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Abstract

The target of 3D virtual listening point audio synthesis is to reconstruct 3D
audio at a virtual point where"the original recarding microphone does not exist. To
facilitate this idea, the source music is.recorded.by.a microphone array that consists
of more than a few recording microphones.arranged in a'designed spatial pattern. The
3D acoustic signal synthesis can be divided into two Key steps. The first step is to
estimate the individual source signal from the mixed, recorded signals. This step is
usually accomplished by using the blind source separation (BSS) technique. The
second step is to synthesize a 3D acoustic signal at a virtual listening point in a
chosen reverberant room environment. The 3D feeling of an acoustic signal can be
enhanced by filtering the separated signals in step one by the head-related transfer
function (HRTF) and the acoustic transfer function (ATF), which represents the room
acoustic effect.

In this study, we adopt the frequency domain independent component analysis
(FD-ICA) and a least-square optimization approach to separate the mixture signals.
We investigate the effectiveness of the BSS methods by evaluating their demixing

matrices using the signal to interference ratio (SIR) metric. In the reconstruction



process, we first calculate the ATFs of the reverberant room to form an ATF-pool.
Then, the separated signals are mixed using the adequate ATFs drawn from the
ATF-pool. Finally, the 3D two-channel audio is synthesized with the help of
appropriately chosen HRTFs. A few problems have to be solved in the
aforementioned procedure. For example, for an off-grid virtual listening point, its
HRTF and ATF are interpolated using the existing HRTF library and the ATF-pool,
respectively. At the end, the synthesized 3D acoustic signals are demonstrated with

arbitrary virtual listening point and selected room reverberation environments.

Keywords: microphone array, 3D acoustic signal synthesis, blind source separation
(BSS), head-related transfer function™(HRTE), acoustic transfer function (ATF),

virtual listening point
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Chapter 1

Introduction

As we human beings live in a three dimensional space, our 3D acoustic feeling of the
two ears is well-trained by every received audio signal so that it is easy for us to distinguish
several different sound sources from a convolutive mixture signal such as a microphone
signal in a room. However, the 3D acoustic feeling is lost in the transition of multiple
natural source signals to the microphone signal. Our goal is to reproduce an audio signal
with a reconstructed 3D acoustic feeling from the omni-directional microphone array
signals. With the 3D acoustic signal, one can have the feeling of the direction, distance and
elevation of each sound source and-the reverberation of:the room, which would be much
impressive rather than a single channel mixture signal. -Another application of the 3D
acoustic signal synthesis is«to match up-with the. 3D view point camera array, which can
make the overall sequence vivid-and hvely.

Therefore, our main propose’ IS to-synthesize a 3D acoustic signal from the
omni-directional microphone array signals. This task can be intuitively divided into two
major steps. The first step separates the source signals blindly and the second step adds in
the 3D acoustic feeling. The former is usually achieved by the blind source separation (BSS)
method and the latter is realized by filtering with the acoustic transfer function (ATF) and
the head-related transfer function (HRTF).

For the first step, there are many BSS methods [1] and one of the most popular
methods is called independent component analysis (ICA). The concept of the ICA methods
is to make the separated signals as statistically independent as possible. Different kinds of
implementations of the ICA method [1], [2], [3], [4], [5], [6]. [7], [8], [9], [10], [11] have

different adaptive learning rules and different properties. For over-determined BSS methods,
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the subspace of interest would be extracted by the principle component analysis (PCA)
method [12] or the other subspace methods [1], [13], [14]. Some subspace method operates
in the frequency domain. Thus the frequency domain ICA (FD-ICA) method is applied to
the subsequent separation procedure with the permutation problem and the scaling problem
for each individual frequency bins. The permutation problem can be solved by the hybrid
method of direction of arrival (DOA) and the correlation method [15] and the scaling
problem is solved under the minimum distortion principle (MDP) [16]. For the convolutive
mixture signals, a least squares optimization based on the cross-power-spectrum approach is
adopted [17].

For the second step, the HRTF is adopted in this thesis as we present the 3D feeling
through the headphone [13], [18]. Duéto the effect ©f HRTF, the degradation of the
ill-separated signals can be reduced. in a;subjective way..\We also include the room impulse
response (RIR) by filtering the output signals with-ATF [19]. The ATF characterizes the
reflection effect of a reverberant.room. The ATE Is changed along with the room sizes and
the wall materials, which will be diseussed in this thesis.

With HRTF and ATF, we can synthesize audiosignals for different scenarios based on
the separated signals dynamically and thus the use of HRTF and ATF can bring the spatial
impression of a virtual listening point in a specific room. We demonstrate the effect of these
two methods for different scenarios.

This thesis is organized in the order of the processing flow from the captured
microphone array signals to the 3D acoustic signal. In chapter 2, we describe the adopted
BSS method for the sound separation. In chapter 3, the synthesis method of the 3D acoustic
signal using the separated signals is presented. The HRTF and ATF of a virtual listening
point can be interpolated by the adjacent measured points [19], [20]. In chapter 4, we
describe the simulation setups, discuss the effectiveness of the adopted BSS methods, and

demonstrate the overall system performance. Then we conclude the research results and
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discuss the future work in chapter 5.







Chapter 2

Blind Source Separation

2.1 Introduction to Blind Source Separation (BSS)

\\/

Fig. 2.1+ Cocktail Party Prgblem

The “Cocktail Party Problem” is known as one of the most famous problems in the
area of acoustic signal processing. It is described by the following sentence, “how to focus
one's listening attention on a single talker among a mixture of conversations and
background noises, e.g. cocktail party, and ignoring other conversations?” In the words we
used in the rest of the article, considering that each talker as a sound source and an array of
microphones placed in the room, how can we separate the sound sources or segregate a
particular one by processing on the mixture signals we received from the microphone array?
It is a difficult problem especially under the condition of “blind”, which means that the
source signals and the mixing process are unknown and only the recordings of the mixtures

are available. The goal of BSS is to recover all sound sources or a particular one from the
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recorded mixtures under the condition of “blind”.

In many cases of using BSS methods, it is necessary for the BSS system to have the
priori knowledge about the number of sound sources. However, we make an assumption
that the number of microphones is greater than the number of source signals, which means
that the number of sound sources is not essential as long as we have sufficient number of
microphones.

