifact could be more easily found in 
smooth regions than fine-detail regions. The method in [9] separated images by smooth 
regions and fine regions. In order to avoid the over-smooth problem, the smoothing 
operation is implemented strongly over smooth regions while weakly over fine-detail 
regions. The details of the algorithm will be introduced in the following sections and 
illustrated in Figure 2-6: 

 

 

 

(a) 8×8 block bondary (b) mode selection 

Figure 2-6 Adaptive smoothing of blocking artifacts [9] 

 
 For the block boundary in Figure 2-6 (a), the method in [9] analyzed that whether 
the block boundary belongs to a smooth or fine-detail region by using a measure 
function F(v). F(v) was defined as the difference of intensity values between two 
neighbor pixels. If F(v) was larger than a pre-defined threshold, the block boundary 
would be considered as over a smooth resign. In this case, the method in [9] 
implemented a stronger smoothing operator for de-blocking. On the other hand, if the 
block boundary was considered as on fine-detail regions, the method in [9] used a weak 
smoothing operator for de-blocking in the DCT domain. This adaptive process may 
well preserve the fine-detail features, as showed in Figure 2-7. 
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Figure 2-7 The results of [9]. 
(a) (b) (c) are the original frames.  (d) (e) (f) are the de-blocked frames. 

 
 

2.4.2 Reduction of Ringing Artifact  
  
 For DCT-based coding, Ringing artifacts are caused by the Gibbs phenomenon 
and appear around the edge regions of the image. Up to now, many filter-based 
de-noising methods have been proposed to reduce this kind of artifacts. To reduce 
ringing artifacts, the method in [10] proposed to first detect near strong edges the areas 
with ringing artifacts, and then applied linear or nonlinear isotropic filters to reduce the 
ringing artifacts. Non-linear filters help preserving edges of the images by exploiting 
the spatial order of the surrounding pixels, together with the rank order. The method 
in [11] used local variance of pixel values to find edge pixels. Because the ringing 
artifacts occur along the edges, the pixels whose local variance is larger than a 
pre-defined threshold are supposed to be more likely to possess ringing artifacts. For 
these pixels, the method in [11] utilized the fuzzy filter to smooth the ringing artifacts. 
This fuzzy filter is basically a edge-preserving filter that can avoid 
over-smoothing. Figure 2-8 shows the results of the fuzzy filtering [11]. 
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(a) original image 

 
(b) processed image 

Figure 2-8 The ringing artifact reduction by [11] 

 
One drawback of fuzzy filter is that the signal is converted to a vector before 

filtering. The relative positions of the pixels are ignored in the conversion. 
On the other hand, there are some other methods that require domain 

transformation and iterative optimization. Even though these methods have good 
performance in removing compression artifacts, the required domain transformation 
and iterative optimization make them too complex for practical applications. In this 
thesis, we will focus on spatial-domain operations and aim to develop a simple 
algorithm that does not require complicated computations.  
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Chapter 3. Proposed Methods 

3.1 Proposed Architecture  
 

Figure 3-1 Proposed architecture for noise reduction 

 

Noisy 
Images/Videos 

Denoised 
Images/Videos 

 

Gaussian Noise and 
Impulse Noise 

Reduction Filter 

Impulse 
Noise 

Detection

Compression 
Artifact Reduction 

Filter 

Compression 
Artifact 

Detection 

Post-Processing 
(contrast enhancement, 
sharpness enhancement) 

 
 For convenience, in this section, our proposal for noise reduction is introduced 
first. Based on the architecture illustrated in Figure 3-1, the process flow of the 
proposed methods can be explained as follows. For noisy images and video frames 
that may contain three different types of noise (Gaussian noise, impulse noise, or 
compression artifacts), the results of compression artifact detection identify the 
location of compression artifacts in the images/videos. If the detection results indicate 
strong compression artifacts, the proposed compression artifact reduction filter is 
utilized. Otherwise, the compression artifact reduction process is skipped. The next 
module is impulse noise detection, which detects the possible positions of impulse 
noise in the images/videos. The proposed noise reduction filter is then used to 
suppress Gaussian noise and impulse noise. An optional module can be further used to 
enhance the contrast or sharpness of the denoised images. 
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3.2 Reduction of Compression Artifacts 
 

3.2.1 Detection of Compression Artifacts 
 

For 8x8 block-based compression codecs, compression artifacts may exist due to 
low-bitrate transmission and coarse quantization. Blocking artifacts appear as 
discontinuous intensity chance near block boundaries. An example for blocking artifact 
shows on Figure 3-2.  
  

