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Hearing Aids Application

Student: Cheng-Chun Tsai Advisor: Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

For hearing aids application, the amplification of input sound is needed in order to
compensate the hearing loss“of the-patient. Thus noise reduction is required to
improve speech quality and intelligibility under noisy environments. For integrated
hearing aids system, low-power design is necessary such that the battery life can be
expended and the system volume can.be minimized.

In this thesis, we propose a low power noise reduction design for hearing aids
application with entropy-based voice activity detection and filter bank-based spectral
subtraction.  The entropy-based voice activity detection distinguishes the speech
period from the silence period in noisy environment and makes the decision whether
it is voice active or not. The filter bank-based spectral subtraction estimates noise
level and performs different spectral subtraction schemes based on the result carried
out by the entropy-based voice activity detection. Off mechanism turns off the
spectral subtraction process if noise level lies below a fixed threshold in order to
reduce power consumption. The proposed algorithm is optimized for low power
hardware design by minimizing the calculation complexity. From simulation results,

il



the average segment SNR improvement is 6.27dB and the average PESQ score is
elevated by 0.316.

The final design is implemented by UMC 90nm CMOS technology with high Vy
cell library. The clock frequency is 6MHz. For the hardware architecture, folding
technique is adopted to save area and to reduce power consumption. For data
storage, 1.536K Bytes of SRAM is utilized. The total estimated gate count is
101,697 including SRAM and 80,628 excluding SRAM. The total power

consumption is 292.7uW.
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Chapter 1. Introduction

1.1.Background

Environment noise degrades speech quality. For hearing aids application, since
the amplification is required in order to compensate the patients’ hearing loss, louder
noise not only causes the reduction of speech intelligibility but also results in
uncomfortable experience for the patients. Thus, noise reduction is an important
issue in hearing aid application.

For noise reduction in digital hearing aids systems, the key point is that the design
must be real-time and follows:the specification of the system. Modern hearing aids
applications emphasize on mobility and long battery" life, which is particularly
preferred by the patients who suffered from-inconvenience experience caused by
some hearing aids systems. The meore electric power is required, the heavier and the
larger the battery will be to extend the battery changing period. Thus the noise
reduction also needs to be low-power designed in order to save the system volume
and the computation power dissipation.

To sum up, noise reduction design has to be integrated into the digital hearing aid
system chip and enhance the speech quality. Low power design is also required
such that the volume and the weight of the system can be minimized, which is a

challenging task.



1.2. Motivation and Contribution

The issues mentioned above motivate us to propose a low power noise reduction
design for hearing aids application. The goal is to propose an algorithm which can
be implemented by real-time hardware design with low power consumption.

The contribution of the thesis includes:

1. We formulated the VAD algorithm which is low power optimized and provides
reference for the decision in spectral subtraction.

2. We formulated the spectral subtraction algorithm which is low power
optimized, enhancing the speech quality and intelligibility under noisy
environments.

3. We analyzed the performance of the proposed algorithm and implemented in
hardware with verification. ~ The proposed design is integrated into a digital

hearing aid system.

1.3. Thesis Organization

In Chapter 2, we will briefly introduce different types of the noise reduction
algorithms. In Chapter 3, the proposed noise reduction algorithm with
entropy-based voice activity detection and filter bank-based spectral subtraction with
hardware optimization techniques will be discussed. Chapter 4 will present and
analyze the simulation results with different types of background noise and speech
test sequence. Chapter 5 will discuss the hardware implementation of the proposed
design and show the circuit area along with power reports. The conclusion will be

given in Chapter 6.



Chapter 2. Related Work

2.1.0verview

Many noise reduction algorithms for hearing aid were proposed. According to [1],
the noise reduction method can be categorized into 4 types: spectral-subtractive
algorithms, wiener filtering, statistical-model-based methods, and subspace
algorithms. Subspace algorithms such as [2] and [3] utilize the characteristics of the
vector space of the noisy signal which can be decomposed into “signal” and “noise”
subspaces. By keeping the components falling in the “signal” subspace and nulling
the components that are in the “noise” subspace, noise can be suppressed. However,
this type of algorithm needs “further-processing on the signal by forming the gain
matrix, resulting in high computation complexity by- operations such as matrix
arithmetic and matrix inversion. Wiener filtering algorithms that mentioned in [4]
and implemented in [5], [6],  and [7] use-linear prediction methods under
minimum-mean-square error criterion, establishing an optimum filter model by
minimizing the speech distortion subject to the noise distortion lying under a given
threshold. Nevertheless, those algorithms require multi-microphone architecture,
which needs high computation power and are not suited to the proposed design.
Statistical-model-based methods like [8], [9] and [10] often utilize nonlinear
estimators of the magnitude of DFT coefficients with different types of statistical
models and optimization criteria. Estimated clean speech signal are acquired by the
information gathered with SNR estimation and noise signal variance. The drawback
of the statistical-model-based methods is that they still suffer from high computation
complexity and the frequency decomposition methods don’t meet the requirements.

3



Spectral-subtractive algorithms manipulate the data in frequency domain and subtract
unwanted noise spectral energy from the noisy speech energy. The unsophisticated
algorithm procedures fulfill the need for low power requisition with comparatively
lower computing complexity and more friendly for hardware implementation. The
spectral-subtractive method is based on frequency dividing and spectral subtraction.
The noisy speech signal is first converted into spectral domain and the spectral energy
is then subtracted by the amount of the estimated background noise in order to restore
the original clean speech. The spectral-subtractive methods satisfy the need for low
computational complexity and low power hardware implementation according to its
simple and inherent hardware-friendly characteristic. =~ The spectral-subtractive

methods will be introduced in the following section.

2.2.Spectral-Subtractive Method

2.2.1. Introduction

The spectral-subtractive method, first introduced by Boll[11] consists of two basic
steps: spectral decomposition, i.e. frequency dividing, and de-noise process. The
spectral decomposition is often implemented by methods such as fast Fourier
transform (FFT), discrete cosine transform (DCT), discrete wavelet transform (DWT),
or filter bank. After spectral decomposition is the de-noise process. In order to
enhance the performance of the de-noise process, voice-activity detection (VAD)
operation is widely adopted. VAD makes the judgment whether a specific period is
voice active or not, giving decision for the action of taking noise estimation or
performing the spectral subtraction. The spectral subtraction process includes

spectral attenuation within silence period, and spectral subtraction, i.e. speech
4



enhancement for voiced period. The following section discusses the related works

of VAD and spectral subtraction scheme respectively.

2.2.2. Voice Activity Detection

Noise reduction algorithm in speech processing requires high performance and
needs to preserve good intelligibility and quality of the original speech. In that case,
we need not only good noise reduction mechanisms but also accurate voice-activity
detection algorithms in order to differentiate voice-active region from silence region,
namely ‘“noise-dominating region” in noisy environments. Various voice-activity
detection methods have been proposed. Directly judging by signal energy or
magnitude such as [12] suffers from lower acecuracy under low SNR environments.
Statistical-based or model-based VAD-algorithms such as [13] and [14] achieve good
performance in such condition, while need higher computation complexity and
hardware resources. Autocorrelation function or teager energy operator (TEO) based
VAD algorithms such as [15], [16], and-[17] well balance complexity and accuracy
under noisy environments, while the flexibility under different noisy environments
does not meet the requirement of the hearing aid system. Entropy based method as
proposed by [18] utilize the spectral energy and calculate the entropy value and have
better performance compared to TEO based methods and magnitude judging methods.
However, the computation complexity is higher than the TEO or judging by signal

energy scheme and needs to be modified in order to meet the low-power requirement.

2.2.3. Spectral Subtraction

Many works on spectral subtraction have been proposed. From the studies on

spectral subtraction, the main issues are that the presence of musical noise[19] and the
5



damage to the original speech. Many algorithms use hard thresholding or soft
thresholding such as [20]. Over-subtraction methods such as [19] and [21] prevent
the result of spectral subtraction from lying under some preset minimum threshold to
conquer the musical noise problem. Nonlinear and multiband approaches such as
[21-25] exploit different gain or subtraction factor for each frequency components in
spectral domain, preserving the intelligibility of the speech spectral energy range and
eliminating unwanted noise in other frequency components. The nonlinear and
multiband approaches require frequency dividing process and the hardware
complexity are comparatively higher thus need to be hardware-optimized when they

are applied to the hearing aid system.

2.3.Summary

The noise reduction algorithms can be categorized into spectral-subtractive
algorithms, wiener filtering, . statistical-model-based methods, and subspace
algorithms. For low power design, the spectral-subtractive algorithms are preferred.
Most spectral subtractive algorithms take VAD and spectral subtraction as the basic
steps in order to provide accurate noise estimation and better decision of different
scheme for speech period and silence period. Entropy-based VAD and multiband
spectral subtraction are well balanced between performance and computation
complexity while they still need optimization for low-power hardware

implementation.



Chapter 3. Noise Reduction Algorithm with
Entropy-Based Voice Activity Detection and

Filter Bank-Based Spectral Subtraction

3.1.0verview

In this chapter, we present a noise reduction algorithm with voice activity detection
(VAD) and spectral subtraction. The proposed VAD algorithm utilizes the entropy of
the speech signal energy with. filter bank-based frequency dividing. The spectral
subtraction process is done under frequency domain acquired by the analysis filter
bank, which is inspired by previous spectral-subtractive methods. The VAD result
controls the decision and offers the reference noise estimation of filter bank-based
spectral subtraction within voiced or silence region, which further enhances the
performance of the proposed algorithm. The filter bank-based spectral subtraction
enhances the speech SNR by utilizing the information of noise magnitude estimated
during voiced period and suppresses the noise signal during non-voiced period. The
subband signals are then synthesized through synthesis filter bank after other
processing block in the hearing aid system.

This chapter is organized as follows. First the hearing aid system and the filter
bank will be briefly introduced. The proposed algorithm flow will be illustrated in
the next section. Then each part of the algorithm will be discussed in detail in the

rest of the chapter.



3.2.Introduction to the Hearing Aid System
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Fig. 3-1 Functional block diagram of the hearing aid system
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Fig. 3-2 Block diagram of the digital system

Fig. 3-1 shows the functional block diagram of the overall hearing aid system.
The external sound is inputted to the system by microphone. The analog to digital
converter then converts the analog signal to digital data samples with 24-kHz
sampling rate. Then the digital system (red rectangle part) starts the digital signal
processing.

Fig. 3-2 illustrates the block diagram of the digital system. After filtering by the
“18-Band Analysis Filter bank™ block, the samples are frequency-divided into 18
subbands. The “Noise Reduction” block reduces the unwanted background noise,
enhancing the quality of speech. Then the “Insertion Gain” block applies different
gains on each subband of the output of the noise reduction block in order to

compensate the hearing loss of the patient. “Merging Bands into Channels” block,
8



also known as “B2C” block, merges 18 subbands into 3 channels for the following
compressor. “Compressor” block compresses the dynamic range of the magnitude of
the samples, preventing from over-amplifying the magnitude of the data samples,
which may cause damage to the patient’s ear. Then the synthesis filter bank
reconstructs the data samples from subband samples.

Finally, the digital to analog converter converts the digital data sample to analog

signal, and the sound is generated by the speaker.

3.3.ANSI S1.11 Filter Bank for Digital Hearing

Aids[26]

In hearing aid systems, most of the parts require frequency dividing in order to
apply different gains or compensations to specific' bands. In the proposed noise
reduction algorithm, filter-bank “based-spectral subtraction is utilized. In the
filter-bank design, human hearing characteristics are well simulated since the
frequency dividing mechanism is based on the ANSI S1.11[27] standard. Most of
the filters that base on straightforward FIR design encounter the problem of high
complexity and require large amount of hardware resource. The filter bank that
adopted in the proposed noise reduction algorithm provides an energy-efficient
solution, implementing the 22™ to the 39™ 1/3-octave bands in the ANSI S1.11
standard.

