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Salient Region Detection Based on Image

Feature-Pair Distributions

Student: Wen-Chung Huang Advisor: Dr. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics

National Chiao Tung University

Abstract

In this thesis, we propose an algorithm for the detection of human
visual saliency regions. Given_an image, the proposed algorithm can
automatically determine these locations where humans tend to pay more
attention to. The image is first decomposed into three channels, including
one intensity channel and two opponent-color channels. For each channel,
a feature-pair distribution is created for saliency analysis, and the analysis
result is mapped back to the spatial domain to identify visually salient
regions. Beside the suppression of noise interference, a normalization
stage is included to improve the performance of detection. As
demonstrated in the experimental results, the proposed method can
successfully identify visual saliency regions in human visual reception
and, at the same time, filter out less crucial information.
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Chapter 1.

INTRODUCTION

The first step towards object recognition is object detection. Object detection
aims at extracting objects from the background before recognition. However, before
performing recognitive feature analysis, how can a machine vision system extract the
salient regions from an unknown background?

Due to the complicated processing in human visual perception, humans don’t
process the whole visual field as a scene come to their eyes [1]. Instead, humans tend
to selectively focus on certain targets that they are more interested in. To mimic this
mechanism, a few researchers had suggested. the use of different visual features for
the formation of a topographically oriented map,-the so-called saliency map. An
example of the saliency map-is shown-in Figure 1-1, where brighter areas indicate
visually more salient regions.' These visually salient areas are generally regarded as
the candidates of visual attention in human eyes. The detection results of visual
saliency map can thus provide useful-information. for efficient detection of interested
targets in a complicated scene.

r (a) Visual scene (b) Saliency map

Figure 1-1 A visual scene and its corresponding saliency map

In computer vision, many models have been proposed to simulate the behavior of
eyes, such as SaliencyToolBox (STB), Neuromorphic Vision Toolkit (NVT), and etc..
However, these methods demand high computational cost and their remarkable results
mostly rely on a proper choice of parameters. In 2007, a simple and fast approach
based on Fourier transform, called Spectral Residual (SR), was proposed. This
method used SR of the amplitude spectrum to obtain the saliency map. In 2008,
another method had been proposed which used Quaternion Fourier Transform to deal
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with phase spectrum (QPFT). Their method performed well at detecting salient
objects. However, if the size of the processing image is not properly chosen, the
resulting output saliency map may just become the result of edge detection.

In this thesis, we propose a simple and efficient algorithm for saliency region
detection. First, an input image is decomposed into three different channels: intensity,
RG color, and BY color. A feature-pair distribution is used to analyze the semi-global
information of each channel. With the feature-pair distributions, the saliency weight
of each pixel in the original image is estimated to form the conspicuity maps. After all
three conspicuity maps are obtained, the normalization step is taken to suppress noise
interference and irrelative regions. The normalized conspicuity maps are then merged
in a data-driven manner to form the final saliency map. The proposed saliency region
detector does not require complex computations. As will be shown in the
experimental results, the proposed system can be applied to various kinds of images to
obtain visual saliency regions that are consistent with subjective observations.

This thesis is organized as follows. In Chapter2, we introduce the background of
existing saliency map models_ and related techniques. In Chapter3, we present the
proposed image feature pair-distribution method. Experimental results are shown in
Chapter4. Finally, we will make a brief conclusion in Chapter>5.



Chapter 2.

BACKGROUNDS

In this chapter, we will introduce a few salient region detecting approaches
developed in recent years. Firstly, a brief introduction to the definition of saliency
map is presented in Section 2.1. Next, related models for the creation of saliency map,
together with the functional taxonomy, will be introduced in Section 2.2. Since our
method is based on Itti’s visual saliency model and image feature-pair distributions,
related concepts and their origins are mentioned in Section 2.3 and 2.4, respectively.

2.1. VISUAL SALIENCY MAP

The saliency map is a topographically arranged map that represents visual
saliency of a corresponding visual scene.-One of .the most severe problems of
perception is information overload. Peripheral sensors generate afferent signals more
or less continuously and it would be computationally costly to process all the
incoming information all the-time. Thus; it'is important for the neural system to make
decisions on which part of the available information.to be selected for subsequent
processing, and which part to be.discarded. Furthermore, the selected stimuli need to
be prioritized, with the most relevant being processed first while the less important
ones later. This selection and ordering process is called selective attention. Among
many other functions, attention to a stimulus has been considered necessary for
conscious perception.

What determines which stimuli to be selected by the attentional process and
which to be discarded? Many interacting factors contribute to this decision. It has
proven useful to distinguish between bottom-up and top-down factors. The former are
those that depend only on the instantaneous sensory input, without taking into account
the internal state of the organism. Top-down stimuli, on the other hand, does take into
account the internal state, such as the goals the organisms has at this time, personal
history and experiences, etc. A dramatic example of a stimulus that attracts attention
using bottom-up mechanisms is the case of a fire-cracker going off suddenly. An
example of top-down attention is the focusing onto some difficult-to-find food items
by a hungry animal, which may ignore most "salient™ stimuli but food.



2.2. MODELS OF VISUAL SALIENCY MAP

In general, the existing visual saliency detection algorithms can be classified into
bottom-up approaches and top-down approaches, depending on whether the prior
knowledge of the visually attended objects is used. A top-down approach usually
requires some prior knowledge of the targets in order to extract task-dependent clues.
However, in practice, the prior knowledge of the targets objects is usually unavailable.
Hence, in this paper, we mainly focus on the development of a bottom-up approach.

According to the survey in [2], a bottom-up approach typically consists of the
following functional modules:

e Extraction

Feature vectors, which may include intensity, color double-opponent,
orientation, etc, are extracted at different locations of the image plane.

e Activation

Based on the extracted feature wvectors, a few conspicuity maps are formed
to identify the candidates of visual saliency regions.

*  Normalization

Each conspicuity map is.normalized to emphasize its prominent regions.

e Combination

All conspicuity maps are combined-into-the final visual saliency map.

In this thesis, we propose a simple and efficient algorithm for saliency region
detection. In this system, we focus mainly on the activation and the combination
modules. The module of activation is designed to obtain more reliable feature
information for saliency region detection. Due to severe signal-to-noise problem,
combination of several feature maps may lead to wrong salient region detection. In
the following discussion, we will focus on a few algorithms which are related to
feature combination.



