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Abstract

In many of today's consumer electronics products, high-definition
digital images have become a main source of information. As the demand
of high quality of images keeps increasing, the reduction of image noise
becomes a primary topic. In this thesis, we design several approaches for
the reduction of Gaussian noise, impulse noise, and compression artifacts.
First, images with unknown type of noise would be processed for the
detection of compression artifact and impulse noise. The proposed
methods are then used to enhance image quality. For practical
applications, the proposed algorithms do not require any coding
information, and can be directly applied over decompressed data. The
proposed methods require low computational loads and hardware
resources, and can be efficiently applied to various kinds of color images

and videos.

il



AT

Eéﬁﬁﬁﬁ?i&nﬁiiﬁﬁﬂéﬁwmy%%ﬁiﬁﬁ%ﬁ’mﬁﬁﬁwﬁ;
%Emiﬁ,\glli I'}F%( K|£ﬁJ Iyl‘l-q\ﬂp}_:y&,///_ﬂzﬁgp/ ].§33 'R] Tifié_%/\ﬁ

é*ﬂ
e

BARM etk B S - A Y RS E RS LS
Fesd GBS e XD P EB ORI L c AN EHEES L HHE K

BRFEELEAPVE TN NSRS R E T D DR SHEES L 280
AP WG IR S e A oL BREHEEF RN LS G i
e BARSEf IR A R M- FAaFS& Ik IR Y

B ER PR TRE S SRR SRR R T S R

A\
N

A
q

{

BiEA ERHEAEY R SRS L R B D % sy g
FrRE b f- FOREHEPER CFANZ I REIL LT 0 F
P g1 F o 3 BLBLGE U o BTSSP R BN S A e g R R R

g&%ﬁﬁﬁéﬁﬁﬁﬁgﬁ%ﬁ%yﬁﬁé~$§~Wiﬁijo

il



Contents

BB R s i
AADSTTACT ...ttt ettt st e b e st b e et e b e eneas i
. P TSRS 111
L0031 11S) 111 ST SOTRP RPN v
LISt Of FIGUIES ...eieiiieeeeece ettt ettt et et e e st e e e sbee e s sneeesnneeennseeenens \%
LSt OF TabIES. ..ottt vi
Chapter 1. INtrodUCHION .......eeeiiieeiiie ettt e tee e ere e e e e sbeeesaseeennneas 1
Chapter 2. Backgrounds.........cceieiiiiiiiieeiiieeieeeee et e e e e 2
2.1 NOISE MOEIS ...t 2
2.1.1 Additive Gaussian NOISE.........eerueerieeriierieeiienieeiee st eiee st see e 2

2.1.2 ITMPUISE NOTSE ..oovveeeiiieeeiieeeiee ettt ettt ree e vee e e e seaeeeerees 3

2.1.3 Compression ATtIfactS . i i e e ettt eree e eeeeereeeevee e 4

2.2 Gaussian Noise Reduction Methods ..ot 5
2.2.1 Bilateral Filter i .. i i e e 5

2.3 Impulse Noise Reduction Methods ...t oiveeeiiitenii e 6

2.4 Compression Artifacts Reduction Methods .......cuueeivieiiiieinciiiiiicciieeie, 7
2.4.1 Reduction of Blocking Artifact i ....iviieeiieeiieeieeeee e, 7

2.4.2 Reduction of Rmging Artifact.........ci i, 9

Chapter 3. Proposed Methods.........c ittt 11
3.1 Proposed ATChItECIUIE.........ieeiiieeiieeciie ettt e e evee e ens 11

3.2 Reduction of Compression ATtifacts........cceeeeveeerieeeiiieeiieeeiee e eevee e 12
3.2.1 Detection of Compression ArtifactS.........ccccveeeeieeeiveeniieeeciieeeiee e, 12

3.2.2 Reduction of Compression ArtifactS.........ccceeeeveeeeieeniieeecieeeeiee e, 14

3.3 Reduction of Gaussian Noise and Impulse NOiS€.........cccevveeecrieeriieenieeennnn. 17
3.3 1 Bilateral FIIter......coouviiiiiiieiieeee e 17

3.3.2 Detection of Impulse NOISE .....ccueeevveeeriieeiiie e 19

3.3.3 Reduction of Impulse NOISE.......c.ceevvvieriiieiiieeiee e 21

3.3.4 Selection of Parameters..........cooeeeiueerieiiiieniieieeieeee e 22

Chapter 4. Experimental ReSUlts........c..ccocuiiiiiiiiiiiieiee e 24
4.1 Reduction of Compression ATtifactS.........ccceeeeveeeeieeeiieeeiieeecie e 24
4.1.1 Blocking Strength .........cccveeviiieiiieeieceeeeee e 26

4.1.2 Compression Artifact Reduction for Videos..........ccccceevevveiiciirennennnne., 28

4.2 Reduction of Gaussian Noise and Impulse NoOise........cccccecveeeriieeriieenreeenee. 31
4.2.1 Reduction of Impulse Noise for Videos.........cceecveeecirieeciiienirieeeieenne, 33

v



Chapter 5. CONCIUSIONS ......veieiiiieeiiieeiieeeieeeeiee et e e seteeesaeeetbeessreesbeeessseeessseeesnseeennns 35
RETETEICE ....eieeeieeeeeee et e e e tee e st e e sase e e s nseeesnseeenseeens 36

List of Figures

Figure 2-1 (a) The pure image and (b) the degraded image with additive Gaussian

THOTSE c. vt euteetteeutee et e et e s tteea bt e bt e e at e e bt e e ab e e bt e e s bt e be e eab e e bt e ea b e e bt e eab e e bt e eabeenbeeeateenbeesaeas 2
Figure 2-2 (a) The pure image and (b) the degraded image with impulse noise......... 3
Figure 2-3 Compression artifacts: (a) original image (b) compressed image................ 4

