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由麥克風陣列訊號合成出虛擬聆聽點的  

３Ｄ音訊 

研究生: 張欽淵 指導教授: 杭學鳴 博士 

 

國立交通大學 

 

電子工程學系 電子研究所碩士班 

 

摘要 

 本論文的目標是為了在無原始麥克風錄音訊號的虛擬聆聽點上合成出 3D 音

訊。為了達到這個目標，我們在空間中佈置麥克風陣列用以進行音源訊號的錄製

工作。３Ｄ音訊合成可分為兩個主要步驟，第一個步驟是由混合的錄製訊號去估

測各個音源訊號，此步驟通常是以盲訊號源分離 (blind source separation, BSS) 的

技術來達成。第二個步驟則是在選定的回響空間內某一個虛擬聆聽點上合成出該

點的３Ｄ音訊。此音訊的３Ｄ空間感可藉由頭部相關轉移函數 (head-related 

transfer function, HRTF) 與代表該點房間回響感覺的聽覺轉移函數 (acoustic 

transfer function, ATF) 對已分離訊號進行濾波而得到。 

 在本論文內，我們採用頻率域獨立成份分析 (frequency domain independent 

component analysis, FD-ICA) 和最小平方誤差近似解 (least squares optimization 

approach) 將混合訊號分離。我們以訊號干擾比 (signal to interference ratio, SIR) 

來評估分離矩陣的效果。在重建３Ｄ音訊的過程中，我們會先計算出該回響空間
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的聽覺轉移函數總集 (ATF-pool)，接著從 ATF-pool 當中選取對應的 ATF 來對已分

離訊號濾波，然後再以適當的 HRTF 合成出 3D 雙聲道音訊。對於不在 HRTF 和

ATF 測量點上的虛擬聆聽點，其對應的 HRTF 和 ATF 分別以現有的 HRTF 和 ATF

總集用內差的方式求得。最後，在任意位置的虛擬聆聽點和所選的空間回響環境

內展示出具有３Ｄ效果的合成音訊。 

 

關鍵詞：麥克風陣列、３Ｄ音訊合成、盲訊號源分離、頭部相關轉移函數、聽覺

轉移函數、虛擬聆聽點 
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Abstract 

 The target of 3D virtual listening point audio synthesis is to reconstruct 3D 

audio at a virtual point where the original recording microphone does not exist. To 

facilitate this idea, the source music is recorded by a microphone array that consists 

of more than a few recording microphones arranged in a designed spatial pattern. The 

3D acoustic signal synthesis can be divided into two key steps. The first step is to 

estimate the individual source signal from the mixed, recorded signals. This step is 

usually accomplished by using the blind source separation (BSS) technique. The 

second step is to synthesize a 3D acoustic signal at a virtual listening point in a 

chosen reverberant room environment. The 3D feeling of an acoustic signal can be 

enhanced by filtering the separated signals in step one by the head-related transfer 

function (HRTF) and the acoustic transfer function (ATF), which represents the room 

acoustic effect. 

 In this study, we adopt the frequency domain independent component analysis 

(FD-ICA) and a least-square optimization approach to separate the mixture signals. 

We investigate the effectiveness of the BSS methods by evaluating their demixing 

matrices using the signal to interference ratio (SIR) metric. In the reconstruction 
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process, we first calculate the ATFs of the reverberant room to form an ATF-pool. 

Then, the separated signals are mixed using the adequate ATFs drawn from the 

ATF-pool. Finally, the 3D two-channel audio is synthesized with the help of 

appropriately chosen HRTFs. A few problems have to be solved in the 

aforementioned procedure. For example, for an off-grid virtual listening point, its 

HRTF and ATF are interpolated using the existing HRTF library and the ATF-pool, 

respectively. At the end, the synthesized 3D acoustic signals are demonstrated with 

arbitrary virtual listening point and selected room reverberation environments. 

 

Keywords: microphone array, 3D acoustic signal synthesis, blind source separation 

(BSS), head-related transfer function (HRTF), acoustic transfer function (ATF), 

virtual listening point
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Chapter 1 

Introduction 

 As we human beings live in a three dimensional space, our 3D acoustic feeling of the 

two ears is well-trained by every received audio signal so that it is easy for us to distinguish 

several different sound sources from a convolutive mixture signal such as a microphone 

signal in a room. However, the 3D acoustic feeling is lost in the transition of multiple 

natural source signals to the microphone signal. Our goal is to reproduce an audio signal 

with a reconstructed 3D acoustic feeling from the omni-directional microphone array 

signals. With the 3D acoustic signal, one can have the feeling of the direction, distance and 

elevation of each sound source and the reverberation of the room, which would be much 

impressive rather than a single channel mixture signal. Another application of the 3D 

acoustic signal synthesis is to match up with the 3D view point camera array, which can 

make the overall sequence vivid and lively. 

 Therefore, our main propose is to synthesize a 3D acoustic signal from the 

omni-directional microphone array signals. This task can be intuitively divided into two 

major steps. The first step separates the source signals blindly and the second step adds in 

the 3D acoustic feeling. The former is usually achieved by the blind source separation (BSS) 

method and the latter is realized by filtering with the acoustic transfer function (ATF) and 

the head-related transfer function (HRTF).  

 For the first step, there are many BSS methods [1] and one of the most popular 

methods is called independent component analysis (ICA). The concept of the ICA methods 

is to make the separated signals as statistically independent as possible. Different kinds of 

implementations of the ICA method [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] have 

different adaptive learning rules and different properties. For over-determined BSS methods, 
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the subspace of interest would be extracted by the principle component analysis (PCA) 

method [12] or the other subspace methods [1], [13], [14]. Some subspace method operates 

in the frequency domain. Thus the frequency domain ICA (FD-ICA) method is applied to 

the subsequent separation procedure with the permutation problem and the scaling problem 

for each individual frequency bins. The permutation problem can be solved by the hybrid 

method of direction of arrival (DOA) and the correlation method [15] and the scaling 

problem is solved under the minimum distortion principle (MDP) [16]. For the convolutive 

mixture signals, a least squares optimization based on the cross-power-spectrum approach is 

adopted [17].  

