
國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

一個使用互反雙重柵欄的渦輪解碼器設計

A Turbo Decoder Design Using Reciprocal Dual Trellis

學生：林振揚

 指導教授：張錫嘉教授

中華民國九十八年七月

一 個 使 用 互 反 雙 重 柵 欄 的 渦 輪 解 碼 器 設 計

A Turbo Decoder Design Using Reciprocal Dual

Trellis

研 究 生：林振揚 Student：Chen-Yang Lin

指導教授：張錫嘉教授 Advisor：Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering
July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

一個使用互反雙重柵欄的渦輪解碼器設計

學生：林振揚 指導教授：張錫嘉 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

錯誤更正碼一般而言需要比較有彈性的選擇碼率來適應不同的通道環境。為

了達到這個需求，不同碼率的解碼器必須要被提出來，而高碼率的錯誤更正碼是

需要被採用來提高通道的使用效率及傳輸速度。一般的渦輪解碼器通常使用高基

數(high radix)的柵欄結構來解高碼率的碼，因此當碼率升高時，柵欄的複雜度

會呈指數函數現象提高。在本論文中，我們引用了互反雙重柵欄的結構來減低柵

欄在高碼率解碼器的複雜度。此外，我們採用了 Sign-Magnitude 的數字表示方

式來更進一步降低硬體複雜度。我們使用穿孔(puncture)技術在 WCDMA 的渦輪編

碼器上來產生不同碼率的碼。在研究了四種碼率 1/3、1/2、2/3、4/5 的穿孔渦

輪碼後，模擬結果顯示錯誤更正效能隨著碼率越低而提高。

在本論文最後，根據四種不同碼率的 SISO 解碼器合成解果顯示，當碼率提

高時，邏輯閘只會有些許的增加。最後，我們提出了一個多重碼率渦輪解碼器的

硬體架構，其傳輸速度會隨著操作碼率的提高而上升。根據在 90nm 製程下的實

驗結果，所提出的解碼器包含 370k 的運算邏輯閘及 58kb 的儲存單元。在供應電

壓 0.9 伏特下，操作在碼率 4/5 的功率消耗是 80mW，並且達到 101Mb/s 的傳輸

速度。

A Turbo Decoder Design Using Reciprocal Dual

Trellis

Student：Chen-Yang Lin Advisor：Dr. Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

 ECC codes generally require the selection of a flexible coding rate to meet

different channel characteristics. In addition, the high code rate schemes are required

to increase channel efficiency for high throughput systems. Since conventional turbo

decoders in high code rate usually apply high radix trellis structure, the complexity of

trellis increases exponentially as the code rate rises. In this thesis, we introduce the

reciprocal dual trellis to reduce the trellis complexity for high code rate. The sign

magnitude representation is introduced to lower the hardware complexity. We apply

puncture methodology to turbo code of WCDMA to generate different code rates.

After investigate four code rates 1/3, 1/2, 2/3, 4/5 of punctured turbo codes, the

simulations results reveal that the performance can be improved by using lower code

rate.

 The synthesis results of the four code rate SISO decoders show that there is a

moderate increase of logic gates as code rate rises. Finally, a multiple code-rate turbo

decoder architecture using the reciprocal dual trellis is proposed. As the operating

code rate rises the throughput also increases. Fabricated by UMC CMOS 90nm 1P9M

process, the proposed decoder which contains 370K gates and 58kb storage elements

can achieve 101Mb/s with 80mW under code rate 4/5.

誌 謝

韶光荏苒、光陰匆匆、歲月如梭，兩年的碩士研究生涯，有如白駒過隙，終

於，我也可以寫到這一頁…

首先要感謝張錫嘉老師，感謝老師不僅能夠在研究上給予我指導，更難能寶

貴的是，我可以看到一位領導者應有的風範及態度，西方有句諺語:「要使水手

去造船，不如教導他們嚮往大海。」老師一直提醒我們要做一隻會去找草來吃的

羊，而不是等待著牧羊人的餵食，老師對於研究總是懷著赤子之心，總是在我困

惑的時候，教我如何去思考，我想這是除了專業知識之外，是我從張老師身上找

到最好的寶物之一，在此，再次感謝張錫嘉老師。

再來要感謝 Ocean 及 Oasis 的成員，實在是相當開心能夠在這裡學習。首先

要感謝大頭學長，他總是扮演著老師的角色，對於我的研究成果的分享或是遇到

瓶頸的時候，總是隨 call 隨到，並且很有遠見的幫我提一些建議。還有國光學長，

除了感謝你常常幫我們處理工作站上的問題之外，也覺得你是個很可以分享生活

瑣事的學長。還要感謝跟我一起度過碩士生涯的夥伴們，不論是一起做研究或是

慶生，都覺得你們真的是相當窩心的好夥伴，謝謝你們曾經陪伴過我。

另外還要感謝新竹地區禪學社及領袖社的夥伴們，深深感受到能夠認識你們

真的是我相當大的福氣，我們一起努力籌備著很多活動，讓我這個研究生老人還

可以常常體會到年輕人的熱情、活力、還有一些的懵懂，哈哈!有了你們的陪伴，

我的研究生涯才不會太枯燥，讓我還能常常保有一顆年輕的心，總是能夠很樂觀

的去面對每個挑戰，謝謝你們。

最後我要感謝最親愛的家人以及女朋友，在我想退縮的時候拉我一把；在我

失意的時候願意給我支持。最後將此論文獻給曾經幫助過我的人，我滿懷著感恩

的心，謝謝你們。

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis organization . 2

2 Turbo Code 3

2.1 Turbo principle . 3

2.1.1 Encoder of turbo code . 3

2.1.2 Turbo interleaver . 5

2.1.3 Decoder of turbo code . 5

2.1.4 Error floor effect . 6

2.2 Decoding algorithm . 7

2.2.1 The MAP algorithm . 7

2.2.2 The Log-MAP and MAX-Log-MAP algorithm 11

2.3 Decoding with reciprocal dual trellis . 13

2.3.1 Construct reciprocal dual trellis . 15

2.3.2 Decoding based on reciprocal dual trellis structure 16

2.4 Sliding window method of turbo code . 17

3 Reciprocal Dual Trellis Algorithm 20

3.1 Log domain approach . 20

3.1.1 Sign magnitude scheme . 20

3.1.2 Proposed equation for calculating extrinsic value 21

3.2 Punctured convolutional codes . 24

3.2.1 Apply rate compatible punctured turbo code to WCDMA 25

3.2.2 Decoding with SM and Dual-MAP algorithm 27

i

3.3 Performance analysis . 29

4 Dual-MAP Turbo Decoder Architecture 35

4.1 Architecture overview . 35

4.2 Dual-MAP decoder . 37

4.2.1 SMM unit . 37

4.2.2 SMA unit . 38

4.2.3 Extrinsic unit . 39

4.3 Throughput evaluation . 39

5 Implementation Results 41

5.1 Implementation of Dual-MAP turbo decoders 41

5.1.1 Comparison of different high radix MAP decoders 42

5.1.2 Layout specification . 43

5.2 Comparison of different turbo decoders . 44

6 Conclusion and Future Works 46

6.1 Conclusion . 46

6.2 Future works . 46

ii

List of Figures

1.1 Block diagram of digital communication system. 2

2.1 Turbo encoder with puncture. 4

2.2 Interleaver of turbo decoder. 5

2.3 Conventional Turbo decoder. 6

2.4 A rate 1/2 memory order 2 RSC encoder and its state transition diagram. 8

2.5 The trellis diagram of the (2,1,2) RSC encoder. 8

2.6 Origianl trellis and reciprocal dual trellis comparison. 14

2.7 The process diagram of sliding window algorithm. 18

2.8 Different sliding window length Comparison 19

3.1 Correction term of Ē operation. 22

3.2 Puncture procedure. 24

3.3 Trellis transformation relationship . 26

3.4 Performance of using Dual-MAP and MAP under punctured code 27

3.5 Turbo encoder for WCDMA. 28

3.6 Performance of different code rate with block length 2048. 29

3.7 Comparison of different sliding window size. 30

3.8 Comparison of different iteration. 31

3.9 Fixed point comparison. 32

3.10 Segment method. 33

3.11 Performance comparison of different segment method. 33

3.12 Performance of each code rate with design parameters. 34

4.1 Iterative decoding of turbo decoder. 36

4.2 Decoding schedule of Dual-MAP decoder. 37

iii

4.3 Architecture of SMM unit. 37

4.4 Architecture of SMA unit. 38

4.5 Radix-2 and radix-4 Log MAP recursion units. 39

4.6 Architecture of Extrinsic unit. 40

5.1 Area distributin of modules in turbo decoder. 42

5.2 Layout photo of multiple code-rate turbo decoder. 43

iv

List of Tables

3.1 Puncture tables . 25

3.2 Summary of fixed representation in MAP decoder 31

5.1 Summary of synthesis result . 41

5.2 Compare with radix-4×4 MAX-LOG-MAP circuits 42

5.3 Proposed turbo decoder chip summary . 44

5.4 Comparison of different turbo decoders . 45

v

Chapter 1

Introduction

1.1 Motivation

The fundamental block diagram of traditional digital communication system is illus-

trated in Fig. 1.1. The system transmit an information source to a destination through

an unknown channel. Generally, the communication system is simplified to three compo-

nent parts which consists of transmitter, receiver, and channel. The transmitter includes

source encoder, channel encoder, and modulator, is used to transmit the information more

effectively and more reliably over unknown channels. Furthermore, the receiver will re-

verse the signal received by demodulator, channel decoder, and source decoder. Since the

channel impairments such as noise, interference and distortion may cause the error in the

received signal, the channel encoder is used in the system in order to minimize the trans-

mission errors by adding certain redundancy to the source codeword. These redundant

bits can be used for error detecting and correcting. Thus, the channel coding eliminate

the effects of noise disturbances compared with an uncoded communication system.