Figure 2-4 An image (a) with additive Gaussian noise and (b) processed by bilateral

1§ L OO OO USRS PTUPRRRUPRRPRRR 5
Figure 2-5 Deblocked reSult [8]...ccuiiiiiiieiiieiie ettt e 7
Figure 2-6 Adaptive smoothing of blocking artifacts [9]........cccceeevveriiiencieicie e, 8
Figure 2-7 The results of [9]. .ouviiiii it i ittt 9
Figure 2-8 The ringing artifact reduction by [11] ioiciiuneeiiiieniiiiieeee e 10
Figure 3-1 Proposed architecture for noise reduction ... .......ccccceevveeeciieeecieeeeieeeeienns 11
Figure 3-2 An example of blocking artifact.......c oot 12
Figure 3-3 The distribution of local deviation of compressed image .............c.cccu..... 13
Figure 3-4 The result of blocking artifactdetection .........i.....cccoeecvvieriiieecieieiieeiee 13
Figure 3-5 The result of blocking artifact reduction by bilateral filter........................ 14
Figure 3-6 The result of blocking artifact reduction by adaptive insertion of random

THOTSE 1.ttt et e ettt et e eat e e bt eeat e e bt e e ab e e b e e e ab e e ebe e e ab e e bt e eabeeeheeenb e e eh b e eabeenhteenbeeehteebeens 15
Figure 3-7 Result of blocking artifact reduction............cccccveevvieeiiieeiiiecie e 16

Figure 3-8 An impulse noise pixel (upper side) and a typical edge pixel (right side).
TAD of impulse=863; TAD of edge pixel = 88......cccveeeriieiiiieieeeeeeee e 19
Figure 3-9 An 5x5 window with impulse noise on the center pixel, together with the
corresponding TAD diStribUtion ........c.c.cccouiieeiiieiiieeiee e 20
Figure 3-10 Impulse noise detection by TAD .......ccccoevieieiiiieiiieeieecie e 21
Figure 4-1 Compression artifact reduction examples (a) JPEG images with QF = 15,
deblocking results for the (b) fuzzy filter [16] and (c) proposed compression

artifact reduction fIlEer ..........oiuiiiiiii e 25
Figure 4-2 An impulse noise pixel (upper side) and a typical edge pixel (right side).

TAD of impulse=863; TAD of edge pixel = 88......cccveeviiieiiiieiieeeeeeeeee 26
Figure 4-3 The compression artifact reduction results for video frames...................... 28
Figure 4-4 The compression artifact reduction results for video frames...................... 29
Figure 4-5 The compression artifact reduction results for video frames...................... 30

A\



Figure 4-6 Comparing proposed method and median filter on images with Gaussian
noise and mixed Gaussian and IMpPulSe NOISE........cceeeevvreeiieeniieeriie e 31

Figure 4-7 The impulse noise reduction results for video frames.............ccceeecveeenneenne 33

Figure 4-8 The impulse noise reduction results for video frames (p=15% for gray

(o1 F:1 11 ] TSR 34
List of Tables
Table 3-1 The pseudo code of deblocking algorithm............ccccevevieriiiinciiiniecieee, 15

Table 4-1 Comparison of PSNR (in decibels) performance of deblocking algorithms
applied on JPEG images (QF stands for quality factor) ..........cccccvvevcieircieennenns 24
Table 4-2 Comparison of blocking strength (BS) of deblocking algorithms applied on
JPEG images (QF stands for quality factor) .........ccceevvvieriieencieeeie e, 27
Table 4-3 Performance of applying different filters to images corrupted with Gaussian
noise, impulse noise and mixed noise (PSNR in'decibels)..........ccccveerverennnennee. 32
Table 4-4 The average time cost of two methods with different window size (The
implementation environment used Matlab platform with 2.10GHz AMD Athlon™
64X2 Dual Core 40004) w.c..eeneesieesseesteaitansenneesee et siseeeseeeeeesseensesseesseeneesseenseseens 32

vi



Chapter 1. Introduction

Noise in digital images can be easily created during image acquisition and
transmission. Nowadays, noise reduction has become a typical problem in image
processing. Additive Gaussian noise and impulse noise can adequately represent most
corrupting image noise. Many noise-removal methods depend on a specific type of
noise. For example, classical linear filters, such as mean filter and Gaussian filter, can
suppress Gaussian noise. For impulse noise, rank statistics and order information are
usually used. These nonlinear methods have nice performance in noise reduction, but
require higher computational cost. In this thesis, we aim to design algorithms that are

simple but can still effectively eliminate noise for color images and videos.

On the other hand, with the wide-spreading usage of compressed images and
videos, compression artifacts have become ranother noise problem for low bit-rate
images and video streams. Based ‘on modern coding standards, from the early JPEG to
the latest H.264/AVC, these ‘codecs usually apply non-overlapping block discrete
cosine transform (BDCT). The quantization error or loss of high frequency components
of DCT coefficients will result in blocking and ringing artifacts for highly compressed
images and videos. The compression artifacts.can-be dealt with at the encoding end as
well as the decoding end. Many pre-processing or'BDCT-based methods require the
information of the codec and the uncompressed data. However, for general digital
storage, such as DVD videos and internet streams, the only information that is available
is the decompressed data. Hence, for practical applications, we aim to develop
algorithms that operate over decompressed images and videos to suppress compression

artifacts.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the noise
models and several existing noise reduction methods. In Chapter 3, we discuss the
purposed de-noising methods. Experiment results are showed in Chapter 4. Finally, we

make the conclusions in Chapter 5.



