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摘   要 

 

本論文提出了利用 K-Best 演算法之軟性里德索羅門解碼器。這個方法主要

可以分成三個部分：前置處理、候選人選擇機制、消去解碼。 

在前置處理的部分，我們根據接收到的軟性資訊，給予每一個接收到的符號

一個可信度。候選人選擇機制的部分，利用可信度的資訊以及獨立的特性去產生

出可能的候選人組合。因為可能的組合有很多，所以利用 K-Best 演算法的限制

來降低運算量。在第三個部分，消去解碼被用來解可能的候選人組合。為了找到

合理的候選人數量，需要考慮到兩個相抗衡的項：性能和複雜度。 

模擬的結果顯示，在里德索羅門碼(15,11)的狀況，所提出的演算法在字碼

錯誤率(CER)為 10-4時，其效能比硬性的BerleKamp-Messy(HD-BM)演算法好

2.4dB，並且比Kotter-Vardy(KV)好 1.3dB。與KV演算法比較時，運算複雜度至

少降低了 41.7%。而與動態可靠度傳播-代數軟性選擇(ABP-ASD)演算法比較，當

字碼錯誤率等於 10-4還有 0.3dB的效能差距，但是複雜度降低了至少 75.5％。對

於里德索羅門碼(31,25)，提出的方法在字碼錯誤率等於 10-4時，比HD-BM演算法

好 1.4dB並且比KV演算法好 0.55dB。複雜度部分，則比KV降了至少 61.6%。但是

對於ABP-ASD演算法尚有 1.25dB的效能差距，但是複雜度至少降低了 97%。 
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Abstract 

 

In this thesis, the soft Reed-Solomon (RS) decoder based on K-Best algorithm 

with constraint is proposed. The proposed algorithm consists of three parts, 

pre-processing, candidate selecting and erasure only decoding.  

In pre-processing, the reliability is assigned to the received symbols according to 

the soft information from the channel. The candidate selecting uses the reliability 

information and the independent property to generate the possible candidate sets. 

Since the number of possible candidate sets is large, the K-Best algorithm is utilized 

to reduce the computation number. In the third part, erasure-only decoding is used to 

decode possible candidate sets. To provide a reasonable number of candidates, the 

trade-off between performance and complexity is considered. 

Simulation results show that for RS (15,11), the proposed algorithm outperforms 

the hard-decision Berlekamp-Messy (HD-BM) algorithm by 2.4dB and the 

Kotter-Vardy(KV) algorithm by 1.3dB at codeword error rate (CER) of 10-4. As 

compared with the KV algorithm the complexity reduction is at least 41.7%. And 

comparing with the adaptive belief propagation-algebraic soft decision (ABP-ASD) 

algorithm, there is 0.3dB performance gap at CER of 10-4. However, the complexity 
 



 

reduction is at least 75.5%. For RS (31,25), it outperforms the HD-BM algorithm by 

1.4dB and the KV algorithm by 0.55dB at CER of 10-4. The complexity reduction is at 

least 61.6% as compared to the KV algorithm. There is 1.25dB performance gap 

between ABP-ASD and proposed method at CER of 10-4. However, the complexity 

reduction is at least 97%. 
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Chapter 1

Introduction

1.1 Motivation

Reed-Solomon (RS) codes are one of the most widely used error correcting code for

wireless communication and storage systems. The current issue about the RS code is

to find an efficient way to improve the performance of traditional algebraic hard deci-

sion Berlekamp-Messey(HD-BM) [1] algorithm. HD-BM algorithm does not use channel

reliability information, this causes significant performance loss. Soft decision decoding

algorithm takes advantage of the channel value, and is believed to have 2 ∼ 3 dB perfor-

mance gain in additive white Gaussian noise (AWGN) channel. Guruswami and Vardy [2]

have shown that Maximum-likelihood (ML) decoding of RS code is NP-hard. It remains

an open area to find a soft decision code with moderate complexity with near ML perfor-

mance.

Recently, the algebraic soft decision decoding (ASD) developed by Koetter and Vardy

(KV) [3] use a list decoding technique outperforms Guruswami and Sudan (GS) [4] hard

decision decoding method. On the other hand, Jiang and Narayanan (JN) [5] use adaptive

parity check matrix and belief propagation to execute soft decision decoding based on

iterative process. In [6], El-Khamy and McEliece combined JN and KV algorithm. They

used belief propagation method to improve the reliability of the symbols and then fed

these reliability information into a algebraic soft decision(KV) decoder.

There are several soft decision decoding algorithm based on the reliability-based de-

coding. The order statistics decoding algorithm [7] sorts the received bits with respect
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to their reliability, then the reprocessing step is designed to improve the hard decision

codeword until a desired error performance is achieved. Other reliability-based decoding

such as the generalized minimum distance (GMD) decoding algorithm [8], Chase algo-

rithm [9] and a hybrid of chase and GMD algorithms [10] use reliability information to

enhance HD-BM algorithm. Sequential algorithm, or M-algorithm(K-Best) algorithm has

been presented in [11], [12] offer a good deal in complexity reduction at the cost of some

loss in performance. However, the previous paper only discuss the case for binary linear

block codes or convolutional codes. Non-binary codes such as RS code is still open for

sequential algorithm.

In this thesis, we develop a K-Best algorithm based on reliability-based scheme for

soft RS decoding. Reliability-based decoding is based on reordering the received symbols

according to their reliability measure. Hard decision reliability decoding use the k reliable

symbols as information sequence and use the reordered generator matrix to re-encode the

possible codeword. However, we did not do the re-encode process in this thesis. We

summarize the decoding steps as follows:

1) For k reliable symbols, the possible candidates for each symbol are generated. We

do not execute re-encoding process while use the property of the k reliable independent

symbols to execute tree-oriented operation.

2) K-Best algorithm is introduced to collect the first k possible reliable symbols of K

combination set. A proper constraint is also set up to reduce the computation complexity.

3) An erasure-only decoding is used to generate the rest of N-k unreliable symbols.

4) Combine k reliable symbols with N-k unreliable symbols as combination set. Each

combination sets is calculated its distance metric between the received sequence. The one

with minimum distance is regarded as the transmitted codeword.

1.2 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 introduces the background

of RS codes, and some soft decision decoding techniques. The proposed schemes, K-Best

algorithm with constraint are presented in chapter 3. To accelerate the decoding speed,

description for the parallel K-Best is in this section as well. The simulation results are

2



shown in chapter 4. The computation complexities of our K-Best algorithm are compared

with popular algebraic soft decision decoding RS code is also in this chapter. Finally, a

summary concluding our work is given in chapter 5. The techniques used in this thesis are

all in chapter 6, including simplified cost function, re-encode decoding based on reliability

ordering, sphere decoding and K-Best algorithm, and erasure-only decoding.

3



Chapter 2

Soft decoding of RS codes

Reed-Solomon(RS) codes were first introduced by Reed and Solomon in 1960 [13].

RS codes can be viewed as the symbol level cyclic non-binary BCH codes [14] whose

symbols are in GF (2q). The (N,k) RS code is with N symbols consisting of k messages

in GF (2q). It is a maximum distance separable code with minimum distance of (N-k+1).

The decoding region is in 2v+ e < dmin, where e is the number of erasures. The decoding

complexity is usually in the O(N2). In this chapter, The system model of RS codes is

introduced in section 2.1. The RS code is then reviewed in section 2.2. For soft decision RS

codes, symbol-level algebraic soft decision decoding such as GMD and Chase algorithm

is described in section 2.3 and 2.4. Algebraic soft decision decoding algorithm(KV) is

introduced in section 2.5. Iterative decoding of RS codes is shown in section 2.6.

2.1 System model of RS code

We use a systematic (N, k) Reed-Solomon(RS) code. The items in RS code are ele-

ments of Galois Field GF (2q) where N = 2q − 1. The operations in the process must be

operated over the Galois Field GF (2q). Let B be the information sequence of length k.