The BSS system as shown in Fig. 2.1 is often quite effective. We adopt this filtering

network described below to obtain the approximation of the source signal vector s.
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Fig. 2.2 BSS System Concept
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2.2 Model of Acoustic Signals

When the mixture signals are transformed into frequency domain, the mixing process
can be modeled by the following instantaneous mixing model:

x(f,t) = A(f)s(f,t)+n(f,0),



where x(f,t):[Xl(f,t),...,XM(f,t)]T denotes the vector of mixture signals, M

denotes the number of microphones and X, (f,t) denotes the short-term Fourier

transform (STFT) of the m -th microphone in the t-th time frame, A(f) denotes the
mixing matrix, s(f,t):[Sl(f,t),...,SN(f,t)]T denotes the vector of source signals, N
denotes the number of sound sources, S,(f,t) denotesthe STFT of the n -th source in the
t-th time frame, and n(f,t) denotes the mixture of less-directional components which
includes room reflections and ambient noise. Therefore, A(f)s(f,t) represents the
directional components in x(f,t).

In addition, the (m,n) element of the mixing matrix A(f) can be considered as the

transfer function from the n -th source to the "m =th imicrophone, which is modeled as:
A= A, iDiema
where A, (f) denotes the magnitude of the transfer function and z,  denotes the

propagation time from the n -th source to.the..m.-th.microphone:

2.3  Subspace Method

Since the number of mixture signals is greater than the number of source signals, by
utilizing the subspace method [2], we can obtain the filtered subspace signals in which the
room reflections and ambient noises are reduced. In other words, the subspace of direct
components is selected and in the meanwhile the subspace of reflection components is
discarded.

The subspace signals x(f,t) is obtained by the following expression as shown in
Fig. 2.2:

Xss(f ,t) :WPCA(f)X(f :t) )

1
where the subspace filter W, (f)=A2(f)EL(f) is a special case of principal
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component analysis (PCA) method with M >>N, A (f) denotes the subspace
eigenvalue matrix and E_(f) denotes the eigenvector matrix correspondingto A (f).

A (f) and E_(f) are obtained from the spatial correlation matrix
R(f)=(x(f,t)x"(f,1)), and R(f) can be decomposited into R(f)=E(f)A(f)E™(f)
where A(f) denotes the eigenvalue matrix and E(f) denotes the eigenvector matrix. It
is assumed that the significant eigenvalues are occupied by the direct components from the
sound sources and the rest are full with the energy of room reflections and ambient noises.
Therefore, we pick N significant eigenvalues to form a subspace eigenvalue matrix
A (f)=diag(A(f),..., 4 (f)) where 4 (f) is the k -th significant eigenvalue at
frequency f.

Eigenvalues

1 2 3 4 5 B 7

Fig. 2.5 ATypical Example of Eigenvalues for M =7 and N =2

2.4  Independent Component Analysis (ICA)

The goal of ICA is to make the output signals y be statistically independent. In other
words, the joint probability distribution of output signals y equals to the product of each

marginal distribution, which can be shown as the following expression:
N
f(y) :H fi(y;) .
i=1

9



The cost function to minimize the redundancy between each output signal y, can be

shown as the following expression:

fy)
log—— )
I(y)=E Oglﬁ[f_(y_) [ 1 ()log -y .

H f.(y;)

N
When f(y)= H f.(y,), the value of the cost function 1(y) equalsto O.
i=1

2.4.1 Information Maximization Method and Natural Gradient Method

One of the popular methods to approach the aim of having the statistically independent
output signals is the information maximization method, as known as the Infomax method.
The Infomax method maximizes the mutual information: .l (y;x) . Our purpose is to obtain
the demixing matrix W through an adaptive learning algorithm. We are interested only in
AW, so we take the differentiation with respect to* W. Thus, the maximization of the
mutual information: 1(y;Xx)=H(y)—H(y|X)_is equal to the. maximization of H(y),
because H(y|x) would be eliminated by the differentiation with respectto W.

Let y=g(u) where u=WHx and" g(u)-is-an invertible bounded nonlinear vector

or g(u)=tanh(u).

—u

function suchas g(u) = L
1+

10
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Fig.2.6 (a) g(u)=tanh(u) (b) g(U)=1 +1e_u

When g(u) has a unique. sifiverse, ' f (y) = ng)  where |J|—detﬂgz} J

Therefore, H(y) =—-E[log:f(y)]=E[log|a{]-E[log f(x)]=E[log|3[]+H(x) . Since
5’)’

J= (detW)Hﬂ results-in log|J|= IogdetW+ZIog

=1 i

, as we differentiate 1(y;Xx)

with respect to W, the learning rules.of \W- can be derived as [4]:

AW o AH¥X) _ Olog|J)
oW AW

where CD(u):[¢l(ul),...,¢,(ui),...,¢N(uN)]T and ¢(u)——|og

=W +D(u)x’,

W ‘
The natural gradient method multiplies the previous result by W'W , which leads to
an elegant form of the learning rule [11]:

AW oc

91093\ = (1 + (U™ yW.
oW

2.4.2  Frequency Domain ICA (FD-ICA)

Since the subspace method operates in the frequency domain, the FD-ICA is adopted in
this BSS system.

The subspace signals x.(f,t) are used to obtain the adaptive ICA filter W,.,(f),

11



where the learning rule of W,.,(f) is shown by the following expression [13]:
AW,y 1 (F) = p2-0ff —diag {(D(x, (f,)x," (F.0)), } Wie, (),
where 4 denotes the learning rate, ®(x(f,t))=[@(X,(f.1),...,p(x y(F.)]

denotes the score function which is applied to each element x_  (f,t) in the vector

ss,n

X, (f,t) such that ¢(xss‘n(f,t)):tanh(G-Re{xSS'n(f,t)})+jtanh(G-Im{xSSyn(f,t)}),

where G is a gain constant.

2.5 Permutation Problem and Scaling Problem

The main goal of BSS is to obtain the separated signal vector y,.,(f,t), which is
achieved by the procedures described-in the preceding sections. But for further applications
of the separated signals, there are*other problems need. to. be solved, which are the scaling
problem and the permutation problem:

Since the original BSS system simply ~separates™ the mixture signals, there exists
some magnitude distortions and incorrect permutation of the'separated signals. The former
may cause serious problem once these separated signals are used in the subsequent signal
processing tasks, which is the so-called scaling problem, and the latter can mess up the
signals at transformation from frequency domain back to time domain, which is the
so-called permutation problem. Therefore, these problems should be studied for our further

usage.

2.5.1 Permutation Problem

For finding the solutions of the permutation problem, there are two conventional
methods: the one based on the direction of arrival (DOA) and the other based on the

information among the adjacent frequencies. As shown in [15], a hybrid method combining

12



these two can solve the problem more confidently.

