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H.264/AVC 可調式視訊解碼器之分析與動作補償設計 

研究生: 許博淵                                  指導教授: 張添烜 博士 

國立交通大學 

電子工程學系電子研究所 

摘  要 

可調式視訊編碼，一個新生代的視訊標準，除了繼承 H.264 的高壓縮率外，

還提供了空間、時間、品質三種可調性，使得可調式視訊編碼較原本的 H.264

複雜許多。本篇論文的主要目標在於針對 H.264/AVC 可調式視訊解碼器做分析以

及實現一個適用於可調式視訊解碼器的動作補償硬體設計。 

首先，我們針對可調式視訊解碼器整個系統的記憶體使用作分析，藉由挑選

以畫面幀為基礎的解碼流程，系統可以得到最低的內部記憶體使用量和頻寬需求。

接著是我們針對可調式視訊解碼器提出的四級管線架構設計，並且提出單次品質

層解碼的方法，在同個空間層平行處理基底品質層和品質增強層，使得巨圖塊的

處理週期在三個品質層的位元流之中可以有 66%的縮減。最後則是提出一個高性

能的動作補償設計，藉由同個分割區塊資料共用和縮減參考資料等方法，資料頻

寬有 62-74%的縮減；更進一步，藉由使用兩套內插單元硬體，處理雙向預測區

塊的週期數將得以減半。 

根據實驗結果，我們提出的動作補償硬體設計的巨圖塊平均處理週期低於

160 個週期，也低於我們系統限制的 227 個週期。換句話說，我們所提出的硬體

設計可以在 135MHz 的時脈下，達到每秒處理超過 59 萬 4 千個巨圖塊，也就是每

秒 60 張 CIF、SD 480p 以及 HD 1080p 的影像。  
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Analysis of H.264/AVC Scalable Extension Decoder and Its 

Motion Compensation Design 

Student: Po-Yuan Hsu                               Advisor: Tian-Sheuan Chang 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

Abstract 

Scalable Video Coding (SVC), a new generation video codec, not only inherits the 

high coding efficiency of H.264/AVC standard, but also supports scalabilities of 

spatial, temporal, and quality domain, inducing SVC much more complicated than 

H.264/AVC standard. The main goals of this thesis are to perform an analysis of SVC 

decoder and implement a motion compensation hardware design for it. 

At first, a memory analysis of SVC decoder system is proposed. By choosing 

frame-based decoding flow, the system would enjoy the minimum internal memory 

usage and bandwidth requirement. Then, we propose a four-stage MB-pipeline 

architecture for our SVC decoder, and there is also a one-pass quality layer decoding 

method proposed, which parallel processes base quality layer and quality 

enhancement layers in same spatial domain for 66% reduction of MB processing 

cycles in bitstream of three quality layers. Finally, a high performance motion 

compensation design is presented. By Block Size Based Data Request and Precision 

Based Data Request, the data bandwidth is reduced by 62-74%. Moreover, by 

Doubled Hardware of Interpolation Unit scheme, the processing cycles for bi-pred 
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block will be halved. 

According to experiment results, the average processing cycles in our proposed 

motion compensation design are below 160 cycles/MB which is under our system 

constraint 227 cycles/MB. On the other hand, the proposed hardware design can 

process more than 594k macroblocks per second operating at 135MHz clock rate, 

which is equivalent to 60 frames of CIF, SD 480p, and HD 1080p resolutions. 
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Chapter 1. Introduction 

Recently, the advances of network bandwidth and wireless access techniques 

boost the development of multimedia services. The state-of-the-art video codec 

H.264/AVC promises the dominant status over multimedia content service. It provides 

high compression and high quality video but with only fixed resolution. Due to the 

heterogeneities on user devices and network environments, multimedia stream with 

scalable features is demanded. A single bitstream to satisfy various clients becomes 

more and more desired. Therefore, the new Scalable Video Coding (SVC) standard 

was developed based on H.264/AVC [1] by the Joint Video Team (JVT) to provide 

this service. The high coding performance makes H.264/AVC suitable for high 

resolution video compression. However, the huge computation remains a problem for 

hardware implementation. 

1.1.  Motivation 

In today’s technology, the High-Definition Television (HDTV) seems to be a basic 

equipment in multimedia entertainments. Besides HDTV, there are also cell-phone, 

PDA, and notebook that may use multimedia applications. With one single SVC 

bitstream, these receiving devices can get their own video quality by extracting the 

bitstream according to their requirements.  

SVC has been standardized in 2007. However, there is no hardware 

implementation of SVC decoder which has been published yet. In this work, we want 

to development a motion compensation design of an SVC decoder that support 
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today’s full-HD specification which is HD 1080p with 60Hz frame rate.  

1.2.  Thesis Organization 

The organization of this thesis is described as follows. Chapter 1 makes a brief 

introduction of SVC and motivation of this work. Chapter 2 gives an overview on 

SVC standard and introduces the components of SVC decoder. In Chapter 3, an 

analysis on SVC decoder is presented, with the decoding flow selection and pipeline 

stage design. Chapter 4 shows the hardware design and experiment results of 

proposed motion compensation design. Finally, the conclusion and future work will 

be given in Chapter 5. 
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Chapter 2. Overview of SVC Standard 

Digital video compression techniques have played an important role in the world 

of multimedia systems. Hence, video coding techniques are for reducing the amount 

of information needed for a video sequence without losing much of its quality. Fig. 

2.1 shows the history of video coding standards. With the improvements of network 

techniques and multimedia applications, a variety of devices with different 

capabilities has become very popular. Traditional standards provide fix video content 

which cannot deal with the heterogeneous of receiving devices. Therefore, a new 

video coding standard, SVC, was standardized as H.264 Annex G in 2007 [2]. SVC 

not only inherits the high coding efficiency of H.264/AVC standard but also supports 

scalabilities of spatial, temporal, and quality domain [3]. The term “scalability” means 

that certain parts of the bitstream can be removed in order to adapt to the requirements 

of receivers. The video bitstream of SVC is structured in layers, consisting of a base 

layer and one or more enhancement layers. Each enhancement layer improves the 

resolution or the quality of the video sequence. Fig. 2.2 shows an example of SVC 

streaming with heterogeneous receiving devices. The SVC encoder presents a fully 

content of video bitstream that provides the highest resolution, highest frame-rate, and 

highest quality video. On decoder side, the receiving devices get their own video 

quality by extracting the fixed bitstream according to the network bandwidth and their 

requirements.  
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Fig. 2.1. History of video coding standards 

 

 

Fig. 2.2. Example of video streaming with heterogeneous receiving devices 

2.1.  Fundamentals of SVC 

SVC is based on H.264/AVC and adds new features to achieve the scalabilities. 

Fig. 2.3 shows an architecture of SVC encoder with two spatial layers. The dotted line 

block in this figure is an H.264/AVC compatible encoder. The input video first 

down-sampled to lower resolution, and then goes through the base layer coding and 

produces base layer bitstream just like H.264/AVC. The block named “Progressive 
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SNR refinement texture coding” enables the quality scalability by generating more 

transform coefficients to improve the video quality. The base layer information, such 

as intra texture, motion vectors, and residuals, are upsampled to spatial enhancement 

layer for inter-layer prediction. Spatial enhancement layer reuses these base layer 

information as much as possible to improve coding efficiency as spatial scalability. 

The temporal scalability comes from the hierarchical-B picture structure [4], [5] as 

shown in Fig. 2.4. By receiving more temporal levels, the output video sequence will 

be more fluent.  