However, most channel code schemes are not flexible and efficient for modern data

transmission. For videodata, some important parts must be well protected to ensure

reconstructed quality. Therefore, we can use more check bits to protect the important

part of videodata and use less check bits when transmit less important data. Further,

this encode manner can also apply to meet different channel situations. For example, we

can use more check bits when data will be transmit through a noisy channel and use less

check bits when transmit through better channel.

1

Information
Source

Source
Encoder

Channel
Encoder Modulator

Information
destination

Source
Decoder

Channel
Decoder Demodulator

Channel

Figure 1.1: Block diagram of digital communication system.

From the view of the communication system, we integrate the features of data type

and channel to design a flexible channel decoder. Furthermore, we focus on turbo decoders

because it performs excellently on error correction ability. However, high code rate turbo

decoder design is a real challenge since the complexity of its trellis structure. In this

thesis, we will apply another decoding concept mentioned in Ref. [1] to slove this problem.

Furthermore, we try to apply various code rates to protect different kind of data and to

achieve unequal error protection. Finally, we want to design a multiple code rate and low

hardware complexity turbo decoders.

1.2 Thesis organization

This thesis consists of 6 chapters. In chapter 2, the concepts of several iterative de-

coding algorithms of turbo codes will be introduced. In chapter 3, we will apply puncture

tables to turbo codes of WCDMA system to achieve high code rate. Furthermore, the

simulation analysis and hardware architecture parameters are also described. Chapter

4 introduces the design of reciprocal dual trellis turbo decoder, including the hardware

architecture and characteristics of decoder. In chapter 5, the hardware implementation

result will be shown. Finally, the conclusions and future works are given in chapter 6.

2

Chapter 2

Turbo Code

The parallel concatenated convolutional code, also named turbo code, was invented

by C. Berrou, A. Glavieux, and P. Thitimajshima in 1993. It has been proved to have

a excellent performance near Shannon limit. The common turbo encoder is composed

of two recursive systematic convolutional code with parallel concatenated and separate

by a pseudo random interleaver. Turbo code is adopted in 3GPP, 3GPP2, DVB-RCS

and WiMAX standards due to its excellent error correction ability. In this chapter, turbo

decoding with original trellis and reciprocal dual trellis will be introduced. The error floor

effect in turbo decoding and some decoding techniques will also be interpreted.

2.1 Turbo principle

2.1.1 Encoder of turbo code

The turbo encoder is composed of two recursive systematic convolutional (RSC) en-

coders. Which are connected in parallel but separated by an interleaver. The block

diagram of the turbo encoder is illustrated in Fig. 2.1. Puncture table is used to select

the send bits or is an option to increase the data rate. In the first encoder, the information

bits are encoded to the systematic part c0(D) and the parity part c1(D); thus, c0(D) =

x(D). The second encoder encodes the bit stream x̃(D), which are the information bits

passing through the interleaver. However, the systematic part after interleaving x̃(D) will

be not be send during transmission. Code rate of an encoder is defined:

R = (information bits in a codeword)/(total codeword bits).

3

RSC1

RSC2

Interleaver

()Dx

)(~ Dx

()Dc0

()Dc1

()Dc2

Puncture
Table OutStream

Figure 2.1: Turbo encoder with puncture.

The following derivations for R, we do not consider the puncture table. Hence, the

OutStream in Fig. 2.1 is the codeword. Encoder 1 produces p1 check bits and encoder

2 produced p2 check bits, and the code rates are R1 and R2, respectively. If there are k

information bits pass the turbo encoder and the overall turbo encoder code rate R can

be derived as :

R =
k

k + p1 + p2
.

And we substitue p1 and p2 by applying code rate equations of encoder 1 and encoder 2.

R1 =
k

k + p1
, R2 =

k

k + p2

Finally, we can derive the code rate of the overall turbo encoder.

1

R
=

1

R1

+
1

R2

− 1 (2.1)

After encoding the information sequence, several terminating methods will be applied to

stop the encoding process. We briefly describe three terminating methods. First, the

simplest method is to truncate the information directly after encoded a block length.

Therefore, this terminating approach results some performance loss. The second method

is using dummy information bits at the end of the information sequence forcing registers

in the encoder back to all zero states. This approach will maintain decoding performance,

however, because of transmitting another dummy information bits, the code rate also

decreases. The third is tail-biting method. This method encodes information bits twice.

The first encoding procedure is aim to find the final register states in the encoder. The

4

second encoding procedure is the actual encoding, and the encoder starts at the state

which is the final state of first encoding procedure. Hence, tail-biting approach results

the end of the register not necessary to all zero. This method ensures the same error

protection as the second method mentioned above, but the code rate is not changed.

If the ending state of the decoding trellis was known, we can set initial condition more

precisely, and theoretically, the decoding performance can be improved.

2.1.2 Turbo interleaver

This is a process of rearranging the ordering of a data sequence in a one-to-one de-

terministic format. In turbo code, the interleaver such as in Fig. 2.2 is an essential

component for bit-error-rate performance. A proper coding gain can be achieved with

small memory encoders since the interleaver scrambles a long block input symbols. The

interleaver de-correlates the input symbol between two encoders, therefore, an iterative

decoding algorithm can be applied between two component decoders. The performance

upper-bound corresponding to a uniform random interleaver has been evaluated in [2].

Theoretically, the block size (N) of interleave increase, the performance of bit-error-rate

is expected to get better, and the factor 1/N is also called the interleaver gain.

U1 U2 U3 U4 U5 U6

U3 U5 U4 U1 U6 U2

After
Interleaving

Figure 2.2: Interleaver of turbo decoder.

2.1.3 Decoder of turbo code

A common iterative turbo decoder is shown in Fig. 2.3. Where rs is the received

systematic information, rp1 is the received parity generated by the first component RSC

encoder, and rp2 is also the received parity generated by the second component RSC

encoder. The iterative turbo decoding consists of two series constituent SISO (soft in

/ soft out) decoders, and are concatenated by the interleaver and de-interleaver. An

5

interleaver is used to permute the systematic information and delivers the scrambled data

into the second SISO decoder. During this iterative decoding procedure, each constituent

SISO delivers the output extrinsic Lex which is the a priori Lin for the next constituent

SISO, therefore, L1
in = L2

ex and L2
in = L1

ex after the interleaver or de-interleaver process.

Generally, the performance of bit-error-rate can be improved when the number of decoding

iteration increases, however, there is no obvious improvement if a threshold of the iteration

number has been reached.

SISO
Decoder

1
Interleaver

SISO
Decoder

2

Interleaver

Deinterleaver

DeinterleaverLex
1 Lin

2

Lex
2Lin

1

p1 p2s

Hard
Decision

Figure 2.3: Conventional Turbo decoder.

2.1.4 Error floor effect

Although turbo coding provides an excellent performance, the bit-error-rate (BER)

certainly decrease quite slowly and almost saturate at high signal-to-noise ratio (SNR).

This phenomenon is due to relative small free distance of turbo codes and is called an error

floor [3]. Consider the relation of minimum free distance and the bit error probability in

turbo coding, which can be expressed by

Pb ∝ Q

(√
2dfreeR

Eb

N0

)
, (2.2)

where dfree is the minimum free distance of the codeword space, R is the code rate, and

Eb/N0 is the SNR.

6

2.2 Decoding algorithm

In turbo decoding algorithm, the maximum a posteriori probability (MAP) [4] algo-

rithm and soft-output Viterbi algorithm (SOVA) [5] are commonly applied for the SISO

decoders. Unlike the SOVA which uses maximum likelihood (ML) algorithm to minimize

the word error probability, whereas, the MAP algorithm exploits the information of code-

word to minimizes the symbol error probability. Therefoe, in this section, we will focus

on MAP algorithm, because it has been proved that the MAP algorithm is the optimal

decoding method for turbo codes compared with SOVA [6]. Moreover, some useful for

hardware implementation algorithm such as the Log MAP and Max-Log MAP will also

be introduced briefly. Finally, an effective decoding algorithm for high code rate will also

be introduced [7].

2.2.1 The MAP algorithm

The MAP decoding algorithm (also called as BCJR algorithm), is introduced in 1974

by Bahl, Cocke, Jelinek, and Raviv [4]. For each transmitted information symbol ut,

the MAP algorithm estimates its a posteriori probabilities (APP) based on the whole

received codeword sequence r over a discrete memoryless channel (DMC) and computes

the log-likelihood ratio (LLR), which was defined as:

L(ut) = L(ut|r) = log
P (ut = +1|r)
P (ut = −1|r) , (2.3)

for 1 ≤ t ≤ N , where N is the received codeword length, and compares this value to a

zero threshold to determine the hard estimatimation of ut :

ut =

⎧⎨⎩ +1, if L(ût) ≥ 0

−1, otherwise
(2.4)

As an example, a rate 1/2 memory order 2 RSC encoder and its state transition are

illustrated in Fig. 2.4. Note that the solid lines represent the state transitions correspond-

ing to an information bit ut of +1, while the dotted lines represent the state transitions

corresponding to an information bit ut of −1. Its decoding trellis diagram is shown in Fig.