In order to solve the permutation problem in the frequency domain, let us look into the

—j2zfrg,

structure of the mixing matrix elements An]n(f):|An’n(f)|e . In the beamforming

theory [21], |An‘n(f)| issettoland ., is modeled as:

d
T,,=——-C0S0 ,
' c

where d_, means the position of the m -th microphone, 6, is the angle of direction of the

n

n-th source and c represents the sound speed. In order to fit the current situation,

A, .(f) isremodeled as:

'(and—mcosanJrqﬁn)
c

J
Ann(F) | Ana(f)]e ,
where ¢, is the phase modulation of n -th source.
The permutation matrix P( f) of eachfrequency ' f* is the goal we want to achieve

in producing the separated.signals. Since.“P(f) can be realized as a row permutation of
identity matrix | at each frequeney -.f, P(f).can be transmuted into a function IT, (k)

where k represents the k-th row of ‘P(f)=and the function returns the column index of

the one-and-only nonzero element in this row. Therefore, the identification of the

permutation function I, isequivalent to the one of P(f).

When the ICA method does separate the source signals at each frequency f, there
exists a permutation matrix P(f) and a diagonal scaling matrix A(f) such that:
A(PP(F)W(F)A(f)=1.
In this case, A(f) can be approximated as W*(f)P(f)A™(f), where W*(f) is
the Moore-Penrose pseudoinverse of W™ (f). Arbitrarily choose two elements in the n-th
column of A(f) with different row index m and m' and then we can remove the effect

of the unknown P(f) and A(f) to identify the angle of the n-th source & by the

13



following derivation [15]:

“cos o,

An,n — [W+P71Ail]m, [W ]m T, (n)
An',n [W+P_1A_l]m',n [W m’, T1,}(n) |A“

[W+(f )]m 7 (n)
[W+(f)]m N
d,—d..

c

6, = arccos
2r f

The above method is developed based on the direction of arrival, which is unreliable at
low frequencies where the phase difference due to the small interval of linear-arranged
microphones and the high frequencies, where the spatial aliasing appears. The hybrid
method uses the information among the adjacent frequencies in all frequencies to make the
solution more reliable.

Considering the frequency =resolution of STFI~Af -, for the current processing
frequency f , its adjacent frequencies are the-reference frequencies f,=f —k-Af,

k=1...,K, whereK is an adjustable constant for.confidence: measurement. Let a (f)

denote the nth column vector of A(f).at f,assuming |A,  (f)|=1 for simplicity [2]:

e_jZ”le,n e_jZ”(f_Af)Tl,n

a,(f)= | a(fy)=

eijHer’n e’jZ”(f’Af)TM,n
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-~ - >
a,(fy)

(a) (b)
Fig. 2.7 (a) With Correct Permutation  (b) With Incorrect Permutation
As Fig. 2.7 shows, we can say that “a, (f) is the result of a, (f,) rotated by the
rotation angle .. Incorrect permutationsfusually results in a larger magnitude of rotation

angle 6, for each column vector a,(f). Therefore, .0 is expected to be the smallest

n
when the permutation matrix is correct.

Let W' (f) denote an estimation of.the mixing matrix A(f),and P(f) denotes an
arbitrary permutation matrix; which exchanges-the row.vectors of the transposed estimation

matrix (W*)" . The arbitrary permuted matrix-"A(f) is calculated by the following

expression:
- T T
(A(F)) =P(f)(W'(f)) .
where A(f)z[éi(f),...,éN(f)] and @, (f) denotes the n-th permuted column vector.

Then, the cosine of the angle 6, between & (f) and a,(f,) is calculated by the

following expression:

cosg - A (Da(f)
" a ()] [a (5]

When the permutation matrix is a correct one, cosé, is expected to be largest. Thus,

the cost function F(P,k) can be written as [2]:
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N
F(P,k) = iZcosé’n ,
N =
where k denotes the index of the reference frequency f,. When max F(P,k) is close to

F(P,k) with other permutations, it may be difficult to determine which permutation is
correct. Therefore, the confidence measure C(k) is defined to represent how reliable the

reference frequency f, is. The value of C(k) is calculated by the following expression:

Ck)= rpgzx F(P, k)—rpe%x F(P,Kk),

where Q denotes the set of all possible P and Q' denotes the set of all possible P

without FA>k = arg max F(P,k). The approximate permutation matrix P is obtained by the

following expression:

P.2arg max F(P,K),
where Kk = max C (k).

The above method basically relies on_the information associated with the adjacent
frequencies, and there is a similar kind of method based on.the interfrequency correlations.
According to the observations of adjacent frequency spectrum envelopes, it can be found
that the correlations among these adjacent frequencies are relatively higher than the others.
Therefore, the interfrequency correlations are informative to determine the nearby

frequency permutations.
The envelope of a separated signal Y;(f,t) is |Yi(f ,t)|, and the correlation between

two signals x(t) and y(t) is defined as:

Cor(x’ y) — M ,

x Gy
where ., u,, and g, are the means of x(t), y(t), and x(t)-y(t), respectively and

o, and o, are the standard deviations of x(t) and y(t), respectively. Note that
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cor(x,y)=0 for the uncorrelated x(t) and y(t) and cor(x,x)=1 and cor(y,y)=1
forall x(t) and y(t).
By assuming that the adjacent frequencies are highly correlated, for each frequency f,

the sum of correlations with the adjacent frequencies within a small range ¢ is maximized

if the permutation function IT, is correct. The priori condition of this maximization

process is that the adjacent frequencies are fixed to the right permutation. Let F be the set

of fixed frequencies, and then we can get the permutation function IT, by exhausting all

the possible permutation to maximize the sum of adjacent frequency correlations by the

following expression [15]:

1, =argmax > ZN:cor(|YH(k)(f 1), ‘Yng(k)(g,t)‘).

lg—f|<&, geF k=1

I, =argmax | > icor(m(k)(f,t)|,‘Yng(k)(9,t)‘)

geHark k=1

In the above maximization process, only the adjacent frequencies in the set of fixed
frequencies are added intorthe summation.—JTherefore; we can use the DOA method to
identify some permutation-predetermined frequencies in-advance.

The permutation problem is solved by the‘following methods in the order of: the DOA
approach as shown in Fig. 2.8 (a), the high interfrequency correlation method as shown in
Fig. 2.8 (b), the harmonic frequency correlation method as shown in Fig. 2.9 (a), and finally

the low interfrequency correlation as shown in Fig. 2.9 (b).
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the pseudoinverse B(f)" of the demixing matrix B(f)=P(f)W,,(f)W,e (). As
Yon(f,t), the n-th component of y (f,t), is filtered by B(f)" with the following
expression [2]:

y.(f.)=B(f)°[0,...,0, y,(f,1),0,...,0],
where yn(f,t)z[ylyn(f,t),...,yMYn(f,t)]T denotes the signal vector recovered from
Yoo(f,t),and y,  (f,t) denotes the recovered signal of the n-th source observed at the

m -th microphone.

