H. 264/AVC ¥ 3 ;N AR R A B 20 A 47 80 & (748 1 2k 3

Analysis of H.264/AVC Scalable Extension Decoder and Its
Motion Compensation -Design

IR RpE B

H. 264/AVC 7 2% 3N AR 245 B2 A 4782 6 (047 0 K3
Analysis of H.264/AVC Scalable Extension Decoder and

Its Motion Compensation Design

Sl e S

-

i Student: Po-Yuan Hsu
dp it % e 4 Advisor: Tian-Sheuan Chang

)
|4
<k
A=
N

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electronics Engineering
November 2009
Hsinchu, Taiwan

VEAR 4 LN E L—

H. 264/AVC# A VAL 255 B2 A 178 & e 1 K3

il wEA sk wipE L

&

F AN S > - BATA R R “,f 7ok L 264 e RS
ERETZFCFF - RF2A7AE R ETASNRARBERR D 264
MRF S o AR T na & PR AT S H 264/AVC 7 23 sV AR RS B s 47 1

2R BTNV A N AR RS R ehde (A TR BB

A AP EHT ASRNEEERER P SLTREIRM R Y T 47 Jd P
YUE GO A R AR AR AT R B MR e iR B R R R
BREFLAPEHTANARAGEER NS b AERA LI RNE ST
Biame 2 b BERET FAIEARSTA o THwE > & FE B

FITEH bz BEF R hi IR ¢ T g 60%dER o BRI ER T - BRI

fv eds (T4 1 2%)L,%ﬁd AR EATHE Y folgil 23 T E 2 TN
W 62-Tdhendgipt - Lig- % > Jjd ¥ A RPN EE AW JLE Y TR F

B ek P Bt R L o

RHF % L5 > NP R s (74 F A MK HE BIH T 5AIL ¥) K3
160 Bixdp > » AT K LG en 227 BiF P o o2 3530 0 AP ATk I e 1l
T 4B 135MHz PR T S FRIEAZIE 59 F 4 F B E R < A
%7 60 3% CIF ~ SD 480p r 2 HD 1080p % i o

Analysis of H.264/AVC Scalable Extension Decoder and Its

Motion Compensation Design

Student: Po-Yuan Hsu Adpvisor: Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Scalable Video Coding (SVC), a néw: generation video codec, not only inherits the
high coding efficiency of H.264/AVC. standard, but.also supports scalabilities of
spatial, temporal, and quality domain, inducing SVC much more complicated than
H.264/AVC standard. The main goals of this thesis are to perform an analysis of SVC

decoder and implement a motion compensation hardware design for it.

At first, a memory analysis of SVC decoder system is proposed. By choosing
frame-based decoding flow, the system would enjoy the minimum internal memory
usage and bandwidth requirement. Then, we propose a four-stage MB-pipeline
architecture for our SVC decoder, and there is also a one-pass quality layer decoding
method proposed, which parallel processes base quality layer and quality
enhancement layers in same spatial domain for 66% reduction of MB processing
cycles in bitstream of three quality layers. Finally, a high performance motion
compensation design is presented. By Block Size Based Data Request and Precision
Based Data Request, the data bandwidth is reduced by 62-74%. Moreover, by

Doubled Hardware of Interpolation Unit scheme, the processing cycles for bi-pred

il

block will be halved.

According to experiment results, the average processing cycles in our proposed
motion compensation design are below 160 cycles/MB which is under our system
constraint 227 cycles/MB. On the other hand, the proposed hardware design can
process more than 594k macroblocks per second operating at 135MHz clock rate,

which is equivalent to 60 frames of CIF, SD 480p, and HD 1080p resolutions.

v

o
%\

ﬁ%’tﬁﬁﬁﬁﬁ%ﬁﬁ—%¢@ﬁi»*12v R ik H ok

SIAEA L LR en i RAR G S 2R R e ATy P RA A i £ AN

i

BEF LS BRSPS B T REE G AR R TR RAT BEE S

—\
<

BB KLY EREAMKEREAT LT X[T P OAEF o 4 &

EAN I EF -

ERHAOTRBZLA P FEFIPIR IMAGRRELELFTF 1A
AEHETRRORHEPFZ IR kg T KEPOFRTLL AN
Grm Avehef oa i

EFALR BT %R aE s B A e REEE R o0 JESV R 4 »
“?"56?3,7&%7? PN LR 1ﬁmLEF'“§Fv LN iﬁ%-ﬂ»\ﬂp””#* & T
EoRBHMTFREETEL P HI L] uEAES 1 (R P B
B AR RAE o SR R R R SR B P B A Sk opkens 3

BALY AL REHEZIFLEFSE LI IE L BERBBE L TP

REEFORALAEY SR R ABR A AR 2 B(2B) - F &
P(-B) AFTHRCER) S Frrd (A2) 2 HANGL L35k R g
A RABATH TG AR R 2 RIRE R 0 R F A U R EE A

LESENER L ¥ ST Y Lt R S BIRE S Y I B

3 SR foin - A 4 p G LA AR A L BT} o

AU ERIEARANPTAP Ach§ § 45~ BB B 4
mi#‘fﬁ’i):}]ﬁv FAE] A R g L 4 o

A gi;tg.j\gfnéﬁggg%»}; EAIULE ANE PR o

i

Contents

Chapter 1. INtroducCtioncccoeceeeeecssssnniccsssssnsessssssssssssssssssssssssssssssssssss 1
L1, MOtIVALION ..ttt ettt ettt et ettt e e bt e s naeeeee s 1

1.2, Thesis OrganizZation............cccueeeeeerieerieeiiieniieeieeseesveesseeseeeseesseeeseessaesseens 2
Chapter 2. Overview of SVC Standardccoevveeereccsccnnrnccsccnnenccsenns 3
2.1. Fundamentals of SVC ... 4

2.2. Components 0f SVC DeCOETcocuiriiniiriiiniiiiniiriecieneeieee e 6
Chapter 3. Analysis of SVC Decoderccoueeecncnricvcnnccssnnicsssneecsenns 11
3.1, Decoding FIOWccouiiiiiiiiiie ettt e e 11
3.1.1. Memory Analysis for H.264/AVC Decoder..........c.ccceevvrerreeenreeennnen. 12

3.1.2. Memory Analysis for SVC Decodercccceevueriinenninnicnicnienienen. 14

3. 1.3, ANALYSIS.ccuiiiiiiiiie it s fesivrssuanshadean e eteeetteeteeteeebeenaaeenbeebeeenbeenaens 20

3.2. Pipeline ArchiteCture i i ..o it it st ettt et e e e 23

3.3. Proposed One-Pass Quality Layer Decoding.............cccccveevvieencieeenieeennnn. 24

3.4, SUMMATY .oeeiiie ettt st e athe st e et sne ettt e 29
Chapter 4. Motion Compensation Designccceevvuerevivunrcsccnercnenns 31
4.1, TNErOAUCHION ...eoueiiie it et et Bttt ettt et e ees 31
4.1.1. Motion Vector PrediCtor. . i e 33

4.1.2. Fractional Pixel Interpolationccceceeiiiniiiiniiniiiieeeeeeee 34

4.2. Bandwidth OptimiZationccceecuierieiiiienieeiieeie ettt 37
4.2.1. Block Size Based Data Request........c.ccoocveeeeiieenieeiniieeieeeiee e 38

4.2.2. Precision Based Data Requestcceeveviiiiiiiiiiciiieeiie e 40

4.2.3. Simulation Resultsccccooiiiiiiiiiiiiiieee e 42

4.3, Hardware DeSIZN.......ccocuieruiiiiiiiieeieeiieeie ettt ettt 43
4.3.1. Motion Vector GENeration...........ceceerueeriieeieenienieeniieeieeseeeeeee e 46

4.3.2. Reference Pixel ACCESSING.......cccvviieiiiieiiieeiiieeieeeee e 49

4.3.3. INterpolation.......ccecciieiuieiiieiieie e 51

4.4. Implementation ReSUILS.........cooviiiiiiriiiiiiii e 53
4.4.1. DeSigN FIOWooiiiiiiiiiiieciieeece ettt 53

4.4.2. Experiment ResultS.........ccccooviiiiiiiiiiiiiiiieceece e e 54

vii

443, GAE COUNL .ottt et e e et e e e e e e e e enaas 56

4.4.4. COMPATISON ..uutiriiiniiriiiieetenitenieeteeite st et st sbeeteestesbeetesaeesbeebesanenaes 57
Chapter 5. Conclusion and Future WorKcccovveeeicccsccnnnrcccsscnnnnnes 59
5.1, CONCIUSION....cuuiiiiieiiieieeiee ettt et stee et eeebeeaeeeebeenes 59

5.2, FUUIE WOTKoiiiiiiiiiiiiece ettt s et 60

| 23 (3 () 1 1 TR 61

viii

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

2.1. History of video coding standards...........cccceccveeeviiieiiieeiieeeieceee e 4
2.2. Example of video streaming with heterogeneous receiving devices................ 4
2.3. Block diagram of an SVC encoder with two spatial layers............cccceevuvennnn. 5
2.4. Reference scheme of hierarchical-B picture structure............cccceeeveeeieenvennnnnn. 6
2.5. Block diagram of SVC decoder.........cuiiviiieiiiieiiieecieeeee e 7
2.6. Intra prediction: (a) 4x4 block; (b) 8x8 block; (c) 16x16 block; (d) chroma
BILOCK ..ttt 8
2.7. Block partition modes of inter prediction.............eccveeeveerieerieniieenieeieesee e 9
2.8. Horizontal edges and vertical edges in one macroblockccccceevveervennnnee. 9
2.9. lllustration of inter-layer prediction features in dyadic spatial scalability: (a)
inter-layer intra texture prediction, (b) inter-layer motion prediction, (c)
inter-layer residual prediCtion ... i s it 10
3.1. SVC decoder MemOTY MaAP i ivvecirireeersiteieriesanseeeesreeesseeessseeesseeessseeessseenns 14
3.2. Macroblock-based decoding flow: (a) graphical illustration; (b) pseudo code
.. 16
3.3. Row-based decoding flow: (a) graphical illustration; (b) pseudo code.......... 19
3.4. Frame-based decoding flow: (a) graphical illustration; (b) pseudo code........ 20
3.5. Proposed pipeline stage in our SVC decoderc..cooeeviirieneniiineinenicnenn 24
3.6. Structure of the SVC bitstream...........coceeverieieniiniiieiieeeeeeeeeee 25
3.7. Packets in different temporal domain.............ccceeeevierieiiieenieniiecieeeeeie e 25
3.8. The order of slice packet in SVC bitstream...........cccceeevvreeriieenieeeieeeeeeene 26
3.9. One-pass quality layer decoding concept with three quality layers 28
3.10. Hardware increased with one-pass quality decoding method 29
3.11. The identifiers of different quality layerscccceeveveiiinciienieciieieeieee 29
4.1. Variable block size in inter-coded block...........cocooviiiiiiiiiiiiniiiiie 32
4.2. DOUDIE-Z SCAN OTACTeeouiieiiiiiieiie ettt et 32
4.3. Motion vector predictor scheme (a) macroblock partitions excluding 16x8
and 8x16 partition sizes, (b) 16x8 partitions, (¢) 8x16 partitions................... 33