2.5. In Fig. 2.5, the APP’s in (2.3) can be computed by the summation of state transition

7

u

00 01

10 11

1/11

1/10

1/10

1/11

0/00

0/00

0/01

0/01
DD

Information

Figure 2.4: A rate 1/2 memory order 2 RSC encoder and its state transition diagram.

probabilities. Therefore, the equation can be further expressed as :

L(ut) = log
P (ut = +1|r)
P (ut = −1|r)

= log

∑
(m′,m)∈B+1

t
P (St−1 = m′, St = m|r)∑

(m′,m)∈B−1
t

P (St−1 = m′, St = m|r)

= log

∑
(m′,m)∈B+1

t
P (St−1 = m′, St = m, r)∑

(m′,m)∈B−1
t

P (St−1 = m′, St = m, r)
, (2.5)

where P (St−1 = m′, St = m, r) represents the joint probability of the existing transition

from St−1 at time t to St at time t + 1. B+1
t and B−1

t is the sets of (m′, m), denoted the

state transitions which are due to input bit ut = +1 and ut = −1 respectively.

In order to compute the joint probability required for L(ut) in (2.5), we define the

following metrics equations:

Forward Path Computing Backward Path Computing

ut = +1

ut = -1

α β
St-1 St

00

01

10

11

00

01

10

11

Figure 2.5: The trellis diagram of the (2,1,2) RSC encoder.

8

• The forward recursion metric α :

αt(m) = P{St = m, rt
0} (2.6)

• The backward recursion metric β :

βt(m) = P{rN−1
t+1 |St = m} (2.7)

• The branch metric γ :

γt(m
′, m) = P{St = m, rt|St−1 = m′} (2.8)

• The joint probability λ :

λt(m
′, m) = P (St−1 = m′, St = m, r) (2.9)

Since we assume the codeword sequence after encoding is transmitted through discrete

memoryless channel, the joint probability can be expressed as

λt(m
′, m) = P (St−1 = m′, St = m, rt−1

0 , rt, r
N−1
t+1)

= P (rN−1
t+1 |St−1 = m′, St = m, rt−1

0 , rt) · P (St = m, rt|St−1 = m′, rt−1
0) · P (St−1 = m′, rt−1

0)

= P (rN−1
t+1 |St = m) · P (St = m, rt|St−1 = m′) · P (St−1 = m′, rt−1

0).

(2.10)

Here, rt−1
0 represents the received codecord sequence at time instance 0 to t− 1, while

rN−1
t+1 is at time instance t + 1 to the end of sequence. The second equation of (2.10)

results from Bayes’ rule, and the third equation is due to the Markov process in the state

transitions. Therefore, the joint probability defined in (2.9) can be expressed by terms of

(3.1.2), (3.1.2) and (2.8), hence (2.9) can be written as :

λt(m
′, m) = αt−1(m

′) · γt(m
′, m) · βt(m). (2.11)

Now we will derive the equations (3.1.2), (3.1.2) and (2.8) as follow:

αt(m) = P (St = m, rt−1
0)

=
∑
m′∈S

P (St−1 = m′, St = m, rt−1
0)

=
∑
m′∈S

P (St = m, rt−1|St−1 = m′, rt−2
0) · P (St−1 = m′, rt−2

0)

=
∑
m′∈S

P (St = m, rt−1|St−1 = m′) · P (St−1 = m′, rt−2
0)

=
∑
m′∈S

αt−1(m
′) · γt(m

′, m).

(2.12)

9

Since that the registers of the encoder are all zero in the beginning of encoding process,

hence, the initial condition of αt are :

α0(0) = 1, α0(m) = 0 for m �= 0 (2.13)

Similarly, we have

βt(m) = P (rN−1
t+1 |St = m)

=
∑
m′∈S

P (St+1 = m′, rN−1
t+1 |St = m)

=
∑
m′∈S

P (St+1 = m′, rt+1, r
N−1
t+2 , St = m) / P (St = m)

=
∑
m′∈S

P (rN−1
t+2 |St+1 = m′, rt+1, St = m) · P (St+1 = m′, rt+1|St = m)

=
∑
m′∈S

P (rN−1
t+2 |St+1 = m′) · P (St+1 = m′, rt+1|St = m)

=
∑
m′∈S

γt+1(m, m′) · βt+1(m
′),

(2.14)

where S represent the set of all states. If the trellis of encoding finally converges to zero

state at t = N − 1, the following initial conditions of βt are :

βN(0) = 1, βN(m) = 0 for m �= 0 (2.15)

Note that in Fig. 2.5, the forward metric α and the backward metric β are computed

recursively in opposite direction, furthermore, the calculation of them requires the branch

metric first. Hence, for any existing transitions from state m′ to m in a trellis stage, the

branch transition probability γt(m
′, m) can be derived as :

γt(m
′, m) = P (St = m, rt|St−1 = m′)

=
P (St−1 = m′, St = m, rt)

P (St−1 = m′)

=
P (St−1 = m′, St = m)

P (St−1 = m′)
· P (St−1 = m′, St = m, rt)

P (St−1 = m′, St = m)

= P (St = m|St−1 = m′) · P (rt|St−1 = m′, St = m)

= P (ut) · P (rt|vt),

(2.16)

Note that P (uk) is the a-prior probability of uk and vt is the codeword associated with

the transition St−1 = m′ to St = m corresponding to encoder input ut.

10

As a summary of the MAP algorithm, with computation of γt(m
′, m) in (2.16), we can

derive α and β for each state at different time instances. As a result, the joint probability

in (2.11) is also available for t = 0, 1, · · · , N − 1. The log-likelihood ratio L(ut) can be

calculated by

L(ut) = log

∑
(m′,m)∈B+1

t
αt−1(m

′) · γt(m
′, m) · βt(m)∑

(m′,m)∈B−1
t

αt−1(m′) · γt(m′, m) · βt(m)
. (2.17)

2.2.2 The Log-MAP and MAX-Log-MAP algorithm

The MAP algorithm requires large memory and a large number of operations involving

exponentiations and multiplications. The hardware realization of MAP decoder will be

quite complex and difficult. Therefore, the Log-MAP algorithm is proposed to solve this

problem. First, we transfer the branch metrics defined in the MAP algorithm to the

logarithmic domain; that is

γ̄t(m
′, m) = log γt(m

′, m). (2.18)

Referring to (2.12) and (2.14), the forward path metric ᾱt can be expressed as

ᾱt(m) = log αt(m)

= log
∑
m′∈S

eᾱt−1(m′)+γ̄t(m′,m),
(2.19)

and the backward path metric β̄t can be expressed as

β̄t(m) = log βt(m)

= log
∑
m′∈S

eγ̄t+1(m,m′)+β̄t+1(m′).
(2.20)

Note that the initial conditions of path metrics also have changed, since all computations

work with the logarithm domain.

ᾱ0(0) = 0, ᾱ0(m) = −∞ for m �= 0

β̄N(0) = 0, β̄N(m) = −∞ for m �= 0
(2.21)

After substituting (2.18), (2.19) and (2.20), the APP information L(ût) in (2.17) can be

rewritten as

L(ut) = log

∑
(m′,m)∈B+1

t
eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)∑

(m′,m)∈B−1
t

eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)
. (2.22)

11

Considering the following Jocobian algorithm [8]

log(eδ1 + eδ2) ≡ max∗(·)
= max(δ1, δ2) + log(1 + e−|eδ2−eδ1|)
= max(δ1, δ2) + fc(|δ2 − δ1|).

(2.23)

where fc(·) is a compensation function and thus the performance can be improved. By a

recursive procedure of (2.23), the expression log(eδ1 + eδ2 + · · · + eδn) can be computed

exactly, as follows

log(eδ1 + eδ2 + · · · + eδn) = log(Δ + eδn), Δ = eδ1 + · · · + eδn−1 = eδ

= max(log Δ, δn) + fc(|log Δ − δn|)
= max(δ, δn) + fc(|δ − δn|).

(2.24)

Now we can use (2.23) to represent forward metrics in (2.19) and backward metrics in

(2.20) as

ᾱt(m) = max
m′∈S

∗{ᾱt−1(m
′) + γ̄t(m

′, m)}, (2.25)

and

β̄t(m) = max
m′∈S

∗{γ̄t+1(m, m′) + β̄t+1(m
′)}, (2.26)

Therefore, the (2.29) can be expressed as

L(ût) = max
(m′,m)∈B+1

t

∗{ᾱt−1(m
′) + γ̄t(m

′, m) + β̄t(m)}

− max
(m′,m)∈B−1

t

∗{ᾱt−1(m
′) + γ̄t(m

′, m) + β̄t(m)}.
(2.27)

The Log MAP algorithm, the (2.27), are considered to reduce the hardware complexity

comparing with MAP algorithm. However, some difficulty for hardware implementation

still exists since computing fc(·) also involves exponentiations and multiplications. This

problem can be solved by using a look up table, but this approach might result a little

bit-error rate degration and increase the size of hardware.

In order to further simplify the complexity, consider the approximation derived in

(2.28). As the approximation is used to reduce the complexity of the MAP algorithm,

the performance of the Max-Log MAP algorithm is sub-optimal.

log(eδ1 + eδ2 + · · ·+ eδn) ≈ max
i∈{1,2,·,n}

δi. (2.28)

12

Note that the term fc(·) is ignored in comparison with (2.24). Then we can simplify the

equation (2.22) as follows:

L(ut) = max
(m′,m)∈B+1

t

{ᾱt−1(m
′) + γ̄t(m

′, m) + β̄t(m)}

− max
(m′,m)∈B−1

t

{ᾱt−1(m
′) + γ̄t(m

′, m) + β̄t(m)}.
(2.29)

Therefore, compared with the MAP algorithm, the Max-Log-MAP algorithm utilizes

additions to replace the multiplications and avoids the complicated exponentiations. How-

ever, the performance would degrade because of the information loss in (2.28).

