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摘  要 

  噪音消除是助聽器中的關鍵問題。為了補償患者的聽力損失，助聽器需要對輸

入聲音加以放大，如此一來必需要以噪音消除設計來增進在噪音環境下的聲音品

質和辨識度。在整合的助聽器系統中，為了延長電池使用壽命及最小化系統的體

積，我們需要低功率的設計。 

  在此論文中，我們提出一套適用於助聽器的低功率噪音消除設計，其中包含了

以熵值為基礎的語音偵測，及以濾波器組為基礎的頻域刪減。以熵值為基礎的語

音偵測可在噪音環境下區分該時段是語音訊號或是沉默區間。以 filter bank 為基

礎的頻域刪減估計噪音量值，並根據以熵值為基礎的語音偵測之結果做不同的頻

域刪減。關閉機制在噪音量值低於一固定閥值時，停止頻域刪減之作動以節省耗

電。透過降低運算複雜度，此演算法針對低功率的硬體設計作了最佳化設計。從

實驗結果可以得知，平均區段噪訊比增進了 6.27dB。PESQ 分數則平均增進了

0.316 分。 

  最後此演算法在聯華電子 90 奈米 CMOS 製程下完成硬體實現。工作頻率為 6

百萬赫茲。為了節省面積及耗電，我們採用折疊硬體設計。基於資料存儲之需要，

我們使用了 1.536千位元組的靜態隨機存取記憶體。若包含靜態隨機存取記憶體，

估計需要的邏輯閘約為 101,697 個。如不包含靜態隨機存取記憶體，則估計需要
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的邏輯閘約為 80,628 個。耗電量則為2.927 ൈ 10ିସ瓦。 
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Abstract 

For hearing aids application, the amplification of input sound is needed in order to 

compensate the hearing loss of the patient.  Thus noise reduction is required to 

improve speech quality and intelligibility under noisy environments.  For integrated 

hearing aids system, low-power design is necessary such that the battery life can be 

expended and the system volume can be minimized. 

In this thesis, we propose a low power noise reduction design for hearing aids 

application with entropy-based voice activity detection and filter bank-based spectral 

subtraction.   The entropy-based voice activity detection distinguishes the speech 

period from the silence period in noisy environment and makes the decision whether 

it is voice active or not.  The filter bank-based spectral subtraction estimates noise 

level and performs different spectral subtraction schemes based on the result carried 

out by the entropy-based voice activity detection.  Off mechanism turns off the 

spectral subtraction process if noise level lies below a fixed threshold in order to 

reduce power consumption.  The proposed algorithm is optimized for low power 

hardware design by minimizing the calculation complexity.  From simulation results, 
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the average segment SNR improvement is 6.27dB and the average PESQ score is 

elevated by 0.316. 

The final design is implemented by UMC 90nm CMOS technology with high VT 

cell library.  The clock frequency is 6MHz.  For the hardware architecture, folding 

technique is adopted to save area and to reduce power consumption.  For data 

storage, 1.536K Bytes of SRAM is utilized.  The total estimated gate count is 

101,697 including SRAM and 80,628 excluding SRAM.  The total power 

consumption is 292.7μW. 
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Chapter 1. Introduction 

1.1. Background 

  Environment noise degrades speech quality.  For hearing aids application, since 

the amplification is required in order to compensate the patients’ hearing loss, louder 

noise not only causes the reduction of speech intelligibility but also results in 

uncomfortable experience for the patients.  Thus, noise reduction is an important 

issue in hearing aid application. 

For noise reduction in digital hearing aids systems, the key point is that the design 

must be real-time and follows the specification of the system.  Modern hearing aids 

applications emphasize on mobility and long battery life, which is particularly 

preferred by the patients who suffered from inconvenience experience caused by 

some hearing aids systems.  The more electric power is required, the heavier and the 

larger the battery will be to extend the battery changing period.  Thus the noise 

reduction also needs to be low-power designed in order to save the system volume 

and the computation power dissipation. 

To sum up, noise reduction design has to be integrated into the digital hearing aid 

system chip and enhance the speech quality.   Low power design is also required 

such that the volume and the weight of the system can be minimized, which is a 

challenging task. 
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1.2. Motivation and Contribution 

The issues mentioned above motivate us to propose a low power noise reduction 

design for hearing aids application.  The goal is to propose an algorithm which can 

be implemented by real-time hardware design with low power consumption. 

The contribution of the thesis includes: 

1. We formulated the VAD algorithm which is low power optimized and provides 

reference for the decision in spectral subtraction. 

2. We formulated the spectral subtraction algorithm which is low power 

optimized, enhancing the speech quality and intelligibility under noisy 

environments. 

3. We analyzed the performance of the proposed algorithm and implemented in 

hardware with verification.  The proposed design is integrated into a digital 

hearing aid system. 

1.3. Thesis Organization 

In Chapter 2, we will briefly introduce different types of the noise reduction 

algorithms.  In Chapter 3, the proposed noise reduction algorithm with 

entropy-based voice activity detection and filter bank-based spectral subtraction with 

hardware optimization techniques will be discussed.  Chapter 4 will present and 

analyze the simulation results with different types of background noise and speech 

test sequence.  Chapter 5 will discuss the hardware implementation of the proposed 

design and show the circuit area along with power reports.  The conclusion will be 

given in Chapter 6. 
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Chapter 2. Related Work 

2.1. Overview 
Many noise reduction algorithms for hearing aid were proposed.  According to [1], 

the noise reduction method can be categorized into 4 types: spectral-subtractive 

algorithms, wiener filtering, statistical-model-based methods, and subspace 

algorithms.  Subspace algorithms such as [2] and [3] utilize the characteristics of the 

vector space of the noisy signal which can be decomposed into “signal” and “noise” 

subspaces.  By keeping the components falling in the “signal” subspace and nulling 

the components that are in the “noise” subspace, noise can be suppressed.  However, 

this type of algorithm needs further processing on the signal by forming the gain 

matrix, resulting in high computation complexity by operations such as matrix 

arithmetic and matrix inversion.  Wiener filtering algorithms that mentioned in [4] 

and implemented in [5], [6], and [7] use linear prediction methods under 

minimum-mean-square error criterion, establishing an optimum filter model by 

minimizing the speech distortion subject to the noise distortion lying under a given 

threshold.  Nevertheless, those algorithms require multi-microphone architecture, 

which needs high computation power and are not suited to the proposed design.  

Statistical-model-based methods like [8], [9] and [10] often utilize nonlinear 

estimators of the magnitude of DFT coefficients with different types of statistical 

models and optimization criteria.  Estimated clean speech signal are acquired by the 

information gathered with SNR estimation and noise signal variance.  The drawback 

of the statistical-model-based methods is that they still suffer from high computation 

complexity and the frequency decomposition methods don’t meet the requirements.  
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Spectral-subtractive algorithms manipulate the data in frequency domain and subtract 

unwanted noise spectral energy from the noisy speech energy.  The unsophisticated 

algorithm procedures fulfill the need for low power requisition with comparatively 

lower computing complexity and more friendly for hardware implementation.  The 

spectral-subtractive method is based on frequency dividing and spectral subtraction.  

The noisy speech signal is first converted into spectral domain and the spectral energy 

is then subtracted by the amount of the estimated background noise in order to restore 

the original clean speech.  The spectral-subtractive methods satisfy the need for low 

computational complexity and low power hardware implementation according to its 

simple and inherent hardware-friendly characteristic.  The spectral-subtractive 

methods will be introduced in the following section. 

2.2. Spectral-Subtractive Method 

2.2.1. Introduction  

The spectral-subtractive method, first introduced by Boll[11] consists of two basic 

steps: spectral decomposition, i.e. frequency dividing, and de-noise process.  The 

spectral decomposition is often implemented by methods such as fast Fourier 

transform (FFT), discrete cosine transform (DCT), discrete wavelet transform (DWT), 

or filter bank.  After spectral decomposition is the de-noise process.  In order to 

enhance the performance of the de-noise process, voice-activity detection (VAD) 

operation is widely adopted.  VAD makes the judgment whether a specific period is 

voice active or not, giving decision for the action of taking noise estimation or 

performing the spectral subtraction.  The spectral subtraction process includes 

spectral attenuation within silence period, and spectral subtraction, i.e. speech 
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enhancement for voiced period.  The following section discusses the related works 

of VAD and spectral subtraction scheme respectively. 

2.2.2. Voice Activity Detection 

  Noise reduction algorithm in speech processing requires high performance and 

needs to preserve good intelligibility and quality of the original speech.  In that case, 

we need not only good noise reduction mechanisms but also accurate voice-activity 

detection algorithms in order to differentiate voice-active region from silence region, 

namely “noise-dominating region” in noisy environments.  Various voice-activity 

detection methods have been proposed.  Directly judging by signal energy or 

magnitude such as [12] suffers from lower accuracy under low SNR environments.  

Statistical-based or model-based VAD algorithms such as [13] and [14] achieve good 

performance in such condition, while need higher computation complexity and 

hardware resources.  Autocorrelation function or teager energy operator (TEO) based 

VAD algorithms such as [15], [16], and [17] well balance complexity and accuracy 

under noisy environments, while the flexibility under different noisy environments 

does not meet the requirement of the hearing aid system.  Entropy based method as 

proposed by [18] utilize the spectral energy and calculate the entropy value and have 

better performance compared to TEO based methods and magnitude judging methods.  

However, the computation complexity is higher than the TEO or judging by signal 

energy scheme and needs to be modified in order to meet the low-power requirement.   

2.2.3. Spectral Subtraction 

Many works on spectral subtraction have been proposed.  From the studies on 

spectral subtraction, the main issues are that the presence of musical noise[19] and the 



 

 

6 

 

damage to the original speech.  Many algorithms use hard thresholding or soft 

thresholding such as [20].  Over-subtraction methods such as [19] and [21] prevent 

the result of spectral subtraction from lying under some preset minimum threshold to 

conquer the musical noise problem.  Nonlinear and multiband approaches such as 

[21-25] exploit different gain or subtraction factor for each frequency components in 

spectral domain, preserving the intelligibility of the speech spectral energy range and 

eliminating unwanted noise in other frequency components.  The nonlinear and 

multiband approaches require frequency dividing process and the hardware 

complexity are comparatively higher thus need to be hardware-optimized when they 

are applied to the hearing aid system. 

2.3. Summary  

The noise reduction algorithms can be categorized into spectral-subtractive 

algorithms, wiener filtering, statistical-model-based methods, and subspace 

algorithms.  For low power design, the spectral-subtractive algorithms are preferred.  

Most spectral subtractive algorithms take VAD and spectral subtraction as the basic 

steps in order to provide accurate noise estimation and better decision of different 

scheme for speech period and silence period.  Entropy-based VAD and multiband 

spectral subtraction are well balanced between performance and computation 

complexity while they still need optimization for low-power hardware 

implementation. 
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Chapter 3. Noise Reduction Algorithm with 

Entropy-Based Voice Activity Detection and 

Filter Bank-Based Spectral Subtraction 

3.1. Overview 

In this chapter, we present a noise reduction algorithm with voice activity detection 

(VAD) and spectral subtraction.  The proposed VAD algorithm utilizes the entropy of 

the speech signal energy with filter bank-based frequency dividing.  The spectral 

subtraction process is done under frequency domain acquired by the analysis filter 

bank, which is inspired by previous spectral-subtractive methods.  The VAD result 

controls the decision and offers the reference noise estimation of filter bank-based 

spectral subtraction within voiced or silence region, which further enhances the 

performance of the proposed algorithm.  The filter bank-based spectral subtraction 

enhances the speech SNR by utilizing the information of noise magnitude estimated 

during voiced period and suppresses the noise signal during non-voiced period.  The 

subband signals are then synthesized through synthesis filter bank after other 

processing block in the hearing aid system. 

This chapter is organized as follows.  First the hearing aid system and the filter 

bank will be briefly introduced.  The proposed algorithm flow will be illustrated in 

the next section.  Then each part of the algorithm will be discussed in detail in the 

rest of the chapter. 
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3.2. Introduction to the Hearing Aid System 

 
Fig. 3-1 Functional block diagram of the hearing aid system 

 

 

Fig. 3-2 Block diagram of the digital system 

 

Fig. 3-1 shows the functional block diagram of the overall hearing aid system.  

The external sound is inputted to the system by microphone.  The analog to digital 

converter then converts the analog signal to digital data samples with 24-kHz 

sampling rate.  Then the digital system (red rectangle part) starts the digital signal 

processing. 

Fig. 3-2  illustrates the block diagram of the digital system.  After filtering by the 

“18-Band Analysis Filter bank” block, the samples are frequency-divided into 18 

subbands.  The “Noise Reduction” block reduces the unwanted background noise, 

enhancing the quality of speech.  Then the “Insertion Gain” block applies different 

gains on each subband of the output of the noise reduction block in order to 

compensate the hearing loss of the patient.  “Merging Bands into Channels” block, 
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also known as “B2C” block, merges 18 subbands into 3 channels for the following 

compressor.  “Compressor” block compresses the dynamic range of the magnitude of 

the samples, preventing from over-amplifying the magnitude of the data samples, 

which may cause damage to the patient’s ear.  Then the synthesis filter bank 

reconstructs the data samples from subband samples. 

