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Soft RS Decoder Based on K-Best Algorithm

Student : Ching-Chin Cheng  Advisor : Dr. Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics
National Chiao Tung University

Abstract

In this thesis, the soft Reed-Solomon (RS) decoder based on K-Best algorithm
with constraint is proposed. The proposed. algorithm consists of three parts,
pre-processing, candidate selecting-and erasure only decoding.

In pre-processing, the reliability. is assigned to the received symbols according to
the soft information from the channel. The candidate selecting uses the reliability
information and the independent property to generate the possible candidate sets.
Since the number of possible candidate sets is large, the K-Best algorithm is utilized
to reduce the computation number. In the third part, erasure-only decoding is used to
decode possible candidate sets. To provide a reasonable number of candidates, the
trade-off between performance and complexity is considered.

Simulation results show that for RS (15,11), the proposed algorithm outperforms
the hard-decision Berlekamp-Messy (HD-BM) algorithm by 2.4dB and the
Kotter-Vardy(KV) algorithm by 1.3dB at codeword error rate (CER) of 10™. As
compared with the KV algorithm the complexity reduction is at least 41.7%. And
comparing with the adaptive belief propagation-algebraic soft decision (ABP-ASD)

algorithm, there is 0.3dB performance gap at CER of 10™. However, the complexity



reduction is at least 75.5%. For RS (31,25), it outperforms the HD-BM algorithm by
1.4dB and the KV algorithm by 0.55dB at CER of 10™. The complexity reduction is at
least 61.6% as compared to the KV algorithm. There is 1.25dB performance gap
between ABP-ASD and proposed method at CER of 10™. However, the complexity

reduction is at least 97%.
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Chapter 1

Introduction

1.1 Motivation

Reed-Solomon (RS) codes are one of the most widely used error correcting code for
wireless communication and storage systems. The current issue about the RS code is
to find an efficient way to improve the performance of traditional algebraic hard deci-
sion Berlekamp-Messey(HD-BM) [1] algorithm.“HD-BM algorithm does not use channel
reliability information, this causes significant performance loss. Soft decision decoding
algorithm takes advantage of the channel value,;.and is believed to have 2 ~ 3 dB perfor-
mance gain in additive white Gaussian noise (AWGN) channel. Guruswami and Vardy [2]
have shown that Maximum-likelihood (ML) decoding of RS code is NP-hard. It remains
an open area to find a soft decision code with moderate complexity with near ML perfor-
mance.

Recently, the algebraic soft decision decoding (ASD) developed by Koetter and Vardy
(KV) [3] use a list decoding technique outperforms Guruswami and Sudan (GS) [4] hard
decision decoding method. On the other hand, Jiang and Narayanan (JN) [5] use adaptive
parity check matrix and belief propagation to execute soft decision decoding based on
iterative process. In [6], El-Khamy and McEliece combined JN and KV algorithm. They
used belief propagation method to improve the reliability of the symbols and then fed
these reliability information into a algebraic soft decision(KV) decoder.

There are several soft decision decoding algorithm based on the reliability-based de-

coding. The order statistics decoding algorithm [7] sorts the received bits with respect



to their reliability, then the reprocessing step is designed to improve the hard decision
codeword until a desired error performance is achieved. Other reliability-based decoding
such as the generalized minimum distance (GMD) decoding algorithm [8], Chase algo-
rithm [9] and a hybrid of chase and GMD algorithms [10] use reliability information to
enhance HD-BM algorithm. Sequential algorithm, or M-algorithm(K-Best) algorithm has
been presented in [11], [12] offer a good deal in complexity reduction at the cost of some
loss in performance. However, the previous paper only discuss the case for binary linear
block codes or convolutional codes. Non-binary codes such as RS code is still open for
sequential algorithm.

In this thesis, we develop a K-Best algorithm based on reliability-based scheme for
soft RS decoding. Reliability-based decoding is based on reordering the received symbols
according to their reliability measure. Hard decision reliability decoding use the k reliable
symbols as information sequence and use the reordered generator matrix to re-encode the
possible codeword. However, we did not do the re-encode process in this thesis. We
summarize the decoding steps as follows:

1) For k reliable symbols, the possible candidates for each symbol are generated. We
do not execute re-encoding process while uise the property of the k reliable independent
symbols to execute tree-oriented operation:

2) K-Best algorithm is introduced to’collect the first k possible reliable symbols of K
combination set. A proper constraint is also set up to reduce the computation complexity.
3) An erasure-only decoding is used to generate the rest of N-k unreliable symbols.

4) Combine k reliable symbols with N-k unreliable symbols as combination set. Each
combination sets is calculated its distance metric between the received sequence. The one

with minimum distance is regarded as the transmitted codeword.

1.2 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 introduces the background
of RS codes, and some soft decision decoding techniques. The proposed schemes, K-Best
algorithm with constraint are presented in chapter 3. To accelerate the decoding speed,

description for the parallel K-Best is in this section as well. The simulation results are



shown in chapter 4. The computation complexities of our K-Best algorithm are compared
with popular algebraic soft decision decoding RS code is also in this chapter. Finally, a
summary concluding our work is given in chapter 5. The techniques used in this thesis are
all in chapter 6, including simplified cost function, re-encode decoding based on reliability

ordering, sphere decoding and K-Best algorithm, and erasure-only decoding.



Chapter 2

Soft decoding of RS codes

Reed-Solomon(RS) codes were first introduced by Reed and Solomon in 1960 [13].
RS codes can be viewed as the symbol level cyclic non-binary BCH codes [14] whose
symbols are in GF'(29). The (N,k) RS code is with N symbols consisting of k messages
in GF(29). It is a maximum distance separable code with minimum distance of (N-k+1).
The decoding region is in 2v + e < d,;,, Where e is the number of erasures. The decoding
complexity is usually in the O(N?). In'this chapter, The system model of RS codes is
introduced in section 2.1. The RS code is then reviewed in section 2.2. For soft decision RS
codes, symbol-level algebraic soft decision decoding such as GMD and Chase algorithm
is described in section 2.3 and 2.4. Algebraie soft decision decoding algorithm(KV) is

introduced in section 2.5. Iterative decoding of RS codes is shown in section 2.6.

2.1 System model of RS code

We use a systematic (N, k) Reed-Solomon(RS) code. The items in RS code are ele-
ments of Galois Field GF'(29) where N = 27 — 1. The operations in the process must be
operated over the Galois Field GF(27). Let B be the information sequence of length k.
The information sequence B multiply with RS generator matrix G to obtain the codeword

sequence C of length N.
C=BxG (2.1)

C = (Cy,C1,Cs,...,Cn_1)is a codeword which its binary extension is ¢ = (cg, ¢1, Co, . .

. CNq—l)‘
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Figure 2.1: Channel model of RS code

Then c is BPSK modulated from the code symbols to the constellation symbols.

l’j = f(Cj) = (—]_)cj,X = (ZL‘Q,I’l,I'Q, RPN :ENq—l) (22)

Then the modulated signal x is transmitted across the AWGN channel. The received

sequences y = (Yo, Y1, Y2, - - -, Yng—1) are soft values.
y=X+W (2.3)

Where w is the independent noise value Gaussian random variables with zero mean

and variance Ny/2. The system model of RS code is shown in Fig. 2.1.