The information sequence B multiply with RS generator matrix G to obtain the codeword

sequence C of length N.

C = B×G (2.1)

C = (C0, C1, C2, . . . , CN−1) is a codeword which its binary extension is c = (c0, c1, c2, . . . , cNq−1).

4
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Figure 2.1: Channel model of RS code

Then c is BPSK modulated from the code symbols to the constellation symbols.

xj = f(cj) = (−1)cj ,x = (x0, x1, x2, . . ., xNq−1) (2.2)

Then the modulated signal x is transmitted across the AWGN channel. The received

sequences y = (y0, y1, y2, . . . , yNq−1) are soft values.

y = x+w (2.3)

Where w is the independent noise value Gaussian random variables with zero mean

and variance N0/2. The system model of RS code is shown in Fig. 2.1.

2.2 Basic properties of Reed Solomon codes

The (N,k) RS code with bases 2 is defined over GF (2q), where N = 2q − 1. The

generator polynomial is used to encode the RS code. The generator polynomial g(x) of

RS code which correct t or fewer error can be described by the minimum polynomials

of �,�2,�3,. . .,and �2t, and � is a primitive element in GF (qm). Therefore the generator

polynomial has the following form

g(x) =

i=2t
∏

i=1

(x− �i) (2.4)

The generator polynomial has degree 2t, thus an (N,k) RS code satisfies N − k = 2t.

Notice that g(x) can also be characterized by the minimum polynomials of �b,�b+1,�b+2,. . .,and

�b+2t−1 and can be generalized to

g(x) =

i=b+2t−1
∏

i=b

(x− �i) (2.5)

where b is a random integer number.

5



2.3 Generalized minimum distance algorithm

Generalized minimum distance (GMD) decoding is proposed by Forney [8]. The GMD

decoding used reliability information of the received symbols to improve algebraic decod-

ing. Based on successively erasing the least reliable symbols, GMD decoding runs the

hard decision decoder. It is shown that GMD decoding can be asymptotically optimal.

In ref [15] shows that an error-and-erasue method can correct all combinations of v errors

and e erasures provided that 2v + e ≤ dmin − 1. The GMD decoding consider all cases

of erasures e ≤ dmin − 1 in the least reliable position(LRPs) which are the most likely

positions to be in error. The decoding method are as follows:

1. GMD decoding generates the hard decision Z from the received sequence y and assigns

a reliability value to each symbol Z.

2. GMD decoding generates a list of ⌊dmin+1
2

⌋ sequence by modifying the hard decision

sequence Z with erasing the least reliable symbols.

3. GMD decoding decodes each modified Z into a codeword. Then it feeds Z into an

algebraic decoder.

4. GMD decoding computes the distance metric of each generated symbol and selects the

one with the minimum distance metric as the solution.

2.4 Chase decoding algorithm

Chase algorithm [9] is the generalization of the GMD algorithm. Chase-1 algorithm

does not consider reliable or unreliable positions. It always generates Cn
dmin

2

candidate

codewords by considering all possible combinations of ⌊dmin

2
⌋ in the hard received sequence

Z. But the computational complexity of Chase-1 algorithm is too heavy, few people discuss

the algorithm.

Chase-3 algorithm does similar operations as the GMD algorithm, except the erasure

operation in the GMD is being replaced by flipping the least reliable symbols. For binary

codes, Chase-3 algorithm achieves the same error performance as GMD and require same

computational complexity.

Chase-2 decoding is another reliability based decoding to assist hard decision decod-

6
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Figure 2.2: Error probability v.s ordered positions RS(15,11) and RS(31,25)

ing. It is an improvement of Chase-3 algorithm. It generates a larger candidate lists.

All possible errors in the range of ⌊dmin

2
⌋ of LRPs is used to improve Z. The algorithm

exhaustively flip the least reliable symbols and run the hard decision decoder. The candi-

date list grows exponentially with dmin. Since the larger candidate list leads to a greater

possibility to correct the errors. Chase-2 algorithm performs a much better performance

than Chase-3 algorithm.

Among three algorithm, Chase-2 algorithm is the best algorithm considering the trade-

off between complexity and performance.

Fig. 2.2 shows the error probability versus reliability ordering for RS(15,11) and

RS(31,25). From the figure, we can observe that the error probability has an exponential

like curve. The received vectors are sorted according to their reliabilitiew. The first k

positions can be regarded as reliable positions, and the last N-k positions are unreliable

positions. The least reliable N-k region has the higher probability to occur errors than

7



the previous k positions. This tells why the GMD decoding and Chase algorithm work.

They generate the candidate codewords by dealing with the last N-k positions, and feed

the modified candidate codewords in to hard decision decoder. They hope that the hard

decision decoder can help them correct the errors occurred in the previous k position, if

exists. However, the drawback of these two algorithm is that if the error does not occur

in the last N-k region, and all concentrated in the reliable k regions and the number of

errors are larger than the error correction capabilities. Then, the decoder will never find

a correct codeword.

2.5 Algebraic soft decision decoding algorithm

Guruswami and Sudan (GS) invented a polynomial-list decoding algorithm [4] for

RS codes capable of correcting beyond half the minimum distance of the code. Koetter

and Vardy developed an algebraic soft decision(ASD) decoding [3] based on GS algo-

rithm using the reliability information to assign multiplicity for RS codes. the decoding

scheme is briefly summarized as follows: The transmitted codeword can be described as

(f(�1), f(�2), . . . , f(�N)) the received vector is (�1, �2, . . . , �N). The basic idea is to find

a f(x) which fits as many points in (f(�i), �i) pairs. The KV algorithm consists of two

main steps, interpolation step and factorization step.

Step 1) Interpolation: Construct a bivariate polynomial Q(x, y) of minimum (1,k-1) de-

gree, which has a zero order of v at (�l, �l), l=1,. . .,N, i.e: if Q(x− �l, y− �l) involves no

term of degree less than i+ j = v.

Step 2) Factorization: Generate a list of y-roots,i.e:

L = f(x) ∈ F [x] : (y − f(x)∣Q(x, y), deg(f(x)) < k)

Then, pick up the most likely codeword ˆf(x) from the list L.

The ultimate gain of algebraic soft decoding (ASD) over AWGN channel is about 1dB.

The complexity is scalable but prohibitively large for huge multiplicity.

2.6 Iterative Reed-Solomon decoding algorithm

In [5], Jiang proposed the iterative decoding algorithm based on sum-product algo-

rithm(SPA). The main idea is to adapt the parity-check matrix at each iteration according

8



to the reliabilities such that the unreliable bits correspond to a sparse matrix, so that the

SPA algorithm can continue applying to the adapted parity check matrix. The adapta-

tion prevents iterative decoding from getting stuck at local equilibrium region, thus, the

decoding process can continue to a convergence region. The following is the parity-check

matrix of an (N,k) RS code over GF (2q):

Hs =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 � . . . �(N−1)

1 �2 . . . �2(N−1)

. . .

1 �(dmin−1) . . . �(dmin−1)(N−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.6)

where � is a primitive element in GF (2q), dmin = N − k + 1. Let n = N × q and

k = k × q be the length of the codeword and information at the bit level, respectively.

Hs has an equivalent binary image expansion Hb (One can find in [15]), where Hb is an

(n− k)× n binary parity-check matrix.

The iterative algorithm is composed of two stages:

1) The matrix updating stage.

2) The bit-reliability updating stage.