2.3 Decoding with reciprocal dual trellis

To meet the growing demand of high data rate at high bandwidth and power efficien-

cies, some researches have been focused on high code rate and their decoding algorithms

that are powerful in the view of correction ability, yet reasonable complexity. However,

for high rate k/n convolutional code (n− k < k), the branch calculation in normal MAP

algorithm applying on trellis constructed by encoder polynomial is highly complicated(
Radix − 2k

)
. In such case, the MAP algorithm working on the corresponding reciprocal

dual code’s trellis is less complexity
(
Radix − 2n−k

)
since the number of codeword in

reciprocal dual code space are less than that of the original code.

Decoding trellis shown as Fig. 2.5 can be treated as a linear block code. All of the

paths are possible codewords generated by one of the RSC encoder, and one can calculated

by other codewords. For example, for an (n = 3, k = 2) encoder with 2 registers and the

decoding trellis using original and reciprocal dual trellis are illustrate in Fig. 2.6. Each

state in reciprocal dual trellis is connected to 2 branches and that in original trellis is

connected to 4 branches. Thus, if interleaver length is fixed and k gets larger, this decoding

procedure seems to be difficult due to the complexity of original decoding trellis.

In [7], a new MAP decoding algorithm for high code rate convolutional codes using

reciprocal dual convolutional code is presented. The advantage of this approach is a

reduction of the computational complexity since the number of codewords to calculate is

decreased for code rate higher than 1/2. According to [7], the log-likelihood ratio of a

posterior probability L(ul) can be alternatively calculated by its reciprocal dual codewords

13

Original decoding trellis Reciprocal dual trellis

00

01

10

11

Encoder
state

Figure 2.6: Origianl trellis and reciprocal dual trellis comparison.

c̃⊥i , 1 � i � 2N−K , that is :

L(ul) = L(cl; yl) + log

∑
c̃⊥i ∈C̃

⊥
∏N−1

j=0,j �=l tanh (L (cj ; yj) /2)c̃
⊥
ij∑

c̃⊥i ∈C̃
⊥ (−1)c̃

⊥
il
∏N−1

j=0,j �=l tanh (L (cj; yj) /2)c̃
⊥
ij

(2.30)

Note that at the rightest side of (2.30) is the log-likelihood ratio of extrinsic value L(ûl) :

L(ûl) = log

∑
c̃⊥i ∈C̃

⊥
∏N−1

j=0,j �=l tanh (L (cj ; yj) /2)c̃
⊥
ij∑

c̃⊥i ∈C̃
⊥ (−1)c̃

⊥
il
∏N−1

j=0,j �=l tanh (L (cj; yj) /2)c̃
⊥
ij

(2.31)

where c = (c0, c1, ..., cN−1) is a codeword of a systematic block code C, c̃⊥ =
(
c̃⊥0 , c̃⊥1 , ..., c̃⊥N−1

)
is a codeword of reciprocal dual code C̃ of C, and yl refers to the matched filter output

associated with cl.

L (cj; yj) =

⎧⎨⎩ L (yj|cj) + L (cj) , if cj is an information bit

L (yt|cj) , if cj is an parity check bit
(2.32)

Under an additive white Gaussian noise (AWGN) and has the varience σ2 = N0/(2Es),

the term L (yj|cj) can be written as :

L (yj|cj) = 4
Es

N0
· yj, where N0/(2Es) is the signal-to-noise ratio (2.33)

And L (cj) ia the LLR of a prior probability, which is denoted :

L (cj) = log
P (cj = 0)

P (cj = 1)
. (2.34)

14

2.3.1 Construct reciprocal dual trellis

In this section, we will introduce reciprocal dual trellis from some basic algebric prop-

erties of convolutional codes. A rate R = k/n convolutional encoder under the field

F = GF (2) generates codeword vt at time t

vt = (v0
t , ..., v

n−1
t) ∈ F n

and given ut = (u0
t , ..., u

k−1
t) are information bits. Sequences of ut and vt can be written

as

u(D) =

∞∑
t=0

utD
t , v(D) =

∞∑
t=0

vtD
t

and the encoder can realize the mapping by the polynomial G(D) such that v(D) =

u(D)G(D).

The dual convolutional code C⊥ of a convolutional code C is a (n − k)-dimension

which consists of all code seqence v⊥(D) orthogonal to all v(D) ∈ C. Hence, C⊥ is a

(n, n − k) convolutional code generated by H with property G(D)HT (D) = 0.

With a code C, a reciprocal convolutional code C̃ can be obtained by substituting

D−1 for D in G and by multiplying the j−th row with Dd(j), where 1 � j � k and d(j) is

the degree of the j−th row of G(D). As a result, ṽ(D) ∈ C̃ is equal to the time-reversed

sequence v(D−1).

We summarize the steps to construct reciprocal dual trellis for convolutional codes

when its encoder is given by G(D) :

1. Transfer G(D) to equivalent systematic encoder Gsys(D) if G(D) is not systematic.

2. Apply the property G(D)HT (D) = 0 to find the corresponding parity check matrix

H(D).

3. Calculate the reciprocal polynomial of H(D), and denote it as H̃(D).

4. The reciprocal dual trellis of G(D) can be constructed by using H̃(D).

Here, we show an example. A rate 2/3 convolutional code C is described by the

nonsystematic polynomial generator matrix

G (D) =

⎛⎝1 + D D 1 + D

D 1 1

⎞⎠
15

and is generated by the equivalent systematic matrix

Gsys (D) =

⎛⎝1 0 1
1+D+D2

0 1 1+D2

1+D+D2

⎞⎠
Then the rate 1/3 dual code C⊥ is encoded by

H (D) =
(
1 1 + D2 1 + D + D2

)
Note that H(D) is the parity check matrix of G(D) with the property G(D)HT (D) = 0.

Hence, the reciprocal dual code C̃
⊥

is generated by H̃(D)

H̃(D) = D2 · H(D−1) =
(
D2 1 + D2 1 + D + D2

)

2.3.2 Decoding based on reciprocal dual trellis structure

In [7], (2.31) can be represented as the relationship of encoder states transition. First

of all, we define two sets SA (s) and SB (s) to describe the possible transitions from a

state s to another state within one trellis stage. SA (s) contains the states si such that

there exits the transition si → s, and SB (s) is the set of destination states sj from state

s (s → sj). Therefore, SA and SB are the same meaning as α and β. Here, we apply α,

β, and γ parameters to represent forward and backward recursions.

Moreover, bits associated with transition s1 → s2 are combined in the n tuple, that

are (b0 (s1, s2) , ..., bn−1 (s1, s2)). Using the substitution gj = tanh (L (cj; yj) /2) at t trellis

stage, and define the partial products :

γt (s1, s2) =
n−1∏
j=0

g
bj(s1,s2)
t×n+j (2.35)

The forward recursion

αt+1 (s) =
∑

s′∈SA(s)

αt (s
′) · γt (s

′, s) , 0 � t < N − 1 (2.36)

The backward recursion

βt−1 (s) =
∑

s′∈SB(s)

βt (s′) · γt−1 (s, s′) , 2 � t � N (2.37)

If we direct truncate the trellis at the end of receiving a codeword, the boundary conditions

are α0 (s) = 1, 0 � s < 2v, βN (s) = 0, 1 � s < 2v and βN (0) = 1 where v is the

16

number of register in one RSC and 2v is the state number of the encoder. Thus (2.31)

can be rewitten as (2.39), where the special products γ̃t (l, s, s
′)

γ̃t (l, s, s
′) =

n−1∏
j=0,j �=l−t·n

g
bj(s1,s2)
t·n0+j (2.38)

The time instant t = �l/n� depends on index l.

L(ûl) = log

∑2v−1
s1=0

∑
s2∈SB(s1)

αt(s1) · γ̃t (l, s1, s2) · βt+1 (s2)∑2v−1
s1=0

∑
s2∈SB(s1) αt(s1) · (−1)bl−t·n(s1,s2) · γ̃t (l, s1, s2) · βt+1 (s2)

(2.39)

Finally, the LLR of a posterior probability (APP) can be represented by equations

(2.33), (2.34), and (2.39)

L(ut) = L (cj) + 4
Es

N0

· yj + L(ûl). (2.40)

2.4 Sliding window method of turbo code

In the traditional SISO decoding algorithm, the LLR of APP computation requires

the path metric values generated by the forward and backward processes. Furthermore,

since the backward recursive computation initials from the end of decoding trellis, as

shown in Fig. 2.5, the decoding process can be started after the entire block message to

be received. If the received sequence length is large, it will lead to long output latency

and huge memory requirement for hardware implementation. For example, the maximum

block length of 3GPP standard is 5114, which means 5114 LLR values and path metrics

should be stored. It is the main disadvantage of turbo code for real applications.