 

Fig. 2.3. Block diagram of an SVC encoder with two spatial layers 
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Fig. 2.4. Reference scheme of hierarchical-B picture structure 

2.2.  Components of SVC Decoder 

SVC inherits most of the components from H.264/AVC and adds three 

upsampling functions for inter-layer prediction as shown in Fig. 2.5. First, the SVC 

decoder parses and decodes the bitstream by Entropy Decoding module, then the 

prediction type and transform coefficients will be known. Transform coefficients need 

inverse quantization and inverse transform in Residual Decoding module to generate 

residual data, and intra or inter prediction will be enables according to the prediction 

type. Intra Prediction module produces prediction samples based on the reconstructed 

pixels from neighboring pixels in the same frame, and contains three different 

prediction types for luminance part as illustrated in Fig. 2.6. For inter prediction, 

Motion Vector Reconstruction module first generates MV information, then Motion 

Compensation module produces prediction samples based on previous decoded 

frames. Each inter-coded macroblock can be divided into smaller partitions with 

variable block size from 4x4 to 16x16 as shown in Fig. 2.7. After prediction and 

residuals are ready, they are summed together in Sample Reconstruction module. 
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Finally, the Deblocking Filter module is applied to improve visual quality by 

smoothing the vertical or horizontal block edges between transform blocks as shown 

in Fig. 2.8. 

 

Fig. 2.5. Block diagram of SVC decoder  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.6. Intra prediction: (a) 4x4 block; (b) 8x8 block; (c) 16x16 block; (d) chroma 

block 
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Fig. 2.7. Block partition modes of inter prediction 

 

Fig. 2.8. Horizontal edges and vertical edges in one macroblock 

The inter-layer prediction contains Sample Upsampling module (inter-layer intra 

texture prediction), Motion Vector Upsampling module (inter-layer motion prediction), 

and Residual Upsampling module (inter-layer residual prediction) for spatial 

scalability as shown in Fig. 2.9. By restricting the inter-layer intra texture prediction 
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to intra-coded block only [9], a single-loop decoder for spatial scalability can be 

realized requiring only the motion data of inter-coded block and reconstructed intra 

pixels in base layer. Quality scalability can be considered as a special case of spatial 

scalability with identical resolution for base quality layer and quality enhancement 

layer. In quality enhancement layer, it contains progressive refinement coefficients to 

be added to base quality layer. 

For more details, please refer to [2], [3], and [6]. 

 

          (a)                     (b)                    (c)    

Fig. 2.9. Illustration of inter-layer prediction features in dyadic spatial scalability: (a) 

inter-layer intra texture prediction, (b) inter-layer motion prediction, (c) inter-layer 

residual prediction 
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Chapter 3. Analysis of SVC Decoder 

Since SVC supports several new coding features, the complexity of SVC decoder 

is much higher than H.264/AVC. As a result, a completely analysis of SVC decoder 

before hardware implementation is required. In this chapter, we first analyze the 

memory requirements of different decoding flows, trying to find out a better way for 

SVC decoder, then present the pipeline architecture for our hardware design, and 

propose a one-pass quality layer decoding method to parallel process quality layers in 

a spatial domain at last.  

3.1.  Decoding Flow 

For an H.264/AVC decoder, a straightforward decoding process is macroblock by 

macroblock. The decoding flow first parses the input bitstream by entropy decoding 

and recovers the residual and related prediction mode data needed for the decoding 

process. Then the residual is added with the prediction samples from inter or intra 

prediction to recover the pixel values.  

In addition to the inherent decoding operations of H.264/AVC, the SVC decoder 

supports three scalabilities, spatial, temporal, and quality. For the purpose of memory 

analysis [8], we only consider spatial scalability in this paper since temporal 

scalability should be fully supported. For the spatial scalability, base layer data needs 

to be decoded before its corresponding macroblock in enhancement layer for the 

purpose of inter-layer data reuse. Enhancement layer reuses base layer information 

such as motion vectors, residuals, or reconstructed samples for the reconstruction 
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process. The block diagram of SVC decoder has shown in Fig. 2.5. There are three 

new blocks in the figure within dashed line compared to H.264. In which Sample 

Upsampling process is used in inter-layer intra texture prediction that upsamples the 

corresponding reconstructed samples, Motion Vector Upsampling upsamples 

macroblock partition and motion vectors from reference layer, and Residual 

Upsampling is corresponding to inter-layer residual prediction and it block-wised 

upsamples residuals. With these three inter-layer predictions, SVC decoder can 

decode its data to recover the pixel values. 

3.1.1. Memory Analysis for H.264/AVC Decoder 

The memory requirements of H.264/AVC decoder are mainly dominated by four 

parts: parsing data, macroblock processing data, neighboring data, and decoded picture 

buffer. In the following, a macroblock based decoding flow is assume. The parsing data 

stores the information parsed from the bitstream, such as the SPS, PPS, and slice header 

data. The transform coefficients parsed from bitstream are also included in it. The 

parsing data consumes about 4.4 KB memory derived statistical results. The 

macroblock processing data stores the information that may be used to reconstruct a 

macroblock such as prediction mode, residuals, and reconstructed samples. This part 

requires 4.8 KB memory spaces. Since the basic processing unit is macroblock, above 

memory usage is irrelevant to the frame size actually. The neighboring data stores 

previous decoded neighboring macroblock information, i.e. left, up, upper-right, or 

upper-left macroblock, which contains motion vectors, reference picture, prediction 

mode, and neighboring pixels. Pre-deblocking coefficients are also included. The 

neighboring data is stored in a row of macroblocks in frame width, for example, a row 

consists of 22 macroblocks in CIF size. For neighboring pixels, the size is one line of 
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samples of the frame width plus one column height of a macroblock. The decoded 

picture buffer (DPB) stores previous decoded frames as reference frame for inter 

prediction. The DPB is refreshed after decoding one GOP. However, the data of DPB 

are stored in external memory since such significant memory requirement is 

unreasonable to be stored in internal memory. From the analysis described above, the 

internal memory usage and external memory access of H.264 decoder are summarized 

in Table 3.1 and Table 3.2, respectively. 

Table 3.1. Internal memory usage of H.264/AVC decoder 

Name Size (KB) 

*Parsing data ~4.4 

*Macroblock processing data ~4.8 

Neighboring data 0.2 * 1.06PicWidthInMbs +

PicWidthInMbs: number of macroblocks in a row of a frame 
*: fixed data: will not change with the variation of frame resolution 

Table 3.2. External memory access of H.264/AVC decoder 

Name Size (KB) 

Input bitstream *0.0375*PicSizeInMbs 

Reference samples **1.35 *PicSizeInMbs 

Reconstructed samples 0.375*PicSizeInMbs 

PicSizeInMbs: number of macroblocks in a frame 
*: assume the compression rate is 10% of the original data 

**:  assume every macroblock has 16 4x4 subblocks with one direction prediction 
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3.1.2. Memory Analysis for SVC Decoder 

Memory requirement of SVC inherits the entire requirement from H.264 with 

additional memory from inter-layer prediction as shown in Fig. 3.1. For the inter-layer 

prediction, it reuses the reference layer data such as motion vectors, residuals, and 

reconstructed samples. With this inter-layer dependency, different decoding flows will 

cause different memory requirements. In the following, we specify three decoding 

flows, macroblock-based, row-based, and frame-based, that can be applied to SVC 

decoding process. Furthermore, their corresponding internal memory usage and 

external memory access will be analyzed in the following article. 