2.2.1. BortoM-UP MODELS

Without training, human vision can focus on general salient objects rapidly in a
clustered visual scene because of the existence of visual attention mechanism. The
study of this visual attention mechanism has become an intriguing subject for more
and more researches.

In the past decade, several computational models have been proposed to simulate
human’s visual attention model. Koch and Ullman presented in [3] a popular
computational model for visual attention mechanism. Their biologically plausible
model is purely data-driven and requires only image data. In their approach, four
major principles are adopted: visual attention acts on a multi-featured input; saliency
of locations is influenced by the surrounding context; the saliency of locations is
represented on a scalar map; and both the winner-take-all and inhibition of return are
suitable mechanisms for attention shift, as illustrated in Figure 2-1.

On the other hand, Itti et al.‘proposed in-[4] @ much more complicated system,
which decomposes an input image into.a set of distinct channels, such as luminance,
different colors, and different orientations. They further used Gaussian pyramids to
obtain feature maps of different scales. Each feature is then computed in a
center-surround manner akin.to human’s visual receptive fields. For each feature type,
the multi-scale feature maps are .combined in a competitive way to form a unique
conspicuity map. All the conspicuity maps.are then integrated into a single saliency
map, over which the winner-take-all rule and the inhibition-of-return mechanism are
applied.

Central Representation

Feature Maps

Figure 2-1 The saliency-based model of visual attention as suggested by Koch and Ullman [3].
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Figure 2-2 General architecture of the model proposed by [4].

Following Rensink’s theory [5], Walther-further extended Itti’s model to handle
“proto object” and built the SaliencyToolBox(STB) in [6]. In this extended model,
Walther et al. proposed a feedback-loop to automatically form proto objects and to
search for proto objects in natural scenes, as shown in Figure 2-3. Even though both
Itti’s and Walther’s models”performed quite well in detecting the visual saliency
regions in some images, these methods demand high- computational cost and their
remarkable results usually rely on a proper choice of the controlling parameters.

Saliency Map Binary Map Proto-object

=~ Feed-forward connections

— Feedback connections

———— Local connections
Conspicuity
Maps
Fealure
Maps

Intensity Orientations”
Original
Image

Figure 2-3 Illustration of the processing steps for obtaining the attended region.[6]
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(c) Second fixation (d) Third fixation

Figure 2-4 Result of Walther’s proposed model with shift attention.
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Recently, in 2007, a simple and fast approach based on Fourier transform, was
proposed in [7]. This method is named Spectral Residual (SR) and is based on the
simple Fourier Transform operation. In this approach, the authors calculated the
residual of the log amplitude spectrum of the given image with respect to a reference
profile to obtain the spectral residual, as shown in Figure 2-6. The saliency map is
then obtained by transforming the spectral residual back to the spatial domain. In spite
of its simple operation, this SR method performed surprisingly well in detecting the
saliency regions of many images. All these models mentioned above, however, only
consider static images.

However, after careful analysis, Guo pointed out in [8] that the spectral residual
of the log amplitude spectrum is actually not essential to the calculation of the
saliency map. Instead, the phase spectrum plays the major role in detecting saliency
regions, as compared in Figure 2-8. In Guo’s approach, each pixel of the given image
is represented by a quaternion that consists of color, intensity, and motion features.
The phase spectrum of the Quaternion Fourier Transform (QFT) is calculated and is
used to obtain a spatio-temporal saliency map. Even though these spectrum-based
approaches can detect saliency regions in a very efficient way, their detection results
are actually more like the results of boundary detection.

Log spectrum curve

Input image 47
= 3 IV“\_
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= \
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Figure 2-6 The difference (SR) between the original signal and a smooth one in the

log amplitude spectrum.[7]
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Figure 2-7 Detecting objects from input images.

Objects are popped up sequentially according to their saliency map intensity.[7]

lmaﬁe PFT SRFFT

Figure 2-8 Test results from three input images.

(left) Input images, (middle) Saliency maps from PFT, (right) Saliency maps from SR[8].



Figure 2-9 Resulting sequence of PQFT as proposed by [8]

10



Pi iFT PET SR FFT NVT

Figure 2-10 Comparison of five:-models in four natural images [8].
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2.3. THE SALIENCY-BASED MODEL OF
VISUAL ATTENTION

As already mentioned in Section 2.2.1, the saliency-based model of visual
attention has been presented by Koch and Ullman in [3]. This model is based on four
major principles: visual attention acts on a multi-featured input; saliency of locations
is influenced by the surrounding context; the saliency of locations is represented on a
scalar map -- the saliency map; and the winner-take-all and inhibition of return are
suitable mechanisms to allow attention shift.

Itti el al. have proposed a complete implementation of the saliency-based model
in [4] and this model has been widely used by many researches related to visual
attention. The model is again shown in Figure 2-11 for reference. In the following
subsections, we will briefly explain the detail of this model.

Input image _—

[ Linear filtering

e

— colors __— _— intensity _— _—onentations_—
( Center-surround differences and normalization
I I I
— Feature maps
= "I--{IE maps) (6 maps) = .I-- (24 maps) —4
( Across-scale combinations and normalization
- I Conspicuity I—— maps I——

— e =

[ Linear combinations |

Saliency map _— i
I

[ Winnertake-all | Inhibition
d of return

Attended location

Figure 2-11 General architecture of the model proposed by [4].
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2.3.1. EXTRACTION OF EARLY VISUAL FEATURES

Given an input image, the first processing step consists of decomposing this
input into a set of distinct “channels,” by using linear filters tuned to specific stimulus
dimensions, such as luminance, red, green, blue and yellow hues, or various local
orientations.

Intensity: With r, g and b being the red, green and blue channels of the input
image, an intensity image | is obtainedas | = (r+g + b)/3.

Color: The r, g and b channels are normalized by I in order to decouple hue
from intensity. However, because hue variations are not perceivable at very
low luminance (and hence are not salient), normalization is only applied at
the locations where 1 is larger than 1/10 of its maximum over the entire
image (other locations yield zero r, g and b). Four broadly-tuned color
channels are created: R =r — (g.+ b)/2 for red, G =g — (r + b)/2 for green, B
=b - (r + g)/2 for blue,’andY = r+g = 2(|r - g| + b) for yellow (negative
values are set to zero).