The multi-rate algorithm is composed of three filters and a low-pass decimation
filter. The inputs samples are recursively obtained for smaller octaves by

band-limiting and downsampling the input signals.
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The number of output data samples from each analysis filter bank octave descends
by a factor of 1/2 from each input frame length, which is 32, resulting in 32, 32, 32,
16, 16, 16, 8, 8, 8,4, 4,4,2,2,2, 1, 1, 1 samples for band F39 to F22 respectively.
The bitwidth of the data sample is 16-bit, with 24kHz sampling rate. Table 3-1

shows the specifications of frequency response for each subband of the filter bank.

band Center frequency. (Hz) Upper bound (Hz) Lower bound (Hz)
F39 8000 10365 6174
F38 6300 8163 4862
F37 5000 6478 3859
F36 4000 5183 3087
F35 3150 4081 2431
F34 2500 3239 1930
F33 2000 2591 1544
F32 1600 2073 1235
F31 1250 1620 965
F30 1000 1296 772
F29 800 1037 617
F28 630 816 486
F27 500 648 386
F26 400 518 309
F25 315 408 243
F24 250 324 193
F23 200 259 154
F22 160 207 123

Table 3-1 Frequency response of each subband of the filter bank.
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3.4.Introduction to the Proposed Noise Reduction

Algorithm
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Fig. 3-3 Flow of the proposed algorithm
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Fig. 3-3 illustrates the flow of the noise reduction algorithm with entropy-based
voice activity detection and filter-bank based spectral subtraction. Initially the digital
noise-corrupted speech signal is acquired through D/A converter with 24kHz
sampling rate. Then the data passes the ANSI S1.11 analysis filter bank, resulting in
18 subband signals. The length of each filter-bank input sequence is 32, i.e., 32
samples of speech data will be fed into the filter bank, generating different length of
output data sequence in each subband respectively as shown in the upper part of the
figure. If the input sequence number is the multiple of 4, for instance, 4k, the
entropy-based VAD operation will be activated. Otherwise the data will be directly
processed depending on previous VAD result. The entropy-based VAD calculates
the entropy of the input signal from the data in €ach subband. The magnitude of
entropy indicates the possibility whether the corresponding region is voice-active or
not. In order to improve the distinguishing ability of the entropy in different types of
speech or different noisy environments, the adaptive thresholding technique is
proposed. With the utilization of adaptive-thresholding technique, VAD result will
be generated and be applied to the judgment of voiced or silence region signal
processing.

Different signal processing method will be performed depending on the type of the
signal (voiced or silence). If a signal sequence is judged as voice-active and the
VAD cnt exceeds 8, namely, the VAD has made the judgment of voice-active for
more than 8 times consecutively, the signal will be processed though “Spectral
subtraction for Speech” block, or it will be processed through “Spectral Attenuation
for Noise” block instead. If the signal is judged as silence but lies in the “Voice
protection zone”, the signal will also be processed through “Spectral Subtraction for

Speech” block, or the signal will be processed through “Spectral Attenuation for
12



Noise” block. “Noise Estimation” block estimates the magnitude of the environment
noise, which is then become the reference noise data in “Spectral Subtraction for
Speech”.  “Off Mechanism” disables the calculation if the estimated noise is less
than a fixed threshold. Finally the processed data is fed to “Insertion Gain” block

which is previously described.

3.5.Entropy-Based Voice Activity Detection

3.5.1. Entropy in Speech Processing

Entropy[28], in information theory, stands for the amount of uncertainty

measured with some set of specific variable, for example, X. It is usually denoted by

H(X), where

H(X) = =2xexp(x)logp(x;) ( 3-1)

Where p(x) stands for the probability density function of x.

As we can see, the entropy equation indicates that the entropy function maximizes
if all the variables x; in set X are equiprobable, i.e. p(x;) = 1/n, where n = number
of x;’s in set X. In other words, we could state that X is most “unpredictable” under
such condition. Fig. 3-4 is a sinusoidal wave with period T.  Fig. 3-5 is a Gaussian
noise generated by MATLAB function awgn. The magnitudes of the samples of the
two signals are normalized to 1 respectively. The part p(x;) is the magnitude
acquired by taking 256-point Fourier transform and normalized over the energy of all

the transform coefficients, namely:
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abs(FFT(x;))
Y356 abs(FFT(xy)) '

p(x;) = i=1..256 (3-2)
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Table 3-2 lists the energy and entropy calculated by (3-1) of the two signals. We
can find that although the two signals have almost same energy, the entropy differs a
lot since the dominating frequency components in sine wave and Gaussian noise are
not the same. The dominant frequency component in sine wave is the inherent
frequency of itself while there’s no dominating frequency component in Gaussian
noise according to its definition. Thus we can learn that for signals with some
dominating frequency component, for example, speech signals, the entropy will
behave dissimilarly from that of noise signals, which usually have no specific
dominant frequency components. This condition is closer to “equiprobable” that

mentioned earlier in this chapter.

Energy Entropy (H)
Gaussian noise 0.249 2.36
sine wave 0.251 1.36

Table 3-2 Energy and Entropy for Gaussian noise and sine wave

3.5.2. Entropy Calculation

According to the definition of entropy and the specification of the filter bank, the

entropy is calculated by the following equation:

HY) = —Xyerp) logp(yi) ( 3-3)
Where
(y;) = 25D _ i = F22~F39 (3-4)
P YE3abs(y) '
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Where y; is the average spectral energy of the filter bank output in subband i
which is acquired by taking the absolute value for simplicity.

For entropy calculated in (3.3), the noise-dominant region and the speech-dominant
region can be differentiated[18]. In order to make the entropy difference more
recognizable and let the VAD be more robust, a constant K is introduced[29]. Thus

we get the modified entropy equation:

H'(Y) = —Xy,er?' (i) logp'(y) (3-5)
Where
, . abs(yj))+K . - )
p (y;) = ST (abs iR i =F22~F39 ( 3-6)
Now, we let
, 1
Ap(y;)) = p' () — pys) = T (I-N)- p(y) (3-7)
SF22 P00 Ly

K

Where N = 39-22+1 = 18

By observing (3-7), we can analyze the influence of K. If p(y;) > 1/N,
Ap(y;) <0, which means p'(y;) < p(y;). In contrast, if p(y;) > 1/N, Ap(y;) >
0, which means p'(y;) > p(y;). The introduction of K makes p'(y;)s tend to be
equal in one frame, thus the entropy of each frame increases. The key point that
makes the difference of H'(Y) between noise-dominant frames and speech-dominant
frames become larger is that the energy of speech-dominant frames (speech + noise)
are commonly greater than that of noise-dominant ones (noise only), which results in
larger advance in entropy for noise-dominant frames than that of speech dominant

frames. Consequently, it is easier to do thresholding for the entropy, resulting in
16



better VAD accuracy.
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The calculation of entropy is performed by the following step:

a. The output of the ANSI S1.11 analysis filter bank is first gathered for 8

sequences, i.e. 256 samples for band F39~F37, as shown in Fig. 3-6.

b. Then the window is averaged every 4 sequences, i.e. every 128 samples for

band F39~F37, as shown in Fig. 3-7.

c. The averaged data sample in each subband is set to be y;. After taking

absolute value of y;, we sum up abs(y;)’s from band F22 to band F39 and add

K to obtain the denominator of (3-6).
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After calculating p’(y;) by (3-6) for each subband, the log value of p'(y;) is
then acquired with log base 10.
Then the entropy value H’(Y) is derived by (3-5). By (3-8), the VAD result is

determined.

1, if (—H'(Y)) > threshold

vAD = {o, if (~H'(Y)) < threshold

(3-8)

The entropy calculation steps are listed above. However, some of them are not

suitable for low-power hardware implementation. The detailed optimization process

for low-power hardware design will be discussed in the following section.

3.5.3. Low-Power Hardware Optimizations for Entropy

Calculation

Our goal for the noise reduction algorithm is not only suitable for digital hearing

aid system but also operates with low-power dissipation. For hardware optimization,

the algorithm flow is modified for each step as follows:

a.

The input sequence costs lots of storage space and may leads to high power
consumption and large die-area for 3.5.2a. Also, the real-time constraint limits
the data to be read and stored simultaneously when the calculation is in progress.
If the data samples are directly written into the register, high area and gate count
will be required, resulting in large power consumption.

To solve the problem, we have the input data samples from analysis filter bank

be written into 2 SRAM sets alternately for further data processing. SRAM
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has smaller area occupation than the register and only needs extra 2 cycles for
data read/write. For real-time processing, 2 SRAM sets are used as a
ping-pong buffer such that current input sequences can be processed when the
next input sequence is being gathered in the same time. In that way, the
real-time processing with small hardware usage can be carried out.

. For window averaging in 3.5.2b, the data samples of each subband are summed
and written into the register for every input sequences and are denoted as r00,
rol, ...r17. Then r00, r01, ...rl7 in each sequence are summed together
respectively for every 4 input sequences.

The registers used for summing r00, r01, ...r17 in sequence 8k...8k+3 are
called rO01_RegOto3, r02_RegO0to3,...r17 Reg0to3. And the registers used for
summing r00, r01, ...r17 in sequence 8k+4 to 8k+7 are called rO1_Reg4to?7,
r02_Reg4to7,...r17_Reg4to7.

We can use two sets of registers to accumulate and take average of the sequence
that is more efficient and saves the-circuit area. The scheme is illustrated in

Fig. 3-8.

Take average Take average

| Reg Oto3 | Reg 4to7 | Reg Oto3 | Reg 4to7 | Reg 0to3 |

4 sequences Take average Take average

| Time |

Fig. 3-8 Scheme for window averaging by register refreshing
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c. The constant K in (3-6) is set as (%)5, which is 0x0200 corresponding to 16-bit

data format of input sequence.

d. The log function of the algorithm in 3.5.2d has base 10, which is hard to
implement in hardware design.
To solve the problem, we do the modification as follows:

1. Change the base to 2 by base-changing properties:

logiop'(y1) = log,p'(yi)X logso 2 (3-9)
il. By Mitchell’s algorithm[30]; we can approximate the log values with
base 2 by interpolation. .method. . If we want to take binary
logarithms of a number N (i.e.10g2(N)), first we can express N as:
N'="2F(1+m) (3-10)
Then we take the logarithms on both sides:
log,N = k +log,(1+m) (3-11)

The approximation based on Mitchell’s algorithm is:

(log,N)' = k+m (3-12)
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So the approximation error will be:

log,(1+m)— m (3-13)

The example table of the above scheme is listed in Table 3-3. The example has 3
integer bits and 5 fractional bits while for proposed hardware design, the log function

has 6 integer bits and 10 fractional bits
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N N logoN logzN logzN
Decimal Binary Exact Approx. Binary Approx.
1=2° 00001 0.00000 0.00000 000.00000
2=2! 00010 1.00000 1.00000 001.00000
3 00011 2.58496 1.50000 001.10000
4=2? 00100 2.00000 2.00000 010.00000
5 00101 2.32193 2.25000 010.01000
6 00110 2.58496 2.50000 010.10000
7 00111 2.80735 2.75000 010.11000
8=2’ 01000 3.00000 3.0000 011.00000
9 01001 3.16993 3.12500 011.00100
10 01010 3.32193 3.25000 011.01000
11 01011 3.45943 3.37500 011.01100
12 01100 3.58496 3.50000 011.10000
13 01101 3.70044 3.65200 011.10100
14 01110 3.80735 3.75000 011.11000
15 01111 3.90689 3.87500 011.11100
16=2* 10000 4.00000 4.00000 100.00000
17 10001 4.08746 4.06250 100.00010
18 10010 4.16993 4.12500 100.00100
19 10011 4.24793 4.18750 100.00110

Table 3-3 Mitchell’s approximation example
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e. The equation (3-6) in 3.5.2 has division, which is not preferred in hardware

design and requires additional hardware resource.