NALU 
Reader

SPS PPS Slice 
header

SEI

Parsing data

Neighboring 
data

Decoded 
picture 
buffer

Input bitstream

Decoded frame

NALU type

Decode MB

Macroblock 
processing data

Inter-layer data (base layer 
pixels, motion vector, residuals)

 
Fig. 3.1. SVC decoder memory map 
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a) Macroblock (MB)-based 

The first decoding flow is macroblock-based, which decodes one macroblock in 

base layer and then the corresponding four macroblocks in the enhancement layer as 

illustrated in Fig. 3.2. In this flow, inter-layer data can be reused immediately for 

enhancement layer. In this method, we have to store the neighboring data 

corresponding to its current decoding macroblock of each spatial layer separately 

since multiple layers are decoded at the same time. Therefore, the internal memory 

usage, especially the neighboring data, is increased because of more than one layer as 

shown in Table 3.3. Besides, we also have to store the base layer decoded information 

as inter-layer data for inter-layer prediction reference. Therefore, Table 3.4 shows the 

composed elements of inter-layer data and its corresponding additional memory 

requirement. The NumMBref is set as follows:    

NumMBref = 
2

0

22
d

n

n
−

=

∑   (3.1) 

d: number of spatial layers 

In this method, these data can be immediately reused in the following 

enhancement layer decoding. Table 3.5 shows the corresponding external memory 

access. 
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(a) 

spatial_layer_id

while( spatial_layer_id < d ) {
 while( CurrMbAddr  < 4  ) {

    decode_one_macroblock();
    CurrMbAddr ++;
  }
  spatial_layer_id ++;
}

 

(b) 

spatial_layer_id: the index of current decoding spatial layer 

d: number of spatial layers 

CurrMbAddr: current decoding macroblock address 

Fig. 3.2. Macroblock-based decoding flow: (a) graphical illustration; (b) pseudo code 

Table 3.3. Internal memory usage of multi-layer decoding 

Name Size (KB) 

Parsing data ~4.5  

Macroblock processing data ~5  

Neighboring data 
1

0
0.2 * 1.06( PicWidthInMbs )

d

n
n

−

=

+∑  

d: the number of spatial layers 

PicWidthInMbsn: number of macroblocks in a row of spatial layer n 
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Table 3.4. Inter-layer data requirement of SVC decoder 

Name Size (KB) 

Reference layer motion vectors 0.125 * NumMBref 

Reference layer residuals 0.75 * NumMBref 

Reference layer samples 0.375 * NumMBref 

Reference layer others (mb_type, sub_mb_type, 
ref_idx, …) 

0.013 * NumMBref 

 NumMBref: number of macroblocks of reference layer 

Table 3.5. External memory access of SVC decoder 

Name           Size (KB) 

Input bitstream 
1

0

0.0375 * PicSizeInMbs
d

n
n

−

=

∑

Reference samples 
1

0

1.35 * PicSizeInMbs
d

n
n

−

=

∑

Reconstructed samples 
1

0

0.375 * PicSizeInMbs
d

n
n

−

=

∑

Quality coefficients 
1

0

0.75 * * PicSizeInMbs
d

n
nq

−

=

∑

d: number of spatial layers 

PicSizeInMbsn: number of macroblocks in a frame 

q: number of FGS layers 
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b) Row-based 

Row based decoding expands the decoding flow to row by rows. After decoding 

one row of macroblocks in base layer, the corresponding two rows in higher 

enhancement layer will be decoded as shown in  Fig. 3.3. In this flow, inter-layer 

data is reused for enhancement layer after one row processing. Row-based decoding 

flow is similar to macroblock-based decoding flow since both methods decoding 

multiple layers at the same time. However, the control of row-based decoding method 

is much easier than macroblock-based method since the decoding process change 

between each layer is more regular, i.e. the decoding macroblocks are continuous in 

each layer. The main difference of memory requirement between row-based and 

macroblock-based is that the size of inter-layer data. The row-based manner should 

buffer whole row(s) of inter-layer data. The NumMBref in Table 3.4 in this method is 

set as follows:  

NumMBref = 
2

0

PicWidthInMbs
d

n
n

−

=

∑   (3.2) 

d: number of spatial layers 

PicWidthInMbsn: number of macroblocks in a row in spatial layer n 

The external memory access is almost the same as macroblock-based method. 
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(a) 

spatial_layer_id

while( spatial_layer_id < d ) {
  while( CurrMbAddr  < PicWidthInMbs* 2  ) {
    decode_one_macroblock();
    CurrMbAddr ++;
  }
  spatial_layer_id ++;
}

 

(b) 

spatial_layer_id: the index of current decoding spatial layer

d: number of spatial layers

CurrMbAddr: current decoding macroblock address

PicWidthInMbs: picture width in the unit of MBs

 Fig. 3.3. Row-based decoding flow: (a) graphical illustration; (b) pseudo code 

c) Frame-based 

Frame-based decoding means that the decoder processes each frame layer by layer. 

In this flow, inter-layer data is reused for enhancement layer after one frame 

processing as shown in Fig. 3.4. The frames of enhancement layer are decoded after 

the base layer decoding. This method has to store a whole frame of inter-layer data. 

The amount of inter-layer data is to substitute (3.3) into Table 3.4.  

NumMBref = 
2

0

PicSizeInMbs
d

n
n

−

=

∑   (3.3) 

d: number of spatial layers 

PicSizeInMbsn: number of macroblocks in spatial layer n 
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However, these huge inter-layer data are unreasonable to be stored in internal 

memory. Furthermore, due to different layers are decoded at different time, 

neighboring data can be stored in only one set of highest spatial layer without overlap. 

Therefore, the internal memory size is reduced to by setting d = 1 in Table 3.3 

compared to macroblock-based and row-based decoding manners. The total external 

memory access is same as Table 3.5 plus inter-layer data mentioned above. 

 
 

 (a) 

while( spatial_layer_id < d ) {
 while( CurrMbAddr < PicSizeInMbs ) {
    decode_one_macroblock();
    CurrMbAddr ++;
  }
  spatial_layer_id ++;
}

 
(b) 

patial_layer_id: the index of current decoding spatial layer

d: number of spatial layers

CurrMbAddr: current decoding macroblock address

PicSizeInMbs: picture size in the unit of MB

Fig. 3.4. Frame-based decoding flow: (a) graphical illustration; (b) pseudo code 

3.1.3. Analysis 

For a clearer picture of the memory usage, we show some quantitative results in 

this Section. To calculate the memory usage, we make several assumptions in our 

analysis: 95% of macroblocks are coded in inter prediction, 90% of macroblocks in 

enhancement layers are coded in Intra_BL mode if the corresponding block in base 

layer is encoded as Intra mode, and 10% macroblocks in enhancement layers use 
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residual prediction in average. This assumption is a general statistic according to our 

experiment. The encoding settings are listed in Table 3.6. Table 3.7 shows the analysis 

results, in which Type I stores all inter-layer prediction data in the internal storage 

while Type II stores all inter-layer prediction data in the external memory. 

Table 3.6. Simulation settings 

GOP 8 

QP 32, 26, 20 

Intra period -1 

Frame resolution CIF, 4CIF, 16CIF 

Table 3.7. Comparison of memory requirements 

Decoding Flow 

Internal Memory 
(KB) 

External Memory 
Access (MB) 

size ratio size ratio 

Original H.264 27.9 100% 11.5 100% 

Type I 

MB 50.6 181% 21.7 189% 

Row 126.6 454% 21.5 187% 

Frame 2529 9065% 21.4 186% 

Type II 

MB 44.3 159% 24.2 210% 

Row 43.5 156% 24 209% 

Frame 28.2 101% 23.9 208% 

The result shows that inter-layer prediction data has great impact to both internal 

memory storage as well as the external memory access. For type I, internal memory 

size will be increased by 81% to 8965% when compared to single layer H.264 

decoding, especially for frame-based decoding that needs to store 1980 MBs of 
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residuals, prediction modes and motion vectors for inter-layer prediction. For 

row-based decoding method, 110 MBs of inter-layer prediction data need to be stored 

in internal memory. For MB-based decoding, only 5 MBs data are needed. This is the 

reason why the macroblock-based decoding method results in lower internal memory 

usage. For external memory access, all these flows are the same due to the same 

reference data. Thus, the MB-based decoding is the best choice due to its smallest 

internal memory usage and the same external memory access when compared to 

frame-based and row-based decoding methods, if an efficient internal memory design 

can be supported by the technology provider.  