2.2 Basic properties 0f Reed Solomon codes

The (N,k) RS code with bases 2 is defined over GF(27), where N = 27 — 1. The
generator polynomial is used to encode thé'RS code. The generator polynomial g(x) of
RS code which correct t or fewer error can be described by the minimum polynomials

3

of a,a?,a?,.. .,and o, and « is a primitive element in GF(¢™). Therefore the generator

polynomial has the following form

g(@) =[x —a? (2.4)

i=1

The generator polynomial has degree 2¢, thus an (N,k) RS code satisfies N — k = 2¢.

Notice that g(x) can also be characterized by the minimum polynomials of a®,a’*1,a**2,. .. and
a’*2=1 and can be generalized to
i=b+2t—1
g@)= ] (@-a) (2.5)
i=b

where b is a random integer number.



2.3 Generalized minimum distance algorithm

Generalized minimum distance (GMD) decoding is proposed by Forney [8]. The GMD
decoding used reliability information of the received symbols to improve algebraic decod-
ing. Based on successively erasing the least reliable symbols, GMD decoding runs the
hard decision decoder. It is shown that GMD decoding can be asymptotically optimal.
In ref [15] shows that an error-and-erasue method can correct all combinations of v errors
and e erasures provided that 2v + e < d,;, — 1. The GMD decoding consider all cases
of erasures ¢ < d,;, — 1 in the least reliable position(LRPs) which are the most likely
positions to be in error. The decoding method are as follows:

1. GMD decoding generates the hard decision Z from the received sequence y and assigns
a reliability value to each symbol Z.

2. GMD decoding generates a list of L%J sequence by modifying the hard decision
sequence Z with erasing the least reliable symbols.

3. GMD decoding decodes each modified Z into a codeword. Then it feeds Z into an
algebraic decoder.

4. GMD decoding computes the distan¢e metric of each generated symbol and selects the

one with the minimum distance metric as the solution.

2.4 Chase decoding algorithm

Chase algorithm [9] is the generalization of the GMD algorithm. Chase-1 algorithm
does not consider reliable or unreliable positions. It always generates (' ~ candidate
codewords by considering all possible combinations of Ldmfj in the hard recefved sequence
Z. But the computational complexity of Chase-1 algorithm is too heavy, few people discuss
the algorithm.

Chase-3 algorithm does similar operations as the GMD algorithm, except the erasure
operation in the GMD is being replaced by flipping the least reliable symbols. For binary
codes, Chase-3 algorithm achieves the same error performance as GMD and require same
computational complexity.

Chase-2 decoding is another reliability based decoding to assist hard decision decod-
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Figure 2.2: Error probability ¥.s ordered positions RS(15,11) and RS(31,25)

ing. It is an improvement of Chase-3 algorithm. It generates a larger candidate lists.
All possible errors in the range of [z | of LRPs is used to improve Z. The algorithm
exhaustively flip the least reliable symbols and run the hard decision decoder. The candi-
date list grows exponentially with d,,;,. Since the larger candidate list leads to a greater
possibility to correct the errors. Chase-2 algorithm performs a much better performance
than Chase-3 algorithm.

Among three algorithm, Chase-2 algorithm is the best algorithm considering the trade-
off between complexity and performance.

Fig. 2.2 shows the error probability versus reliability ordering for RS(15,11) and
RS(31,25). From the figure, we can observe that the error probability has an exponential
like curve. The received vectors are sorted according to their reliabilitiew. The first k
positions can be regarded as reliable positions, and the last N-k positions are unreliable

positions. The least reliable N-k region has the higher probability to occur errors than



the previous k positions. This tells why the GMD decoding and Chase algorithm work.
They generate the candidate codewords by dealing with the last N-k positions, and feed
the modified candidate codewords in to hard decision decoder. They hope that the hard
decision decoder can help them correct the errors occurred in the previous k position, if
exists. However, the drawback of these two algorithm is that if the error does not occur
in the last N-k region, and all concentrated in the reliable k regions and the number of
errors are larger than the error correction capabilities. Then, the decoder will never find

a correct codeword.

2.5 Algebraic soft decision decoding algorithm

Guruswami and Sudan (GS) invented a polynomial-list decoding algorithm [4] for
RS codes capable of correcting beyond half the minimum distance of the code. Koetter
and Vardy developed an algebraic soft decision(ASD) decoding [3] based on GS algo-
rithm using the reliability information to assign multiplicity for RS codes. the decoding
scheme is briefly summarized as follows;,The:transmitted codeword can be described as
(f(en), flag), ..., flan)) the received veetor 1S (Fiyfs, - . ., On). The basic idea is to find
a f(z) which fits as many points in=(f(q);5;) pairs. The KV algorithm consists of two
main steps, interpolation step and factorization step.

Step 1) Interpolation: Construct a bivariate polynomial Q(z,y) of minimum (1,k-1) de-
gree, which has a zero order of v at («ay, 5;), 1=1,.. ., N, i.e: if Q(z — oy, y — ;) involves no
term of degree less than i 4+ j = v.

Step 2) Factorization: Generate a list of y-roots,i.e:

L= f(x) € Fla] : (y = f(2)|Q(x,y), deg(f(x)) < k)

~

Then, pick up the most likely codeword f(x) from the list L.
The ultimate gain of algebraic soft decoding (ASD) over AWGN channel is about 1dB.
The complexity is scalable but prohibitively large for huge multiplicity.

2.6 Iterative Reed-Solomon decoding algorithm

In [5], Jiang proposed the iterative decoding algorithm based on sum-product algo-

rithm(SPA). The main idea is to adapt the parity-check matrix at each iteration according

8



to the reliabilities such that the unreliable bits correspond to a sparse matrix, so that the
SPA algorithm can continue applying to the adapted parity check matrix. The adapta-
tion prevents iterative decoding from getting stuck at local equilibrium region, thus, the

decoding process can continue to a convergence region. The following is the parity-check

matrix of an (N,k) RS code over GF(29):

1 B . pNV-1)
1 2 o 2(N-1)

H, - p P (2.6)
1 B(dmin*l) L ﬁ(dmin*l)(Nfl)

where [ is a primitive element in GF(2%), dypiy = N —k+ 1. Let n = N x ¢ and
k = k x q be the length of the codeword and information at the bit level, respectively.
H, has an equivalent binary image expansion H, (One can find in [15]), where H, is an
(n — k) x n binary parity-check matrix.

The iterative algorithm is composed of two stages:
1) The matrix updating stage.
2) The bit-reliability updating stage.

Assume ¢ = (co, ¢1, o, - . ., Cyg—1) 18:the binary representation of RS codeword. By us-

ing BPSK modulation and transmitted the codeword over an AWGN channel the received

vectors y = (Yo, Y1, Ya, - - - » Yng—1) can be given by
y=c+w (2.7)

where w is the AWGN noise. The initial reliability of each bit can be expressed in terms
of the log-likelihood ratios(LLR):

P(Ci = 0|yi)
P(Ci = 1‘%‘)

where ¢; stands for codeword and y; stands for received vector in the bit represen-

LO(¢;) = log (2.8)

tation. The magnitude of the received LLRs |L(¢;)| are sorted in an descending order
IN,- s UIN—Fk,- - -, 12,91, the bit ¢;, is the most reliable and the bit ¢;, is the least reliable.
The algorithm begins with the original parity-check matrix Hj, and reduce the ¢; th col-
umn of H, to a form [10.. .O]T. the process is continued to reduce (N — k)-th columns of

Hy, to be the identity matrix. The matrix is thus reduced like Fig. 2.3.