Therefore, by setting an arbitrary microphone number m as the reference one, the

magnitude of the recovered element ya(ft)=BI(f)y, ,(f,t) is normalized to the

M -th microphone, where B (f)."denotes the “(m,n)-th element of B(f)".

The scale recovered signal vector y(f,t)=[ymyl(f,t),...,ym,N(f,t)]T can be
obtained by the following equation [2]:
y(f ) =A(f)y, (fit),
where A(f)=B;(f)=diag|B;,(f),...,B; (f)] isan NxN diagonal matrix.

Another way of solving the scaling problem is using the minimal distortion principle
[16]. Since we conduct the separation method under the blind condition, the mixing matrix
A(f) is unknown. For simplicity, we assume the permutation matrix P(f)=1 in the
following derivation, the ideal scaling matrix A(f) should satisfy the equation that:

A(F)Wiga (F)Woea (FA(F) = diag[A(F)].

Once the signals are well-separated by the preceding ICA method, there exists another

diagonal matrix D(f) such that W,.,(f)W,.,(f)A(f)=D(f). Hence, the unknown

mixing matrix A(f) can be estimated as W' (f)D(f) where W*(f) is the
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Moore-Penrose pseudoinverse of the separation matrix W,.,(f)W,.,(f). Therefore, the
estimation of A(f) equals to diag [W+(f)], which is an approximation to the solution

of the scaling problem in the FD-ICA.

2.6 Convolutive BSS

The above ICA method is effective for the cases with no reflections, but for the
convolutive mixture microphone array signals, the separation quality is severely degraded
by the room reflection. Hence, we adopt another BSS method, which is developed based on
a multiple decorrelation approach and a least squares optimization to estimate the mixing

matrix A and the demixing matrix W [17].

The spatial correlation matrix R(f)=<x(f DX (f ,t)>t can be written as :

R(f)=A(DALHA"(F)+Aq(f),
where A (f) and A, (f).are diagonal due to the independence assumption of the source
signals [17]. The cross-power-spectrum average R( f,t). can then be written as:
R(f,t) =A(R)A (DAY (f)+A, (f,1).
Therefore, we want to find W(f), A/(f,t), and A, (f,t) which satisfy the
following equation:

As(f,t):W(f)(ﬁ(f,t)—An(f,t))WH(f).
A least squares optimization can be used to find the estimations W(f), [\S(f,t), and
f\n(f ,t) which can minimize:

3= zK:HW(f) (R(F, 0 - A, (F,0)WH (1) -A,(f.9)],

:l t=1

where T denotes the frame size of the STFT and K denotes the range of optimization

process along the time axis. The solutions can be obtained by using the gradient descent
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algorithm [17].

2.7 Evaluation of the BSS Performance

One way to evaluate the BSS performance is to measure the signal to interference ratio

(SIR). The definition of SIR is described below:

SIR=225"log, (b 0F)

N 3 <Z‘Yi,sj (t)‘2> .

j=i

The overall separation matrix W is trained by the microphone array signals, which record
the simultaneously played source signals. In order to test the effect of suppressing other

source signals for each output separated signal, we ‘only play one source signals at a time.

The signal Yis, (t) represents the 4-th-output-separated signal with only the j-th source

signal being active. For j=iy <|yi,si (t)|2>t denotes the power of the i -th desired

separated signal averaging over the time.aXisy-and-forall j#1, z<‘yi,s,- (t)‘2>t denotes
j#i

the sum of other interference power from other source signals of the i-th separated signal.
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Chapter 3

3D Acoustic Signal Synthesis
3.1  Acoustic Transfer Function Pool (ATF-Pool)

3.1.1 Measurement of ATFs

TSP(t)

.

o= =T R -
\ b 7
\ \
3 \ 4
: ‘
B . .
ATFrio () -

\ T

y
Qt)/

\\ Virtual Microphone at Position P

«\ ol
-
-

\

Fig. 3.1 Estimation of ATF by Using the TSP Signal

By transmitting a time-stretched pulse (TSP) signal from each source location to each
virtual microphone position, the acoustic transfer functions (ATF) are estimated in the

frequency domain with the following function:
VM, ()

ATR D) =75p (1)

where ATF;(f) denotes the acoustic transfer function from the i-th source location to

the j-th virtual microphone location, VM ,(f) denotes the j-th virtual microphone

signal and TSP (f) denotes the TSP signal from the i-th source location.
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The frequency response of the time-stretched pulse signal we adopted in this thesis is
shown as the following function [22], [23]:

. 4MK?
e v o<k N
TSP(K) = 2

TSP(N—k),%<k<N

where N is the length of TSP signal and M is the TSP stretch parameter. For a TSP

signal with N =2048 and M =64, the time domain response is shown as Fig. 3.2 below.
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Fig. 3.2 TSP with'N =2048 and M =64 in the Time Domain

The length N of the TSP signal determine the phase.resolution and the TSP stretch
parameter M has a trade-off between the signal-to noise ratio (SNR) and the convergence.
However, the averaged error level of the TSP signal is less than -100 dB [23], which is
insignificant in our measurement of ATF; hence, the value of M can be assigned arbitrarily

in our case.
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3.1.2 ATF Interpolation

. ATF Sensor
= = Interpolated Line

Interpolated Area

®---0--0--0---0---0

Fig. 3.3 Weighted Linear Interpolation of ATF

As revealed in the section 3.1:1, it;is physically impossible to measure all the ATFs for
each source-microphone pair, so it is reasonable-to obtain, the unmeasured ATF using the
weighted linear interpolation method [19]."The ATF-Pool is consisted of the recorded ATF
measurement. The ATFs from- the Source locations to the virtual listening point are
synthesized only at the time they are needed; which can lower the amount of memory space

requirement of the ATF-Pool.