Beyond type I, another design possibility is to store the inter-layer prediction data 

into external memory to reduce the chip cost, just as type II. From the table, it is 

interesting to find that the extra external memory bandwidth due to inter-layer 

prediction data is insignificant compared to the large reference data. Thus, the 

bandwidth increasing in type II is just 12% more when compared to that in type I. 

However, the internal memory usage varies a lot for different coding flow. MB-based 

decoding has the least reduction due to each layer has its own neighboring data to be 

stored in internal memory for each layer decoding. Same situation also occurs in 

row-based decoding method as well. For frame-based decoding, the internal memory 

storage is just 1% more than the single layer H.264 decoding since all the extra 

storage is within the external memory now. Therefore, the frame-based decoding is 

the best choice for smallest internal memory size with the acceptable memory 

bandwidth. 
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3.2.  Pipeline Architecture 

In the hardware design of video coding, pipeline architecture is widely used in 

previous works [10][11][12][13][14][15]. The components in H.264/AVC decoder are 

entropy decoding (CAVLD/CABAD), residual decoding (IQ/IT), intra prediction 

(INTRA), inter prediction (INTER), and deblocking filter (DEBLOCK). 

SVC decoder is more complicated than H.264/AVC since it supports spatial 

scalability and quality scalability. We will discuss the quality scalability in later 

Section. The three new features in spatial scalability, inter-layer intra texture 

prediction (IL-INTRA), inter-layer motion prediction (IL-MOTION), and inter-layer 

residual prediction (IL-RESIDUAL), should be also put into consideration. In terms 

of functionality, IL-INTRA is a new prediction type in SVC, IL-MOTION can be seen 

as a special case in INTER, and IL-RESIDUAL is a part in residual decoding parallel 

to IQ/IT.  

In Inter Prediction, there are three processes to go: “Motion Vector Generation”, 

“Reference Data Accessing”, and “Interpolation”. Our proposed INTER stage is 

decomposed into two stages. The first stage, named MVG, has “Motion Vector 

Generation” and “Reference Pixel Accessing” processes, and the second stage, named 

INTERP, contains “Interpolation” and pixel reconstruction. The pipeline architecture 

in our design is illustrated in Fig. 3.5.  

Our proposed design has four MB-pipeline stages. In the 1st MB Stage, 

CAVLD/CABAD outputs coefficient data and other information. Then, the 2nd MB 

Stage generates residuals by IQ/IT. Other prediction information such as motion 
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vectors for motion compensation is generated by MVG. Moreover, if current 

macroblock contains inter-layer prediction mode, IL-INTRA, IL-MOTION, or 

IL-RESIDUAL will upsample the corresponding data of co-located block in base 

layer as the inter-layer prediction data. In the 3rd MB Stage, either INTERP or INTRA 

will be activated dependents on MB prediction type. RECONST is used to reconstruct 

inter-layer intra texture prediction and intra-inter prediction mode in SVC 

enhancement layers. These reconstructed samples and MB information are sent to the 

4th MB Stage, DEBLOCK, to generate the final filtered pixels. 

 

Fig. 3.5. Proposed pipeline stage in our SVC decoder 

3.3.  Proposed One-Pass Quality Layer Decoding 

The target specification of our design is: three spatial layers (CIF, SD 480p, and 

HD 1080p), three quality layers, and three temporal layers, with YUV420 format in 

60 Hz frame rate. Fig. 3.6 shows the structure of SVC bitstream for our target design 

specification. The SVC contains spatial, temporal, and quality scalabilities. In one 

temporal domain, there are 3x3 layers of different spatial and quality combinations as 
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shown in Fig. 3.7. In the pipeline architecture described in Section 3.2, the decoding 

flow is macroblock by macroblock in one layer, and layer by layer in one temporal 

domain as illustrated in Fig. 3.8. On the other hand, there are three quality layers in 

one spatial domain, so the total macroblocks needed to be decoded in SVC may be 

three times larger than former H.264/AVC standard. 

 

Fig. 3.6. Structure of the SVC bitstream 

  

Fig. 3.7. Packets in different temporal domain 
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Fig. 3.8. The order of slice packet in SVC bitstream 

For example, the number of macroblocks in one frame in a 1080p video sequence 

with three spatial layers (CIF, 480p, and 1080p) in SVC is  

(352 / 16) x (288 / 16) = 396  (3.4) 

(720 / 16) x (480 / 16) = 1,350  (3.5) 

(1,920 / 16) x (1,088 / 16) = 8,160  (3.6)  

396 + 1,350 + 8,160 = 9,906  (3.7) 

   If every MB needs d cycles for processing, the total MB processing cycles will be 

9,906d. 

The number of macroblocks in one frame in a 1080p video sequence with three 

spatial layers (CIF, 480p, and 1080p) and three quality layers in SVC will be 

3 x (396 + 1,350 + 8,160) = 29,718  (3.8) 

If the decoding flow in SVC follows the pipeline architecture macroblock by 

macroblock and layer by layer, the total MB processing cycles will be 29,718d, which 

is three times larger than 9,906d with only one quality layer. The situation is: First, the 
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macroblocks of base quality layer go through these pipeline stages just like H.264 

bitstream, then the quality enhancement layer. After the refinement coefficients of 

current enhancement layer are decoded, these coefficients are added to coefficients of 

previous layer, and the transformed residuals are added to the prediction samples of 

previous layer, too. It can be seen that the data in previous decoded layer will be used 

in quality enhancement layers. That is, these data are stored to external memory after 

current quality layer, and then loaded to internal memory in next quality enhancement 

layer.  

In SVC, quality scalability is achieved using coarse-grain scalability (CGS) or 

medium-grain scalability (MGS) where the quality enhancement layers contain 

refinement coefficients. These reconstructed residuals in enhancement layers are 

added to the prediction or reconstructed samples in base quality layer for a better 

quality video. If we can deal with the coefficients in all quality layers at the same time, 

after transforming them to residuals, the residuals can be direct added to prediction 

samples of current macroblock without external memory access. Consequently, we 

proposed a One-Pass Quality Layer Decoding method in SVC decoder. The main idea 

of the one-pass decoding is that we parallel processing all quality layers in a spatial 

domain. Fig. 3.9 illustrates the pipeline stages in an example of three quality layers, 

Q0, Q1, and Q2, in D0 spatial domain. In the 1st MB stage, the coefficients in three 

different quality layers are decoded. The 2nd MB stage accumulates these coefficients 

and forms the highest refinement coefficients. Then, the IQ/IT module transforms 

these coefficients to base quality residuals and highest quality residuals. The residuals 

will be added to prediction samples in the 3rd MB stage. As a result, when the parallel 

decoding method is adopted, the number of total MB processing cycles in pipeline 
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architecture will be reduced from 29,718d to 9,906d, which is 66% reduction. 

However, in order to parallel decoding different quality layers, the hardware of 

entropy decoding (CAVLD/CABAD) is doubled, one for base quality layer, and one 

for quality enhancement layer, and the hardware of residual decoding is increased due 

to additional buffers and coefficient accumulators for different quality layers as shown 

in Fig. 3.10. Moreover, a fast scan is needed in parser to identify the head of each 

quality layers in the bitstream as illustrated in Fig. 3.11. After the position of each 

quality layer is located, the parser can parallel parse the MB data in different quality 

layers in the bitstream to entropy decoding.. With the help of One-Pass Quality Layer 

Decoding method, the MB processing cycles with three quality layers is 66% reduced 

and is just the same with only one quality layer. In other words, the additional MB 

processing cycles in MB-pipeline architecture and external memory accessing due to 

quality scalabilities are eliminated. 