X

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

4.4. Interpolation scheme for luminance component (grey blocks represent
integer pixels, which are denoted by upper-case letter)..........ccceevevvereeenennen. 36
4.5. Interpolation scheme of quarter-pel positions for luminance component...... 36
4.6. Interpolation scheme for chrominance componentccccceeeeereieiieennnnne 37
4.7. Data reuse of case: (a) 4x4 block, (b) 8x4 block, (c) 4x8 block, and (d) 8x8
block, (e) 16x8 block, (f) 8x16 block, (g) 16x16 block (shaded region means
1418 KT 1 0] (<) DRSSPSR 39
4.8. Integer pixels (blocks with upper-case letter) and fractional pixels (blocks
with lower-case letter) of luminancecccooeveeeiiiiiciii e, 41
4.9. (a) Horizontal and vertical interpolation (x and y components of MV point
to fractional positions). (b) Horizontal interpolation only (y component
points to integer position). (c) Vertical interpolation only (x component

points to integer position). (d) No interpolation (both x and y point to integer

POSTEIONS). .tieeveeiieeaieeiee et e se e aente s hads B eeeseeesseensaeenseessseasseenssesnsaenssessseensns 42
4.10. Proposed pipeline architecture of motion compensation design.................. 45
4.11. Proposed processing element for motion-vector predictionc..ceueeueee 47
4.12. The four prediction flags ina MB ... 48
4.13. Block index of all 4x4 SubblOCKS :vesiriainvesdbe e 48
4.14. SRAM buffer for neighboring MVs ... 48
4.15. (a) Data mapping in SRAM of luma reference data buffer, (b) data

mapping in SRAM of chroma reference data bufferc..ccoceeveriinnncnne. 50
4.16. Raster-scan order of writing reference data in (a) 16x8 and (b) 8x16

PATLIEION SIZC...uuvieiiiieeiiieeiiieeitieeeetteeeeeesteeesteeessseeessseeessseeessseesssseeenssesensseenns 51
4.17. 6-tap FIR filter desSi@n......ccceeiiiieiiiiiieie et 52
4.18. Interpolator of luminance cCOMPONENL...........ceecveevieeciienieeiierie e 53
4.19. Design flow in this WOTKcccovviiiiiiiiiiiiieciieeece e 54

List of Tables

Table 3.1. Internal memory usage of H.264/AVC decoder...........ccceevvierieeniieneeeeenne. 13
Table 3.2. External memory access of H.264/AVC decoder.........cccoeevverveeciieneeenenne. 13
Table 3.3. Internal memory usage of multi-layer decoding............ccccvveevvieeeieenineeennee. 16
Table 3.4. Inter-layer data requirement of SVC decoder.........ccccecevieniiiiniineencnnne 17
Table 3.5. External memory access of SVC decoder..........ooouvviiiiiieiiieniieniieciieee, 17
Table 3.6. SIMULAtiON SETHNZScecvieieiieiieeieeiieete ettt reeeae e sereesee e 21
Table 3.7. Comparison of memory reéqUIreMENtS.cccvveeereeeerereeeireeeiereeeseneeeeveennns 21
Table 4.1. Bit-width of data during first luma interpolation.............cccccoevueeviiniiennnne. 35

Table 4.2. Ideal reduction of reference data accessing between Conventional 4x4

Based Data Request and Block Size Based Data Request.............c..cocu....... 40
Table 4.3. Reducing required reference. data according to different pixel positions

with block partition size M'X N o 41
Table 4.4. Reduction of data bandwidth in different sequences and QPs..................... 43

Table 4.5. Average processing cycles per MB in MVG stage (motion vector
generation and -reference pixel accessing) and INTERP stage
(INLETPOIALION) ... it st it s T et ettt 55

Table 4.6. Experiment results of average processing cycles per MB in our proposed

motion comMpPensation dESIZNccueevvierieeireerieeiiierieeieerteereesreeereeseneeseens 55
Table 4.7. List of gate count for previous works and proposed design 57
Table 4.8. Comparison with other motion compensation designscc.cceceevveeuennnene 58

X1

xii

Chapter 1. Introduction

Recently, the advances of network bandwidth and wireless access techniques
boost the development of multimedia services. The state-of-the-art video codec
H.264/AVC promises the dominant status over multimedia content service. It provides
high compression and high quality video but with only fixed resolution. Due to the
heterogeneities on user devices and network environments, multimedia stream with
scalable features is demanded. A single bitstream to satisfy various clients becomes
more and more desired. Therefore, the'new Scalable Video Coding (SVC) standard
was developed based on H.264/AVC [1] by the Joint Video Team (JVT) to provide
this service. The high coding ‘performance ‘makes H.264/AVC suitable for high
resolution video compression. However, the huge computation remains a problem for

hardware implementation.

1.1. Motivation

In today’s technology, the High-Definition Television (HDTV) seems to be a basic
equipment in multimedia entertainments. Besides HDTV, there are also cell-phone,
PDA, and notebook that may use multimedia applications. With one single SVC
bitstream, these receiving devices can get their own video quality by extracting the

bitstream according to their requirements.

SVC has been standardized in 2007. However, there is no hardware
implementation of SVC decoder which has been published yet. In this work, we want

to development a motion compensation design of an SVC decoder that support

today’s full-HD specification which is HD 1080p with 60Hz frame rate.

1.2. Thesis Organization

The organization of this thesis is described as follows. Chapter 1 makes a brief
introduction of SVC and motivation of this work. Chapter 2 gives an overview on
SVC standard and introduces the components of SVC decoder. In Chapter 3, an
analysis on SVC decoder is presented, with the decoding flow selection and pipeline
stage design. Chapter 4 shows the hardware design and experiment results of

proposed motion compensation design. Finally, the conclusion and future work will

be given in Chapter 5.

Chapter 2. Overview of SVC Standard

Digital video compression techniques have played an important role in the world
of multimedia systems. Hence, video coding techniques are for reducing the amount
of information needed for a video sequence without losing much of its quality. Fig.
2.1 shows the history of video coding standards. With the improvements of network
techniques and multimedia applications, a variety of devices with different
capabilities has become very popular. Traditional standards provide fix video content
which cannot deal with the heterogeneous of receiving devices. Therefore, a new
video coding standard, SVC, was standardized as H.264 Annex G in 2007 [2]. SVC
not only inherits the high coding efficiency of H.264/AVC standard but also supports
scalabilities of spatial, temporal, and quality domain {3]. The term “scalability” means
that certain parts of the bitstream can be removed in order to adapt to the requirements
of receivers. The video bitstream of SVC-is structured in layers, consisting of a base
layer and one or more enhancement layers. Each enhancement layer improves the
resolution or the quality of the video sequence. Fig. 2.2 shows an example of SVC
streaming with heterogeneous receiving devices. The SVC encoder presents a fully
content of video bitstream that provides the highest resolution, highest frame-rate, and
highest quality video. On decoder side, the receiving devices get their own video
quality by extracting the fixed bitstream according to the network bandwidth and their

requirements.

ITU

H.261 H.263 Scalable Video
Coding
o ___|._H2e2 | | _ H264 | ___
ISO/IEC MPEG-2 MPEG-4/AVC

Cooperative work in JVT

MPEG-1 MPEG-4 Visual

Time

.
-

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Fig. 2.1. History of video coding standards

§

Single Smartphone
- . Bitstream
. S — Video .
SVC Encoder Server /\
Notebook

\\

HDTV

Fig. 2.2. Example of video streaming with heterogeneous receiving devices

2.1. Fundamentals of SVC

SVC is based on H.264/AVC and adds new features to achieve the scalabilities.
Fig. 2.3 shows an architecture of SVC encoder with two spatial layers. The dotted line
block in this figure is an H.264/AVC compatible encoder. The input video first
down-sampled to lower resolution, and then goes through the base layer coding and

produces base layer bitstream just like H.264/AVC. The block named “Progressive

SNR refinement texture coding” enables the quality scalability by generating more
transform coefficients to improve the video quality. The base layer information, such
as intra texture, motion vectors, and residuals, are upsampled to spatial enhancement
layer for inter-layer prediction. Spatial enhancement layer reuses these base layer
information as much as possible to improve coding efficiency as spatial scalability.
The temporal scalability comes from the hierarchical-B picture structure [4], [5] as
shown in Fig. 2.4. By receiving more temporal levels, the output video sequence will

be more fluent.

Spatial Enhancement Layer
Progressive SNR
- refinement texture

coding
Motion-compensated | texture | Base layer T
and Intra Prediction > coding
motion
A > .
Multiplex
-
- Inter-layer prediction
Spatial o I
decimation « Motion Progressive SNR
« Residual P~ refinement texture
l coding
Bitstream
ey m———— P ————— - — — — — — — — —A— — —
~ NN |

—
motion

- |
= SN Motion-compensated | texture | Base layer |
&_ﬁ : and Intra prediction > coding I
[-

|
|

Fig. 2.3. Block diagram of an SVC encoder with two spatial layers

GOP
border |

GOP |
border |

yp||B2||B1||B2||BO||[B2|[B1]||B2]| P

0o | 4 3 5 2 7 6 8 1
T0 T3 T2 13 T1 13 T2 T3 0
Key picturei Key picturei

Fig. 2.4. Reference scheme of hierarchical-B picture structure

2.2. Components of SVC Decoder

SVC inherits most of the. components from H.264/AVC and adds three
upsampling functions for inter-layer prediction as shown in Fig. 2.5. First, the SVC
decoder parses and decodes the bitstream by Entropy Decoding module, then the
prediction type and transform coefficients will be known. Transform coefficients need
inverse quantization and inverse transform in Residual Decoding module to generate
residual data, and intra or inter prediction will be enables according to the prediction
type. Intra Prediction module produces prediction samples based on the reconstructed
pixels from neighboring pixels in the same frame, and contains three different
prediction types for luminance part as illustrated in Fig. 2.6. For inter prediction,
Motion Vector Reconstruction module first generates MV information, then Motion
Compensation module produces prediction samples based on previous decoded
frames. Each inter-coded macroblock can be divided into smaller partitions with
variable block size from 4x4 to 16x16 as shown in Fig. 2.7. After prediction and

residuals are ready, they are summed together in Sample Reconstruction module.