Orientation: Fourlocal orientation features according to the angles

ee{0°,45°,90°,135°} are used.- Gabor- filters, which represent a suitable

mathematical model ~of..the receptive field impulse response of
orientation-selective neurons' in primary visual cortex [9], are used to
compute the orientation features.

After each channel feature maps have been obtained, their different spatial scales
are created using Gaussian pyramids, which progressively low-pass filter and
sub-sample the input image. In the implementation, the pyramids have a depth of 9
scales, like in Figure 2-12. The original image is shown on the top of Figure 2-12,
which is treated as Level 0 in the pyramid. Each subsequent level is obtained by
low-pass filtering and down-scaling its previous level by a factor 2 in the horizontal
and vertical directions, respectively.

13



Figure 2-12 Pyramidal representation of the input image [10].

Next, each feature is computed in a center-surround structure similar to visual
receptive fields. Using this biological paradigm makes the perception system sensitive
to local spatial contrast, rather than amplitude, in that channel. The center-surround
operation is implemented in the model as the difference between a fine scale and a
coarse scale for a given feature.

14



2.3.2. COMBINING INFORMATION ACROSS MULTIPLE MAPS

For each feature map created from center-surround operations, the multi-scale
maps are combined in a competitive way to form a unique feature-related conspicuity
map. A combination of the feature maps provides the bottom-up input to the saliency
map. At each spatial location, activity from these feature maps consequently needs to
be combined into a unique scalar measure of salience.

However, because of the large number of maps being combined, the system faces
a severe signal-to-noise ratio problem. A salient object may only elicit a strong peak
of activity in one or a few feature maps, tuned to the features of that object. However,
the combination of a larger number of feature maps may cause strong peaks at
numerous locations. In order to solve such problems, [11] have proposed two feature
combination strategies: contents-based global non-linear amplification, and iterative
localized interactions.

2.3.2.1. CONTENTS-BASED GLOBAL AMPLIFICATION (N4(.))

Given conspicuity maps, which should beintegrated into a unique map, the
normalization strategy Ni(:) consists of the following steps:

1. Scale all maps to-the same dynamic range in order to eliminate
across-modality amplitude difference due to dissimilar extraction mechanisms.

2. For each map, compute the global maximum M and the average m of all the
other local maxima. A local maximum of a map is defined as a location whose
value is larger than those of its adjacent neighbors.

3. Globally multiply the map by a weighto,, =(M —m)z. Ni(.) normalizes a

conspicuity map M in accordance with N, (M )=a,, -M.

In fact, » measures how the most active locations differ from the average of
local maxima of a conspicuity map. Hence, this normalization operator promotes the
conspicuity maps in which a small number of strong peaks of activity are present.
Maps that contain numerous comparable peak responses are demoted. This effect is
clearly illustrated in Figure 2-13. The intensity map contains comparable responses
which lead to a small ®. For this reason the intensity map is strongly suppressed. Due
to the presence of a distinctive location in the orientation map, the corresponding o is
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large and this explains the global amplification of that map. It is obvious that this
competitive mechanism is purely data-driven and does not require any a priori
knowledge about the analyzed scene.

Intensity map

Stimulus

Arbitrary units

Arbitrary units

Figure 2-13 Contents-based global amplification normalization [4].

2.3.2.2.  ITERATIVE NON-LINEAR NORMALIZATION (N3(.))

The non-linear normalization strategy N»(.)-1s.composed of the following steps.
First, all maps are normalized to the same dynamic range in order to remove
modality-dependent amplitude differences. Second, each map is iteratively convolved
by a large 2D DoG (Difference of Gaussian) filter. The.negative results are clamped
to zero after each iteration. At each iteration-of.the normalization process, a given
map M is transformed in accordance with Eq. 2-1.

M «|M *Dog

Eq. 2-1

>0’

where (*) is the convolution operator and || = discards negative values.

The normalization strategy N»(:) relies on simulating local competition between
neighboring conspicuous locations. Spatially grouped locations, which have similar
conspicuities, are suppressed; whereas spatially isolated conspicuous locations are
promoted. The behavior of the iterative non-linear normalization method is illustrated
in Figure 2-14. The upper example of Figure 2-14 illustrates how the non-linear
normalization progressively promotes the major peak while suppressing less
conspicuous locations. On the contrary, the bottom example of Figure 2-14 shows the
suppressing of the entire map in the absence of prominent peaks.
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Figure 2-14 Iterative non-linear normalization [11].

Besides being inspired from the human vision [11], this normalization strategy,

thanks to its non-linearity, has the advantage of noise suppression while promoting
the major peaks in the conspicuity map.

After the conspicuity maps of each channel have been obtained, the saliency map
is formed by averaging these three conspicuity maps. Ffinally, the winner-take-all and

inhibition of return processes are applied on the saliency map to achieve selective
attention.
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2.4. INTENSITY-PAIR DISTRIBUTION

In [12], Jen et al. proposed an intensity-pair distribution technique, which was
used to enhance image contrast. This distribution possesses both local information and
global information of the image content. For a given image, this method tests at each
pixel the intensity difference between that pixel and each of its 8-connection
neighbors. Figure 2-15 shows an illustration of a pixel and its 8-connection neighbors.
Due to the commutative property of intensity pair, we only check 4 neighboring pixels,
instead of 8, as we scan the image in the raster order. That is, for the pixel at E in
Figure 2-15, we only check the intensity difference between that pixel and its
upper-left pixel (A), upper pixel (B), upper-right pixel (C), and left pixel (D) [12].

(E, A) (E, B) (E, C)
A [B C

(E, D) D E&’ “F (E, F)
G H |

Figure 2-15 An illustration‘of a pixel and'its 8-connection neighbors.