Assume c = (c0, c1, c2, . . . , cNq−1) is the binary representation of RS codeword. By us-

ing BPSK modulation and transmitted the codeword over an AWGN channel the received

vectors y = (y0, y1, y2, . . . , yNq−1) can be given by

y = c+w (2.7)

where w is the AWGN noise. The initial reliability of each bit can be expressed in terms

of the log-likelihood ratios(LLR):

L(0)(ci) = log
P (ci = 0∣yi)

P (ci = 1∣yi)
(2.8)

where ci stands for codeword and yi stands for received vector in the bit represen-

tation. The magnitude of the received LLRs ∣L(ci)∣ are sorted in an descending order

iN ,. . . , iN−k,. . . , i2, i1, the bit ciN is the most reliable and the bit ci1 is the least reliable.

The algorithm begins with the original parity-check matrix Hb, and reduce the i1 th col-

umn of Hb to a form [10 . . . 0]T . the process is continued to reduce (N −k)-th columns of

Hb to be the identity matrix. The matrix is thus reduced like Fig. 2.3.
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Figure 2.3: Form of the parity check matrix suitable for iterative decoding by row opera-

tions

In the matrix updating stage. For the v-th iteration, the vector of LLRs will be

Lv = [L(v)(c1), L
(v)(c2), . . . , L

(v)(cn)] (2.9)

and L0 is determined from the channel output. Then, the parity-check matrix is

reduced to a form based on Lv

Hv
b = �(Hb, ∣L

v∣) (2.10)

In the bit-reliability updating stage, the extrinsic LLR vector Lv
ext is generated by Lv

using the SPA based on the previous adapted parity-check matrix Hv
b

L
(v)
ext =  (Hv

b , L
v) (2.11)

For each bit, the extrinsic LLR is updated according to

L
(v)
ext(ci) =

n−k
∑

j=1,Hv
ji=1

2tanℎ−1

⎛

⎝

n
∏

p=1,p∕=i,Hv
jp=1

tanℎ(
L(v)(cp)

2

⎞

⎠ (2.12)

The bit-reliability is then updated as

L(v+1) = L(v) + �L
(v)
ext (2.13)

where 0 ≤ � ≤ 1 is a damping coefficient. Then, take hard decision of the decoded bit

codeword ĉi

ĉi =

⎧



⎨



⎩

0, L(v+1)(ci) > 0

1, L(v+1)(ci) < 0

(2.14)

The termination criterion is, if all the checks are satisfied, output the estimated bits;

else if v = vmax iteration, declare a decoding failure; otherwise set v to v+1 and go for

another iteration.
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The drawback of the iterative decoding by adapting parity-check matrix of RS code

is that the algorithm has the ”error floor” problem. And the iterative decoding needs

different iteration to complete the decoding process.
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Chapter 3

Proposed soft RS decoding with

K-Best algorithm

Reliability based decoding with ordered statistics [7] has been shown to be efficient

to decode binary linear block codes. In this chapter, based on reliability decoding and

re-encode process we introduce a new matrix AG for our decoding operation. We didn’t

do the re-encode process as the previous paper. The candidate of each reliable symbols

is generated when the received soft value is determined. We take advantage of the more

reliable column of matrix AG, then transform it into a tree-oriented problem. The K-

Best algorithm is introduced to search the possible candidate previously generated. Since

the decoding speed is the drawback of the K-Best algorithm, parallel K-Best algorithm is

used to improve the speed issue. The K-Best algorithm with constraint is used to reduce

the computation complexity, especially the comparison for the parallel K-Best algorithm.

Erasure-only decoding is described next to use the property of RS codes, we can regard

the N-k unreliable position as erasures. The k-reliable symbols of K-Best combinational

sets can be used to decode the other N-k erasures. A brief summary is at the end of this

chapter, to describe the decoding flow of the proposed soft RS decoding algorithm.

∗Note: The method including cost function, re-encode, sphere decoding, K-Best algorithm and

erasure-only decoding in this chapter can be found in chapter 6, appendix.
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1-1

Figure 3.1: BPSK mapping and the distribution of unreliable bits

3.1 Pre-processing

In Pre-processing, we first generate the symbol candidates, and reorder the symbol

based on reliability. The generator matrix is also permuted according to the reliability.

Then, Gauss elimination is used to avoid the correlation between reliable symbols. At

last, re-encode is used to generate the possible codeword sets. It is observed in the pre-

processing process that reliable symbols do not need to execute Gauss elimination, since

they are already independent.

3.1.1 Candidate generation

Decoding based on most reliable independent position (MRIP) requires the ordering

of the received sequence according to their reliability. At first, we use hard decision

symbols to be the foundation to choose the reliable symbols and produce the candidates.

After DE-BPSK, we declare the hard decision of y as z, where z = (z0, z1, z2, . . . , zNq−1).

The vector z is transmitted from the binary sequence into symbol sequence Z where

Z = (Z0, Z − 1, . . . , ZN−1). Every symbol Zj where j is form 0 to N − 1 is composed by

(zjq, zjq+1, . . . , zjq+(q−1)).

Based on the re-encoding schemes, the selection of candidate is as follows. We decide

the unreliable bits number of symbols and generate the candidates correspond to those

symbols. Because those bits are not reliable, we consider all possible combination of their

position with 1 and 0.

Fig. 3.1 shows the example of unreliable bits. We can set up criterion to decide how

many number of unreliable bits need to be considered. The criterion is as follows:
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Unreliable bits

generate

Figure 3.2: Candidates generation based on unreliable bits

Design criterion

1) The received soft values lie between 1 and −1.

2) The number of unreliable bits could be decided off-line according to the absolute soft

values.

After the unreliable bits are found, DE-BPSK is done in the next. According to Fig.

3.1, the corresponding hard decision bits of jth symbol (z0,j, z1,j , z2,j, z3,j) are (1, 0, 0, 1).

Then, for each symbol we could use the unreliable bits to produce its candidates. Fig.

3.2 shows the example of candidate generation.

To produce all candidates of the symbol, there are three steps as follows.

1) We decide the unreliable bits number of the symbol and mark the position of these

unreliable bits.

2) We use 1 and 0 to produce 2v combination sets, where v is the number of unreliable

bits.

3) There are 2v sets of v unreliable bits, they would be placed into the marked position

of unreliable bits.

After the above three steps, all candidates would be generated. We use the above

three steps and continue to demonstrate the previous example. There are two unreliable

bits, z0,j and z2,j , corresponding to y0,j and y2,j. The positions of these bits are 0 and 2.

Then, all 22 combination sets of 1 and 0 are generated. They are (0, 0), (0, 1), (1, 0) and

(1, 1). Next, we replace the origin hard decision symbol bits position with these bit sets.

The origin hard decision bits of the symbol are (1, 0, 0, 1). Therefore, the candidates are

(0, 0, 0, 1), (0, 0, 1, 1), (1, 0, 0, 1) and (1, 0, 1, 1).

The candidates of symbol are produced by the order of reliability. Table 3.1 shows
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Table 3.1: Example of cost table

−0.5 −1.2 0.3 0.9 cost

4 1 −1 1 1 0.5

6 1 −1 −1 1 0.8

12 −1 −1 1 1 0

14 −1 −1 −1 1 0.3

the example of different cost between candidates and received soft values. We order the

candidates of the symbol by their cost compared to the received value. Every symbol Zj

would have its own candidates (Ẑj,0, Ẑj,1, . . . , Ẑj,m). The selection of m which is between 1

to N+1 is obtained by the number of unreliable bits. The candidates of jth symbol can be

denoted as a vector Ẑj . We calculate the cost between candidates Ẑj,i and the received soft

values y, then arrange Ẑj,i in a ascending order denoted as Sj = (Sj,0, Sj,1, . . . , Sj,m).Where

the permutation is denoted as �1.

Sj = �1(Ẑj) (3.1)

Obviously, Sj,0 is the hard decision symbol. The candidate with the smallest cost value

is the most possible transmission symbol. First k reliable candidate sets are used in this

algorithm through the process, and the last N − k candidate sets would be used in the

erasure only decoding.