Finally, the Deblocking Filter module is applied to improve visual quality by

smoothing the vertical or horizontal block edges between transform blocks as shown

in Fig. 2.8.
Input »| Entropy Decoding
Bitstream)
Parsing data
vy Yy y
| Residual Sample Upsampling Motion Vector |
| Upsampling Inter-layer data Upsampling |
| Inter-layer data (reconstructed Inter-layer data |
| (residuals) samples) (motion vectors) |
| |— _ . 4 |
e _ L[l RE el |
. Infcra Pre.diction Motion Vector
“1 Nellghborlng Qata Reconstruction
(neighboring pixels) Neighboring data | |
motion vectors
+ \ A (¥)
- Y
Res'dlfa' p-{ Sample Reconstruction | . .
Decoding Motion Compensation
v Decoded Picture
| Deblocking Filter | 20fien

L———» Reconstructed Frame

Fig. 2.5. Block diagram of SVC decoder

0: vertical 1: horizontal 2:DC 3: diagonal down-left 4: diagonal down-right

MA[B[CID[E]F]G[H] [MAIBICIDIE[FIG[H| [MAIBICIDI[EIFIGIH] [MAJBJCIDJEJF]G]H] [MA[B[C[DIE[FIG[H]
L] I e d L[Mean Y n N
] T R] 1]

K (K= LK K] 1K)

(L] [L—— LI [L [EN
S:vertical-right 6: horizontal-down 7: vertical-left 8: horizontal-up
MA[B[C[DIETFIGIH] [MAIB[CIDIE[FIGIH] [MAJBIC|DJETFIG[H] [MAIBICIDJEIFIGIH]

L L] L L

] TN 1Y/, N5

K] K] K] K]

L] [N LLs L]

(a)

0: vertical 1: horizontal 2:DC

VIA[BCID[ETFIGIHTIKILIMINICTP] [V]ATBICIBIEIFIG[RITIIKILIMNIO[P] [VIATBICIDIEIFIGIRITIIKILIMNIO[P]
[QE======5 q]
7] RE======5 R]
5] S R R 5]
] M 7]
U] Y U]
V] VI SRR V]
W N W
[x] X===———s [x]

3: diagonal down-left 4: diagonal down-right 5: vertical-right
Y]AIBJCIDJEJF]GIH] T]JJKJLJMNJOJP] [Y]A[B[CID[E[F[G[HIIJIKTLIMNIO[P] [Y]A[B[CIDIE[F[G[H[ITJIKTLIMNIO]P]
74 Q) N 1Q
IRy IRJ IR|
1S] S| S|
1T il il
U4 V) 1UJ
vy v Vi
W (W Y
X4 XN X}

6: horizontal-down 7: vertical-left 8: horizontal-up
Y]A[B[CID[ETF[GIHITTJTKTLIMNIO[P] . [Y]AIBICIDIEJF]GIH] I]J[K]LIMN[O[P].« [Y]A[BICIDIETEIGIHIITJKTLIMNIO][P]
1Q 1Q QL ~"

IR] IRy IR]
5] 5] 5]
1] Ty 1]
U] U] U]
V] Vs V]
W W (W
XN X X]

0: vertical 1: horizontal 2:DC 3: plane
H J H J - /H J
REEREEEEREREERER
o
REEREEEEREREERER
\% \Y V| ‘Mean(H+V) \Y
REEARERRRRRRERER

SEmE

(c)

0: DC 1: horizontal 0: vertical 3: plane
H J H J 7 /H J
_—
HAAA
_—

<
<
<

Mean (H+V) \%

(d)

Fig. 2.6. Intra prediction: (a) 4x4 block; (b) 8x8 block; (c) 16x16 block; (d) chroma
block

16x16 16x8 8x16 8x8

Macroblock
Partitions

8x8 8x4 4x8 4x4

Sub-macroblock
Partitions

Fig. 2.7. Block partition modes of inter prediction

| Vertical Edges

Horizontal Edges

Chroma

P3| p2|pl|{p0{q0|gl|qg2|qg3

Fig. 2.8. Horizontal edges and vertical edges in one macroblock

The inter-layer prediction contains Sample Upsampling module (inter-layer intra
texture prediction), Motion Vector Upsampling module (inter-layer motion prediction),
and Residual Upsampling module (inter-layer residual prediction) for spatial

scalability as shown in Fig. 2.9. By restricting the inter-layer intra texture prediction

to intra-coded block only [9], a single-loop decoder for spatial scalability can be
realized requiring only the motion data of inter-coded block and reconstructed intra
pixels in base layer. Quality scalability can be considered as a special case of spatial
scalability with identical resolution for base quality layer and quality enhancement
layer. In quality enhancement layer, it contains progressive refinement coefficients to

be added to base quality layer.

For more details, please refer to [2], [3], and [6].

16x16 | 8xi6 |

_8)¢:8___16x8__ +

(a) (b) (c)

Fig. 2.9. Illustration of inter-layer prediction features in dyadic spatial scalability: (a)
inter-layer intra texture prediction, (b) inter-layer motion prediction, (c) inter-layer

residual prediction

10

Chapter 3. Analysis of SVC Decoder

Since SVC supports several new coding features, the complexity of SVC decoder
is much higher than H.264/AVC. As a result, a completely analysis of SVC decoder
before hardware implementation is required. In this chapter, we first analyze the
memory requirements of different decoding flows, trying to find out a better way for
SVC decoder, then present the pipeline architecture for our hardware design, and
propose a one-pass quality layer decoding method to parallel process quality layers in

a spatial domain at last.

3.1. Decoding Flow

For an H.264/AVC decoder, a straightforward decoding process is macroblock by
macroblock. The decoding flow first parses-the input bitstream by entropy decoding
and recovers the residual and related prediction mode data needed for the decoding
process. Then the residual is added with the prediction samples from inter or intra

prediction to recover the pixel values.

In addition to the inherent decoding operations of H.264/AVC, the SVC decoder
supports three scalabilities, spatial, temporal, and quality. For the purpose of memory
analysis [8], we only consider spatial scalability in this paper since temporal
scalability should be fully supported. For the spatial scalability, base layer data needs
to be decoded before its corresponding macroblock in enhancement layer for the
purpose of inter-layer data reuse. Enhancement layer reuses base layer information

such as motion vectors, residuals, or reconstructed samples for the reconstruction

11

process. The block diagram of SVC decoder has shown in Fig. 2.5. There are three
new blocks in the figure within dashed line compared to H.264. In which Sample
Upsampling process is used in inter-layer intra texture prediction that upsamples the
corresponding reconstructed samples, Motion Vector Upsampling upsamples
macroblock partition and motion vectors from reference layer, and Residual
Upsampling is corresponding to inter-layer residual prediction and it block-wised
upsamples residuals. With these three inter-layer predictions, SVC decoder can

decode its data to recover the pixel values.

3.1.1. Memory Analysis for H.264/AVC Decoder

The memory requirements of H.264/AVC decoder are mainly dominated by four
parts: parsing data, macroblock processing data, neighboring data, and decoded picture
buffer. In the following, a macroblock based decoding flow is assume. The parsing data
stores the information parsed from the bitstream; such as the SPS, PPS, and slice header
data. The transform coefficients parsed from bitstream are also included in it. The
parsing data consumes about 4.4 KB memory derived statistical results. The
macroblock processing data stores the information that may be used to reconstruct a
macroblock such as prediction mode, residuals, and reconstructed samples. This part
requires 4.8 KB memory spaces. Since the basic processing unit is macroblock, above
memory usage is irrelevant to the frame size actually. The neighboring data stores
previous decoded neighboring macroblock information, i.e. left, up, upper-right, or
upper-left macroblock, which contains motion vectors, reference picture, prediction
mode, and neighboring pixels. Pre-deblocking coefficients are also included. The
neighboring data is stored in a row of macroblocks in frame width, for example, a row

consists of 22 macroblocks in CIF size. For neighboring pixels, the size is one line of

12

samples of the frame width plus one column height of a macroblock. The decoded
picture buffer (DPB) stores previous decoded frames as reference frame for inter
prediction. The DPB is refreshed after decoding one GOP. However, the data of DPB
are stored in external memory since such significant memory requirement is
unreasonable to be stored in internal memory. From the analysis described above, the
internal memory usage and external memory access of H.264 decoder are summarized

in Table 3.1 and Table 3.2, respectively.

Table 3.1. Internal memory usage of H.264/AVC decoder

Name Size (KB)
“Parsing data ~4.4
"Macroblock processing data ~4.8
Neighboring data 0.2 * PicWidthInMbs + 1.06

PicWidthInMbs:. number of macroblocks in a row of a frame

“: fixed-data: ‘will not change with the variation of frame resolution

Table 3.2. External memory access of H.264/AVC decoder

Name Size (KB)
Input bitstream "0.0375*PicSizelnMbs
Reference samples 1.35 *PicSizeInMbs
Reconstructed samples 0.375*PicSizeInMbs

PicSizelnMbs: number of macroblocks in a frame
“: assume the compression rate is 10% of the original data

assume every macroblock has 16 4x4 subblocks with one direction prediction

13

3.1.2. Memory Analysis for SVC Decoder

Memory requirement of SVC inherits the entire requirement from H.264 with
additional memory from inter-layer prediction as shown in Fig. 3.1. For the inter-layer
prediction, it reuses the reference layer data such as motion vectors, residuals, and
reconstructed samples. With this inter-layer dependency, different decoding flows will
cause different memory requirements. In the following, we specify three decoding
flows, macroblock-based, row-based, and frame-based, that can be applied to SVC
decoding process. Furthermore, their corresponding internal memory usage and

external memory access will be analyzed in the following article.

Input blitstream

' | __ _ Parsingdata __ |
NALU
Reader
I v Y v v
SPS PPS Slice SEI
header
NALU type

————— 1
:_ Neighboring | Decode MB
data " |- T ———— n
. I - Macroblock | [4. Decoded
| processing data | picture
______ J buffer

Inter-layer data (base layer
pixels, motion vector, residuals) |

Decoded frame -——

Fig. 3.1. SVC decoder memory map

14

a) Macroblock (MB)-based

The first decoding flow is macroblock-based, which decodes one macroblock in
base layer and then the corresponding four macroblocks in the enhancement layer as
illustrated in Fig. 3.2. In this flow, inter-layer data can be reused immediately for
enhancement layer. In this method, we have to store the neighboring data
corresponding to its current decoding macroblock of each spatial layer separately
since multiple layers are decoded at the same time. Therefore, the internal memory
usage, especially the neighboring data, is increased because of more than one layer as
shown in Table 3.3. Besides, we also have to store the base layer decoded information
as inter-layer data for inter-layer prediction reference. Therefore, Table 3.4 shows the
composed elements of inter-layer data.and .its corresponding additional memory

requirement. The NumMByef1s set as follows:

d-2
2n
NumMBr= a2 3.1)

n=0

d: number of spatial layers

In this method, these data can be immediately reused in the following
enhancement layer decoding. Table 3.5 shows the corresponding external memory

acCcCess.

15

while(spatial_layer_id <d){
while(CurrMbAddr < 4spatallayerid) £

| ——> 2IE decode_one_macroblock();
/ CurrMbAddr ++;
[—— A H }
/ f spatial_layer_id ++;
. }
* (b)

(a)
spatial_layer_id: the index of current decoding spatial layer

d: number of spatial layers

CurrMbAddr: current decoding macroblock address

Fig. 3.2. Macroblock-based decoding flow: (a) graphical illustration; (b) pseudo code

Table 3.3. Internal memory usage of multi-layer decoding

Name Size (KB)
Parsing data ~4.5
Macroblock processing data ~5
d-1
Neighboring data Z (0.2 * PicWidthInMbs , + 1.06)
n=0

d: the number of spatial layers

PicWidthInMbs,,: number of macroblocks in a row of spatial layer n

16

Table 3.4. Inter-layer data requirement of SVC decoder

Name

Size (KB)

Reference layer motion vectors

0. 125 * NumMBref

Reference layer residuals

0. 75 * NumMB ref

Reference layer samples

0.375 * NumMBref

Reference layer others (mb_type, sub_mb_type,
ref idx, ...)