Chapter 2. Backgrounds

In this chapter, related concepts and papers about noise reduction will be discussed.
Firstly, we will introduce the noise models in Section 2.1. Several reduction methods
for Gaussian noise, impulse noise and Compression artifacts will be introduced in

Section 2.2, 2.3 and 2.4, respectively.

2.1 Noise Models

2.1.1 Additive Gaussian Noise

There are different sources.of noise in-a digital image. In the image acquisition of
CCD sensors, dark current noise is generated due to the thermally excited electrons at the
sensor side. The level of dark noise is proportional to the exposure time and is highly
dependent on sensor temperature. On 'the other hand, shotnoise, which is characterized
by a Poisson distribution, is also observed due to. the quantum uncertainty in
photoelectron generation. Moreover, there are some other types of noise during image
acquisition. According to the central limit theorem, the overall noise effect can be
generally modeled as a Gaussian distribution. It is characterized by adding to each
image pixel a random value with a zero-mean Gaussian distribution. Figure 2-1(b)

shows an example of degraded image with additive Gaussian noise.

(©)
Figure 2-1 (a) The pure image and (b) the degraded image with additive Gaussian noise



Here, we use the standard notation to model the degradation process. For example,
u(i, j) represents the intensity value of an image u at the pixel location (i, j). For the case

of additive Gaussian noise, the noisy image u is related to the original image u° by
u(i, j) =u’(, j) +n(i, j), where n(i, j) ~ N(0,5°) Eq. 2-1

In Eq.2-1, each noise value n is drawn from a zero-mean Gaussian distribution. The
variances® of this distribution determines the power of the corrupting noise. The

zero-mean property allows removing such noise by locally averaging the pixel values.

2.1.2 Impulse Noise

Impulse noise is caused by errors in noisy sensors, the data transmission process
in the communication channel, or by errors during the data capture from the digital

camera. Figure 2-2 (b) shows an example of degraded image with impulse noise.

(a) (b)
Figure 2-2  (a) The pure image and (b) the degraded image with impulse noise

The impulse noise is modeled by replacing a portion of the original pixel values
of the image with intensity values drawn from a certain distribution, usually a uniform
distribution over the whole intensity range or a discrete distribution at specific
intensity values. Throughout this thesis, we consider only the uniform distribution
model, although the proposed method may also be used without modification for the
discrete distribution model. Hence, for images corrupted with impulse noise, the noisy

image is related to the original image u° by



n(i, j), with probability p

ult-J)= {u”(i, ), with probability (1- p) Eq.2-1

where n(i, j) has the uniform distribution over [Imin, Imax]-

2.1.3 Compression Artifacts

Artifacts in compressed images are common. For block DCT based compression,
an image is first segmented into blocks, and then transformed, quantized and coded.
Since each block is treated separately, coarse quantization steps could cause annoying
exotic edges around block boundaries, and it’s known as blocking artifacts.
Furthermore, because of the quantization errors of different levels, annoying
fluctuations may also be found on the regions near edges or corners. This
phenomenon is called the ringing artifact. An example of the compression artifacts is

showed in Figure 2-3.

ringing artifact

hlocking artifact

(b)

Figure 2-3 Compression artifacts: (a) original image (b) compressed image



2.2 Gaussian Noise Reduction Methods

Ideally, removing Gaussian noise would involve smoothing the different areas of
an image without degrading either the sharpness of the signal edges or details. However,
classical linear filters, such as the Arithmetic Mean Filter (AMF) or the Gaussian Filter,
smooth noise but may also blur edges significantly. Usually, nonlinear methods are
used to relief this problem. The anisotropic diffusion, proposed by Perona and Malik, is
a well-known method described in [1]. In this technique, local image variation is
measured at every point and its neighboring pixels and differential equations are
involved. This diffusion method is inherently iterative. Efficiency and stability could

be the important issues, depending on the adopted computational architecture.

2.2.1 Bilateral Filter

The bilateral filtering was originally represented by Tomasi and Manduchi [2].
They used Gaussian functions .as the weighting functions to improve the filter’s
performance, analyzed the interaction between the weighting functions, and proposed
metrics for color images. Figure 2-4 shows-an example of Gaussian noise reduction by
bilateral filter.

(a) (b)
Figure 2-4 An image (a) with additive Gaussian noise and (b) processed by bilateral filter



2.3 Impulse Noise Reduction Methods

Impulse noise is characterized by replacing a portion of an image’s pixel values
with random values, leaving the remainder unchanged. Such noise can be introduced
due to transmission errors. The most noticeable and least acceptable pixels in the noisy

image are those intensities that are very different from their neighbors.

The Gaussian noise removal methods mentioned above cannot adequately remove
impulse noise because these methods interpret the impulse noise pixels as edges and
need to be preserved. For this reason, a separate class of nonlinear filters has been
developed specifically for the removal of impulse noise. Many of them are extensions
of the median filter [3], or use rank statistics [4][5][6]. The common idea of these filters
is to detect the impulse pixels and replace them with estimated values, while leaving the

remaining pixels unchanged.