  
(a) original image (b) compressed image with blocking artifact 

Figure 3-2 An example of blocking artifact 

  

 
 Compared to the original image in Figure 3-2 (a), the blocking artifact can be 
obviously found on the smooth regions of compressed image, like Lena’s shoulder 
in Figure 3-2 (b). Relatively, the blocking artifact in fine regions would not be easily 
observed, like Lena’s eye in Figure 3-2 (b). In human visual perception, the visibility of 
blockiness is highly related to the local variation of the image. Hence, we may check 
the local deviation of each 3×3 block by calculating the standard deviation  S(x) 
within the local neighborhood , as expressed in Ωx Eq. 3-1.  
 

( )

22

1

n
S

n
∈Ω

−
=

−

∑
xy
y y

x , where ( ) ( ){ }: , : ,N i j N i j NΩ = + − ≤ ≤x x  Eq. 3-1 

 
In Eq. 3-1, n represents the total number of pixels within the neighborhood. For a 3 by 
3 window, we have n = 9. Figure 3-3 shows an example of local deviation distribution. 
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Figure 3-3 The distribution of local deviation of compressed image 

 

 
In Figure 3-2, we can observe some blocky patterns in the local deviation 

distribution. To extract these patterns from the local deviation distribution, we design a 
proper range of deviation value, as expressed in the following equation 

 

( )( ) ( )1 21,  
0,BD

if t S t
S S

otherwise
⎧ ≤

= ⎨
⎩

x
x

≤
 

 
Eq. 3-2 

 
 
The result of blocking artifact detection is showed Figure 3-4. 
 

 

Figure 3-4 The result of blocking artifact detection 

 
The two parameters t1 and t2 are related to the quality factor and the variation level 

of the image. If the quality factor is smaller than 15%, the blockiness could be stronger 
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and more observable in flat regions. For this case, in our experiments, we choose a 
larger value of t1 to be within the range [2, 4] for detection. On the contrary, for the 
quality factor larger than 15%, the we choose t1 to be within the range of [1.2, 2]. The 
range of t1 ＜1.2 represents regions with small deviation. These variations would be 
almost unnoticeable to human vision. On the other hand, the value of t2 is related to 
the variation of the signal features. In our experiments, a simple way to choose t2 is 
choose the average of the local deviation S(x). For most images, the t2 value is 
typically within the range of [5, 12].  

With modern coding standards, the compression artifacts usually occur at the 
boundaries between 8×8 blocks. Many traditional deblocking methods focus on these 
boundaries to suppress blockiness. However, because video coding also includes 
motion estimation and motion compensation, the compression artifacts may also 
occur at many other locations in an image frame. Furthermore, during image 
processing, the images with compression artifacts may sometimes be down-sampled 
or up-sampled. Hence, the location of compression artifacts may not necessarily occur 
at the boundaries between 8×8 blocks. Since our method doesn’t restrict itself to the 
boundaries between 8×8 blocks, it can handle the compression artifacts at any 
location.  

 

3.2.2 Reduction of Compression Artifacts  
  

In compression artifacts removal, the blockiness can be eliminated by several 
local smoothing methods. An example of reduction of compression artifacts by using 
bilateral filter [2] is showed in Figure 3-5. 