 For the second step, the HRTF is adopted in this thesis as we present the 3D feeling 

through the headphone [13], [18]. Due to the effect of HRTF, the degradation of the 

ill-separated signals can be reduced in a subjective way. We also include the room impulse 

response (RIR) by filtering the output signals with ATF [19]. The ATF characterizes the 

reflection effect of a reverberant room. The ATF is changed along with the room sizes and 

the wall materials, which will be discussed in this thesis.  

 With HRTF and ATF, we can synthesize audio signals for different scenarios based on 

the separated signals dynamically and thus the use of HRTF and ATF can bring the spatial 

impression of a virtual listening point in a specific room. We demonstrate the effect of these 

two methods for different scenarios. 

 This thesis is organized in the order of the processing flow from the captured 

microphone array signals to the 3D acoustic signal. In chapter 2, we describe the adopted 

BSS method for the sound separation. In chapter 3, the synthesis method of the 3D acoustic 

signal using the separated signals is presented. The HRTF and ATF of a virtual listening 

point can be interpolated by the adjacent measured points [19], [20]. In chapter 4, we 

describe the simulation setups, discuss the effectiveness of the adopted BSS methods, and 

demonstrate the overall system performance. Then we conclude the research results and 



 

3 
 

discuss the future work in chapter 5. 
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Chapter 2 

Blind Source Separation 

2.1  Introduction to Blind Source Separation (BSS) 

 

Fig. 2.1 Cocktail Party Problem 

 

 The “Cocktail Party Problem” is known as one of the most famous problems in the 

area of acoustic signal processing. It is described by the following sentence, “how to focus 

one's listening attention on a single talker among a mixture of conversations and 

background noises, e.g. cocktail party, and ignoring other conversations?” In the words we 

used in the rest of the article, considering that each talker as a sound source and an array of 

microphones placed in the room, how can we separate the sound sources or segregate a 

particular one by processing on the mixture signals we received from the microphone array? 

It is a difficult problem especially under the condition of “blind”, which means that the 

source signals and the mixing process are unknown and only the recordings of the mixtures 

are available. The goal of BSS is to recover all sound sources or a particular one from the 
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recorded mixtures under the condition of “blind”.  

 In many cases of using BSS methods, it is necessary for the BSS system to have the 

priori knowledge about the number of sound sources. However, we make an assumption 

that the number of microphones is greater than the number of source signals, which means 

that the number of sound sources is not essential as long as we have sufficient number of 

microphones. 

 The BSS system as shown in Fig. 2.1 is often quite effective. We adopt this filtering 

network described below to obtain the approximation of the source signal vector s . 

 

Fig. 2.2 BSS System Concept 
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Fig. 2.3 BSS Filters Work in the Time Domain 

 

  

Fig. 2.4 Flow Chart of Obtaining Demixing Matrix in Frequency Domain 

 

2.2  Model of Acoustic Signals 

 When the mixture signals are transformed into frequency domain, the mixing process 

can be modeled by the following instantaneous mixing model: 

( , ) ( ) ( , ) ( , )f t f f t f t x A s n , 
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where  1
( , ) ( , ), , ( , )

T

M
f t X f t X f tx   denotes the vector of mixture signals, M  

denotes the number of microphones and ( , )mX f t  denotes the short-term Fourier 

transform (STFT) of the m -th microphone in the t -th time frame, ( )fA  denotes the 

mixing matrix,  1( , ) ( , ), , ( , )
T

Nf t S f t S f ts   denotes the vector of source signals, N  

denotes the number of sound sources, ( , )nS f t  denotes the STFT of the n -th source in the 

t -th time frame, and ( , )f tn  denotes the mixture of less-directional components which 

includes room reflections and ambient noise. Therefore, ( ) ( , )f f tA s  represents the 

directional components in ( , )f tx .  

 In addition, the ( , )m n  element of the mixing matrix ( )fA  can be considered as the 

transfer function from the n -th source to the m -th microphone, which is modeled as: 

,2

,,
( )( ) m nj f

m nm n
A fA f e

 
 , 

where , ( )m nA f  denotes the magnitude of the transfer function and ,m n  denotes the 

propagation time from the n -th source to the m -th microphone. 

2.3  Subspace Method 

 Since the number of mixture signals is greater than the number of source signals, by 

utilizing the subspace method [2], we can obtain the filtered subspace signals in which the 

room reflections and ambient noises are reduced. In other words, the subspace of direct 

components is selected and in the meanwhile the subspace of reflection components is 

discarded.  

 The subspace signals ( , )ss f tx  is obtained by the following expression as shown in 

Fig. 2.2:  

( , ) ( ) ( , )ss PCAf t f f tx W x , 

where the subspace filter 
1

2( ) ( ) ( )H

PCA ss ssf f f


W Λ E  is a special case of principal 
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component analysis (PCA) method with M N , ( )ss fΛ  denotes the subspace 

eigenvalue matrix and ( )ss fE  denotes the eigenvector matrix corresponding to ( )ss fΛ . 

  ( )ss fΛ  and ( )ss fE  are obtained from the spatial correlation matrix 

( ) ( , ) ( , )H

t
f f t f tR x x  and ( )fR  can be decomposited into 1( ) ( ) ( ) ( )f f f fR E Λ E  

where ( )fΛ  denotes the eigenvalue matrix and ( )fE  denotes the eigenvector matrix. It 

is assumed that the significant eigenvalues are occupied by the direct components from the 

sound sources and the rest are full with the energy of room reflections and ambient noises. 

Therefore, we pick N  significant eigenvalues to form a subspace eigenvalue matrix 

 1( ) ( ), , ( )ss Nf diag f f Λ   where ( )k f  is the k -th significant eigenvalue at 

frequency f . 

 

Fig. 2.5 A Typical Example of Eigenvalues for M = 7 and N = 2 

 

2.4  Independent Component Analysis (ICA) 

 The goal of ICA is to make the output signals y  be statistically independent. In other 

words, the joint probability distribution of output signals y  equals to the product of each 

marginal distribution, which can be shown as the following expression: 

1

( ) ( )
N

i i

i

f f y


y . 
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 The cost function to minimize the redundancy between each output signal iy  can be 

shown as the following expression: 

1

1

( )
log ( )

( ) ( ) log
( )

( )

N

N
i i

i i i

i

f
f

I E f d
f y

f y



 
  
 
 




y
y

y y y . 