9
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Figure 2.3: Form of the parity check matrix suitable for iterative decoding by row opera-

tions
In the matrix updating stage. For the v-th iteration, the vector of LLRs will be
L' = [LY(c1), L (cp), ..., LY (c,)] (2.9)

and Ly is determined from the channel output. Then, the parity-check matrix is

reduced to a form based on LY
Hy = ¢(Hy, |L"]) (2.10)

In the bit-reliability updating stage, the‘extrinsic LLR vector L7, is generated by L"
using the SPA based on the previousiadapted parity-check matrix H}/

BB, 15 (2.11)

For each bit, the extrinsic LLR is updated according to

n—k n
LW (c,)
L(v) N\ — -1 P )
car(Ci) | Z 2tanh H tanh( 5 (2.12)
]:1,H}’i=1 p:l,p#z,[f}’p:l
The bit-reliability is then updated as
LOTY = L0 4 o) (2.13)

where 0 < a < 1 is a damping coefficient. Then, take hard decision of the decoded bit

codeword ¢;

0, L (¢) >0
é = (2.14)
1, Le(¢) <0

The termination criterion is, if all the checks are satisfied, output the estimated bits;
else if v = vy, iteration, declare a decoding failure; otherwise set v to v+1 and go for

another iteration.

10



The drawback of the iterative decoding by adapting parity-check matrix of RS code
is that the algorithm has the ”error floor” problem. And the iterative decoding needs

different iteration to complete the decoding process.

11



Chapter 3

Proposed soft RS decoding with
K-Best algorithm

Reliability based decoding with ordered statistics [7] has been shown to be efficient
to decode binary linear block codes. In this chapter, based on reliability decoding and
re-encode process we introduce a new matrix AG for our decoding operation. We didn’t
do the re-encode process as the previouspaper:.The candidate of each reliable symbols
is generated when the received soft value is determined. We take advantage of the more
reliable column of matrix AG, then transform.it into a tree-oriented problem. The K-
Best algorithm is introduced to search the-pessible candidate previously generated. Since
the decoding speed is the drawback of the K-Best algorithm, parallel K-Best algorithm is
used to improve the speed issue. The K-Best algorithm with constraint is used to reduce
the computation complexity, especially the comparison for the parallel K-Best algorithm.
Erasure-only decoding is described next to use the property of RS codes, we can regard
the N-k unreliable position as erasures. The k-reliable symbols of K-Best combinational
sets can be used to decode the other N-k erasures. A brief summary is at the end of this
chapter, to describe the decoding flow of the proposed soft RS decoding algorithm.

xNote: The method including cost function, re-encode, sphere decoding, K-Best algorithm and

erasure-only decoding in this chapter can be found in chapter 6, appendix.

12
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Figure 3.1: BPSK mapping and the distribution of unreliable bits
3.1 Pre-processing

In Pre-processing, we first generate the symbol candidates, and reorder the symbol
based on reliability. The generator matrix is also permuted according to the reliability.
Then, Gauss elimination is used to avoid the correlation between reliable symbols. At
last, re-encode is used to generate the possible codeword sets. It is observed in the pre-
processing process that reliable symbols do not need to execute Gauss elimination, since

they are already independent.

3.1.1 Candidate generation

Decoding based on most reliable mdépendent position (MRIP) requires the ordering
of the received sequence according to their reliability. At first, we use hard decision
symbols to be the foundation to choose the reliable symbols and produce the candidates.
After DE-BPSK, we declare the hard decision of y as z, where z = (20, 21, 22, . . ., ZNg—1)-
The vector z is transmitted from the binary sequence into symbol sequence Z where
7= (Zy,Z—1,...,Zn_1). Every symbol Z; where j is form 0 to N — 1 is composed by
(Zjas Zjg 1> -+ Zigt(a-1))-

Based on the re-encoding schemes, the selection of candidate is as follows. We decide
the unreliable bits number of symbols and generate the candidates correspond to those
symbols. Because those bits are not reliable, we consider all possible combination of their
position with 1 and 0.

Fig. 3.1 shows the example of unreliable bits. We can set up criterion to decide how

many number of unreliable bits need to be considered. The criterion is as follows:

13
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Figure 3.2: Candidates generation based on unreliable bits

Design criterion

1) The received soft values lie between 1 and —1.

2) The number of unreliable bits could be decided off-line according to the absolute soft
values.

After the unreliable bits are found, DE-BPSK is done in the next. According to Fig.
3.1, the corresponding hard decision bits of jth symbol (z;, 21,5, 22,5, 23,;) are (1,0,0,1).
Then, for each symbol we could use the unreliable bits to produce its candidates. Fig.
3.2 shows the example of candidate generation.

To produce all candidates of the symboljthere are three steps as follows.

1) We decide the unreliable bits numbér—of the symbol and mark the position of these
unreliable bits.

2) We use 1 and 0 to produce 2V combination sets, where v is the number of unreliable
bits.

3) There are 2" sets of v unreliable bits, they would be placed into the marked position

of unreliable bits.

After the above three steps, all candidates would be generated. We use the above
three steps and continue to demonstrate the previous example. There are two unreliable
bits, zp; and 2y ;, corresponding to o ; and ys ;. The positions of these bits are 0 and 2.
Then, all 22 combination sets of 1 and 0 are generated. They are (0,0), (0,1),(1,0) and
(1,1). Next, we replace the origin hard decision symbol bits position with these bit sets.
The origin hard decision bits of the symbol are (1,0,0,1). Therefore, the candidates are
(0,0,0,1),(0,0,1,1),(1,0,0,1) and (1,0,1,1).

The candidates of symbol are produced by the order of reliability. Table 3.1 shows

14



Table 3.1: Example of cost table

—05 1] —-1.210.31]0.9 ] cost

4 1 -1 1 1 ] 05

6 1 -1 -1 1 |08

12| -1 -1 1 1 0

141 -1 -1 -1 1|03

the example of different cost between candidates and received soft values. We order the
candidates of the symbol by their cost compared to the received value. Every symbol Z;
would have its own candidates (Zj,o, Zj,l, el ij) The selection of m which is between 1
to N+1 is obtained by the number of unreliable bits. The candidates of jth symbol can be
denoted as a vector Z ;. We calculate the cost between candidates 7 ;i and the received soft
values y, then arrange ZAM in a ascending order denoted as S; = (50,51, ..., Sjm). Where

the permutation is denoted as A;.

A

Sp="Xi{%) (3.1)

Obviously, Sj is the hard decision symbol.“The candidate with the smallest cost value
is the most possible transmission symbol. First-% reliable candidate sets are used in this
algorithm through the process, and the last N'— k£ candidate sets would be used in the
erasure only decoding.

After producing the candidates of all symbols, we compose all possible candidate sets.
Fixed number (m) of candidate symbols is used in re-encode method. There are m”

possible combination sets to operate re-encode process. These possible candidate sets

should execute the same operation as the columns of G.

3.1.2 Reliability ordering

For each hard decision symbol S; o, reliability is calculated by adding the corresponding

absolute value of received soft values y;.
—1
R = 520 [1Yja+ill (3-2)
The symbols are rearranged according to the ordering of the largest absolute value.