Impulse noise removal methods use many. different techniques to determine
whether a given pixel is an. impulse. These approaches vary in complexity from
relatively simple to highly complex. The simplest impulse detectors are based on
two-state methods that attempt to definitively characterize each image pixel as either an
impulse or an unaffected pixel [7]. The underlying goal of these two-state methods is to
find pixels that are significant outliers when compared to their neighbors. More
complex methods are naturally more successful for detecting impulses in general, but
there is a tradeoff between performance and complexity. The most complicated
methods require training procedure to make an optimal classification based on
measures of pixels and their neighbors. Methods that require training are bound to be
less controllable and more unpredictable than simpler methods. An additional concern
with existing methods arises from the fact that when impulse noise appears in an image,
a portion of the corrupted pixels will be replaced with intensities only slightly different
from their original values. In this case, impulse noise is still visible in the processed
image. To handle this issue, a universal noise removal method in [13] used rank
statistic from local pixels to detect the impulse strength for each pixel. This detector is
combined with the bilateral filter and can remove both Gaussian noise and impulse

noise. More discussion and comparisons would be introduced later in this thesis.



2.4 Compression Artifacts Reduction

Methods

There have been numerous methods proposed to reduce compression artifacts.
Some methods are introduced as a part of the encoding process, such as the lapped
transform. Since these methods require modification of the codec, alternative
post-processing methods, which do not require any codec changes, have become a
main focus in the field. These post-processing methods can be categorized into two
types of approaches: spatial-domain approaches and transform-domain approaches,
depending on which domain the image is processed on. There are also some methods
that operate over both domains. In this section, we will introduce compression artifacts

reduction methods in both domains.

2.4.1 Reduction of Blocking Artifact

Basically, the blocking artifact represents-the discontinuous pixels between 8x8
image blocks. Thus, a simple method 1n the spatial domain is to use a low-pass filter to
eliminate the discontinuity. [8] utilized a Gaussian low-pass filter to remove blockiness.

The result is showed in Figure 2-5.

(a) Original image (b) Deblocked by [8]
Figure 2-5 Deblocked result [8]



Blocking artifact may be effectively removed by low-pass filtering, but inevitably
the over-smooth problem would be found in fine regions of images. In [9], the authors
proposed a method that is based on human visual sensitivity in detecting blocking
artifact on different kinds of regions, like smooth regions or fine-detail regions. Based
on the human visual perception, the blocking artifact could be more easily found in
smooth regions than fine-detail regions. The method in [9] separated images by smooth
regions and fine regions. In order to avoid the over-smooth problem, the smoothing
operation is implemented strongly over smooth regions while weakly over fine-detail
regions. The details of the algorithm will be introduced in the following sections and
illustrated in Figure 2-6:

Mode selection :

Block boundary 8
I(v) = plv; — vigy
Block boundary ‘ ;‘ . Vi+s)
S S
- Pixels for liltering
™y / T
on a vertical edge H(A) = Lo lal= f!'l
w vl by b v v [y (v (| e—m—m)m ' 0, otherwise.
N
SJ
F(v) is large if the filter
is in smooth region
(a) 8x8 block-bondary (b) mode selection

Figure 2-6 Adaptivessmoothing of blocking artifacts [9]

For the block boundary in Figure 2-6 (a), the method in [9] analyzed that whether
the block boundary belongs to a smooth or fine-detail region by using a measure
function F(v). F(v) was defined as the difference of intensity values between two
neighbor pixels. If F(v) was larger than a pre-defined threshold, the block boundary
would be considered as over a smooth resign. In this case, the method in [9]
implemented a stronger smoothing operator for de-blocking. On the other hand, if the
block boundary was considered as on fine-detail regions, the method in [9] used a weak
smoothing operator for de-blocking in the DCT domain. This adaptive process may

well preserve the fine-detail features, as showed in Figure 2-7.
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N

(d) (e}
Figure 2-7 The results of [9].
(a) (b) (c) are the original frames. (d) (¢)(f)are the de-blocked frames.

2.4.2 Reduction of Ringing Artifact

For DCT-based coding, Ringing artifacts are caused by the Gibbs phenomenon
and appear around the edge regions of the image. Up to now, many filter-based
de-noising methods have been proposed to reduce this kind of artifacts. To reduce
ringing artifacts, the method in [10] proposed to first detect near strong edges the areas
with ringing artifacts, and then applied linear or nonlinear isotropic filters to reduce the
ringing artifacts. Non-linear filters help preserving edges of the images by exploiting
the spatial order of the surrounding pixels, together with the rank order. The method
in [11] used local variance of pixel values to find edge pixels. Because the ringing
artifacts occur along the edges, the pixels whose local variance is larger than a
pre-defined threshold are supposed to be more likely to possess ringing artifacts. For
these pixels, the method in [11] utilized the fuzzy filter to smooth the ringing artifacts.
This fuzzy filter is Dbasically a edge-preserving filter that can avoid

over-smoothing. Figure 2-8 shows the results of the fuzzy filtering [11].



MPEG4
WORLD

(a) original image

e
gy

MPEG4
WORLD

(b) processed image

Figure 2-8 The ringing artifact reduction by [11]

One drawback of fuzzy filter is that the signal is converted to a vector before

filtering. The relative positions of the pixels are ignored in the conversion.

On the other hand, there are some other methods that require domain
transformation and iterative optimization. Even though these methods have good
performance in removing compression artifacts, the required domain transformation
and iterative optimization make them too complex for practical applications. In this
thesis, we will focus on spatial-domain operations and aim to develop a simple
algorithm that does not require complicated computations.