3.2 Head-Related Transfer Function (HRTF)

It is necessary that having a head-related transfer function (HRTF) database in order to
present the 3D spatial feeling through the headphone. There are several open-source HRTF
database freely, such as [24]. The head-related transfer functions are measured with the
dummy head recording in the anechoic chamber to simulate the reflection and diffraction
characteristics of the torso, head and pinnae. For the same source signal, the head-related
transfer function varies with different source elevation angles, azimuth angles and distances

between the source and the head. Therefore, HRTF is actually a function of the elevation
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angle ¢, the azimuth angle & and the distance r. The head-related transfer function at an

arbitrary position is interpolated from the nearby captured HRTFs.

s(t)

at(é,6,r)

HRTF, ¢ (f)
HRTF, , (f)

Earg(t)

Listener at Position P

]

Fig. 34 HRTFs from. s(6) toEar,(t) and- Ear,(t)

There are two channels for each‘ HR‘TF measuremm.ent, which are left ear impulse
response HRIR, (t) and right ear impulse response HRIR, (t) . The frequency responses of
HRIR (t) and HRIR,(t) are HRTF _(f) and HRTF,(f) respectively. The calculations
of HRTF (f) and HRTF,(f) at a certain source position (¢,&,r) related to the

listener are shown as the following expression:

Ear, (f) Ear,(f)

HRTF, (f) = 0

, HRTFR,(f)=
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3.3 Combining HRTF and ATF
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Fig. 3.5 Combining ATF and HRTF
(@) ATF for Each Separated Signal (b) HRTF for Each Separated Signal

(c) 3D Acoustic Signal Synthesis

There are many different kinds of blind source separation methods, but it is quite
difficult to completely separate the source signals in general cases since the information
about the source signals and the mixing system is not fully given. The performance of the

separation results may degrade owing to the channel noise, room reflections and some
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violations of the source signal stochastic model assumptions, which are usually different for
speech signals and instrument signals. However, the interferences which are introduced by
other source signals can be less significant as our main purpose of separating these source
signals is to synthesize them back together.

With the HRTF database and the ATF-pool, the audience is allowed to choose the
arrangement of the source signals and listening position arbitrarily. In other words, the
audience can have one source signal at the left side and another at the right side, which are
unrelated to the original geometric spots of these source signals in the room. The spatial
impression is presented with the headphone by utilizing the HRTF database and the
ATF-pool to simulate the user-customized listening scenarios. Therefore, the audience can
hear the synthesized 3D feeling audio signals at their own'sweet spots.

For the point which does not+have an ATF measurement;sthe estimation of its ATF is
calculated by a weighted linear interpolation from the nearby measured ATFs. The weighted
linear interpolation method also appears in thescalculation of HRTF when the desired spatial
position of HRTF cannot be found from the:HRTF database.

Let vy.(t) be the separated signal corresponding to the source signal s(t) ,

head-related impulse response (HRIR) be the time domain filter of HRTF where

HRIR, () and HRIR, .(t) are the left and right ear HRIR from the position of y;(t)

to the position of the head, and AIR, (P,t) be the acoustic impulse response (AIR) as

known as the time domain filter of ATF from the position of y.(t) to the position P. The
convolutive results of the two ear signals Ear (t) and Ear,(t) can be derived as the

following expressions:

Ear,_(t) = i AIR, (P, t)*(HRIR,  (t)* (1)),

i=1

Ear, (t) = ZN: AR, (P, t)*(HRIR, (t)*y,(1)).
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The above expression can also be represented in the frequency domain as Ear, (f)

and Ear,(f):

EarL(f)=ZN:ATFYi(P, f)HRTF,  (F)Y,(f),

i=1

EarR(f)=ZN:ATFYi(P, f)HRTF, (F)Y,(f).

i=1
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Fig. 3.6 Zones of Possible.Psycheacoustic Spatial Variation for the Separated Signals

Owing to the interference in the separated signals, the psychoacoustic spatial
impression may be degraded by the interaural time difference (ITD) and interaural level
difference (ILD). The zone of possible psychoacoustic spatial variation for each source
alters based on the SIR of each separated signal. The remaining interference for the i-th
separated signal affects the j-th separated signal for all j=i. The subject performance
degradation for such interferences depends on the human psychoacoustic resolutions of the
azimuth angles, the elevation angles and the distance. For a far-field virtual listening point,
the distance resolution would be less significant due to the human psychoacoustic
characteristics, and the azimuth angles and the elevation angles dominate the main 3D

acoustic feeling.
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Chapter 4

Experiment Results

4.1  Descriptions of the Adopted BSS System

We adopt the frequency domain independent component analysis (FD-ICA) in this
paper with principle component analysis (PCA) as a preprocessing dimension reduction
method. We choose the Infomax method combined with the natural gradient method due to
the popularity and simplicity of these two methods. The signals are separated in the
time-frequency domain and each*frequency band.is separated individually so that the
permutation and scaling problems should be fixed after the ICA process. We solve the
permutation problem by the combination of the ' DOA approach, the neighboring correlation
approach and the harmonic.frequency approach. The scaling problem is solved by using the
minimum distortion principal.method." For the convolutive BSS method, we adopt a least
squares optimization technique based on-the cross-power-spectrum approach with the
gradient descent algorithm. The flow diagram for the overall BSS system is shown as Fig.

4.1 below.
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Fig. 4.1 Flow Diagram of the Adopted BSS System

Fig. 4.2 shows the arrangement of source signals and the microphone array on the X-Y
plane. Two source signals are located 3.00 (m) away from each other and the interval length

of the microphone array is equal to 0.50 (m). The middle point of the two source signals is

End

3.00 (m) away from the center of the seven microphone signals.
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Fig. 4.2 Arrangement of the Source Signal§ and the Microphone Array

1

The settings of detailed parameters abouf the BSS system are shown in the Table 4.1.
The thresholds th, and thy ‘are assfgnéd to make sure thé DOA calculation is confident,
and the threshold th,, is adjusted based on the:number of sources and the size of the
harmonic set. The range K affects thé convergence speed of the convolutive BSS method.

For a larger K value, it takes more computational time to search for the valid demixing

matrix W.
Table 4.1 Settings of the BSS System Parameters
Parameters of the BSS System Values
Sampling Frequency 44.1 kHz
Number of Microphones, M 7
Number of Sources, N 2
Length of STFT, T 8196 pt
Frame Shift of STFT 128 pt
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Window Function Hamming
Thresholds of confident DOA th, =1.50,, th, =10dB
Distance for Interfrequency Correlations, & 3-Af

Set of Harmonic Frequencies (2f,2f +Af,3f,3f +Af}

Threshold of Harmonic Correlations, th,, 1.2

Learning Rate, u 1.0

Number of Iterations 1000

Nonlinear Function, g(u) tanh (G -Re{u})+ jtanh(G-Im{u})
Gain of Score Function, G 100

Range of LS Optimization, K 5

SIR from NR Mic Recordings
30
) J./"\-/ -
: ) /\\
SIR(dB) 15 u"’/ ) ——s1
=2
10
avg
5
0 T T T T 1
1 2 3 4 5
Sequence Number

Fig. 4.3 SIR of the Demixing Matrix from No Reflection (NR) Microphone Recordings
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Fig. 4.4 SIR of the Demixing Mﬁtf?xqﬂmﬁerf&tfﬁﬂector (PR) Microphone Recordings
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Fig. 4.5 Averaged SIR of NR and PR
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Table 4.2 Source Types in Sequence Numbers

Sequence Sequence
. Source 1 Source 2
Number Abbreviation
1 f01mO01 Chinese speech, female Chinese speech, male
2 instru instrument, string 1 instrument, string 2
3 speech Japanese speech, female | Japanese speech, male
4 winter instrument, drums instrument, piano
5 wistru instrument, string 1 instrument, piano

There are five sets of data being processed from top to toe, which are “f01m01”,
“instru”, “speech”, “winter”, and “wistru”, ,The.“f01mO01” sequences are two Chinese
speech signals of a man and a woman; the “instru” sequences are two string instrument
signals; the “speech” sequences are two Japanese speech Signals.of a man and a woman; the
“winter” sequences are instrument signals of drums-and a piano;the “wistru” sequences are
a string in “instru” and the piano'in “winter”: The lengths of all these wave files are about
6.8 second.