When 
1

( ) ( )
N

i i

i

f f y


y , the value of the cost function ( )I y  equals to 0. 

2.4.1 Information Maximization Method and Natural Gradient Method 

 One of the popular methods to approach the aim of having the statistically independent 

output signals is the information maximization method, as known as the Infomax method. 

The Infomax method maximizes the mutual information ( ; )I y x . Our purpose is to obtain 

the demixing matrix W  through an adaptive learning algorithm. We are interested only in 

W , so we take the differentiation with respect to W . Thus, the maximization of the 

mutual information: ( ; ) ( ) ( | )I H H y x y y x  is equal to the maximization of ( )H y , 

because ( | )H y x  would be eliminated by the differentiation with respect to W .  

 Let ( )gy u  where u Wx  and ( )g u  is an invertible bounded nonlinear vector 

function such as 
1

( )
1

g
e


 u

u  or ( ) tanh( )g u u .  
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(a)          (b) 

Fig. 2.6 (a) ( ) tanh( )g u u  (b) 
1

( )
1

g
e


 u

u  

 

 When ( )g u  has a unique inverse, 
( )

( )
f

f
J


x

y , where det
i

j ij

y
J x

   
      

. 

Therefore,        ( ) ( )log ( ) log log ( ) logH E E E E Hf fJ J     y xy x . Since 

 
1

det

N
i

i i

y
J

u





W  results in 

1

log logdet log
N

i

i i

y
J

u


 


W , as we differentiate ( ; )I y x  

with respect to W , the learning rules of W  can be derived as [4]: 

( ; ) log
( )T TI J  

    
 

y x
W W u x

W W
, 

where  1 1( ) ( ), , ( ), , ( )
T

i i N Nu u u   u    and ( ) log
i

i i

ii

y
u

uu






. 

 The natural gradient method multiplies the previous result by T
W W , which leads to 

an elegant form of the learning rule [11]: 

log
( ( ) )T TJ

   


W W W I u u W
W

. 

2.4.2 Frequency Domain ICA (FD-ICA) 

 Since the subspace method operates in the frequency domain, the FD-ICA is adopted in 

this BSS system.  

 The subspace signals ( , )ss f tx  are used to obtain the adaptive ICA filter ( )ICA fW , 
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where the learning rule of ( )ICA fW  is shown by the following expression [13]: 

 , 1 ,( ) ( ( , )) ( , ) ( )H

ICA i ss ss ICA it
f off diag f t f t f    W x x W , 

where   denotes the learning rate, ,1 ,( ( , )) , , ( ( , ))( ( , ))
T

ss ss Nss
x f t x f tf t      x   

denotes the score function which is applied to each element , ( , )ss nx f t  in the vector 

( , )ss f tx  such that      , ,,
Re ( , ) Im ( , )( ( , )) tanh tanhss n ss nss n

G x f t G x f tx f t j    , 

where G  is a gain constant.  

2.5  Permutation Problem and Scaling Problem 

 The main goal of BSS is to obtain the separated signal vector ( , )ICA f ty , which is 

achieved by the procedures described in the preceding sections. But for further applications 

of the separated signals, there are other problems need to be solved, which are the scaling 

problem and the permutation problem. 

 Since the original BSS system simply “separates” the mixture signals, there exists 

some magnitude distortions and incorrect permutation of the separated signals. The former 

may cause serious problem once these separated signals are used in the subsequent signal 

processing tasks, which is the so-called scaling problem, and the latter can mess up the 

signals at transformation from frequency domain back to time domain, which is the 

so-called permutation problem. Therefore, these problems should be studied for our further 

usage. 

2.5.1 Permutation Problem 

 For finding the solutions of the permutation problem, there are two conventional 

methods: the one based on the direction of arrival (DOA) and the other based on the 

information among the adjacent frequencies. As shown in [15], a hybrid method combining 
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these two can solve the problem more confidently.  

 In order to solve the permutation problem in the frequency domain, let us look into the 

structure of the mixing matrix elements ,2

,,
( )( ) m nj f

m nm n
A fA f e

 
 . In the beamforming 

theory [21], , ( )m nA f  is set to 1 and ,m n  is modeled as: 

, cosm
m n n

d

c
   , 

where md  means the position of the m -th microphone, n  is the angle of direction of the 

n -th source and c  represents the sound speed. In order to fit the current situation, 

, ( )m nA f  is remodeled as: 

2 cos

,,
( )( )

m
n n

d
j f

c
m nm n

A fA f e
  

 
 

  , 

where n  is the phase modulation of n -th source.  

 The permutation matrix ( )fP  of each frequency f  is the goal we want to achieve 

in producing the separated signals. Since ( )fP  can be realized as a row permutation of 

identity matrix I  at each frequency f , ( )fP  can be transmuted into a function ( )f k  

where k  represents the k -th row of ( )fP  and the function returns the column index of 

the one-and-only nonzero element in this row. Therefore, the identification of the 

permutation function f  is equivalent to the one of ( )fP . 

 When the ICA method does separate the source signals at each frequency f , there 

exists a permutation matrix ( )fP  and a diagonal scaling matrix ( )fΛ  such that: 

( ) ( ) ( ) ( )f f f f Λ P W A I . 

 In this case, ( )fA  can be approximated as 
1 1( ) ( ) ( )f f f  

W P Λ , where ( )f
W  is 

the Moore-Penrose pseudoinverse of ( )f
W . Arbitrarily choose two elements in the n -th 

column of ( )fA  with different row index m  and 'm  and then we can remove the effect 

of the unknown ( )fP  and ( )fΛ  to identify the angle of the n -th source n  by the 
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following derivation [15]: 

 

 

 

 

'
1

1

1 1
2 cos,, ( ), ,

1 1
',', ', ', ( )

m m
n

d d
j fm nm nm n m n c

m nm n m n m n

AA
e

AA





 



  


   


  
WW P Λ

W P Λ W
, 

1

1

, ( )

', ( )

'

( )
arg

( )
arccos

2

f

f

m n

m n

n
m m

f

f

d d
f

c

















   
 
     



W

W
. 