10



Chapter 3. Proposed Methods

3.1 Proposed Architecture

' Post-Processing i
| (contrast enhancement, !
! 1
! 1

Noisy sharpness enhancement)
P
Images/Videos
Denoised
Images/Videos
Compression Compression Impulse Gaussian Noise and
Artifact » Artifact Reduction | ¥V, Noise > Impulse Noise
Detection Filter Detection Reduction Filter

Figure 3-1"Proposed architecture for noise reduction

For convenience, in this section, our proposal for noise reduction is introduced
first. Based on the architecture illustrated in Figure 3-1, the process flow of the
proposed methods can be explained as follows. For noisy images and video frames
that may contain three different types of noise (Gaussian noise, impulse noise, or
compression artifacts), the results of compression artifact detection identify the
location of compression artifacts in the images/videos. If the detection results indicate
strong compression artifacts, the proposed compression artifact reduction filter is
utilized. Otherwise, the compression artifact reduction process is skipped. The next
module is impulse noise detection, which detects the possible positions of impulse
noise in the images/videos. The proposed noise reduction filter is then used to
suppress Gaussian noise and impulse noise. An optional module can be further used to

enhance the contrast or sharpness of the denoised images.

11



3.2 Reduction of Compression Artifacts

3.2.1 Detection of Compression Artifacts

For 8x8 block-based compression codecs, compression artifacts may exist due to
low-bitrate transmission and coarse quantization. Blocking artifacts appear as
discontinuous intensity chance near block boundaries. An example for blocking artifact

shows on Figure 3-2.

(a) original image (b) compressed image with blocking artifact

Figure 3-2 An example of blocking artifact

Compared to the original‘image in Figure 3-2/(a), the blocking artifact can be
obviously found on the smooth regions of compressed image, like Lena’s shoulder
in Figure 3-2 (b). Relatively, the blocking artifact in fine regions would not be easily
observed, like Lena’s eye in Figure 3-2 (b). In human visual perception, the visibility of
blockiness is highly related to the local variation of the image. Hence, we may check
the local deviation of each 3x3 block by calculating the standard deviation S(X)
within the local neighborhood Q. , as expressed in Eq. 3-1.

Eq. 3-1

, where Q (N):={x+(i,j):-N<i,j< N}

In Eq. 3-1, n represents the total number of pixels within the neighborhood. For a 3 by

3 window, we have n = 9. Figure 3-3 shows an example of local deviation distribution.

12
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Figure 3-3 The distribution of local deviation of compressed image

In Figure 3-2, we can observe some blocky patterns in the local deviation
distribution. To extract these patterns from the local deviation distribution, we design a

proper range of deviation value, as expressed in the following equation

L if6<S(X)<4

0, otherwise

Sun (S (%)) =

The result of blocking artifact detection is showed Figure 3-4.

Figure 3-4 The result of blocking artifact detection

The two parameters ¢, and #, are related to the quality factor and the variation level

of the image. If the quality factor is smaller than 15%, the blockiness could be stronger

13



and more observable in flat regions. For this case, in our experiments, we choose a
larger value of #; to be within the range [2, 4] for detection. On the contrary, for the
quality factor larger than 15%, the we choose #, to be within the range of [1.2, 2]. The
range of #; <1.2 represents regions with small deviation. These variations would be
almost unnoticeable to human vision. On the other hand, the value of #, is related to
the variation of the signal features. In our experiments, a simple way to choose #, is
choose the average of the local deviation S(X). For most images, the #, value is
typically within the range of [5, 12].

With modern coding standards, the compression artifacts usually occur at the
boundaries between 8x8 blocks. Many traditional deblocking methods focus on these
boundaries to suppress blockiness. However, because video coding also includes
motion estimation and motion compensation, the compression artifacts may also
occur at many other locations in an image frame. Furthermore, during image
processing, the images with compression artifacts may sometimes be down-sampled
or up-sampled. Hence, the location of compression artifacts may not necessarily occur
at the boundaries between 8x8 blocks. Sincerour method doesn’t restrict itself to the
boundaries between 8x8 blocks, it can handle the compression artifacts at any

location.

3.2.2 Reduction of Compression Artifacts

In compression artifacts removal, the blockiness can be eliminated by several
local smoothing methods. An example of reduction of compression artifacts by using

bilateral filter [2] is showed in Figure 3-5.

(a) blocking artifact (b) deblocked well but over (c) fine region preserved but

smooth poorly deblcoked
Figure 3-5 The result of blocking artifact reduction by bilateral filter

14



As shown in Figure 3-5 (b), as we apply a strong smoothing operation over the
image, most blocky regions are smoothed but fine-detail regions are also overly
smoothed. In comparison, if we choose a weaker smoothing, as shown in Figure 3-5
(c), fine-detail regions are preserved but the blackness cannot be effectively
suppressed. In this thesis, a simple method that destroys the blockiness by adding in
random noise, rather than local smoothing, is proposed. This method is to eliminate the
perceptual blockiness in human eyes. Here, we add in random noise of adaptive
strength based on the level of blockiness. After the insertion of random noise, the

blocky phenomenon can be successfully suppressed, as showed in Figure 3-6.

] .k

i [

Figure 3-6 The result of blocking artifact reduction by adaptive insertion of random noise

In Figure 3-6, the blocky edges are obviously destroyed by the noise. However,
another problem is that the insertion of noise makes the processed image look dustier.
Hence, we use the bilateral-filter. to further smooth these regions and the whole

algorithm can be described in'the following pseudo code.

Table 3-1 The pseudo code of deblocking algorithm

for all X in images

if SBD(X) =]
all yeQ, replaced by U[Min(y),Max(y)]

else

ux) = u’(x)

end

In Table 3-1, the detected location X and neighboring pixels y in the corresponding
window Q, would be replaced by uniform distribution noise U. The range of noise U is

determined by the maximal and minimal values of the neighboring pixels.