After producing the candidates of all symbols, we compose all possible candidate sets.

Fixed number (m) of candidate symbols is used in re-encode method. There are mk

possible combination sets to operate re-encode process. These possible candidate sets

should execute the same operation as the columns of G.

3.1.2 Reliability ordering

For each hard decision symbol Sj,0, reliability is calculated by adding the corresponding

absolute value of received soft values yj.

Rj = Σq−1
i=0 ∥yjq+i∥ (3.2)

The symbols are rearranged according to the ordering of the largest absolute value.
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Then S is rearranged to be S′ = (S ′
0, S

′
1, S

′
2, . . . , S

′
N−1).

The symbols are re-arranged as S′. We denote the permutation as �2. We selected

first k most reliable symbols (S ′
0, S

′
1, . . . , S

′
k−1) to perform the pre-processing. Since the

columns of G correspond to the position of symbols, thus we permute the columns of

generator matrix based on the ordering of reliability. After the permutation of generator

matrix G, the new matrix can be marked as G′.

S ′ = �2(S) (3.3)

G′ = �2(G) (3.4)

3.1.3 Re-order generator matrix

The first k columns of G′ are not necessarily independent while in re-encoding scheme,

thus such k columns can not represent the information set. We are going to rearrange the

first k columns of G′ to make each k column independent. The rearranged matrix is G′′

and its first k columns are linearly independent. After the rearrange operation �3, the

columns of G′′ also maintain the descending order of the reliability values. The operation

�3 could be regarded as Gaussian eliminations which let G′′ in the reduce echelon form

that contain only one 1. We use matrixA to represent the Gaussian elimination operation.

G′′ = �3(G
′) = G′ ×A (3.5)

The generator matrix becomes G′′ after the Gaussian elimination which is shown

as Fig. 3.3. The corresponding symbols should execute the same operation, then the

resultant is denoted as S′′.

S′′ = �3(S
′) = S′ ×A (3.6)

Every possible set of S′′ should do the same operations to produce the possible code-

word in re-encode process. Because the G′′ is systematic matrix, it means the corre-

sponding S′′ is the possible independent message sets. The possible message sets multiply

generator matrix G to produce possible codeword sets. In re-encode method, we calculate

the cost between the received soft value and possible codeword and decide the codeword

with minimum cost as the decoded codeword.
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k k
I ×''G

Figure 3.3: Gauss illustration

Figure 3.4: Example of AG matrix

3.1.4 Re-encoding process

In re-encode method, every S′ set must multiply matrix A and then multiply matrix

G. Because there are mk sets, re-encode method needs a lot of multiply operations. We

want to reduce the operation number, so we multiply A and G together to be matrix AG.

Fig. 3.4 shows an example of the matrix AG. Then every S′ set only needs to multiply

matrix AG once. The re-encode process speeds up 1.5 times. It reduces the operation

number and produces the same codeword sets.

After we produce matrix AG, we discover that there is a special property of matrix

AG. The property of matrix AG can be divided in to two parts. First, the columns with

only one 1 correspond to the position of reliable symbols can be regarded as the permu-

tation of k× k identity matrix. Second, the columns correspond to the position of N − k

unreliable symbols can be regarded as the combination of the other k reliable symbols.

Observing the matrix AG, we find out that the k reliable symbols are independent.

1) We marked the position of 1 in the columns of matrix AG which has only one 1 as

index L. L = (l0, l1, l2, . . . , lk−1) are indexes corresponding to the most k reliable symbols.

2) According to the index vector L, the candidates of the most k reliable symbols would
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be selected in K-Best scheme.

3) The order of k column with only one 1 stands for the position of the corresponding

reliable symbol.

4) The value of index li(i = 0 ∼ k − 1) represents for the lith transmitted symbol.

The index would point out the most k reliable symbol corresponding to the ljth symbol

of the received codeword, respectively.

3.2 Candidate selecting

In section 3.1.4, it has mentioned that the possible candidate sets will be mk. This is

a large number when k increases, and it is not feasible to use these candidate sets to do

the re-encoding process. In the following section, we proposed K-Best algorithm, parallel

K-Best algorithm and parallel K-Best algorithm with constraint to reduce the number of

candidate sets.

3.2.1 K-Best algorithm

There are mk combination sets of S′ needed to multiply matrix AG, which still leads

to a large number of operations. The independent property of matrix AG can be used

to reduce the re-encode operation. Thus, we can use the independent property of matrix

AG to execute K-Best operation. K-Best operation needs k layers to select the candidate

sets. Every candidate set of symbol would be a layer in K-Best. A tree Fig. 3.5 is used

to represent the whole process.

We assume an origin point in layer 0 and use the dotted line to mark it as a pseudo

node. A pseudo node is set up to start the tree-like algorithm. The path between layer

0 and layer 1 would be marked as dotted line too. Then, the first candidate sets would

spread up at layer 1. In the Fig. 3.5, the node represents the accumulated cost. There

are m candidates of jth symbol in each layer where S′
j = (S ′

j,0, S
′
j,1, . . . , S

′
j,m).

The value in the line stands for the cost of that candidate compared to the received

soft value. The value of node stands for the accumulated cost. Each layer accumulates

the cost from the previous layer, and then chooses the combination sets of K minimum
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Figure 3.5: Example of K-Best candidate selection, K=2

cost candidates. The chosen path and node would be marked as line and circle in solid

line. The next layer would start from the chosen node. The stop criterion is that the

candidates of k reliable symbols are all considered.

We can summary the process in four steps as follows until the stop criterion is achieved.

1) For each parent node, it spreads out the possible candidates as child node in that layer

2) Each child node accumulates the cost

3) We choose K minimum cost sets in the decoding layer.

4) Check the stopping criterion. If the stopping criterion is not achieved, start the next

layer from chosen K nodes in last layer

Therefore, we have less candidate sets chosen by K-Best method than the re-encode

method.

3.2.2 Parallel K-Best algorithm

Although the K-Best method reduces the operation, the speed of execution is still not

good enough. In this thesis a parallel K- Best algorithm is proposed to improve the speed

issue, it separates most k reliable candidate sets into several groups. There are q layers

in Galois Field GF (2q). Fig. 3.6 shows an example of RS(15,11) with 4 layers.
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Figure 3.6: Example of parallel K-Best candidate selection with 4 layer for RS(15,11),

T=1,. . .,4.
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Figure 3.7: Example of subgroup selection in parallel K-Best scheme

Here are the steps for parallel K-Best algorithm.

1) For the selection of the candidate, we define some parameters as following. Here,

T stands for the number of layer from 1 to q, �1 is the number of sub-groups with two

candidate sets in that layer and �2 is the number that a sub-group has only one candidate

sets in that layer. �1 and �2 are integers, and �2 would always be 0 or 1. Fig. 3.7 is

the example of subgroup selection in parallel K-Best scheme. In an (N, k) RS code, �1

would be initialized as k/2 and �2 would be initialized as k%2 at first layer. % stands for

module.

2) We use a sequential tree-like method to help us choose candidate sets in K-Best

scheme. If there are two input candidate sets (ΓT
1 ,Γ

T
2 ) with (mT

1 , m
T
2 ) candidates in layer

T where ΓT
1 = (
T1,0, 


T
1,1, . . . , 


T
1,m1−1) and ΓT

2 = (
T2,0, 

T
2,1, . . . , 


T
2,m2−1), and 


T
j,i means the

i-th candidate of input candidate set ΓT
j in layer T . There are total MT = mT

1 × mT
2

combinational candidate sets. Fig. 3.8 shows an example of the subgroup. We must

use K-Best method to choose K combined candidate sets with smaller cost value. As

we choosing these candidate sets, we must denote the cost value and the index of each

candidate combination sets. The index here means that the candidates of combined sets

which its original position is in input candidate set?
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γ1,01 γ2,01

γ1,11 γ2,11

γ2,21

γ2,31

Cost 0 1 2 3

Γ1
1

0.1 0.2

Γ2
1

0.1 0.3 0.4 0.5

Γ1
1

Γ2
1

Figure 3.8: Example of subgroup in parallel K-Best scheme.