After the computation of intensity differences, we may imagine that we have
formed an intensity-pair distribution as shown in Figure 2-16. Figure 2-16(a) shows
an example of a 2-D image. As we calculate the intensity difference between adjacent
pixels, we form four different intensity pairs, {(80, 80), (175, 80), (80, 175), (175,
175)}. If we ignore the pair order and treat (175, 80) and (80, 175) as the same type of
pair, these four types of pairs are further merged into three types of pairs, {(80, 80),
(175, 80), (175, 175)}. As we count the total pixel number for each type of intensity
pair, we may generate the intensity-pair distribution as shown in Figure 2-15(b). Here,
the values at (80, 80), (175, 80), and (175, 175) are 21, 13, and 21, respectively.
Similarly, for a real image shown in Figure 2-16(c), its intensity-pair distribution can
be easily calculated as shown in Figure 2-16(d). Especially, if the intensity difference
of an intensity-pair is large than a pre-selected threshold, that intensity-pair is treated
as an edge pair [12].
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Figure 2-16 (a) A synthesized image-(b) Intensity-pair distribution of (a) (c) A real
image (d) Intensity-pair-distribution-of (c) [12]

By analyzing the content of 'intensity-pair distribution, we can get useful
information for the detection of visual salient region. This will be discussed in later
chapter.
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Chapter 3.

PROPOSED METHOD

The goal of saliency map is to capture the regions where a person may pay more
attention to. As mentioned earlier, bottom-up methods are more flexible and are
applicable to different scenarios. However, the major problems of bottom-up visual
saliency models are their complicated models and the difficulties in detecting and
labeling regions in complex natural scenes. In a bottom-up approach, we aim to detect
those regions which are “special” or “abnormal”. In this thesis, we develop our
system based on the following two intuitive assumptions:

(1) A region with a strong contrast with respect to its surrounding regions is more
likely to be paid attention to.
(2)A region is less attractive to the observer if its property is common in the scene.

With these two assumptions, we develop our saliency region detector based on
the infrastructure proposed by Itti-[4]. The flow chart of the proposed saliency region
detector is illustrated in Figure 3-1. In the following sub-sections, we will explain in
detail the sub-modules of this.system.

+
J Local competition
| Linear filtering | l
v -
Intensity-pair In?en?.lty
distribution Sonspenty
Y Y
RGceolor-pair BYcolor-pair | | | RG conspicuity | | | BY conspicuity
distribution distribution &y map
VL v vL VL v
3-D histogram representation Linear combination
) 1) )
Map—weightilng algorithm Saliency map

Figure 3-1 Block diagram of the proposed system
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3.1. LINEAR FILTERING OF IMAGE DATA

Similar to Itti’s approach, we decompose an input image into a few feature
vectors, including intensity, RG color, and BY color. Here, we ignore the orientation
feature since the orientation feature is usually not a dominating factor in natural
scenes. In our system, the intensity channel is defined as:

(r+g+b)
== Eq. 3-1

where r, g, and b denote the red, green, and blue components of the input image.

On the other hand, we define the red, green, blue, and yellow hues of the image
pixel as:

Ror_(9th) Eq. 3-2
2

G_g_(Hb) Eg. 3-3
2

B:b—(r+g) Eq3-4
2

Y=r+g-2(|r—g|+b) Eq. 3-5

For each color hue, negative values are set to zero. Each color hue yields the
maximal response for the pure, fully-saturated hue and yields zero response for gray
colors. These four color hues are then merged together to form two opponent-color
channels that mimic the color opponent process in human’s visual system [8].

Since the separated color feature maps have obtained, we are going to introduce
why and how to combine them. It must refer to the biological functionality of human
brain. In human brain, there exists a ’color opponent-component’ system. In the
center of receptive fields, neurons which are excited by one color (eg. Red) while
inhibited by another color (eg. Green). Red/green, green/red, blue/yellow and
yellow/blue are color opponent pairs which exists in human visual cortex [13]. Thus,
in our approach, we define the RG color channel to be
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RG =|R-G| Eq. 3-6
and the BY channel to be
BY =|B-Y]| Eq. 3-7

Currently, we have three feature maps extracted from input image, as shown
below:

Intensity
/_’ > map
Red /
Green
— Colormap
Inputimage > Blue /
. m

Orientation map

Figure 3-2 A sketch diagram of low-level image feature extraction

These two opponent-color channels, together with-the | (Intensity) channel, are
fed into the following modules to form feature-pair distributions.
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3.2. FEATURE-PAIR DISTRIBUTIONS

For each of the I, RG, and BY channels, we compute the feature-pair distribution
as proposed in [12]. As mention in Section 2.4, Jen et al. proposed the concept of
intensity-pair distribution for the enhancement of image contrast. Since this
distribution possesses both local information and global information, it may offer
useful information for us to detect visual saliency regions in the image. In a
feature-pair distribution, the global information tells us what kinds of features are
common in the image, while the local information tells us which portions of the image
may exhibit large contrast. Hence, by properly using the pair-distributions of the I, RG,
and BY channels, we can efficiently detect those image portions with unusual
appearance or with stronger contrast.

To establish the feature-pair distribution for the 1 channel, we check at each pixel
the intensity pairs between that pixel and its 8-connection neighbors. Figure 2-15
shows an illustration of a pixel and: its-8-connection neighbors. If we denote the |
values of these nine pixels as A to I, respectively, then the eight intensity pairs {(E, A),
(E, B), (E, C), (E, D), (E, F),(E, G), (E, H),-and (E, 1)} are formed and accumulated
in the feature-pair distribution. Clearly, we can expect-that the intensity pairs over
smooth regions will lie around the 45-degree line; whereas these intensity pairs across
edges will lie somewhere away from the 45-degree line.

Figure 3-3 shows an example of the intensity-pair distribution. For the airplane
image shown in Figure 3-3, since the sky and grass are the major backgrounds of the
image, the intensity pairs over these two regions form two major clusters in the
intensity-pair distribution. Here, we intentionally colorize these two clusters to
indicate their correspondence. On the other hand, the aircrafts map to a smaller cluster
in the lower-left corner of the distribution. Moreover, the intensity pairs over the
sky-grass boundary and the aircraft-sky boundary form four clusters (represented in
red color) far away from the 45-degree line. Based on this intensity-pair distribution,
we can easily deduce that the boundary between the aircraft and the sky exhibits a
stronger contrast than the sky-grass boundary. With the facts that (1) the aircraft is
“less common” than the sky and the grass; and (2) the aircraft has a stronger contrast
with respect to its background, we may deduce that these two aircrafts may catch the
attention of most observers.
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Figure 3-3 A matching example of modified intensity-pair distribution

Here rises a question: how large should the input image be? In Figure 3-4, we
show four intensity-pair distributions with their input image being scale 0 to scale 3.
When the scale is increased by 1, the image’s height and width are reduced by 2,
respectively. The choice of scale is image dependent. However, in Scale 0 or Scale 1,
the image usually contains quite a large number of scattered data and requires longer
processing time. Hence, in our approach, we typically work on Scale 2 and Scale 3, as
shown in Figure 3-4(c) and (d).
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Figure 3-4 An example of intensity-pair distribution with different scale input
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Based on the same concept, we can form the RG-pair distribution for the RG
channel, and the BY-pair distribution for the BY channel. These three feature-pair
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distributions may offer us plentiful clues about the global statistics and the local
variations of the image contents.