Finally, the digital to analog converter converts the digital data sample to analog 

signal, and the sound is generated by the speaker.   

 

3.3. ANSI S1.11 Filter Bank for Digital Hearing 

Aids[26] 

  In hearing aid systems, most of the parts require frequency dividing in order to 

apply different gains or compensations to specific bands.  In the proposed noise 

reduction algorithm, filter-bank based spectral subtraction is utilized.  In the 

filter-bank design, human hearing characteristics are well simulated since the 

frequency dividing mechanism is based on the ANSI S1.11[27] standard.  Most of 

the filters that base on straightforward FIR design encounter the problem of high 

complexity and require large amount of hardware resource.  The filter bank that 

adopted in the proposed noise reduction algorithm provides an energy-efficient 

solution, implementing the 22nd to the 39th 1/3-octave bands in the ANSI S1.11 

standard. 

  The multi-rate algorithm is composed of three filters and a low-pass decimation 

filter.  The inputs samples are recursively obtained for smaller octaves by 

band-limiting and downsampling the input signals.   
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The number of output data samples from each analysis filter bank octave descends 

by a factor of 1/2 from each input frame length, which is 32, resulting in 32, 32, 32, 

16, 16, 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1 samples for band F39 to F22 respectively.  

The bitwidth of the data sample is 16-bit, with 24kHz sampling rate.  Table 3-1 

shows the specifications of frequency response for each subband of the filter bank. 

 

band Center frequency. (Hz) Upper bound (Hz) Lower bound (Hz) 

F39 8000 10365 6174 

F38 6300 8163 4862 

F37 5000 6478 3859 

F36 4000 5183 3087 

F35 3150 4081 2431 

F34 2500 3239 1930 

F33 2000 2591 1544 

F32 1600 2073 1235 

F31 1250 1620 965 

F30 1000 1296 772 

F29 800 1037 617 

F28 630 816 486 

F27 500 648 386 

F26 400 518 309 

F25 315 408 243 

F24 250 324 193 

F23 200 259 154 

F22 160 207 123 

Table 3-1 Frequency response of each subband of the filter bank. 
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3.4. Introduction to the Proposed Noise Reduction 

Algorithm 

 

 

Fig. 3-3 Flow of the proposed algorithm 
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Fig. 3-3 illustrates the flow of the noise reduction algorithm with entropy-based 

voice activity detection and filter-bank based spectral subtraction.  Initially the digital 

noise-corrupted speech signal is acquired through D/A converter with 24kHz 

sampling rate.  Then the data passes the ANSI S1.11 analysis filter bank, resulting in 

18 subband signals.  The length of each filter-bank input sequence is 32, i.e., 32 

samples of speech data will be fed into the filter bank, generating different length of 

output data sequence in each subband respectively as shown in the upper part of the 

figure.  If the input sequence number is the multiple of 4, for instance, 4k, the 

entropy-based VAD operation will be activated.  Otherwise the data will be directly 

processed depending on previous VAD result.  The entropy-based VAD calculates 

the entropy of the input signal from the data in each subband.  The magnitude of 

entropy indicates the possibility whether the corresponding region is voice-active or 

not.  In order to improve the distinguishing ability of the entropy in different types of 

speech or different noisy environments, the adaptive thresholding technique is 

proposed.  With the utilization of adaptive thresholding technique, VAD result will 

be generated and be applied to the judgment of voiced or silence region signal 

processing. 

Different signal processing method will be performed depending on the type of the 

signal (voiced or silence).  If a signal sequence is judged as voice-active and the 

VAD_cnt exceeds 8, namely, the VAD has made the judgment of voice-active for 

more than 8 times consecutively, the signal will be processed though “Spectral 

subtraction for Speech” block, or it will be processed through “Spectral Attenuation 

for Noise” block instead.  If the signal is judged as silence but lies in the “Voice 

protection zone”, the signal will also be processed through “Spectral Subtraction for 

Speech” block, or the signal will be processed through “Spectral Attenuation for 
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Noise” block.  “Noise Estimation” block estimates the magnitude of the environment 

noise, which is then become the reference noise data in “Spectral Subtraction for 

Speech”.  “Off Mechanism” disables the calculation if the estimated noise is less 

than a fixed threshold.  Finally the processed data is fed to “Insertion Gain” block 

which is previously described. 

3.5. Entropy-Based Voice Activity Detection 

3.5.1. Entropy in Speech Processing 

    Entropy[28], in information theory, stands for the amount of uncertainty 

measured with some set of specific variable, for example, X.  It is usually denoted by 

 ሺܺሻ, whereܪ

 

ሺܺሻܪ               ൌ  െ ∑ ௜ሻݔሺ݌ ݃݋݈ ௑א௜ሻ௫೔ݔሺ݌               ( 3-1) 

Where ݌ሺݔሻ stands for the probability density function of ݔ. 

 

As we can see, the entropy equation indicates that the entropy function maximizes 

if all the variables ݔ௜ in set X are equiprobable, i.e. ݌ሺݔ௜ሻ ൌ 1/݊, where n = number 

of ݔ௜’s in set X.  In other words, we could state that X is most “unpredictable” under 

such condition.  Fig. 3-4 is a sinusoidal wave with period T.   Fig. 3-5 is a Gaussian 

noise generated by MATLAB function awgn.  The magnitudes of the samples of the 

two signals are normalized to 1 respectively.  The part ݌ሺݔ௜ሻ is the magnitude 

acquired by taking 256-point Fourier transform and normalized over the energy of all 

the transform coefficients, namely:  
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௜ሻݔሺ݌            ൌ ௔௕௦ሺிி்ሺ௫೔ሻሻ
∑ ௔௕௦ሺிி்ሺ௫೔ሻሻమఱల

భ
     ,     ݅ ൌ 1 … 256         ( 3-2) 

 

 

Fig. 3-4 Sine wave with period T 

 

Fig. 3-5 Gaussian noise 
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Table 3-2 lists the energy and entropy calculated by (3-1) of the two signals.  We 

can find that although the two signals have almost same energy, the entropy differs a 

lot since the dominating frequency components in sine wave and Gaussian noise are 

not the same.  The dominant frequency component in sine wave is the inherent 

frequency of itself while there’s no dominating frequency component in Gaussian 

noise according to its definition.  Thus we can learn that for signals with some 

dominating frequency component, for example, speech signals, the entropy will 

behave dissimilarly from that of noise signals, which usually have no specific 

dominant frequency components.  This condition is closer to “equiprobable” that 

mentioned earlier in this chapter. 

 

 Energy Entropy (H) 

Gaussian noise 0.249 2.36 

sine wave 0.251 1.36 

Table 3-2 Energy and Entropy for Gaussian noise and sine wave 

3.5.2. Entropy Calculation 

According to the definition of entropy and the specification of the filter bank, the 

entropy is calculated by the following equation:  

 

ሺܻሻܪ                 ൌ  െ ∑ ௜ሻݕሺ݌ ݃݋݈ ௒א௜ሻ ௬೔ݕሺ݌             ( 3-3) 

Where 

௜ሻݕሺ݌     ൌ ௔௕௦ሺ௬೔ሻ
∑ ௔௕௦ሺ௬೔ሻಷయవ

ಷమమ
     ,      ݅ ൌ  (4-3 )           39ܨ~22ܨ
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  Where ݕ௜ is the average spectral energy of the filter bank output in subband i 

which is acquired by taking the absolute value for simplicity. 

For entropy calculated in (3.3), the noise-dominant region and the speech-dominant 

region can be differentiated[18].  In order to make the entropy difference more 

recognizable and let the VAD be more robust, a constant K is introduced[29].  Thus 

we get the modified entropy equation: 

 

Ԣሺܻሻܪ                  ൌ  െ ∑ ௜ሻݕԢሺ݌ ݃݋݈ ௒א௜ሻ௬೔ݕԢሺ݌           ( 3-5) 

Where 

௜ሻݕԢሺ݌   ൌ ௔௕௦ሺ௬೔ሻା ௄
∑ ሺ௔௕௦ሺ௬೔ሻା௄ሻಷయవ

ಷమమ
     ,      ݅ ൌ  (6-3 )          39ܨ~22ܨ

 

Now, we let 

௜ሻݕሺ݌∆  ൌ ௜ሻݕԢሺ݌   െ ௜ሻݕሺ݌  ൌ  ଵ
∑ ೌ್ೞ൫೤೔൯ಷయవ

ಷమమ
಼ ାே

 · ሺ1 െ ܰሻ ·  ௜ሻ    ( 3-7)ݕሺ݌ 

 Where N = 39-22+1 = 18 

 

By observing (3-7), we can analyze the influence of K.  If ݌ሺݕ௜ሻ > 1/N, 

 < ௜ሻݕሺ݌∆ ,௜ሻ > 1/Nݕሺ݌ ௜ሻ.  In contrast, ifݕሺ݌ > ௜ሻݕԢሺ݌ ௜ሻ < 0, which meansݕሺ݌∆

0, which means ݌Ԣሺݕ௜ሻ > ݌ሺݕ௜ሻ.  The introduction of K makes ݌Ԣሺݕ௜ሻs tend to be 

equal in one frame, thus the entropy of each frame increases.  The key point that 

makes the difference of ܪԢሺܻሻ between noise-dominant frames and speech-dominant 

frames become larger is that the energy of speech-dominant frames (speech + noise) 

are commonly greater than that of noise-dominant ones (noise only), which results in 

larger advance in entropy for noise-dominant frames than that of speech dominant 

frames.  Consequently, it is easier to do thresholding for the entropy, resulting in 
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better VAD accuracy. 

 

 

Fig. 3-6 Scheme for input sequence window gathering 

 

Fig. 3-7 Scheme for window averaging 

 

The calculation of entropy is performed by the following step: 

a. The output of the ANSI S1.11 analysis filter bank is first gathered for 8 

sequences, i.e. 256 samples for band F39~F37, as shown in Fig. 3-6.   

b. Then the window is averaged every 4 sequences, i.e. every 128 samples for 

band F39~F37, as shown in Fig. 3-7. 

c. The averaged data sample in each subband is set to be ݕ௜ .  After taking 

absolute value of ݕ௜, we sum up abs(ݕ௜)’s from band F22 to band F39 and add 

K to obtain the denominator of (3-6).  
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d. After calculating ݌Ԣሺݕ௜ሻ by (3-6) for each subband, the log value of ݌Ԣሺݕ௜ሻ is 

then acquired with log base 10. 

e. Then the entropy value H’(Y) is derived by (3-5).  By (3-8), the VAD result is 

determined. 

 

ܦܣܸ ൌ ൜1, ݂݅ሺെܪ’ሺܻሻሻ ൐ ݈݀݋݄ݏ݁ݎ݄ݐ
0, ݂݅ሺെܪ’ሺܻሻሻ ൑  (8-3 )             ݈݀݋݄ݏ݁ݎ݄ݐ

 

  The entropy calculation steps are listed above.  However, some of them are not 

suitable for low-power hardware implementation.  The detailed optimization process 

for low-power hardware design will be discussed in the following section. 

3.5.3. Low-Power Hardware Optimizations for Entropy 

Calculation 

  Our goal for the noise reduction algorithm is not only suitable for digital hearing 

aid system but also operates with low-power dissipation.  For hardware optimization, 

the algorithm flow is modified for each step as follows: 

a. The input sequence costs lots of storage space and may leads to high power 

consumption and large die-area for 3.5.2a.  Also, the real-time constraint limits 

the data to be read and stored simultaneously when the calculation is in progress.  

If the data samples are directly written into the register, high area and gate count 

will be required, resulting in large power consumption.   

To solve the problem, we have the input data samples from analysis filter bank 

be written into 2 SRAM sets alternately for further data processing.  SRAM 
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has smaller area occupation than the register and only needs extra 2 cycles for 

data read/write.  For real-time processing, 2 SRAM sets are used as a 

ping-pong buffer such that current input sequences can be processed when the 

next input sequence is being gathered in the same time.  In that way, the 

real-time processing with small hardware usage can be carried out. 

b. For window averaging in 3.5.2b, the data samples of each subband are summed 

and written into the register for every input sequences and are denoted as r00, 

r01, …r17.  Then r00, r01, …r17 in each sequence are summed together 

respectively for every 4 input sequences.   

The registers used for summing r00, r01, …r17 in sequence 8k…8k+3 are 

called r01_Reg0to3, r02_Reg0to3,…r17_Reg0to3.  And the registers used for 

summing r00, r01, …r17 in sequence 8k+4 to 8k+7 are called r01_Reg4to7, 

r02_Reg4to7,…r17_Reg4to7.   

We can use two sets of registers to accumulate and take average of the sequence 

that is more efficient and saves the circuit area.  The scheme is illustrated in 

Fig. 3-8. 

 

 

   Fig. 3-8 Scheme for window averaging by register refreshing 
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c. The constant K in (3-6) is set as ሺଵ
ଶ
ሻହ, which is 0x0200 corresponding to 16-bit 

data format of input sequence. 

d. The log function of the algorithm in 3.5.2d has base 10, which is hard to 

implement in hardware design.   