Table 3.2: Example of subgroup cost table

Accumulated Cost order of Γ1
1 order of Γ1

2

0.2 0 0

0.3 1 0

0.4 0 1

0.5 0 2

0.5 1 2

0.6 0 3

0.6 1 2

0.7 1 3
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Obviously, each input candidates sets needs MT indexes. The cost information is

saved in another MT register. Thus, total 3MT registers are needed to be saved for K-

Best scheme. Table. 3.2 shows an example of 3MT registers to save the index and cost

information.

Now we use a scheme which needs only 2M register to execute K-Best algorithm.

1) We produce the combination candidate sets in sequence as following. We fix the

candidate of ΓT
1 and displace the candidates in ΓT

2 until all mT
2 candidates are changed.

Then we move on to the next candidate of ΓT
1 , and do the same process as above. Fig.

3.9 shows an example of producing path index and candidate sets for parallel K-Best

algorithm.

2) During producing the combinational candidate sets, we give every combination set an

index number Ω from 0 toMT −1 sequentially, and denote the accumulated cost of every

combined candidate sets.

3) As all MT combination candidate sets are produced, all combination sets are sorted

by the cost and also the index is permuted according the new order.

4) K-Best scheme choose K candidate combination sets which are the input sets of next

layer. The elements of chosen combination sets are traced by the index Ω. The element

from ΓT
1 is the 
T1 th term of the input candidate set where 
T1 = Ω/mT

2 . The element

from ΓT
2 is the 
T2 th term of the input candidate set where 
T2 = Ω%mT

2 . Then we could

use only M registers to memorize the index of elements in combination sets. Fig. 3.10

shows an example of reduced index for parallel K-Best algorithm

5) Then, K-Best scheme is executed in every sub-group independently.

6) After the K-best algorithm, every sub-group chooses its own candidate sets. Fig. 3.11

shows the chosen candidate sets for parallel K-Best algorithm.

7) We repeat the steps above until the output candidate sets have k elements.

3.2.3 Parallel K-Best algorithm with constraint

Parallel K-Best method reduces the total comparing number for selecting the candidate

sets. As the k becomes bigger, we need a large number of sorting. To prevent the sorting

complexity becomes too heavy, we decide to use a bound to consistent the number of

sorting.
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Figure 3.9: Example of path index and candidate sets for parallel K-Best algorithm
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Figure 3.10: Example reduced index for parallel K-Best algorithm
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Figure 3.11: Example of chosen K candidate sets for parallel K-Best algorithm
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Figure 3.12: Parallel K-Best using constraint
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Figure 3.13: The chosen sets of parallel K-Best using constraint

In the process of parallel K-Best method, we define different bound for each layer.

The bound of each layer is defined by observing the cost distribution. The accumulated

cost of candidate sets smaller than the bound are chosen. The chosen combination sets

would be re-arranged according the order of cost.

In the Fig. 3.12, the bound is defined as 0.6, and K is set to equal 2. Thus, the

combination sets 0, 1, 2, 4 and 5 marked as black dotted line in order which would be

chosen to be the possible K candidates.

By using the constraint and combined with the K-Best algorithm, the number of

sorting sets are decreased. Fig. 3.13 shows the example of constraint, in this example

There are total five candidates fall in the bound. If K is equal to 2, then the path 0 and

path 4 are the selected combinational sets. The complexity of operation is reduced and

the speed of process is faster almost two times than before.
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3.3 Erasure-only decoding

We use K-Best method to choose K minimum cost sets correspond to K minimum

candidate sets. Every possible unreliable sets and the chosen K-Best sets are combined

together as possible codeword sets. Since re-encode process needs to deal with the order-

ing of generator matrix. In C program, this means the process needs a lot of temporary

memory to store related data. Besides, the criterion for selecting codeword is only based

on K-Best cost, it is not sufficient to obtain good performance. From AG matrix, we

notice that the unreliable symbols can be composed by the reliable symbols. Thus, the

erasure-only decoding is suitable for this task. And it adds another condition to see

whether the codeword is in the generated candidate sets. Based on the above improve-

ment of the decoding process, the re-encode process is replaced by erasure only decoding.

Every possible codeword are put into syndrome equation to find out whether the possible

codeword is in the codeword set of this system. If the syndrome equations are all zeros, it

means that the possible codeword is in the codeword set. We choose the codeword under

the following constraint

(1) Syndrome equations are all zeros

(2) The codeword with the minimum accumulated cost.

The codeword with the above two condition should be the transmission codeword.

The method mentioned before this section needs S′′ multiply matrix AG to obtain

possible codeword sets. There are just one constraint, to find minimum cost. The possible

codeword set is judged by which codeword set has minimum cost. In this section, we do

not execute re-encode method because we do not use S′ to multiply matrix AG. Here, we

add another constraint to consider the possible codeword. Is it in the codeword sets or

not? This will help us choosing the right possible codeword. Using the minimum cost and

syndrome equation constraints make us reach better performance then re-encode. But we

discover that there are three kinds of errors as follows.

1)The transmitted codeword is in the K-Best sets, but the syndrome equations

of it (the transmitted set) are not all zeros. This kind of error is produced because

the candidates of unreliable symbols are not chosen properly. We could choose more

unreliable bits to extend the possible candidates of unreliable symbols.

2) The transmitted codeword is not in the K-Best sets. Because the cost of
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transmitted codeword is larger than the Kth Best sets, the transmitted codeword is not

chosen. We could solve this error by choosing the larger K to contain the transmitted

codeword.

3)The transmission codeword is in the K-Best sets and the syndrome equations

are all zeros but we do not choose the transmitted set. The reason is that

there is another possible codeword set which cost is smaller than the transmitted set and

the syndrome equations are all zero, too. Under these conditions, we choose the wrong

codeword which satisfy both constraints better than the transmitted one. This kind of

error is the maximum-likelihood error, since the noise interference caused the right answer

jump to another, thus we could not solve this problem

Though we use constraint for accumulated cost and syndrome equation to improve

the performance, there still needs a better algorithm. We realize that the accumulated

cost of MRIP k symbols being calculated by K-Best should be replaced by cost of all

N candidates. Because the codeword sets produced by syndrome equation are possible

transmitted codeword, the most possible codeword set should consider the cost of all N

symbols. After we change the constraint with the cost of N symbols, the performance is

improved.

3.4 Summary

The proposed algorithm consists of three parts, pre-processing, candidate selecting

and erasure only decoding. It should be mentioned that in pre-processing process, the

matrix AG shows that after reliability ordering from the received value, the most k reliable

symbols are already independent. It implies we can choose the candidate sets after the

symbols being reordered by reliability. Thus, it is needless to do any operation for gen-

erator matrix. For candidate selecting, the K-Best algorithm is introduced to reduce the

computation complexity for possible candidate sets. Since the decoding speed is too slow

for the layer by layer property of the K-Best algorithm, the parallel K-Best algorithm is

introduced. The parallel K-Best algorithm divides the candidates sets into several groups,

each subgroup chooses local K-Best candidate. The decoding process is continued until

the candidate sets is combined with k symbols. The parallel K-Best algorithm reduces
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the computation layer from k to q, thus increases the decoding speed and decrease the

computation complexity. Finally, the re-encoding process is replaced by the erasure-only

decoding.
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Chapter 4

Simulation results and complexity

comparison

In this section, RS(15,11) and RS(31,25) are simulated for comparing the proposed al-

gorithm and the other RS code such as hard decision Berlekamp-Massy algorithm, KV al-

gorithm, adaptive belief propagation algorithm(JN), adaptive belief propagation-algebraic

soft decoding(ABP-ASD), and sphere decoding algorithm. The signal is modulated by

BPSK and transmitted through the AWGN channel. For RS(15,11) when the SNR is

below 5dB, 106 bits are simulated, and over 108 bits are simulated for SNR ≥ 6dB. For

RS(31,25), 104 bits are simulated when the SNR is below 5dB, and 108 bits are simulated

for SNR ≥ 6dB .