15



Then S is rearranged to be S’ = (S(, 51,55, ..., Sy_1)-

The symbols are re-arranged as S’. We denote the permutation as Ay. We selected
first k most reliable symbols (S, S1,...,S,_;) to perform the pre-processing. Since the
columns of G correspond to the position of symbols, thus we permute the columns of

generator matrix based on the ordering of reliability. After the permutation of generator

matrix G, the new matrix can be marked as G’.
S = X(9) (3.3)

G = X\ (G) (3.4)

3.1.3 Re-order generator matrix

The first k& columns of G’ are not necessarily independent while in re-encoding scheme,
thus such k& columns can not represent the information set. We are going to rearrange the
first k& columns of G’ to make each k column independent. The rearranged matrix is G”
and its first k& columns are linearly independent. After the rearrange operation Az, the
columns of G” also maintain the descending order-of the reliability values. The operation
Az could be regarded as Gaussian eliminations which let G” in the reduce echelon form

that contain only one 1. We use matrix A to represent the Gaussian elimination operation.

G" = \(G') = G' x A (3.5)

The generator matrix becomes G” after the Gaussian elimination which is shown
as Fig. 3.3. The corresponding symbols should execute the same operation, then the
resultant is denoted as S”.

S = X\y(S) =8 x A (3.6)

Every possible set of S” should do the same operations to produce the possible code-
word in re-encode process. Because the G” is systematic matrix, it means the corre-
sponding S” is the possible independent message sets. The possible message sets multiply
generator matrix G to produce possible codeword sets. In re-encode method, we calculate
the cost between the received soft value and possible codeword and decide the codeword

with minimum cost as the decoded codeword.
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Figure 3.4: Example of AG matrix

3.1.4 Re-encoding process

In re-encode method, every S’ set:must multiply matrix A and then multiply matrix
G. Because there are mF sets, re-encode method needs a lot of multiply operations. We
want to reduce the operation number,’so.we multiply A and G together to be matrix AG.
Fig. 3.4 shows an example of the matrix AG. Then every S’ set only needs to multiply
matrix AG once. The re-encode process speeds up 1.5 times. It reduces the operation
number and produces the same codeword sets.

After we produce matrix AG, we discover that there is a special property of matrix
AG. The property of matrix AG can be divided in to two parts. First, the columns with
only one 1 correspond to the position of reliable symbols can be regarded as the permu-
tation of k x k identity matrix. Second, the columns correspond to the position of N —k
unreliable symbols can be regarded as the combination of the other k reliable symbols.
Observing the matrix AG, we find out that the k reliable symbols are independent.

1) We marked the position of 1 in the columns of matrix AG which has only one 1 as
index L. L = (lo, l1, 2, ..., lx_1) are indexes corresponding to the most k reliable symbols.

2) According to the index vector L, the candidates of the most k reliable symbols would
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be selected in K-Best scheme.
3) The order of k column with only one 1 stands for the position of the corresponding
reliable symbol.

4) The value of index [;(i = 0 ~ k — 1) represents for the /;th transmitted symbol.

The index would point out the most £ reliable symbol corresponding to the /;th symbol

of the received codeword, respectively.

3.2 Candidate selecting

In section 3.1.4, it has mentioned that the possible candidate sets will be m*. This is
a large number when k increases, and it is not feasible to use these candidate sets to do
the re-encoding process. In the following section, we proposed K-Best algorithm, parallel
K-Best algorithm and parallel K-Best algorithm with constraint to reduce the number of

candidate sets.

3.2.1 K-Best algorithm

* combination sets of S’meeded to multiply matrix AG, which still leads

There are m
to a large number of operations. The ‘independent property of matrix AG can be used
to reduce the re-encode operation. Thus, we can use the independent property of matrix
AG to execute K-Best operation. K-Best operation needs k layers to select the candidate
sets. Every candidate set of symbol would be a layer in K-Best. A tree Fig. 3.5 is used
to represent the whole process.

We assume an origin point in layer 0 and use the dotted line to mark it as a pseudo
node. A pseudo node is set up to start the tree-like algorithm. The path between layer
0 and layer 1 would be marked as dotted line too. Then, the first candidate sets would
spread up at layer 1. In the Fig. 3.5, the node represents the accumulated cost. There
are m candidates of jth symbol in each layer where S'; = (S}, S} ,,...,5},,)-

The value in the line stands for the cost of that candidate compared to the received

soft value. The value of node stands for the accumulated cost. Each layer accumulates

the cost from the previous layer, and then chooses the combination sets of K minimum
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Layer 0 Layer 1 Layer 2 Layer k

Figure 3.5: Example of K-Best candidate selection, K=2

cost candidates. The chosen path and node would be marked as line and circle in solid
line. The next layer would start from.the-chosen node. The stop criterion is that the
candidates of k reliable symbols are -all considered:

We can summary the process in four steps asfollows until the stop criterion is achieved.
1) For each parent node, it spreads out‘the possible candidates as child node in that layer
2) Each child node accumulates the cost
3) We choose K minimum cost sets in the decoding layer.
4) Check the stopping criterion. If the stopping criterion is not achieved, start the next
layer from chosen K nodes in last layer
Therefore, we have less candidate sets chosen by K-Best method than the re-encode

method.

3.2.2 Parallel K-Best algorithm

Although the K-Best method reduces the operation, the speed of execution is still not
good enough. In this thesis a parallel K- Best algorithm is proposed to improve the speed
issue, it separates most k reliable candidate sets into several groups. There are ¢ layers

in Galois Field GF(2?). Fig. 3.6 shows an example of RS(15,11) with 4 layers.
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Figure 3.7: Example of subgroup selection in parallel K-Best scheme

Here are the steps for parallel K-Best algorithm.

1) For the selection of the candidate, werdeéfine some parameters as following. Here,
T stands for the number of layer from 1 to ¢, a; is the number of sub-groups with two
candidate sets in that layer and «s is the number that a sub-group has only one candidate
sets in that layer. «a; and as are integers, and oy would always be 0 or 1. Fig. 3.7 is
the example of subgroup selection in parallel K-Best scheme. In an (N, k) RS code, oy
would be initialized as k/2 and as would be initialized as k%2 at first layer. % stands for
module.

2) We use a sequential tree-like method to help us choose candidate sets in K-Best
scheme. If there are two input candidate sets (I'T, T3 ) with (m?, mI) candidates in layer
T where TT = (70,71, Yy o1) and T3 = (930,715 - - - » Vamy—1)» and ; means the
i-th candidate of input candidate set FJT in layer T. There are total M7 = m? x ml
combinational candidate sets. Fig. 3.8 shows an example of the subgroup. We must
use K-Best method to choose K combined candidate sets with smaller cost value. As
we choosing these candidate sets, we must denote the cost value and the index of each

candidate combination sets. The index here means that the candidates of combined sets

which its original position is in input candidate set?
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Figure 3.8: Example of subgroup in parallel K-Best scheme.

Table 3.2: Example of subgroup cost table

Accumulated Cost {-order of I'] | order of T'}
0.2 0 0
0.3 1 0
0.4 0 1
0.5 0 2
0.5 1 2
0.6 0 3
0.6 1 2
0.7 1 3
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Obviously, each input candidates sets needs M7 indexes. The cost information is
saved in another M7 register. Thus, total 3M7 registers are needed to be saved for K-
Best scheme. Table. 3.2 shows an example of 3M7 registers to save the index and cost
information.

Now we use a scheme which needs only 2M register to execute K-Best algorithm.