0.013 * NumMBref

NumMB,s: number of macroblocks of reference layer

Table 3.5. External memory access of SVC decoder

Name Size (KB)
d-1
Input bitstream 0.0375 * Z PicSizeInMbs
n=0
d-1
Reference samples 1.35%* z PicSizeInMbs
n=0
d-1
Reconstructed samples 0.375 * Z PicSizeInMbs |
n=0
d-1
Quality coefficients 0.75*q * ZPiCSiZGIanSn
n=0

PicSizelInMbs,:

17

d: number of spatial layers
number of macroblocks in a frame

g: number of FGS layers

b) Row-based

Row based decoding expands the decoding flow to row by rows. After decoding
one row of macroblocks in base layer, the corresponding two rows in higher
enhancement layer will be decoded as shown in Fig. 3.3. In this flow, inter-layer
data is reused for enhancement layer after one row processing. Row-based decoding
flow is similar to macroblock-based decoding flow since both methods decoding
multiple layers at the same time. However, the control of row-based decoding method
is much easier than macroblock-based method since the decoding process change
between each layer is more regular, i.e. the decoding macroblocks are continuous in
each layer. The main difference of memory.requirement between row-based and
macroblock-based is that the size of inter-layer data.-The row-based manner should
buffer whole row(s) of inter-layer.data. The NumMBy in Table 3.4 in this method is

set as follows:

d-2

NumMBy= 2, PicWidthInMbs, (3.2)

n=0

d: number of spatial layers

PicWidthInMbs,,: number of macroblocks in a row in spatial layer n

The external memory access is almost the same as macroblock-based method.

18

SIHMENS] [LT T 1T 1T L™ [T T T N []
INIEEPTLENEEER” < AEdEENEER. H

(a)

while(spatial_layer_id <d){
while(CurrMbAddr < PicWidthinMbs * 2°Patellaverid) ¢
decode_one_macroblock();
CurrMbAddr ++;

}

spatial_layer_id ++;

}
(b)

spatial_layer_id: the index of current decoding spatial layer
d: number of spatial layers

CurrMbAddr: current decoding macroblock address
PicWidthInMbs: picture width in the unit of MBs

Fig. 3.3. Row-based decoding flow: (a) graphical illustration; (b) pseudo code

c) Frame-based

Frame-based decoding means that the decoder processes each frame layer by layer.
In this flow, inter-layer data is reused for enhancement layer after one frame
processing as shown in Fig. 3.4. The frames of enhancement layer are decoded after
the base layer decoding. This method has to store a whole frame of inter-layer data.

The amount of inter-layer data is to substitute (3.3) into Table 3.4.

d-2
NumMBf = Z PicSizeInMbs (3.3)

n=0
d: number of spatial layers

PicSizelnMbs,,: number of macroblocks in spatial layer n

19

However, these huge inter-layer data are unreasonable to be stored in internal
memory. Furthermore, due to different layers are decoded at different time,
neighboring data can be stored in only one set of highest spatial layer without overlap.
Therefore, the internal memory size is reduced to by setting d = 1 in Table 3.3
compared to macroblock-based and row-based decoding manners. The total external

memory access is same as Table 3.5 plus inter-layer data mentioned above.

while(spatial_layer_id <d){
while(CurrMbAddr < PicSizelnMbs) {
decode_one_macroblock();
CurrMbAddr ++;
}

spatial_layer_id ++;

| }

(b)
patial_layer-id:the index of current decoding spatial layer
d: number of spatial layers
CurrMbAddr: current decoding macroblock address

PicSizelnMbs: picture size in the unit of MB

Fig. 3.4. Frame-based decoding flow: (a) graphical illustration; (b) pseudo code

3.1.3. Analysis

For a clearer picture of the memory usage, we show some quantitative results in
this Section. To calculate the memory usage, we make several assumptions in our
analysis: 95% of macroblocks are coded in inter prediction, 90% of macroblocks in
enhancement layers are coded in Intra BL mode if the corresponding block in base

layer is encoded as Intra mode, and 10% macroblocks in enhancement layers use

20

residual prediction in average. This assumption is a general statistic according to our
experiment. The encoding settings are listed in Table 3.6. Table 3.7 shows the analysis
results, in which Type I stores all inter-layer prediction data in the internal storage

while Type II stores all inter-layer prediction data in the external memory.

Table 3.6. Simulation settings

GOP 8
QP 32,26, 20
Intra period -1
Frame resolution CIF, 4CIF, 16CIF

Table 3.7. Comparison of memory -requirements

Internal Memory External Memory

Decoding Flow (KB) Access (MB)
size ratio size ratio
Original H.264 27.9 100% 11.5 100%
MB 50.6 181% 21.7 189%
Typel | Row 126.6 454% 21.5 187%
Frame 2529 9065% 214 186%
MB 443 159% 24.2 210%
Type Il | Row 43.5 156% 24 209%
Frame 28.2 101% 23.9 208%

The result shows that inter-layer prediction data has great impact to both internal
memory storage as well as the external memory access. For type I, internal memory
size will be increased by 81% to 8965% when compared to single layer H.264

decoding, especially for frame-based decoding that needs to store 1980 MBs of

21

residuals, prediction modes and motion vectors for inter-layer prediction. For
row-based decoding method, 110 MBs of inter-layer prediction data need to be stored
in internal memory. For MB-based decoding, only 5 MBs data are needed. This is the
reason why the macroblock-based decoding method results in lower internal memory
usage. For external memory access, all these flows are the same due to the same
reference data. Thus, the MB-based decoding is the best choice due to its smallest
internal memory usage and the same external memory access when compared to
frame-based and row-based decoding methods, if an efficient internal memory design

can be supported by the technology provider.

Beyond type I, another design possibility is to store the inter-layer prediction data
into external memory to reduce the chip-cost, just as type II. From the table, it is
interesting to find that the-extra external memory bandwidth due to inter-layer
prediction data is insignificant compared to the large reference data. Thus, the
bandwidth increasing in type I is just 12% more when compared to that in type 1.
However, the internal memory usage varies a lot for different coding flow. MB-based
decoding has the least reduction due to each layer has its own neighboring data to be
stored in internal memory for each layer decoding. Same situation also occurs in
row-based decoding method as well. For frame-based decoding, the internal memory
storage is just 1% more than the single layer H.264 decoding since all the extra
storage is within the external memory now. Therefore, the frame-based decoding is
the best choice for smallest internal memory size with the acceptable memory

bandwidth.

22

3.2. Pipeline Architecture

In the hardware design of video coding, pipeline architecture is widely used in
previous works [10][11][12][13][14][15]. The components in H.264/AVC decoder are
entropy decoding (CAVLD/CABAD), residual decoding (IQ/IT), intra prediction

(INTRA), inter prediction (INTER), and deblocking filter (DEBLOCK).

SVC decoder is more complicated than H.264/AVC since it supports spatial
scalability and quality scalability. We will discuss the quality scalability in later
Section. The three new features in spatial scalability, inter-layer intra texture
prediction (IL-INTRA), inter-layer motion prediction (IL-MOTION), and inter-layer
residual prediction (IL-RESIDUAL), should be-also put into consideration. In terms
of functionality, IL-INTRA is.a new prediction type in SVC, IL-MOTION can be seen
as a special case in INTER, and IL-RESIDUAL is a'part.in residual decoding parallel

to IQ/IT.

In Inter Prediction, there are three processes to go: “Motion Vector Generation”,
“Reference Data Accessing”, and “Interpolation”. Our proposed INTER stage is
decomposed into two stages. The first stage, named MVG, has “Motion Vector
Generation” and “Reference Pixel Accessing” processes, and the second stage, named
INTERP, contains “Interpolation” and pixel reconstruction. The pipeline architecture

in our design is illustrated in Fig. 3.5.

Our proposed design has four MB-pipeline stages. In the 1¥ MB Stage,
CAVLD/CABAD outputs coefficient data and other information. Then, the 2" MB

Stage generates residuals by IQ/IT. Other prediction information such as motion

23

vectors for motion compensation is generated by MVG. Moreover, if current
macroblock contains inter-layer prediction mode, IL-INTRA, IL-MOTION, or
IL-RESIDUAL will upsample the corresponding data of co-located block in base
layer as the inter-layer prediction data. In the 3" MB Stage, either INTERP or INTRA
will be activated dependents on MB prediction type. RECONST is used to reconstruct
inter-layer intra texture prediction and intra-inter prediction mode in SVC
enhancement layers. These reconstructed samples and MB information are sent to the

4™ MB Stage, DEBLOCK, to generate the final filtered pixels.

1st MB 2nd MB 3rd MB 4th MB
Stage Stage Stage Stage
IL RI;{II;I-UAL NTRA
CAVLD/ ILINTRA RECONST DEBLOCK
CABAD IL-MOTION INTERP
MVG (Interpolation)

Motion Compensation

Fig. 3.5. Proposed pipeline stage in our SVC decoder

3.3. Proposed One-Pass Quality Layer Decoding

The target specification of our design is: three spatial layers (CIF, SD 480p, and
HD 1080p), three quality layers, and three temporal layers, with YUV420 format in
60 Hz frame rate. Fig. 3.6 shows the structure of SVC bitstream for our target design
specification. The SVC contains spatial, temporal, and quality scalabilities. In one

temporal domain, there are 3x3 layers of different spatial and quality combinations as

24

shown in Fig. 3.7. In the pipeline architecture described in Section 3.2, the decoding
flow is macroblock by macroblock in one layer, and layer by layer in one temporal
domain as illustrated in Fig. 3.8. On the other hand, there are three quality layers in
one spatial domain, so the total macroblocks needed to be decoded in SVC may be

three times larger than former H.264/AVC standard.

Source Video

l A
SVC f ers il e fll 37
} a1
Encoding
3a 3b 3c Qo0

D2 HD 15Hz Q0 | | HD30Hz QO | | HD 60Hz QO
z ;
= a1
Q0
T
© 2a 2b 2c
& D1 sp15HzQo | | sp3oHz o | | sb60Hz QO
©
=
©
Q.
n 1a 1b 1c

Qo cF15Hz Qo | | ciF30Hz Qo | | ciF 60Hz QO

0 TO T 2
v Temporal.Scalability

Packetization | [(oo,ao) [(b0, a1) [(bo,a2) | (b1, o) [(b1, a1) [NBHGAN] (02, Qo) [(02, a1) [Nb2iaan)]

Fig. 3.6. Structure of the SVC bitstream

(D2, Q0) | |(D2, Q0)| |(D2,Q0) | |(D2, Q0)

(D1, QN [(DL, Q)| | (D1, Ql)
(D1,Q0) (D1, Q0)| | (D1, Q0)

(D2, Q0)

(D2, Q0)

(D2, Q0)

(D1, Q1)
(D1, Q0)

(D2, Q0)

(D2, Q1)
(D2, Q0)

(D1, Q1)
(D1, Q0)

(D1, Q1)
(D1, Q0)

(D0,Q2)| | (D0,Q2) | [(D0,Q2) | (DO, Q2)| |(DO,Q2)| (DO, Q2)| |(D0,Q2) | f(DO,Q2)| |(DO,Q2)
(D0, Q1) | 1 (DO, Q1) [(D0, QL) | | (DO, Q1) [(DO, QL) f (DO, Q1)| | (DO, QL) [f(DO,Q1)| | (DO, Ql)
(D0, Q0) | (DO, QO) | [(1D0,Q0) | [(DO, QO) | [(D0,Q0) | [(DO, Q0)| | (DO, QO) | [(D0,Q0)] | (DO, Q0)

(D1, Q1)
(D1, Q0)

(D1, Q1)
(D1, Q0)

(D1, Q1)
(D1, Q0)

I/P||B2||B1||B2| BO|/B2||Bl1{|B2{| P
TO T3 T2 T3 TI T3 T2 T3 TO

Fig. 3.7. Packets in different temporal domain

25

QO Q1 Q2

DO (DO, QO) » (DO, Q1) » (DO, Q2)
D1 (D1, QO) (D1, Q1)
D2 (D2, QO) » (D2,Q1)

Fig. 3.8. The order of slice packet in SVC bitstream

For example, the number of macroblocks in one frame in a 1080p video sequence

with three spatial layers (CIF, 480p, and 1080p) in SVC is

(352/16) x (288 / 16)=396 (3.4)
(720 / 16) x (480 16)= 1,350 (3.5)
(1,920 / 16) x (1,088 / 16)=8,160 (3.6)
396 + 1,350 + 8,160 =.9,906 (3.7)

If every MB needs d cycles for processing, the total MB processing cycles will be

9,906d.