 

Fig. 3.9. One-pass quality layer decoding concept with three quality layers 
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Fig. 3.10. Hardware increased with one-pass quality decoding method 

 

Fig. 3.11. The identifiers of different quality layers 

3.4. Summary 

In this chapter, the analysis of SVC decoder is discussed. First, a frame-based 

decoding flow is adopted in our hardware design for smallest internal memory size 

with acceptable memory bandwidth requirement. Second, the pipeline stage in our 

proposed hardware architecture is presented. We use four-stage MB-pipeline 

architecture for our proposed design. Finally, One-Pass Quality Layer Decoding 

method is introduced in SVC decoder to eliminate the additional MB processing 

cycles in MB-pipeline architecture and external memory accessing due to quality 

scalabilities.  
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Chapter 4. Motion Compensation Design 

The implementation of motion compensation design is introduced in this chapter. 

First, an introduction of the algorithms to motion compensation will be presented. 

Then, the bandwidth optimization methods used in this work will be introduced. 

Finally, the hardware implementation, experiment results and the conclusion will be 

discussed. 

4.1.  Introduction 

With several advanced coding features, such as variable block size and complex 

spatial motion vector prediction, H.264/AVC stands for the state-of-the-art of current 

video codec. However, this high irregularity of block size and motion vector 

prediction algorithm also makes it the main challenges of motion compensation 

hardware implementation. The main design issues are to lower the computation 

complexity and decrease memory bandwidth requirement.  

Fig. 4.1 shows the variable block size in H.264/AVC standard. The minimum 

block size in the standard is 4x4 block. Thus, it is an intuition to decompose a 

macroblock to 4x4 blocks with double-z scan order as shown in Fig. 4.2, which is 

4x4-block pipeline. The motion vector of current block is added motion vector 

difference (mvd), which is decoded from bitsream to motion vector predictor (MVp), 

which is generated by neighboring blocks. The accuracy of motion vectors in 

H.264/AVC standard is a quarter of a pixel. In the case of fractional MVs, 6-tap FIR 

filter is used to interpolate fractional pixels in luminance component. For a 4x4 block, 
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it needs 9x9 reference pixels to do interpolation. In this case, large amount of memory 

bandwidth is required in fractional MV blocks. To reduce the bandwidth requirement 

of external memory, some bandwidth optimization methods are used. 

The algorithms of motion compensation will be introduced in the rest of this 

Section. 

 

Fig. 4.1. Variable block size in inter-coded block 

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15
 

Fig. 4.2. Double-z scan order 
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4.1.1. Motion Vector Predictor 

Since the motion vectors of neighborings are often highly correlated, the motion 

vector of each block is predicted from previously coded partitions, and only the 

prediction error is transmitted in H.264/AVC standard to reduce the bit rate. In motion 

vector prediction process, the first thing is to generate motion vector predictor (MVp), 

then add it together with the decoded motion vector difference (mvd). The derivation 

process for MVp is described as below and shown in Fig. 4.3: 

 For macroblock partitions excluding 16x8 and 8x16 partition sizes: MVp is 

the median of the motion vectors for partitions A, B and C. 

 For 16x8 partitions: MVp for the upper 16x8 block is predicted from B, 

MVp for the lower is predicted from A. 

 For 8x16 partitions: MVp for the left 8x16 block is predicted from A, MVp 

for the right is predicted from C. 

   
(a)                     (b)                     (c) 

Fig. 4.3. Motion vector predictor scheme (a) macroblock partitions excluding 16x8 

and 8x16 partition sizes, (b) 16x8 partitions, (c) 8x16 partitions 
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4.1.2. Fractional Pixel Interpolation 

The accuracy of motion vectors in H.264/AVC standard is a quarter of a pixel. In 

the case of fractional MVs, the fractional pixels of luminance component are 

generated by interpolation of the integer-pixels. The interpolation method is based on 

6-tap FIR filter with tap values ( 1, -5, 20, 20, -5, 1 ). Fig. 4.4 shows the interpolation 

scheme of luminance component. The half-pixels, b, h, m, and s, are derived by 

applying 6-tap FIR filter using integer-pixels as inputs.  

b1 = ( E − 5 * F + 20 * G + 20 * H − 5 * I + J )  (4.1) 

b = Clip1Y( ( b1 + 16 ) >> 5 )   (4.2) 

The half-pixel j is obtained by first calculating the intermediate values of the six 

half-pixel locations in the horizontal or vertical direction then applying 6-tap FIR 

filter with these intermediates as shown in equation (4.3) to (4.5).  

j1 = cc − 5 * dd + 20 * h1 + 20 * m1 − 5 * ee + ff, or (4.3) 

j1 = aa − 5 * bb + 20 * b1 + 20 * s1 − 5 * gg + hh (4.4) 

j = Clip1Y( ( j1 + 512 ) >> 10 )  (4.5) 

Table 4.1 shows the bit-width of data during luma interpolation. Notice that the 

input bit-width of the interpolation process in half-pixel j is 15-bit. Fortunately, a 

simplification to equation (4.3) to (4.5) can make the implementation much easier 

with negligible quality degradation at about 0.01 dB [16] in which the intermediates 

are truncated to 8-bit. 

j1 = cc’ − 5 * dd’ + 20 * h + 20 * m − 5 * ee’ + ff’, or (4.6) 

j1 = aa’ − 5 * bb’ + 20 * b + 20 * s − 5 * gg’ + hh’ (4.7) 

j = Clip1Y( ( j1 + 16 ) >> 5 )  (4.8) 
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Fig. 4.5 shows the interpolation scheme of quarter-pixels. The quarter-pixels 

labeled as a, c, d, n, f, i, j k, and q are derived by averaging two nearest integer-pixel 

and half-pixel. The quarter-pixels e, g, p, and are derived by averaging two nearest 

half-pixels in diagonal direction.  

Table 4.1. Bit-width of data during first luma interpolation 

Interpolation Min Max Bit-width 

x 0 255 8 

-5x -1275 0 12 

20x 0 5100 14 

Σ -2550 10710 15 

(Σ+ 16)>>5 -80 335 10 

Clip((Σ+ 16)>>5) 0 255 8 
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Fig. 4.4. Interpolation scheme for luminance component (grey blocks represent integer 

pixels, which are denoted by upper-case letter) 

 

Fig. 4.5. Interpolation scheme of quarter-pel positions for luminance component 
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Fractional pixels of chrominance component are derived by averaging weighted 

samples of nearest four integer pixels. The interpolation scheme of chrominance 

component is shown in Fig. 4.6 and the equation is: 

a = ( ( 8 − x ) * ( 8 − y ) * A + x * ( 8 − y ) * B + 

     ( 8 − x ) * y * C       + x * y * D      + 32 ) >> 6  (4.9) 

A B

C D

x

y

8‐x

8‐y

 

Fig. 4.6. Interpolation scheme for chrominance component 

4.2.  Bandwidth Optimization 

The high memory bandwidth requirement in motion compensation is the 

bottleneck in video decoder design. To alleviate this situation, we first reuse the 

overlapped data inside a partitioned block, and then we reduce the required reference 

data according to fractional-pel position. These two bandwidth optimization methods 

are discussed in this Section. 
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4.2.1. Block Size Based Data Request 

The partition size in a macroblock is often larger than 4x4, and the reference data 

of 4x4 blocks in a same block partition is highly overlapped as shown in Fig. 4.7. The 

methods of reusing this overlapped data have been realized in several ways [11] [12]. 