 The above method is developed based on the direction of arrival, which is unreliable at 

low frequencies where the phase difference due to the small interval of linear-arranged 

microphones and the high frequencies, where the spatial aliasing appears. The hybrid 

method uses the information among the adjacent frequencies in all frequencies to make the 

solution more reliable. 

 Considering the frequency resolution of STFT f , for the current processing 

frequency f , its adjacent frequencies are the reference frequencies 0f f k f   , 

1, ,k K  , where K  is an adjustable constant for confidence measurement. Let ( )n fa  

denote the n th column vector of ( )fA  at f , assuming , ( ) 1m nA f   for simplicity [2]: 

1,

,

2

2

( )

n

M n

j f

n

j f

e

f

e

 

 





 
 

  
 
 

a  , 

1,

,

2 ( )

0

2 ( )

( )

n

M n

j f f

n

j f f

e

f

e

 

 

 

 

 
 

  
 
 

a  . 
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(a)         (b) 

Fig. 2.7 (a) With Correct Permutation (b) With Incorrect Permutation 

 As Fig. 2.7 shows, we can say that “ ( )n fa  is the result of 0( )n fa  rotated by the 

rotation angle n .” Incorrect permutations usually results in a larger magnitude of rotation 

angle n  for each column vector ( )n fa . Therefore, n  is expected to be the smallest 

when the permutation matrix is correct. 

 Let ( )f
W  denote an estimation of the mixing matrix ( )fA , and ( )fP  denotes an 

arbitrary permutation matrix, which exchanges the row vectors of the transposed estimation 

matrix ( )T
W . The arbitrary permuted matrix ( )fA  is calculated by the following 

expression: 

   ( )( ) ( )
TT

ff f PA W , 

where  1( ) ( ), , ( )Nf f fA a a  and ( )n fa  denotes the n -th permuted column vector. 

Then, the cosine of the angle n  between ( )n fa  and 0( )n fa  is calculated by the 

following expression: 

0

0

( ) ( )
cos

( ) ( )

H

n n
n H

n n

f f

f f
 



a a

a a
. 

 When the permutation matrix is a correct one, cos n  is expected to be largest. Thus, 

the cost function ( , )F kP  can be written as [2]: 
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1

1
( , ) cos

N

n

n

F k
N




 P , 

where k  denotes the index of the reference frequency 0f . When max ( , )F k
P

P  is close to 

( , )F kP  with other permutations, it may be difficult to determine which permutation is 

correct. Therefore, the confidence measure ( )C k  is defined to represent how reliable the 

reference frequency 0f  is. The value of ( )C k  is calculated by the following expression: 

'
( ) max ( , ) max ( , )C k F k F k

 
 

P P
P P , 

where   denotes the set of all possible P  and '  denotes the set of all possible P  

without ˆ arg max ( , )k F k



P

P P . The approximate permutation matrix P̂  is obtained by the 

following expression: 

ˆˆ arg max ( , )F k
P

P P , 

where ˆ max ( )
k

k C k . 

 The above method basically relies on the information associated with the adjacent 

frequencies, and there is a similar kind of method based on the interfrequency correlations. 

According to the observations of adjacent frequency spectrum envelopes, it can be found 

that the correlations among these adjacent frequencies are relatively higher than the others. 

Therefore, the interfrequency correlations are informative to determine the nearby 

frequency permutations.  

 The envelope of a separated signal ( , )iY f t  is ( , )iY f t , and the correlation between 

two signals ( )x t  and ( )y t  is defined as: 

( , )
x y x y

x y

cor x y
  

 

  



, 

where x , y , and x y   are the means of ( )x t , ( )y t , and ( ) ( )x t y t , respectively and 

x  and y  are the standard deviations of ( )x t  and ( )y t , respectively. Note that 
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( , ) 0cor x y   for the uncorrelated ( )x t  and ( )y t  and ( , ) 1cor x x   and ( , ) 1cor y y   

for all ( )x t  and ( )y t . 

 By assuming that the adjacent frequencies are highly correlated, for each frequency f , 

the sum of correlations with the adjacent frequencies within a small range   is maximized 

if the permutation function f  is correct. The priori condition of this maximization 

process is that the adjacent frequencies are fixed to the right permutation. Let F  be the set 

of fixed frequencies, and then we can get the permutation function f  by exhausting all 

the possible permutation to maximize the sum of adjacent frequency correlations by the 

following expression [15]: 

 ( )( )

, 1

( , )( , )arg max ,
g

N

kkf

g F kg f

Y g tY f tcor





  

    . 

 ( )( )

1

( , )( , )arg max ,
g

N

kkf

g Ha F k

Y g tY f tcor 


  

     

In the above maximization process, only the adjacent frequencies in the set of fixed 

frequencies are added into the summation. Therefore, we can use the DOA method to 

identify some permutation-predetermined frequencies in advance. 

 The permutation problem is solved by the following methods in the order of: the DOA 

approach as shown in Fig. 2.8 (a), the high interfrequency correlation method as shown in 

Fig. 2.8 (b), the harmonic frequency correlation method as shown in Fig. 2.9 (a), and finally 

the low interfrequency correlation as shown in Fig. 2.9 (b). 
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(a)         (b) 

Fig. 2.8 (a) DOA Approach (b) High Interfrequency Correlation 
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(a)         (b) 

Fig. 2.9 (a) Harmonic Frequency Correlation (b) Low Interfrequency Correlation 

 

2.5.2 Scaling Problem 

 Scaling problem can be solved by filtering individual output of the separation filter by 
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the pseudoinverse ( )f 
B  of the demixing matrix ( ) ( ) ( ) ( )ICA PCAf f f fB P W W . As 

, ( , )p ny f t , the n -th component of ( , )p f ty , is filtered by ( )f 
B  with the following 

expression [2]: 

 ( , ) ( ) 0, , 0, ( , ), 0, , 0
T

n nf t f y f ty B   , 

where 1, ,( , ), , ( , )( , )
T

n M nn
y f t y f tf t    y   denotes the signal vector recovered from 

, ( , )p ny f t , and , ( , )m ny f t  denotes the recovered signal of the n -th source observed at the 

m -th microphone. 