1) We produce the combination candidate sets in sequence as following. We fix the
candidate of I'T and displace the candidates in T'T until all mZ candidates are changed.
Then we move on to the next candidate of I'T, and do the same process as above. Fig.
3.9 shows an example of producing path index and candidate sets for parallel K-Best
algorithm.

2) During producing the combinational candidate sets, we give every combination set an
index number  from 0 to M7 — 1 sequentially, and denote the accumulated cost of every
combined candidate sets.

3) As all M7 combination candidate sets are produced, all combination sets are sorted
by the cost and also the index is permuted according the new order.

4) K-Best scheme choose K candidate combination sets which are the input sets of next
layer. The elements of chosen combination sets are traced by the index 2. The element
from T'T is the 47 th term of the input, candidate set where vI' = Q/m2. The element
from I'J is the ¢ th term of the input candidateset where 72 = Q%m? . Then we could
use only M registers to memorize the index of elements in combination sets. Fig. 3.10
shows an example of reduced index for parallel K-Best algorithm

5) Then, K-Best scheme is executed in every sub-group independently.

6) After the K-best algorithm, every sub-group chooses its own candidate sets. Fig. 3.11
shows the chosen candidate sets for parallel K-Best algorithm.

7) We repeat the steps above until the output candidate sets have k elements.

3.2.3 Parallel K-Best algorithm with constraint

Parallel K-Best method reduces the total comparing number for selecting the candidate
sets. As the k becomes bigger, we need a large number of sorting. To prevent the sorting
complexity becomes too heavy, we decide to use a bound to consistent the number of

sorting.
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Figure 3.9: Example of path index and candidate sets for parallel K-Best algorithm
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Figure 3.10: Example reduced index for parallel K-Best algorithm
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Figure 3.11: Example of chosen K candidate sets for parallel K-Best algorithm
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Figure 3.12: Parallel K-Best using constraint
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Figure 3.13: The chosen sets.of parallel K-Best using constraint

In the process of parallel K-Best method, we define different bound for each layer.
The bound of each layer is defined by observing the cost distribution. The accumulated

cost of candidate sets smaller than the bound are chosen. The chosen combination sets

would be re-arranged according the order of cost.

In the Fig. 3.12, the bound is defined as 0.6, and K is set to equal 2. Thus, the

combination sets 0, 1, 2, 4 and 5 marked as black dotted line in order which would be

chosen to be the possible K candidates.

By using the constraint and combined with the K-Best algorithm, the number of
sorting sets are decreased. Fig. 3.13 shows the example of constraint, in this example
There are total five candidates fall in the bound. If K is equal to 2, then the path 0 and

path 4 are the selected combinational sets. The complexity of operation is reduced and

the speed of process is faster almost two times than before.
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3.3 Erasure-only decoding

We use K-Best method to choose K minimum cost sets correspond to K minimum
candidate sets. Every possible unreliable sets and the chosen K-Best sets are combined
together as possible codeword sets. Since re-encode process needs to deal with the order-
ing of generator matrix. In C program, this means the process needs a lot of temporary
memory to store related data. Besides, the criterion for selecting codeword is only based
on K-Best cost, it is not sufficient to obtain good performance. From AG matrix, we
notice that the unreliable symbols can be composed by the reliable symbols. Thus, the
erasure-only decoding is suitable for this task. And it adds another condition to see
whether the codeword is in the generated candidate sets. Based on the above improve-
ment of the decoding process, the re-encode process is replaced by erasure only decoding.
Every possible codeword are put into syndrome equation to find out whether the possible
codeword is in the codeword set of this system. If the syndrome equations are all zeros, it
means that the possible codeword is in the codeword set. We choose the codeword under
the following constraint
(1) Syndrome equations are all zeros
(2) The codeword with the minimum accumulated cost.

The codeword with the above two condition should be the transmission codeword.

The method mentioned before this section needs S” multiply matrix AG to obtain

possible codeword sets. There are just one constraint, to find minimum cost. The possible
codeword set is judged by which codeword set has minimum cost. In this section, we do
not execute re-encode method because we do not use S’ to multiply matrix AG. Here, we
add another constraint to consider the possible codeword. Is it in the codeword sets or
not? This will help us choosing the right possible codeword. Using the minimum cost and
syndrome equation constraints make us reach better performance then re-encode. But we
discover that there are three kinds of errors as follows.
1) The transmitted codeword is in the K-Best sets, but the syndrome equations
of it (the transmitted set) are not all zeros. This kind of error is produced because
the candidates of unreliable symbols are not chosen properly. We could choose more
unreliable bits to extend the possible candidates of unreliable symbols.

2) The transmitted codeword is not in the K-Best sets. Because the cost of
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transmitted codeword is larger than the Kth Best sets, the transmitted codeword is not
chosen. We could solve this error by choosing the larger K to contain the transmitted
codeword.
3) The transmission codeword is in the K-Best sets and the syndrome equations
are all zeros but we do not choose the transmitted set. The reason is that
there is another possible codeword set which cost is smaller than the transmitted set and
the syndrome equations are all zero, too. Under these conditions, we choose the wrong
codeword which satisfy both constraints better than the transmitted one. This kind of
error is the maximum-likelihood error, since the noise interference caused the right answer
jump to another, thus we could not solve this problem

Though we use constraint for accumulated cost and syndrome equation to improve
the performance, there still needs a better algorithm. We realize that the accumulated
cost of MRIP k symbols being calculated by K-Best should be replaced by cost of all
N candidates. Because the codeword sets produced by syndrome equation are possible
transmitted codeword, the most possible codeword set should consider the cost of all N
symbols. After we change the constraint:with the cost of N symbols, the performance is

improved.

3.4 Summary

The proposed algorithm consists of three parts, pre-processing, candidate selecting
and erasure only decoding. It should be mentioned that in pre-processing process, the
matrix AG shows that after reliability ordering from the received value, the most k reliable
symbols are already independent. It implies we can choose the candidate sets after the
symbols being reordered by reliability. Thus, it is needless to do any operation for gen-
erator matrix. For candidate selecting, the K-Best algorithm is introduced to reduce the
computation complexity for possible candidate sets. Since the decoding speed is too slow
for the layer by layer property of the K-Best algorithm, the parallel K-Best algorithm is
introduced. The parallel K-Best algorithm divides the candidates sets into several groups,
each subgroup chooses local K-Best candidate. The decoding process is continued until

the candidate sets is combined with k symbols. The parallel K-Best algorithm reduces
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the computation layer from k to q, thus increases the decoding speed and decrease the
computation complexity. Finally, the re-encoding process is replaced by the erasure-only

decoding.
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Chapter 4

Simulation results and complexity

comparison

In this section, RS(15,11) and RS(31,25) are simulated for comparing the proposed al-
gorithm and the other RS code such as hard decision Berlekamp-Massy algorithm, KV al-
gorithm, adaptive belief propagation algorithm(JN), adaptive belief propagation-algebraic
soft decoding(ABP-ASD), and sphere.decoding algorithm. The signal is modulated by
BPSK and transmitted through the AWGN channel. For RS(15,11) when the SNR is
below 5dB, 10° bits are simulated, and over 102 bits are simulated for SNR > 6dB. For
RS(31,25), 10* bits are simulated when the-SNR'is below 5dB, and 10® bits are simulated
for SNR > 6dB .