The complexity comparison includes the number of sorting and additions for K-Best

algorithm, parallel K-Best, and parallel K-Best with sphere constraint. The HD-BM

algorithm is used as an performance baseline.

4.1 Simulation results

In section 3.3, we discuss that we change the cost function, accumulated the metric

from k to N , Fig. 4.1 shows the results. For RS(15,11), there is 1dB gap between

the k cost and N cost for total K= 30 at codeword error rate(CER) 10−4. Fig. 4.2

shows the performance comparison between different selection of K for RS(15,11). It

can be observed that for the full selection of candidate symbol. K= 300 has the best
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performance within 0.3dB gap of ML performance and the ABP-ASD [6]. There is 0.3dB

loss between K= 100 and K= 300, another 0.7dB loss when we take K= 30. To reduce

the computation complexity, parallel K-Best is proposed in section 3.2.2. Fig. 4.3 shows

the performance comparison. All the case consider K= 300 in a parallel scheme. The

difference is only the selection number of the candidate. From the figure we can observe

that when candidate number is up to 5, the performance loss compared to candidate= 16

is smaller than 0.1dB. And the gap to the ML and ABP-ASD performance is also 0.3dB.

In section 3.2.3, the parallel K-Best algorithm with constraint is proposed. Fig. 4.4

shows the simulation results. We can observe that setting up constraint for the parallel

K-Best algorithm will degrade performance within 0.05dB, but we have mentioned in

section 3.1.1 that the computation reduction, especially the sorting complexity is over

70% reduction. Fig. 4.5 compares the performance of different soft decision decoding

scheme. It can be observed that the proposed algorithm outperforms the KV algorithm

for 1.3dB at CER 10−4, and JN belief propagation with BM about 1.5dB at CER 10−4.

The performance difference between our proposed algorithm, K-Best, parallel K-Best and

parallel K-Best with constraint is fairly small. There is still a performance gap between

ABP-ASD and ML. The reason is the nature of the sequential algorithm or (K-Best)

algorithm. In the decoding process, once the size of K is not big enough to collect the

true transmitted symbols, the decoded codeword may have errors. The larger K will cause

more computation effort. Thus, it is a tradeoff between performance and computation

complexity.

Fig. 4.6 is the simulation results for RS(31,25), at CER 10−3, the performance gain

over HD-BM is about 1.4dB. The proposed algorithm also performs better than KV and

sphere decoding algorithm [16]. But there is a performance gap 1.25dB between the

proposed algorithm and ML or ABP-ASD. The reason is that as the N increases, the

candidate symbol selection for parallel K needs to increase, too. In this thesis, the K-Best

combinational sets of the last layer is up to 3000. This number becomes infeasible when

it comes to consider hardware implementation. Thus, the proposed method need to be

improved when N is increased.
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Figure 4.1: Performance comparison for K-Best of RS (15,11) BPSK mapping AWGN

channel with different size of distance metric.

∗Note1: costN , costk represents the distance metric of N symbols and k symbols respectively.

∗Note2: ML1 and ML2 represents different estimation of ML performance.
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Figure 4.2: Performance comparison for K-Best of RS (15,11) BPSK mapping AWGN

channel with different selection of K.

∗Note: Ncand represents the number of candidates is N.
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Figure 4.3: Performance comparison for parallel K-Best (K=300) of RS (15,11) BPSK

mapping AWGN channel with different candidate number
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Figure 4.4: Performance comparison for parallel K-Best of RS (15,11) BPSK mapping

AWGN channel with constraint
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Table 4.1: Comparison between K-Best, parallel K-Best and parallel K-Best with con-

straint for RS (15,11).

K-Best Parallel K-Best

K=300 K=100 K=300 K=300 with constraint

Normalized comparison 100% 29.83% 27.76% 8.39%

Normalized addition 100% 34.27% 28.99% 28.99%

Performance gain over HD 2.45dB 2.1dB 2.43dB 2.4dB

∗ The constraint is derived from simulation results.

∗ The candidate number Ncand is 16.

∗ ”Normalized” means we use K-Best=300 as the comparison baseline.

4.2 Complexity comparison

The computation comparison of proposed K-Best algorithm and parallel K-Best algo-

rithm is shown in Table 4.1. HD-BM is the performance baseline. K-Best with K= 300 is

the baseline of normalized comparison and normalized addition, the complexity reduction

is about 70% when K= 100 is chosen, but the performance is 0.35dB loss from K= 300.

For parallel K-Best scheme, K= 300 is an sufficient number to maintain near same per-

formance as the original K-Best algorithm with K= 300. The difference is only 0.02dB

performance loss. However, there is over 70% comparison and addition computation re-

duction in this case. We can see that performance gap between K-Best algorithm and

parallel K-Best with constraint is only 0.05dB, but the comparison reduction is 91.61%.

Since, parallel K-Best with constraint still needs to calculate all the distance metric of

the possible candidate, thus there is no computation reduction for addition compare with

parallel K-Best.

Table 4.2 shows the comparison of different candidate size for parallel K-Best algo-

rithm. The comparison reduction for candidate=4 and candidate=5 is about 10% from

candidate=16, and the addition reduction is 14% and 11%, respectively. The performance

loss is 0.13dB and 0.03dB for each case.

Arithmetic complexity is generally written in a form known as Big-O notation. O(n)

is the general notation for linear complexity. Where O represents the complexity of the
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Table 4.2: Different candidate number of parallel K-Best algorithm for RS (15,11)

Parallel K-Best

Ncand=16 Ncand=5 Ncand=4

Normalized comparison 100% 91.94% 89.61%

Normalized addition 100% 88.9% 85.9%

Performance gain over HD 2.43dB 2.4dB 2.3dB

Table 4.3: Computation comparison of ABP-ASD and proposed method

ABP-ASD Proposed

ABP

Floating
O(N ′2) Reliability ordering O(N logN)

operation Pre-

i×GE i ×O(min(k′, (N ′ − k′)2)N ′)
processing

Candidate generation
O(NNcand

logNcand)

ASD

Matrix assignment O(N2) Candidate Parallel K-best O(Kq−1Kq−2

Interpolation O(N2�4) selecting with constraint log(Kq−1Kq−2))

Factorization O(llog2l)k(N + llogq)) Erasure-only decoding O(KN)

∗ Note1: N ′ = N × q

∗ Note2: k′ = k × q

∗ Note3: Kq−1, Kq−1 stand for the size of K in layer q-1 and q-2.

∗ ASD represents the KV algorithm.

Table 4.4: Numerical comparison of ABP-ASD and proposed method for RS (15,11)

ABP-ASD Proposed

ABP
Floating operation 3.6 K

Pre-processing
Reliability ordering 18

5×GE 76.9 K

ASD

Matrix assignment 225 Candidate generation 289

Interpolation
� = 4 � = 5 � = 10

Candidate selecting Parallel K-Best with constraint 29 K
57.6 K 140.6 K 2250 K

Factorization 278 743 3417 Erasure-only decoding 4.5 K

Total 138.6 K 222.1 K 2334.1 K Total 33.9 K

∗ Note: In the table, K represents 103.
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Table 4.5: Numerical comparison of ABP-ASD and proposed method for RS (31,25)

ABP-ASD Proposed

ABP
Floating operation 24 K

Pre-processing
Reliability ordering 46

5×GE 697.5 K

10×ASD

Matrix assignment 9.6 K Candidate generation 310

Interpolation
� = 4 � = 5 � = 10

Candidate selecting Parallel K-Best 86 K
2460 K 6006 K 96100 K

Factorization 12 K 21 K 115 K Erasure-only decoding 9.3 K

Total 3203 K 6758 K 96946 K Total 95.4 K

Table 4.6: Numerical complexity of proposed method of RS (15,11)

Fixed add abs. compare xor and

Proposed

Re-arrange 45 60 121 0 0

Candidate generation 0 0 60 120 0

Parallel K-Best 0 0 2.1K 44.1K 0

Erasure-only decoding 0 0 0 2K 2.2K

Total 45 60 2.3K 46.2K 2.2K

∗ The bits number of fixed addition is defined by the bit number of the channel noise.