 Therefore, by setting an arbitrary microphone number m  as the reference one, the 

magnitude of the recovered element 
, , ,( , ) ( ) ( , )m n m n p ny f t B f y f t   is normalized to the 

m -th microphone, where 
, ( )m nB f

  denotes the ( , )m n -th element of ( )f 
B . 

 The scale recovered signal vector ,1 ,( , ), , ( , )( , )
T

m m Ny f t y f tf t    y    can be 

obtained by the following equation [2]: 

( , ) ( ) ( , )pf t f f ty Λ y , 

where 
,1 ,( ), , ( )( ) ( ) m m Nm B f B ff f diag       Λ B  

   is an N N  diagonal matrix. 

 Another way of solving the scaling problem is using the minimal distortion principle 

[16]. Since we conduct the separation method under the blind condition, the mixing matrix 

( )fA  is unknown. For simplicity, we assume the permutation matrix ( )f P I  in the 

following derivation, the ideal scaling matrix ( )fΛ  should satisfy the equation that: 

 ( ) ( ) ( ) ( ) ( )ICA PCAf f f f diag fΛ W W A A . 

 Once the signals are well-separated by the preceding ICA method, there exists another 

diagonal matrix ( )fD  such that ( ) ( ) ( ) ( )ICA PCAf f f fW W A D . Hence, the unknown 

mixing matrix ( )fA  can be estimated as ( ) ( )f f
W D  where ( )f

W  is the 
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Moore-Penrose pseudoinverse of the separation matrix ( ) ( )ICA PCAf fW W . Therefore, the 

estimation of ( )fΛ  equals to ( )diag f  W , which is an approximation to the solution 

of the scaling problem in the FD-ICA.  

2.6  Convolutive BSS 

 The above ICA method is effective for the cases with no reflections, but for the 

convolutive mixture microphone array signals, the separation quality is severely degraded 

by the room reflection. Hence, we adopt another BSS method, which is developed based on 

a multiple decorrelation approach and a least squares optimization to estimate the mixing 

matrix A  and the demixing matrix W  [17]. 

 The spatial correlation matrix ( ) ( , ) ( , )H

t
f f t f tR x x  can be written as : 

( ) ( ) ( ) ( ) ( )H

s nf f f f f R A Λ A Λ , 

where ( )s fΛ  and ( )n fΛ  are diagonal due to the independence assumption of the source 

signals [17]. The cross-power-spectrum average ( , )f tR  can then be written as: 

( , ) ( ) ( , ) ( ) ( , )H

s nf t f f t f f t R A Λ A Λ .  

 Therefore, we want to find ( )fW , ( , )s f tΛ , and ( , )n f tΛ  which satisfy the 

following equation: 

 ( , ) ( ) ( )( , ) ( , )
H

s n
f t f ff t f t Λ W WR Λ . 

A least squares optimization can be used to find the estimations ˆ ( )fW , ˆ ( , )s f tΛ , and 

ˆ ( , )n f tΛ  which can minimize:  

 
2

1 1

( ) ( ) ( , )( , ) ( , )
T K

H

sn
f t

J f f f tf t f t
 

  W W ΛR Λ , 

where T  denotes the frame size of the STFT and K  denotes the range of optimization 

process along the time axis. The solutions can be obtained by using the gradient descent 
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algorithm [17]. 

2.7  Evaluation of the BSS Performance 

 One way to evaluate the BSS performance is to measure the signal to interference ratio 

(SIR). The definition of SIR is described below: 

2

,

10 2
1

,

( )10
log

( )

i

j

N
i S

t

i
i S

j i t

y t
SIR

N y t



 


. 

The overall separation matrix W  is trained by the microphone array signals, which record 

the simultaneously played source signals. In order to test the effect of suppressing other 

source signals for each output separated signal, we only play one source signals at a time. 

The signal 
, ( )

ji Sy t  represents the i -th output separated signal with only the j -th source 

signal being active. For j i , 
2

, ( )
ii S

t
y t  denotes the power of the i -th desired 

separated signal averaging over the time axis, and for all j i , 
2

, ( )
ji S

t
j i

y t


  denotes 

the sum of other interference power from other source signals of the i -th separated signal. 
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Chapter 3 

3D Acoustic Signal Synthesis 

3.1  Acoustic Transfer Function Pool (ATF-Pool) 

3.1.1 Measurement of ATFs 

 

Fig. 3.1 Estimation of ATF by Using the TSP Signal 

 

 By transmitting a time-stretched pulse (TSP) signal from each source location to each 

virtual microphone position, the acoustic transfer functions (ATF) are estimated in the 

frequency domain with the following function:  

( )
( )

( )

j

i j

i

VM f
ATF f

TSP f
 , 

where ( )i jATF f  denotes the acoustic transfer function from the i -th source location to 

the j -th virtual microphone location, ( )jVM f  denotes the j -th virtual microphone 

signal and ( )iTSP f  denotes the TSP signal from the i -th source location. 
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 The frequency response of the time-stretched pulse signal we adopted in this thesis is 

shown as the following function [22], [23]: 

2

2

4

, 0
2( )

( ),
2

Mk
j

N
N

e k
TSP k

N
TSP N k k N


 


 
   


, 

where N  is the length of TSP signal and M  is the TSP stretch parameter. For a TSP 

signal with 2048N   and 64M  , the time domain response is shown as Fig. 3.2 below.  

  

Fig. 3.2 TSP with N = 2048 and M = 64 in the Time Domain 

 

 The length N of the TSP signal determine the phase resolution and the TSP stretch 

parameter M has a trade-off between the signal to noise ratio (SNR) and the convergence. 

However, the averaged error level of the TSP signal is less than -100 dB [23], which is 

insignificant in our measurement of ATF; hence, the value of M can be assigned arbitrarily 

in our case.  
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3.1.2 ATF Interpolation 

 

Fig. 3.3 Weighted Linear Interpolation of ATF 

 

 As revealed in the section 3.1.1, it is physically impossible to measure all the ATFs for 

each source-microphone pair, so it is reasonable to obtain the unmeasured ATF using the 

weighted linear interpolation method [19]. The ATF-Pool is consisted of the recorded ATF 

measurement. The ATFs from the source locations to the virtual listening point are 

synthesized only at the time they are needed, which can lower the amount of memory space 

requirement of the ATF-Pool. 