To solve the problem, we let p'(y;) = % first. Then the division

operation of (3-6) is reduced by rewriting (3-5) as:

den_p(y;) x H'(Y) =
- Z (num_p(y;)) X [ log(num_p(y;)) — log(den_p(y;))]
Yi€Y

(3-14)
Thus (3-8) must also be rewritten as:

1, if denzpe,) X (=H'(Y)) > den_p(y;) X threshold
0, if den p(y;) X (=H'(Y)) <den_p(y;) X threshold
(3-15)

After removing the division, the remaining multiplication is then replaced by
shift-add techniques and will be discussed in 5.1. Thus no hardware multipliers are
needed, resulting in an one-adder arithmetic unit architecture in the circuit design.

By the modification mentioned above, complexity of the algorithm is reduced

effectively for hardware implementation with simpler calculations.
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3.5.4. Adaptive Thresholding

The entropy value may be the reference for determining whether the frame tends to
be speech-dominant or not. To present a definite VAD result, a threshold is required.
A fixed threshold may be simple but offers poor accuracy when different type or SNR
of environment noise is dominant. Thus the adaptive thresholding technique may be
a good solution to the condition above. The adaptive thresholding process will be

shown below.

First we assign current threshold = Thr as the summation of a constant C and the

parameter Adaptive_Thr, that is:

Thr = Adaptive_Thr + C;

Where C is a constant chosen by experiments. It represents the initial value of
Thr.

Then we calculate £nt_static_cntwith the following:

If (abs(prev_Thr - Thr) < Q && abs(prev_Ent - Ent) < R)
Ent static cnt = Ent _static cnt + 1;
else

Ent static cnt = 0,

24



Where prev_Thr is previous threshold, Entis —H'(Y), prev_Ent is previous

—H'(Y), Qand R are 0x002dc6c0, which is chosen by experiment. Then we assign

Ent_margin = abs(Ent - Thr)

Where Ent_margin is the distance between current threshold and —H'(Y).

Finally we do threshold updating if —H’(Y) and threshold has kept static -
that is, varying within some pre-defined: range - over the period that needed for

invoking VAD calculation 24 times.

If (Ent_static_cnt > 24){

if ((Thr - Ent) > S){

Adaptive_Thr = Adapfive_Thr - L,

Ent static cnt = 0;

}

Else {
Adaptive_Thr = Adaptive_Thr + L,
Ent static cnt = 0;

}
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Where Sis 0x0200 X den_p(y;) due to the relationship mentioned in (3-15). L

is the adaptive step for Adaptive_Thrand is 0x0100.

To briefly sum up, the concept of this algorithm is that if threshold keeps far
above —H’(Y) statically for a fixed period, we decrease it to make the voiced period
judgment more accurate. If threshold lies below —H’(Y) statically for a fixed
period, we increase it to prevent from misjudging the silence period as voiced ones.
Finally the VAD result is acquired. If —H’(Y) exceeds threshold, the VAD flag is
set to 1, and vice versa.

Fig. 3-9 gives an example of adaptive thresholding. The upmost subgraph is
clean speech signal plot with VAD result in red rectangle. The center subgraph is the
noisy speech. The lowest subgraph is the entropy plot with adaptive threshold drawn
inred line. As we can see, the threshold approaches the entropy when the entropy is
at some steady level for a period, and lies slightly above the entropy to make sure the

abrupt change in entropy may result in the judgment of voiced frame accurately.
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Fig. 3-9 Example of adaptive thresholding

3.6.Filter Bank-Based Spectral Subtraction

3.6.1. Introduction

After VAD process, we get the information of current frame based on which the
decision of different noise reduction steps could be taken. There are four different
states for noise reduction, which are Voiced-Zone, Too-Short Voiced-Zone,
\oice-Protection-Zone, and Silence-Zone. The flow to decide which state to enter is
shown in Fig. 3-10 and is described below,

a. If a frame is judged as VAD = 1 and the previous 8 VAD results are also 1, that is
VAD cnt > 8, then the state will be Voiced-Zone. VAD cnt = VAD cnt + 1.

b. If a frame is judged as VAD = 1 but is not the case of a, that is, VAD_cnt < 8
then the state will be Too-Short Voiced-Zone. VAD cnt = VAD cnt + 1.

c. If a frame is judged as VAD = 0, but VAD_cnt > 3, which means it’s just right
27



after some Voiced-Zone, then the state will be Voice-Protection-Zone. VAD_cnt
=VAD cnt - 3.
d. If a frame is none of any of the above conditions, the state will be Silence-Zone.
“Noise Estimation” will be performed.
The data sample will be processed under one of the states mentioned above. For
case a and c, “Spectral Subtraction for Speech” will be performed. For case b and d,

“Spectral Attenuation for Noise” will be performed. Finally, the output data sample

will be generated and feeds to the Insertion Gain block.

VAD = !gVAD =1

l l

| vAD.ent>3 | ] VAD cnt>8? |
NO ! ! YES
YES NO
v v v v
Silence-Zone Voice-Protection-Zone Too-Short Voiced-Zone Voiced-Zone
| 1 1 |
[ [
v A
Spectral Subtraction for Speech ‘ ‘ Spectral Attenuation for Noise

Fig. 3-10 State decision after VAD

3.6.2. Noise Estimation

If Silence-Zone (case d) state is entered, the “Noise Estimation” will be performed.
Each time when “Noise Estimation” is activated, the data sample in each subband will
be averaged respectively. Also, there will be an increment in a counter. When the
counter reaches 128, that is, the noise estimation has been performed for 128 times,

the noise estimation result value is updated by averaging over the past 128 noise data
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that were averaged in each subband. Then the counter will be reset to zero. The
process iterates again and again to ensure the noise estimation result value is
up-to-date in order to provide appropriate information for spectral subtraction process.
The result of noise estimation will be the reference noise signal d; in (3-19), (3-20)

and (3-21).
3.6.3. Spectral Attenuation for Noise

For case d, after noise estimation, the data samples that enter Noised Zone state will
be attenuated. For case b, the data samples that enter Too-Short Voiced-Zone will
also be attenuated because they are tend to be noise since their VAD period is too
short.

The mechanism of Silence-Zone is simply attenuating cach data sample in every

subband by multiplying 0.125 to them, 1.e.:

Vi = Vie*0:125 (3-16)

Where y;, is the kth processed subband data sample in band i, i = F22~F39 . y;
is the kth input subband data sample in band i, i = F22~F39. Note that the rage of k

is dependent on which subband it is.

And the mechanism of Too-Short Voiced-Zone is also simply attenuating each data

sample in every subband by multiplying 0.25 to them, i.e.:

Yik = Yik * 0.25 (3-17)
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Then the output data samples are acquired.

3.6.4. Spectral Subtraction for Speech

From 3.6.1, if Voiced-Zone (case a) state or Voice-Protection-Zone (case c) state is
entered, the spectral subtraction for speech will be performed in order to eliminate
unwanted noise from speech signal. To do the spectral subtraction, we first express

the speech signal in time domain that is corrupted by noise as:
y(m) = x(n) +d(n) (3-18)

Where y(n)is the noisy speech data sample, x(n) is the original speech data
sample. d(n) is the noise data sample.  After filtering by filter bank, the

relationship may be expressed by the following equation:

il = il + 1 12 (3-19)

Where y;, is the kth subband noisy speech data sample in band i, i = F22~F39.
x; is the kth subband original speech data sample in band i. d; is the subband
noise data sample in band i which is estimated in 3.6.2. Note that the rage of K is

dependent on which subband it is.

To simplify the calculation, we can estimate the clean speech by the following

equation:
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Vikl = |xik| + 14l (3-20)

Now we want to estimate the speech data sample by the following equation:

|%ike| = |vie| — wildil (3-21)

W; 1is a constant and varies in different subband, and is defined as:

2.5, ifi= F22~F30
b= ! (3-22)

1, if i = F31~F39

The reason p; is different.over subbands is that for band frequency lower than F30,
the energy is closer to human voice, while for frequency higher than F30, it may be
unwanted noise during speech. ' Thus we apply a higher subtraction factor to those
subbands.

Next, from [25], to avoid negative values resulting from (3-21), |5c‘i,k| is floored as

follows:

) if |%ix| > Blyil

(3-23)
, else

X:
ul={

/)’|)’i,k

Where B is set to 0.05.

Finally, to mask musical noise, a small amount of noisy data samples are added to

the processed data samples, i.e.:
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1%kl = [Ri| + ¥|Yikl (3-24)

So the processed data sample in speech period is:

Vi = sign(yig) X |%ix] (3-25)

Where the multiplication of sign(y;,) ensures y;, to have the same sign

number as y; .

From the above equation, the output of spectral subtraction is also acquired.

3.6.5. Low-Power ‘Hardware Optimizations for Filter

Bank-Based Spectral Subtraction

The spectral attenuation and spectral subtraction in the proposed algorithm requires
constant number multiplication. In order to reduce the complexity and circuit area,
the multiplication is approximated by linear combining the multiplicand by the factor
of 1/2. The approximation is applied in (3-21), (3-23), and (3-24). For example,

y = x X 0.1 can be approximated by the following step:

y=x x0.1
= x X 0.09375
= (x x 0.125) — (x x 0.03125)
=@x>»3)—(x>»5) (3-26)
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As a result, the hardware architecture can be simplified.

3.6.6. Off Mechanism

For high SNR conditions, noise reduction process may not be necessary but will
cause additional quality loss to the processed speech. Thus a simple off mechanism
is applied. When the magnitude of noise estimation in each subband is lower than
0x0001 (in 16-bit format), the off counter will be added by 1. If the off counter
exceeds 0x000f, the noise suppression and the spectral subtraction block will not be
entered. It also benefits the reduction of calculation, decreasing the total power

consumption.

3.6.7. Data Output

Finally, the output of the proposed noise reduction algorithm is then sent to
“Insertion Gain” block with the same 16=bit-bitwidth format of the input data samples.
The output data samples align in the manner that is same as the input data samples to

the proposed noise reduction block fed by the analysis filter bank.

3.7.Summary

In this chapter, the proposed noise reduction is introduced. The entropy-based
VAD step performs on every 4 input sequences by calculating the entropy of the input
sequence. The entropy calculation is hardware-optimized by log base changing and
linear interpolation. The filter bank-based spectral subtraction is performed based on
frequency dividing by filter bank with spectral attenuation for noise during silence

period and spectral subtraction in speech period. The spectral subtraction process is
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also hardware optimized in order to achieve low-power consumption. In addition,
off mechanism is applied to reduce computation power. The simulation and analysis

will be discussed in the next chapter.
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Chapter 4. Simulation and Analysis

In this chapter, the simulation settings will be described, and the results will be
shown with the analysis. The simulation includes segment SNR tests and PESQ
tests. Segment SNR is a measure based on Signal-to-Noise Ratio with the

knowledge of the position of voice and silence regions and is defined as follows:

Energysignai

Energynoise

SNRgeg = 10 X logyo( (4-1)

Where Energysigna is the energy of clean speech signal during voiced period,
and Energy,.ise 1S the energy of the difference between clean speech and

noisy/processed speech duringvoiced period.

Notice that the energies are calculated in speech period so that the noise in silence
region is ignored. The reason to do.so is that the performance of the noise reduction
algorithm mostly depends on the performance during voiced region, thus we only do
the calculation within pre-defined voiced region.

PESQ[31] is a objective measure that was originally based on ITU-T standard
which evaluates the quality of speech. The PESQ score gives the information on the
quality difference between the degraded/processed and the original speech, which
varies from 0.5 to 4.5. The PESQ score is not influenced by loudness loss, sidetone,
or talker echo but only reflects the one-way speech distortion perceived by the end
user.