To solve the problem, we do the modification as follows: 

i. Change the base to 2 by base-changing properties: 

 

ଵ଴݃݋݈ ௜ሻݕԢሺ݌ ൌ ௜ሻൈݕԢሺ݌ଶ݃݋݈  ଵ଴݃݋݈  2             ( 3-9) 

 

ii. By Mitchell’s algorithm[30], we can approximate the log values with 

base 2 by interpolation method.  If we want to take binary 

logarithms of a number N (i.e. log2(N)), first we can express N as: 

 

        ܰ ൌ  2௞ሺ1 ൅ ݉ሻ                ( 3-10) 

 

              Then we take the logarithms on both sides: 

 

ଶܰ݃݋݈               ൌ  ݇ ൅ ଶሺ1݃݋݈ ൅ ݉ሻ          ( 3-11) 

 

               The approximation based on Mitchell’s algorithm is: 

 

                  ሺ݈݃݋ଶܰሻԢ ൌ  ݇ ൅ ݉             ( 3-12) 
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               So the approximation error will be: 

              

ଶሺ1݃݋݈       ൅ ݉ሻ െ  ݉             ( 3-13) 

 

              

The example table of the above scheme is listed in Table 3-3.  The example has 3 

integer bits and 5 fractional bits while for proposed hardware design, the log function 

has 6 integer bits and 10 fractional bits 
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N 

Decimal 

N 

Binary 

log2N 

Exact 

log2N 

Approx. 

log2N 

Binary Approx. 

1=20 00001 0.00000 0.00000 000.00000 

2=21   

3 

00010 

00011 

1.00000 

2.58496 

1.00000 

1.50000 

001.00000 

001.10000 

4=22   

5 

6 

7 

00100 

00101 

00110 

00111 

2.00000  

2.32193  

2.58496  

2.80735 

2.00000 

2.25000 

2.50000 

2.75000 

010.00000 

010.01000 

010.10000 

010.11000 

8=23 

9 

10 

11 

12 

13 

14 

15 

01000 

01001 

01010 

01011 

01100 

01101 

01110 

01111 

3.00000  

3.16993  

3.32193  

3.45943  

3.58496  

3.70044  

3.80735  

3.90689 

3.0000 

3.12500 

3.25000 

3.37500 

3.50000 

3.65200 

3.75000 

3.87500 

011.00000 

011.00100 

011.01000 

011.01100 

011.10000 

011.10100 

011.11000 

011.11100 

16=24 

17 

18 

19 

10000 

10001 

10010 

10011 

4.00000  

4.08746  

4.16993  

4.24793 

4.00000 

4.06250 

4.12500 

4.18750 

100.00000 

100.00010 

100.00100 

100.00110 

Table 3-3 Mitchell’s approximation example 
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e. The equation (3-6) in 3.5.2 has division, which is not preferred in hardware 

design and requires additional hardware resource.   

To solve the problem, we let ݌ᇱሺݕ௜ሻ ൌ ௡௨௠_௣ሺ௬೔ሻ
ௗ௘௡_௣ሺ௬೔ሻ

  first.  Then the division 

operation of (3-6) is reduced by rewriting (3-5) as: 

 

௜ሻݕሺ݌_݊݁݀  ൈ ᇱሺܻሻܪ ൌ  

െ ෍ ሺ݊݌_݉ݑሺݕ௜ሻሻ ൈ ሾ ݈݃݋ሺ݊݌_݉ݑሺݕ௜ሻሻ െ ݈݃݋ሺ݀݁݊_݌ሺݕ௜ሻሻሿ  
௬೔א௒

 

( 3-14) 

 

Thus (3-8) must also be rewritten as: 

 

ܦܣܸ ൌ ൜
1, ሺ௬೔ሻ݌_݊݁݀ ݂݅ ൈ ሺെܪ’ሺܻሻሻ ൐ ௜ሻݕሺ݌_݊݁݀ ൈ ݈݀݋݄ݏ݁ݎ݄ݐ
0, ௜ሻݕሺ݌_݊݁݀ ݂݅ ൈ ሺെܪ’ሺܻሻሻ ൑ ௜ሻݕሺ݌_݊݁݀ ൈ   ݈݀݋݄ݏ݁ݎ݄ݐ

( 3-15) 

 

After removing the division, the remaining multiplication is then replaced by 

shift-add techniques and will be discussed in 5.1.  Thus no hardware multipliers are 

needed, resulting in an one-adder arithmetic unit architecture in the circuit design.   

By the modification mentioned above, complexity of the algorithm is reduced 

effectively for hardware implementation with simpler calculations. 
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3.5.4. Adaptive Thresholding 

The entropy value may be the reference for determining whether the frame tends to 

be speech-dominant or not.  To present a definite VAD result, a threshold is required.  

A fixed threshold may be simple but offers poor accuracy when different type or SNR 

of environment noise is dominant.  Thus the adaptive thresholding technique may be 

a good solution to the condition above.  The adaptive thresholding process will be 

shown below. 

First we assign current ݈݀݋݄ݏ݁ݎ݄ݐ = Thr as the summation of a constant C and the 

parameter Adaptive_Thr, that is:  

 

Thr = Adaptive_Thr + C; 

 

Where C is a constant chosen by experiments.  It represents the initial value of 

Thr. 

Then we calculate Ent_static_cnt with the following: 

 

If (abs(prev_Thr - Thr) < Q && abs(prev_Ent - Ent) < R) 

   Ent_static_cnt = Ent_static_cnt + 1; 

else 

   Ent_static_cnt = 0;  
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Where prev_Thr is previous ݈݀݋݄ݏ݁ݎ݄ݐ, Ent is െܪ’ሺܻሻ, prev_Ent is previous 

െܪ’ሺܻሻ, Q and R are 0x002dc6c0, which is chosen by experiment.  Then we assign  

 

Ent_margin = abs(Ent - Thr)  

 

Where Ent_margin is the distance between current ݈݀݋݄ݏ݁ݎ݄ݐ and െܪ’ሺܻሻ. 

 

Finally we do ݈݀݋݄ݏ݁ݎ݄ݐ updating if െܪ’ሺܻሻ and ݈݀݋݄ݏ݁ݎ݄ݐ has kept static - 

that is, varying within some pre-defined range - over the period that needed for 

invoking VAD calculation 24 times.  

  If (Ent_static_cnt > 24){ 

   if ((Thr - Ent) > S){ 

    Adaptive_Thr = Adaptive_Thr - L; 

    Ent_static_cnt = 0; 

   } 

   Else { 

    Adaptive_Thr = Adaptive_Thr + L; 

    Ent_static_cnt = 0; 

   } 

  } 
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Where S is 0x0200 ൈ  ௜ሻ due to the relationship mentioned in (3-15).  Lݕሺ݌_݊݁݀

is the adaptive step for Adaptive_Thr and is 0x0100. 

 

To briefly sum up, the concept of this algorithm is that if ݈݀݋݄ݏ݁ݎ݄ݐ keeps far 

above െܪ’ሺܻሻ statically for a fixed period, we decrease it to make the voiced period 

judgment more accurate.  If ݈݀݋݄ݏ݁ݎ݄ݐ lies below െܪ’ሺܻሻ statically for a fixed 

period, we increase it to prevent from misjudging the silence period as voiced ones.  

Finally the VAD result is acquired.  If െܪ’ሺܻሻ exceeds ݈݀݋݄ݏ݁ݎ݄ݐ, the VAD flag is 

set to 1, and vice versa.   

Fig. 3-9 gives an example of adaptive thresholding.  The upmost subgraph is 

clean speech signal plot with VAD result in red rectangle.  The center subgraph is the 

noisy speech.  The lowest subgraph is the entropy plot with adaptive threshold drawn 

in red line.  As we can see, the threshold approaches the entropy when the entropy is 

at some steady level for a period, and lies slightly above the entropy to make sure the 

abrupt change in entropy may result in the judgment of voiced frame accurately. 
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Fig. 3-9 Example of adaptive thresholding 

3.6. Filter Bank-Based Spectral Subtraction 

3.6.1. Introduction 

  After VAD process, we get the information of current frame based on which the 

decision of different noise reduction steps could be taken.  There are four different 

states for noise reduction, which are Voiced-Zone, Too-Short Voiced-Zone, 

Voice-Protection-Zone, and Silence-Zone.  The flow to decide which state to enter is 

shown in Fig. 3-10 and is described below, 

a. If a frame is judged as VAD = 1 and the previous 8 VAD results are also 1, that is 

VAD_cnt > 8, then the state will be Voiced-Zone.  VAD_cnt = VAD_cnt + 1. 

b. If a frame is judged as VAD = 1 but is not the case of a, that is, VAD_cnt ൑ 8 

then the state will be Too-Short Voiced-Zone.  VAD_cnt = VAD_cnt + 1. 

c. If a frame is judged as VAD = 0, but VAD_cnt ൐ 3, which means it’s just right 
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after some Voiced-Zone, then the state will be Voice-Protection-Zone.  VAD_cnt 

= VAD_cnt - 3. 

d. If a frame is none of any of the above conditions, the state will be Silence-Zone.  

“Noise Estimation” will be performed. 

The data sample will be processed under one of the states mentioned above.  For 

case a and c, “Spectral Subtraction for Speech” will be performed.  For case b and d, 

“Spectral Attenuation for Noise” will be performed.  Finally, the output data sample 

will be generated and feeds to the Insertion Gain block. 

 

 

Fig. 3-10 State decision after VAD 

3.6.2. Noise Estimation 

  If Silence-Zone (case d) state is entered, the “Noise Estimation” will be performed.  

Each time when “Noise Estimation” is activated, the data sample in each subband will 

be averaged respectively.  Also, there will be an increment in a counter. When the 

counter reaches 128, that is, the noise estimation has been performed for 128 times, 

the noise estimation result value is updated by averaging over the past 128 noise data 
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that were averaged in each subband.  Then the counter will be reset to zero.  The 

process iterates again and again to ensure the noise estimation result value is 

up-to-date in order to provide appropriate information for spectral subtraction process.  

The result of noise estimation will be the reference noise signal ݀௜ in (3-19), (3-20) 

and (3-21). 

3.6.3. Spectral Attenuation for Noise 

For case d, after noise estimation, the data samples that enter Noised Zone state will 

be attenuated.  For case b, the data samples that enter Too-Short Voiced-Zone will 

also be attenuated because they are tend to be noise since their VAD period is too 

short.   

The mechanism of Silence-Zone is simply attenuating each data sample in every 

subband by multiplying 0.125 to them, i.e.: 

 

௜,௞ݕ                 
ᇱ ൌ ௜,௞ݕ  כ 0.125                   ( 3-16) 

 

Where ݕ௜,௞
ᇱ  is the kth processed subband data sample in band i, i = F22~F39 . ݕ௜,௞ 

is the kth input subband data sample in band i, i = F22~F39.  Note that the rage of k 

is dependent on which subband it is. 

 

And the mechanism of Too-Short Voiced-Zone is also simply attenuating each data 

sample in every subband by multiplying 0.25 to them, i.e.: 

 

௜,௞ݕ                 
ᇱ ൌ ௜,௞ݕ  כ 0.25                    ( 3-17) 
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Then the output data samples are acquired.  

3.6.4. Spectral Subtraction for Speech 

From 3.6.1, if Voiced-Zone (case a) state or Voice-Protection-Zone (case c) state is 

entered, the spectral subtraction for speech will be performed in order to eliminate 

unwanted noise from speech signal.  To do the spectral subtraction, we first express 

the speech signal in time domain that is corrupted by noise as: 

 

ሺ݊ሻݕ                    ൌ ሺ݊ሻݔ  ൅ ݀ሺ݊ሻ                            ( 3-18) 

 

Where ݕሺ݊ሻ is the noisy speech data sample, ݔሺ݊ሻ is the original speech data 

sample.  ݀ሺ݊ሻ  is the noise data sample.  After filtering by filter bank, the 

relationship may be expressed by the following equation: 

 

                  หݕ௜,௞หଶ ൎ  หݔ௜,௞หଶ ൅ |݀௜ |ଶ             ( 3-19) 

 

Where ݕ௜,௞ is the kth subband noisy speech data sample in band i, i = F22~F39. 

 ௜,௞ is the kth subband original speech data sample in band i.  ݀௜ is the subbandݔ

noise data sample in band i which is estimated in 3.6.2.  Note that the rage of k is 

dependent on which subband it is.   

 

 

To simplify the calculation, we can estimate the clean speech by the following 

equation: 
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                    หݕ௜,௞ห ൎ  หݔ௜,௞ห ൅ |݀௜|                ( 3-20) 

Now we want to estimate the speech data sample by the following equation: 

 

                  หݔො௜,௞ห ൌ  หݕ௜,௞ห െ    ௜|݀௜|            ( 3-21)ߤ 

 

 :௜ is a constant and varies in different subband, and is defined asߤ 

 

௜ߤ             ൌ ൜2.5,          ݂݅ ݅ ൌ 30ܨ~22ܨ 
1,             ݂݅ ݅ ൌ  (22-3 )               39ܨ~31ܨ 

 

The reason ߤ௜ is different over subbands is that for band frequency lower than F30, 

the energy is closer to human voice, while for frequency higher than F30, it may be 

unwanted noise during speech.  Thus we apply a higher subtraction factor to those 

subbands. 