 

 
(a) blocking artifact (b) deblocked well but over (c) fine region preserved but 

Figure 3-5 The result of blocking artifact reduction 

smooth poorly deblcoked 

by bilateral filter 
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s shown in Figure 3-5 (b), as we apply a strong smoothing operation over the 
imag

Figure 3-6 The result of blocking artifact reduction by adaptive insertion of random noise 

 
In Figure 3-6, the blocky edges are obviously destroyed by the noise. However, 

anoth

Table 3-1 The pseudo code of deblocking algorithm 

A
e, most blocky regions are smoothed but fine-detail regions are also overly 

smoothed. In comparison, if we choose a weaker smoothing, as shown in Figure 3-5 
(c), fine-detail regions are preserved but the blackness cannot be effectively 
suppressed. In this thesis, a simple method that destroys the blockiness by adding in 
random noise, rather than local smoothing, is proposed. This method is to eliminate the 
perceptual blockiness in human eyes. Here, we add in random noise of adaptive 
strength based on the level of blockiness. After the insertion of random noise, the 
blocky phenomenon can be successfully suppressed, as showed in Figure 3-6. 
 

er problem is that the insertion of noise makes the processed image look dustier. 
Hence, we use the bilateral filter to further smooth these regions and the whole 
algorithm can be described in the following pseudo code. 
 

 
r all x in images 

by U[Min(y),Max(y)] 
else

＝ uo(x) 
end

fo
if  SBD(x)＝1 

all ∈Ωxy   replaced 
 

u(x) 
 

 
  

, the detected location x and neighboring pixels y in the corresponding 
wind

In fact, a similar method by adding noise to destroy false contours can be found in 
the I

In Table 3-1
ow Ωx would be replaced by uniform distribution noise U. The range of noise U is 

determined by the maximal and minimal values of the neighboring pixels. 
 

mproved Gray-scaled (IGS) Quantization method [12]. For lossy data compression, 
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ssed by the proposed method, the 
smoo

false contouring may occur in smooth regions after quantization. By adding to each 
pixel a proper level of pseudorandom number, false contouring and artificial edges 
would not be observed by human visual perception. 

Even though the blocking artifacts can be suppre
thing step is still required to suppress the perceptually dusty effect caused by the 

injected noise. Here, we use a modified bilateral filter to smooth the dusty 
regions. Figure 3-7 (c) shows the smoothing result of the modified bilateral filter. The 
modified bilateral filter will be introduced in the next section. With this smoothing step, 
ringing artifacts can also be suppressed. This is because the regions with ringing 
artifact are usually adjacent to the regions with blocking artifacts.  
 
 

  
 (a) original image with blocking artifact (b) inserted noise on detected regions  

 

  
 (c) smoothed result of (b)  (d) over smoothed result of (a)  

ult of blocking artifact r

 

by modified bilateral filter by bilateral filter 

Figure 3-7 Res eduction 
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n this chapter, we’ll discuss the purposed method for the reduction of Gaussian 
noise

. Wish to design a filter that can smooth noisy regions while preserving edges 

 non-iterative, and doesn’t need complicated 

 

 Bilateral Filter 
n [2], applies a nonlinear filter to u to remove 

Gaus

 
e the pixels in the (2N+1) × (2N+1) neighborhood of x. The weight of each 

d one

 
here 

3.3 Reduction of Gaussian Noise and 

Impulse Noise 

 and impulse noise. The goal of the algorithm is to eliminate these two types of 
noise for color images and videos. Practically, in order to reduce the hardware storage 
and computation time, we demand the following requirements in the development of 
the noise reduction algorithm. 

 
1

and fine-detail regions. 
2. The algorithm is simple,

computations.  

3.3.1
The bilateral filter, as described i
sian noise while remaining the edge information. Each pixel is replaced by a 

weighted average of the intensities in a (2N+1) × (2N+1) neighborhood. The weighting 
function is designed to smooth regions with similar intensity while keeping edges intact.
 More precisely, let x be the location of the pixel under consideration, and let  
 

( )NΩ = Ωx  

( ) ( ){ }: , : ,N i j N i j NΩ = + − ≤ ≤x x  

b ∈Ωy  
with respect to x is the product of two components, one spatial weight an  
photometric weight: 
 

 
q. 3-3 

Eq. 3-4 

E

 

( , ) ( , ) ( , )S Pw x y w x y w x y=  

w



 
2

2
2( , ) S

Sw e σ

−
−

=

x y

x y  
Eq. 3-5 
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and 

 

wP(x,y) is further normalized and the smoothed pixel 

 
2

22( , ) P

u u

Pw e σ

−
−

=
x y

x y  
Eq. 3-6 

xu%  The can be described as  

  
S weighting function decreases as the spatial distance in the image between x 

and y

 The parameters σS and σP are used to adjust the influence of the spatial and the 

Bilateral filter has been proved to have excellent performance for Gaussian noise 
mo