The main problem is that long block length can not be divided into several short

sub-block immediately, since the unknown initial condition of backward recursive metrics

computations will damage the performance of turbo codes. Therefore, the sliding window

approach was proposed [9] to overcome it. This algorithm utilizes the fact that the

backward metrics can be highly reliable even without the initial condition if the backward

recursion goes long enough. Fig. 2.7 shows the process of the sliding window algorithm

and will be further illustrated as follows. First, the received codeword sequence is divided

into several sub-blocks of length of W . And W is called the convergence length, which

normally is set to be five times the constraint length of component encoder in turbo code

to ensure the reliable initialization. In the sliding window approach, the end of sub-block

17

i i+1 i+2 i+3

L(ut)

L(ut)

L(ut)

t1

t2

t3

t4

W

α 1β2β

1β

1β2β

1β2β

α2β

α

α

Figure 2.7: The process diagram of sliding window algorithm.

is the initial of next sub-block whether the forward or backward recursive operation. Thus,

the initial metric values are inherited from the last metrics calculated in the previous sub-

block. Note that the dummy backward recursion β1 is employed to establish the initial

condition for the true backward recursion β2. Although the initial condition for the β1

is unknown except the last sub-block, we utilize the equally likely condition for the β1

values at time instance (i + 1) · W :

β1(m) =
1

M
, for all m ∈ S (2.41)

where S represents all possible states and M is equal to the total state number. During the

forward recursion α proceeds in the i-th sub-block and stores these values into memory, the

dummy backward recursion β1 is performed in the i + 1 sub-block concurrently. As soon

as the β1 computation is finished, the initial metrics in the i-th sub-block are available for

the β2 recursion. And L(ût) can be calculated based on the α metrics in the memory, the

β2 metrics in computation, and the corresponding branches metrics in the i-th sub-block.

For example, we concatenate two truncated component codes defined by

G (D) =

⎛⎝1 0 1
1+D+D2

0 1 1+D2

1+D+D2

⎞⎠
and using a block interleaver with length= 400 to abtain a (800, 400) code of rate= 1/2.

Compared to different sliding window, the bit error rate(BER) after six iterations is

shown in Fig.2.8(SW25 represents window length=25 trellis stage and SW200 represents

no sliding window). The reciprocal dual trellis decoding with sliding window is signifi-

18

cantly less complex than its optimum counterpart in terms of memory cost, however, it

achieves for both codes virtually the same bit error performance.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(db)

B
E

R
SW25

SW200

Figure 2.8: Different sliding window length Comparison

19

Chapter 3

Reciprocal Dual Trellis Algorithm

3G mobile multimedia communication systems based on WCDMA support a flexible

transmission capability to provide packet data service as well as voice service. Mobile mul-

timedia communication requires a coding scheme that can accommodate various code rate

requirements. In this thesis, we apply puncture skill to get various code rates and adopt

WCDMA turbo code as the mother code, and using reciprocal dual trellis as decoding

trellis.

3.1 Log domain approach

For high code rate, MAP algorithm working on the reciprocal dual trellis is preferable.

However, in (2.39) reqiures both adders and multipliers, it is considered to be much hard-

ware complexity. Hence, we further reduce the hardward cost by taking LOG operation

of all metrics which is similar to Log-MAP method. However, the challenge involved in

log domain implementation of this algorithm when bit metric value tanh (L (cj ; yj) /2) is

negative. To present these metrics, some numerical transformation is applied.

3.1.1 Sign magnitude scheme

In [10], the sign magnitude is a simple representation to represent the reciprocal dual

trellis metrics. In this, a real number x is represented as x = XSe−XM ≡ [XS, XM], where

XS = sign (x) and XM = −log (|x|). The arithmetic operations with this representation

were defined here.

20

Negation :

−x ≡ [−XS, XM] (3.1)

Addition :

x + y ≡ min∗(x, y) = [S(min(XM , YM)), min(XM , YM) − log(1 + XSYSe−|XM−YM |)]

where S(XM) = XS or S(YM) = YS

(3.2)

Multiplication :

x × y ≡ Sum∗(x, y) = [XSYS, XM + YM] (3.3)

Division :

x/y ≡ [XSYS, XM − YM] (3.4)

In the normal log-MAP, additionis implemented by the equivalent E operation. For

the addition of two non-negative real numbers a and b, represented in log domain a A

and B, we have

a + b ≡ AEB = min(A, B) − log(1 + e−|A−B|) (3.5)

the second term − log(1+e−|d|), where d is the difference between the log domain values, is

called the correction term. Another log domain operator that gives the absolute difference

between two non-negative real numbers as :

|a − b| ≡ AĒB = min(A, B) − log(1 − e−|A−B|) (3.6)

this is also called the correction term. In sign-magnitude representation, the correction

terms perform the algebraic addition of two real numbers, could involve either an E or Ē

operation depending on the relative signs of the two values. The correction term in the

E operation which only takes values in the range [− log(2), 0], however, the Ē operation

− log(1− e−|d|) shown in Fig. 3.1, can have any value in the range [∞, 0]. This makes the

fixed point hardware implementation more complex since the representation range should

be chosen carefully, and warrants a large look up table (LUT) for the correction terms.

3.1.2 Proposed equation for calculating extrinsic value

In this section, we will discuss the computation of extrinsic value according to log

domain scheme. According to (2.31), let us define the bit metric gj

gj = tanh (L (cj; yj) /2)

21

0 1 2 3 4 5 6
0

1

2

3

4

5

6

|d|

co
rr

ec
ti

o
n

 t
er

m

−ln(1−exp(−|d|))

Figure 3.1: Correction term of Ē operation.

and summation metric U b
l .

U b
l =

∑
c̃⊥i ∈C̃

⊥
;c̃⊥il=b

N−1∏
j=0

g
c̃⊥ij
j (3.7)

• The forward recursion metric α :

αt(st) = min∗(Sum∗
S(αt−1(st−1), γt(st−1, st)))

• The backward recursion metric β :

βt−1(st−1) = min∗(Sum∗
S(γt(st−1, st)), βt(st)))

• The branch metric γ :

γt(st−1, st) = Sum∗(gbj(st−1,st)
j , ..., g

bj+n−1(st−1,st)
j+n−1)

where t = [j/n] is the time index ([x] denotes the integer part of x), b is the transition

bit from st−1 to st at decoding index l, and S is the set of possible transitions from state

st−1 to st. The denomirator of (2.31) can be represented by the summation of two parts,

22

it is :

1

gl
0
·

∑
c̃⊥i ∈C̃

⊥
;c̃⊥il=0

N−1∏
j=0

g
c̃⊥ij
j +

1

gl
1
·

∑
c̃⊥i ∈C̃

⊥
;c̃⊥il=1

(−1)1
N−1∏
j=0

g
c̃⊥ij
j

= U0
l − (U1

l /gl)

The numerator of (2.31) can be written as :

1

gl
0
·

∑
c̃⊥i ∈C̃

⊥
;c̃⊥il=0

N−1∏
j=0

g
c̃⊥ij
j +

1

gl
1
·

∑
c̃⊥i ∈C̃

⊥
;c̃⊥il=1

N−1∏
j=0

g
c̃⊥ij
j

= U0
l + (U1

l /gl)

Therefore, (2.31) can be simplified to :

L(ûl) = log
1 +

U1
l

U0
l gl

1 − U1
l

U0
l gl

(3.8)

Equation (3.8) is also described in [10]. In fact,
U1

l

U0
l gl

can be represented as [U l
S , U l

M] due

to sign magnitude representation. Hence, (3.8) can be

L(ûl) = log
1 + U l

Se−U l
M

1 − U l
Se−U l

M

(3.9)

Using the relation tanh(x/2) = (1 − e−x)/(1 + e−x), hence, (2.31) can also be written as

L(ûl) =

⎧⎨⎩ − log(|tanh(U l
M/2)|), if U l

S = 1

log(|tanh(U l
M/2)|), if U l

S = −1
(3.10)

(3.10) is the proposed equation for calculating extrinsic values. Hence, the extrinsic

equation (3.10) is much suitable to hardware design. According to (2.40), the LLR of a

posteriori probability L(ul) is written as

L(ul) = log
pl(0)

pl(1)
+ C × rs + L(ûl), where C is a constant and rs is a recieved symbol.

(3.11)

Hence, the rule of decision is made by:

decision =

⎧⎨⎩ 1, if L(ul) < 0

0, if L(ul) ≥ 0
(3.12)

For convenient, we call the sign magnitude algorithm to SM and reciprocal dual trellis

algorithm to Dual-MAP in the following sections.

23

3.2 Punctured convolutional codes

In this section, we want to generate high rate encoder polynomials. A general way

to generate high rate convolutional code is to use a low rate (1/2) encoder and delete

some of its parity check bits, and this is called puncture method. Some codeword bits

might be punctured according to a deterministic puncture pattern or puncture matrix.