In fact, a similar method by adding noise to destroy false contours can be found in

the Improved Gray-scaled (IGS) Quantization method [12]. For lossy data compression,
15



false contouring may occur in smooth regions after quantization. By adding to each
pixel a proper level of pseudorandom number, false contouring and artificial edges
would not be observed by human visual perception.

Even though the blocking artifacts can be suppressed by the proposed method, the
smoothing step is still required to suppress the perceptually dusty effect caused by the
injected noise. Here, we use a modified bilateral filter to smooth the dusty
regions. Figure 3-7 (c) shows the smoothing result of the modified bilateral filter. The
modified bilateral filter will be introduced in the next section. With this smoothing step,
ringing artifacts can also be suppressed. This is because the regions with ringing

artifact are usually adjacent to the regions with blocking artifacts.

(¢) smoothed result of (b) (d) over smoothed result of (a)

by modified bilateral filter by bilateral filter
Figure 3-7 Result of blocking artifact reduction
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3.3 Reduction of Gaussian Noise and

Impulse Noise

n this chapter, we’ll discuss the purposed method for the reduction of Gaussian
noise and impulse noise. The goal of the algorithm is to eliminate these two types of
noise for color images and videos. Practically, in order to reduce the hardware storage
and computation time, we demand the following requirements in the development of
the noise reduction algorithm.

1.  Wish to design a filter that can smooth noisy regions while preserving edges
and fine-detail regions.

2. The algorithm is simple, non-iterative, and doesn’t need complicated
computations.

3.3.1 Bilateral Filter

The bilateral filter, as described in [2], applies a nonlinear filter to u# to remove
Gaussian noise while remaining the edge information. Each pixel is replaced by a
weighted average of the intensitiesiina (2N+1) x (2N+1) neighborhood. The weighting
function is designed to smooth regions with similar intensity while keeping edges intact.

More precisely, let X be the location of the pixel under consideration, and let

a=0,(¥)
Q(N)={x+(i,/): =N <i,j < N} "

be the pixels in the (2N+1) x (2N+1) neighborhood of x. The weight of each Yy € Q

with respect to X is the product of two components, one spatial weight and one
photometric weight:

W(X, y) = Wg (X, y)WP (X, y) Eq. 3-4

where
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ey

2 Eq. 3-5
Wg (X: y) =e 205
and
‘ux—uy‘z
- Eq. 3-6
wo(x,y)=e >

The wp(X,y) is further normalized and the smoothed pixel U, can be described as

Z w(X, Y)u,

~  yeQ

> wXsy)

yeQ

Eq. 3-7

The ws weighting function decreases as the spatial distance in the image between X
and Y increases; while the wp weighting function decreases as the intensity difference
between the color vectors increases. The spatial component decreases the influence of
the distant pixels and reduces‘the. blurring effect; while the photometric component
reduces the influence of those pixels that are perceptually different with respect to the
one under processing. In this way, only perceptually similar areas of pixels are averaged

and thus the sharpness of edges can be preserved.

The parameters o5 and op are used to adjust the influence of the spatial and the
photometric weightings, respectively. They can be considered as rough thresholds for
identifying pixels sufficiently close or similar to the central pixel. Note that when op
approaches infinity, the bilateral filter becomes a Gaussian filter. On the other hand,

when both opand a5 approach infinity, the bilateral filter behaves like the mean filter.

Bilateral filter has been proved to have excellent performance for Gaussian noise
removal. The algorithm is adequately simple and can be used for color images with low
computation cost. However, for strong destructive noise, such as impulse noise, the
bilateral filter performs rather poorly. In the following sections, we will make some

modification over the bilateral filter to improve the reduction of impulse-like noise.
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3.3.2 Detection of Impulse Noise

Here, we design a simple statistical measure to detect impulse noise. Let x be the
location of a pixel and Q,(N) the neighborhood of x, as defined in Eq. 3-1. Considering

the case N = 1, we can get

Q8 =Q,(1)/{x} Eq. 3-8

0
X 9

which represents the neighbor pixels of X. For each point yeQ , we define the

absolute difference in intensity of the pixels between X and y; i.e.,

dx’y =u, —uy‘
Eq. 3-9
u,,u, €[0,255] for 8-bit pixel value
We define the total absolute difference (TAD) as
TAD(X)= ) d,, Eq. 3-10

0
reQy

The TAD statistic provides us.a measure of intensity similarity between the center
pixel and its neighboring pixels. Figure 3-8 shows examples from the Lena image, in
which we compare the neighborhood of an impulse noise pixel with the neighborhood

of an edge pixel.

TAD=863

Figure 3-8 An impulse noise pixel (upper side) and a typical edge pixel (right side). TAD of
impulse =863; TAD of edge pixel = 88
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Group I:
TAD influenced by
central impulse noise

Figure 3-9 An 5%5 window with impulse noise on the center pixel, together with the

corresponding TAD distribution

Figure 3-9 shows examples from the Lena image, with an impulse noise at the
center pixel. We can find that the TAD value of the center pixel is obviously bigger
than the TAD value of the pure edge pixel. To confirm that the TAD statistic is a good
detector for impulse noise, we check the details of the TAD distribution in Figure 3-9.
The center pixel T(0,0) is the only impulse noise in this 5x5 block, and the TAD of the
8 neighboring pixels (group I in Figure 3-9) are correlated with the center noisy pixel.
The range of these values distribute over the range [120,165], while the range of outer
pure pixels (group II in Figure 3-9) distribute in [15, 55]. Both groups have a
tremendous difference with respect to the TAD value of impulse pixel. If we set a
proper threshold value of TAD, the TAD difference between Group I and Group II
would be negligible. Group III can be considered to have a similar distribution as
Group I, because their TAD values are correlated with noisy pixels. Figure 3-10 shows

the result of impulse noise detection in three color space.
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Figure 3-10 Impulse noise detection by TAD

3.3.3 Reduction of Impulse Noise

In this section, we utilize the TAD statistic and combine it with the original
bilateral filter to develop our noise reduction algorithm. Here, we propose the third
weighting function to indicate how likely an image pixel possesses an impulse noise.