  Next, from [25], to avoid negative values resulting from (3-21), หݔො௜,௞ห is floored as 

follows: 

 

หݔො௜,௞ห ൌ ቊ
       หݔො௜,௞ห,          ݂݅ หݔො௜,௞ห ൐ ௜,௞หݕหߚ

݁ݏ݈݁                             ,௜,௞หݕหߚ
        ( 3-23) 

  Where ߚ is set to 0.05. 

 

Finally, to mask musical noise, a small amount of noisy data samples are added to 

the processed data samples, i.e.: 
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หݔӖ௜,௞ห ൌ หݔො௜,௞ห ൅  ௜,௞ห              ( 3-24)ݕหߛ 

 

  So the processed data sample in speech period is: 

 

௜,௞ݕ
ᇱ ൌ ௜,௞ሻݕሺ݊݃݅ݏ  ൈ หݔӖ௜,௞ห              ( 3-25) 

 

Where the multiplication of ݊݃݅ݏሺݕ௜,௞ሻ  ensures ݕ௜,௞
ᇱ  to have the same sign 

number as ݕ௜,௞.   

 

From the above equation, the output of spectral subtraction is also acquired. 

3.6.5. Low-Power Hardware Optimizations for Filter 

Bank-Based Spectral Subtraction 

  The spectral attenuation and spectral subtraction in the proposed algorithm requires 

constant number multiplication.  In order to reduce the complexity and circuit area, 

the multiplication is approximated by linear combining the multiplicand by the factor 

of 1/2.  The approximation is applied in (3-21), (3-23), and (3-24).  For example, 

ݕ ൌ ݔ ൈ 0.1 can be approximated by the following step: 

 

ݕ                ൌ ൈ ݔ 0.1 

                   ؆ ൈ ݔ 0.09375 

                    ൌ ሺݔ ൈ 0.125ሻ െ ሺݔ ൈ 0.03125ሻ 

         ൌ ሺݔ ب 3ሻ െ ሺݔ ب 5ሻ                             ( 3-26) 
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  As a result, the hardware architecture can be simplified. 

3.6.6. Off Mechanism 

For high SNR conditions, noise reduction process may not be necessary but will 

cause additional quality loss to the processed speech.  Thus a simple off mechanism 

is applied.  When the magnitude of noise estimation in each subband is lower than 

0x0001 (in 16-bit format), the off counter will be added by 1.  If the off counter 

exceeds 0x000f, the noise suppression and the spectral subtraction block will not be 

entered.  It also benefits the reduction of calculation, decreasing the total power 

consumption. 

3.6.7. Data Output 

Finally, the output of the proposed noise reduction algorithm is then sent to 

“Insertion Gain” block with the same 16-bit bitwidth format of the input data samples.  

The output data samples align in the manner that is same as the input data samples to 

the proposed noise reduction block fed by the analysis filter bank. 

3.7. Summary 

In this chapter, the proposed noise reduction is introduced.  The entropy-based 

VAD step performs on every 4 input sequences by calculating the entropy of the input 

sequence.  The entropy calculation is hardware-optimized by log base changing and 

linear interpolation.  The filter bank-based spectral subtraction is performed based on 

frequency dividing by filter bank with spectral attenuation for noise during silence 

period and spectral subtraction in speech period.  The spectral subtraction process is 
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also hardware optimized in order to achieve low-power consumption.  In addition, 

off mechanism is applied to reduce computation power.  The simulation and analysis 

will be discussed in the next chapter. 
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Chapter 4. Simulation and Analysis 

In this chapter, the simulation settings will be described, and the results will be 

shown with the analysis.  The simulation includes segment SNR tests and PESQ 

tests.  Segment SNR is a measure based on Signal-to-Noise Ratio with the 

knowledge of the position of voice and silence regions and is defined as follows:   

 

ܴܵܰ௦௘௚ ൌ 10 ൈ ଵ଴ሺா௡௘௥௚௬ೞ೔೒೙ೌ೗݃݋݈

ா௡௘௥௚௬೙೚೔ೞ೐
ሻ             ( 4-1) 

  Where ݕ݃ݎ݁݊ܧ௦௜௚௡௔௟ is the energy of clean speech signal during voiced period, 

and ݕ݃ݎ݁݊ܧ௡௢௜௦௘ is the energy of the difference between clean speech and 

noisy/processed speech during voiced period. 

 

  Notice that the energies are calculated in speech period so that the noise in silence 

region is ignored.  The reason to do so is that the performance of the noise reduction 

algorithm mostly depends on the performance during voiced region, thus we only do 

the calculation within pre-defined voiced region. 

PESQ[31] is a objective measure that was originally based on ITU-T standard 

which evaluates the quality of speech.  The PESQ score gives the information on the 

quality difference between the degraded/processed and the original speech, which 

varies from 0.5 to 4.5.  The PESQ score is not influenced by loudness loss, sidetone, 

or talker echo but only reflects the one-way speech distortion perceived by the end 

user.   

This chapter is organized as follows: section 4.1 will describe the simulation 

environment settings and the information of the database.  Section 4.2 will be the 
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simulation results and the analysis. 

4.1. Simulation Settings 

The speech database has 150 Mandarin Chinese 2-words terms and is from Yang 

Ming University.  The sampling frequency of the test sequences is 24kHz.  The 4 

test sequences are formed by concatenating 27 terms and insert silence period 

between each term as follows: 

Seq.1:  a-b-c-d-e-f 

Seq.2:  h-i-j-k-l-m-n 

Seq.3:  o-p-q-r-s-t-u 

Seq.4:  v-w-x-y-z-aa-bb 

 

Where a, b, c … bb represent the terms.  The terms are: 

a: ren-jian (人間) 

b: shi-yong (使用) 

c: shang-sin (傷心) 

d: kou-ciang (口腔) 

e: ming-yun (命運) 

f: wun-lu (問路) 

h: di-ming (地名) 

i: zeng-jin (增進) 

j: da-ge (大哥) 

k: nyu-hai (女孩) 

l: si-si (嬉戲) 

m: siao-cao (小草) 
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n: gong-yeh (工業) 

o: nian-gao (年糕) 

p: cih-hsang (慈祥) 

q: cheng-jhang (成長) 

r: jhan-chang (戰場) 

s: tan-bing (探病) 

t: lan-jhu (攔住) 

u: jiao-ban (攪拌) 

v: fu-yao (敷藥) 

w: jhih-hui (智慧) 

x: rong-shu (榕樹) 

y: yue-chi (樂器) 

z: ji-che (機車) 

aa: lie-huo (烈火) 

bb: jia-chong(甲蟲) 

 

The first simulation is VAD accuracy test which is performed by comparing the 

proposed Entropy-Based VAD result with the pre-defined speech region.  The 

second simulation is the segment SNR calculation by (4-1) along with the PESQ score 

comparison.  The third simulation is the same as the second one but with ideal VAD 

(i.e. pre-defined speech region) thus the influence of the proposed VAD may be 

excluded, giving standalone performance report on proposed filter bank-based 

spectral subtraction design.  The last simulation is for testing the influence of 

different silence length before the speech.  Silence periods with 4 different lengths 

are added before the speech sequence 1.  They are 16,8,4,2 seconds respectively.  
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The simulation result will also show the segment SNR and PESQ scores separately 

from the simulation 2 and 3. 

The 4 noise sound files for the above tests are from Noisex-92 database, which are 

white, babble, factory, and car noise.  The noisy test sequence is constructed by 

adding the noise sound to the clean sequence directly with the same 24kHz sampling 

frequency. 

4.2.  Experimental Result and Analysis 

 

Fig. 4-1 to Fig. 4-4 show the graph of accuracy of proposed entropy-based voice 

activity detection.  The x-axis is the original segment SNR and the y-axis is the 

accuracy in %.  It can be observed that VAD accuracy has close relationship to the 

original segment SNR but saturates at about 90%.  For original segment SNR over 

6dB, the accuracy reaches 80%.  Different types of noise also affect the VAD result.  

For white noise under low segment SNR condition, the VAD accuracy falls below 

70% since the entropy level pulsates a lot so that the adaptive threshold doesn’t 

perform well.  For babble and factory noise, the VAD accuracy meets the average 

performance.  Finally for car noise, the VAD accuracy performs outstanding since 

the main energy of car noise concentrates in very low frequency and doesn’t affect 

other subbands in the filter bank, causing the speech energy component highly 

distinguishable.  
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VAD accuracy result: white noise (%) 

 

Fig. 4-1 VAD result for white noise 

 

VAD accuracy result: babble noise (%) 

 

Fig. 4-2 VAD result for babble noise 
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VAD accuracy result: factory noise (%) 

 
Fig. 4-3 VAD result for factory noise 

 

VAD accuracy result: car noise (%) 

 

Fig. 4-4 VAD result for car noise 
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Table 4-1 to Table 4-16 show the segment SNR results and PESQ scores for the 

proposed algorithm.  Fig. 4-5 to Fig. 4-20 illustrate the improvement in segment 

SNR for proposed algorithm on the left and depicts the PESQ scores for original noisy 

speech sequence, processed speech sequence and the improvement on the right 

respectively.  Table 4-17 to Table 4-32 show the result of segment SNR and PESQ 

scores for proposed spectral subtraction with ideal VAD and Fig. 4-21 to Fig. 4-36 

plot the corresponding comparison between the result of spectral subtraction between 

the experiments with proposed VAD and the experiments with ideal VAD.  The 

simulation results will be discussed and analyzed in the aspect of original SNR and 

noise types respectively. 
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Sequence 1 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 8.395 8.395 1.003 1.499 0.496 

1 9.171 8.171 1.041 1.539 0.498 

2 9.626 7.626 1.065 1.610 0.546 

3 9.943 6.943 1.098 1.670 0.572 

4 10.068 6.068 1.148 1.723 0.575 

5 10.046 5.046 1.209 1.778 0.570 

6 11.727 5.727 1.267 1.902 0.635 

7 12.640 5.640 1.322 2.054 0.732 

8 13.283 5.283 1.374 2.111 0.737 

9 13.964 4.964 1.451 2.194 0.743 

10 14.232 4.232 1.526 2.260 0.734 

11 14.169 3.169 1.606 2.281 0.675 

12 14.139 2.139 1.688 2.323 0.635 

Table 4-1 Segment SNR results for sequence 1 with white noise 

 

Fig. 4-5 Segment SNR improvement and PESQ scores 
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Sequence 2 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 3.077 3.077 0.748 0.794 0.046 

1 4.364 3.364 0.794 0.884 0.091 

2 5.635 3.635 0.843 0.980 0.136 

3 6.869 3.869 0.900 1.088 0.188 

4 8.065 4.065 0.967 1.224 0.257 

5 9.178 4.178 1.039 1.366 0.327 

6 11.370 5.370 1.103 1.854 0.751 

7 11.487 4.487 1.177 1.901 0.723 

8 12.025 4.025 1.265 1.992 0.726 

9 11.431 2.431 1.363 2.022 0.660 

10 12.391 2.391 1.460 2.134 0.674 

11 11.990 0.990 1.565 2.183 0.618 

12 12.368 0.368 1.666 2.330 0.664 

Table 4-2 Segment SNR results for sequence 2 with white noise 

 

Fig. 4-6 Segment SNR improvement and PESQ scores 
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Sequence 3 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 2.839 2.839 1.070 1.124 0.054 

1 4.128 3.128 1.102 1.191 0.089 

2 5.378 3.378 1.138 1.272 0.134 

3 6.736 3.736 1.182 1.366 0.184 

4 9.050 5.050 1.230 1.711 0.481 

5 9.674 4.674 1.286 1.951 0.665 

6 10.755 4.755 1.342 2.076 0.734 

7 11.164 4.164 1.415 2.133 0.718 

8 11.274 3.274 1.486 2.191 0.706 

9 12.829 3.829 1.561 2.344 0.783 

10 13.168 3.168 1.646 2.385 0.739 

11 12.553 1.553 1.740 2.392 0.652 

12 12.873 0.873 1.838 2.455 0.617 

Table 4-3 Segment SNR results for sequence 3 with white noise 

 

Fig. 4-7 Segment SNR improvement and PESQ scores 
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Sequence 4 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 3.042 3.042 0.994 1.124 0.130 

1 4.396 3.396 1.055 1.216 0.160 

2 5.731 3.731 1.120 1.323 0.203 

3 7.101 4.101 1.189 1.443 0.254 

4 8.423 4.423 1.259 1.556 0.297 

5 9.904 4.904 1.337 1.750 0.413 

6 11.914 5.914 1.420 2.170 0.750 

7 12.580 5.580 1.492 2.249 0.757 

8 13.025 5.025 1.573 2.331 0.758 

9 13.574 4.574 1.659 2.395 0.735 

10 13.131 3.131 1.755 2.432 0.677 

11 12.500 1.500 1.852 2.455 0.603 

12 12.737 0.737 1.931 2.520 0.589 

Table 4-4 Segment SNR results for sequence 4 with white noise 

 

Fig. 4-8 Segment SNR improvement and PESQ scores 
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Sequence 1 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 2.919 2.919 1.283 1.498 0.214 