The bit error rate may be a little different because of using different puncture pat-

terns. The puncture procedure is shown as Fig. 3.2, assume that a source sequence

(X0, X1, ..., X8, ..., XK−1) is sent to an encoder of code rate (1/2), and is encoeded to

codeword sequence (X0, B0, X1, B1, ..., X8, B8, ..., XK−1, BK−1). Before modulation, the

codeword is stolen some bits according to a puncture pattern. In Fig. 3.2, the puncture

pattern is defined

P =

⎛⎝1 1 1 1

0 0 0 1

⎞⎠
the column number of this matrix represents the puncture period, and element 1 means

 X0 X1 X2 X3 X4 X5 X6 X7 X8

 X0 X1 X2 X3 X4 X5 X6 X7 X8
 B0 B1 B2 B3 B4 B5 B6 B7 B8

 X0 X1 X2 X3 B3 X4 X5 X6 X7 B7 X8

Source Data

Encoded Date

Punctured
Codeword

Sent Codeword

B0 means punctured X0 X1 X2 X3 X4 X5 X6 X7 X8
B0 B1 B2 B3 B4 B5 B6 B7 B8

Figure 3.2: Puncture procedure.

that the corresponding codeword bit must be sent whereas element 0 means that corre-

sponding the bit is punctured or stolen. Finally, this puncture procedure increases the

code rate from (1/2) to (4/5) and produces anther codeword sequence (X0, X1, X2, X3, B3,

...X8, ..., XK−3, XK−2, XK−1, BK−1)

We take an example, assume an original systematic encoder of code rate 1/2 is :

Gsys (D) =
(
1 1+D2

1+D+D2

)
24

and using the puncture pattern

P =

⎛⎝1 1

1 0

⎞⎠
an equivalent punctured encoder with rate = 2/3 is defined by :

G′ (D) =

⎛⎝1 + D 1 + D 1

D 0 1 + D

⎞⎠
Hence, the reciprocal dual code can be generated by the polynomial generator matrix:

H̃ (D) =
(
1 + D2 1 + D + D2 1 + D

)
The relationship of trellis (Gsys (D), G′ (D), H̃ (D)) is shown in Fig. 3.3. G′ (D)

trellis is a readix-4 for turbo decoders, however the reciprocal dual code H̃ (D) is a radix-

2 architecture. In Fig. 3.4 shows the performance of decoding algorithm using H̃ (D)

trellis (Dual-MAP) and G′ (D) (MAP) trellis. The interleaver length is 400 which results

a (600, 400) punctured block code. The result does very make sense due to both decoding

algorithm reach the same performance. However, using original puncture trellis is not

efficient compared to reciprocal dual trellis.

3.2.1 Apply rate compatible punctured turbo code to WCDMA

RCPC(Rate Compatible Punctured Convolutional) codes are one practical solution

to adaptive coding mentioned in [11]. RCPC codes use a single rate-(1/n) convolutional

encoder/decoder pair and only to share a puncturing table. RCPT(Rate Compatible

Punctured Turbo) code can be used in a similar way a RCPC codes. This section will

focus on applying RCPC to turbo code in WCDMA. The used puncture tables are shown

Table 3.1: Puncture tables

Table PT1 PT2 PT3 PT4

Systematic 1 11 1111 11111111

Parity 1 1 01 0001 00000001

Parity 2 1 01 0001 00000001

Code rate 1/3 1/2 2/3 4/5

in Table 3.1. The ”1” or ”0” in these tables represents send or punctured. The systematic

25

Nonpuncture trellis

Puncture trellis
Reciprocal dual

trellis

Reciprocal
 dual trellis

Puncture

00

01

10

11

Encoder
state

11 1-

| |

0-00

11 11

110

Code rate=1/2

Code rate=2/3 Dual code rate=1/3

Figure 3.3: Trellis transformation relationship

bits are reserved for all code rates, however, the parity bits are reserved for only some

period. The first row is systematic information, the second row is first parity bit, and the

third row is the second parity bit. The characteristic of the tables is that codeword of

lower code rate must contains codeword of higher rate.

In 3GPP(WCDMA) standard, the scheme of turbo encoder is a Parallel Connected

Convolutional Code (PCCC) with 8-state constituent encoders and one interleaver. The

nonpuncture code rate of turbo encoder is 1/3. The structure of turbo encoder is shown

in Fig. 3.5. The transfer function of the 8-state constituent code for the PCCC is

G (D) =
(
1 1+D+D3

1+D2+D3

)
The bit sequence input for a given code block to channel coding by c0,c1,c2,c3,...,cK−1,

where K is the number of bits to encode. After encoding, the bits are denoted by d
(i)
0 ,

d
(i)
1 , d

(i)
2 , d

(i)
3 ,...,d

(i)
D−1, where D is the number of encoded bits per output stream and i

indexes the encoder output stream.

26

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(db)

B
E

R

MAP

Dual−MAP

Figure 3.4: Performance of using Dual-MAP and MAP under punctured code

The initial value of the shift registers of the 8-state constituent encoders shall be

all zero when starting to encode the input bits. The output from the turbo encoder is

d
(0)
k = xk,d

(1)
k = zk,d

(2)
k = z′k for k = 0, 1, 2, ..., K − 1. The bits input to the turbo encoder

are denoted by c0,c1,c2,c3,...,cK−1, and the bits output from the first and second encoder

are denoted by z0,z1,z2,z3,...,zK−1 andz′0,z
′
1,z

′
2,z

′
3,...,z

′
K−1

3.2.2 Decoding with SM and Dual-MAP algorithm

When puncture table PT1 is applied, that will produce a nonpunctured generator

G1 (D) which is the same as G (D). We define G2 (D), G3 (D) ,and G4 (D) are punctured

generator when applying PT2, PT3, and PT4, respectively. The systematic punctured

generator polynomials are :

G1 (D) =
(
1 1+D+D3

1+D2+D3

)
G2 (D) =

⎛⎝1 0 1+D+D2

1+D2+D3

0 1 1+D+D2+D3

1+D2+D3

⎞⎠

27

D D DU

Xk

Zk

D D D

Z'k

QPP
Interleaver

X'k

(Information sequence)

Figure 3.5: Turbo encoder for WCDMA.

G3 (D) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 1+D2

1+D2+D3

0 1 0 0 1+D
1+D2+D3

0 0 1 0 1
1+D2+D3

0 0 0 1 1+D3

1+D2+D3

⎞⎟⎟⎟⎟⎟⎟⎠

G4 (D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1+D+D3

D+D2

0 1 0 0 0 0 0 0 1+D2+D3

D+D2

0 0 1 0 0 0 0 0 D2+D3

D+D2

0 0 0 1 0 0 0 0 D
D+D2

0 0 0 0 1 0 0 0 D2

D+D2

0 0 0 0 0 1 0 0 D3

D+D2

0 0 0 0 0 0 1 0 D+D3

D+D2

0 0 0 0 0 0 0 1 D+D2+D3

D+D2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
And their corresponding reciprocal dual trellis are generated respectively by H̃1 (D),

H̃2 (D), H̃3 (D), and H̃4 (D) :

H̃1 (D) =
(
1 + D + D3 1 + D2 + D3

)
H̃2 (D) =

(
D + D2 + D3 1 + D + D2 + D3 1 + D + D3s

)
28

H̃3 (D) =
(
D + D3 D2 + D3 D3 1 + D3 1 + D + D3

)
H̃4 (D) =

(
D + D2 D3 D2 D D + D3 D + D2 + D3 D2 + D3 1 + D2 + D3 1 + D + D3

)
Notice that the row number of these matrix is only one even if their original code rate

are higher than 1/2. Here, we use these reciprocal dual trellis as decoding trellis and the

BER performance are shown in Fig. 3.6

0.5 1 1.5 2 2.5 3 3.5 4
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No(db)

B
E

R

1/3

1/2

2/3

4/5

Figure 3.6: Performance of different code rate with block length 2048.

3.3 Performance analysis

In this section, we will present the simulation results and some parameter setting

for hardware implementation. All the simulation results are signal-to-noise(SNR) versus

BER under BPSK modulation and AWGN channel. In Fig 3.7, there is about 0.05dB

loss between the sliding window size of 32 and 64 at the BER= 10−5 under the fixed 6

29

iterations. At code rates 1/3, 1/2, 2/3, and 4/5, the block length of each is 2048, and

the performance of different iterations are presented in Fig 3.8. The BER performance of

each code rate is almost saturate at 6 iterations. Thererfore, we choose iteration number

6 to our design.

0 0.5 1 1.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No(db)

B
E

R

 window size=16
 window size=32
 window size=64

Figure 3.7: Comparison of different sliding window size.

The fixed point representation of the internal variable in the SISO decoder is determined

from the received symbol quantization. Fig. 3.9 shows the simulation result with different

input symbol quantization under block length 2048, code rate 1/2, window size 32, and

6 iterations. Note that a, b in the figure denotes the quantization scheme where a is

the integer part, and b is the fractional part. We can observe that the performance loss

of (3.3) is quite small compared with (3.4) format. And we decide that the quantized

format 6 bits (3.3) is suitable scheme for our design. In addition, the width of extrinsic

information, branch metric, and path metric can be derived and we summarize the fixed

representations in Table 3.2.

30

Figure 3.8: Comparison of different iteration.

Table 3.2: Summary of fixed representation in MAP decoder

quantities Input Extrinsic Branch State

symbols information metrics metrics

width 6 10 12 12

31

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No(db)

B
E

R

Fix3.3

Fix3.4

Floating

Figure 3.9: Fixed point comparison.

Finally, we talk about the look up table approximation shown in Fig. 3.1. Since

the correction term log(1 − e−|d|) can has any value in the range [∞, 0] if d goes from

0 to ∞, this makes correction term changes severely when d closes to zero. Therefore,

segment method of d is a very significant issue. Fig. 3.11 shows performance of two ways

to segment the range of d. The simulations are under interleaver length 2048, code rate

= 4/5, and sliding window size = 32 trellis stages. In Fig. 3.10, uniform segment is to

divide the range to some equal intervals, and nonuniform segment is to divide the range

according to the slope of correction term function. Here, according the performance of

bit error rate, we shall choose nonuniform segment method to divide the range of d.

The design parameters and methodology are applied to our decoder. The performances

of each code rate are shown in Fig. 3.12, and floating point simulations also are list. The

fixed point performance loss is 0.3 to 0.5dB compared with floating point at BER = 10−5.

32

Uniformly segment Non-uniformly segment

Figure 3.10: Segment method.

0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No(db)

B
E

R

uniform

nonuniform

floating

Figure 3.11: Performance comparison of different segment method.

33

Figure 3.12: Performance of each code rate with design parameters.

34

Chapter 4

Dual-MAP Turbo Decoder

Architecture

According to equation (2.39), there are 1, 2, 4, and 8 extrinsic values can be calculated

during a trellis stage when we use PT1, PT2, PT3, and PT4 puncture tables respectively.