 

( , )

( , )

w u
u

w
∈Ω

∈Ω

=
∑
∑

y
y

x

y

x y

x y
%  Eq. 3-7 

The w
 increases; while the wP weighting function decreases as the intensity difference 

between the color vectors increases. The spatial component decreases the influence of 
the distant pixels and reduces the blurring effect; while the photometric component 
reduces the influence of those pixels that are perceptually different with respect to the 
one under processing. In this way, only perceptually similar areas of pixels are averaged 
and thus the sharpness of edges can be preserved. 

 

photometric weightings, respectively. They can be considered as rough thresholds for 
identifying pixels sufficiently close or similar to the central pixel. Note that when σP 
approaches infinity, the bilateral filter becomes a Gaussian filter. On the other hand, 
when both σP and σS approach infinity, the bilateral filter behaves like the mean filter. 
 
 
re val. The algorithm is adequately simple and can be used for color images with low 
computation cost. However, for strong destructive noise, such as impulse noise, the 
bilateral filter performs rather poorly. In the following sections, we will make some 
modification over the bilateral filter to improve the reduction of impulse-like noise. 
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 Detection of Impulse Noise  
mpulse noise. Let x be the 

3.3.2
 Here, we design a simple statistical measure to detect i
location of a pixel and Ωx(N) the neighborhood of x, as defined in Eq. 3-1. Considering 
the case N = 1, we can get 
 

( ) { }0 1 /Ω = Ωx x x  Eq. 3-8 

 
hich represents the neighbor pixels of x. For each point w 0∈Ωxy , we define the 

e., absolute difference in intensity of the pixels between x and y; i.
 

x,y x yd u u= −  

[ ]x y, 0, 25u u ∈ 5  for 8-bit pixel value 
Eq. 3-9 

We define the total absolute difference (TAD) as 
 

0

( )
y

TAD d
∈Ω

= ∑
x

x,yx   Eq. 3-10 

 
The TAD statistic provides us a measure of intensity similarity between the center  

pixel and its neighboring pixels. Figure 3-8 shows examples from the Lena image, in 
which we compare the neighborhood of an impulse noise pixel with the neighborhood 
of an edge pixel. 
 

TAD=863 
TAD=64  

Figure 3-8 An impulse noise pixel (upper side) and a typical edge pixel (right side). TAD of 
impulse＝863; TAD of edge pixel = 88  
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Figu  center pix
corresponding TAD distribution 

 
 at the 

c the TAD value of the center pixel is obviously bigger 
than e TAD value of the pure edge pixel. To confirm that the TAD statistic is a good 
detec

Group I:  
TAD influenced by 
central impulse no

 
ise 

Group II: 
pure and smooth pixels 
 

Gr
TA
noi
wi

oup III:  
D influenced by impulse 
se of corresponding 

ndow 

re 3-9 An 5×5 window with impulse noise on the el, together with the 

Figure 3-9 shows examples from the Lena image, with an impulse noise
enter pixel. We can find that 

th
tor for impulse noise, we check the details of the TAD distribution in Figure 3-9. 

The center pixel T(0,0) is the only impulse noise in this 5×5 block, and the TAD of the 
8 neighboring pixels (group I in Figure 3-9) are correlated with the center noisy pixel. 
The range of these values distribute over the range [120,165], while the range of outer 
pure pixels (group II in Figure 3-9) distribute in [15, 55]. Both groups have a 
tremendous difference with respect to the TAD value of impulse pixel. If we set a 
proper threshold value of TAD, the TAD difference between Group I and Group II 
would be negligible. Group III can be considered to have a similar distribution as 
Group I, because their TAD values are correlated with noisy pixels. Figure 3-10 shows 
the result of impulse noise detection in three color space. 
 