This weighting function can be defined as the “impulsive weighting function”:

_TAD(x)’
20,°

w,(X)=e Eq. 3-11

The parameter o; determines the penalty of high TAD values for impulse noise.

We combine the impulsive weighting function with the original bilateral filter to
form a new weighting function, which includes spatial, photometric and impulsive
properties. However, the direct combination of impulsive weighting function and
photometric weighting function is not appropriate. This is because the impulsive
weighting function works well to remove strong impulse outliers, while the
photometric weighting function is used to smooth weak impulses. These two
weighting functions need to be combined in a proper way to handle not only strong

impulses but also weak impulses.

Based on the method proposed in [13], we introduce an adaptive function to
determine the how much to use the impulsive weighting and photometric weighting.
Considering a central pixel x, and the neighbor pixels Y € QQ, we define the “adaptive

weighting” T of y with respect to X as

(TAD(X)+TAD(y)J2
2

: Eq. 3-12
T(x,y)=1-e 2or
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The range of adaptive weighting is [0, 1]. The o7 parameter controls the shape of
the function. If X or y has a large TAD value with respect to o7, then T(X,Y) = 1. On the
other hand, if neither pixel has large TAD value, then T(X,Y) = 0. For the property of

adaptive weighting function, we define the final weighting function as

w(X, ¥) = we (X, Y)W, (X, Y)Y w, (x,y) Y Eq. 3-13

The restored pixel can be computed as expressed below:

z w(X,Y)u,

~  YyeQ

D wx,Y)

yeQ

Eq. 3-14

The modified bilateral filter can remove- Gaussian noise and impulse with
choosing proper parameters os, gp, a7, and or. For the impulse level p<20%, we can get
good performance by 3x3 window size and without iterative calculation. The selection

of parameters and experiment results will be introduced in the following sections.

3.3.4 Selection of Parameters

As indicated in [14], for Gaussian noise removal, the optimal os value is relatively
insensitive to the optimal op, and op can be approximately equal to 1.7 X a,, where a,
represents the standard deviation of the Gaussian noise. In [15], Immerkaer provides a

fast method to estimate the o, of Gaussian noise in an image. The estimator is given by

N T *
I = \/;6(W 2)(H - ZK 0™ L)

| 1 Eq. 3-15
L=|-2 4 =2
1 -2 1
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W and H represent the weight and height of the image, and L denotes the
Laplacian filter. To suppress impulse noise, we take o5 = 5. Experiment results have
shown that the proper value of o; is around 2400, and g, = 0.1 is a good choice for
removing both impulse noise and Gaussian noise. For compression artifact reduction ,
similar parameters are selected to smooth dusty regions. The experimental results will

be showed in the following chapter.
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Chapter 4. Experimental Results

4.1 Reduction of Compression Artifacts

To evaluate the deblocking performance, we test several JPEG images with
different quality factors ( QF €[1,100]), with the case QF =100 indicating no
quantization at all. We compared this method with the fuzzy filter proposed in [16]
which is also a simple method with similar complexity. Both methods are
implemented with a 3x3 filtering window. Figure 4-1 shows the experimental results

and Table 4-1 lists the PSNR performance comparison. It can be seen the proposed

method consistently outperforms the fuzzy filter for various images.

Table 4-1 Comparison of PSNR«(in decibels) performance of deblocking algorithms applied on

JPEG images (QF stands for quality factor)

Image (QF) Input | Fuzzy Filter [16] | Proposed Method
Lena (20) 30.02dB 30.33dB 30.42 dB
Lena (15) 29.13 dB 29.50 dB 29.56 dB
Lena (10) 27.68 dB 28.06 dB 28.08 dB
Tower (20) 27.57 dB 25.07 dB 27.45 dB
Tower (15) 26.74 dB 24.86 dB 26.95 dB
Tower (10) 25.43 dB 24.12 dB 25.73 dB
Foreman (20) | 30.49 dB 30.94 dB 31.29dB
Foreman (15) | 29.28 dB 29.82 dB 30.05dB
Foreman (10) | 27.79 dB 28.43 dB 28.50 dB
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Figure 4-1 Compression artifact reduction examples (a) JPEG images with QF = 15, deblocking results for the (b)

fuzzy filter [16] and (c) proposed compression artifact reduction filter
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4.1.1 Blocking Strength

A measure of the blocking visual strength has been proposed in [17]. The
blocking strength indicates the ratio of the absolute gradient over the average gradient
calculated by adjacent pixels. Assume we have an image | with elements Y;;, where i
an j denote the pixel and line position, respectively. The normalized horizontal

gradient Dy . calculated over N adjacent pixels is defined as

=Y
.. i+, i,
DH,norm(lﬁ.]): 1 : j‘
7 ‘ =Y. . Eq. 4-1
i+n+l, i+n,
2N n=—N...N,n#0 ’ ’
With Dy yorm, we further define
nl
SH (l) = ZDH,norm (19 .]) Eq 4-2
=1

as the summation of Dy .., Of all image lines. Figure 4-2 shows an example of Sy.