1 4.294 3.294 1.326 1.546 0.220 

2 5.331 3.331 1.369 1.629 0.260 

3 6.267 3.267 1.422 1.711 0.289 

4 7.019 3.019 1.475 1.778 0.303 

5 7.507 2.507 1.531 1.851 0.320 

6 8.177 2.177 1.573 1.907 0.333 

7 9.208 2.208 1.639 1.982 0.343 

8 10.708 2.708 1.712 2.052 0.340 

9 11.262 2.262 1.775 2.103 0.327 

10 11.891 1.891 1.851 2.184 0.333 

11 12.752 1.752 1.940 2.234 0.293 

12 13.013 1.013 2.006 2.301 0.294 

Table 4-5 Segment SNR results for sequence 1 with babble noise 

 

Fig. 4-9 Segment SNR improvement and PESQ scores 
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Sequence 2 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 0.858 0.858 1.283 1.498 0.214 

1 2.760 1.760 1.326 1.546 0.220 

2 4.435 2.435 1.369 1.629 0.260 

3 5.661 2.661 1.422 1.711 0.289 

4 6.610 2.610 1.475 1.778 0.303 

5 7.792 2.792 1.531 1.851 0.320 

6 8.656 2.656 1.573 1.907 0.333 

7 9.564 2.564 1.639 1.982 0.343 

8 10.194 2.194 1.712 2.052 0.340 

9 11.204 2.204 1.775 2.103 0.327 

10 11.846 1.846 1.851 2.184 0.333 

11 12.231 1.231 1.940 2.234 0.293 

12 10.219 -1.781 2.006 2.301 0.294 

Table 4-6 Segment SNR results for sequence 2 with babble noise 

 

Fig. 4-10 Segment SNR improvement and PESQ scores 
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Sequence 3 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 0.498 0.498 1.234 1.265 0.031 

1 1.577 0.577 1.291 1.329 0.038 

2 4.820 2.820 1.349 1.570 0.221 

3 5.634 2.634 1.415 1.633 0.217 

4 6.519 2.519 1.470 1.729 0.260 

5 7.235 2.235 1.521 1.821 0.299 

6 7.930 1.930 1.583 1.920 0.337 

7 8.649 1.649 1.653 2.025 0.373 

8 8.942 0.942 1.733 2.048 0.315 

9 9.571 0.571 1.800 2.187 0.388 

10 11.040 1.040 1.874 2.243 0.368 

11 10.942 -0.058 1.966 2.297 0.331 

12 11.756 -0.244 2.055 2.381 0.326 

Table 4-7 Segment SNR results for sequence 3 with babble noise 

 

Fig. 4-11 Segment SNR improvement and PESQ scores 
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Sequence 4 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 1.091 1.091 1.139 1.199 0.060 

1 2.228 1.228 1.172 1.256 0.085 

2 3.330 1.330 1.283 1.371 0.088 

3 5.411 2.411 1.354 1.545 0.192 

4 6.469 2.469 1.400 1.620 0.220 

5 7.746 2.746 1.482 1.792 0.309 

6 8.497 2.497 1.557 1.920 0.363 

7 9.436 2.436 1.639 2.052 0.412 

8 10.105 2.105 1.708 2.113 0.405 

9 11.027 2.027 1.810 2.211 0.401 

10 11.479 1.479 1.888 2.285 0.398 

11 12.116 1.116 1.980 2.362 0.382 

12 12.396 0.396 2.085 2.395 0.310 

Table 4-8 Segment SNR results for sequence 4 with babble noise 

 

Fig. 4-12 Segment SNR improvement and PESQ scores 
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Sequence 1 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 4.912 4.912 1.074 1.406 0.332 

1 6.001 5.001 1.112 1.490 0.377 

2 6.749 4.749 1.150 1.523 0.372 

3 7.359 4.359 1.207 1.610 0.403 

4 7.851 3.851 1.259 1.646 0.387 

5 8.248 3.248 1.295 1.710 0.415 

6 10.268 4.268 1.357 1.854 0.496 

7 11.187 4.187 1.421 1.956 0.535 

8 11.934 3.934 1.489 2.022 0.533 

9 12.561 3.561 1.537 2.102 0.565 

10 13.133 3.133 1.610 2.166 0.556 

11 13.096 2.096 1.703 2.253 0.550 

12 13.685 1.685 1.787 2.304 0.517 

Table 4-9 Segment SNR results for sequence 1 with factory noise 

 

Fig. 4-13 Segment SNR improvement and PESQ scores 
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Sequence 2 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 2.646 2.646 0.720 0.762 0.042 

1 3.791 2.791 0.776 0.842 0.066 

2 4.865 2.865 0.832 0.932 0.100 

3 6.458 3.458 0.898 1.097 0.199 

4 8.394 4.394 0.965 1.333 0.368 

5 9.035 4.035 1.034 1.433 0.398 

6 9.861 3.861 1.102 1.585 0.483 

7 10.627 3.627 1.180 1.684 0.504 

8 11.109 3.109 1.250 1.666 0.416 

9 11.856 2.856 1.342 1.807 0.466 

10 12.150 2.150 1.434 1.898 0.464 

11 12.193 1.193 1.540 1.922 0.382 

12 11.259 -0.741 1.642 2.078 0.436 

Table 4-10 Segment SNR results for sequence 2 with factory noise 

 

Fig. 4-14 Segment SNR improvement and PESQ scores 
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Sequence 3 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 2.434 2.434 1.143 1.241 0.098 

1 3.488 2.488 1.187 1.303 0.116 

2 4.586 2.586 1.233 1.373 0.140 

3 5.698 2.698 1.287 1.458 0.171 

4 7.903 3.903 1.338 1.710 0.372 

5 8.555 3.555 1.399 1.794 0.395 

6 9.320 3.320 1.463 1.887 0.424 

7 9.665 2.665 1.514 1.937 0.423 

8 9.944 1.944 1.564 2.015 0.450 

9 11.056 2.056 1.656 2.135 0.478 

10 11.110 1.110 1.744 2.189 0.445 

11 11.277 0.277 1.835 2.249 0.414 

12 12.175 0.175 1.942 2.332 0.391 

Table 4-11 Segment SNR results for sequence 3 with factory noise 

 

Fig. 4-15 Segment SNR improvement and PESQ scores 
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Sequence 4 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 2.993 2.993 1.035 1.171 0.135 

1 4.103 3.103 1.096 1.259 0.163 

2 5.453 3.453 1.169 1.418 0.249 

3 7.442 4.442 1.243 1.686 0.444 

4 8.358 4.358 1.323 1.809 0.485 

5 9.177 4.177 1.404 1.892 0.488 

6 9.953 3.953 1.489 1.993 0.504 

7 10.339 3.339 1.548 2.048 0.500 

8 11.336 3.336 1.636 2.128 0.492 

9 11.418 2.418 1.727 2.226 0.498 

10 12.157 2.157 1.827 2.268 0.441 

11 12.588 1.588 1.926 2.361 0.435 

12 12.473 0.473 2.017 2.424 0.407 

Table 4-12 Segment SNR results for sequence 4 with factory noise 

 

Fig. 4-16 Segment SNR improvement and PESQ scores 
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Sequence 1 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 12.331 12.331 2.701 2.728 0.028 

1 13.995 12.995 2.759 2.844 0.085 

2 15.752 13.752 2.818 2.890 0.072 

3 19.788 16.788 2.872 3.133 0.260 

4 20.964 16.964 2.928 3.069 0.142 

5 21.672 16.672 2.966 3.061 0.094 

6 23.633 17.633 3.028 3.047 0.020 

7 24.591 17.591 3.079 3.100 0.021 

8 25.668 17.668 3.141 3.160 0.019 

9 26.529 17.529 3.189 3.214 0.025 

10 27.688 17.688 3.254 3.274 0.020 

11 28.561 17.561 3.298 3.318 0.020 

12 29.785 17.785 3.357 3.373 0.015 

Table 4-13 Segment SNR results for sequence 1 with car noise 

 

Fig. 4-17 Segment SNR improvement and PESQ scores 
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Sequence 2 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 14.839 14.839 2.625 2.701 0.076 

1 15.069 14.069 2.712 2.775 0.063 

2 15.279 13.279 2.791 2.838 0.047 

3 21.763 18.763 2.873 2.936 0.063 

4 15.648 11.648 2.939 2.808 -0.131 

5 23.495 18.495 3.015 3.073 0.058 

6 24.486 18.486 3.087 3.146 0.059 

7 15.976 8.976 3.167 2.991 -0.176 

8 15.934 7.934 3.244 3.064 -0.179 

9 27.476 18.476 3.315 3.367 0.052 

10 28.546 18.546 3.384 3.436 0.052 

11 16.140 5.140 3.447 3.140 -0.307 

12 30.601 18.601 3.519 3.565 0.046 

Table 4-14 Segment SNR results for sequence 2 with car noise 

 

Fig. 4-18 Segment SNR improvement and PESQ scores 
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Sequence 3 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 15.983 15.983 2.860 2.836 -0.024 

1 17.504 16.504 2.924 3.222 0.298 

2 15.527 13.527 2.992 3.175 0.183 

3 17.157 14.157 3.060 3.213 0.153 

4 20.944 16.944 3.098 3.144 0.046 

5 21.638 16.638 3.150 3.195 0.044 

6 22.469 16.469 3.203 3.226 0.023 

7 17.210 10.210 3.265 3.464 0.199 

8 17.984 9.984 3.313 3.358 0.045 

9 23.856 14.856 3.371 3.378 0.007 

10 27.280 17.280 3.412 3.447 0.035 

11 29.966 18.966 3.455 3.461 0.006 

12 31.087 19.087 3.503 3.504 0.001 

Table 4-15 Segment SNR results for sequence 3 with car noise 

 

Fig. 4-19 Segment SNR improvement and PESQ scores 
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Sequence 4 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 19.925 19.925 2.877 2.925 0.049 

1 20.979 19.979 2.947 2.991 0.045 

2 21.968 19.968 3.008 3.050 0.043 

3 20.526 17.526 3.049 3.324 0.275 

4 22.253 18.253 3.114 3.289 0.175 

5 22.059 17.059 3.169 3.368 0.200 

6 22.203 16.203 3.227 3.406 0.179 

7 24.822 17.822 3.286 3.360 0.073 

8 27.678 19.678 3.346 3.370 0.024 

9 28.750 19.750 3.406 3.423 0.017 

10 26.028 16.028 3.453 3.529 0.076 

11 30.821 19.821 3.500 3.532 0.032 

12 31.717 19.717 3.546 3.569 0.023 

Table 4-16 Segment SNR results for sequence 4 with car noise 

 

Fig. 4-20 Segment SNR improvement and PESQ scores 
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Sequence 1 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 8.533 8.533 1.003 1.494 0.491 

1 9.187 8.187 1.041 1.556 0.515 

2 9.829 7.829 1.065 1.656 0.592 

3 10.459 7.459 1.098 1.753 0.654 

4 11.067 7.067 1.148 1.849 0.701 

5 11.698 6.698 1.209 1.941 0.732 

6 12.316 6.316 1.267 2.015 0.748 

7 12.946 5.946 1.322 2.084 0.762 

8 13.569 5.569 1.374 2.160 0.786 

9 14.201 5.201 1.451 2.238 0.787 

10 14.775 4.775 1.526 2.308 0.782 

11 15.380 4.380 1.606 2.379 0.773 

12 15.943 3.943 1.688 2.439 0.751 

Table 4-17 Segment SNR results (ideal VAD) for sequence 1 with white noise 

 

 
Fig. 4-21 Segment SNR comparison and PESQ score comparison. 
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Sequence 2 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 8.075 8.075 0.748 1.200 0.453 

1 8.668 7.668 0.794 1.338 0.544 

2 9.254 7.254 0.843 1.439 0.596 

3 9.840 6.840 0.900 1.555 0.655 

4 10.381 6.381 0.967 1.668 0.702 

5 10.958 5.958 1.039 1.757 0.718 

6 11.371 5.371 1.103 1.859 0.756 

7 11.926 4.926 1.177 1.935 0.757 

8 11.946 3.946 1.265 1.961 0.695 

9 12.046 3.046 1.363 2.073 0.710 

10 12.484 2.484 1.460 2.129 0.669 

11 12.869 1.869 1.565 2.210 0.646 

12 13.204 1.204 1.666 2.293 0.627 

Table 4-18 Segment SNR results (ideal VAD) for sequence 2 with white noise 

 

 
Fig. 4-22 Segment SNR comparison and PESQ score comparison. 
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Sequence 3 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 7.925 7.925 1.070 1.559 0.488 

1 8.524 7.524 1.102 1.657 0.555 

2 9.191 7.191 1.138 1.763 0.624 

3 9.868 6.868 1.182 1.862 0.680 

4 10.428 6.428 1.230 1.958 0.729 

5 11.135 6.135 1.286 2.045 0.759 

6 11.743 5.743 1.342 2.128 0.786 

7 12.269 5.269 1.415 2.215 0.800 

8 13.210 5.210 1.486 2.293 0.807 

9 13.820 4.820 1.561 2.365 0.804 

10 14.375 4.375 1.646 2.448 0.802 

11 14.672 3.672 1.740 2.513 0.773 

12 15.209 3.209 1.838 2.579 0.741 

Table 4-19 Segment SNR results (ideal VAD) for sequence 3 with white noise 

 