∗ The bits number of absolute is the same as fixed addition.

∗ The compare component with 2 inputs.

∗ The xor component with 2 inputs.

∗ The and component with 2 inputs.

Table 4.7: Numerical complexity of proposed method of RS (31,25)

Fixed add abs. compare xor and

Proposed

Re-arrange 124 155 625 0 0

Candidate generation 0 0 155 248 0

Parallel K-Best 0 0 1059K 6155K 0

Erasure-only decoding 0 0 0 9.9K 10.9K

Total 124 155 1059.8K 6165.1K 10.9K
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algorithm and a value n represents the size of the set the algorithm is run against. In

this thesis, the sorting complexity can be regarded as O(N logN) [17], which includes the

heap, merge and quick sorts.

In this thesis, we compare the computation complexity with ABP-ASD algorithm [6],

since it is known as the best soft RS decoding performance, recently. We divide the

ABP-ASD algorithm in to two parts, the pre-processing part and decoding part. Table

4.3 compare each process with our proposed parallel K-Best algorithm, respectively. The

ABP step involves O(N ′2) floating operations, for sorting and BP, and O(min(k′, (N ′ −

k′)2)N ′) binary operations for Gauss elimination [5]. For ASD, matrix assignment requires

O(N2) time complexity, interpolation needs time complexity with O(N2�4). An efficient

factorization algorithm with a time complexity O((llog2l)k)(N + llogl)), where l is an

upper bound on the ASD’s list size and is determined by �.

Table. 4.4 shows the numerical comparison between ABP-ASD and proposed method

for RS(15,11). It is observed that the dominate terms of ABP-ASD are Gauss elimination

and interpolation. And for ASD, it needs 5 iteration of Gauss elimination corresponding

to Fig. 4.5. The dominate term in proposed method is parallel K-Best operation. We

substitute the number into the parameters and compare the complexity. Comparing with

ABP-ASD, the proposed scheme has 75.5% complexity reduction of � = 4. And there is

84.7% complexity reduction of � = 5. As for � = 10, there is 98.5% complexity reduction.

ABP-ASD has 0.3dB performance gain with proposed method at CER of 10−4.

Table. 4.5 shows the numerical comparison between ABP-ASD and proposed method

for RS(31,25). We substitute the number into the parameters and compare the complexity.

Comparing with ABP-ASD, the proposed scheme has 97% complexity reduction of � = 4.

And there is 98.6% complexity reduction of � = 5. As for � = 10, there is 99.9%

complexity reduction. ABP-ASD has 1.25dB performance gain with proposed method at

CER of 10−4.

The difference between KV and ABP-ASD is that KV did not do the ABP process.

In fact, KV operation is the same as ASD.

In Table 4.4, the numerical comparison between KV and proposed scheme for RS(15,11)

is shown. The dominate term in KV algorithm is interpolation. Comparing with KV

algorithm, the proposed method has 41.7% complexity reduction and at least 1.3dB per-
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formance gain. Since, the performance of KV algorithm shown in Fig. 4.5 with infinite

complexity cost.

In Table 4.5, the numerical comparison between KV and proposed scheme for RS(31,25)

is shown. The dominate term in KV algorithm is interpolation. Comparing with KV

algorithm, the proposed method has 61.6% complexity reduction and at least 0.6dB per-

formance gain at CER of 10−4. Since, the performance of KV algorithm shown in Fig.

4.6 with infinite complexity cost.

Next, we shows the complexity of our proposed algorithm, parallel K-Best with sphere

constraint. Unlike the ABP-ASD algorithm decompose the code and parity-check matrix

into binary image, we focus on the symbol level decoding. We also divide the decoding

process into two part, pre-processing includes re-arrange received soft values and the can-

didate generation. Each have a time complexity, O(N logN) and O(NNcandlogNcand). For

the decoding part, parallel K-Best algorithm with sphere constraint needs O(Kq−1Kq−2log(Kq−1Kq−2)),

and erasure only decoding have a time complexity with O(KN).

Table. 4.6, 4.7 show the computation complexity of different decoding steps. The

re-arrange steps includes the floating addition, absolute operation, and re-ordering the

received value. Since we operate the order decoding steps from re-order G to erasure only

decoding in symbol level. The computation calculation is slightly different from binary

case. We consider the worst case for symbol level multiplication. There are q×q and

operation, and (q-1)×q xor operation while our symbol is considered in GF (2q).
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, the soft RS decoder based on K-Best algorithm with constraint is pro-

posed and divided into three parts, pre-processing, candidate selecting ,and erasure only

decoding. In pre-processing, the decoder uses the soft information to derive the reliability

for each symbol. It is observed from the re-encoding process that k reliable symbols are

independent. In candidate selecting, the K-Best algorithm is introduced to reduced the

computation number of the possible candidate sets. In order to accelerate the decoding

speed and reduce the computation complexity of the K-Best algorithm, the parallel K-

Best algorithm is introduced. In parallel K-Best algorithm, we divided the candidate sets

into several groups. Each subgroup chooses local K-Best candidates, and the process is

keep running until the q layers completed. Then, a constraint is introduced to reduce the

computation complexity. Only the sets distance metric smaller than the constraint are

needed to be computed. Erasure only decoding uses the property of the RS code. By

using syndrome equation, the first k reliable symbols can be used to decode the other

N − k unreliable symbols. The candidate codeword of the N symbols with the smallest

distance metric will be determined as the transmitted codeword.

In conclusion, the computation complexity of proposed parallel K-Best algorithm with

constraint for RS(15,11) outperforms the HD-BM algorithm by 2.4dB and the KV algo-

rithm by 1.3dB at codeword error rate(CER) of 10−4. Comparing with ABP-ASD algo-

rithm, there is 0.3 dB performance gap at CER 10−4. The complexity reduction is at
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least 41.7% and 75.5% for KV and ABP-ASD algorithm, respectively. For RS(31,25), it

outperforms the HD-BM algorithm by 1.4dB and the KV algorithm by 0.55dB at CER

of 10−4. The performance gap between ABP-ASD and proposed method is 1.25 dB at

CER of 10−4. The complexity reduction is at least 61.6% and 97% for KV and ABP-ASD

algorithm, respectively.

5.2 Future work

There are still some issues to be concerned in our algorithm. First, the algorithm is

suited for short RS code such as (15,11) and (31,25). For longer code, a large K is required

for the parallel K-Best method to maintain the performance. Second, the complexity of

the parallel K-Best with sphere is still needed to be improved. One can generate all k

reliable symbols at once and decode the other N−k erasures. Then, the decoded codeword

can derive N distance metric. Based on these N distance metric, K-Best algorithm can

be used to choose K possible codewords. The codeword with minimum distance metric

will be chosen as the output codeword. Further, our algorithm can also be concatenated

with other techniques such as interleaver to improve the error control capability.
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Chapter 6

Appendix: several techniques used

for the proposed soft RS decoding

Soft decision RS decoding have recently drawn significant attention. Soft decoding

takes advantage of the information from channel ,and it is believed to have 2-3dB perfor-

mance gain over HD-BM algorithm. The following introduces the simplified cost function

,and it briefly explains reliability based decoding. The re-encode process is also described

in this section. Further, the sphere decoding algorithm and K-Best algorithm are men-

tioned for the reduction of candidate selecting. At last, erasure-only decoding is discussed

to take advantage of RS code.