I L I h
u] 100 200 300 400 500 ain

Figure 4-2 An impulse noise pixel (upper side) and a typical edge pixel (vight side). TAD of
impulse =863, TAD of edge pixel = 88

26



The periodic structure of the encoding grid is clearly revealed in the Sy, as
shown in Figure 4-2. The blocking strength (BS) for the whole frame is then defined
as

BS, == S, (block)
S, (non—block)
BS, = — S, (block) Eq. 4-3
S, (non—block)
BS = ! (BS, +BS,)

2

where EH (block) and EH (non—block) denote the average value of SH at the

block edge and intermediate positions, respectively. Similar definition is utilized for
vertical block strength (S, (block)and™S, (non —blocky). Total block strength (BS) is the
average of horizontal and vertical strength. Table 4-2 Comparison of blocking
strength (BS) of deblocking: algorithms applied on JPEG images (QF stands for

quality factor) shows the block strength of the experimental results.

Table 4-2 Comparison of blocking strength (BS)-of deblocking algorithms applied on JPEG
images (QF stands for quality factor)

Image (QF) | Input | Proposed | Fuzzy
Method | Filter
Lena (20) 1.92 1.48 1.65
Lena (15) 2.46 1.47 1.62
Lena (10) 3.71 1.51 1.95
Tower (20) 2.06 1.67 1.94
Tower (15) 2.66 1.57 1.97
Tower (10) 4.15 1.77 249
Foreman (20) | 3.38 1.29 1.46
Foreman (15) | 4.29 1.39 1.54
Foreman (10) | 5.85 1.65 1.88
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4.1.2 Compression Artifact Reduction for Videos

The following images show compression artifact reduction for video frames. We
can find that not only blockiness but also ringing artifact can be removed by our
method.

(d)
Figure 4-3 The compression artifact reduction results for video frames

(a)(b)(c) : original frames (d)(e)(f): deblocked frames



Figure 4-4 The compression artifact reduction results for video frames

(left : original frames right: deblocked frames)
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MPEG4 | MPEG4
WORLD LRy WORLD

Figure 4-5 The compression artifact reduction results for video frames

(left : original frames right: deblocked frames)
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4.2 Reduction of Gaussian Noise and

Impulse Noise

We have extensively tested the noise removal capabilities of the proposed method
with respect to a few other filters. The following images show the experimental results

for the removal of impulse noise, Gaussian noise and mixed noise patterns.

ol
Mixed noise (p=20%, 0 =10)  Denoised by 3x3 median filter Denoised by proposed method
Figure 4-6 Comparing proposed method and median filter on images with Gaussian noise and

mixed Gaussian and impulse noise
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Table 4-3 Performance of applying different filters to images corrupted with Gaussian noise,

impulse noise and mixed noise (PSNR in decibels)

Lena Image Pepper Image
p=20% o=10 p=20%, | p=20% o=10 p=20%,
Method o=10 0=10
3x3 median filter | 30.68 dB | 31.41dB | 28.83dB | 29.51dB | 30.33dB | 28.14dB
5x%5 median filter | 29.34 dB | 2891 dB | 28.53 dB | 28.89dB | 29.58dB | 28.21 dB
3x3 ROAD

Trilateral Filter [13] | 32.98 dB | 28.80dB | 28.87dB | 31.99dB | 28.98dB | 28.37dB
Proposed Adaptive

Bilateral Filter 31.08dB | 31.93dB | 29.70dB | 29.28 dB | 30.27dB | 28.26 dB

From the results showed in Figure 4-6, we verified that the proposed adaptive
bilateral filter may not only retain the ability to remove Gaussian noise but also can
effectively remove mixed noise. Furthermore, another comparison between the
proposed method and the ROAD trilateral filter [13] in listed in Table 4-3, where we
can find that ROAD trilateral filter has better performance for impulse noise removal.
In fact, the main difference between ROAD trilateral filter and the proposed method is
their ROAD statistic and our TAD measure. The calculation of ROAD requires rank
statistic, which spends more computations than-our method. Table 4-4 shows the
comparison of computation time between these two methods. Basically, our method
has similar performance with respect to the ROAD trilateral filter, but with a lighter

computational load.

Table 4-4 The average time cost of two methods with different window size (The implementation
environment used Matlab platform with 2.10GHz AMD Athlon™ 64X2 Dual Core 4000+)

Method 512%x512 512x512
Lena Image Pepper Image
3x3 ROAD Trilateral 4.98 sec 501 sec
Filter
3%3 Proposed Adaptive
Bilateral Filter 3.76 sec 3.87 sec
5%5 ROAD Trilateral | 3 g6 o0 13.90 sec
Filter
5%5 Proposed Adaptive
Bilateral Filter 9.80 sec 9.83 sec
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4.2.1 Reduction of Impulse Noise for Videos

The following images show impulse noise reduction for video frames. We can find

that our proposed method has excellent performance.

Figure 4-7 The impulse noise reduction results for video frames
(p =10% for RGB color channels)
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Figure 4-8 The impulse noise reduction results for video frames (p =15% for gray channel)
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Chapter 5. Conclusions

In this thesis, we proposed several algorithms to remove Gaussian noise, impulse
noise, and compression artifact. A simple compression artifact detector, which utilized
local deviation and proper thresholds, can indicate the locations of perceptual
blockiness. The blocking artifact is suppressed by the proposed noise-injection based
deblocking filter. Furthermore, based on the bilateral filter, we add in the TAD
measure to take into account the strength of impulse noise. The proposed modified
bilateral filter has nice performance in smoothing Gaussian noise and impulse noise
while may preserve fine-detail regions in the images. Without requiring the
computation of rank statistic, the computational load of our method is lighter than the
ROAD trilateral filter. The experiment results show that the proposed method can

efficiently remove compression artifacts, Gaussian noise, and impulse noise.
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