The complexity comparison includes the number of sorting and additions for K-Best
algorithm, parallel K-Best, and parallel K-Best with sphere constraint. The HD-BM

algorithm is used as an performance baseline.

4.1 Simulation results

In section 3.3, we discuss that we change the cost function, accumulated the metric
from k to N, Fig. 4.1 shows the results. For RS(15,11), there is 1dB gap between
the k cost and N cost for total K= 30 at codeword error rate(CER) 107*. Fig. 4.2
shows the performance comparison between different selection of K for RS(15,11). It

can be observed that for the full selection of candidate symbol. K= 300 has the best
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performance within 0.3dB gap of ML performance and the ABP-ASD [6]. There is 0.3dB
loss between K= 100 and K= 300, another 0.7dB loss when we take K= 30. To reduce
the computation complexity, parallel K-Best is proposed in section 3.2.2. Fig. 4.3 shows
the performance comparison. All the case consider K= 300 in a parallel scheme. The
difference is only the selection number of the candidate. From the figure we can observe
that when candidate number is up to 5, the performance loss compared to candidate= 16
is smaller than 0.1dB. And the gap to the ML and ABP-ASD performance is also 0.3dB.
In section 3.2.3, the parallel K-Best algorithm with constraint is proposed. Fig. 4.4
shows the simulation results. We can observe that setting up constraint for the parallel
K-Best algorithm will degrade performance within 0.05dB, but we have mentioned in
section 3.1.1 that the computation reduction, especially the sorting complexity is over
70% reduction. Fig. 4.5 compares the performance of different soft decision decoding
scheme. It can be observed that the proposed algorithm outperforms the KV algorithm
for 1.3dB at CER 10~*, and JN belief propagation with BM about 1.5dB at CER. 10~%.
The performance difference between our proposed algorithm, K-Best, parallel K-Best and
parallel K-Best with constraint is fairly.small../There is still a performance gap between
ABP-ASD and ML. The reason is the mature of the sequential algorithm or (K-Best)
algorithm. In the decoding process; once the size of K is not big enough to collect the
true transmitted symbols, the decoded’codewordmay have errors. The larger K will cause
more computation effort. Thus, it is a tradeoff between performance and computation
complexity.

Fig. 4.6 is the simulation results for RS(31,25), at CER 1073, the performance gain
over HD-BM is about 1.4dB. The proposed algorithm also performs better than KV and
sphere decoding algorithm [16]. But there is a performance gap 1.25dB between the
proposed algorithm and ML or ABP-ASD. The reason is that as the N increases, the
candidate symbol selection for parallel K needs to increase, too. In this thesis, the K-Best
combinational sets of the last layer is up to 3000. This number becomes infeasible when
it comes to consider hardware implementation. Thus, the proposed method need to be

improved when N is increased.
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Figure 4.1: Performance comparison for K-Best of RS (15,11) BPSK mapping AWGN

channel with different size of distance metric.

xNotel: costp, costy represents the distance metric of N symbols and k symbols respectively.

xNote2: ML1 and ML2 represents different, estimation of ML performance.
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Figure 4.2: Performance comparison for K-Best of RS (15,11) BPSK mapping AWGN

channel with different selection of K.

xNote: Neand represents the number of candidates is N.
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Table 4.1: Comparison between K-Best, parallel K-Best and parallel K-Best with con-
straint for RS (15,11).

K-Best Parallel K-Best

K=300 | K=100 | K=300 | K=300 with constraint
Normalized comparison 100% | 29.83% | 27.76% 8.39%
Normalized addition 100% | 34.27% | 28.99% 28.99%
Performance gain over HD || 2.45dB | 2.1dB | 2.43dB 2.4dB

x The constraint is derived from simulation results.
x The candidate number N.,,q4 is 16.

* ”Normalized” means we use K-Best=300 as the comparison baseline.

4.2 Complexity comparison

The computation comparison of proposed K-Best algorithm and parallel K-Best algo-
rithm is shown in Table 4.1. HD-BM is the performance baseline. K-Best with K= 300 is
the baseline of normalized comparison.and normalized addition, the complexity reduction
is about 70% when K= 100 is chosen,-but the-performance is 0.35dB loss from K= 300.
For parallel K-Best scheme, K= 300-is an-sufficient number to maintain near same per-
formance as the original K-Best algorithm;with K= 300. The difference is only 0.02dB
performance loss. However, there is over 70% comparison and addition computation re-
duction in this case. We can see that performance gap between K-Best algorithm and
parallel K-Best with constraint is only 0.05dB, but the comparison reduction is 91.61%.
Since, parallel K-Best with constraint still needs to calculate all the distance metric of
the possible candidate, thus there is no computation reduction for addition compare with
parallel K-Best.

Table 4.2 shows the comparison of different candidate size for parallel K-Best algo-
rithm. The comparison reduction for candidate=4 and candidate=5 is about 10% from
candidate=16, and the addition reduction is 14% and 11%, respectively. The performance
loss is 0.13dB and 0.03dB for each case.

Arithmetic complexity is generally written in a form known as Big-O notation. O(n)

is the general notation for linear complexity. Where O represents the complexity of the
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Table 4.2: Different candidate number of parallel K-Best algorithm for RS (15,11)

Parallel K-Best
Neand=16 | Neana=5 | Neana=4
Normalized comparison 100% 91.94% | 89.61%
Normalized addition 100% 88.9% 85.9%
Performance gain over HD 2.43dB 2.4dB 2.3dB

Table 4.3: Computation comparison of ABP-ASD and proposed method

ABP-ASD Proposed
Floating )
O(N'7) Reliability ordering O(NlogN)
operation Pre-
ABP
processing O(NNecana
ixGE i x O(min(k', (N' — k")?)N’) Candidate generation
IOgN(:and)
Matrix assignment O(N?) Candidate Parallel K-best O(Kq-1K4—»
ASD Interpolation O(N#AY) selecting with constraint log(Kq—1K4-2))
Factorization O(log?l)k(N + logq)) Erasure-only decoding O(KN)
x Notel: N' =N x q
x Note2: k' =k x ¢
* Note3: Kq_1, Kq—1 stand for the size of K in layer -1 and g-2.
* ASD represents the KV algorithm.
Table 4.4: Numerical comparison of ABP-ASD and proposed method for RS (15,11)
ABP-ASD Proposed
Floating operation 3.6 K
ABP Reliability ordering 18
5xGE 76.9 K Pre-processing
Matrix assignment 225 Candidate generation 289
A=4 A=5 A=10
ASD Interpolation Candidate selecting | Parallel K-Best with constraint 29 K
57.6 K 140.6 K 2250 K
Factorization 278 743 3417 Erasure-only decoding 4.5 K
Total 138.6 K | 222.1 K | 2334.1 K Total 339 K

* Note: In the table, K represents 103.
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Table 4.5: Numerical comparison of ABP-ASD

and proposed method for RS (31,25)

ABP-ASD Proposed
Floating operation 24 K
ABP Reliability ordering 46
5xGE 697.5 K Pre-processing
Matrix assignment 9.6 K Candidate generation 310
A=4 A=5 A=10
10xASD Interpolation Candidate selecting Parallel K-Best 86 K
2460 K | 6006 K | 96100 K
Factorization 12 K 21 K 115 K Erasure-only decoding 9.3 K
Total 3203 K | 6758 K | 96946 K Total 95.4 K
Table 4.6: Numerical complexity of proposed method of RS (15,11)
Fixed add | abs. | compare | xor and
Re-arrange 45 60 121 0 0
Candidate generation 0 0 60 120 0
Proposed
Parallel K-Best 0 0 2.1K 441K 0
Erasure-only decoding 0 0 0 2K | 2.2K
Total 45 60 2.3K 46.2K | 2.2K
x The bits number of fixed addition is defined by the bit number of the channel noise.
x The bits number of absolute is the same as-fixed-addition.
* The compare component with 2 inputs.
*x The xor component with 2 inputs.
* The and component with 2 inputs.
Table 4.7: Numerical complexity of proposed method of RS (31,25)
Fixed add | abs. | compare xor and
Re-arrange 124 155 625 0 0
Candidate generation 0 0 155 248 0
Proposed
Parallel K-Best 0 0 1059K 6155K 0
Erasure-only decoding 0 0 0 9.9K 10.9K
Total 124 155 | 1059.8K | 6165.1K | 10.9K
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algorithm and a value n represents the size of the set the algorithm is run against. In
this thesis, the sorting complexity can be regarded as O(NlogN) [17], which includes the
heap, merge and quick sorts.