Intensity-pair distribution on scale 284 » 86) of input image "aircrafts. png”
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Figure 3-5 An example ‘of the feature-pair distributions
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3.2.1. CLUSTERING

To identify the most common properties in the image, we need to identify the
major clusters in the feature-pair distributions. From the feature-pair distributions
obtained at the previous section, there are apparent clusters which we can tell easily.
The existing clustering algorithms seem to be a good tool for us to segment each
cluster out. Figure 3-6 is an example of the intensity-pair distribution processed by the
mean-shift clustering algorithm. The resulting clusters are reasonably good.
Unfortunately, these existing clustering algorithms are usually computationally
expensive and time-consuming. These disadvantages disobey our major requirement
that the system should not possess complicated computations and should be fast
enough for real-time processing and analysis.

Intensity-pair chuztering on scale 2084 » 98) of input imsge “sircrafis prg”
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Figure 3-6 An example of intensity-pair distribution after mean-shift clustering

(a)intensity-pair distribution (b) mean-shift clustering algorithm passing through (a)
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3.2.2. 3-D HISTOGRAM REPRESENTATION

To simplify the computations, we choose another approach that operates over the
feature-pair distributions directly. In Figure 3-7, we show the 3-D histogram
representation of the feature-pair distribution. This 3-D histogram is formed by
dividing the x-y plane into a few uniform cells and count for each cell the total
number of feature pairs within that cell. Clearly, we can expect that, in general, most
clusters occur around the diagonal line in the 3-D histogram since most regions in a
natural image are smooth. Moreover, the background elements would yield the largest
cluster since the background usually occupies the largest area in the image. On the
contrary, foreground objects usually correspond to smaller clusters. Besides, those
clusters away from the diagonal line correspond to the boundary regions or the texture
regions in the image.

Z 47 tributs
Z '
G o Treat as uniform clusters.
o #
2 os ¢
2 ;
T, _ =
=< 03 Q
@ 02 g@ poict =
o b [ =g i 5 .
- f=
0 r G =T = D =
a1 0 01 [i¥] 03 04 DS_ [i53 1] \/Q
Central pixel value /56
O " 2,

\ o ),

\ + =
L Y / Q) o e : . \ue
| - v L. Centra\P“‘eWa

Q=N
e %

Figure 3-7 The 3-D histogram representation of feature-pair distribution.

In this 3-D histogram, we denote the cell at the intersection of the ith column and
jth row as C(i,j). We further define a cell to be a “diagonal” cell when |i-j| < Dy, where
D, Is a pre-selected threshold. On the contrary, a cell is defined as “off-diagonal” if
[i-j| > Drp.
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3.3. MAP-WEIGHTING ALGORITHM

One of the reasons why we use image feature-pair distributions is that we may
perform straightforward weighting strategy on them to form saliency map. Clearly, we
can expect that, in general, the background elements would yield the largest clusters
since backgrounds always occupy the most part of the scene in the spatial domain. On
the contrary, foreground objects usually occupy a smaller space in an image. Hence,
foreground objects, or salient regions, will form smaller clusters in opposition to the
background. As for the clusters away from 45-degree line, it is apparently that they
represent edge clusters, since they have a strong difference between the central pixel
and the neighboring pixels.

In our approach, without using clustering algorithm, we build a map-weighting
algorithm to directly weigh the saliency degree of the cells in the 3-D histogram. This
weighting algorithm contains two.main parts: the “contrast weight” to gather the
information concealed in off-diagonal_cells;. and” the “distinction weight” that
determines how likely a diagonal cell-may contain the intensity pairs from a visually
salient region. A simple structure of the algorithm is shown below:

3-D
Histogram

o

Mapping back o

 Spatial Domain

}

Conspicuity
Map

Figure 3-8 A simple structure of map-weighting algorithm
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3.3.1. CONTRAST WEIGHT

As mentioned above, these clusters over the off-diagonal cells correspond to the
boundary portions or texture portions in the image. As an off-diagonal cell is far away
from the diagonal line, it indicates that any intensity pair within this cell will exhibit
stronger contrast. Intuitively, we may use this kind of information to estimate how
likely a region may attract observers’ attention.

Here, we give an example to explain the calculation of this contrast weight.
Given a smooth region Ry with the feature value fo, this region would correspond to a
cluster in the cell that contains the feature pair (fo, fo). If this smooth region has a
surrounding region R; with the feature value f;, we expect there is a cluster at the cell
containing the pair (fo, 1) and a cluster at the cell containing the pair (f;, fp). If these
two cells are far away from the diagonal line, then there should be a strong contrast
between Ry and R;. Moreover, if these two off-diagonal cells contain a large number
of feature pairs, it means Ry may share a-long-boundary with R;.

Figure 3-9 illustrate the concept-of contrast weight. In Figure 3-9, lines a to d
represent the four different profiles of the pair-distribution map in the left of Fig 3-9.
In each profile, there is a diaganal cluster, as represented by the yellow-green block,
together with several off-diagonal clusters. As an-off-diagonal cluster is far away from
the diagonal line, we assign a larger weight for-it; as represented by the light blue
curves in Figure 3-9.
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Figure 3-9 Illustration of concept of contrast weight

anjea welbo)siH

Figure 3-10 Viewpoint of contrast weight

Hence, given an off-diagonal cell C(i,j), we define its self-contrast-weight as

self _contrast _ weight(i, j)= hist(i, j) x i - j\z Eq. 3-8

where hist(i,j) denotes the total ‘number of intensity pairs in the cell C(i,j). Here, we
take the square of |i-j| to emphasize those cells far away from the diagonal line.