In this chapter, we will disscus the architecture of reciprocal dual trellis turbo decoder.

4.1 Architecture overview

The architecture of proposed turbo decoder using reciprocal dual trellis is shown in

Fig. 4.1. The SISO decoder performs Dual-MAP algorithm and outputs extrinsic values.

The Input Buffers are used to store the received values from channel. The extrinsic

memory stores the extrinsic values from SISO. Under each iteration, the SISO computes

the extrinsic values which is a priori value estimation for the next iteration. There are

two stages in a iteration. In normal stage, data is read from Input Buffer and extrinsic

memory in normal order, and the extrinsic values are witten into the extrinsic memory

in interleaved order. In interleaver stage, data is read from Input Buffer and extrinsic

memory in interleaved order, and the extrinsic values are witten into the extrinsic memory

in normal order. However, by using the reciprocal dual trellis, we can just apply radix-2

branch calculational circuit to achieve the turbo decoder design.

We apply sliding window approach mentioned in [9] to the SISO decoder. In Fig.

4.1, Window BUFs store the input soft values for evaluating α and β. The SMM is the

35

Output Buffer

Input
Buffer

Decision

Terminate

parity1

parity 2 Decoder

Systematic bit
Ext

Window
Buffer

Window
Buffer

SMM SMM

Buffer

Extrinsic
sets

SMM

dβSMA-SMA-SMA-α β

α

Input and intrinsic values

Dual_MAP
SISODecision bit

Extrinsic
MemoryInterleaver

Normal
order

Normal
order

Interleaver

Rd Addr

Rd Addr
Wr Addr

Extrinsic

Figure 4.1: Iterative decoding of turbo decoder.

abbreviation of sign magnitude multiplication and calculates the branch metrics. Each

SMA is the abbreviation of sign magnitude addition and calculates the path metrics for

each recursion. To avoid waiting for the whole codeword for β evaluation, we use SMA-βd

from the end of the next sliding window to evaluate the initial values of β. And the

α-Buffer performs the Last-In/First-Out (LIFO) for the reversing output of α.

Fig. 4.2 is the decoding schedule of the SISO decoder. At the first time interval T0,

the input values are written into a Window BUF1 in reversing order. At the second time

interval T1, the second input data(W1) are written into the other Window BUF2 also in

reversing order and SMA-βd calculates βd to evaluate the initial conditions of β. Simulta-

neously, the SMA-α utilizes the data in W0 to compute α reversely and saves the results

in the α-Buffer. Finally, the first window data will be read at T2 interval for β calcula-

tion and the third window data(W2) will be written into Window BUF1 simultaneously.

When the SMA-β unit starts to calculate, the extrinsic values can also be calculated by

Extrinsic sets. As a result, the latency of the SISO decoder is about two sliding window

size.

36

βα

α

α

α

W0

W1

W3

W2

T0 T2T1

Time interval

T3

dβ

dβ

dβ

β

β

β

Soft-input
write in

Calculate dβ
Calculate α
Calculate β
Extrinsic

WAR

α

WAR

α

WAR

α

WAR

α

α

Window
BUF1

Window
BUF2

T0

T1

T2

T3

T4

T5

Time

 Idle

Writing in

Read for α
Write after read T4 ...

Figure 4.2: Decoding schedule of Dual-MAP decoder.

4.2 Dual-MAP decoder

4.2.1 SMM unit

The SMM in Fig.4.1 performs the multiplication of sign magnitude algorithm and the

circuit is illustrated in Fig.4.3. The output of ”Sign” is calculated by the XOR logical

operation of input signs and the ”Mag” is the summation of input magnitude parts.

XOR

XOR

XOR

XOR

Mag_1
Mag_2

Mag_Out

Sign_1

Sign_4

Sign_2

Sign_3

Sign_OutXOR

XOR

Sign_5

Sign_8

Sign_6

Sign_7
XOR

+

Mag_3

Mag_8

+

+

+
+

+

Mag_4

Mag_5

Mag_6

Mag_7

+

Figure 4.3: Architecture of SMM unit.

37

4.2.2 SMA unit

Each SMA unit used in recursion calculation is illustrated in Fig. 4.4, and is mainly

used to perform sign magnitude addition. In Fig. 4.4, two sets of AFA(α) and Gamma(γ)

represented in sign magnitude type are inputs of SMA unit. Mag1 is the magnitude part

and S1 is the sign part of Sum∗1 output. The Sign bit will select the minimum between

Mag1 and Mag2, and the output sign is also selected by Sign bit. The difference(ABS)

between Mag1 and Mag2 is sent to the look up tables. And the look up tables(LUT)

are used to approximate functions log(1 + e−|A−B|) and log(1 − e−|A−B|) as described in

3.1.1. Finally, the adder calculates the output of magnitude. To avoid overflow in finite

datawidth, we adopts the modulo normalization of path metric [12] in our design.

Now, we further analysis radix-4 Log MAP recursion unit. According to [13], radix-4

recursion unit has four candidates to select. As we mentioned in equations (2.23), the

function of radix-4 Log MAP recursion can be written as (4.1), and directly implement

this function into architecture Fig.4.5.

log(eδ1 + eδ2 + eδ3 + eδ4) ≡ max∗(δ1, δ2, δ3, δ4)

= max∗(max∗(δ1, δ2), max∗(δ3, δ4))
(4.1)

ABS

AFA_1 Sum*1

Sum*2

P1: [S1 , Mag1]

AFA_2

Gamma1

Gamma2

Mag1

Mag2

―
M
U
X

LUT_1 LUT_2

MUX

adder

XOR

S1

S2

Mag_Out

Sign_Out

Mag_min
P2: [S2 , Mag2]

Sign bit

Figure 4.4: Architecture of SMA unit.

In Log-MAP algorithm, for a (n, n − 1) code rate RSC, there will be a radix-2 trellis

at the decoder for n = 2. For higher code rate, assume (n = 3), and there will be a radix-

4 trellis at the decoder. Notice that, in radix-2 Log MAP architecture, the hardware

38

ABS

ABS LUT

LUT

LUT

ABS
ABS LUT

Radix-2

Radix-4

Figure 4.5: Radix-2 and radix-4 Log MAP recursion units.

complexity is lesse than SMA unit. However, in radix-4 situation, the number of the

computational units are much more than SMA unit.

4.2.3 Extrinsic unit

An architecture of Extrinsic unit is proposed according to (3.1.2) and is illustrated in

Fig. 4.6. The inputs are forward, backward, branch metrics, and the bit metric (gj) which

is at the position that we intend to decode. The PMN(Path Metric Network) unit is the

connection between path metrics and two HMP(Hierarchical Min Processor) according to

the transition bit at decoding index j. The connections of PMN various with decoding

index j, and Fig. 4.6 shows an example. min∗ in HMP performs the sign magnitude

addition and both HMP perform the summation of (3.7) for b = 0 and b = 1. Finally, a

look up table is required to perform (3.10) function. The output of look up table is the

extrinsic value. Parallel Extrinsic units can be used to decode all extrinsic values of the

trellis stage to achieve high throughput.

4.3 Throughput evaluation

In MAP decoding algorithm, the decoding process through pre-decoding round and

post-decoding round is called one iteration. That is why the denominator of equation

(4.2) are two times of iterations. Based on all factors mentioned above, the throughput

in our design can be evaluated eventually. The throughput of our design will show in the

39

LUT Extrinsic

.

.

.

.

AFA1

GAMA1
BETA1

AFA8
BETA8

GAMA16

j

1

0

S
M

M

AFA2

GAMA2
BETA1 S

M
M

S
M

M
S

M
M

AFA7
BETA8

GAMA15

min*

min*
min*

min*
min*

min*

min*

min*

min*
min*

min*
min*

min*

min*

0 0 0
1 1 1

1 1 0
0 0 1

1 0 1
0 1 0

0 1 1
1 0 0

1 1 1
0 0 0

0 0 1
1 1 0

0 1 0
1 0 1

1 0 0
0 1 1

0

1

HMP

Pipeline insert

S
M

M

Figure 4.6: Architecture of Extrinsic unit.

next chapter in Table 5.1.

Throughput(bits/s) =
Block Length

Needed cycles
× clock rate

=
f × Block Length

2 × iteration# (Block Length/Parallel + 2 × Sliding Window Size + C)

(4.2)

• f : Operation frequency

• Parallel : Parallel Extrinsic units numbers

• C : some latency in decoder(≪ Block Length)

• iteration : number of iterations

40

Chapter 5

Implementation Results

In this chapter, the implementation results of each code rate decoders will be shown.

Furthermore, we integrate the four different code rate decoders into one, and the imple-

mentation results are also shown in this chapter.

5.1 Implementation of Dual-MAP turbo decoders

The throughput of each SISO decoder is different because the parallel Extrinsic untis

are applied. Implemented by UMC 90nm 1P9M CMOS technology, the operation fre-

quency of each SISO decoder can reach 200MHz in synthesis. And the area of each SISO

decoder including the parallel Extrinsic units are presented here with the unit of gate

counts. Table 5.1. shows the results in all cases.

Table 5.1: Summary of synthesis result

Code Rate Component Code Rate SISO Area EXTRINSIC (sets) Throughput (MS/s)

R = 1/3 Rc = 1/2 88K 1 16

R = 1/2 Rc = 2/3 107K 2 31

R = 2/3 Rc = 4/5 178K 4 57

R = 4/5 Rc = 8/9 270K 8 101

Finally, we can mainly use the architecture of code rate 4/5 decoder to achieve the

multiple code-rate decoder. The total gate counts of this decoder are about 850K. The

41

area distribution of modules in the decoder are shown in pie chart 5.1. The logic gate

counts of this decoder are about 370K while the storage units such as buffers used for

input, extrinsic, and output occupy about 480K gate counts.