In [11], a Vertical Integrated Double Z (VIDZ) flow adding a 21x64-bit on-chip 

memory to reuse the vertical and horizontal overlapped regions between two 4x4 

decomposed blocks. In [12], an exploiting data reuse in hybrid block size memory 

access from 4x4 to 8x8 is presented, which reuse the overlapped data inside a 4x8, 

8x4, or 8x8 block. However, the external data requests of these methods are based on 

small block size such as 4x4 to 8x8, and the numerous external data access may 

influence the latency of MC hardware. 

In 4x4-block pipeline design, the general case of memory access scheme is 

loading 9x9 reference pixels as the interpolation window for a decomposed 4x4 block; 

we call it Conventional 4x4 Based Data Request. The data reuse only existed between 

two neighboring blocks with additional buffers. To increase the reusing rate of 

overlapped data and reduce the frequency of external data access, the processing 

element in our proposed design is scaled up to the block partition size, and we call it 

Block Size Based Data Request. For example, a 16x8 block consisting of eight 4x4 

blocks, instead of requesting 9x9 block eight times, the reference data request would 

be only one 21x13 block. The reference data in both requests are the same, but the 

request is reduced from eight times to only one and the accessing pixels of reference 

data request is down from 648 pixels to 273, which is 58% reduction. The ideal 

reduction rates corresponding to different partition size are shown in Table 4.2.  
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Fig. 4.7. Data reuse of case: (a) 4x4 block, (b) 8x4 block, (c) 4x8 block, and (d) 8x8 

block, (e) 16x8 block, (f) 8x16 block, (g) 16x16 block (shaded region means 

reusable) 
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Table 4.2. Ideal reduction of reference data accessing between Conventional 4x4 

Based Data Request and Block Size Based Data Request 

Partition Size 4x4 Based Block Size Based Reduction 

4x4 9 x 9 = 81 9 x 9 = 81 0 % 

8x4 2 x 9 x 9 = 162 13 x 9 = 117 28 % 

4x8 2 x 9 x 9 = 162 9 x 13 = 117 28 % 

8x8 4 x 9 x 9 = 324 13 x 13 = 169 48 % 

16x8 8 x 9 x 9 = 648 21 x 13 = 273 58 % 

8x16 8 x 9 x 9 = 648 13 x 21 = 273 58 % 

16x16 16 x 9 x 9 = 1296 21 x 21 = 441 66 % 

4.2.2. Precision Based Data Request 

A strategy for the interpolation filters and the valid reference data size of different 

positions has been proposed [18]. In 4x4-block pipeline design, it is inefficient to load 

9x9 reference pixels for a decomposed 4x4 block to interpolator since the required 

reference data is not always need as large as 9x9. Fig. 4.8 shows integer-pixel and 

fractional-pixel positions in H.264/AVC standard which has the accuracy of a quarter 

of a pixel. To minimize the memory bandwidth access of motion compensation, a 

classification of different pixel positions should be discussed. In Fig. 4.8, the 

sub-pixel a, b and c are located at vertical integer positions and being interpolated by 

horizontal interpolation only (vertical interpolation is not used), which means the 

required reference data can be reduced to 9x4 as shown in Fig. 4.9 (b). Same situation 

comes in sub-pixel d, h and n, the horizontal interpolation is not used and the required 

reference data is reduced to 4x9 (Fig. 4.9 (c)). In the case of vertical or horizontal 
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integer positions, the required reference data can be is reduced from 9x9 to 9x4, 4x9, 

or even 4x4. This strategy can be combined with Block Size Based Data Request in 

Section 4.2.1. Table 4.3 shows a classification of required reference data size for 

different positions with block partition size M x N (M for width and N for height of 

current partition).  

Table 4.3. Reducing required reference data according to different pixel positions with 

block partition size M x N 

Pixel Position Interpolation Filters  Required Reference Data 

G None M x N 

a, b, c Horizontal (M + 5 ) x N 

d, h, n Vertical M x (N + 5 ) 

e, f, g, i, j, k, p, q, r Horizontal and Vertical (M + 5 ) x (N + 5) 

G a b c

d f ge

h j ki

n q rp

H

M N
 

Fig. 4.8. Integer pixels (blocks with upper-case letter) and fractional pixels (blocks 

with lower-case letter) of luminance 
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Fig. 4.9. (a) Horizontal and vertical interpolation (x and y components of MV point to 

fractional positions). (b) Horizontal interpolation only (y component points to 

integer position). (c) Vertical interpolation only (x component points to integer 

position). (d) No interpolation (both x and y point to integer positions) 

4.2.3. Simulation Results 

In order to verify the effect of the bandwidth optimization methods, a simulation 

is performed based on our C model with a DDR400 SDRAM model. We compare the 

memory bandwidth requirements with (1) Block Size Based Data Request, (2) Block 

Size Based Data Request and Precision Based Data Request, and without these 

bandwidth optimization methods. Six HD 1080p video sequences, IBBBBBBBP 

(GOP=8) hierarchical-B prediction structure, and four QP values are used for the 

simulation. As illustrated in Table 4.4, the results show that about 62-74% of the data 
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bandwidth is reduced with these bandwidth optimization methods. With higher QP 

values, the block partition size trends to large block size, and the bandwidth reduction 

rate will be higher. 

Table 4.4. Reduction of data bandwidth in different sequences and QPs 

 
QP=16 QP=24 QP=32 QP=40 

(1) (2) (1) (2) (1) (2) (1) (2) 

tractor 59.57 63.5 60.72 64.7 62.05 65.86 62.52 66.83

sunflower 60.07 64.8 62.4 66.2 62.99 66.45 63.13 68.39

rush_hour 58.36 62.8 61.17 68.7 62.58 71.6 63.09 74.53

station 60.34 63.2 62.23 67.9 62.89 67.24 63.15 69.58

blue_sky 60.12 66.2 62.26 70.9 62.83 70.53 63.13 70.97

pedestrian_area 59.91 66.7 61.9 68.8 62.64 69.77 63.01 72.65

Average 59.73 64.5 61.78 67.2 62.66 68.8 63 70.5

4.3.  Hardware Design 

The system specification of our hardware design is an SVC decoder operating at 

135MHz clock rates with 3 spatial layers (CIF, 480p, and 1080p), three quality layers, 

and 60 frames per second. According to the analysis in Chapter 3, a frame-based 

decoding flow with one-pass quality layer decoding MB-pipeline architecture, the 

total number of processing stages per set of frame is 

(396 + 1,350 + 8,160) x 60 = 594,360  (4.10) 
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For 135MHz clock rate, the available cycles per stage would be 

135,000,000 / 594,360 = 227 cycles  (4.11) 

As a result, the constraint of processing cycles per MB-pipeline stage is 227 

cycles.  

There are three processes in our motion compensation design which are “Motion 

Vector Generation”, “Reference Pixel Accessing”, and “Interpolation”. It’s hard to 

finish all these works within 227 cycles. As a result, we propose a two-stage motion 

compensation design with separated data access and interpolation. Our proposed 

INTER stage is decomposed into two MB-pipeline stages, trying to reduce the 

processing cycles. The block diagram of proposed motion compensation architecture 

is shown in Fig. 4.10. The first stage, named MVG, has “Motion Vector Generation” 

and “Reference Pixel Accessing” processes. The main functions of the first stage are 

to generate MVs and collect all reference data of current MB. First, the Motion Vector 

Generation reconstructs MVs of current MB and then Data Request Generator in 

Reference Pixel Accessing generates data request to Memory Controller of external 

memory for accessing reference pixels. The returned reference pixels are collected in 

a 21x21-pixel Register Array, and then written to Reference Data Buffer for next 

MB-pipeline stage. The second stage, named INTERP, contains “Interpolation” and 

pixel reconstruction. The main function of this stage is to interpolate fractional pixels. 

The Interpolator produces fractional pixels from reference data, and then Pixel 

Reconstruction collects these interpolated pixels adding to residuals as the output 

reconstructed pixels.  