With the definition of self-contrast-weight for off-diagonal cells, we further
define the contrast-weight for diagonal-cells; which are defined as C(i,j) with [i-j| <
Dt In our algorithm, Dy, is chesen to be a small-value constant. Here, for a diagonal
cell at C(i,j), we define its contrast weight as

contrast _ weight(i, j)

= self _contrast _weight(i,k) Eqg. 3-9
vk
or
contrast _ weight(i, j)
Eqg. 3-10

= self _contrast _weight(k, j)
vk

That is, we sum up the self-contrast-weights for all the cells along the ith column or
along the jth row.

From the 3-D histogram, we have the value of each square region, as shown in
Figure 3-11. The numbers shown in each square represent the height, or the number of
feature-pairs, in each histogram cell. Figure 3-11 illustrates an example to explain the
calculation of contrast weight. In this case, we define Dy, = 1. For each diagonal cell,
we check its entire horizontal neighbors. For example, in Figure 3-11, the white cell in
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the red rectangular area has the contrast weight 2830, which is computed as
5x8% +20x 7% +15x6° +30x5° +15x 4% = 2830, and the white cell in the green area
has the contrast weight 15x6° +30x5° +15x4? =1530. Note that since Dy, = 1 the
cells next to the white cell are also considered as diagonal cells and are not included
in the computation of contrast weight. Moreover, for these cells next to the white cells,
their contrast weight are computed in the same way as that of the white cell. After
every horizontal line is scanned, we get the contrast weight for every diagonal cell.

\
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Figure 3-11 Example of 2-D view of 3-D histogram

31



3.3.2. DISTINCTION WEIGHT

After the estimation of contrast distribution, we further take into account the
phenomenon that humans tend to pay less attention to the common regions in the
image. Hence, beside the contrast weight, we add one more weight, named distinction
weight, for these diagonal cells. This distinction weight is calculated in an iterative
manner.

3.3.2.1. FIRST ITERATION

At the beginning, the diagonal cell with the largest value of hist is identified.
Assume this cell is at C(iy,j1) and its hist value is denoted as hist(iy,j1). The distinction
weight of this cell is defined as

0 Eg. 3-10

A sample 3-D histogram for«the first iteration is shown in Figure 3-12, where
max_hist = hist(iy,J1). This identified cell C(iyj1) typically corresponds to the image
background, the commonest portion-of the image: Hence, by taking the reciprocal of
hist(iy,j1), these background portions are assigned a lower value of distinction. That is,
the commonest portion of the image ‘is-expected to be less visually salient to the
observers.

/- max_hist

(max_x, max_y) x

anjeawelbo)siH

Figure 3-12 An example of distinction weight for first iteration

Since we have kept the coordinates of all the feature pairs within each cell, the
weights of the diagonal cells can be mapped back to the spatial domain easily. At the
same time, after the identification of the largest peak in the 3-D histogram, the value
of the maximal peak is set to zero in order to run the next iteration.
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3.3.2.2. THE SECOND ITERATION

After the largest cluster of the 3-D histogram being identified, we search for the
second largest cluster. Assume the second largest cluster is identified at the cell
C(i2,J2), its distinction weight is defined as

distinction _ weight(i,, j,)

Eq. 3-11
= contrast _ weight(i,, j,) x self _distinction _weight(i,, J,)’ |
h self _distinction _ weight(i j)—;xd Eq. 3-12
wnere - - 21 )2 hISt(IZ,JZ) . g. o-

Here, d is the distance between (iz,j2) and (iy,j1). The inclusion of d in Eq. 3-12 is due
to the reason that the regions corresponding to C(iz,j2) will not be visually salient to
the observer if their feature values are too close to the feature value of the background.
For example, in Figure 3-13, we get three candidate cells with the same number of
feature-pairs. These three cells:-have three different distances, denoted as d1, d2, and
d3, away from the largest peak in the histogram. Clearly,"d3 is the farthest of the three.
Hence, the order of the corresponding self distinction_weights of these three
candidate cells would be (3) > (2) > (1)~ Inthis-case, we’ll pick the farthest cell as the
second largest cell. In Figure<3-14,"we illustrate-the calculation of the distinction
weight for the second largest cluster in the 3-D-histogram.
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Figure 3-13 Discussion of the influence of d
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Figure 3-14 An example of distinction weight for second iteration

Similarly, since we have kept the coordinates of all the feature pairs within each
cell, the weights of the diagonal cells can-be-mapped back to the spatial domain. After
the identification of the second. largest_peak-in the 3-D histogram, the value of that
peak is set to zero in order to‘run the-next iteration.

3.3.2.3. THE NEXT ITERATION

After the identification of C(iz,}.), we keep searching for the next largest cluster,
C(ia,jJ3). For C(is,J3), its distinction weight is defined as

distinction _ weight(is, j,)

Eg. 3-13

= contrast _ weight(i,, j,) x ———— i) +(i.—i)?
_ weight(i, Ja)xhist(i3,j3)x\/(3 D+ s —1y)

The same process is repeated until hist(i,jk) is below a pre-defined threshold Hyp,
which is used to ignore small regions and suppress noise interference.
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3.3.2.4. STOP CONDITION

Noise is always a key problem in image processing, so is in saliency region
detection. If an input image is corrupted by noise, the noise might decrease the
performance of salient detection result. As for trivial objects, such as the black-circle
region in Figure 3-15(a), it is obvious that the trivial region will cause a quite small
cluster in the feature-pair distribution. In order to suppress noise interference or avoid
the detection of such trivial objects, a threshold should be chosen appropriately to stop
the iterative search of histogram peaks. As an example shown in Figure 3-16, if we set
the threshold Hy, to 20, the histogram values below 20 will not go through the
algorithm.