The effectiveness of the demixing matrix™ W' can be measured as the SIR values of
the microphone array signals. In Fig. 4.3, the SIR of the demixing matrix from no reflection
(NR) recordings shows good performance in average. The sequence number corresponds to
different test sequences which are shown in Table 4.2. When the wall material changes to
the perfect reflectors (PR) in Fig. 4.4, the SIR values drop to around 7dB. In Fig. 4.5, the
averaged SIRs of NR are higher than the ones of PR for all input sequences. The reason for
this phenomenon can be easily understood since the reflections make the purely
time-delayed BSS problem into a convolutive one. Thus, the independence of the source
signals is disturbed.

For the fifth sequence “wistru”, the SIR difference of source 1 and source 2 is the
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largest among the five sequences in both the NR and PR conditions. The explanation comes
from the waveforms in Fig. 4.22 (c), (d) and Fig. 4.23 (c), (d). Note that the graphs of
waveforms and spectrograms were normalized to the interval [-1, 1] for observation. Thus,
the true amplitude cannot be observed from the waveforms of the source signals, but we can
easily find that the mixture signals are dominated by the source 2 in the “wistru” sequence.
Owing to the larger true magnitude of the source 2 (piano), the interference from source 2 to
the separated signal 1 is still significant. On the other hand, the interference from source 1
to the separated signal 2 is insignificant in terms of the relative power ratio. However, in the
two source case, the relative power ratio would be eliminated in the averaged SIR. Recall

that the separated signals can be modeled as:

{yl(t)

}=W*A*S=U*s={
Y, (t)

Uy, (t) * s, (t) +=U,(t) *s, (t)}

Vs, (©) + Yys, ()
Uy, (B8 83(t) #U,, (1) * 5, (1) ’

Yas, (O + Y5, (1)

where U denotes the overall filter of s to y.7and the avéraged SIR is calculated as:

t) )
Averaged_SIR :%.10 log,, <| Vi Sl( )‘ >t _<‘y2,sz( )‘ >t

My O (vs @) |

Since Yis, (1) = Uy () 5, (t):>Yi’Sj(f)=Uij(f)Sj(f), it can be derived that the averaged

SIR equals to:

Uy (F)SU(F)), (Un(F)S,(F)f
Averaged SIRz%-lOIog10 <| n()S,(1) >f <| 22(F)S,(F)) >f

(Ua(H)S,(DF), (Ua(H)S, (D).
1 101 <|U11(f)| >f <|U22(f)| >f

270 oL f, o, |

Therefore, the averaged SIR of “wistru” goes back to the normal range of the sequences.
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Fig. 4.6 Sequence “f01m01” Waveforms in Time Domain
(a) Source 1  (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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Fig. 4.7 Sequence “f01m01” Waveforms in Time Domain
(@) Source 1  (b) Source 2
(c) Microphone 1 with PR (d) Microphone 7 with PR

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR
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Fig. 4.8 Sequence “f01m01” Spectrograms in Time-Frequency Domain
(@) Source 1  (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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Fig. 4.9 Sequence “f01m01” Spectrograms in Time-Frequency Domain

(@) Source 1  (b) Source 2
(c) Microphone 1 with PR (d) Microphone 7 with PR

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR
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Fig. 4.10 Sequence “instru” Waveforms in Time Domain

(a) Source 1 (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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Fig. 4.11 Sequence “instru” Waveforms in Time Domain

(c) Microphone 1 with PR

(e) Separated Signal 1 with PR
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Fig. 4.12 Sequence “instru” Spectrograms in Time-Frequency Domain

(@) Source 1  (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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(a) (b)
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Fig. 4.13 Sequence “instru” Spectrograms in Time-Frequency Domain

(a) Source 1 (b) Source 2
(c) Microphone 1 with PR (d) Microphone 7 with PR

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR
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Fig. 4.14 Sequence “speech” Waveforms in Time Domain
(a) Source 1  (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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Fig. 4.15 Sequence “speech” Waveforms in Time Domain

(a) Source 1
(c) Microphone 1 with PR

(e) Separated Signal 1 with PR

(b) Source 2

(d) Microphone 7 with PR

(f) Separated Signal 2 with PR
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Fig. 4.16 Sequence “speech” Spectrograms in Time-Frequency Domain
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Fig. 4.17 Sequence “speech” Spectrograms in Time-Frequency Domain

(@) Source 1  (b) Source 2
(c) Microphone 1 with PR (d) Microphone 7 with PR

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR
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Fig. 4.18 Sequence “winter” Waveforms in Time Domain

(a) Source 1 (b) Source 2
(c) Microphone 1 with NR

(e) Separated Signal 1 with NR
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Fig. 4.19 Sequence “winter” Waveforms in Time Domain

(@) Source 1
(c) Microphone 1 with PR

(e) Separated Signal 1 with PR

(b) Source 2
(d) Microphone 7 with PR

(f) Separated Signal 2 with PR
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Fig. 4.20 Sequence “winter” Spectrograms in Time-Frequency Domain

(@) Source 1  (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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(a) (b)
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Fig. 4.21 Sequence “winter” Spectrograms in Time-Frequency Domain

(a) Source 1 (b) Source 2
(c) Microphone 1 with PR (d) Microphone 7 with PR

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR
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Fig. 4.22 Sequence “wistru” Waveforms in Time Domain
(a) Source 1 (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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Fig. 4.23 Sequence “wistru” Waveforms in Time Domain

(@) Source 1
(c) Microphone 1 with PR

(e) Separated Signal 1 with PR

(b) Source 2
(d) Microphone 7 with PR

(f) Separated Signal 2 with PR
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Fig. 4.24 Sequence “wistru” Spectrograms in Time-Frequency Domain
(@) Source 1  (b) Source 2
(c) Microphone 1 with NR  (d) Microphone 7 with NR