The number of macroblocks in one frame in a 1080p video sequence with three

spatial layers (CIF, 480p, and 1080p) and three quality layers in SVC will be

3 x (396 + 1,350 + 8,160) = 29,718 (3.8)

If the decoding flow in SVC follows the pipeline architecture macroblock by
macroblock and layer by layer, the total MB processing cycles will be 29,718d, which

is three times larger than 9,906d with only one quality layer. The situation is: First, the

26

macroblocks of base quality layer go through these pipeline stages just like H.264
bitstream, then the quality enhancement layer. After the refinement coefficients of
current enhancement layer are decoded, these coefficients are added to coefficients of
previous layer, and the transformed residuals are added to the prediction samples of
previous layer, too. It can be seen that the data in previous decoded layer will be used
in quality enhancement layers. That is, these data are stored to external memory after
current quality layer, and then loaded to internal memory in next quality enhancement

layer.

In SVC, quality scalability is achieved using coarse-grain scalability (CGS) or
medium-grain scalability (MGS) where ' the . quality enhancement layers contain
refinement coefficients. These. reconstructed residuals in enhancement layers are
added to the prediction or reconstructed samples in base quality layer for a better
quality video. If we can deal.with the coefficients in all quality layers at the same time,
after transforming them to residuals; the residuals‘can be direct added to prediction
samples of current macroblock without external memory access. Consequently, we
proposed a One-Pass Quality Layer Decoding method in SVC decoder. The main idea
of the one-pass decoding is that we parallel processing all quality layers in a spatial
domain. Fig. 3.9 illustrates the pipeline stages in an example of three quality layers,
QO0, QI, and Q2, in DO spatial domain. In the 1" MB stage, the coefficients in three
different quality layers are decoded. The 2" MB stage accumulates these coefficients
and forms the highest refinement coefficients. Then, the IQ/IT module transforms
these coefficients to base quality residuals and highest quality residuals. The residuals
will be added to prediction samples in the 3" MB stage. As a result, when the parallel

decoding method is adopted, the number of total MB processing cycles in pipeline

27

architecture will be reduced from 29,718d to 9,906d, which is 66% reduction.

However, in order to parallel decoding different quality layers, the hardware of
entropy decoding (CAVLD/CABAD) is doubled, one for base quality layer, and one
for quality enhancement layer, and the hardware of residual decoding is increased due
to additional buffers and coefficient accumulators for different quality layers as shown
in Fig. 3.10. Moreover, a fast scan is needed in parser to identify the head of each
quality layers in the bitstream as illustrated in Fig. 3.11. After the position of each
quality layer is located, the parser can parallel parse the MB data in different quality
layers in the bitstream to entropy decoding.. With the help of One-Pass Quality Layer
Decoding method, the MB processing cycles with three quality layers is 66% reduced
and is just the same with only.one quality layer. In other words, the additional MB
processing cycles in MB-pipeline architecture and external memory accessing due to

quality scalabilities are eliminated.

combine all quality layer residuals

y ey Peiiiiialo

)
(DO, QO) CAVLD 1Q/IT rReconstruct Deblocking
(DO, Q1) CAVLD /i 7/)
(DO, Q2) CAVLD QT

Fig. 3.9. One-pass quality layer decoding concept with three quality layers

28

1st MB 2nd MB 3rd MB 4th MB

Stage Stage Stage Stage
&1%)_‘ additional
buffer:
CAVLD/ QT2 INTRA
(bCABIAD | IL-RESIDUAL
o8 9ver IL-INTRA RECONST DEBLOCK
CAVLD/ ILMOTION
CABAD = INTERP
(enhanc. layer) MVG (Interpolation)

Fig. 3.10. Hardware increased with one-pass quality decoding method

currentQ0 ext QO current Q1 i 01 current Q2 oyt 2
v v v
MBO | MB1 | MB2 MBO | MB1 | MB2 MBO | MB1 | MB2
« Qo0 >« Ql >« Q2 »

Fig. 3.11. The identifiers of different quality layers

3.4.Summary

In this chapter, the analysis of SVC decoder is discussed. First, a frame-based
decoding flow is adopted in our hardware design for smallest internal memory size
with acceptable memory bandwidth requirement. Second, the pipeline stage in our
proposed hardware architecture is presented. We use four-stage MB-pipeline
architecture for our proposed design. Finally, One-Pass Quality Layer Decoding
method is introduced in SVC decoder to eliminate the additional MB processing
cycles in MB-pipeline architecture and external memory accessing due to quality

scalabilities.

29

Chapter 4. Motion Compensation Design

The implementation of motion compensation design is introduced in this chapter.
First, an introduction of the algorithms to motion compensation will be presented.
Then, the bandwidth optimization methods used in this work will be introduced.
Finally, the hardware implementation, experiment results and the conclusion will be

discussed.

4.1. Introduction

With several advanced coding features, such as variable block size and complex
spatial motion vector prediction, H.264/AVC stands for the state-of-the-art of current
video codec. However, this. high irregularity of block size and motion vector
prediction algorithm also makes it the main challenges of motion compensation
hardware implementation. The main design issues are to lower the computation

complexity and decrease memory bandwidth requirement.

Fig. 4.1 shows the variable block size in H.264/AVC standard. The minimum
block size in the standard is 4x4 block. Thus, it is an intuition to decompose a
macroblock to 4x4 blocks with double-z scan order as shown in Fig. 4.2, which is
4x4-block pipeline. The motion vector of current block is added motion vector
difference (mvd), which is decoded from bitsream to motion vector predictor (MVp),
which is generated by neighboring blocks. The accuracy of motion vectors in
H.264/AVC standard is a quarter of a pixel. In the case of fractional MVs, 6-tap FIR

filter is used to interpolate fractional pixels in luminance component. For a 4x4 block,

31

it needs 9x9 reference pixels to do interpolation. In this case, large amount of memory
bandwidth is required in fractional MV blocks. To reduce the bandwidth requirement

of external memory, some bandwidth optimization methods are used.

The algorithms of motion compensation will be introduced in the rest of this

Section.

— —

Fig. 4.1. Variable block size in inter-coded block

4
/’_
6/
2
—

—
1

w

/

19/

Fig. 4.2. Double-z scan order

IV

LIt

4.1.1. Motion Vector Predictor

Since the motion vectors of neighborings are often highly correlated, the motion
vector of each block is predicted from previously coded partitions, and only the
prediction error is transmitted in H.264/AVC standard to reduce the bit rate. In motion
vector prediction process, the first thing is to generate motion vector predictor (MVp),
then add it together with the decoded motion vector difference (mvd). The derivation

process for MVp is described as below and shown in Fig. 4.3:

® For macroblock partitions excluding 16x8 and 8x16 partition sizes: MVp is

the median of the motion vectors for partitions A, B and C.

® For 16x8 partitions: MVp for the upper 16x8 block is predicted from B,

MVp for the lowers predicted from A.

® For 8x16 partitions: MVp for the left 8x16 block is predicted from A, MVp

for the right is predicted from C.

(2) (b) (c)

Fig. 4.3. Motion vector predictor scheme (a) macroblock partitions excluding 16x8

and 8x16 partition sizes, (b) 16x8 partitions, (¢) 8x16 partitions

33

4.1.2. Fractional Pixel Interpolation

The accuracy of motion vectors in H.264/AVC standard is a quarter of a pixel. In
the case of fractional MVs, the fractional pixels of luminance component are
generated by interpolation of the integer-pixels. The interpolation method is based on
6-tap FIR filter with tap values (1, -5, 20, 20, -5, 1). Fig. 4.4 shows the interpolation
scheme of luminance component. The half-pixels, b, h, m, and s, are derived by
applying 6-tap FIR filter using integer-pixels as inputs.

bj=(E-5*F+20*G+20*H-5*1+1) (4.1)
b=Cliply((b; +16)>>5) 4.2)
The half-pixel j is obtained by first calculating the intermediate values of the six

half-pixel locations in the horizontal or vertical direction then applying 6-tap FIR

filter with these intermediates as shown in-equation (4.3).to (4.5).

ji=cc—5*dd+20*h; +20*m; -5 *ee + ff, or (4.3)
j1=aa—5*bb+20%b; +20%*s;—5 *gg+hh (4.4)
j=Cliply((ji +512)>>10) (4.5)

Table 4.1 shows the bit-width of data during luma interpolation. Notice that the
input bit-width of the interpolation process in half-pixel j is 15-bit. Fortunately, a
simplification to equation (4.3) to (4.5) can make the implementation much easier
with negligible quality degradation at about 0.01 dB [16] in which the intermediates

are truncated to 8-bit.

Ji=cc’=5*dd’+20*h+20*m—5 *ee’ +1f, or (4.6)
ji=aa’—=5*bb’+20*b+20*s—5*gg’+hh’ (4.7)
j=Cliply((j1 +16)>>5) (4.8)

34

Fig. 4.5 shows the interpolation scheme of quarter-pixels. The quarter-pixels
labeled as a, c, d, n, f, 1, j k, and q are derived by averaging two nearest integer-pixel
and half-pixel. The quarter-pixels e, g, p, and are derived by averaging two nearest

half-pixels in diagonal direction.

Table 4.1. Bit-width of data during first luma interpolation

Interpolation Min Max Bit-width
X 0 255 8
-5x -1275 0 12
20x 0 5100 14
z -2550 10710 15
(Z+16)>>5 -80 335 10
Clip((Z+ 16)>>5) 0 255 8

35

C bb D
E F G a|b|c|H I J
- dl e |f|g
cc dd hliljlk|m ee ff
n plqr
K L M N P Q
H &Rl
] T/ hnfitlu

Fig. 4.4. Interpolation scheme for luminance component (grey blocks represent integer

pixels, which are denoted by upper-case letter)

G pagq b pcq H G|lalb|cl|H G|lal|b|c]|H

dlel| f|eg dlel] g dle]| f|sg
A

h piqjpkgqgm hfif[j]k|[m hfifj|k][m
T T

n{pflalr Rp% r n|1plal,r

M S N M s N M S N

Fig. 4.5. Interpolation scheme of quarter-pel positions for luminance component

36

Fractional pixels of chrominance component are derived by averaging weighted
samples of nearest four integer pixels. The interpolation scheme of chrominance

component is shown in Fig. 4.6 and the equation is:

a=((8—x)*(8—y)*A+x*(8—y)*B+

(8—x)*y*C +x*y*D +32)>>6 (4.9)

Fig. 4.6. Interpolation scheme for chrominance component

4.2. Bandwidth Optimization

The high memory bandwidth requirement in motion compensation is the
bottleneck in video decoder design. To alleviate this situation, we first reuse the
overlapped data inside a partitioned block, and then we reduce the required reference
data according to fractional-pel position. These two bandwidth optimization methods

are discussed in this Section.