      

Figure 3-10 Impulse noise detection by TAD 

 

.3.3 Reduction of Impulse Noise 

ine it with the original 
ilateral filter to develop our noise reduction algorithm. Here, we propose the third 

 3
 
 In this section, we utilize the TAD statistic and comb
b
weighting function to indicate how likely an image pixel possesses an impulse noise. 
This weighting function can be defined as the “impulsive weighting function”: 
 

2TAD( )x  
22( ) I

Iw e σ
−

=x  Eq. 3-11 

 
The parameter σI determines the penalty of high TAD values for impulse noise.  

ter to 
rm a new weighting function, which includes spatial, photometric and impulsive 

sed in [13], we introduce an adaptive function to 
the how much to use the impulsive weighting and photometric weighting. 

 
 We combine the impulsive weighting function with the original bilateral fil
fo
properties. However, the direct combination of impulsive weighting function and 
photometric weighting function is not appropriate. This is because the impulsive 
weighting function works well to remove strong impulse outliers, while the 
photometric weighting function is used to smooth weak impulses. These two 
weighting functions need to be combined in a proper way to handle not only strong 
impulses but also weak impulses. 
  
 Based on the method propo
determine 
Considering a central pixel x, and the neighbor pixels ∈Ω y , we define the “adaptive 
weighting” T of y with respect to x as 
 

2

2

TAD⎛
⎜ ⎟

( ) TAD( )
2

2( , ) 1 TT e σ

+ ⎞
⎝ ⎠−

= −

x y

x y  
Eq. 3-12 
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The range of adaptive weighting is [0, 1]. The σT parameter controls the shape of 
the function. If x or y has a large TAD value with respect to σT, then . On the 
other hand, if neither pixel has large TAD value, then

( , ) 1≈x yT
0( , )T ≈x y . For the property of 

adaptive weighting function, we define the final weighting function as 

 
1 ( , )T T

S P Iw w w w−= x ( , )( , ) ( , ) ( , ) ( , )y x yx y x y x y x y  Eq. 3-13 

 
The restored pixel can be computed as expressed below: 
 

 
The modified bilateral filter can remove Gaussian noise and im

choosing proper parameters σS, σP, σI, and σT For the impulse level p<20%, we can get 
good performance by 3×3 window size and without iterative calculation. The selection 
of parameters and experiment results will be introduced in the following sections. 
 

As indicated in [14], for Gaussian noise removal, the optimal σS value is relatively 
ately equal to 1.7 × σn, where σn 
e. In [15], Immerkaer provides a 

st method to estimate the σn of Gaussian noise in an image. The estimator is given by 

  
 

( , )

( , )w∑x x y  

w u
u ∈Ω

∈Ω

=
∑ y
y

y

x y
% Eq. 3-14 

pulse with 
. 

3.3.4 Selection of Parameters 
 
 
insensitive to the optimal σP, and σP can be approxim
represents the standard deviation of the Gaussian nois
fa
 

1ˆ ( ( )* )
2 6( 2)( 2)N u L

W H
πσ =

− − ∑
x

x  

Eq. 3-15 
1 2 1
2 4 2

1 2 1
L

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦
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W and H represent the weight and height of the image, and L denotes the 

Laplacian filter. To suppress impulse noise, we take σS ＝ 5. Experiment results have 
shown that the proper value of σI is around 2400, and σJ ＝ 0.1 is a good choice for 

oth impulse noise and Gaussian noise. For compression artifact reduction , 
similar parameters are selected to smooth dusty regions. The experimental results will 
be showed in the following chapter.  
 

removing b



Chapter 4. Experimental Results 
 

4.1 Reduction of Compression Artifacts 
 
 To evaluate the deblocking performance, we test several JPEG images with 
different quality factors ( ), with the case QF＝100 indicating no 
quantization at all. We compared this method with the fuzzy filter proposed in 

QF [1,100]∈

[16] 
which is also a simple method with similar complexity. Both methods are 
implemented with a 3×3 filtering window. Figure 4-1 shows the experimental results 
and Table 4-1 lists the PSNR performance comparison. It can be seen the proposed 
method consistently outperforms the fuzzy filter for various images.  
 