6.1 Simplified cost function

The traditional cost function is calculated by the Euclidian distance or Hamming

distance. The conditional probability is that given x is transmitted, the received value is

y. The conditional probability is the bigger the better.

p (y ∣ x) =
1

(�N0)
−n/2

exp

{

−
n−1
∑

i=0

(yi − ci)
2

N0

}

(6.1)

Here, c is the bit of BPSK mapping and x is the transmitted codeword bit.

We observe eq.(6.1) that the exponential term without N0 is Euclidian distance. As

the Euclidian distance being smaller the conditional probability is bigger. Next, we only

consider the Euclidian distance as cost function. The Euclidian distance formula could
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be rewritten as following [15]

d2E(y, c) =

N−1
∑

i=0

(yi − ci)
2 (6.2)

=

N−1
∑

i=0

y2i + n− 2

N−1
∑

i=0

yici (6.3)

where n is a constant ,and
∑N−1

i=0 yici is a common term. Because the received values

are fixed for the same codeword, the constant and the common term can be neglected.

Minimizing Euclidian distance is equivalent to maximizing the variable term.

m(y, c) ≜
N−1
∑

i=0

y2i (6.4)

We rewrite the variable term as following

m(y, c) =

N−1
∑

i=0

∣yi∣ − 2
∑

i:yici<0

∣yi∣, Let �(y, c) ≜
∑

i:yici<0

∣yi∣ (6.5)

m(y, c) =
N−1
∑

i=0

∣yi∣ − 2�(y, c) (6.6)

It shows that maximizing the variable term is equivalent to minimizing �(y, c). The

condition probability is only affected by �(y, c). The cost function can be replaced by

�(y, c).

6.2 Re-encode decoding based on reliability ordering

Reliability based decoding and re-encode process can be refered in [7]. Suppose an

(N,k) Reed Solomon (RS) code with generator matrix G is used for error control over

AWGN channel. The items in RS code are elements of Galois Field GF(2q) where N =

2q−1. Let C = (C1, C2, . . . , CN) be a codeword. For transmission, the binary extension of

codeword, c = (c1, c2, . . . , cNq), is mapped into the bipolar sequence x = (x1, x2, . . . , xNq)

with xi = (−1)ci ∈ ±1. After the transmission, the received sequence in the demodulator

is y = (y1, y2, . . . , yNq) with yi = xi + wi, where 1 ≤ i ≤ Nq, wi’s are statistically

independent Gaussian random variables with zero mean and variance N0/2.

The hard decision symbol of received sequences is Z = (Z1, Z2, . . . , ZN). The decoding

begins with reordering the elements of received symbols according to the reliability values.
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The reordered sequence is denoted as S = (S1, S2, . . . , SN). The reliability of sequence S

is in decreasing order by degrees. This reordering defines a permutation function �1 for

which

S = �1(Z). (6.7)

Then the columns of the generator matrix G are permuted based on �1. The result

matrix is denoted

G′ = �1(G) = [g′1, g
′
2, . . . , g

′
N ] (6.8)

where the g′i means the ith column of G′. The column g′i of G
′ corresponds to the Si of

S with ith reliability value.

The first k components of S are the most reliable symbols. Use the first k columns

to perform the Gaussian elimination to remove the dependency of each most k reliable

symbols. This Gaussian elimination defines a permutation function �2 for which

G′′ = �2(G
′) = [IkP ] (6.9)

Here, Ik is the k × k identity matrix ,and P is the k × (N − k) parity check matrix.

The corresponding most k reliable symbols perform the same operation based on �2. The

obtained sequence is denoted as

S′ = �2(S) (6.10)

After the permutation �2, the first k components of sequence S′ are the possible

transmission messages. As implied from the name, re-encode algorithm uses possible

message sets to multiply generator matrix G. After re-encoding, the cost values between

possible codeword sets and the received values are calculated. Then, the codeword with

minimum cost is considered as the transmitted codeword.

6.3 Sphere decoding and K-Best algorithm

Sphere decoding (SD) algorithm has been proposed ,and it’s recognized as a powerful

means to solve the maximum likelihood (ML) detection problem Ref [18]. SD algorithm re-

duces the computation by restricting the search range. We define all the candidates are in

Θ ,then SD algorithm contrains a much smaller search range ΘSD = {s : �(r, s) < bound};
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bound

Figure 6.1: Illustration of sphere decoding algorithm

Layer = 1

Layer = 2

Layer = k-2

Layer = k

Layer = k-1

Figure 6.2: Traditional K-Best algorithm

only the candidates fall in ΘSD ,and their cost is smaller than the bound will be com-

pared. By the previous procedure, the chosen candidate is always the ML solution as long

as d is properly defined. The problem can be illustrated as a two-dimensional problem

in Fig. 3.1, the solution can be obtained by drawing a circle around the received signal,

and choose the proper radius to discard the point outside of the circle. In [16], the author

suggests to use sphere decoding to decode the soft RS code. For AWGN channel, a sphere

constraint is introduced to reduce the candidate search in decoding process.

K-Best algorithm is an alternative method that improves the decoding throughput [19].

It simplified the original SD algorithm and maintain a constant throughput by keeping

only the smallest accumulated cost value at each layer. However, K-Best algorithm can
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not guarantee the performance of ML detection since the ML solution may be eliminated

when it is not in the K-Best accumulated cost values. Thus, the larger K is required

and the value K becomes a tradeoff between complexity and error performance. Fig. 3.2

illustrates that there are chosen K paths (combination sets) in each layer .

6.4 Erasure-Only Decoding

It is known that any k symbols in a RS codeword can be used to determine the

remaining N − k symbols. Thus, it is important to decide k reliable messages or N − k

unreliable (error) symbols of codeword. Let SK−Best be the K chosen combination sets

composed with the candidates of most k reliable symbols.

SK−Best = {S = (s0, s1, . . . , sk−1)∣si ∈ Zi} (6.11)

where si is the candidate of ith symbol Zi.

In this thesis, the traditional erasure-only decoding is replaced with algebraic term so-

lution. The unreliable symbols can be obtain by brought the reliable symbols into the syn-

drome equations Z(x). There are total 2t syndrome equations Z(�), Z(�2), Z(�3) . . . Z(�2t),

and thus there are 2t erasures.

For example, in a (15,11) RS code the received sequence is

Z = (9, 3, 14, 4, ∗, 12, 6, 14, 2, ∗, 9, ∗, 11, ∗, 11) where * represents the erasures.

Z(x) = z0 + z1x+ z2x
2 + . . .+ z14x

14 = 0 (6.12)

Z(�) : z4x
4 + z9x

9 + z11x
11 + z13x

13 = �4 (6.13)

Z(�2) : z4x
8 + z9x

3 + z11x
7 + z13x

11 = �4 (6.14)

Z(�3) : z4x
12 + z9x

12 + z11x
3 + z13x

9 = �8 (6.15)

Z(�4) : z4x
1 + z9x

6 + z11x
14 + z13x

7 = �5 (6.16)

The variable x in different equations presents a exponent relation. Therefore the

erasures can be solved with Vandermonde matrix.

Then, the erasure only decoding schedule is given as following:

1) For all S ∈ SK−Best, erase the corresponding N − k unreliable symbols of chosen set S.

Then, decode the erasures by syndrome equations and solve the equation by Vandermonde
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matrix. The decoding codeword set is called CE.

2) Choose the codeword from CE with the smallest accumulated cost by K-Best algorithm

as the decoding output.
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