Input/ Output/ Extrinsic
Buffers

56%

Others
12%

SISO
32%

Area distribution

Figure 5.1: Area distributin of modules in turbo decoder.

5.1.1 Comparison of different high radix MAP decoders

In [14], a MAP decoder is implemented using radix-4×4 MAX-LOG-MAP algorithm.

We compare the decoder in [14] with our design of code rate R = 2/3 because there are

the same number of extrinsic value delivered from each SISO at the same time. The

comparison is summarized in table 5.2 briefly. However, the total gate counts of this

MAX-LOG-MAP decoder are still larger than our design.

Table 5.2: Compare with radix-4×4 MAX-LOG-MAP circuits

Component Proposed Ref. [14]

Technology 90nm 13um

Operation Frequency(MHz) 200 238(APR)

Sliding Window 32 20

Total SISO Gate Counts 178K 220K

Decoding Trellis Reciprocal dual trellis Original trellis

42

Figure 5.2: Layout photo of multiple code-rate turbo decoder.

5.1.2 Layout specification

The specification of the multiple code-rate turbo decoder is given in Table 5.3, which

is implemented through the cell-based design flow. This chip has been implemented in

a 0.9V, UMC 90nm 1P9M CMOS technology, and the layout view is shown in Fig. 5.2.

The core size of this chip is 3.78mm2 in 90nm process. The total gate counts are 850K

while the logic gate counts are about 370K and the chip core density is about 66%. After

static timing analysis and post layout simulation, the operating frequency can achieve up

to 200MHz and the throughput are 16, 31, 57, and 101Mb/s at code rate 1/3, 1/2, 2/3,

and 4/5, respectively. The power consumption operated at 200MHz is 80mW at code rate

4/5 and 82mW at code rate 1/3 with 0.9V supply voltage.

Besides, the power consumption estimated by the post-layout simulation and can be

converted to energy efficiency. The energy efficiency is defined as the average energy

consumed per bit within each decoding iteration (nJ/bit/iter). For our decoder, the

energy efficiency at code rate 4/5 can be calculated as

80mW

6 × 101Mb/s
= 0.132nJ/bit/iter.

43

Table 5.3: Proposed turbo decoder chip summary

Technology UMC 90-nm 1P9M CMOS

Block length 2048

Iteration 6

Quantization of input 6 bits (3.3)

SISO decoder algorithm Sign Magnitude and Dual-MAP

Code polynomial [1 1+D+D3

1+D2+D3]

code rate 1/3, 1/2, 2/3, 4/5

Core area/Gate count 3.85mm2 / 850K

Throughput 16, 31, 57, and 101Mb/s

Supply voltage 0.9V

Clock rate 200MHz

Utilization 66%

Power consumption 80mW(@0.9V, 200MHz, and code rate=4/5)

Energy efficiency nJ/bit/iter 0.132

5.2 Comparison of different turbo decoders

Table 5.4 lists the comparison of the proposed design with other published papers.

The main topic of our works is to investigate benefits from using reciprocal dual trellis.

Therefore, we compare the area of SISO, control units, and some calculational circuit

which not include storage unit such as SRAM.

44

Table 5.4: Comparison of different turbo decoders

Proposed Ref. [15] Ref. [13] Ref. [16]

Technology 90nm 0.25μm 0.18μm 0.18μm

Block length 2048 N/A 5114 5114

Code Rate 1/3, 1/2, 1/3 1/3 1/3

2/3, 4/5

SISO Algorithm Sign Magnitude Radix-2 Radix-4 Radix-2

Dual-MAP LOG-MAP LOG-MAP LOG-MAP

Iteration 6 8 6 10

Clock frequency(MHz) 200 95 145 89

Core area (mm2) 3.78 N/A 14.5(3.63∗) 9(2.25∗)

Logic 370K 24.8K 410K 85K

gate counts∗∗ (SISO)

SRAM(kb) 58 2.25 450 239∗∗∗

Power 82 N/A 1450(262∗) 292(73∗)

consumption(mW) (@1/3 rate)

Energy efficiency 0.854 1.231(0.16∗) 10(2.5∗) 14.6(3.65∗)
(nJ/bit/iter) (@1/3 rate)

Throughput(Mb/s) 16, 31, 2(at least) 24 2

57, 101

Status APR Synthesis CHIP CHIP

∗: Scale to 90nm.

∗∗: Gate counts of SISO, control units, and some calculational circuits.

∗∗∗: Include Data Fetch circuits, input window buffer, and path metric memory.

45

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we propose a multiple code-rate turbo decoder which uses the reciprocal

dual trellis. The sign magnitude representation is used to reduce the hardware complexity

and the performance loss is 0.3-0.5dB while compared with floating point simulation at

BER = 10−5. In SISO decoder design, the input sequence order is reversed to eliminate

the βd input buffer. The core of this turbo decoder is 3.78mm2 in UMC 90-nm 1P9M

CMOS which countains 370K logic gates and 58Kb storage units. The maximum code

rate is 4/5 and the throughput can reach 101Mb/s with 200MHz operation frequency.

The power consumption at 0.9V voltage is 80mW at rate 4/5 and 82mW at rate 1/3.

Table 5.1 reveals that there is a moderate increase of logic gates as code rate rises. The

gate counts of code rate 4/5 design are only 270K. Hence, we consider that reciprocal

dual trellis decoding algorithm is preferable to high code rate turbo decoder design rather

than high radix trellis structure.

6.2 Future works

In our design, there are still several issues to be concerned. First, the lookup ta-

ble (LUT) used in calculating forward, backward, βd, and especially in extrinsic units

which occupy considerable area. Though the reciprocal dual trellis reduces the number

of branches, the LUT size may decrease the benefit of the reciprocal dual trellis. Sec-

46

ond, the correction term − log(1− e−|d|) might have positive values, and this will result a

large datawidth used in combinational circuits to maintain the performance. Third, the

throughput of lower code rate might be improved by exploiting idle modules.

47

Bibliography

[1] C. R. P. Hartmann and L. D. Rudolph, “An optimum symbol by symbol decoding

rule for linear codes,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 514–517, Sept.

1974.

[2] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permutation polyno-

mials over interger rings,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 101–119,

Jan. 2005.

[3] J. H. Andersen, “‘turbo’ coding for deep space applications,” in IEEE International

Symposium on Inform. Theory, no. 17-22, Sep. 1995, p. 36.

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes

for minimizing symbol,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–287, Mar.

1974.

[5] J. Hagenauer and P. Hoeher, “A viterbi algorithm with soft-decision output and its

applications,” in IEEE CLOBE-COM, Dallas, Nov. 1989, pp. 47.1.1–47.1.7.

[6] Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal

decoding algorithm,” in Proc. IEEE Int. Conf. Commun., 1995, pp. 1009–1013.

[7] S. Riedel, “Map decoding of convolutional codes using reciprocal dual codes,” IEEE

Trans. Inform. Theory, vol. 44, no. 3, pp. 1176–1187, MAY. 1998.

[8] J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors

with parallel structures for ISI channels,” IEEE Trans. Commun., vol. 42, no. 2/3/4,

pp. 1261–1271, Feb./Mar./Apr. 1994.

48

[9] S. A. Barbulescu, “Sliding window and interleaver design,” IEEE Electronics letters,

vol. 37, no. 21, pp. 1299–1300, Oct. 2001.

[10] S. S and S. S. Pietrobon, “Log domain implementation of the dual-app algorithm,”

Australian Commun. Theory Workshop, pp. 100–104, Feb. 2005.

[11] J. Hagenauer, “Rate-compatible punctured convolutional codes (rcpc codes) and

their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389–400, Apr. 1988.

[12] C. Shung, P. Siegel, G. Ungerboeck, and H. Thapar, “VLSI architertures for met-

ric normalization in the Viterbi algorithm,” in Int. Conf. Communications, vol. 4,

Atlanta, CA, Apr. 1990, pp. 1723–1728.

[13] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24mb/s radix-4

log map turbo decoder for 3gpp-hsdpa mobile wireless,” in ISSCC Dig. Tech. Papers,

Feb. 2003, pp. 150–151.

[14] C. H. Tang, C. C. Wong, C. L. Chen, and C. C. Lin, “A 952Ms/s Max-Log MAP

decoder chip using radix-4x4 ACS architecture,” in IEEE Asian Solid-State Circuits

Conference (A-SSCC), Nov 2006, pp. 79–82.

[15] D. S. Lee and I. C. Park, “Low-power log-map turbo decoding based on reduced

metric memory access,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 6, pp.

1244–1253, June 2005.

[16] M. Bickerstaff, “A unified turbo/viterbi channel decoder for 3gpp mobile wireless in

18um cmos,” in ISSCC Dig. Tech. Papers, Feb. 2002, pp. 124–125.

49

作 者 簡 歷

姓名: 林振揚

出生地: 台灣 台中縣

出生日期: 1983.10.22

學歷: 1999.9~2002.6 省立台中第一高級中學

 2003.9~2007.6 國立交通大學 電機與控制工程學系 學士

 2007.9~2009.7 國立交通大學 電子研究所 系統組 碩士

	01_封面
	02_書名頁
	06_中文摘要_LIN
	07_英文摘要
	08_誌謝_y
	THESIS
	簡傳