 
Table 4-1 Comparison of PSNR (in decibels) performance of deblocking algorithms applied on 
JPEG images (QF stands for quality factor) 

Image (QF) Input Fuzzy Filter [16] Proposed Method 
Lena (20) 30.02 dB 30.33 dB 30.42 dB 
Lena (15) 29.13 dB 29.50 dB 29.56 dB 
Lena (10) 27.68 dB 28.06 dB 28.08 dB 
Tower (20) 27.57 dB 25.07 dB 27.45 dB 
Tower (15) 26.74 dB 24.86 dB 26.95 dB 
Tower (10) 25.43 dB 24.12 dB 25.73 dB 
Foreman (20) 30.49 dB 30.94 dB 31.29 dB 
Foreman (15) 29.28 dB 29.82 dB 30.05 dB 
Foreman (10) 27.79 dB 28.43 dB 28.50 dB 
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(a) (b) (c) 

Figure 4-1 Compression artifact reduction examples (a) JPEG images with QF = 15, deblocking results for the (b) 
fuzzy filter [16] and (c) proposed compression artifact reduction filter 
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4.1.1 Blocking Strength 
 
 A measure of the blocking visual strength has been proposed in [17]. The 
blocking strength indicates the ratio of the absolute gradient over the average gradient 
calculated by adjacent pixels. Assume we have an image I with elements Yi,j, where i 
an j denote the pixel and line position, respectively. The normalized horizontal 
gradient DH,norm calculated over N adjacent pixels is defined as 
 

1, ,
,

1, ,
, 0

( , ) 1
2

i j i j
H norm

i n j i n j
n N N n

Y Y
D i j

Y Y
N

+

+ + +
=− ≠

−
=

−∑
K

 

 

Eq. 4-1 

With DH,norm, we further define 

,
1

( ) ( , )
nl

H H norm
j

S i D i j
=

= ∑  Eq. 4-2 

 
as the summation of DH,norm of all image lines. Figure 4-2 shows an example of SH.  
  
 
 

    
Figure 4-2 An impulse noise pixel (upper side) and a typical edge pixel (right side). TAD of 
impulse＝863; TAD of edge pixel = 88  
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The periodic structure of the encoding grid is clearly revealed in the SH, as 
shown in Figure 4-2. The blocking strength (BS) for the whole frame is then defined 
as  
  

( )
( )

H

H

H
S blockBS

S non block
=

−
 

( )
( )

V

V

V
S blockBS

S non block
=

−
 

1 ( )
2 H VBS BS BS= +  

Eq. 4-3 

 

where ( )S blockH and (S non block−H ) denote the average value of SH at the 

block edge and intermediate positions, respectively. Similar definition is utilized for 
vertical block strength ( (VS block) and (VS non block− ) ). Total block strength (BS) is the 
average of horizontal and vertical strength. Table 4-2 Comparison of blocking 
strength (BS) of deblocking algorithms applied on JPEG images (QF stands for 
quality factor) shows the block strength of the experimental results.  
 

 
Table 4-2 Comparison of blocking strength (BS) of deblocking algorithms applied on JPEG 
images (QF stands for quality factor) 

 
Image (QF) Input Proposed 

Method
Fuzzy 
Filter

Lena (20) 1.92 1.48 1.65 
Lena (15) 2.46 1.47 1.62 
Lena (10) 3.71 1.51 1.95 
Tower (20) 2.06 1.67 1.94 
Tower (15) 2.66 1.57 1.97 
Tower (10) 4.15 1.77 2.49 
Foreman (20) 3.38 1.29 1.46 
Foreman (15) 4.29 1.39 1.54 
Foreman (10) 5.85 1.65 1.88 
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4.1.2 Compression Artifact Reduction for Videos  
 
 The following images show compression artifact reduction for video frames. We 
can find that not only blockiness but also ringing artifact can be removed by our 
method. 
 

    

(a) (b) (c) 

   
(d) (d) (f) 

Figure 4-3 The compression artifact reduction results for video frames 
(a)(b)(c) : original frames  (d)(e)(f): deblocked frames 
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Figure 4-4 The compression artifact reduction results for video frames 

(left : original frames  right: deblocked frames) 
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Figure 4-5 The compression artifact reduction results for video frames 

(left : original frames  right: deblocked frames) 
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4.2 Reduction of Gaussian Noise and 

Impulse Noise 
We have extensively tested the noise removal capabilities of the proposed method 

with respect to a few other filters. The following images show the experimental results 
for the removal of impulse noise, Gaussian noise and mixed noise patterns.   