3.2  Head-Related Transfer Function (HRTF) 

 It is necessary that having a head-related transfer function (HRTF) database in order to 

present the 3D spatial feeling through the headphone. There are several open-source HRTF 

database freely, such as [24]. The head-related transfer functions are measured with the 

dummy head recording in the anechoic chamber to simulate the reflection and diffraction 

characteristics of the torso, head and pinnae. For the same source signal, the head-related 

transfer function varies with different source elevation angles, azimuth angles and distances 

between the source and the head. Therefore, HRTF is actually a function of the elevation 
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angle  , the azimuth angle   and the distance r . The head-related transfer function at an 

arbitrary position is interpolated from the nearby captured HRTFs.  

 

Fig. 3.4 HRTFs from ( )s t  to ( )LEar t  and ( )REar t  

 

 There are two channels for each HRTF measurement, which are left ear impulse 

response ( )LHRIR t  and right ear impulse response ( )RHRIR t . The frequency responses of 

( )LHRIR t  and ( )RHRIR t  are ( )LHRTF f  and ( )RHRTF f  respectively. The calculations 

of ( )LHRTF f  and ( )RHRTF f  at a certain source position ( , , )r   related to the 

listener are shown as the following expression: 

( )
( )

( )

L
L

Ear f
HRTF f

S f
 , 

( )
( )

( )

R
R

Ear f
HRTF f

S f
 . 
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3.3  Combining HRTF and ATF 

  

          (a)        (b) 

 

(c) 

Fig. 3.5 Combining ATF and HRTF 

(a) ATF for Each Separated Signal  (b) HRTF for Each Separated Signal 

(c) 3D Acoustic Signal Synthesis 

 

 There are many different kinds of blind source separation methods, but it is quite 

difficult to completely separate the source signals in general cases since the information 

about the source signals and the mixing system is not fully given. The performance of the 

separation results may degrade owing to the channel noise, room reflections and some 
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violations of the source signal stochastic model assumptions, which are usually different for 

speech signals and instrument signals. However, the interferences which are introduced by 

other source signals can be less significant as our main purpose of separating these source 

signals is to synthesize them back together.  

 With the HRTF database and the ATF-pool, the audience is allowed to choose the 

arrangement of the source signals and listening position arbitrarily. In other words, the 

audience can have one source signal at the left side and another at the right side, which are 

unrelated to the original geometric spots of these source signals in the room. The spatial 

impression is presented with the headphone by utilizing the HRTF database and the 

ATF-pool to simulate the user-customized listening scenarios. Therefore, the audience can 

hear the synthesized 3D feeling audio signals at their own sweet spots. 

 For the point which does not have an ATF measurement, the estimation of its ATF is 

calculated by a weighted linear interpolation from the nearby measured ATFs. The weighted 

linear interpolation method also appears in the calculation of HRTF when the desired spatial 

position of HRTF cannot be found from the HRTF database.  

 Let ( )iy t  be the separated signal corresponding to the source signal ( )is t , 

head-related impulse response (HRIR) be the time domain filter of HRTF where 

, ( )
iy LHRIR t  and , ( )

iy RHRIR t  are the left and right ear HRIR from the position of ( )iy t  

to the position of the head, and ( , )
iyAIR P t  be the acoustic impulse response (AIR) as 

known as the time domain filter of ATF from the position of ( )iy t  to the position P . The 

convolutive results of the two ear signals ( )LEar t  and ( )REar t  can be derived as the 

following expressions: 

 ,

1

( ) ( )( ) ( , )
ii

N

y L iL y

i

HRIR t y tEar t AIR P t


  ,  

 ,

1

( ) ( )( ) ( , )
ii

N

y R iR y

i

HRIR t y tEar t AIR P t


  .  
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 The above expression can also be represented in the frequency domain as ( )LEar f  

and ( )REar f :  

,

1

( ) ( , ) ( ) ( )
i i

N

L Y Y L i

i

Ear f ATF P f HRTF f Y f


 , 

,

1

( ) ( , ) ( ) ( )
i i

N

R Y Y R i

i

Ear f ATF P f HRTF f Y f


 . 

 

Fig. 3.6 Zones of Possible Psychoacoustic Spatial Variation for the Separated Signals 

 

 Owing to the interference in the separated signals, the psychoacoustic spatial 

impression may be degraded by the interaural time difference (ITD) and interaural level 

difference (ILD). The zone of possible psychoacoustic spatial variation for each source 

alters based on the SIR of each separated signal. The remaining interference for the i -th 

separated signal affects the j -th separated signal for all j i . The subject performance 

degradation for such interferences depends on the human psychoacoustic resolutions of the 

azimuth angles, the elevation angles and the distance. For a far-field virtual listening point, 

the distance resolution would be less significant due to the human psychoacoustic 

characteristics, and the azimuth angles and the elevation angles dominate the main 3D 

acoustic feeling. 
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Chapter 4 

Experiment Results 

4.1  Descriptions of the Adopted BSS System 

 We adopt the frequency domain independent component analysis (FD-ICA) in this 

paper with principle component analysis (PCA) as a preprocessing dimension reduction 

method. We choose the Infomax method combined with the natural gradient method due to 

the popularity and simplicity of these two methods. The signals are separated in the 

time-frequency domain and each frequency band is separated individually so that the 

permutation and scaling problems should be fixed after the ICA process. We solve the 

permutation problem by the combination of the DOA approach, the neighboring correlation 

approach and the harmonic frequency approach. The scaling problem is solved by using the 

minimum distortion principal method. For the convolutive BSS method, we adopt a least 

squares optimization technique based on the cross-power-spectrum approach with the 

gradient descent algorithm. The flow diagram for the overall BSS system is shown as Fig. 

4.1 below. 
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Fig. 4.1 Flow Diagram of the Adopted BSS System 

 

 Fig. 4.2 shows the arrangement of source signals and the microphone array on the X-Y 

plane. Two source signals are located 3.00 (m) away from each other and the interval length 

of the microphone array is equal to 0.50 (m). The middle point of the two source signals is 

3.00 (m) away from the center of the seven microphone signals.  
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Fig. 4.2 Arrangement of the Source Signals and the Microphone Array 

 

 The settings of detailed parameters about the BSS system are shown in the Table 4.1. 