This chapter is organized as follows: section 4.1 will describe the simulation
environment settings and the information of the database. Section 4.2 will be the
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simulation results and the analysis.

4.1.Simulation Settings

The speech database has 150 Mandarin Chinese 2-words terms and is from Yang
Ming University. The sampling frequency of the test sequences is 24kHz. The 4
test sequences are formed by concatenating 27 terms and insert silence period
between each term as follows:

Seq.1: a-b-c-d-e-f

Seq.2:  h-i-j-k-I-m-n

Seq.3: o-p-g-r-s-t-u

Seq.4: v-w-x-y-z-aa-bb

Where a, b, ¢ ... bb represent the terms. -~ The terms are:
a: ren-jian ( * fH])
b: shi-yong (ffi"'])
c: shang-sin ({f-=)
d: kou-ciang ([ %)
e: ming-yun ( AH;;_I)
f: wun-lu (F%FJE'—E‘.)

h: di-ming (1 £))

i: zeng-jin (JE:E

j: da-ge (B

k: nyu-hai (¢ #%)

1: si-si (fH75%)

m: siao-cao (/' &)
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n: gong-yeh (7 ¥)
0: nian-gao (F £%)
p: cih-hsang (F&FF)
q: cheng-jhang (FY<)
r: jhan-chang (¥51)
s: tan-bing (}?@Fj)

t: lan-jhu ($§ =)

u: jiao-ban ($84F)
v: fu-yao (5 3E)

w: jhih-hui (Fﬁ[%%l)
Xx: rong-shu (iﬁ%‘ﬁ
y: yue-chi ($¢H5)

z: ji-che (B§H1)

aa: lie-huo (¥]|'F)

bb: jia-chong(}' 1)

The first simulation is VAD accuracy test which is performed by comparing the
proposed Entropy-Based VAD result with the pre-defined speech region. The
second simulation is the segment SNR calculation by (4-1) along with the PESQ score
comparison. The third simulation is the same as the second one but with ideal VAD
(i.e. pre-defined speech region) thus the influence of the proposed VAD may be
excluded, giving standalone performance report on proposed filter bank-based
spectral subtraction design. The last simulation is for testing the influence of
different silence length before the speech. Silence periods with 4 different lengths

are added before the speech sequence 1. They are 16,8,4,2 seconds respectively.
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The simulation result will also show the segment SNR and PESQ scores separately
from the simulation 2 and 3.

The 4 noise sound files for the above tests are from Noisex-92 database, which are
white, babble, factory, and car noise. The noisy test sequence is constructed by
adding the noise sound to the clean sequence directly with the same 24kHz sampling

frequency.

4.2. Experimental Result and Analysis

Fig. 4-1 to Fig. 4-4 show the graph of accuracy of proposed entropy-based voice
activity detection. The x-axis_is the original segment SNR and the y-axis is the
accuracy in %. It can be observed that VAD accuracy has close relationship to the
original segment SNR but saturates at about 90%. | For original segment SNR over
6dB, the accuracy reaches 80%. . Different types of noise also affect the VAD result.
For white noise under low segment SNR-condition, the VAD accuracy falls below
70% since the entropy level pulsates a lot so that the adaptive threshold doesn’t
perform well. For babble and factory noise, the VAD accuracy meets the average
performance. Finally for car noise, the VAD accuracy performs outstanding since
the main energy of car noise concentrates in very low frequency and doesn’t affect
other subbands in the filter bank, causing the speech energy component highly

distinguishable.
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VAD accuracy result: white noise (%)

Sequence 1 with white noise Sequence 2 with white noise
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Fig. 4-1 VAD result for white noise

VAD accuracy result: babble noise (%)

Sequence 1 with babble noise

Sequence 2 with babble noise
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Fig. 4-2 VAD result for babble noise
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VAD accuracy result: factory noise (%)

Sequence 1 with factory noise

Sequence 2 with factory noise
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Fig. 4-3 VAD result for factory noise

VAD accuracy result: car-noise (%)

Sequence 1 with car noise

Sequence 2 with car noise
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Fig. 4-4 VAD result for car noise
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Table 4-1 to Table 4-16 show the segment SNR results and PESQ scores for the
proposed algorithm. Fig. 4-5 to Fig. 4-20 illustrate the improvement in segment
SNR for proposed algorithm on the left and depicts the PESQ scores for original noisy
speech sequence, processed speech sequence and the improvement on the right
respectively. Table 4-17 to Table 4-32 show the result of segment SNR and PESQ
scores for proposed spectral subtraction with ideal VAD and Fig. 4-21 to Fig. 4-36
plot the corresponding comparison between the result of spectral subtraction between
the experiments with proposed VAD and the experiments with ideal VAD. The
simulation results will be discussed and analyzed in the aspect of original SNR and

noise types respectively.
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Sequence 1 with white noise (dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 8.395 8.395 1.003 1.499 0.496
1 9.171 8.171 1.041 1.539 0.498
2 9.626 7.626 1.065 1.610 0.546
3 9.943 6.943 1.098 1.670 0.572
4 10.068 6.068 1.148 1.723 0.575
5 10.046 5.046 1.209 1.778 0.570
6 11.727 5.727 1.267 1.902 0.635
7 12.640 5.640 1.322 2.054 0.732
8 13.283 5.283 1.374 2.111 0.737
9 13.964 4.964 1.451 2.194 0.743
10 14.232 4.232 1.526 2.260 0.734
11 14.169 3.169 1.606 2.281 0.675
12 14.139 2.139 1.688 2.323 0.635

Table 4-1 Segment SNR results for sequence 1 with white noise

Sequence 1 with white noise Sequence 1 with white noise

o 2 4 6 8 10 12 14
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Fig. 4-5 Segment SNR improvement and PESQ scores
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Sequence 2 with white noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 3.077 3.077 0.748 0.794 0.046
1 4.364 3.364 0.794 0.884 0.091
2 5.635 3.635 0.843 0.980 0.136
3 6.869 3.869 0.900 1.088 0.188
4 8.065 4.065 0.967 1.224 0.257
5 9.178 4.178 1.039 1.366 0.327
6 11.370 5.370 1.103 1.854 0.751
7 11.487 4487 1.177 1.901 0.723
8 12.025 4.025 1.265 1.992 0.726
9 11.431 2.431 1.363 2.022 0.660
10 12.391 2.391 1.460 2.134 0.674
11 11.990 0.990 1.565 2.183 0.618
12 12.368 0.368 1.666 2.330 0.664

Table 4-2 Segment SNR results for sequence 2 with white noise
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Fig. 4-6 Segment SNR improvement and PESQ scores
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Sequence 3 with white noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 2.839 2.839 1.070 1.124 0.054
1 4.128 3.128 1.102 1.191 0.089
2 5.378 3.378 1.138 1.272 0.134
3 6.736 3.736 1.182 1.366 0.184
4 9.050 5.050 1.230 1.711 0.481
5 9.674 4.674 1.286 1.951 0.665
6 10.755 4.755 1.342 2.076 0.734
7 11.164 4164 1.415 2.133 0.718
8 11.274 3.274 1.486 2.191 0.706
9 12.829 3.829 1.561 2.344 0.783
10 13.168 3.168 1.646 2.385 0.739
11 12.553 1.553 1.740 2.392 0.652
12 12.873 0.873 1.838 2.455 0.617

Table 4-3 Segment SNR results for sequence 3 with white noise
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Fig. 4-7 Segment SNR improvement and PESQ scores
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Sequence 4 with white noise (dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 3.042 3.042 0.994 1.124 0.130
1 4.396 3.396 1.055 1.216 0.160
2 5.731 3.731 1.120 1.323 0.203
3 7.101 4.101 1.189 1.443 0.254
4 8.423 4.423 1.259 1.556 0.297
5 9.904 4.904 1.337 1.750 0.413
6 11.914 5.914 1.420 2.170 0.750
7 12.580 5.580 1.492 2.249 0.757
8 13.025 5.025 1.573 2.331 0.758
9 13.574 4574 1.659 2.395 0.735
10 13.131 3.131 1.755 2.432 0.677
11 12.500 1.500 1.852 2.455 0.603
12 12.737 0.737 1.931 2.520 0.589

Table 4-4 Segment SNR results for sequence 4 with white noise

Sequence 4 with white noise Sequence 4 with white noise
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Fig. 4-8 Segment SNR improvement and PESQ scores
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Sequence 1 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 2.919 2.919 1.283 1.498 0.214
1 4.294 3.294 1.326 1.546 0.220
2 5.331 3.331 1.369 1.629 0.260
3 6.267 3.267 1.422 1.711 0.289
4 7.019 3.019 1.475 1.778 0.303
5 7.507 2.507 1.531 1.851 0.320
6 8.177 2.177 1.573 1.907 0.333
7 9.208 2:208 1.639 1.982 0.343
8 10.708 2.708 1.712 2.052 0.340
9 11.262 2.262 1.775 2.103 0.327
10 11.891 1.891 1.851 2.184 0.333
11 12.752 1.752 1.940 2.234 0.293
12 13.013 1.013 2.006 2.301 0.294

Table 4-5 Segment SNR results for sequence 1 with babble noise
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Fig. 4-9 Segment SNR improvement and PESQ scores
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Sequence 2 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 0.858 0.858 1.283 1.498 0.214
1 2.760 1.760 1.326 1.546 0.220
2 4.435 2.435 1.369 1.629 0.260
3 5.661 2.661 1.422 1.711 0.289
4 6.610 2.610 1.475 1.778 0.303
5 7.792 2.792 1.531 1.851 0.320
6 8.656 2.656 1.573 1.907 0.333
7 9.564 2564 1.639 1.982 0.343
8 10.194 2.194 1.712 2.052 0.340
9 11.204 2.204 1.775 2.103 0.327
10 11.846 1.846 1.851 2.184 0.333
11 12.231 1.231 1.940 2.234 0.293
12 10.219 -1.781 2.006 2.301 0.294

Table 4-6 Segment SNR results for sequence 2 with babble noise
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Fig. 4-10 Segment SNR improvement and PESQ scores

47




Sequence 3 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 0.498 0.498 1.234 1.265 0.031
1 1.577 0.577 1.291 1.329 0.038
2 4.820 2.820 1.349 1.570 0.221
3 5.634 2.634 1.415 1.633 0.217
4 6.519 2.519 1.470 1.729 0.260
5 7.235 2.235 1.521 1.821 0.299
6 7.930 1.930 1.583 1.920 0.337
7 8.649 1649 1.653 2.025 0.373
8 8.942 0.942 1.733 2.048 0.315
9 9.571 0.571 1.800 2.187 0.388
10 11.040 1.040 1.874 2.243 0.368
11 10.942 -0.058 1.966 2.297 0.331
12 11.756 -0.244 2.055 2.381 0.326

Table 4-7 Segment SNR results for sequence 3 with babble noise

9.000 1

7.000 1

5.000 1

3.000

1.000

-1.000

%
012345678 2101112

-3.000

Sequence 3 with babble noise

B 5NRseg improvement

Sequence 3 with babble noise

4.00

2

4 6

8

10 12 14

350

3.00
250

2.00

1.50

1.00
0.50

0.00
-0.50

]

-1.00

|
]
1

£1 g

gt 1P 18

—— Original PESQ, ——Processed PESQ

PESQ improvement

Fig. 4-11 Segment SNR improvement and PESQ scores
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Sequence 4 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 1.091 1.091 1.139 1.199 0.060
1 2.228 1.228 1.172 1.256 0.085
2 3.330 1.330 1.283 1.371 0.088
3 5.411 2411 1.354 1.545 0.192
4 6.469 2.469 1.400 1.620 0.220
5 7.746 2.746 1.482 1.792 0.309
6 8.497 2.497 1.557 1.920 0.363
7 9.436 2.436 1.639 2.052 0.412
8 10.105 2.105 1.708 2.113 0.405
9 11.027 2.027 1.810 2.211 0.401
10 11.479 1.479 1.888 2.285 0.398
11 12.116 1.116 1.980 2.362 0.382
12 12.396 0.396 2.085 2.395 0.310