The details of these three processes are described in follows. 
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 Fig. 4.10. Proposed pipeline architecture of motion compensation design 
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4.3.1. Motion Vector Generation 

In this section, a highly regular architecture of Motion Vector Generation is 

presented and the reference is [20]. This process is to generate MVs of current 

macroblock which is first generating motion vector predictor (MVp) and then adding 

to the motion vector difference (mvd). The proposed motion vector prediction design 

takes three cycles to derive the motion data for a 4x4 block, getting neighboring MVs 

in cycle 1, finding out MVp of current block in cycle 2, and adding mvd to MVp in 

cycle 3 as illustrated in Fig. 4.11.  

The prediction of inter-coded block in H.264/AVC comes from two directions, one 

is forward reference frame, called List0 (L0), and the other is backward reference 

frame, called List1 (L1). The prediction types in inter-coded block are combined with 

L0 and L1, which could be L0, L1, or bi-direction (both L0 and L1) prediction. The 

unit of the direction of prediction is based on 8x8 block, so a 2-bit predFlag, one bit 

for L0, and one bit for L1, is used to identify the prediction types for an 8x8 block as 

illustrated in Fig. 4.12. To deal with the variable block size, a 16x16 macroblock is 

decomposed into sixteen 4x4 forward blocks and sixteen backward blocks and the 

block index is shown in Fig. 4.13. The decoding flow is in the order of block index 

from 0 to 31. In Section 4.1.1, the algorithm of motion vector predictor is introduced. 

Before the process of current MB, all neighboring MVs are loaded to internal buffer 

and take preload cycles. The neighboring blocks come from upper MB, left MB or 

current MB, and the MVp is predicted from these neighboring MVs. The neighboring 

blocks of upper MB come from a Neighboring MV Buffer which stores MV 

information of previous decoded macroblocks as shown in Fig. 4.14. We use an 
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internal SRAM as the neighboring MV buffer and this SRAM stores the bottom four 

4x4 blocks in a row of macroblocks, i.e., a 1080p video sequence with 120 

macroblocks per row of frame. Both L0 and L1 need a SRAM and the total size is 

2.46 KBytes. While an MV of a 4x4 block is reconstructed, the MV of current 4x4 

block is sent to Current MV Buffer. In the case of partition size bigger than 4x4, only 

the first 4x4 block of this partitioned block needs to enter the process of motion vector 

prediction, and the rest blocks just copy the MV result of the first block. On the other 

hand, those rest blocks of the corresponding partitioned block can skip the motion 

vector prediction process. After the motion vector generation process of current MB is 

finished, the MVs of bottom four 4x4 blocks will be stored in the neighboring MV 

buffer for upper neighborings of next MB-row. The worst case occurs when the MB is 

consisted of 16 4x4 blocks with bi-direction prediction, and the motion vector 

prediction process will take preload + 96 cycles. 

 

Fig. 4.11. Proposed processing element for motion vector prediction 
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Fig. 4.12. The four prediction flags in a MB 

 

Fig. 4.13. Block index of all 4x4 subblocks 

 

Fig. 4.14. SRAM buffer for neighboring MVs 
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4.3.2. Reference Pixel Accessing 

After the MV of a 4x4 block is reconstructed, the current block information will 

be sent to Data Request Generator for accessing reference pixels in external memory. 

Refer to Section 4.2.2, the size of requested reference data is based on the partition 

size of current block. That is, a maximum 21x21-pixel register array is used in 

Reference Pixel Accessing for request data collection. The returned reference data 

from memory controller is row by row, which has the maximum bitwidth of 21-pixel 

(168-bit), and these data are collected by 21x21-pixel Register Array. The requested 

data size is not always 21x21. However, for every kinds of block size, the requested 

data can be fitted in this 21x21 register array from upper-left corner with a fixed 

position mapping to every 4x4 blocks inside current partitioned block. For example, if 

current requested data size is 21x21 for a 16x16 partition, these data fit into the 

21x21-pixel register array. If the current partition size is 16x8, then the requested data 

will be 21x13. After one partition is finished, these 21x13 data in 21x21-pixel register 

array can be refreshed by the requested data of other partition. The 21x21 Register 

Array first modifies the returned reference data to recovery boundary extension, and 

then collects these modified data into register array. When there are enough reference 

data for a 4x4 block, i.e., 9 rows of luma pixels or 3 rows of chroma pixels, the 

corresponding reference data, which will be 9x9 luma pixels or fractional MVs, 3x3 

Cb, and 3x3 Cr samples, are written to Reference Data Buffer for next MB-pipeline 

stage, INTERP. Fig. 4.15 shows the data mapping of the Reference Data Buffer. These 

buffers are consisted of 16 rows and each row corresponding to the 4x4 block index 

of a macroblock. The row of luma buffer contains 9x9 reference pixels of luminance 

components, and the row of chroma buffer includes fraction MV of x-direction, 
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y-direction, 3x3 Cb, and 3x3 Cr pixels of chrominance components. This Reference 

Data Buffer is consisted of four on-chip SRAMs which are luma and chroma buffer in 

both L0 and L1 direction. For regularly, we use ping-pong buffer to utilize this 

Reference Data Buffer, and the buffer size is 6.25 Kbytes. 

In the external memory access, the returned data is row by row. That is, the 

reference data of current partition block will be ready at the order from left-to-right 

and top-to-bottom. As a result, writing reference data to Reference Data Buffer is in 

raster-scan order within current partitioned block as shown in Fig. 4.16.  

  

(a)                               (b) 

Fig. 4.15. (a) Data mapping in SRAM of luma reference data buffer, (b) data mapping 

in SRAM of chroma reference data buffer 
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       (a)                                  (b) 

Fig. 4.16. Raster-scan order of writing reference data in (a) 16x8 and (b) 8x16 

partition size 

4.3.3. Interpolation 

Our proposed interpolation design adopts a Doubled Hardware of Interpolation 

Unit (DHIU) scheme that two separate interpolation units handle L0 and L1 directions 

in a 4x4 block simultaneously. The interpolation unit is consisted of a luma 

interpolator and a chroma interpolator. The elements in a 4x4 block in YUV420 

format are consisted of 4x4 luma, 2x2 Cb, and 2x2 Cr samples. In our proposed 

architecture design, all of the reference data for a MB is ready before current 

Interpolation MB-pipeline stage, so we parallel processes luminance and chrominance 

components. The 6-tap FIR filter design for luma is shown in Fig. 4.17, which 

translates multiplier-adder to shift operation and addition. In our proposed luma 

interpolator, separate 1-D structure is used. The components of proposed luma 

interpolator are thirteen 6-tap FIR filters and four bilinear filters and the throughput is 

4 pixels/cycle as shown in Fig. 4.18. According to different fractional MVs of 

x-direction and y-direction, the processing cycles for one 4x4 block would be 5-6 

cycles. For the chroma interpolator, a low-cost two-stage chroma filter design was 

proposed [15], and the throughput was 1 pixel/cycle. We extend the parallelism to 
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handle Cb and Cr components simultaneously, and the throughput of our chroma 

interpolator is ( 1 (Cb) + 1 (Cr) ) pixels/cycle. The processing cycles of our proposed 

chroma interpolator are fixed on 5 cycles for a 4x4 block. It can be seen that the 

overall latency of interpolation unit for one 4x4 block is 5-6 cycles. The Pixel 

Reconstruction takes another 2-3 cycles and 1 cycle for changing 4x4 block index. As 

a result, the latency of Interpolation takes 128-160 cycles for an MB. 

 

Fig. 4.17. 6-tap FIR filter design 
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Fig. 4.18. Interpolator of luminance component 

4.4.  Implementation Results 

This chapter summarizes the implementation results of this work. The proposed 

motion compensation hardware architecture is implemented in Verilog HDL with 

UMC 90nm 1P9M CMOS technology. The critical path of this design is in 6-tap FIR 

filter due to the tree adder architecture.  