 
Fig. 4-23 Segment SNR comparison and PESQ score comparison. 
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Sequence 4 with white noise                                         (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 6.210 6.210 0.994 1.434 0.440 

1 8.951 7.951 1.055 1.739 0.684 

2 9.578 7.578 1.120 1.837 0.717 

3 10.207 7.207 1.189 1.932 0.743 

4 10.823 6.823 1.259 2.034 0.775 

5 11.432 6.432 1.337 2.097 0.760 

6 12.027 6.027 1.420 2.187 0.767 

7 12.640 5.640 1.492 2.268 0.776 

8 13.229 5.229 1.573 2.360 0.787 

9 13.872 4.872 1.659 2.420 0.761 

10 14.431 4.431 1.755 2.492 0.737 

11 15.044 4.044 1.852 2.576 0.724 

12 15.612 3.612 1.931 2.635 0.704 

Table 4-20 Segment SNR results (ideal VAD) for sequence 4 with white noise 

 

 
Fig. 4-24 Segment SNR comparison and PESQ score comparison. 
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Sequence 1 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 4.271 4.271 1.283 1.549 0.265 

1 5.157 4.157 1.326 1.618 0.292 

2 5.986 3.986 1.369 1.709 0.340 

3 6.718 3.718 1.422 1.749 0.327 

4 7.767 3.767 1.475 1.826 0.351 

5 8.565 3.565 1.531 1.899 0.368 

6 9.196 3.196 1.573 1.952 0.379 

7 10.082 3.082 1.639 2.020 0.381 

8 11.013 3.013 1.712 2.090 0.379 

9 11.697 2.697 1.775 2.134 0.358 

10 12.666 2.666 1.851 2.219 0.367 

11 13.601 2.601 1.940 2.309 0.369 

12 14.281 2.281 2.006 2.370 0.363 

Table 4-21 Segment SNR results (ideal VAD) for sequence 1 with babble noise 

 

 
Fig. 4-25 Segment SNR comparison and PESQ score comparison. 
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Sequence 2 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 3.926 3.926 1.283 0.930 0.170 

1 4.894 3.894 1.326 1.007 0.169 

2 5.618 3.618 1.369 1.130 0.227 

3 6.352 3.352 1.422 1.225 0.245 

4 7.087 3.087 1.475 1.308 0.257 

5 7.833 2.833 1.531 1.429 0.297 

6 8.635 2.635 1.573 1.525 0.298 

7 9.532 2.532 1.639 1.657 0.334 

8 10.339 2.339 1.712 1.755 0.338 

9 11.202 2.202 1.775 1.851 0.326 

10 12.044 2.044 1.851 1.931 0.305 

11 12.720 1.720 1.940 2.000 0.283 

12 13.563 1.563 2.006 2.095 0.278 

Table 4-22 Segment SNR results (ideal VAD) for sequence 2 with babble noise 

 

 
Fig. 4-26 Segment SNR comparison and PESQ score comparison. 
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Sequence 3 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 3.691 3.691 1.234 1.497 0.263 

1 4.442 3.442 1.291 1.573 0.282 

2 5.324 3.324 1.349 1.660 0.311 

3 6.115 3.115 1.415 1.723 0.308 

4 6.845 2.845 1.470 1.808 0.338 

5 7.497 2.497 1.521 1.863 0.341 

6 8.371 2.371 1.583 1.943 0.360 

7 9.141 2.141 1.653 2.025 0.373 

8 10.145 2.145 1.733 2.106 0.373 

9 10.871 1.871 1.800 2.186 0.386 

10 11.657 1.657 1.874 2.261 0.387 

11 12.526 1.526 1.966 2.348 0.383 

12 13.300 1.300 2.055 2.442 0.387 

Table 4-23 Segment SNR results (ideal VAD) for sequence 3 with babble noise 

 

 
Fig. 4-27 Segment SNR comparison and PESQ score comparison. 
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Sequence 4 with babble noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 2.633 2.633 1.139 1.331 0.192 

1 4.360 3.360 1.172 1.475 0.304 

2 5.339 3.339 1.283 1.555 0.271 

3 6.207 3.207 1.354 1.677 0.324 

4 6.827 2.827 1.400 1.698 0.298 

5 7.690 2.690 1.482 1.815 0.333 

6 8.630 2.630 1.557 1.908 0.351 

7 9.570 2.570 1.639 2.022 0.382 

8 10.359 2.359 1.708 2.108 0.400 

9 11.351 2.351 1.810 2.176 0.366 

10 12.212 2.212 1.888 2.267 0.380 

11 13.073 2.073 1.980 2.364 0.384 

12 13.908 1.908 2.085 2.429 0.344 

Table 4-24 Segment SNR results (ideal VAD) for sequence 4 with babble noise 

 

 
Fig. 4-28 Segment SNR comparison and PESQ score comparison. 
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Sequence 1 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 5.411 5.411 1.074 1.454 0.380 

1 6.150 5.150 1.112 1.515 0.403 

2 6.908 4.908 1.150 1.582 0.431 

3 7.840 4.840 1.207 1.694 0.487 

4 8.732 4.732 1.259 1.808 0.549 

5 9.590 4.590 1.295 1.898 0.603 

6 10.475 4.475 1.357 1.988 0.631 

7 11.272 4.272 1.421 2.042 0.621 

8 12.117 4.117 1.489 2.119 0.630 

9 12.705 3.705 1.537 2.174 0.637 

10 13.574 3.574 1.610 2.264 0.654 

11 14.529 3.529 1.703 2.346 0.643 

12 15.324 3.324 1.787 2.416 0.629 

Table 4-25 Segment SNR results (ideal VAD) for sequence 1 with factory noise 

 

 
Fig. 4-29 Segment SNR comparison and PESQ score comparison. 
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Sequence 2 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 5.159 5.159 0.720 0.987 0.267 

1 5.902 4.902 0.776 1.091 0.315 

2 6.612 4.612 0.832 1.146 0.314 

3 7.604 4.604 0.898 1.289 0.391 

4 8.225 4.225 0.965 1.396 0.431 

5 9.116 4.116 1.034 1.462 0.427 

6 9.988 3.988 1.102 1.611 0.509 

7 10.510 3.510 1.180 1.587 0.407 

8 11.353 3.353 1.250 1.758 0.508 

9 12.058 3.058 1.342 1.894 0.553 

10 12.477 2.477 1.434 1.807 0.372 

11 13.336 2.336 1.540 1.940 0.400 

12 13.748 1.748 1.642 2.039 0.397 

Table 4-26 Segment SNR results (ideal VAD) for sequence 2 with factory noise 

 

 
Fig. 4-30 Segment SNR comparison and PESQ score comparison. 
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Sequence 3 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 4.743 4.743 1.143 1.424 0.280 

1 5.604 4.604 1.187 1.515 0.328 

2 6.308 4.308 1.233 1.560 0.326 

3 7.120 4.120 1.287 1.650 0.363 

4 7.916 3.916 1.338 1.757 0.419 

5 8.800 3.800 1.399 1.821 0.422 

6 9.533 3.533 1.463 1.915 0.453 

7 10.264 3.264 1.514 2.028 0.514 

8 10.921 2.921 1.564 2.067 0.503 

9 11.716 2.716 1.656 2.159 0.502 

10 12.620 2.620 1.744 2.273 0.529 

11 13.588 2.588 1.835 2.330 0.495 

12 14.309 2.309 1.942 2.408 0.466 

Table 4-27 Segment SNR results (ideal VAD) for sequence 3 with factory noise 

 

 
Fig. 4-31 Segment SNR comparison and PESQ score comparison. 
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Sequence 4 with factory noise                                        (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 3.777 3.777 1.035 1.299 0.263 

1 5.698 4.698 1.096 1.511 0.414 

2 6.640 4.640 1.169 1.598 0.429 

3 7.500 4.500 1.243 1.673 0.431 

4 8.366 4.366 1.323 1.816 0.493 

5 9.183 4.183 1.404 1.892 0.489 

6 10.094 4.094 1.489 1.998 0.509 

7 10.719 3.719 1.548 2.050 0.503 

8 11.507 3.507 1.636 2.158 0.522 

9 12.348 3.348 1.727 2.219 0.492 

10 13.322 3.322 1.827 2.320 0.493 

11 14.190 3.190 1.926 2.399 0.473 

12 14.969 2.969 2.017 2.455 0.438 

Table 4-28 Segment SNR results (ideal VAD) for sequence 4 with factory noise 

 

 
Fig. 4-32 Segment SNR comparison and PESQ score comparison. 
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Sequence 1 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 18.708 18.708 2.701 3.000 0.299 

1 19.302 18.302 2.759 3.060 0.301 

2 19.818 17.818 2.818 3.130 0.313 

3 20.336 17.336 2.872 3.156 0.284 

4 20.755 16.755 2.928 3.219 0.291 

5 21.582 16.582 2.966 3.136 0.170 

6 22.967 16.967 3.028 3.079 0.052 

7 24.591 17.591 3.079 3.101 0.022 

8 25.668 17.668 3.141 3.162 0.021 

9 26.528 17.528 3.189 3.208 0.019 

10 27.688 17.688 3.254 3.272 0.018 

11 28.558 17.558 3.298 3.315 0.017 

12 29.781 17.781 3.357 3.371 0.013 

Table 4-29 Segment SNR results (ideal VAD) for sequence 1 with car noise 

 

 
Fig. 4-33 Segment SNR comparison and PESQ score comparison. 
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Sequence 2 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 14.942 14.942 2.625 2.719 0.094 

1 15.131 14.131 2.712 2.781 0.070 

2 15.303 13.303 2.791 2.848 0.057 

3 21.769 18.769 2.873 2.936 0.063 

4 22.528 18.528 2.939 3.001 0.061 

5 23.494 18.494 3.015 3.073 0.058 

6 24.439 18.439 3.087 3.138 0.051 

7 25.496 18.496 3.167 3.214 0.047 

8 26.518 18.518 3.244 3.295 0.051 

9 27.474 18.474 3.315 3.367 0.052 

10 28.546 18.546 3.384 3.436 0.052 

11 29.514 18.514 3.447 3.496 0.049 

12 30.601 18.601 3.519 3.565 0.046 

Table 4-30 Segment SNR results (ideal VAD) for sequence 2 with car noise 

 

 
Fig. 4-34 Segment SNR comparison and PESQ score comparison. 
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Sequence 3 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 17.415 17.415 2.860 3.211 0.351 

1 17.800 16.800 2.924 3.273 0.349 

2 17.542 15.542 2.992 3.302 0.311 

3 20.815 17.815 3.060 3.125 0.065 

4 21.195 17.195 3.098 3.146 0.047 

5 23.945 18.945 3.150 3.161 0.010 

6 24.919 18.919 3.203 3.211 0.008 

7 26.015 19.015 3.265 3.265 -0.001 

8 26.894 18.894 3.313 3.306 -0.007 

9 28.080 19.080 3.371 3.365 -0.006 

10 28.971 18.971 3.412 3.408 -0.004 

11 29.966 18.966 3.455 3.451 -0.004 

12 31.087 19.087 3.503 3.498 -0.005 

Table 4-31 Segment SNR results (ideal VAD) for sequence 3 with car noise 

 

 
Fig. 4-35 Segment SNR comparison and PESQ score comparison. 
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Sequence 4 with car noise                                           (dB) 

Original 

SNRseg 

Processed 

SNRseg 

SNRseg 

improvement

Original 

PESQ 

Processed 

PESQ 

PESQ 

improvement

0 19.296 19.296 2.877 3.162 0.286 

1 20.498 19.498 2.947 3.300 0.353 

2 20.968 18.968 3.008 3.295 0.288 

3 22.095 19.095 3.049 3.221 0.172 

4 22.711 18.711 3.114 3.272 0.158 

5 23.172 18.172 3.169 3.320 0.151 

6 25.700 19.700 3.227 3.259 0.032 

7 26.722 19.722 3.286 3.314 0.028 

8 27.678 19.678 3.346 3.369 0.023 

9 28.750 19.750 3.406 3.424 0.018 

10 29.716 19.716 3.453 3.470 0.017 

11 30.800 19.800 3.500 3.523 0.023 

12 31.717 19.717 3.546 3.569 0.023 

Table 4-32 Segment SNR results (ideal VAD) for sequence 4 with car noise 

 

 
Fig. 4-36 Segment SNR comparison and PESQ score comparison. 
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4.2.1. Influence of Different Original Segment SNR 

It can be seen that the improvement in segment SNR maximizes under medium 

original SNR, i.e. for segment SNR between 4dB and 8dB.  The improvement 

mainly depends on the accuracy of VAD.  Under medium original segment SNR, the 

VAD is more accurate and the processed SNR becomes much higher than that under 

low original segment SNR.  For high original segment SNR, the improvement is 

limited since little noise energy variation may cause drastic influence in processed 

segment SNR. 