Table 4-8 Segment SNR results for sequence 4 with babble noise
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Fig. 4-12 Segment SNR improvement and PESQ scores
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Sequence 1 with factory noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 4912 4912 1.074 1.406 0.332
1 6.001 5.001 1.112 1.490 0.377
2 6.749 4,749 1.150 1.523 0.372
3 7.359 4.359 1.207 1.610 0.403
4 7.851 3.851 1.259 1.646 0.387
5 8.248 3.248 1.295 1.710 0.415
6 10.268 4.268 1.357 1.854 0.496
7 11.187 4187 1.421 1.956 0.535
8 11.934 3.934 1.489 2.022 0.533
9 12.561 3.561 1.537 2.102 0.565
10 13.133 3.133 1.610 2.166 0.556
11 13.096 2.096 1.703 2.253 0.550
12 13.685 1.685 1.787 2.304 0.517

Table 4-9 Segment SNR results for sequence 1 with factory noise
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Fig. 4-13 Segment SNR improvement and PESQ scores
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Sequence 2 with factory noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 2.646 2.646 0.720 0.762 0.042
1 3.791 2.791 0.776 0.842 0.066
2 4.865 2.865 0.832 0.932 0.100
3 6.458 3.458 0.898 1.097 0.199
4 8.394 4.394 0.965 1.333 0.368
5 9.035 4.035 1.034 1.433 0.398
6 9.861 3.861 1.102 1.585 0.483
7 10.627 3.627 1.180 1.684 0.504
8 11.109 3.109 1.250 1.666 0.416
9 11.856 2.856 1.342 1.807 0.466
10 12.150 2.150 1.434 1.898 0.464
11 12.193 1.193 1.540 1.922 0.382
12 11.259 -0.741 1.642 2.078 0.436

Table 4-10 Segment SNR results for sequence 2 with factory noise
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Fig. 4-14 Segment SNR improvement and PESQ scores
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Sequence 3 with factory noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 2.434 2.434 1.143 1.241 0.098
1 3.488 2.488 1.187 1.303 0.116
2 4.586 2.586 1.233 1.373 0.140
3 5.698 2.698 1.287 1.458 0.171
4 7.903 3.903 1.338 1.710 0.372
5 8.555 3.555 1.399 1.794 0.395
6 9.320 3.320 1.463 1.887 0.424
7 9.665 2.665 1.514 1.937 0.423
8 9.944 1.944 1.564 2.015 0.450
9 11.056 2.056 1.656 2.135 0.478
10 11.110 1.110 1.744 2.189 0.445
11 11.277 0.277 1.835 2.249 0.414
12 12.175 0.175 1.942 2.332 0.391

Table 4-11 Segment SNR results for sequence 3 with factory noise
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Fig. 4-15 Segment SNR improvement and PESQ scores
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Sequence 4 with factory noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 2.993 2.993 1.035 1.171 0.135
1 4.103 3.103 1.096 1.259 0.163
2 5.453 3.453 1.169 1.418 0.249
3 7.442 4.442 1.243 1.686 0.444
4 8.358 4.358 1.323 1.809 0.485
5 9.177 4.177 1.404 1.892 0.488
6 9.953 3.953 1.489 1.993 0.504
7 10.339 3:339 1.548 2.048 0.500
8 11.336 3.336 1.636 2.128 0.492
9 11.418 2.418 1.727 2.226 0.498
10 12.157 2.157 1.827 2.268 0.441
11 12.588 1.588 1.926 2.361 0.435
12 12.473 0.473 2.017 2.424 0.407

Table 4-12 Segment SNR results for sequence 4 with factory noise
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Fig. 4-16 Segment SNR improvement and PESQ scores
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Sequence 1 with car noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 12.331 12.331 2.701 2.728 0.028
1 13.995 12.995 2.759 2.844 0.085
2 15.752 13.752 2.818 2.890 0.072
3 19.788 16.788 2.872 3.133 0.260
4 20.964 16.964 2.928 3.069 0.142
5 21.672 16.672 2.966 3.061 0.094
6 23.633 17.633 3.028 3.047 0.020
7 24.591 17.591 3.079 3.100 0.021
8 25.668 17.668 3.141 3.160 0.019
9 26.529 17.529 3.189 3214 0.025
10 27.688 17.688 3.254 3.274 0.020
11 28.561 17.561 3.298 3.318 0.020
12 29.785 17.785 3.357 3.373 0.015

Table 4-13 Segment SNR results for sequence 1 with car noise
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Fig. 4-17 Segment SNR improvement and PESQ scores
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Sequence 2 with car noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 14.839 14.839 2.625 2.701 0.076
1 15.069 14.069 2.712 2.775 0.063
2 15.279 13.279 2.791 2.838 0.047
3 21.763 18.763 2.873 2.936 0.063
4 15.648 11.648 2.939 2.808 -0.131
5 23.495 18.495 3.015 3.073 0.058
6 24.486 18.486 3.087 3.146 0.059
7 15.976 8.976 3.167 2.991 -0.176
8 15.934 7.934 3.244 3.064 -0.179
9 27476 18.476 3.315 3.367 0.052
10 28.546 18.546 3.384 3.436 0.052
11 16.140 5.140 3.447 3.140 -0.307
12 30.601 18.601 3.519 3.565 0.046

Table 4-14 Segment SNR results for sequence 2 with car noise

Sequence 2 with car noise Sequence 2 with car noise
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Fig. 4-18 Segment SNR improvement and PESQ scores
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Sequence 3 with car noise (dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 15.983 15.983 2.860 2.836 -0.024
1 17.504 16.504 2.924 3.222 0.298
2 15.527 13.527 2.992 3.175 0.183
3 17.157 14.157 3.060 3.213 0.153
4 20.944 16.944 3.098 3.144 0.046
5 21.638 16.638 3.150 3.195 0.044
6 22.469 16.469 3.203 3.226 0.023
7 17.210 10.210 3.265 3.464 0.199
8 17.984 9.984 3.313 3.358 0.045
9 23.856 14.856 3.371 3.378 0.007
10 27.280 17.280 3.412 3.447 0.035
11 29.966 18.966 3.455 3.461 0.006
12 31.087 19.087 3.503 3.504 0.001

Table 4-15 Segment SNR results for sequence 3 with car noise

Sequence 3 with car noise Sequence 3 with car noise
a 2 4 6 B 10 12 14
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Fig. 4-19 Segment SNR improvement and PESQ scores
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Sequence 4 with car noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 19.925 19.925 2.877 2.925 0.049
1 20.979 19.979 2.947 2.991 0.045
2 21.968 19.968 3.008 3.050 0.043
3 20.526 17.526 3.049 3.324 0.275
4 22.253 18.253 3.114 3.289 0.175
5 22.059 17.059 3.169 3.368 0.200
6 22.203 16.203 3.227 3.406 0.179
7 24.822 17.822 3.286 3.360 0.073
8 27.678 19.678 3.346 3.370 0.024
9 28.750 19.750 3.406 3.423 0.017
10 26.028 16.028 3.453 3.529 0.076
11 30.821 19.821 3.500 3.532 0.032
12 31.717 19.717 3.546 3.569 0.023

Table 4-16 Segment SNR results for sequence 4 with car noise
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Fig. 4-20 Segment SNR improvement and PESQ scores
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Sequence 1 with white noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 8.533 8.533 1.003 1.494 0.491
1 9.187 8.187 1.041 1.556 0.515
2 9.829 7.829 1.065 1.656 0.592
3 10.459 7.459 1.098 1.753 0.654
4 11.067 7.067 1.148 1.849 0.701
5 11.698 6.698 1.209 1.941 0.732
6 12.316 6.316 1.267 2.015 0.748
7 12.946 5.946 1.322 2.084 0.762
8 13.569 5.569 1.374 2.160 0.786
9 14.201 5.201 1.451 2.238 0.787
10 14.775 4.775 1.526 2.308 0.782
11 15.380 4.380 1.606 2.379 0.773
12 15.943 3.943 1.688 2.439 0.751

Table 4-17 Segment SNR results (ideal VAD) for sequence 1 with white noise
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Fig. 4-21 Segment SNR comparison and PESQ score comparison.
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Sequence 2 with white noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 8.075 8.075 0.748 1.200 0.453
1 8.668 7.668 0.794 1.338 0.544
2 9.254 7.254 0.843 1.439 0.596
3 9.840 6.840 0.900 1.555 0.655
4 10.381 6.381 0.967 1.668 0.702
5 10.958 5.958 1.039 1.757 0.718
6 11.371 5.371 1.103 1.859 0.756
7 11.926 4926 1.177 1.935 0.757
8 11.946 3.946 1.265 1.961 0.695
9 12.046 3.046 1.363 2.073 0.710
10 12.484 2.484 1.460 2.129 0.669
11 12.869 1.869 1.565 2.210 0.646
12 13.204 1.204 1.666 2.293 0.627

Table 4-18 Segment SNR results (ideal VAD) for sequence 2 with white noise
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Fig. 4-22 Segment SNR comparison and PESQ score comparison.
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Sequence 3 with white noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 7.925 7.925 1.070 1.559 0.488
1 8.524 7.524 1.102 1.657 0.555
2 9.191 7.191 1.138 1.763 0.624
3 9.868 6.868 1.182 1.862 0.680
4 10.428 6.428 1.230 1.958 0.729
5 11.135 6.135 1.286 2.045 0.759
6 11.743 5.743 1.342 2.128 0.786
7 12.269 5.269 1.415 2.215 0.800
8 13.210 5.210 1.486 2.293 0.807
9 13.820 4.820 1.561 2.365 0.804
10 14.375 4.375 1.646 2.448 0.802
11 14.672 3.672 1.740 2.513 0.773
12 15.209 3.209 1.838 2.579 0.741

Table 4-19 Segment SNR results (ideal VAD) for sequence 3 with white noise
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Fig. 4-23 Segment SNR comparison and PESQ score comparison.
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Sequence 4 with white noise (dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 6.210 6.210 0.994 1.434 0.440
1 8.951 7.951 1.055 1.739 0.684
2 9.578 7.578 1.120 1.837 0.717
3 10.207 7.207 1.189 1.932 0.743
4 10.823 6.823 1.259 2.034 0.775
5 11.432 6.432 1.337 2.097 0.760
6 12.027 6.027 1.420 2.187 0.767
7 12.640 5.640 1.492 2.268 0.776
8 13.229 5.229 1.573 2.360 0.787
9 13.872 4872 1.659 2.420 0.761
10 14.431 4.431 1.755 2.492 0.737
11 15.044 4.044 1.852 2.576 0.724
12 15.612 3.612 1.931 2.635 0.704

Table 4-20 Segment SNR results (ideal VAD) for sequence 4 with white noise

Sequence 4 with white noise Sequence 4 with white noise
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Fig. 4-24 Segment SNR comparison and PESQ score comparison.
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Sequence 1 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 4.271 4.271 1.283 1.549 0.265
1 5.157 4.157 1.326 1.618 0.292
2 5.986 3.986 1.369 1.709 0.340
3 6.718 3.718 1.422 1.749 0.327
4 7.767 3.767 1.475 1.826 0.351
5 8.565 3.565 1.531 1.899 0.368
6 9.196 3.196 1.573 1.952 0.379
7 10.082 3.082 1.639 2.020 0.381
8 11.013 3.013 1.712 2.090 0.379
9 11.697 2.697 1.775 2.134 0.358
10 12.666 2.666 1.851 2.219 0.367
11 13.601 2.601 1.940 2.309 0.369
12 14.281 2.281 2.006 2.370 0.363