(@) Trivial region (b) With noise interference

Figure 3-15 Sample highlight region of trivial region and noise interference
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Figure 3-16 An example of pre-define threshold Hy, set to 20
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3.3.2.5. EDGE CONDITION

In the above procedure, we only search histogram peaks over diagonal cells and
ignore all off-diagonal cells. Here, we define a cell C(i,j) to be a diagonal cell if |i-j| <
Dw. This is because an off-diagonal cluster is usually small and only corresponds to
the boundary of some region in the image. Since we aim to detect visual saliency
regions but not their boundaries, we only need to focus on diagonal cells but not
off-diagonal cells. Here, we set a threshold Dy, to determine how far away a cell may
depart from the 45-degree line if that cell is to be treated as a diagonal cell. In Figure
3-17, we illustrate the range of diagonal cells in yellow for two different cases.
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Figure 3-17 Examples of two.histograms with different quantization levels

Actually, the threshold Dy, depends on how we divide the domain of the 3-D
histogram. If we divide the domain into 50 by 50 cells, as shown in Figure 3-17(a),
we may choose a wider range for diagonal cells. For example, we choose Dy = 5 in
Figure 3-17(a). On the other hand, if we only divide the domain of the 3-D histogram
into 25 by 25 cells, we choose Dy, to be a smaller value 2, as shown in Figure 3-17(b).
In Figure 3-18, we show the detail flow chart of the whole map-weighting algorithm.
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Figure 3-18 Detail flow chart of map-weighting algorithm



3.4. SPATIAL COMPETITION

For each feature-pair distribution, after the calculation of distinction weights for
its diagonal cells, we can back project these distinction weights onto the spatial
domain to get the corresponding conspicuity map. Since we only adopt simple rules in
the calculation of distinction weights, the conspicuity maps usually suffer from poor
signal-to-noise ratio. Hence, in the proposed approach, we adopt the local competition
technique proposed in [14] to suppress unwanted regions and emphasize visually
salient regions in the normalization stage.

As proposed by Itti et al. [14], they introduced three kinds of methods which
were presented in Section 2.3.2. The first is the global maximum normalization which
has been introduced in Section 2.3.2.1. This method normalized each map to a fixed
dynamic range, and then summed all maps according to their global maximum and
local maximums. The method was simple but has poor performance. The second
suggestion was to learn linear map.combination weights based on the expected targets
provided by the system. Even though this method may improve the performance of
detection greatly, it requires the target information.in advance.

In this system, we use_local competition as the normalization stage to inhibit
unwanted regions and, at the'same, time, exhibit-the true salient regions. The general
principle of local competition is.to apply self-excitation and neighbor-induced
inhibition over each pixel in the conspicuity map. Here, a simple spatial competition
scheme is used and the operation kernel is modeled as the DOG (Difference of
Gaussians) pattern, which yields excitation around the center but induces inhibition
from surrounding neighbors (see Figure 3-19(a)). This DOG kernel is expressed as
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In our implementation, &, and Oj,,; are chosen to be the 2% and 25% of

DOG(x,y) =¢’

; Eq. 3-14
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20,

2
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the image dimensions. For example, for a 100 by 80 image, we

choose o, =2, O, =1.6,0,, =25, and o, =20. On the other hand, we choose
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¢, =0.5 and c,, =15.

In the local competition process, the three conspicuity maps are first normalized
to the fixed dynamic range [0,1] to eliminate the factor of unequal dynamic ranges in
different conspicuity maps. Each normalized conspicuity map is convolved with the
2-D DOG filter. The filtered result, together with a small negative constant, is added
to the original map to form a new map. In the new map, all negative values are set to
zero while the non-negative values are kept the same, as illustrated in Figure 3-19(b).
This operation can be expressed as

M <M +M *DOG - K| Eq. 3-15

In our implementation, Kin is chosen to be 0.02. The introduction of this constant is
to increase the speed of convergence over uniform texture regions.

(a)
Bottom-up
feature > +
extraction

rectification
To saliency map
Dogfilter
(b)

Figure 3-19 (a) A cross-section of DOG kernel. (b) System flow of spatial competition.

For each conspicuity map, the above spatial competition process is repeated
several times. If we choose a large number of iterations, the conspicuity map may
converge towards the map of a single peak. On the contrary, if we choose a small
number of iterations, the conspicuity map may still suffer from poor signal-to-noise
ratio. In our implementation, we repeat 10 times the spatial inhibition process. Two
examples of the time evolution of this process are shown in Figure 2-14, which
illustrates that 10 iterations may yield adequate distinction between the two examples.

39



3.5. LINEAR COMBINATION

After local competition, these three conspicuity maps are linearly combined into
a single saliency map. Here, we use two kinds of process to weight each feature.

3.5.1. NAiVE COMBINATION

The first is purely to average the three feature conspicuity maps to get the
saliency map. That is,

I.Map + RG.Map + BY .Map

Saliency Map = 3

Eg. 3-16

where the numerator terms stand for the three features respectively. The step
described above is quite simple. Moreover, since the three maps have already been
clamped to the same criterion at+the stage of competitive normalization, this
combination process requires almast no computational effort.

3.5.2. DATA DRIVEN COMBINATION

However, for an input image, what really-determines the salient region might be
only intensity, or colors. As for colors, some regions might be salient in the red/green
channel, while others might be in the blue/yellow channel. Hence, we may choose an
adaptive combination that changes the weight according to the image characteristics.
Here, we perform a data-driven approach and the summation is based on the
following formula:

Saliency Map
_ I.Mapx max_ Ihist + RG.Map x max_ RGhist + BY .Map x max_ RGhist Eq. 3-17
max__lhist + max_ RGhist + max_ RGhist

In Eq. 3-17, 1.Map, RGMga, BY.Map denote the conspicuity maps of the
I-channel, RG-channel, and BY-channel, respectively. Max_lhist, max_RGhist, and
max_BYhist denote the largest peaks in the corresponding 3-D histograms. Typically,
if a channel possesses a large peak in its feature-pair distribution, that channel is
dominated by a specific feature value and the “unusual” regions usually become more
apparent in the conspicuity map. Hence, we assign a larger weight for this channel.
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Chapter 4.

EXPERIMENTAL RESULTS

Both computer simulation and subjective experiment were performed to verify
the performance of the proposed algorithm. In computer simulation, the proposed
algorithm is coded in Matlab without code optimization, and is tested over a PC with
Intel® Core™2 Duo CPU running at 3G Hz. In the subjective experiment, an eye
tracker is used to record the eye fixation points of 20 subjects in viewing 30 sample
images. Figure 4-1 shows the eye tracker which borrowed from Prof. Chen-Chao Tao
of Department of Commutation and Technology, NCTU. As we can see from Figure
4-1, the eye tracker looks just like a normal LCD monitor. At the bottom of the
monitor, there are infrared emitters and sensors. The eye tracker use infrared and
near-infrared non-collimated light t0 create a corneal reflection (CR). By detecting the
strong reflectance from the observer’s pupils, the eye track may determine the
observer’s eyes and then deduce the gaze focus of the eyes. [15].