4.2.2. Influence of Different Noise Type 

Table 4-33 to Table 4-36 show the average segment SNR results for different types 

of noise respectively.  Table 4-37 to Table 4-40 show the average segment SNR 

results for different types of noise with ideal VAD respectively.  The segment SNR 

improvement for different types of noise is illustrated in Fig. 4-37.  The graph of 

average segment SNR difference for ideal/non-ideal VAD is illustrated in Fig. 4-38.  

Fig. 4-39 illustrates average PESQ result for different types of noise.  And Fig. 4-40 

illustrates the average PESQ difference between the result using non-ideal (proposed) 

VAD and the ideal ones.  Notice that the y-axis scale for car noise differs from that 

of the other noise.  Different noise types affect the performance of the proposed 

algorithm and are discussed below: 

a. White noise: the spectral energy component of white noise is widely spread 

such that it is easier to differentiate the speech energy part from the background 

noise.  The average segment SNR improvement and average PESQ for white 

noise is relative good as compared to babble noise and factory noise since the 
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noise estimation in silence region is more accurate than in babble noise and 

factory noise.  The inherent characteristic of white noise is stationary if we 

expand the scope to a given bandwidth in a given period, for example, one 

subband frame of the filter bank since the energy is randomly distributed in the 

whole spectrum.  And for the proposed design, the more stationary in one 

subband the noise is, the more accurate the noise estimation will be.  Thus 

either for ideal or non-ideal VAD, the performance for the proposed algorithm 

under white noise ranked 2nd within the four noise types. 

b. Babble noise: the spectral energy component of babble noise highly overlapped 

with that of speech energy thus it becomes hard to distinguish between speech 

and background noise.  Also, for spectral subtraction, the characteristic of the 

babble noise causes destruction for the original speech, resulting in lower 

quality improvement.  Experimental results show that whether the VAD is 

ideal or not, the performance for the proposed algorithm under babble noise 

ranked last among the 4 noise types. 

c. Factory noise: the factory noise in the test database has energy that concentrated 

mostly in high frequency and low frequency.  The characteristic leads to better 

distinguishability between the speech and background noise in spectral domain.  

The simulation results show that the performance of the proposed algorithm 

under factory noise is better than the babble noise due to the inherent property 

of this type of noise.  However the non-stationary characteristic of the factory 

noise is responsible for the lower performance compared to that of white noise 

which is discussed before. 

d. Car noise: the car noise stands for the noise recorded inside a riding car which 

has nearly all the energy lying in the low frequency bands.  The energy falls 
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mostly into the lowest subband (i.e. F22) in the filter bank, leaving other 

subband free of noise corruption, including the speech energy dominant bands.  

Experimental results show that the proposed algorithm performs best under car 

noise environment since the spectral subtraction effectively wipes out unwanted 

noise in the lowest subbands.  The PESQ score improvement is low since the 

original PESQ of the car noise corrupted speech is high enough, which means 

the quality of the speech under car noise is close to the clean speech. 
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Average performance in white noise 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 4.338 4.338 0.954 1.135 0.299 

1 5.515 4.515 0.998 1.207 0.301 

2 6.592 4.592 1.041 1.296 0.313 

3 7.662 4.662 1.092 1.392 0.284 

4 8.901 4.901 1.151 1.553 0.291 

5 9.701 4.701 1.218 1.711 0.170 

6 11.441 5.441 1.283 2.000 0.052 

7 11.968 4.968 1.351 2.084 0.022 

8 12.401 4.401 1.424 2.156 0.021 

9 12.949 3.949 1.508 2.239 0.019 

10 13.230 3.230 1.597 2.303 0.018 

11 12.803 1.803 1.691 2.328 0.017 

12 13.029 1.029 1.781 2.407 0.013 

Table 4-33 Average performance in white noise 
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Average performance in babble noise 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 1.342 1.342 0.941 1.024 0.083 

1 2.715 1.715 0.993 1.090 0.097 

2 4.479 2.479 1.063 1.258 0.195 

3 5.743 2.743 1.129 1.370 0.241 

4 6.654 2.654 1.188 1.453 0.265 

5 7.570 2.570 1.262 1.569 0.307 

6 8.315 2.315 1.337 1.674 0.337 

7 9.214 2.214 1.414 1.779 0.365 

8 9.987 1.987 1.485 1.830 0.345 

9 10.766 1.766 1.583 1.944 0.361 

10 11.564 1.564 1.673 2.024 0.351 

11 12.010 1.010 1.768 2.093 0.326 

12 11.846 -0.154 1.871 2.159 0.288 

Table 4-34 Average performance in babble noise 
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Average performance in factory noise 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 3.246 3.246 0.993 1.145 0.152 

1 4.346 3.346 1.043 1.223 0.181 

2 5.413 3.413 1.096 1.311 0.215 

3 6.739 3.739 1.158 1.463 0.304 

4 8.126 4.126 1.221 1.624 0.403 

5 8.754 3.754 1.283 1.707 0.424 

6 9.851 3.851 1.353 1.829 0.477 

7 10.455 3.455 1.416 1.906 0.491 

8 11.081 3.081 1.485 1.958 0.473 

9 11.722 2.722 1.566 2.067 0.502 

10 12.138 2.138 1.654 2.130 0.477 

11 12.289 1.289 1.751 2.196 0.445 

12 12.398 0.398 1.847 2.285 0.438 

Table 4-35 Average performance in factory noise 

 

 

 

 

 

 



 

 

80 

 

Average performance in car noise 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 15.769  15.769 2.766 2.798 0.032 

1 16.887  15.887 2.835 2.958 0.123 

2 17.131  15.131 2.902 2.988 0.086 

3 19.808  16.808 2.964 3.151 0.188 

4 19.952  15.952 3.020 3.078 0.058 

5 22.216  17.216 3.075 3.174 0.099 

6 23.198  17.198 3.136 3.207 0.070 

7 20.649  13.649 3.199 3.228 0.029 

8 21.816  13.816 3.261 3.238 -0.023 

9 26.653  17.653 3.320 3.345 0.025 

10 27.385  17.385 3.376 3.422 0.046 

11 26.372  15.372 3.425 3.363 -0.062 

12 30.797  18.797 3.481 3.503 0.021 

Table 4-36 Average performance in car noise 

 

 

 

 

 

 



 

 

81 

 

Average performance in white noise with ideal VAD 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 7.685 7.685 0.954 1.422 0.468 

1 8.833 7.833 0.998 1.572 0.575 

2 9.463 7.463 1.041 1.674 0.632 

3 10.093 7.093 1.092 1.775 0.683 

4 10.675 6.675 1.151 1.877 0.727 

5 11.306 6.306 1.218 1.960 0.742 

6 11.864 5.864 1.283 2.047 0.764 

7 12.445 5.445 1.351 2.125 0.774 

8 12.988 4.988 1.424 2.193 0.769 

9 13.485 4.485 1.508 2.274 0.766 

10 14.016 4.016 1.597 2.344 0.748 

11 14.491 3.491 1.691 2.420 0.729 

12 14.992 2.992 1.781 2.487 0.706 

Table 4-37 Average performance in white noise with ideal VAD 
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Average performance in babble noise with ideal VAD 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 3.630 3.630 0.941 1.163 0.223 

1 4.713 3.713 0.993 1.255 0.262 

2 5.567 3.567 1.063 1.350 0.287 

3 6.348 3.348 1.129 1.430 0.301 

4 7.131 3.131 1.188 1.499 0.311 

5 7.896 2.896 1.262 1.597 0.335 

6 8.708 2.708 1.337 1.684 0.347 

7 9.581 2.581 1.414 1.782 0.368 

8 10.464 2.464 1.485 1.857 0.373 

9 11.280 2.280 1.583 1.942 0.359 

10 12.145 2.145 1.673 2.033 0.360 

11 12.980 1.980 1.768 2.123 0.355 

12 13.763 1.763 1.871 2.214 0.343 

Table 4-38 Average performance in babble noise with ideal VAD 
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Average performance in factory noise with ideal VAD 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 4.773 4.773 0.993 1.291 0.298 

1 5.838 4.838 1.043 1.408 0.365 

2 6.617 4.617 1.096 1.471 0.375 

3 7.516 4.516 1.158 1.576 0.418 

4 8.310 4.310 1.221 1.694 0.473 

5 9.172 4.172 1.283 1.768 0.485 

6 10.022 4.022 1.353 1.878 0.526 

7 10.691 3.691 1.416 1.927 0.511 

8 11.474 3.474 1.485 2.026 0.541 

9 12.207 3.207 1.566 2.112 0.546 

10 12.998 2.998 1.654 2.166 0.512 

11 13.911 2.911 1.751 2.254 0.503 

12 14.587 2.587 1.847 2.329 0.483 

Table 4-39 Average performance in factory noise with ideal VAD 
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Average performance in car noise with ideal VAD 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 17.590 17.590 2.766 3.023 0.258 

1 18.183 17.183 2.835 3.104 0.268 

2 18.408 16.408 2.902 3.144 0.242 

3 21.254 18.254 2.964 3.110 0.146 

4 21.797 17.797 3.020 3.159 0.139 

5 23.048 18.048 3.075 3.172 0.097 

6 24.506 18.506 3.136 3.172 0.036 

7 25.706 18.706 3.199 3.223 0.024 

8 26.690 18.690 3.261 3.283 0.022 

9 27.708 18.708 3.320 3.341 0.021 

10 28.730 18.730 3.376 3.397 0.021 

11 29.710 18.710 3.425 3.446 0.021 

12 30.796 18.796 3.481 3.501 0.019 

Table 4-40 Average performance in car noise with ideal VAD 
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Fig. 4-37 Average segment SNR improvement for ideal/non-ideal VAD 

 

 

Fig. 4-38 Average segment SNR difference for ideal/non-ideal VAD 
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Fig. 4-39 Average PESQ improvement for different noise type 

 

 

Fig. 4-40 Average PESQ difference for ideal/non-ideal VAD 
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4.2.3. Influence of Different Silence Period Length before 

Speech 

Table 4-41 to Table 4-44 show the average performance for different silence before 

speech, which are 2 seconds, 4 seconds, 8 seconds, and 16 seconds respectively.  

Table 4-45 shows the average performance for 16 seconds of silence before speech 

with ideal VAD.   

Fig. 4-41 illustrates the segment SNR results for sequence 1 with different silence 

period added before the speech.  Fig. 4-42 depicts the PESQ scores for sequence 1 

with different length of silence period added before the speech.  It can be observed 

that for sequences with silence period of 16 seconds and 8 seconds, the processed 

segment SNR performs better than the sequences with silence period of 4 seconds and 

2 seconds for white noise and factory noise in low original segment SNR.  Also, the 

PESQ score improvement for sequences with silence period of 16 seconds and 8 

seconds performs better than the sequences with silence period of 4 seconds and 2 

seconds for white noise, babble noise, and factory noise in low original segment SNR.  

The reason is that the longer the silence before the speech is, the more time allowed 

for adaptive threshold to move closer to the appropriate position.  In that way, VAD 

accuracy and noise estimation will be enhanced and thus contributes to better 

performance for the proposed algorithm. 

Fig. 4-43 shows the comparison of segment SNR results for sequence 1 with 16 

seconds silence period added before the speech for ideal/non-ideal VAD.  Fig. 4-44 

shows the PESQ scores for sequence 1 with 16 seconds silence period added before 

the speech for ideal/non-ideal VAD.  It can be observed that if we extend the silence 
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length before the speech, the performance will close to that using ideal VAD.  Thus 

we can conclude that the adaptive threshold requires some “training” time, i.e. 16 

seconds to achieve best performance which may contribute to better segment SNR 

improvement and PESQ score improvement. 

The reason that the effect is not obvious for babble noise is that babble noise varies 

a lot from time to time, causing the adaptive threshold hard to make the appropriate 

tracking, reducing the performance even with long silence period before the speech.  