Table 4-21 Segment SNR results (ideal VAD) for sequence 1 with babble noise
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Fig. 4-25 Segment SNR comparison and PESQ score comparison.
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Sequence 2 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 3.926 3.926 1.283 0.930 0.170
1 4.894 3.894 1.326 1.007 0.169
2 5.618 3.618 1.369 1.130 0.227
3 6.352 3.352 1.422 1.225 0.245
4 7.087 3.087 1.475 1.308 0.257
5 7.833 2.833 1.531 1.429 0.297
6 8.635 2.635 1.573 1.525 0.298
7 9.532 2532 1.639 1.657 0.334
8 10.339 2.339 1.712 1.755 0.338
9 11.202 2.202 1.775 1.851 0.326
10 12.044 2.044 1.851 1.931 0.305
11 12.720 1.720 1.940 2.000 0.283
12 13.563 1.563 2.006 2.095 0.278

Table 4-22 Segment SNR results (ideal VAD) for sequence 2 with babble noise
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Fig. 4-26 Segment SNR comparison and PESQ score comparison.
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Sequence 3 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 3.691 3.691 1.234 1.497 0.263
1 4.442 3.442 1.291 1.573 0.282
2 5.324 3.324 1.349 1.660 0.311
3 6.115 3.115 1.415 1.723 0.308
4 6.845 2.845 1.470 1.808 0.338
5 7.497 2.497 1.521 1.863 0.341
6 8.371 2.371 1.583 1.943 0.360
7 9.141 2.141 1.653 2.025 0.373
8 10.145 2.145 1.733 2.106 0.373
9 10.871 1.871 1.800 2.186 0.386
10 11.657 1.657 1.874 2.261 0.387
11 12.526 1.526 1.966 2.348 0.383
12 13.300 1.300 2.055 2.442 0.387

Table 4-23 Segment SNR results (ideal VAD) for sequence 3 with babble noise
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Fig. 4-27 Segment SNR comparison and PESQ score comparison.
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Sequence 4 with babble noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 2.633 2.633 1.139 1.331 0.192
1 4.360 3.360 1.172 1.475 0.304
2 5.339 3.339 1.283 1.555 0.271
3 6.207 3.207 1.354 1.677 0.324
4 6.827 2.827 1.400 1.698 0.298
5 7.690 2.690 1.482 1.815 0.333
6 8.630 2.630 1.557 1.908 0.351
7 9.570 2570 1.639 2.022 0.382
8 10.359 2.359 1.708 2.108 0.400
9 11.351 2.351 1.810 2.176 0.366
10 12.212 2.212 1.888 2.267 0.380
11 13.073 2.073 1.980 2.364 0.384
12 13.908 1.908 2.085 2.429 0.344

Table 4-24 Segment SNR results (ideal VAD) for sequence 4 with babble noise
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Fig. 4-28 Segment SNR comparison and PESQ score comparison.
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Sequence 1 with factory noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 5.411 5411 1.074 1.454 0.380
1 6.150 5.150 1.112 1.515 0.403
2 6.908 4,908 1.150 1.582 0.431
3 7.840 4.840 1.207 1.694 0.487
4 8.732 4,732 1.259 1.808 0.549
5 9.590 4.590 1.295 1.898 0.603
6 10.475 4.475 1.357 1.988 0.631
7 11.272 4272 1.421 2.042 0.621
8 12.117 4.117 1.489 2.119 0.630
9 12.705 3.705 1.537 2.174 0.637
10 13.574 3.574 1.610 2.264 0.654
11 14.529 3.529 1.703 2.346 0.643
12 15.324 3.324 1.787 2.416 0.629

Table 4-25 Segment SNR results (ideal VAD) for sequence 1 with factory noise
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Fig. 4-29 Segment SNR comparison and PESQ score comparison.
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Sequence 2 with factory noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 5.159 5.159 0.720 0.987 0.267
1 5.902 4.902 0.776 1.091 0.315
2 6.612 4,612 0.832 1.146 0.314
3 7.604 4.604 0.898 1.289 0.391
4 8.225 4.225 0.965 1.396 0.431
5 9.116 4.116 1.034 1.462 0.427
6 9.988 3.988 1.102 1.611 0.509
7 10.510 3.510 1.180 1.587 0.407
8 11.353 3.353 1.250 1.758 0.508
9 12.058 3.058 1.342 1.894 0.553
10 12.477 2477 1.434 1.807 0.372
11 13.336 2.336 1.540 1.940 0.400
12 13.748 1.748 1.642 2.039 0.397

Table 4-26 Segment SNR results (ideal VAD) for sequence 2 with factory noise
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Fig. 4-30 Segment SNR comparison and PESQ score comparison.
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Sequence 3 with factory noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 4.743 4.743 1.143 1.424 0.280
1 5.604 4.604 1.187 1.515 0.328
2 6.308 4.308 1.233 1.560 0.326
3 7.120 4.120 1.287 1.650 0.363
4 7.916 3.916 1.338 1.757 0.419
5 8.800 3.800 1.399 1.821 0.422
6 9.533 3.533 1.463 1.915 0.453
7 10.264 3.264 1.514 2.028 0.514
8 10.921 2.921 1.564 2.067 0.503
9 11.716 2.716 1.656 2.159 0.502
10 12.620 2.620 1.744 2.273 0.529
11 13.588 2.588 1.835 2.330 0.495
12 14.309 2.309 1.942 2.408 0.466

Table 4-27 Segment SNR results (ideal VAD) for sequence 3 with factory noise
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Fig. 4-31 Segment SNR comparison and PESQ score comparison.
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Sequence 4 with factory noise

(dB)

Original | Processed SNRseg Original | Processed PESQ

SNRseg [ SNRseg [ improvement | PESQ PESQ improvement
0 3.777 3.777 1.035 1.299 0.263
1 5.698 4.698 1.096 1.511 0.414
2 6.640 4.640 1.169 1.598 0.429
3 7.500 4.500 1.243 1.673 0.431
4 8.366 4.366 1.323 1.816 0.493
5 9.183 4,183 1.404 1.892 0.489
6 10.094 4.094 1.489 1.998 0.509
7 10.719 3.719 1.548 2.050 0.503
8 11.507 3.507 1.636 2.158 0.522
9 12.348 3.348 1.727 2.219 0.492
10 13.322 3.322 1.827 2.320 0.493
11 14.190 3.190 1.926 2.399 0.473
12 14.969 2.969 2.017 2.455 0.438

Table 4-28 Segment SNR results (ideal VAD) for sequence 4 with factory noise
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Fig. 4-32 Segment SNR comparison and PESQ score comparison.
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Sequence 1 with car noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 18.708 18.708 2.701 3.000 0.299
1 19.302 18.302 2.759 3.060 0.301
2 19.818 17.818 2.818 3.130 0.313
3 20.336 17.336 2.872 3.156 0.284
4 20.755 16.755 2.928 3.219 0.291
5 21.582 16.582 2.966 3.136 0.170
6 22.967 16.967 3.028 3.079 0.052
7 24.591 17.591 3.079 3.101 0.022
8 25.668 17.668 3.141 3.162 0.021
9 26.528 17.528 3.189 3.208 0.019
10 27.688 17.688 3.254 3.272 0.018
11 28.558 17.558 3.298 3.315 0.017
12 29.781 17.781 3.357 3.371 0.013

Table 4-29 Segment SNR results (ideal VAD) for sequence 1 with car noise
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Fig. 4-33 Segment SNR comparison and PESQ score comparison.
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Sequence 2 with car noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 14.942 14.942 2.625 2.719 0.094
1 15.131 14.131 2.712 2.781 0.070
2 15.303 13.303 2.791 2.848 0.057
3 21.769 18.769 2.873 2.936 0.063
4 22.528 18.528 2.939 3.001 0.061
5 23.494 18.494 3.015 3.073 0.058
6 24.439 18.439 3.087 3.138 0.051
7 25.496 18.496 3.167 3214 0.047
8 26.518 18.518 3.244 3.295 0.051
9 27474 18.474 3.315 3.367 0.052
10 28.546 18.546 3.384 3.436 0.052
11 29.514 18.514 3.447 3.496 0.049
12 30.601 18.601 3.519 3.565 0.046

Table 4-30 Segment SNR results (ideal VAD) for sequence 2 with car noise
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Fig. 4-34 Segment SNR comparison and PESQ score comparison.
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Sequence 3 with car noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 17.415 17.415 2.860 3.211 0.351
1 17.800 16.800 2.924 3.273 0.349
2 17.542 15.542 2.992 3.302 0.311
3 20.815 17.815 3.060 3.125 0.065
4 21.195 17.195 3.098 3.146 0.047
5 23.945 18.945 3.150 3.161 0.010
6 24919 18.919 3.203 3.211 0.008
7 26.015 19.015 3.265 3.265 -0.001
8 26.894 18.894 3.313 3.306 -0.007
9 28.080 19.080 3.371 3.365 -0.006
10 28.971 18.971 3.412 3.408 -0.004
11 29.966 18.966 3.455 3.451 -0.004
12 31.087 19.087 3.503 3.498 -0.005

Table 4-31 Segment SNR results (ideal VAD) for sequence 3 with car noise
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Fig. 4-35 Segment SNR comparison and PESQ score comparison.
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Sequence 4 with car noise (dB)
Original | Processed SNRseg Original | Processed PESQ
SNRseg [ SNRseg [ improvement | PESQ PESQ improvement

0 19.296 19.296 2.877 3.162 0.286
1 20.498 19.498 2.947 3.300 0.353
2 20.968 18.968 3.008 3.295 0.288
3 22.095 19.095 3.049 3.221 0.172
4 22.711 18.711 3.114 3.272 0.158
5 23.172 18.172 3.169 3.320 0.151
6 25.700 19.700 3.227 3.259 0.032
7 26.722 19.722 3.286 3.314 0.028
8 27.678 19.678 3.346 3.369 0.023
9 28.750 19.750 3.406 3.424 0.018
10 29.716 19.716 3.453 3.470 0.017
11 30.800 19.800 3.500 3.523 0.023
12 31.717 19.717 3.546 3.569 0.023

Table 4-32 Segment SNR results (ideal VAD) for sequence 4 with car noise
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Fig. 4-36 Segment SNR comparison and PESQ score comparison.
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4.2.1. Influence of Different Original Segment SNR

It can be seen that the improvement in segment SNR maximizes under medium
original SNR, i.e. for segment SNR between 4dB and 8dB. The improvement
mainly depends on the accuracy of VAD. Under medium original segment SNR, the
VAD is more accurate and the processed SNR becomes much higher than that under
low original segment SNR. For high original segment SNR, the improvement is
limited since little noise energy variation may cause drastic influence in processed

segment SNR.

4.2.2. Influence of Different Noise Type

Table 4-33 to Table 4-36 show the-average segment SNR results for different types
of noise respectively. Table 4-37 to Table 4-40 show the average segment SNR
results for different types of noise with ideal VAD respectively. The segment SNR
improvement for different types of noise-is-illustrated in Fig. 4-37. The graph of
average segment SNR difference for ideal/non-ideal VAD is illustrated in Fig. 4-38.
Fig. 4-39 illustrates average PESQ result for different types of noise. And Fig. 4-40
illustrates the average PESQ difference between the result using non-ideal (proposed)
VAD and the ideal ones. Notice that the y-axis scale for car noise differs from that
of the other noise. Different noise types affect the performance of the proposed
algorithm and are discussed below:

a. White noise: the spectral energy component of white noise is widely spread

such that it is easier to differentiate the speech energy part from the background
noise. The average segment SNR improvement and average PESQ for white

noise is relative good as compared to babble noise and factory noise since the
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noise estimation in silence region is more accurate than in babble noise and
factory noise. The inherent characteristic of white noise is stationary if we
expand the scope to a given bandwidth in a given period, for example, one
subband frame of the filter bank since the energy is randomly distributed in the
whole spectrum. And for the proposed design, the more stationary in one
subband the noise is, the more accurate the noise estimation will be. Thus
either for ideal or non-ideal VAD, the performance for the proposed algorithm
under white noise ranked 2™ within the four noise types.