In this thesis, we compare the computation complexity with ABP-ASD algorithm [6],
since it is known as the best soft RS decoding performance, recently. We divide the
ABP-ASD algorithm in to two parts, the pre-processing part and decoding part. Table
4.3 compare each process with our proposed parallel K-Best algorithm, respectively. The
ABP step involves O(N") floating operations, for sorting and BP, and O(min(k’, (N" —
k')?)N') binary operations for Gauss elimination [5]. For ASD, matrix assignment requires
O(N?) time complexity, interpolation needs time complexity with O(N2\*). An efficient
factorization algorithm with a time complexity O((llog?l)k)(N + llogl)), where [ is an
upper bound on the ASD’s list size and is determined by .

Table. 4.4 shows the numerical comparison between ABP-ASD and proposed method
for RS(15,11). It is observed that the dominate terms of ABP-ASD are Gauss elimination
and interpolation. And for ASD, it needs 5 iteration of Gauss elimination corresponding
to Fig. 4.5. The dominate term in proposed method is parallel K-Best operation. We
substitute the number into the parameters and compare the complexity. Comparing with
ABP-ASD, the proposed scheme has 75.5% c¢omplexity reduction of A = 4. And there is
84.7% complexity reduction of A = 5. "As.for A\ =710, there is 98.5% complexity reduction.
ABP-ASD has 0.3dB performance gain with proposed method at CER of 1074

Table. 4.5 shows the numerical comparison between ABP-ASD and proposed method
for RS(31,25). We substitute the number into the parameters and compare the complexity.
Comparing with ABP-ASD, the proposed scheme has 97% complexity reduction of A = 4.
And there is 98.6% complexity reduction of A\ = 5. As for A = 10, there is 99.9%
complexity reduction. ABP-ASD has 1.25dB performance gain with proposed method at
CER of 1074

The difference between KV and ABP-ASD is that KV did not do the ABP process.
In fact, KV operation is the same as ASD.

In Table 4.4, the numerical comparison between KV and proposed scheme for RS(15,11)
is shown. The dominate term in KV algorithm is interpolation. Comparing with KV

algorithm, the proposed method has 41.7% complexity reduction and at least 1.3dB per-
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formance gain. Since, the performance of KV algorithm shown in Fig. 4.5 with infinite
complexity cost.

In Table 4.5, the numerical comparison between KV and proposed scheme for RS(31,25)
is shown. The dominate term in KV algorithm is interpolation. Comparing with KV
algorithm, the proposed method has 61.6% complexity reduction and at least 0.6dB per-
formance gain at CER of 107%. Since, the performance of KV algorithm shown in Fig.
4.6 with infinite complexity cost.

Next, we shows the complexity of our proposed algorithm, parallel K-Best with sphere
constraint. Unlike the ABP-ASD algorithm decompose the code and parity-check matrix
into binary image, we focus on the symbol level decoding. We also divide the decoding
process into two part, pre-processing includes re-arrange received soft values and the can-
didate generation. Each have a time complexity, O(NlogN) and O(N N_4nalogNeana). For
the decoding part, parallel K-Best algorithm with sphere constraint needs O(K,_1 K,_olog(K,—1K,_3)),
and erasure only decoding have a time complexity with O(K N).

Table. 4.6, 4.7 show the computation complexity of different decoding steps. The
re-arrange steps includes the floating additiong, absolute operation, and re-ordering the
received value. Since we operate the order decoding steps from re-order G to erasure only
decoding in symbol level. The computation calculation is slightly different from binary
case. We consider the worst case for gymbol level multiplication. There are qxq and

operation, and (g-1)xq xor operation while our symbol is considered in GF(27).
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, the soft RS decoder based on K-Best algorithm with constraint is pro-
posed and divided into three parts, pre-processing, candidate selecting ,and erasure only
decoding. In pre-processing, the decoder uses the soft information to derive the reliability
for each symbol. It is observed from there-encoding process that k reliable symbols are
independent. In candidate selecting; the K-Best algorithm is introduced to reduced the
computation number of the possible-candidate sets: In order to accelerate the decoding
speed and reduce the computation complexity-of the K-Best algorithm, the parallel K-
Best algorithm is introduced. In parallel K-Best algorithm, we divided the candidate sets
into several groups. Each subgroup chooses local K-Best candidates, and the process is
keep running until the q layers completed. Then, a constraint is introduced to reduce the
computation complexity. Only the sets distance metric smaller than the constraint are
needed to be computed. FErasure only decoding uses the property of the RS code. By
using syndrome equation, the first k reliable symbols can be used to decode the other
N — k unreliable symbols. The candidate codeword of the N symbols with the smallest
distance metric will be determined as the transmitted codeword.

In conclusion, the computation complexity of proposed parallel K-Best algorithm with
constraint for RS(15,11) outperforms the HD-BM algorithm by 2.4dB and the KV algo-
rithm by 1.3dB at codeword error rate(CER) of 107*. Comparing with ABP-ASD algo-
rithm, there is 0.3 dB performance gap at CER 10~%. The complexity reduction is at
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least 41.7% and 75.5% for KV and ABP-ASD algorithm, respectively. For RS(31,25), it
outperforms the HD-BM algorithm by 1.4dB and the KV algorithm by 0.55dB at CER
of 1074, The performance gap between ABP-ASD and proposed method is 1.25 dB at
CER of 10~*. The complexity reduction is at least 61.6% and 97% for KV and ABP-ASD

algorithm, respectively.

5.2 Future work

There are still some issues to be concerned in our algorithm. First, the algorithm is
suited for short RS code such as (15,11) and (31,25). For longer code, a large K is required
for the parallel K-Best method to maintain the performance. Second, the complexity of
the parallel K-Best with sphere is still needed to be improved. One can generate all k
reliable symbols at once and decode the other N —F£ erasures. Then, the decoded codeword
can derive N distance metric. Based on these N distance metric, K-Best algorithm can
be used to choose K possible codewords. The codeword with minimum distance metric
will be chosen as the output codeword. Further, our algorithm can also be concatenated

with other techniques such as interleaver—to-improve the error control capability.
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Chapter 6

Appendix: several techniques used

for the proposed soft RS decoding

Soft decision RS decoding have recently drawn significant attention. Soft decoding
takes advantage of the information from channel ,and it is believed to have 2-3dB perfor-
mance gain over HD-BM algorithm. The following introduces the simplified cost function
,and it briefly explains reliability based.decoding:. The re-encode process is also described
in this section. Further, the sphere decoding algorithm and K-Best algorithm are men-
tioned for the reduction of candidate-selecting. At last, erasure-only decoding is discussed

to take advantage of RS code.