The thresholds th  and Uth  are assigned to make sure the DOA calculation is confident, 

and the threshold Hath  is adjusted based on the number of sources and the size of the 

harmonic set. The range K  affects the convergence speed of the convolutive BSS method. 

For a larger K  value, it takes more computational time to search for the valid demixing 

matrix W . 

Table 4.1 Settings of the BSS System Parameters 

Parameters of the BSS System Values 

Sampling Frequency 44.1 kHz 

Number of Microphones, M  7 

Number of Sources, N  2 

Length of STFT, T  8196 pt 

Frame Shift of STFT 128 pt 
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Window Function Hamming 

Thresholds of confident DOA 1.5th  , 10Uth  dB 

Distance for Interfrequency Correlations,   3 f  

Set of Harmonic Frequencies  2 , 2 , 3 , 3f f f f f f     

Threshold of Harmonic Correlations, Hath  1.2 

Learning Rate,   1.0 

Number of Iterations 1000 

Nonlinear Function, ( )g u       tanh tanhRe ImjG G u u  

Gain of Score Function, G  100 

Range of LS Optimization, K  5 

 

 

Fig. 4.3 SIR of the Demixing Matrix from No Reflection (NR) Microphone Recordings 
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Fig. 4.4 SIR of the Demixing Matrix from Perfect Reflector (PR) Microphone Recordings 

 

 

Fig. 4.5 Averaged SIR of NR and PR 
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Table 4.2 Source Types in Sequence Numbers 

Sequence 

Number 

Sequence 

Abbreviation 
Source 1 Source 2 

1 f01m01 Chinese speech, female Chinese speech, male 

2 instru instrument, string 1 instrument, string 2 

3 speech Japanese speech, female Japanese speech, male 

4 winter instrument, drums instrument, piano 

5 wistru instrument, string 1 instrument, piano 

 

 There are five sets of data being processed from top to toe, which are “f01m01”, 

“instru”, “speech”, “winter”, and “wistru”. The “f01m01” sequences are two Chinese 

speech signals of a man and a woman; the “instru” sequences are two string instrument 

signals; the “speech” sequences are two Japanese speech signals of a man and a woman; the 

“winter” sequences are instrument signals of drums and a piano; the “wistru” sequences are 

a string in “instru” and the piano in “winter”. The lengths of all these wave files are about 

6.8 second. 

 The effectiveness of the demixing matrix W  can be measured as the SIR values of 

the microphone array signals. In Fig. 4.3, the SIR of the demixing matrix from no reflection 

(NR) recordings shows good performance in average. The sequence number corresponds to 

different test sequences which are shown in Table 4.2. When the wall material changes to 

the perfect reflectors (PR) in Fig. 4.4, the SIR values drop to around 7dB. In Fig. 4.5, the 

averaged SIRs of NR are higher than the ones of PR for all input sequences. The reason for 

this phenomenon can be easily understood since the reflections make the purely 

time-delayed BSS problem into a convolutive one. Thus, the independence of the source 

signals is disturbed. 

 For the fifth sequence “wistru”, the SIR difference of source 1 and source 2 is the 
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largest among the five sequences in both the NR and PR conditions. The explanation comes 

from the waveforms in Fig. 4.22 (c), (d) and Fig. 4.23 (c), (d). Note that the graphs of 

waveforms and spectrograms were normalized to the interval [-1, 1] for observation. Thus, 

the true amplitude cannot be observed from the waveforms of the source signals, but we can 

easily find that the mixture signals are dominated by the source 2 in the “wistru” sequence. 

Owing to the larger true magnitude of the source 2 (piano), the interference from source 2 to 

the separated signal 1 is still significant. On the other hand, the interference from source 1 

to the separated signal 2 is insignificant in terms of the relative power ratio. However, in the 

two source case, the relative power ratio would be eliminated in the averaged SIR. Recall 

that the separated signals can be modeled as:  

1 2

1 2

1, 1,1 11 1 12 2

2 21 1 22 2 2, 2,

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

S S

S S

y t y ty t u t s t u t s t

y t u t s t u t s t y t y t

      
           

         

W A s U s , 

where U  denotes the overall filter of s  to y  and the averaged SIR is calculated as: 

1 2

2 1

2 2

1, 2,

10 2 2

1, 2,

( ) ( )1
10log

2 ( ) ( )

S S
t t

S S
t t

y t y t
Averaged SIR

y t y t

 
   
  
 

. 

Since 
, ,( ) ( ) ( ) ( ) ( ) ( )

j ji S ij j i S ij jy t u t s t Y f U f S f    , it can be derived that the averaged 

SIR equals to:  

2 2

11 1 22 2

10 2 2

12 2 21 1

( ) ( ) ( ) ( )1
10log

2 ( ) ( ) ( ) ( )

f f

f f

U f S f U f S f
Averaged SIR

U f S f U f S f

 
   
 
 

2 2

11 22

10 2 2

12 21

( ) ( )1
10log

2 ( ) ( )

f f

f f

U f U f

U f U f

 
   
 
 

. 

Therefore, the averaged SIR of “wistru” goes back to the normal range of the sequences. 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.6 Sequence “f01m01” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 

 



 

39 
 

  

(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.7 Sequence “f01m01” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.8 Sequence “f01m01” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.9 Sequence “f01m01” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

 

(c)         (d) 

 

(e)         (f) 

Fig. 4.10 Sequence “instru” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.11 Sequence “instru” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.12 Sequence “instru” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.13 Sequence “instru” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.14 Sequence “speech” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.15 Sequence “speech” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.16 Sequence “speech” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.17 Sequence “speech” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.18 Sequence “winter” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.19 Sequence “winter” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.20 Sequence “winter” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.21 Sequence “winter” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.22 Sequence “wistru” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.23 Sequence “wistru” Waveforms in Time Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.24 Sequence “wistru” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with NR (d) Microphone 7 with NR 

(e) Separated Signal 1 with NR (f) Separated Signal 2 with NR 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.25 Sequence “wistru” Spectrograms in Time-Frequency Domain 