Babble noise: the spectral energy component of babble noise highly overlapped
with that of speech energy thus it becomes hard to distinguish between speech
and background noise. Adlso, for spectral subtraction, the characteristic of the
babble noise causes destruction for the original speech, resulting in lower
quality improvement. ~ Experimental results 'show that whether the VAD is
ideal or not, the performance for the-proposed. algorithm under babble noise
ranked last among the 4 noise types:

Factory noise: the factory noise in the test database has energy that concentrated
mostly in high frequency and low frequency. The characteristic leads to better
distinguishability between the speech and background noise in spectral domain.
The simulation results show that the performance of the proposed algorithm
under factory noise is better than the babble noise due to the inherent property
of this type of noise. However the non-stationary characteristic of the factory
noise is responsible for the lower performance compared to that of white noise
which is discussed before.

Car noise: the car noise stands for the noise recorded inside a riding car which

has nearly all the energy lying in the low frequency bands. The energy falls
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mostly into the lowest subband (i.e. F22) in the filter bank, leaving other
subband free of noise corruption, including the speech energy dominant bands.
Experimental results show that the proposed algorithm performs best under car
noise environment since the spectral subtraction effectively wipes out unwanted
noise in the lowest subbands. The PESQ score improvement is low since the
original PESQ of the car noise corrupted speech is high enough, which means

the quality of the speech under car noise is close to the clean speech.
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Average performance in white noise

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 4.338 4.338 0.954 1.135 0.299
1 5.515 4,515 0.998 1.207 0.301
2 6.592 4.592 1.041 1.296 0.313
3 7.662 4.662 1.092 1.392 0.284
4 8.901 4,901 1.151 1.553 0.291
5 9.701 4.701 1.218 1.711 0.170
6 11.441 5.441 1.283 2.000 0.052
7 11.968 4,968 1.351 2.084 0.022
8 12.401 4.401 1.424 2.156 0.021
9 12.949 3.949 1.508 2.239 0.019
10 13.230 3.230 1.597 2.303 0.018
11 12.803 1.803 1.691 2.328 0.017
12 13.029 1.029 1.781 2.407 0.013

Table 4-33 Average performance in white noise
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Average performance in babble noise

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 1.342 1.342 0.941 1.024 0.083
1 2.715 1.715 0.993 1.090 0.097
2 4.479 2.479 1.063 1.258 0.195
3 5.743 2.743 1.129 1.370 0.241
4 6.654 2.654 1.188 1.453 0.265
5 7.570 2.570 1.262 1.569 0.307
6 8.315 2.315 1.337 1.674 0.337
7 9.214 2.214 1414 1.779 0.365
8 9.987 1.987 1.485 1.830 0.345
9 10.766 1.766 1.583 1.944 0.361
10 11.564 1.564 1.673 2.024 0.351
11 12.010 1.010 1.768 2.093 0.326
12 11.846 -0.154 1.871 2.159 0.288

Table 4-34 Average performance in babble noise
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Average performance in factory noise

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 3.246 3.246 0.993 1.145 0.152
1 4.346 3.346 1.043 1.223 0.181
2 5.413 3.413 1.096 1.311 0.215
3 6.739 3.739 1.158 1.463 0.304
4 8.126 4.126 1.221 1.624 0.403
5 8.754 3.754 1.283 1.707 0.424
6 9.851 3.851 1.353 1.829 0.477
7 10.455 3.455 1416 1.906 0.491
8 11.081 3.081 1.485 1.958 0.473
9 11.722 2.7122 1.566 2.067 0.502
10 12.138 2.138 1.654 2.130 0.477
11 12.289 1.289 1.751 2.196 0.445
12 12.398 0.398 1.847 2.285 0.438

Table 4-35 Average performance in factory noise
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Average performance in car noise

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 15.769 15.769 2.766 2.798 0.032
1 16.887 15.887 2.835 2.958 0.123
2 17.131 15.131 2.902 2.988 0.086
3 19.808 16.808 2.964 3.151 0.188
4 19.952 15.952 3.020 3.078 0.058
5 22.216 17.216 3.075 3.174 0.099
6 23.198 17.198 3.136 3.207 0.070
7 20.649 13.649 3:199 3.228 0.029
8 21.816 13.816 3.261 3.238 -0.023
9 26.653 17.653 3.320 3.345 0.025
10 27.385 17.385 3.376 3.422 0.046
11 26.372 15.372 3.425 3.363 -0.062
12 30.797 18.797 3.481 3.503 0.021

Table 4-36 Average performance in car noise
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Average performance in white noise with ideal VAD

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 7.685 7.685 0.954 1.422 0.468
1 8.833 7.833 0.998 1.572 0.575
2 9.463 7.463 1.041 1.674 0.632
3 10.093 7.093 1.092 1.775 0.683
4 10.675 6.675 1.151 1.877 0.727
5 11.306 6.306 1.218 1.960 0.742
6 11.864 5.864 1.283 2.047 0.764
7 12.445 5.445 1.351 2.125 0.774
8 12.988 4.988 1.424 2.193 0.769
9 13.485 4,485 1.508 2.274 0.766
10 14.016 4.016 1.597 2.344 0.748
11 14.491 3.491 1.691 2.420 0.729
12 14.992 2.992 1.781 2.487 0.706

Table 4-37 Average performance in white noise with ideal VAD
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Average performance in babble noise with ideal VAD

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 3.630 3.630 0.941 1.163 0.223
1 4.713 3.713 0.993 1.255 0.262
2 5.567 3.567 1.063 1.350 0.287
3 6.348 3.348 1.129 1.430 0.301
4 7.131 3.131 1.188 1.499 0.311
5 7.896 2.896 1.262 1.597 0.335
6 8.708 2.708 1.337 1.684 0.347
7 9.581 2.581 1414 1.782 0.368
8 10.464 2.464 1.485 1.857 0.373
9 11.280 2.280 1.583 1.942 0.359
10 12.145 2.145 1.673 2.033 0.360
11 12.980 1.980 1.768 2.123 0.355
12 13.763 1.763 1.871 2.214 0.343

Table 4-38 Average performance in babble noise with ideal VAD
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Average performance in factory noise with ideal VAD

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 4.773 4,773 0.993 1.291 0.298
1 5.838 4.838 1.043 1.408 0.365
2 6.617 4.617 1.096 1.471 0.375
3 7.516 4,516 1.158 1.576 0.418
4 8.310 4.310 1.221 1.694 0.473
5 9.172 4.172 1.283 1.768 0.485
6 10.022 4.022 1.353 1.878 0.526
7 10.691 3.691 1416 1.927 0.511
8 11.474 3.474 1.485 2.026 0.541
9 12.207 3.207 1.566 2.112 0.546
10 12.998 2.998 1.654 2.166 0.512
11 13.911 2.911 1.751 2.254 0.503
12 14.587 2.587 1.847 2.329 0.483

Table 4-39 Average performance in factory noise with ideal VAD

&3



Average performance in car noise with ideal VAD

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 17.590 17.590 2.766 3.023 0.258
1 18.183 17.183 2.835 3.104 0.268
2 18.408 16.408 2.902 3.144 0.242
3 21.254 18.254 2.964 3.110 0.146
4 21.797 17.797 3.020 3.159 0.139
5 23.048 18.048 3.075 3.172 0.097
6 24.506 18.506 3.136 3.172 0.036
7 25.706 18.706 3:199 3.223 0.024
8 26.690 18.690 3.261 3.283 0.022
9 27.708 18.708 3.320 3.341 0.021
10 28.730 18.730 3.376 3.397 0.021
11 29.710 18.710 3.425 3.446 0.021
12 30.796 18.796 3.481 3.501 0.019

Table 4-40 Average performance in car noise with ideal VAD
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4.2.3. Influence of Different Silence Period Length before

Speech

Table 4-41 to Table 4-44 show the average performance for different silence before
speech, which are 2 seconds, 4 seconds, 8 seconds, and 16 seconds respectively.
Table 4-45 shows the average performance for 16 seconds of silence before speech
with ideal VAD.

Fig. 4-41 illustrates the segment SNR results for sequence 1 with different silence
period added before the speech. Fig. 4-42 depicts the PESQ scores for sequence 1
with different length of silence period added before the speech. It can be observed
that for sequences with silence period of 16 seconds and 8 seconds, the processed
segment SNR performs better than the sequences with silence period of 4 seconds and
2 seconds for white noise and factory noise in low original segment SNR. Also, the
PESQ score improvement for sequences-with silence period of 16 seconds and 8
seconds performs better than the sequences with silence period of 4 seconds and 2
seconds for white noise, babble noise, and factory noise in low original segment SNR.
The reason is that the longer the silence before the speech is, the more time allowed
for adaptive threshold to move closer to the appropriate position. In that way, VAD
accuracy and noise estimation will be enhanced and thus contributes to better
performance for the proposed algorithm.

Fig. 4-43 shows the comparison of segment SNR results for sequence 1 with 16
seconds silence period added before the speech for ideal/non-ideal VAD. Fig. 4-44
shows the PESQ scores for sequence 1 with 16 seconds silence period added before

the speech for ideal/non-ideal VAD. It can be observed that if we extend the silence
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length before the speech, the performance will close to that using ideal VAD. Thus
we can conclude that the adaptive threshold requires some “training” time, i.e. 16
seconds to achieve best performance which may contribute to better segment SNR
improvement and PESQ score improvement.

The reason that the effect is not obvious for babble noise is that babble noise varies
a lot from time to time, causing the adaptive threshold hard to make the appropriate
tracking, reducing the performance even with long silence period before the speech.
And for car noise, the processed segment SNR reaches over 10dB for low segment
SNR even with short silence before the speech. The car noise is stationary such that
the improvement is not obvious since adaptive threshold tracks effectively under 4
different silence lengths before the speech. With high segment SNR, a little energy
glitch may result in severe change when calculating segment SNR and is shown in the

figure.
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Average performance for 2 seconds silence before speech

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 5.339 5.339 1.537 1.611 0.074
1 6.865 5.865 1.580 1.728 0.148
2 8.437 6.437 1.626 1.809 0.183
3 9.797 6.797 1.675 1.905 0.230
4 11.100 7.100 1.725 2.004 0.279
5 12.456 7.456 1.775 2.131 0.356
6 13.407 1.407 1.835 2.208 0.373
7 14.422 7.422 1.895 2.274 0.380
8 15.407 7.407 1.955 2.367 0.412
9 16.050 7.050 2.016 2.430 0.414
10 16.259 6.259 2.087 2.486 0.400
11 16.977 5.977 2.161 2.553 0.392
12 17.756 5.756 2.240 2.603 0.362

Table 4-41 Average performance for 2 seconds silence before speech
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Average performance for 4 seconds silence before speech

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 5.058 5.058 1.515 1.586 0.070
1 6.083 5.083 1.560 1.661 0.102
2 7.742 5.742 1.601 1.753 0.152
3 9.695 6.695 1.650 1.849 0.199
4 10.912 6.912 1.702 1.950 0.248
5 12.746 7.746 1.750 2.138 0.388
6 13.247 1.247 1.806 2.185 0.379
7 14.492 7.492 1.865 2.249 0.383
8 15.414 7.414 1.929 2.345 0.417
9 15.991 6.991 1.988 2.394 0.406
10 15.658 5.658 2.060 2.484 0.424
11 16.793 5.793 2.137 2.524 0.387
12 17.538 5.538 2.210 2.575 0.365