And for car noise, the processed segment SNR reaches over 10dB for low segment 

SNR even with short silence before the speech.  The car noise is stationary such that 

the improvement is not obvious since adaptive threshold tracks effectively under 4 

different silence lengths before the speech.  With high segment SNR, a little energy 

glitch may result in severe change when calculating segment SNR and is shown in the 

figure. 
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Average performance for 2 seconds silence before speech 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 5.339 5.339 1.537 1.611 0.074 

1 6.865 5.865 1.580 1.728 0.148 

2 8.437 6.437 1.626 1.809 0.183 

3 9.797 6.797 1.675 1.905 0.230 

4 11.100 7.100 1.725 2.004 0.279 

5 12.456 7.456 1.775 2.131 0.356 

6 13.407 7.407 1.835 2.208 0.373 

7 14.422 7.422 1.895 2.274 0.380 

8 15.407 7.407 1.955 2.367 0.412 

9 16.050 7.050 2.016 2.430 0.414 

10 16.259 6.259 2.087 2.486 0.400 

11 16.977 5.977 2.161 2.553 0.392 

12 17.756 5.756 2.240 2.603 0.362 

Table 4-41 Average performance for 2 seconds silence before speech 
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Average performance for 4 seconds silence before speech 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 5.058 5.058 1.515 1.586 0.070 

1 6.083 5.083 1.560 1.661 0.102 

2 7.742 5.742 1.601 1.753 0.152 

3 9.695 6.695 1.650 1.849 0.199 

4 10.912 6.912 1.702 1.950 0.248 

5 12.746 7.746 1.750 2.138 0.388 

6 13.247 7.247 1.806 2.185 0.379 

7 14.492 7.492 1.865 2.249 0.383 

8 15.414 7.414 1.929 2.345 0.417 

9 15.991 6.991 1.988 2.394 0.406 

10 15.658 5.658 2.060 2.484 0.424 

11 16.793 5.793 2.137 2.524 0.387 

12 17.538 5.538 2.210 2.575 0.365 

Table 4-42 Average performance for 4 seconds silence before speech 
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Average performance for 8 seconds silence before speech 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 6.287 6.287 1.505 1.669 0.164 

1 6.773 5.773 1.552 1.731 0.180 

2 9.092 7.092 1.585 1.850 0.265 

3 10.085 7.085 1.626 1.938 0.313 

4 10.575 6.575 1.673 2.016 0.342 

5 11.783 6.783 1.724 2.108 0.384 

6 13.137 7.137 1.778 2.168 0.390 

7 14.248 7.248 1.833 2.217 0.384 

8 14.740 6.740 1.894 2.294 0.401 

9 15.871 6.871 1.946 2.358 0.412 

10 15.820 5.820 2.008 2.412 0.404 

11 16.453 5.453 2.082 2.481 0.399 

12 16.959 4.959 2.156 2.516 0.360 

Table 4-43 Average performance for 8 seconds silence before speech 
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Average performance for 16 seconds silence before speech 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 6.772 6.772 1.547 1.773 0.226 

1 7.473 6.473 1.573 1.802 0.229 

2 8.151 6.151 1.608 1.844 0.236 

3 9.750 6.750 1.644 1.953 0.309 

4 10.857 6.857 1.816 2.039 0.223 

5 11.662 6.662 1.705 2.077 0.372 

6 13.282 7.282 1.774 2.130 0.356 

7 14.140 7.140 1.828 2.205 0.377 

8 14.946 6.946 1.888 2.283 0.395 

9 15.916 6.916 1.941 2.349 0.408 

10 16.245 6.245 1.999 2.397 0.398 

11 16.342 5.342 2.063 2.612 0.548 

12 16.691 4.691 2.124 2.494 0.371 

Table 4-44 Average performance for 16 seconds silence before speech 
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Average performance for 16 seconds silence before speech with ideal VAD 

Original 

SNRseg 

Processed 

SNRseg 

(average) 

SNRseg 

improvement

(average) 

Original 

PESQ 

(average)

Processed 

PESQ 

(average)

PESQ 

improvement 

(average) 

0 9.003 9.003 1.547 1.843 0.296 

1 9.737 8.737 1.573 1.904 0.331 

2 10.451 8.451 1.608 1.969 0.361 

3 11.147 8.147 1.644 2.036 0.392 

4 11.818 7.818 1.816 2.115 0.299 

5 12.735 7.735 1.705 2.147 0.442 

6 13.354 7.354 1.774 2.218 0.445 

7 14.479 7.479 1.828 2.255 0.427 

8 15.337 7.337 1.888 2.330 0.442 

9 16.118 7.118 1.941 2.389 0.448 

10 16.917 6.917 1.999 2.453 0.454 

11 17.798 6.798 2.063 2.526 0.463 

12 18.607 6.607 2.124 2.585 0.461 

Table 4-45 Average performance for 16 seconds silence before speech with ideal VAD 
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Fig. 4-41 Segment SNR for different silence length before speech 

 

Fig. 4-42 PESQ for different silence length before speech 
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Fig. 4-43 Comparison of segment SNR for ideal/non-ideal VAD with 16 sec silence 

 

Fig. 4-44 Comparison of PESQ scores for ideal/non-ideal VAD with 16 sec silence 
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4.3. Comparison with Different Algorithms  

  Table 4-46 Comparison of segment SNR over different algorithmsshows the 

comparison between the proposed algorithm and other noise reduction algorithms 

with original segment SNR of 0dB, 5dB, and 10dB.  The test sequences of the other 

algorithms are based on their testing environment which is different from the 

proposed algorithm.  The noise database of the other algorithms is also from 

Noisex-92.  The noise types used for other algorithms are white, babble, factory, and 

F-16 cockpit.  The noise types used for the proposed algorithm are white, babble, 

factory, and car.   

  From the comparison result, we can see that the proposed algorithm performs better 

than A and B and F under 0dB original segment SNR.  For 5dB and 10dB original 

segment SNR, the proposed algorithm performs better than the algorithms A to F. 

 

 

Original 

segment SNR 

0dB 5dB 10dB 

A[20] 1.79dB 7.22dB 10.96dB 

B[20] 1.93dB 8.76dB 11.21dB 

C[7] 6.60dB 9.23dB 12.65dB 

D[16] 6.34dB 9.54dB 11.89dB 

E[17] 6.53dB 9.62dB 12.85dB 

F[22] 4.80dB 8.63dB 12.66dB 

Proposed 5.81dB 11.64dB 15.72dB 

Table 4-46 Comparison of segment SNR over different algorithms.   
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A: Hard thresholding.  

B: Soft thresholding.  

C: MMSE short time spectral amplitude estimator.  

D: Wavelet speech enhancement based on the teager Energy Operator.   

E: Speech enhancement using perceptual wavelet packet decomposition and teager 

energy operator. 

F: Explicit-Form Gain Factor for Speech Enhancement Using Spectral-Domain 

Constrained Approach 

4.4. Average Segment SNR Improvement and Average 

PESQ Score Improvement 

Table 4-47 shows the average segment SNR improvement and average PESQ score 

improvement for the proposed algorithm.  The average segment SNR improvement 

for 4 sequences and 4 types of noise under 0dB to 12dB original segment SNR is 

6.27dB.  The average PESQ score improvement is 0.32. 

 

Average segment SNR improvement Average PESQ score improvement 

6.27dB 0.32 

Table 4-47 Average segment SNR improvement and average PESQ score 

improvement 

4.5. Summary 

  The experimental results show the VAD accuracy and the performance of the 

proposed algorithm for 4 input sequences and under 4 different type of noise which 
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are white, babble, factory, and car noise.  Different noise type results in dissimilar 

performance of the proposed algorithm due to the inherent characteristic of the energy 

distribution in the noise.  The input sequences that differ in the length of silence 

period before the speech also cause various performance results. 
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Chapter 5. Hardware Implementation 

5.1. Architecture Design 

The proposed algorithm is implemented by ASIC design flow with the hardware 

architecture depicted in Fig. 5-1.  The hardware processing is based on the schedule 

as depicted in Fig. 5-2.  The clock frequency is 6MHz such that the cycle period is 

166ns.  According to the system specification, the cycle count allowed for 

calculation is 8,000 while the cycle count needed to complete the processes is less 

than 8,000 such that no pipelining or parallel processing is required.  From the 

schedule we know that the processes in the proposed design are performed 

sequentially which means only one stage processes the data at one time.  Thus the 

hardware resource can be reused.  The hardware architecture utilizes the “folding” 

technique which means that few hardware resources are reused again and again to 

process data that are fed in sequentially.   

The conversion of the algorithm to the hardware architecture is described below: 

a. The input sequence data samples are stored into SRAM set 0 and SRAM set 1 

with 256x16bit capacity alternately as described in 3.5.3.  Thus one sequence 

can be processed when another sequence is being input simultaneously as 

depicted in Fig. 5-2.  This is also called ping-pong buffer. 

For the I/O timing synchronization of SRAM, two sets of registers are added at 

the input and output ports of the SRAM sets respectively. 

b. The ABSVAL block takes the absolute values of input sequence data samples.  

The data samples are then summed up together by a 32-bit adder ADD.  The 
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window averaging process in Fig. 5-2 is performed by the shifter.  The 

averaged data samples are added by the constant K as depicted in 3.5.3.   

c. For logarithm calculation (i.e. Log2 function in Fig. 5-2), the multiplications in 

(3-9) and (3-14) are replaced by shift-add process with shifter and ADD.  The 

subtractions are implemented by taking 2’s complement number and then 

perform additions by ADD.  The table-lookup process as shown in 3.5.3 is 

carried out by Combinational logic. 

d. The entropy result calculation is done by ADD. 

e. The adaptive thresholding process as shown in Fig. 5-2 is implemented by 

Combinational logic and the adder ADD as described in 3.5.4. 

f. The VAD state decision in 3.6.1. is performed by Combinational logic.  The 

noise estimation for Silence Zone as illustrated in Fig. 5-2 is implemented by 

ADD, shifter, and Combinational logic as shown in 3.6.2. 

g. For spectral attenuation (Silence Zone and Too-short Voiced Zone) and spectral 

subtraction (Voiced Zone and Voice Protection Zone) which are depicted in 

3.6.3, 3.6.4., and 3.6.5., ADD and shifter are utilized.  The Combinational 

logic is also involved in making decision of the spectral subtraction. 

h. The off mechanism is implemented by Combination logic.  When it’s activated, 

the processes after it (spectral attenuation or spectral subtraction) will not be 

performed. 

i. For the increment in every counter for the proposed algorithm, the incrementor 

INCR is utilized. 

j. The output data samples are stored in SRAM set 2 for buffering.  The output 

stage then feed the data to the Insertion Gain in the digital hearing aid system. 
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From the mapping listed above, the algorithm is implemented by the architecture 

with simple hardware resource.  For deep submicron fabrication, leakage power is an 

important issue.  The proposed architecture is simple and utilizes one 32-bit ADD 

only, thus the circuit area is minimized, namely, reduces the static power consumption.  

The dynamic power consumption is also minimized since the computation complexity 

is reduced as discussed previously and all the calculations that need high hardware 

resource are taken apart or removed. 

 

 

Fig. 5-1 Hardware architecture of the proposed design 
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Fig. 5-2 Hardware schedule of the proposed design 
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5.2. Implementation Result 
The hardware design is implemented with Verilog RTL coding.  The design is 

synthesized by Synopsys DesignCompiler™ under UMC 90nm CMOS technology 

with high VT cell library.  1.536K Bytes (256x16bit x3) of SRAM are utilized. 

The estimated gate-count of the synthesized netlist is 101,697 (including SRAM).  

If the SRAM is excluded, the estimated gate-count is 80,628.  The detailed hardware 

specifications are listed in Table 5-1. 

The proposed design is integrated into the digital hearing aid system.  Fig. 5-3 is 

the layout of the digital system chip.  The position of the proposed design and the 

corresponding SRAM sets are marked in red rectangle in Fig. 5-4.  The power report 

is shown in Table 5-2. 

 

Specifications 

VDD (supply voltage) 1.0V 

Clock frequency 6MHz 

Technology  UMC 90nm CMOS 

Cell library high VT 

SRAM usage 1.536K Bytes 

Gate-count (including SRAM) 101,697 (estimated) 

Gate-count (excluding SRAM) 80,628 (estimated) 

Table 5-1 Hardware specifications of the proposed design 
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Fig. 5-3 Layout of the digital hearing aid system chip 

 
Fig. 5-4 Position marking of each submodules in the chip layout. 
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Table 5-2 Power report of the proposed noise reduction design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Total Power  

Dynamic Power 

( % of total power) 

Leakage Power 

( % of total power) 

Proposed noise 

reduction design 

૛ૢ૛. ૠࢃࣆ ૛૛૞. ૠࢃࣆ 

(77.10 %) 

૟ૠ. ૙ࢃࣆ 

(22.90 %) 
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Chapter 6.  Conclusion and Future Work 

6.1. Conclusion 

In this thesis, we propose a low power noise reduction design for hearing aids 

application.  The algorithm is composed of entropy-based voice activity detection 

and filter bank-based spectral subtraction with low power hardware optimization 

respectively.  Simulation results show that the average segment SNR improvement is 

6.27dB and the average PESQ score is improved by 0.316.  The comparison 

demonstrates that the processed segment SNR is better than other algorithms under 

5dB and 10dB original segment SNR.  The hardware design is implemented by 

UMC 90nm CMOS technology with high VT cell library.  For data storage, 1.536K 

Bytes of SRAM is utilized.  The total estimated gate count is 101,697 including 

SRAM and 80,628 excluding SRAM.  The total power consumption is 292.7μW. 

In summary, our design can not only enhance the speech quality but also can be 

hardware implemented with low power consumption.  In that way, the proposed 

design is suitable for low power hearing aid applications. 

6.2. Future Work 

  We have proposed a low power hardware optimized noise reduction algorithm for 

hearing aids application, while there are still some issues that should be analyzed and 

improved in future modification.  The VAD performance and segment SNR results 

for babble noise under low original segment SNR is comparatively lower than under 

other types of noise.  A more accurate VAD decision mechanism might be developed 
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for non-stationary noise such as the babble noise.  Subband VAD may also be 

considered since the precision and power consumption may be further enhanced.  

The performance of spectral subtraction might be further enhanced by utilizing the 

filter bank with better resolution and the refined subtraction factor based on the 

inherent characteristics of the Chinese language.  For hardware implementation, 

CPU-like design may be adopted in order to further save area and power consumption 

since the ROM code has smaller area occupation than that of logic gates or registers.
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