37

4.2.1. Block Size Based Data Request

The partition size in a macroblock is often larger than 4x4, and the reference data
of 4x4 blocks in a same block partition is highly overlapped as shown in Fig. 4.7. The
methods of reusing this overlapped data have been realized in several ways [11] [12].
In [11], a Vertical Integrated Double Z (VIDZ) flow adding a 21x64-bit on-chip
memory to reuse the vertical and horizontal overlapped regions between two 4x4
decomposed blocks. In [12], an exploiting data reuse in hybrid block size memory
access from 4x4 to 8x8 is presented, which reuse the overlapped data inside a 4x8,
8x4, or 8x8 block. However, the external data requests of these methods are based on
small block size such as 4x4 to 8x8, and the numerous external data access may

influence the latency of MC hardware.

In 4x4-block pipeline design, the general case of memory access scheme is
loading 9x9 reference pixels as the interpolation window for a decomposed 4x4 block;
we call it Conventional 4x4 Based Data Request. The data reuse only existed between
two neighboring blocks with additional buffers. To increase the reusing rate of
overlapped data and reduce the frequency of external data access, the processing
element in our proposed design is scaled up to the block partition size, and we call it
Block Size Based Data Request. For example, a 16x8 block consisting of eight 4x4
blocks, instead of requesting 9x9 block eight times, the reference data request would
be only one 21x13 block. The reference data in both requests are the same, but the
request is reduced from eight times to only one and the accessing pixels of reference
data request is down from 648 pixels to 273, which is 58% reduction. The ideal

reduction rates corresponding to different partition size are shown in Table 4.2.

38

«—9—> “«—4—>«—5——4—>

«—o—

|
|

4x4 block 8x4 block
Reference Data Reference Data
(a) (b)
“«—9—> “«—4—>«—5—0>—4—>
t 1
4 4
{ {
[—— |
|]
i 1
4x8 block 4 8x8 block 4
! !
Reference Data Reference Data
(©) (d)
*
4
o, ¥
NN o
<« >+ 59>« /4> =.] f
,,—§a ; - +
== 4
N, ¥
- 1 NN
R i 5 =T
\ |
=)
16)(8 bIOCk k * 8)(16 block
Reference Data Reference Data
(e) ()

7

,_‘:’é\\\

16x16 block

“peUTrEN>

Reference Data

(2

Fig. 4.7. Data reuse of case: (a) 4x4 block, (b) 8x4 block, (c) 4x8 block, and (d) 8x8
block, (e) 16x8 block, (f) 8x16 block, (g) 16x16 block (shaded region means

reusable)

39

Table 4.2. Ideal reduction of reference data accessing between Conventional 4x4

Based Data Request and Block Size Based Data Request

Partition Size 4x4 Based Block Size Based Reduction
4x4 9x9=2_81 9x9=2_81 0 %
8x4 2x9x9=162 13x9=117 28 %
4x8 2x9x9=162 9x13=117 28 %
8x8 4x9x9=324 13x13=169 48 %
16x8 8x9x9=0648 21 x13=273 58 %
8x16 8x9x9=0648 13x21=273 58 %
16x16 16 x9x9=1296 21 x21 =441 66 %

4.2.2. Precision Based Data Request

A strategy for the interpolation filters and the valid reference data size of different
positions has been proposed [18]: In 4x4-block pipeline design, it is inefficient to load
9x9 reference pixels for a decomposed 4x4 block to interpolator since the required
reference data is not always need as large as 9x9. Fig. 4.8 shows integer-pixel and
fractional-pixel positions in H.264/AVC standard which has the accuracy of a quarter
of a pixel. To minimize the memory bandwidth access of motion compensation, a
classification of different pixel positions should be discussed. In Fig. 4.8, the
sub-pixel a, b and c are located at vertical integer positions and being interpolated by
horizontal interpolation only (vertical interpolation is not used), which means the
required reference data can be reduced to 9x4 as shown in Fig. 4.9 (b). Same situation
comes in sub-pixel d, h and n, the horizontal interpolation is not used and the required

reference data is reduced to 4x9 (Fig. 4.9 (c)). In the case of vertical or horizontal

40

integer positions, the required reference data can be is reduced from 9x9 to 9x4, 4x9,
or even 4x4. This strategy can be combined with Block Size Based Data Request in
Section 4.2.1. Table 4.3 shows a classification of required reference data size for
different positions with block partition size M x N (M for width and N for height of

current partition).

Table 4.3. Reducing required reference data according to different pixel positions with

block partition size M x N

Pixel Position Interpolation Filters Required Reference Data
G None Mx N
a,b,c Horizontal (M+5)xN
d, h,n Vertical Mx(N+5)
e,f,g, 1,3,k p,q,r1 Horizontal and Vertical M+5)x(N+5)

Gla|b|c|H
dle|f]|g
h|ilijlk
N1P1|Aq r
M N

Fig. 4.8. Integer pixels (blocks with upper-case letter) and fractional pixels (blocks

with lower-case letter) of luminance

41

A
Vo]
v

< 9 >
I 4
4x4 block i
! Reference Data
Reference Data 4x4 block
(a) (b)
«— 44—
A
«—4—
9 4
4x4 block l
! Reference Data
Reference Data 4x4 block
(©) (d)

Fig. 4.9. (a) Horizontal and vertical interpolation (x and y components of MV point to
fractional positions). (b) Horizontal interpolation enly (y component points to
integer position). (c) Vertical interpolation-only (x component points to integer

position). (d) No interpolation.(both X and y point to integer positions)

4.2.3. Simulation Results

In order to verify the effect of the bandwidth optimization methods, a simulation
is performed based on our C model with a DDR400 SDRAM model. We compare the
memory bandwidth requirements with (1) Block Size Based Data Request, (2) Block
Size Based Data Request and Precision Based Data Request, and without these
bandwidth optimization methods. Six HD 1080p video sequences, |IBBBBBBBP
(GOP=8) hierarchical-B prediction structure, and four QP values are used for the

simulation. As illustrated in Table 4.4, the results show that about 62-74% of the data

42

bandwidth is reduced with these bandwidth optimization methods. With higher QP
values, the block partition size trends to large block size, and the bandwidth reduction

rate will be higher.

Table 4.4. Reduction of data bandwidth in different sequences and QPs

QP=16 QP=24 QP=32 QP=40

(D) 2 M | @ (1 (2) M | @

tractor 59.57 | 63.5 | 60.72 | 64.7 | 62.05 | 65.86 | 62.52 | 66.83

sunflower 60.07 | 648 | 624 | 66.2 | 62.99 | 66.45 | 63.13 | 68.39

rush_hour 5836 | 62.8 | 61.17 | 687 | 6258 | 71.6 | 63.09 | 74.53

station 60.34 | 63.2 6223 | 67.9 | 62.89 | 67.24 | 63.15 | 69.58

blue_sky 60.12 | 66.2 [62.26 | 709 | 62:83 | 70.53 | 63.13 | 70.97

pedestrian_area | 59.91 | 66.7 | 619 | 68.8 | 62:64 | 69.77 | 63.01 | 72.65

Average 59.73 | 64.5 | 61.78 | 67.2°1.62.66 | 68.8 63 70.5

4.3. Hardware Design

The system specification of our hardware design is an SVC decoder operating at
135MHz clock rates with 3 spatial layers (CIF, 480p, and 1080p), three quality layers,
and 60 frames per second. According to the analysis in Chapter 3, a frame-based
decoding flow with one-pass quality layer decoding MB-pipeline architecture, the

total number of processing stages per set of frame is

(396 + 1,350 + 8,160) x 60 = 594,360 (4.10)

43

For 135MHz clock rate, the available cycles per stage would be

135,000,000 / 594,360 = 227 cycles (4.11)

As a result, the constraint of processing cycles per MB-pipeline stage is 227

cycles.

There are three processes in our motion compensation design which are “Motion
Vector Generation”, “Reference Pixel Accessing”, and “Interpolation”. It’s hard to
finish all these works within 227 cycles. As a result, we propose a two-stage motion
compensation design with separated data access and interpolation. Our proposed
INTER stage is decomposed into two MB-pipeline stages, trying to reduce the
processing cycles. The block diagram of proposed motion compensation architecture
is shown in Fig. 4.10. The first stage, named MVG, has “Motion Vector Generation”
and “Reference Pixel Accessing” processes. The main functions of the first stage are
to generate MVs and collect all reference data of current MB. First, the Motion Vector
Generation reconstructs MVs of ‘current-MB and then Data Request Generator in
Reference Pixel Accessing generates data request to Memory Controller of external
memory for accessing reference pixels. The returned reference pixels are collected in
a 21x21-pixel Register Array, and then written to Reference Data Buffer for next
MB-pipeline stage. The second stage, named INTERP, contains “Interpolation” and
pixel reconstruction. The main function of this stage is to interpolate fractional pixels.
The Interpolator produces fractional pixels from reference data, and then Pixel
Reconstruction collects these interpolated pixels adding to residuals as the output

reconstructed pixels.

The details of these three processes are described in follows.

44

1st MB 2nd MB 3rd MB 4th MB
Stage Stage Stage Stage
IL RIEC;/III;-UAL NTRA
CAVLD/ IL-INTRA »| RECONST DEBLOCK
CABAD IL-MOTION | INTERP
MVG (Interpolation)
This work
MB Data % %

partition block

- External Memory
Reference Pixel
Accessing
Motion Vector Curtent 128
Generation [”| Buffer Data Request | Memory Controller
> Generator |
Neighboring ST *
MV Buffer >
T 21x21-pixel |-
e Register Array 168
S
MVG 4x4 block
0~31
\i
Y Reference Data Buffer
PredFlag (Pixels + Fractional MV) Pipeline Stage
- Buffer [----- — | Iy
Residuals Luma chroma Luma chroma Addr.
LO LO L1 L1) 8
2
| i
15
Interpolation y v v v
Luma Chroma Luma Chroma ;’ ;’
- Interp. Interp. Interp. Interp. L; 7:
Lo Lo L1 L1 aly [aly
4x4 block
v v v v e iructed
. . econstructe
> Pixel Reconstruction >

INTERP

Pixels

Fig. 4.10. Proposed pipeline architecture of motion compensation design

45

4.3.1. Motion Vector Generation

In this section, a highly regular architecture of Motion Vector Generation is
presented and the reference is [20]. This process is to generate MVs of current
macroblock which is first generating motion vector predictor (MVp) and then adding
to the motion vector difference (mvd). The proposed motion vector prediction design
takes three cycles to derive the motion data for a 4x4 block, getting neighboring MVs
in cycle 1, finding out MVp of current block in cycle 2, and adding mvd to MVp in

cycle 3 as illustrated in Fig. 4.11.