(e) Separated Signal 1 with NR  (f) Separated Signal 2 with NR
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(a) (b)
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Fig. 4.25 Sequence “wistru” Spectrograms in Time-Frequency Domain

(a) Source 1 (b) Source 2
(c) Microphone 1 with PR (d) Microphone 7 with PR

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR
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4.2  Virtual Acoustic Environment

4.2.1 Introduction to NASA Sound Lab (SLAB) Software

B8 TEYco a0 PRY

Fig. 4.26 Snapshot of the 3D Virtual’ Acoustic Roem in SLAB

SLAB is a software-based real-time-virtual acoustic:- environment rendering system
developed by the NASA Ames Research Center. This software provides an offline acoustic
environment for spatial hearing and psychoacoustic studies. The acoustic scenario
parameters considered in the SLAB include three main categories: the source, the
environment, and the listener. The source parameters include the source locations, the
source waveforms, the radiation pattern and radius of each source, etc. The environment
parameters include the sound speed, the air absorption, the surface locations, the room
dimension and the surface reflections, etc. The listener parameters include the listener
location, the HRTF model and the interaural time difference (ITD), etc. There are some

other specifications about the SLAB software which are presented in the following section.
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4.2.2 SLAB Acoustic Scenario

SLAB Specifications [25]:

Scenario

Room Rectangular Room
Reflections 6 First-order Reflections
Direct Path FIR Taps 128

Reflection FIR Taps 32

Material Filter First-order IR Filter

Table 4.3 Scenario Specifications [25]

System Dynamics

Sampling Rate

Update Rate

Internal Latency

FIR Update Every 64 Samples (1.45 msec)

Delay Line Update Every Sample (22.7 psec)

Table 4.4 System Dynamics Specifications [25]

Numerical Precision

Sound Input / Output 16-bit Integer
Scenario Double-precision Floating-point
Signal Processing Single-precision Floating-point

Table 4.5 Numerical Precision Specifications [25]
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4.3  Wall Material ATF Characteristics

There are seven kinds of wall materials provided by the SLAB software. The ATF
spectrum is estimated by the TSP signal changes along with different wall materials. The
tail of the time domain TSP signal with N = 2048 and M = 64 appends some padding zeros
in order to observe the effect of reflections from the six-sided wall materials. As in Fig.

4.27(b) shown, the padding zeros introduce some tolerable amplitude distortions.
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o

o | 2 1002
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= 100

-0.05
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210" Frequency [Hertz] w10t

(a) (b)
Fig. 4.27 TSP Signal.with.Padding Zeros

(@) Time Domain+ (b) Frequency Domain*Amplitude

The frequency spectrum characteristics for the seven materials and the no reflection
scene are shown as Fig. 4.29 from (a) through (h). All the data of Fig. 4.29 are the ATFs
measured from the source 1 (red point) to the virtual listening point at (1.25, 0, 1.5) in the
median room of the dimension 10 x 10 x 10 in meters. The left column of Fig. 4.29 shows
the frequency domain log10 amplitudes and the right column shows the frequency domain
unwrapped phase. The name list of the eight wall properties are no reflection (NR), perfect
reflector (PR), heavy carpet (HC), concrete (Co), heavy glass (HG), gypsum board (GB),

wood with airspace (WA) and plaster on metal (PM), which are shown in Fig. 4.28.
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(9)
Fig. 4.28 Wall Materials

(@) Perfect Reflector (b) Heavy Carpet (c) Concrete (d) Heavy Glass
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Fig. 4.29 ATF Characteristic with.Different Wall Materials,

Left: Freq. log10 Magnitude, Right: Unwrapped Phase
(@) No Reflection (b) Perfect Reflector ..~ (c) Heavy Carpet (d) Concrete

(e) Heavy Glass  (f) Gypsum Board  (g) Woed-with Airspace (h) Plaster on Metal

4.4  Demonstrations of 3D Acoustic Signal Synthesis

Results

In Fig. 4.30, we show the 3D acoustic signal synthesis flow. By dividing the separated
signals into parts, we are able to build the 3D acoustic signal as the designed HRTF scenario.
It can be done by filtering each divided parts with its corresponding ATF and HRTF. The
order of ATF filtering and HRTF filtering does not affect the output signal but the
computational complexity since the HRTF filtering produce a two channel signal for each
input signal.
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Yes

Combine Parts

End

Fig. 4.30 Flow Diagram of 3D Acoustic Signal Synthesis

For each sequence data, we provide three kinds of waveforms: the SLAB synthesis
waveform, the HRTF+ATF waveform from the original source signals and the HRTF+ATF
waveform from the separated signals.

The demonstrations show two kinds of HRTF scenarios. The first scenario which is
shown as Fig. 4.31 has 25 frames and the frame interval is about 0.5 second. The second

scenario which is shown as Fig. 4.32 has 27 frames and the frame interval is also about 0.5

65



second. The red point represents the source 1, the green point represents the source 2 and
the blue and red parts of the headphone represent the left and right ear of HRTF

respectively.

(d) Frame 15 (e) Frame 20 (f) Frame 25
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(a) () (©)

(d) (€) (f)

(9)
Fig. 4.32_HRTE Scenario 2;

27 Frames; Frame Interval = 0.5 sec,
Red:‘Source 1; Green: Source 2
(@ Framel (b) Frame5 (c) Frame8
(d) Frame 13 (e) Frame 18 (f) Frame 21

(g) Frame 27

In order to amplify the noticeable effect of the ATF, we demonstrate the 3D acoustic

signals for three different room sizes: large room with 20 x 20 x 20 (m), median room with

10 x 10 x 10 (m) and small room with 4 x 4 x 4 (m), which are shown in Fig. 4.33.
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Fig. 4.33 Different Room Sizes

Hs

(@ Large Room (b) Medium Room (c) Small Room

From Fig. 4.34 to Fig. 4.41, we can observe the effects of ATF to the waveforms and
the spectrograms. By the comparisons of the figures in (a) and the ones in (c), it can be
identified that the ATFs change the waveforms of the separated signals; the difference is
implicit without reflection (NR), but it is visible for perfect reflectors (PR) as the wall

material in the three different room sizes (Small, Medium, Large). The effect of room sizes
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to ATFs can be observed in (f). The longer the reverberation time is, the faster the changes
in the adjacent frequencies are. The explanation comes from the sum of different time

domain shifting of signals cause the frequency domain magnitude variation:

‘DFT {Zn:aks(t —tk)H =

Zake‘”””kS(f)‘
k=0

=\/Zn:a|f +Zn“zn:akam cos(27zf (t, —tm))'|5(f)| :

k=0 m=0
Therefore, for a larger room, there exists some larger value of t, —t_ which cause a faster
oscillation of the spectrum. By comparing the spectrograms in (e) with those in (b), we are
able to see some blue slices at the frequencies with lower spectrum magnitudes in (f). After
the HRTF filtering, the interchannel level difference (ILD) is noticeable in (d), which is
related to the HRTF azimuth angle; For-the signals at 45+, the left channel amplitude is

much larger than the right one; in‘the other hand; for those at —45", the right channel

amplitude is larger than the.left one.
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Fig. 4.34 “f01mQ1”, Separated Signal 1, NR, HRTF at 45
(a) Separated Signal in Time Domain  (b) Separated Signal in Time-Frequency Domain
(c) After ATF in Time Domain (d) After HRTF in Time Domain

(e) After ATF in Time-Frequency Domain  (f) Log 10 Magnitude of ATF
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Fig. 4.35 “f01m01”, Separated Signal 1, Small Room, PR, HRTF at 45

(a) Separated Signal in Time Domain
(c) After ATF in Time Domain

(e) After ATF in Time-Frequency Domain
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Fig. 4.36 “f01mO01”, Separated Signal 1, Medium Room, PR, HRTF at 45
(a) Separated Signal in Time Domain  (b) Separated Signal in Time-Frequency Domain
(c) After ATF in Time Domain (d) After HRTF in Time Domain
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Fig. 4.37 “f01mOQ1”, Separated Signal 1, Large Room, PR, HRTF at 45
(a) Separated Signal in Time Domain  (b) Separated Signal in Time-Frequency Domain
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Fig. 4.39 “winter”, Separated Signal 2, Small Room, PR, HRTF at —45°
(a) Separated Signal in Time Domain  (b) Separated Signal in Time-Frequency Domain
(c) After ATF in Time Domain (d) After HRTF in Time Domain

(e) After ATF in Time-Frequency Domain  (f) Log 10 Magnitude of ATF

75



winter, sep 2 %10 winter, sep 2

Frequency {Hz)

. L . L L
0 05 1 1.5 2 25 g
time (sample) w0’ time (sec)

(@) (b)

winter, sep 2, after ATF: M, PR

winter, sep 2, after ATF and HRTF at -45 degres, Left Channel
T T T T T

05F q
: |
-05F q
1 L L L L L
1} s 1 15 2 25 3

tirme (sample) £ 10
winter, sep 2, after ATF and HRTF at -45 degree, Right Channel

L L L 1 L
o DIS 1‘ 1 |5 2‘ 2‘5 3 o 05 1 15 2 25 8
time (sample) 5 time (sample) w100

(c) (d)

winter, sep 2, after ATF: M, PR % 104 Roorm Size: M, Material: PR, Source Position: 2
- = 2o - 22 =
i =

Frequency {Hz)
Frequency (Hz)

. L —
-4 35 -3 25 -2 -1.5 -1
Magnitude (log10)

(€) ()

Fig. 4.40 “winter”, Separated Signal 2, Medium Room, PR, HRTF at —45°

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain
(c) After ATF in Time Domain (d) After HRTF in Time Domain

(e) After ATF in Time-Frequency Domain  (f) Log 10 Magnitude of ATF

76



winter, sep 2 « 10 winter, sep 2

Frequency (Hz)

L . L L .
0 05 1 1.5 2 25 3
time (sample) w107 time (sec)

(@) (b)

winter, sep 2, after ATF: L, PR winter, sep 2, after ATF and HRTF at -45 degres, Left Channel
T T T T T T T T

051 B
R I
05+ 4

1 L L L L L
0 05 1 1.5 2 25 3

tirne (zample) w10
winter, sep 2, after ATF and HRTF at -45 degree, Right Channel

‘ . ‘ . ‘
g 0E ] 5 5 25 3 i s 1 15 2 25 3

time (sample) T time (sample) w10°
w10t Room Size: L, Material: PR, Source Position: 2
i s i B 22 . :

al

181

16F

_ . 14r
o T
= =

= = 1.2r
e 2

2 z gL
: E

w = ggl

06

04F

021

I L n
-4 -35 3 2.5 -2 1.5 -1
time (sec) Magnitude (log10)

(e) (f)
Fig. 4.41 “winter”, Separated Signal 2, Large Room, PR, HRTF at —45°
(a) Separated Signal in Time Domain  (b) Separated Signal in Time-Frequency Domain
(c) After ATF in Time Domain (d) After HRTF in Time Domain

(e) After ATF in Time-Frequency Domain  (f) Log 10 Magnitude of ATF

77



78



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main propose of this thesis is to synthesize the 3D acoustic signal at a virtual
listening point from the captured microphone array signals. We adopt the known BSS
method to separate the sound source signals from the received microphone array signals.
The PCA method is used to extract on the direct components of the source signals and
discard the reverberant components and the noise.energy. The permutation and scaling
problems of FD-ICA are solved by the:hybrid DOA and:correlation method and the MDP,
respectively. A least squares optimization technique based on the cross-power-spectrum
approach with the gradient descent algoerithm is used for the blind separation of the
convolutive mixture signals.. The “separated signal- quality is evaluated by SIR. The
simulation and discussion on the SIR values, waveforms, and spectrograms of each input
sequence are presented in section 4.1.

To construct a 3D audio on the headphone, the separated signals are filtered by the
HRTF and the ATF at the virtual listening point. The interpolation methods of the HRTF and
the ATF at the virtual listening point are derived in chapter 3. Chapter 4 discusses the ATFs
of different room sizes and different wall materials. The spatial impression, which is given
by the combination of the HRTF and the ATF, is demonstrated with the resulting 3D
acoustic signals.

The SLAB software is used to generate the audio signals in a room, to capture the
microphone array signals, and to measure the ATFs in different room sizes and wall

materials. The afterward signal processing implementation is done in MATLAB. The
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spectrograms of signals in each stage are shown to visualize the signal envelope transition
process. Different HRTF scenarios are employed to demonstrate the 3D acoustic feeling of

the synthesized signals.

5.2 Future Work

This thesis concentrates on the overall combination of BSS, HRTF and ATF to produce
the 3D acoustic signal at a virtual listening point. Yet there are many extensions can be
made to improve the quality of the 3D acoustic signal. For example, the source signal
location detection can complete the sound field reconstruction and it is also helpful to obtain
the corresponding ATF. Another possible subsequent work is the synthesis of moving 3D
acoustic signals considering the Doppler-effect of the frequency variation along with the
relative velocity of each source signal to the virtual listening-point. It is also expected to
reduce the computational complexity of the overall-process, which aims at the real time
synthesis of the 3D acoustic signals. Additionally, the graphie: user interface (GUI) can

improve the interaction of selecting the virtual listening point ia the specific acoustic room.
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