6.1 Simplified cost function

The traditional cost function is calculated by the Euclidian distance or Hamming
distance. The conditional probability is that given x is transmitted, the received value is

y. The conditional probability is the bigger the better.

_ 1 — i — )’
plylz)= W%p {— - To} (6.1)

Here, ¢ is the bit of BPSK mapping and x is the transmitted codeword bit.
We observe eq.(6.1) that the exponential term without Nj is Euclidian distance. As
the Euclidian distance being smaller the conditional probability is bigger. Next, we only

consider the Fuclidian distance as cost function. The Euclidian distance formula could
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be rewritten as following [15]

N-—1
dy(y.0)=> (i —a)’ (6.2)
=0
N—-1 N—-1
= yi +n—2 Z YiCi (6.3)
=0 =0

. N—-1 . .
where n is a constant ,and ) . v;¢; is a common term. Because the received values
are fixed for the same codeword, the constant and the common term can be neglected.

Minimizing Euclidian distance is equivalent to maximizing the variable term.

i) 2 Y] (6.4

We rewrite the variable term as following

.= bl =2 3 Il Let A9 2 Y lul (6.5)

1:y¢; <0 1:9¢; <0

N-1

my,e) = 3 [yl — 20y, ¢ (6.6)

=0
It shows that maximizing the variable term is.equivalent to minimizing A(y,c). The

condition probability is only affected by My, ¢). " The cost function can be replaced by
Ay, c).

6.2 Re-encode decoding based on reliability ordering

Reliability based decoding and re-encode process can be refered in [7]. Suppose an
(N,k) Reed Solomon (RS) code with generator matrix G is used for error control over
AWGN channel. The items in RS code are elements of Galois Field GF(27) where N =
2¢1—1. Let C = (C4, (s, ...,Cy) be a codeword. For transmission, the binary extension of
codeword, ¢ = (c1, ¢a, . .., Cnyg), is mapped into the bipolar sequence x = (z1, za, ..., Tng)
with z; = (—1)% € £1. After the transmission, the received sequence in the demodulator
is y = (y1,%2,---,Yng) With y; = z; + w;, where 1 < ¢ < Ng, w;’s are statistically
independent Gaussian random variables with zero mean and variance Ny/2.

The hard decision symbol of received sequences is Z = (21, Zs, ..., Zy). The decoding

begins with reordering the elements of received symbols according to the reliability values.
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The reordered sequence is denoted as S = (57, S, ..., Sy). The reliability of sequence S
is in decreasing order by degrees. This reordering defines a permutation function \; for
which

S =X\(2Z). (6.7)

Then the columns of the generator matrix G are permuted based on A\;. The result

matrix is denoted

where the g/ means the ith column of G’. The column g; of G’ corresponds to the S; of
S with ith reliability value.

The first k£ components of S are the most reliable symbols. Use the first & columns
to perform the Gaussian elimination to remove the dependency of each most k reliable

symbols. This Gaussian elimination defines a permutation function Ay for which
G" = \(G') = I P] (6.9)

Here, I, is the k x k identity matrix ,and, P, is the k x (N — k) parity check matrix.
The corresponding most k reliable symbols perform the same operation based on Ay. The

obtained sequence is denoted as

S“Z(8) (6.10)

After the permutation Ao, the first & components of sequence S’ are the possible
transmission messages. As implied from the name, re-encode algorithm uses possible
message sets to multiply generator matrix G. After re-encoding, the cost values between
possible codeword sets and the received values are calculated. Then, the codeword with

minimum cost is considered as the transmitted codeword.

6.3 Sphere decoding and K-Best algorithm

Sphere decoding (SD) algorithm has been proposed ,and it’s recognized as a powerful
means to solve the maximum likelihood (ML) detection problem Ref [18]. SD algorithm re-
duces the computation by restricting the search range. We define all the candidates are in

© ,then SD algorithm contrains a much smaller search range ©gp = {s : A(r, s) < bound};
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O O O O

Figure 6.1: Illustration of sphere decoding algorithm

———————— —O——'—— Layer =1
———————— —O——O—— Layer =2

O ———————— —‘——'—— Layer = k-2
——. ———————— —O——O—— Layer = k-1
O ‘@ --O-- Layer=k

Figure 6.2: Traditional K-Best algorithm

only the candidates fall in ©gp ,and their cost is smaller than the bound will be com-
pared. By the previous procedure, the chosen candidate is always the ML solution as long
as d is properly defined. The problem can be illustrated as a two-dimensional problem
in Fig. 3.1, the solution can be obtained by drawing a circle around the received signal,
and choose the proper radius to discard the point outside of the circle. In [16], the author
suggests to use sphere decoding to decode the soft RS code. For AWGN channel, a sphere
constraint is introduced to reduce the candidate search in decoding process.

K-Best algorithm is an alternative method that improves the decoding throughput [19].
It simplified the original SD algorithm and maintain a constant throughput by keeping

only the smallest accumulated cost value at each layer. However, K-Best algorithm can
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not guarantee the performance of ML detection since the ML solution may be eliminated
when it is not in the K-Best accumulated cost values. Thus, the larger K is required
and the value K becomes a tradeoff between complexity and error performance. Fig. 3.2

illustrates that there are chosen K paths (combination sets) in each layer .

6.4 FErasure-Only Decoding

It is known that any k symbols in a RS codeword can be used to determine the
remaining N — k symbols. Thus, it is important to decide k reliable messages or N — k
unreliable (error) symbols of codeword. Let Sk _pest be the K chosen combination sets

composed with the candidates of most k reliable symbols.
SK—Best = {S = (80, S1, ...y Sk_1)|8i - Zz} (611)

where s; is the candidate of ith symbol Zi.

In this thesis, the traditional erasure-only decoding is replaced with algebraic term so-
lution. The unreliable symbols can be obtain by, brought the reliable symbols into the syn-
drome equations Z(x). There are total 2ésyndrome equations Z (), Z(a?), Z(a?®) ... Z(a?),
and thus there are 2¢ erasures.

For example, in a (15,11) RS codeé the received sequence is

Z =1(9,3,14,4,%,12,6,14,2,%,9, %, 11, %, 11) where * represents the erasures.

Z(x) =20+ 217+ 22 + ...+ 240t =0 (6.12)
Z(a) : zx* + 292 + 22t 4+ 232" = ot (6.13)
Z(a?) : 247® + 292® + 2112”7 + 2132 = o (6.14)
Z(a®) 1 242" + 292" + 2112° + 2132° = o8 (6.15)
Z(a*) 1 zgxt 4 292° + 22t + 232 = o’ (6.16)

The variable z in different equations presents a exponent relation. Therefore the
erasures can be solved with Vandermonde matrix.

Then, the erasure only decoding schedule is given as following:
1) For all S € Sk _pest, erase the corresponding N — k unreliable symbols of chosen set S.

Then, decode the erasures by syndrome equations and solve the equation by Vandermonde
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matrix. The decoding codeword set is called C.
2) Choose the codeword from Cr with the smallest accumulated cost by K-Best algorithm
as the decoding output.
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