The prediction of inter-coded block in H.264/AVC comes from two directions, one
is forward reference frame, called List0 (LO), and the other is backward reference
frame, called Listl (L1). The prediction types in inter-coded block are combined with
L0 and L1, which could be L0, L1, or bi-direction (both LO and L1) prediction. The
unit of the direction of prediction is based on 8x8 block, so a 2-bit predFlag, one bit
for L0, and one bit for L1, is used to identify the prediction types for an 8x8 block as
illustrated in Fig. 4.12. To deal with the variable block size, a 16x16 macroblock is
decomposed into sixteen 4x4 forward blocks and sixteen backward blocks and the
block index is shown in Fig. 4.13. The decoding flow is in the order of block index
from O to 31. In Section 4.1.1, the algorithm of motion vector predictor is introduced.
Before the process of current MB, all neighboring MVs are loaded to internal buffer
and take preload cycles. The neighboring blocks come from upper MB, left MB or
current MB, and the MVp is predicted from these neighboring MVs. The neighboring
blocks of upper MB come from a Neighboring MV Buffer which stores MV

information of previous decoded macroblocks as shown in Fig. 4.14. We use an

46

internal SRAM as the neighboring MV buffer and this SRAM stores the bottom four
4x4 blocks in a row of macroblocks, i.e., a 1080p video sequence with 120
macroblocks per row of frame. Both LO and L1 need a SRAM and the total size is
2.46 KBytes. While an MV of a 4x4 block is reconstructed, the MV of current 4x4
block is sent to Current MV Buffer. In the case of partition size bigger than 4x4, only
the first 4x4 block of this partitioned block needs to enter the process of motion vector
prediction, and the rest blocks just copy the MV result of the first block. On the other
hand, those rest blocks of the corresponding partitioned block can skip the motion
vector prediction process. After the motion vector generation process of current MB is
finished, the MVs of bottom four 4x4 blocks will be stored in the neighboring MV
buffer for upper neighborings of next MB-row. The worst case occurs when the MB is
consisted of 16 4x4 blocks. with bi-direction prediction, and the motion vector
prediction process will take preload + 96 cycles.

Cycle 1: mv_LXN

Neighboring MV
Selection l
0 Median
Cycle 2: + v

Motion Vector refldxLX
Predictor MUX

directZeroPredFlag

Cycle 3:
MVp + mvd

mvdLX

colZeroFlag

v

mvLX

Fig. 4.11. Proposed processing element for motion vector prediction

47

predFlag0 predFlagl

predFlag[1:0]

[0]: ListO availiable
[1]: List1 availiable

predFlag2 predFlag3

Fig. 4.12. The four prediction flags in a MB

Fig. 4.13. Block index of all 4x4 subblocks

0 1 4 5 16 | 17 | 20 | 21

2 3 6 7 18 | 19 | 22 | 23

8 9 | 12 | 13 24 | 25 | 28 | 29

10 | 11 | 14 | 15 26 | 27 | 30 | 31
ListO List1

3 4 5 119

[P TT] L[]
Current

0 1 2 wms []: 4x4 block stored in

HEEEEEEER neighboring MV buffer

1-bit valid

Agdr. 10-bit y-component

1 10-bit x-component

2

3

4 120x(4x(1+10+10)) = 1.23 KBytes

119 Addr = CurrMbAddr % PicWidthInMbs

Fig. 4.14. SRAM buffer for neighboring MVs

48

4.3.2. Reference Pixel Accessing

After the MV of a 4x4 block is reconstructed, the current block information will
be sent to Data Request Generator for accessing reference pixels in external memory.
Refer to Section 4.2.2, the size of requested reference data is based on the partition
size of current block. That is, a maximum 21x21-pixel register array is used in
Reference Pixel Accessing for request data collection. The returned reference data
from memory controller is row by row, which has the maximum bitwidth of 21-pixel
(168-bit), and these data are collected by 21x21-pixel Register Array. The requested
data size is not always 21x21. However, for every kinds of block size, the requested
data can be fitted in this 21x21 register-array from upper-left corner with a fixed
position mapping to every 4x4 blocks inside current partitioned block. For example, if
current requested data size‘is 21x21 for a 16x16 partition, these data fit into the
21x21-pixel register array. If'the current partition-size is'16x8, then the requested data
will be 21x13. After one partition is finished, these 21x13 data in 21x21-pixel register
array can be refreshed by the requested data of other partition. The 21x21 Register
Array first modifies the returned reference data to recovery boundary extension, and
then collects these modified data into register array. When there are enough reference
data for a 4x4 block, i.e., 9 rows of luma pixels or 3 rows of chroma pixels, the
corresponding reference data, which will be 9x9 luma pixels or fractional MVs, 3x3
Cb, and 3x3 Cr samples, are written to Reference Data Buffer for next MB-pipeline
stage, INTERP. Fig. 4.15 shows the data mapping of the Reference Data Buffer. These
buffers are consisted of 16 rows and each row corresponding to the 4x4 block index
of a macroblock. The row of luma buffer contains 9x9 reference pixels of luminance

components, and the row of chroma buffer includes fraction MV of x-direction,

49

y-direction, 3x3 Cb, and 3x3 Cr pixels of chrominance components. This Reference
Data Buffer is consisted of four on-chip SRAMs which are luma and chroma buffer in
both LO and L1 direction. For regularly, we use ping-pong buffer to utilize this

Reference Data Buffer, and the buffer size is 6.25 Kbytes.

In the external memory access, the returned data is row by row. That is, the
reference data of current partition block will be ready at the order from left-to-right
and top-to-bottom. As a result, writing reference data to Reference Data Buffer is in

raster-scan order within current partitioned block as shown in Fig. 4.16.

3x3 Cb reference pixels

9x9 luma reference pixels xFracMV & yFracMV 3x3 Cr reference pixels
Addr. / Addr.
0 luma 0 mv Cb Cr
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
Reference Data SRAM: Reference Data SRAM:
Words : 16 Words : 16
Bits :650 Bits :150
Total size: 1,300 Bytes Total size: 300 Bytes
(a) (b)

Fig. 4.15. (a) Data mapping in SRAM of luma reference data buffer, (b) data mapping
in SRAM of chroma reference data buffer

50

16x8 8x16

0 0 1 4 5

L2 | | 22|
A | o W O | P

MYV Prediction Reference Pixel MYV Prediction Reference Pixel

(a) (b)

1 1 1 15

Fig. 4.16. Raster-scan order of writing reference data in (a) 16x8 and (b) 8x16

partition size

4.3.3. Interpolation

Our proposed interpolation design-adopts'a Doubled Hardware of Interpolation
Unit (DHIU) scheme that two separate-interpolation units handle LO and L1 directions
in a 4x4 block simultaneously. The interpolation unit is consisted of a luma
interpolator and a chroma interpolator.. The elements in a 4x4 block in YUV420
format are consisted of 4x4 luma, 2x2 Cb, and 2x2 Cr samples. In our proposed
architecture design, all of the reference data for a MB is ready before current
Interpolation MB-pipeline stage, so we parallel processes luminance and chrominance
components. The 6-tap FIR filter design for luma is shown in Fig. 4.17, which
translates multiplier-adder to shift operation and addition. In our proposed luma
interpolator, separate 1-D structure is used. The components of proposed luma
interpolator are thirteen 6-tap FIR filters and four bilinear filters and the throughput is
4 pixels/cycle as shown in Fig. 4.18. According to different fractional MVs of
x-direction and y-direction, the processing cycles for one 4x4 block would be 5-6
cycles. For the chroma interpolator, a low-cost two-stage chroma filter design was

proposed [15], and the throughput was 1 pixel/cycle. We extend the parallelism to

51

handle Cb and Cr components simultaneously, and the throughput of our chroma
interpolator is (1 (Cb) + 1 (Cr)) pixels/cycle. The processing cycles of our proposed
chroma interpolator are fixed on 5 cycles for a 4x4 block. It can be seen that the
overall latency of interpolation unit for one 4x4 block is 5-6 cycles. The Pixel
Reconstruction takes another 2-3 cycles and 1 cycle for changing 4x4 block index. As

a result, the latency of Interpolation takes 128-160 cycles for an MB.

Fig. 4.17. 6-tap FIR filter design

52

Reference
Data Buffer
l FIR 1
1 FIR 2
{ FIR 3)
e FIR 4
< FIR 5 > g
=<
« FIR 6 -
< FIR 7 .
< FIR 8 g <
¢ [FR9 }— 7| < [Output
Bilinear_1
J Bilinear 2
> Bilincar 3
> Bilinear 4

Fig. 4.18. Interpolator of luminance component

4.4. Implementation Results

This chapter summarizes the'implementation results of this work. The proposed
motion compensation hardware architecture is implemented in Verilog HDL with
UMC 90nm 1P9M CMOS technology. The critical path of this design is in 6-tap FIR

filter due to the tree adder architecture.

4.4.1. Design Flow

The design flow in our proposed design is shown in Fig. 4.19. First, the system
specification is made, and we develop a behavior model in C language. Then, we
formulate and analyze the design problem from algorithmic and architectural levels.

After the system architecture is confirmed, the hardware design is implemented with

53

RTL coding. After verifying the functionality of HDL, logic synthesis and gate-level

simulation are performed.

C Verilog
System Algorithm Architecture . Gate-Level
A . Synth . . —>
Specification Development Design ynthesis Simulation

Fig. 4.19. Design flow in this work

4.4.2. Experiment Results

In order to observe the behavior of proposed design, we integrate all components
with a top module. The input pattern such as slice_type, mb_type, CurrMbAddr and
other MB information are generated from our C model, and the output results are

compared with the golden data generated from C.

The experiment results in'this Section are simulated.in C with a DDR400 SDRAM
model. We first calculate the MB processing.cycles in the two stages of our MC
architecture, and the overall MC processing cycle is the maximum of these two values.

Table 4.5 and Table 4.6 show the results in our simulation.

54

Table 4.5. Average processing cycles per MB in MVG stage (motion vector

generation and reference pixel accessing) and INTERP stage (interpolation)

QP=16 QP=24 QP=32 QP=40
MV G | INTERP | MVG | INTERP | MV G | INTERP | MV G | INTERP
tractor 166 137 148 136 141 136 139 135
sunflower 137 136 132 136 142 138 144 134
rush_hour 170 137 137 135 135 134 136 131
station2 163 138 129 136 136 137 143 135
blue_sky 142 136 141 134 142 135 139 133
pedestrian_area 157 135 134 135 132 135 130 132
Average 156 137 137 135 138 136 139 133

Table 4.6. Experiment results of average processing cycles per MB in our proposed

motion compensation design

QP=16 QP=24 QP=32 QP=40
tractor 172 159 156 154
sunflower 153 151 157 156
rush_hour 176 152 150 148
station2 169 149 153 156
blue_sky 155 152 153 152
pedestrian_area 166 150 149 146
Average 165 152 153 152

For small QP values, the block partition size trends to be small, causing the

increment of processing cycles in MVG stage. The INTERP stage is independent with

QP since it is only affected by the x- and y-components of fractional MV. A small QP

also results in more intra-coded MBs in the bitstream. For example, there are 26%,

55

39% and 44% intra-coded MBs in tractor, rush_hour and pedestrian_area bitstream
(excluding I Slice) with QP setting to 16 while there are only 8%, 4% and 13% with
QP setting to 32. For QP value higher than 20, the average processing cycles are all
below 160 cycles/MB. With repetitive background sequences such as sunflower with
numerous stamens and petals, station2 with numbers of rails, or blue_sky with
textureless blue sky and shadow leaves, different QPs may affect the position pointed
by MV, causing average processing cycles vibrate in a range. However, for the
specific object or clearly demarcated sequences such as tractor or pedestrian_area,

the average processing cycle would be lower in high QP values.