Figure 4-1 The eye tracker we used for the experiment

The subjects include both men and women. At the beginning of the experiment,
all subjects were asked to sit comfortably on a chair and to glance freely at the popped
out image. The distance between the subject and the screen is about 50 to 70 cm. Each
image was shown only for 3 seconds to get the intuitive eye movement without
concerning the internal state of each person. Between images, there was a 3-second
short break. The eye fixation data of all these 20 subjects were averaged and
compared with the results of computer simulation.
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Figure 4-2 Eye fixation experimental settings

The computer simulation results of our technique are compared with human eye
fixation data, which are extracted by averaging the eye fixation data of 20 subjects,
together with the simulation results of two-other algorithms. This comparison is to
verify whether our method has the same, /or even better performance if compared with
other methods mentioned in~Chapter-2. In the computer simulation, the parameter
settings of our algorithm are listed in Table 4-1.

Table 4-1 Test images and-its parameter setting.

Scale Quantization Stop Edge Execution
condition | condition time
IMG -1 2 (91 x 61) 25 30 3 3.75s
IMG -2 2 (92 x 61) 25 30 +3 2.3s
IMG -3 2 (160 x 120) 25 30 +3 15.78 s
IMG -4 2 (96 x 64) 25 30 3 3.96s
IMG -5 3 (50 x 31) 25 50 3 0.36s
IMG -6 2 (128 x 96) 25 30 3 7.66s
Comparison—-1 | 2 (100 x 62) 15 15 15 2.66 s
Comparison—2 | 1 (189 x 150) 15 5 3 18.25s
Comparison—-3 | 4 (80 x 77) 25 30 15 452s
Comparison—4 | 2 (100 x 75) 25 30 15 6.53 s

42




Figure 4-3 shows a sample input image and its three conspicuity maps, which are
intensity in Figure 4-3(b), RG in Figure 4-3(c), and BY in Figure 4-3(d). From this
three maps, we can see that the intuitive salient objects, the aircrafts, are popped out
in Figure 4-3(b) and (c).

(@) Input image (b) Intensity conspicuity map

(c) RG color conspicuity map (d) BY.color conspicuity map

Figure 4-3 A sample.input-image andits three conspicuity maps

After obtaining the three conspicuity maps as in Figure 4-3, the two combination
strategies are used in order to see the difference between other. Figure 4-4(a) shows
the resulting saliency map which is formed by the naive combination; whereas Figure
4-4(b) is the result of the data-driven combination. From these saliency maps, the
naive combination yields more popped-out regions compared to the data-driven
approach. In Figure 4-4(a), some unwanted regions appear which can be considered as
noise interference. In Figure 4-4(b), the output map is more reliable and closer to the
human eye fixation heat map.
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(a) Naive combination (b) Data driven combination

= |

(c) Heat map from:20 subjects

Figure 4-4 Resulting saliency maps of Figure 4-3 and heat map of human fixation (IMG - 1)

Another clear result that-shows-the superiority of the data-driven combination is
as follows.

(@) Input image

(b) Naive combination (c) Data driven combination

Figure 4-5 A more specific result explains the combination stage (IMG - 2).
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Based on the above discussion about the combination process, we thus use the
data-driven method as the combination strategy in our saliency map detector. Figure
4-6 to Figure 4-9 show the experimental results for a few nature images. The human
eye fixation heat map is presented for comparison.

(c) Heat map

Figure 4-6 Experimental results of natural image (IMG - 3)

In Figure 4-7, which contains faces, the saliency map indeed pops these two faces
out. The result is consistent with the human eye fixation result, which indicates that
human faces would always be the visual saliency regions.
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(a) Input image (b) Saliency map

(c):Heat:map

Figure 4-7 Experimental results of image-containing faces (IMG - 4)

(@) Input image (b) Saliency map

(c) Heat map

Figure 4-8 Experimental results of natural image (IMG - 5)
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(b) Saliency map

Figure 4-9 Experimental results of natural image (IMG - 6)

In Figure 4-10 to Figure 4-13, we show: the performance comparison of our
method with respect to the subjective experiment, Itti’s method [4], and the Spectral
Residual method [7], over four different images. The upper left image is the original
image. The upper right image is the averaged eye fixation data, averaged from 20
subjects, with the red color indicating -the visually salient regions. The detection
results of the Itti’s method, the SR 'method, and-our-method are shown in parallel for
comparison. It can be seen that the proposed method outperforms both Itti’s method
and the SR method in these four cases." The results generated by Itti’s method are
somewhat different from the eye fixation data, while the results generated by the SR
method are more like the results of edge detection. Moreover, the computation
complexity of the proposed method is much lighter than that of Itti’s method.

Img 1 Human fixation

[tti’s method Spectral residual Ourmethod

Figure 4-10 Experimental results of comparisons with other methods (comparison — 1)
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Img?2 Human fixation

Itti’s method Spectral residual Our method

--

Figure 4-11 Experimental results of comparisons with other methods (comparison — 2)

Img 3 Human fixation

s s

Itti’smethod  Spectralresidual Ourmethod

Figure 4-12 Experimental results of comparisons with other methods (comparison — 3)

Img4 Human fixation

Itti’s method Spectral residual Ourmethod

Figure 4-13 Experimental results of comparisons with other methods (comparison — 4)
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Chapter 5.

CONCLUSIONS

In this thesis, we proposed a bottom-up feature-based technique for saliency
region detection. The whole process is simple and doesn’t require the training stage.
For system activation, we extract the feature-pair distribution from low-level image
data. We assign proper weights over the feature-pair distribution to identify visually
salient regions. The proposed algorithm is much simpler than the commonly used
Itti’s method. After the activation process, a normalization process based on spatial
competition is applied to the conspicuity maps to enhance signal-to-noise ratio. The
conspicuity maps from different feature channels are then linearly combined in a
data-driven manner. The experiment results show that the proposed algorithm can
faithfully detect the salient regions for various ‘kinds of images and the detection
results are consistent with subjective observations.
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