4.4.1. Design Flow 

The design flow in our proposed design is shown in Fig. 4.19. First, the system 

specification is made, and we develop a behavior model in C language. Then, we 

formulate and analyze the design problem from algorithmic and architectural levels. 

After the system architecture is confirmed, the hardware design is implemented with 
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RTL coding. After verifying the functionality of HDL, logic synthesis and gate-level 

simulation are performed. 

 

Fig. 4.19. Design flow in this work 

4.4.2. Experiment Results 

In order to observe the behavior of proposed design, we integrate all components 

with a top module. The input pattern such as slice_type, mb_type, CurrMbAddr and 

other MB information are generated from our C model, and the output results are 

compared with the golden data generated from C.  

The experiment results in this Section are simulated in C with a DDR400 SDRAM 

model. We first calculate the MB processing cycles in the two stages of our MC 

architecture, and the overall MC processing cycle is the maximum of these two values. 

Table 4.5 and Table 4.6 show the results in our simulation.  
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Table 4.5. Average processing cycles per MB in MVG stage (motion vector 

generation and reference pixel accessing) and INTERP stage (interpolation) 

 
QP=16 QP=24 QP=32 QP=40 

M V G INTERP M V G INTERP M V G INTERP M V G INTERP

tractor 166 137 148 136 141 136 139 135 

sunflower 137 136 132 136 142 138 144 134 

rush_hour 170 137 137 135 135 134 136 131 

station2 163 138 129 136 136 137 143 135 

blue_sky 142 136 141 134 142 135 139 133 

pedestrian_area 157 135 134 135 132 135 130 132 

Average 156 137 137 135 138 136 139 133 

Table 4.6. Experiment results of average processing cycles per MB in our proposed 

motion compensation design 

 QP=16 QP=24 QP=32 QP=40 

tractor 172 159 156 154 

sunflower 153 151 157 156 

rush_hour 176 152 150 148 

station2 169 149 153 156 

blue_sky 155 152 153 152 

pedestrian_area 166 150 149 146 

Average 165 152 153 152 

For small QP values, the block partition size trends to be small, causing the 

increment of processing cycles in MVG stage. The INTERP stage is independent with 

QP since it is only affected by the x- and y-components of fractional MV. A small QP 

also results in more intra-coded MBs in the bitstream. For example, there are 26%, 
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39% and 44% intra-coded MBs in tractor, rush_hour and pedestrian_area bitstream 

(excluding I_Slice) with QP setting to 16 while there are only 8%, 4% and 13% with 

QP setting to 32. For QP value higher than 20, the average processing cycles are all 

below 160 cycles/MB. With repetitive background sequences such as sunflower with 

numerous stamens and petals, station2 with numbers of rails, or blue_sky with 

textureless blue sky and shadow leaves, different QPs may affect the position pointed 

by MV, causing average processing cycles vibrate in a range. However, for the 

specific object or clearly demarcated sequences such as tractor or pedestrian_area, 

the average processing cycle would be lower in high QP values. 

The results here are only considered about inter-coded MBs. If the intra-coded 

MBs are also taken into consideration, the average processing cycles would be lower. 

4.4.3. Gate Count 

For 135MHz synthesis frequency (clock period is set to 7.4 ns), the total gate 

count of this motion compensation design excluded internal memory is about 107k. 

The gate count of each component is listed in Table 4.7. 

Compared to previous works [11][14][15], the gate count increment of this work 

is mainly caused by 21x21-pixel register array in Reference Pixel Accessing part for 

Partitioned Block Data Reuse (PBDR). The Doubled Hardware of Interpolation Unit 

in Interpolation (DHIU) scheme also takes much gate space. 
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Table 4.7. List of gate count for previous works and proposed design 

Module [11] [14] [15] Proposed 

Motion Vector Generation N/A N/A 16,907 14,780

Reference Pixel Accessing N/A N/A 44,542 53,754

Interpolation N/A N/A 55,728 38,546

- interpolation unit N/A 20,686 2 * 14,960 2 * 15,571

- luma interpolator 

(components) 

21,506

(FIR*12

Bilinear*4)

N/A

(FIR*12

Bilinear*4)

N/A 

(FIR*12 

Bilinear*4) 

13,235

(FIR*13

Bilinear*4)

- chroma interpolator N/A N/A N/A 2,336

- pixel reconstruction N/A N/A 7,133 7,404

Total 46,646 43K 117,177 107,080

4.4.4. Comparison 

Since there is no SVC decoder has been published yet, this work is compared with 

other H.264/AVC designs. Table 4.8 gives the comparison of motion compensation. 

Compared to [15], the gate count of our design is smaller and the on-chip SRAM is a 

little larger while the average processing cycle is almost the same. Moreover, the 

worst cast of interpolation cycles is one-fourth to two-thirds compared to previous 

works. Generally speaking, the hardware design of this work is competitive with other 

works. 
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Table 4.8. Comparison with other motion compensation designs 

 [11] [14] [15] Proposed 

Technology 0.18 um 0.18 um 0.13 um 0.09 um 

Gate Count 46.6 k 43 k 117.2 k 107 k 

SRAM (Bytes) 168 - 8 k 8.71 k 

# of Interpolation Unit 1 1 2 2 

Clock Rate 125 MHz 100 MHz 200 MHz 135 MHz 

Standard H.264/AVC H.264/AVC H.264/AVC SVC 

Frame Rate 30 fps 30 fps 30 fps 60 fps 

Specification 
2048x1024 

(P Slice) 

1920x1088 

(P Slice) 

3840x2160 

(P, B Slice)

1920x1088 + 

720x480 + 

352x288  

(P, B Slice) 

Average Processing 

Cycles / QP value 
- - 

155 

/ unknown 

152-165 

/ 16-40 

Worst Case of 

Interpolation Cycles  
- 560 224 160 
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Chapter 5. Conclusion and Future Work 

5.1.  Conclusion 

In this thesis, an analysis of SVC decoder and a high performance motion 

compensation hardware design is proposed. First, by choosing the frame-based 

decoding flow, the system would enjoy the minimum internal memory usage and 

bandwidth requirement. Second, our pipeline architecture adopts One-Pass Quality 

Layer Decoding method, in which the MB processing cycles for in three quality layers 

bitstream are 66% reduction. Finally, a high performance motion compensation 

architecture is presented. We decompose the motion compensation into two 

MB-pipeline stages. The first stage is for motion vector generation and reference pixel 

accessing, and the second one is for fractional pixel interpolation. The bandwidth 

requirement is 62-74% reduced by two bandwidth optimization methods. In our MC 

architecture, a high performance interpolation unit is proposed with only 6 cycles 

latency to complete a 4x4 block. We further double the hardware of interpolation unit 

to process L0 and L1 prediction simultaneously, and the latency of bi-pred blocks is 

halved. In worst case, the latency of our proposed interpolation design will be 160 

cycles/MB. 

According to the experiment results, the average processing cycles in our 

proposed motion compensation design are below 160 cycles/MB which is under our 

system constraints 227 cycles/MB. On the other hand, the proposed hardware is 

capable for decoding more than 594k macroblocks per second operating at 135MHz 
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clock rate, which is equivalent to 60 frames of CIF, SD 480p, and HD 1080p 

resolutions. 

5.2. Future Work 

The proposed motion compensation hardware design supports Inter Prediction at 

present. In the future, it should be further integrated with Inter-Layer Motion 

Prediction as the completely Motion Compensation module for SVC decoder. 

Moreover, entropy decoding, inverse quantization, inverse transform, intra prediction, 

deblocking filter, and other SVC hardware components should be merged together to 

form a complete SVC decoder.  
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