The results here are only considered about inter-coded MBs. If the intra-coded

MBs are also taken into consideration, the-average processing cycles would be lower.

4.4.3. Gate Count

For 135MHz synthesis frequency.(clock petiod is set to 7.4 ns), the total gate
count of this motion compensation design excluded internal memory is about 107k.

The gate count of each component is listed in Table 4.7.

Compared to previous works [11][14][15], the gate count increment of this work
is mainly caused by 21x21-pixel register array in Reference Pixel Accessing part for
Partitioned Block Data Reuse (PBDR). The Doubled Hardware of Interpolation Unit

in Interpolation (DHIU) scheme also takes much gate space.

56

Table 4.7. List of gate count for previous works and proposed design

Module [11] [14] [15] Proposed

Motion Vector Generation N/A N/A 16,907 14,780
Reference Pixel Accessing N/A N/A 44,542 53,754
Interpolation N/A N/A 55,728 38,546
- interpolation unit N/A 20,686 | 2*14,960 | 2 * 15,571
. 21,506 N/A N/A 13,235

- luma interpolator
(FIR*12 (FIR*12 (FIR*12 (FIR*13

(components)

Bilinear*4) | Bilinear*4) |Bilinear*4) | Bilinear*4)
- chroma interpolator N/A N/A N/A 2,336
- pixel reconstruction N/A N/A 7,133 7,404
Total 46,646 43K 117,177 107,080

4.4.4. Comparison

Since there is no SVC decoder has been published yet, this work is compared with

other H.264/AVC designs. Table 4.8 gives the comparison of motion compensation.

Compared to [15], the gate count of our design is smaller and the on-chip SRAM is a

little larger while the average processing cycle is almost the same. Moreover, the

worst cast of interpolation cycles is one-fourth to two-thirds compared to previous

works. Generally speaking, the hardware design of this work is competitive with other

works.

57

Table 4.8. Comparison with other motion compensation designs

[11] [14] [15] Proposed
Technology 0.18 um 0.18 um 0.13 um 0.09 um
Gate Count 46.6 k 43 k 117.2k 107 k
SRAM (Bytes) 168 - 8k 8.71k
of Interpolation Unit 1 1 2 2
Clock Rate 125 MHz 100 MHz 200 MHz 135 MHz
Standard H.264/AVC H.264/AVC H.264/AVC SvC
Frame Rate 30 fps 30 fps 30 fps 60 fps
1920x1088 +
‘ ‘ 2048x1024 1920x1088 ' @ 3840x2160 720x480 +
Specification ‘ . .
(P Slice) (P-Slice) (P, B Slice) 352x288
(P, B Slice)
Average Processing 155 152-165
Cycles / QP value / unknown / 16-40
Worst Case of
- 560 224 160

Interpolation Cycles

58

Chapter 5. Conclusion and Future Work

5.1. Conclusion

In this thesis, an analysis of SVC decoder and a high performance motion
compensation hardware design is proposed. First, by choosing the frame-based
decoding flow, the system would enjoy the minimum internal memory usage and
bandwidth requirement. Second, our pipeline architecture adopts One-Pass Quality
Layer Decoding method, in which the MB processing cycles for in three quality layers
bitstream are 66% reduction. Finally, a high performance motion compensation
architecture is presented. We decompose the. motion compensation into two
MB-pipeline stages. The first stage is for motion vector generation and reference pixel
accessing, and the second one is for fractional pixel.interpolation. The bandwidth
requirement is 62-74% reduced by two.bandwidth optimization methods. In our MC
architecture, a high performance interpolation unit is proposed with only 6 cycles
latency to complete a 4x4 block. We further double the hardware of interpolation unit
to process LO and L1 prediction simultaneously, and the latency of bi-pred blocks is
halved. In worst case, the latency of our proposed interpolation design will be 160

cycles/MB.

According to the experiment results, the average processing cycles in our
proposed motion compensation design are below 160 cycles/MB which is under our
system constraints 227 cycles/MB. On the other hand, the proposed hardware is

capable for decoding more than 594k macroblocks per second operating at 135MHz

59

clock rate, which is equivalent to 60 frames of CIF, SD 480p, and HD 1080p

resolutions.

5.2. Future Work

The proposed motion compensation hardware design supports Inter Prediction at
present. In the future, it should be further integrated with Inter-Layer Motion
Prediction as the completely Motion Compensation module for SVC decoder.
Moreover, entropy decoding, inverse quantization, inverse transform, intra prediction,
deblocking filter, and other SVC hardware components should be merged together to

form a complete SVC decoder.

60

Reference

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, "Draft ITU-T
Recommendation and Final Draft International Standard of Joint Video

Specification (ITU-T Rec. H.264/ISO/ IEC 14 496-10 AVC," JVT-G050, 2003.

Joint Draft 11 of SVC Amendment, Joint Video Team (JVT) of ISO/IEC MPEG &

ITU-T VCEG, Oct. 2007.

H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard,” IEEE Transactions on Circuits and

Systems for Video Technology, veol. 17,n0.9, pp. 1103-1120, Sep. 2007.

H. Schwarz, D. Marpe, and T.-Wiegand, “Hierarchical B Pictures,” Joint Video

Team, Doc. JVT-P014, Jul. 2005.

H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of Hierarchical B Pictures and
MCTE,” in Proceedings of IEEE International Conference on Multimedia & Expo,

pp. 1929-1932, Jul. 2006.

C. A. Segall and G. J. Sullivan, “Spatial Scalability Within the H.264/AVC
Scalable Video Coding Extension,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 17, no. 9, pp. 1121-1135, Sep. 2007.

H. Schwarz, D. Marpe, T. Schierl, and T. Wiegand, "Combined Scalability
Support for the Scalable Extension of H.264/AVC," in Proceedings of IEEE

International Conference on Multimedia & Expo, pp. 446-449, Jul. 2005.

P.-Y. Hsu, G.-L. Li and T.-S. Chang, “Memory Analysis for H.264/AVC Scalable

Extension Decoder,” in Proceeding of APSIPA Annual Summit and Conference,

61

Oct. 2009.

[9] H. Schwarz, T. Hinz, D. Marpe, and T. Wiegand, “Constrained Inter-Layer
Prediction for Single-Loop Decoding in Spatial Scalability,” in Proceedings of
IEEE International Conference on Image Processing, vol. 2, pp. 870-873, Sep.

2005.

[10] T.-W. Chen, Y. Huang, T.-C. Chen and Y. Chen, “Architecture Design of
H.264/AVC Decoder with Hybrid Task Pipelining for High Definition Videos,”
in Proceeding of IEEE International Symposium on Circuits and Systems,

pp.2931-2934, May 2005.

[11] C.-Y. Tsai, T.-C. Chen, T.-W. Chen and L.-G. Chen, "Bandwidth Optimized
Motion Compensation Hardware Design for H.264/AVC HDTV Decoder," in
Proceedings of IEEE International Midwest Symposium on Circuit and Systems,

vol. 2, pp. 1199-1202, Aug. 2005:

[12] C.-C. Lin, J.-I. Guo, H.-C. Chang;.Y.-C.-Yang, J.-W. Chen, M.-C. Tsai and J.-S.
Wang, “A 160kGate 4.5kB SRAM H.264 Video Decoder for HDTV
Applications,” IEEE International Solid-State Circuits Conference Digest of

Technical Papers, pp. 406-407, Feb. 2006.

[13] T.-A. Lin, S.-Z. Wang, T.-M. Liu and C.-Y. Lee, “An H.264/AVC Decoder with
4x4-block Level Pipeline,” in Proceeding of IEEE International Symposium on

Circuits and Systems, pp.1810-1813, May 2005.

[14] S.-Z. Wang, T.-A. Lin, T.-M. Liu and C.-Y. Lee, "A New Motion Compensation
Design for H.264/AVC Decoder," in Proceeding of IEEE International

Symposium on Circuits and Systems, pp. 4558-4561, May 2005.

62

[15] P. Chao and Y.-L. Lin, “A Motion Compensation System with a High Efficiency
Reference Frame Pre-Fetch Scheme for QFHD H.264/AVC Decoding,” in
Proceedings of IEEE International Conference on Circuits and Systems, pp.

256-259, May 2008.

[16] H.-C. Tseng, C.-R. Chang and Y.-L. Lin, “A Motion Compensator with Parallel
Memory for H.264 Advance Video Coding,” in Proceedings of the 16™ VLSI

Design/CAD Symposium, Aug. 2005.

[17] M. Alle, J. Biswas, and S. K. Nandy, “High Performance VLSI Implementation
for H.264 Inter/Intra Prediction,” in Proceedings of IEEE International

Conference on Consumer Electronics, pp. 1-2, Jan. 2007.

[18] R.-G. Wang, J.-T. Li and C. Huang, “Motion Compensation Memory Access
Optimization Strategies. for H.264/AVC Decoder,” in Proceeding of IEEE
International Conference Acoustics, Speech, and Signal Processing, vol. 5, pp.

97-100, Mar. 2005.

[19] Y. Li and Y. He, "Bandwidth Optimized and High Performance Interpolation
Architecture in Motion Compensation for H.264/AVC HDTV Decoder," Journal

of Signal Processing Systems, vol. 52(2), pp. 111-126, Aug. 2008.

[20] H.-B. Yin, D.-P. Zhang, X.-M. Wang, and Z.-L. Xia, "An Efficient MV Prediction
VLSI Architecture for H.264 Video Decoder," in Proceeding of International

Conference on Audio, Language and Image Processing, pp. 423-428, Jul. 2008.

[21] K. Yoo, J.-H. Lee and K. Sohn, “VLSI Architecture Design of Motion Vector
Processor for H.264/AVC,” in Proceeding of International Conference on Image

Processing, pp. 1412-1415, Oct. 2008.

63

[22] H.264/AVC Reference Software, JM 12.4,

http://iphome.hhi.de/suehring/tml/download/old jm/

[23] SVC Reference Software, JISVM 9.14.

64

Biographical Notes

S AT b i ;%f

R
EIETESE A P] L (AW96# 097 ~ A®ISE 11 7)
Rzd A+ FTF 145 4 4 (AR92&£097 ~ AFI6E 06")
RS R (R B89 097 ~ 92 #067)
¥iv:

[1] Po-Yuan Hsu, Gwo-Long Li and Tian-Sheuan Chang, “Memory Analysis for
H.264/AVC Scalable Extension Decoder,” in" Proceeding of APSIPA Annual
Summit and Conference,pp. 299-302, Oct. 2009;

HRTH

V O BFERSBREAMTIRAVRFEE A G RETRRG e T HF