 

 
Impulse noise (p＝20%) Denoised by 3×3 median filter Denoised by proposed method 

 
Gaussian noise (σ ＝10) Denoised by 3×3 median filter Denoised by proposed method 

 
Mixed noise (p＝20%, σ ＝10) Denoised by 3×3 median filter Denoised by proposed method 

Figure 4-6 Comparing proposed method and median filter on images with Gaussian noise and 
mixed Gaussian and impulse noise  
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Table 4-3 Performance of applying different filters to images corrupted with Gaussian noise, 
impulse noise and mixed noise (PSNR in decibels) 

Method 

Lena Image Pepper Image 
p=20% σ=10 p=20%, 

σ=10
p=20% σ=10 p=20%, 

σ=10
3×3 median filter 30.68 dB 31.41 dB 28.83 dB 29.51 dB 30.33 dB 28.14 dB
5×5 median filter 29.34 dB 28.91 dB 28.53 dB 28.89 dB 29.58 dB 28.21 dB

3×3 ROAD 
Trilateral Filter [13] 32.98 dB 28.80 dB 28.87 dB 31.99 dB 28.98 dB 28.37 dB
Proposed Adaptive 

Bilateral Filter 31.08 dB 31.93 dB 29.70 dB 29.28 dB 30.27 dB 28.26 dB
 
 From the results showed in Figure 4-6, we verified that the proposed adaptive 
bilateral filter may not only retain the ability to remove Gaussian noise but also can 
effectively remove mixed noise. Furthermore, another comparison between the 
proposed method and the ROAD trilateral filter [13] in listed in Table 4-3, where we 
can find that ROAD trilateral filter has better performance for impulse noise removal. 
In fact, the main difference between ROAD trilateral filter and the proposed method is 
their ROAD statistic and our TAD measure. The calculation of ROAD requires rank 
statistic, which spends more computations than our method. Table 4-4 shows the 
comparison of computation time between these two methods. Basically, our method 
has similar performance with respect to the ROAD trilateral filter, but with a lighter 
computational load. 
 

Table 4-4 The average time cost of two methods with different window size (The implementation 
environment used Matlab platform with 2.10GHz AMD Athlon™ 64X2 Dual Core 4000+)  

Method 512×512 
Lena Image

512×512 
Pepper Image 

3×3 ROAD Trilateral 
Filter 4.98 sec 5.01 sec 

3×3 Proposed Adaptive 
Bilateral Filter 3.76 sec 3.87 sec 

5×5 ROAD Trilateral 
Filter 13.86 sec 13.90 sec 

5×5 Proposed Adaptive 
Bilateral Filter 9.80 sec 9.83 sec 

 
 
 
 



4.2.1 Reduction of Impulse Noise for Videos 
 
 
 The following images show impulse noise reduction for video frames. We can find 
that our proposed method has excellent performance. 
 

 

 
 

 
 

 
Figure 4-7 The impulse noise reduction results for video frames 

 (p＝10% for RGB color channels) 
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Figure 4-8 The impulse noise reduction results for video frames (p＝15% for gray channel)
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Chapter 5. Conclusions  
In this thesis, we proposed several algorithms to remove Gaussian noise, impulse 

noise, and compression artifact. A simple compression artifact detector, which utilized 
local deviation and proper thresholds, can indicate the locations of perceptual 
blockiness. The blocking artifact is suppressed by the proposed noise-injection based 
deblocking filter. Furthermore, based on the bilateral filter, we add in the TAD 
measure to take into account the strength of impulse noise. The proposed modified 
bilateral filter has nice performance in smoothing Gaussian noise and impulse noise 
while may preserve fine-detail regions in the images. Without requiring the 
computation of rank statistic, the computational load of our method is lighter than the 
ROAD trilateral filter. The experiment results show that the proposed method can 
efficiently remove compression artifacts, Gaussian noise, and impulse noise. 
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