Table 4-42 Average performance for 4 seconds silence before speech
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Average performance for 8 seconds silence before speech

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 6.287 6.287 1.505 1.669 0.164
1 6.773 5.773 1.552 1.731 0.180
2 9.092 7.092 1.585 1.850 0.265
3 10.085 7.085 1.626 1.938 0.313
4 10.575 6.575 1.673 2.016 0.342
5 11.783 6.783 1.724 2.108 0.384
6 13.137 1.137 L.778 2.168 0.390
7 14.248 7.248 1.833 2.217 0.384
8 14.740 6.740 1.894 2.294 0.401
9 15.871 6.871 1.946 2.358 0.412
10 15.820 5.820 2.008 2.412 0.404
11 16.453 5.453 2.082 2.481 0.399
12 16.959 4.959 2.156 2.516 0.360

Table 4-43 Average performance for 8 seconds silence before speech
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Average performance for 16 seconds silence before speech

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 6.772 6.772 1.547 1.773 0.226
1 7.473 6.473 1.573 1.802 0.229
2 8.151 6.151 1.608 1.844 0.236
3 9.750 6.750 1.644 1.953 0.309
4 10.857 6.857 1.816 2.039 0.223
5 11.662 6.662 1.705 2.077 0.372
6 13.282 1.282 L.774 2.130 0.356
7 14.140 7.140 1.828 2.205 0.377
8 14.946 6.946 1.888 2.283 0.395
9 15916 6.916 1.941 2.349 0.408
10 16.245 6.245 1.999 2.397 0.398
11 16.342 5.342 2.063 2.612 0.548
12 16.691 4.691 2.124 2.494 0.371

Table 4-44 Average performance for 16 seconds silence before speech
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Average performance for 16 seconds silence before speech with ideal VAD

Processed SNRseg Original | Processed PESQ
Original
SNRseg | improvement PESQ PESQ improvement
SNRseg
(average) (average) (average) | (average) (average)
0 9.003 9.003 1.547 1.843 0.296
1 9.737 8.737 1.573 1.904 0.331
2 10.451 8.451 1.608 1.969 0.361
3 11.147 8.147 1.644 2.036 0.392
4 11.818 7.818 1.816 2.115 0.299
5 12.735 7.735 1.705 2.147 0.442
6 13.354 1.3%4 L.774 2.218 0.445
7 14.479 7.479 1.828 2.255 0.427
8 15.337 7.337 1.888 2.330 0.442
9 16.118 7.118 1.941 2.389 0.448
10 16.917 6.917 1.999 2.453 0.454
11 17.798 6.798 2.063 2.526 0.463
12 18.607 6.607 2.124 2.585 0.461

Table 4-45 Average performance for 16 seconds silence before speech with ideal VAD
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4.3.Comparison with Different Algorithms

Table 4-46 Comparison of segment SNR over different algorithmsshows the
comparison between the proposed algorithm and other noise reduction algorithms
with original segment SNR of 0dB, 5dB, and 10dB. The test sequences of the other
algorithms are based on their testing environment which is different from the
proposed algorithm. The noise database of the other algorithms is also from
Noisex-92. The noise types used for other algorithms are white, babble, factory, and
F-16 cockpit. The noise types used for the proposed algorithm are white, babble,
factory, and car.

From the comparison result, we can see that the proposed algorithm performs better
than A and B and F under 0dB original segment. SNR.. For 5dB and 10dB original

segment SNR, the proposed algorithm performs better than the algorithms A to F.

Original 0dB 5dB 10dB
segment SNR

A[20] 1.79dB 7.22dB 10.96dB
B[20] 1.93dB 8.76dB 11.21dB
C[7] 6.60dB 9.23dB 12.65dB
D[16] 6.34dB 9.54dB 11.89dB
E[17] 6.53dB 9.62dB 12.85dB
F[22] 4.80dB 8.63dB 12.66dB
Proposed 5.81dB 11.64dB 15.72dB

Table 4-46 Comparison of segment SNR over different algorithms.
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A: Hard thresholding.

B: Soft thresholding.

C: MMSE short time spectral amplitude estimator.

D: Wavelet speech enhancement based on the teager Energy Operator.

E: Speech enhancement using perceptual wavelet packet decomposition and teager
energy operator.

F: Explicit-Form Gain Factor for Speech Enhancement Using Spectral-Domain

Constrained Approach

4.4.Average Segment SNR Improvement and Average

PESQ Score Improvement

Table 4-47 shows the average segment SNR improvement and average PESQ score
improvement for the proposed algorithm. = The ‘average segment SNR improvement
for 4 sequences and 4 types of noise under 0dB to 12dB original segment SNR is

6.27dB. The average PESQ score improvement is 0.32.

Average segment SNR improvement Average PESQ score improvement

6.27dB 0.32

Table 4-47 Average segment SNR improvement and average PESQ score

improvement

4.5.Summary

The experimental results show the VAD accuracy and the performance of the

proposed algorithm for 4 input sequences and under 4 different type of noise which
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are white, babble, factory, and car noise. Different noise type results in dissimilar
performance of the proposed algorithm due to the inherent characteristic of the energy
distribution in the noise. The input sequences that differ in the length of silence

period before the speech also cause various performance results.
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Chapter 5. Hardware Implementation

5.1.Architecture Design

The proposed algorithm is implemented by ASIC design flow with the hardware
architecture depicted in Fig. 5-1. The hardware processing is based on the schedule
as depicted in Fig. 5-2. The clock frequency is 6MHz such that the cycle period is
166ns.  According to the system specification, the cycle count allowed for
calculation is 8,000 while the cycle count needed to complete the processes is less
than 8,000 such that no pipelining or parallel processing is required. From the
schedule we know that the.processes.in. the  proposed design are performed
sequentially which means only one stage processes the-data at one time. Thus the
hardware resource can be reused. = The hardware architecture utilizes the “folding”
technique which means that few hardware resources are reused again and again to
process data that are fed in sequentially.

The conversion of the algorithm to the hardware architecture is described below:

a. The input sequence data samples are stored into SRAM set 0 and SRAM set 1
with 256x16bit capacity alternately as described in 3.5.3. Thus one sequence
can be processed when another sequence is being input simultaneously as
depicted in Fig. 5-2.  This is also called ping-pong buffer.

For the I/O timing synchronization of SRAM, two sets of registers are added at
the input and output ports of the SRAM sets respectively.

b. The ABSVAL block takes the absolute values of input sequence data samples.

The data samples are then summed up together by a 32-bit adder ADD. The
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window averaging process in Fig. 5-2 is performed by the shifter. The
averaged data samples are added by the constant K as depicted in 3.5.3.

For logarithm calculation (i.e. Log2 function in Fig. 5-2), the multiplications in
(3-9) and (3-14) are replaced by shift-add process with shifter and ADD. The
subtractions are implemented by taking 2’s complement number and then
perform additions by ADD. The table-lookup process as shown in 3.5.3 is
carried out by Combinational logic.

The entropy result calculation is done by ADD.

The adaptive thresholding process as shown in Fig. 5-2 is implemented by
Combinational logic and the adder ADD as described in 3.5.4.

The VAD state decision in: 3.6.1. is performed by Combinational logic. The
noise estimation for Silence Zone as illustrated in Fig. 5-2 is implemented by
ADD, shifter, and Combinational logic as shown in 3.6.2.

. For spectral attenuation (Silence Zone -and Too-short Voiced Zone) and spectral
subtraction (Voiced Zone and Voice-Protection Zone) which are depicted in
3.6.3, 3.6.4., and 3.6.5., ADD and shifter are utilized. The Combinational
logic is also involved in making decision of the spectral subtraction.

The off mechanism is implemented by Combination logic. When it’s activated,
the processes after it (spectral attenuation or spectral subtraction) will not be
performed.

For the increment in every counter for the proposed algorithm, the incrementor
INCR is utilized.

The output data samples are stored in SRAM set 2 for buffering. The output

stage then feed the data to the Insertion Gain in the digital hearing aid system.
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From the mapping listed above, the algorithm is implemented by the architecture
with simple hardware resource. For deep submicron fabrication, leakage power is an
important issue. The proposed architecture is simple and utilizes one 32-bit ADD
only, thus the circuit area is minimized, namely, reduces the static power consumption.
The dynamic power consumption is also minimized since the computation complexity
is reduced as discussed previously and all the calculations that need high hardware

resource are taken apart or removed.

Output data Input data
-—
sample

SRAM
256 x 16bit x 3

|-> ADD (32-bit)

Multiplication

| —

ABSVAL —t -
Combinational logic

s I}
— REG |
INCR <—i<—

[_control | —
[ data | —>

Fig. 5-1 Hardware architecture of the proposed design
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Fig. 5-2 Hardware schedule of the proposed design
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5.2.Implementation Result

The hardware design is implemented with Verilog RTL coding. The design is
synthesized by Synopsys DesignCompiler™ under UMC 90nm CMOS technology
with high Vr cell library. 1.536K Bytes (256x16bit x3) of SRAM are utilized.

The estimated gate-count of the synthesized netlist is 101,697 (including SRAM).
If the SRAM is excluded, the estimated gate-count is 80,628. The detailed hardware
specifications are listed in Table 5-1.

The proposed design is integrated into the digital hearing aid system. Fig. 5-3 is
the layout of the digital system chip. The position of the proposed design and the
corresponding SRAM sets are marked_in red rectangle in Fig. 5-4. The power report

1s shown in Table 5-2.

Specifications

Voo (supply voltage) 1.0V

Clock frequency 6MHz

Technology UMC 90nm CMOS
Cell library high Vt

SRAM usage 1.536K Bytes
Gate-count (including SRAM) 101,697 (estimated)
Gate-count (excluding SRAM) | 80,628 (estimated)

Table 5-1 Hardware specifications of the proposed design

103




3 Layout of the digital hearing aid system chip

Fig. 5

4 Position marking of each submodules in the chip layout.

Fig. 5
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Total Power

Dynamic Power

( % of total power)

Leakage Power

( % of total power)

Proposed noise

reduction design

292. 7uW

225.7uW

(77.10 %)

67.0uW
(22.90 %)

Table 5-2 Power report of the proposed noise reduction design
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Chapter 6. Conclusion and Future Work

6.1.Conclusion

In this thesis, we propose a low power noise reduction design for hearing aids
application. The algorithm is composed of entropy-based voice activity detection
and filter bank-based spectral subtraction with low power hardware optimization
respectively.  Simulation results show that the average segment SNR improvement is
6.27dB and the average PESQ score is improved by 0.316. The comparison
demonstrates that the processed segment SNR is better than other algorithms under
5dB and 10dB original segment SNR... The hardware design is implemented by
UMC 90nm CMOS technology with high Vit cell library. For data storage, 1.536K
Bytes of SRAM is utilized. The total estimated gate. count is 101,697 including
SRAM and 80,628 excluding SRAM:" The total power consumption is 292.7uW.

In summary, our design can not only enhance the speech quality but also can be
hardware implemented with low power consumption. In that way, the proposed

design is suitable for low power hearing aid applications.

6.2. Future Work

We have proposed a low power hardware optimized noise reduction algorithm for
hearing aids application, while there are still some issues that should be analyzed and
improved in future modification. The VAD performance and segment SNR results
for babble noise under low original segment SNR is comparatively lower than under

other types of noise. A more accurate VAD decision mechanism might be developed
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for non-stationary noise such as the babble noise. Subband VAD may also be
considered since the precision and power consumption may be further enhanced.
The performance of spectral subtraction might be further enhanced by utilizing the
filter bank with better resolution and the refined subtraction factor based on the
inherent characteristics of the Chinese language. For hardware implementation,
CPU-like design may be adopted in order to further save area and power consumption

since the ROM code has smaller area occupation than that of logic gates or registers.
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