(a) Source 1 (b) Source 2  

(c) Microphone 1 with PR (d) Microphone 7 with PR 

(e) Separated Signal 1 with PR (f) Separated Signal 2 with PR 
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4.2  Virtual Acoustic Environment 

4.2.1 Introduction to NASA Sound Lab (SLAB) Software 

 

Fig. 4.26 Snapshot of the 3D Virtual Acoustic Room in SLAB 

 

 SLAB is a software-based real-time virtual acoustic environment rendering system 

developed by the NASA Ames Research Center. This software provides an offline acoustic 

environment for spatial hearing and psychoacoustic studies. The acoustic scenario 

parameters considered in the SLAB include three main categories: the source, the 

environment, and the listener. The source parameters include the source locations, the 

source waveforms, the radiation pattern and radius of each source, etc. The environment 

parameters include the sound speed, the air absorption, the surface locations, the room 

dimension and the surface reflections, etc. The listener parameters include the listener 

location, the HRTF model and the interaural time difference (ITD), etc. There are some 

other specifications about the SLAB software which are presented in the following section. 
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4.2.2 SLAB Acoustic Scenario 

SLAB Specifications [25]: 

Scenario  

Room Rectangular Room 

Reflections 6 First-order Reflections 

Direct Path FIR Taps 128 

Reflection FIR Taps 32 

Material Filter First-order IIR Filter 

Table 4.3 Scenario Specifications [25] 

 

System Dynamics  

Sampling Rate 44.1 kHz 

Update Rate 120 Hz 

Internal Latency  24 msec 

FIR Update Every 64 Samples (1.45 msec) 

Delay Line Update Every Sample (22.7 μsec) 

Table 4.4 System Dynamics Specifications [25] 

 

Numerical Precision  

Sound Input / Output 16-bit Integer 

Scenario Double-precision Floating-point 

Signal Processing Single-precision Floating-point 

Table 4.5 Numerical Precision Specifications [25] 
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4.3  Wall Material ATF Characteristics 

 There are seven kinds of wall materials provided by the SLAB software. The ATF 

spectrum is estimated by the TSP signal changes along with different wall materials. The 

tail of the time domain TSP signal with N = 2048 and M = 64 appends some padding zeros 

in order to observe the effect of reflections from the six-sided wall materials. As in Fig. 

4.27(b) shown, the padding zeros introduce some tolerable amplitude distortions.  

  

(a)        (b) 

Fig. 4.27 TSP Signal with Padding Zeros 

(a) Time Domain (b) Frequency Domain Amplitude 

 

 The frequency spectrum characteristics for the seven materials and the no reflection 

scene are shown as Fig. 4.29 from (a) through (h). All the data of Fig. 4.29 are the ATFs 

measured from the source 1 (red point) to the virtual listening point at (1.25, 0, 1.5) in the 

median room of the dimension 10 x 10 x 10 in meters. The left column of Fig. 4.29 shows 

the frequency domain log10 amplitudes and the right column shows the frequency domain 

unwrapped phase. The name list of the eight wall properties are no reflection (NR), perfect 

reflector (PR), heavy carpet (HC), concrete (Co), heavy glass (HG), gypsum board (GB), 

wood with airspace (WA) and plaster on metal (PM), which are shown in Fig. 4.28. 
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(a)         (b) 

  

(c)         (d) 

  

(e)         (f) 
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(g) 

Fig. 4.28 Wall Materials 

(a) Perfect Reflector (b) Heavy Carpet (c) Concrete (d) Heavy Glass  

(e) Gypsum Board (f) Wood with Airspace (g) Plaster on Metal 

 

  (a) 

  (b) 
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  (c) 

  (d) 

  (e) 

  (f) 
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  (g) 

  (h) 

Fig. 4.29 ATF Characteristic with Different Wall Materials, 

Left: Freq. log10 Magnitude, Right: Unwrapped Phase  

(a) No Reflection (b) Perfect Reflector (c) Heavy Carpet (d) Concrete  

(e) Heavy Glass (f) Gypsum Board (g) Wood with Airspace (h) Plaster on Metal 

 

4.4  Demonstrations of 3D Acoustic Signal Synthesis  

  Results 

 In Fig. 4.30, we show the 3D acoustic signal synthesis flow. By dividing the separated 

signals into parts, we are able to build the 3D acoustic signal as the designed HRTF scenario. 

It can be done by filtering each divided parts with its corresponding ATF and HRTF. The 

order of ATF filtering and HRTF filtering does not affect the output signal but the 

computational complexity since the HRTF filtering produce a two channel signal for each 

input signal. 
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Fig. 4.30 Flow Diagram of 3D Acoustic Signal Synthesis 

 

 For each sequence data, we provide three kinds of waveforms: the SLAB synthesis 

waveform, the HRTF+ATF waveform from the original source signals and the HRTF+ATF 

waveform from the separated signals. 

 The demonstrations show two kinds of HRTF scenarios. The first scenario which is 

shown as Fig. 4.31 has 25 frames and the frame interval is about 0.5 second. The second 

scenario which is shown as Fig. 4.32 has 27 frames and the frame interval is also about 0.5 
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second. The red point represents the source 1, the green point represents the source 2 and 

the blue and red parts of the headphone represent the left and right ear of HRTF 

respectively.  

   

(a)     (b)     (c) 

   

(d)     (e)     (f) 

Fig. 4.31 HRTF Scenario 1, 

25 Frames, Frame Interval 0.5 sec, 

Red: Source 1, Green: Source 2 

(a) Frame 1 (b) Frame 5 (c) Frame 10  

(d) Frame 15 (e) Frame 20 (f) Frame 25 
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(a)     (b)     (c) 

   

(d)     (e)     (f) 

 

(g) 

Fig. 4.32 HRTF Scenario 2, 

27 Frames, Frame Interval   0.5 sec, 

Red: Source 1, Green: Source 2 

(a) Frame 1 (b) Frame 5 (c) Frame 8  

(d) Frame 13 (e) Frame 18 (f) Frame 21 

(g) Frame 27 

 

 In order to amplify the noticeable effect of the ATF, we demonstrate the 3D acoustic 

signals for three different room sizes: large room with 20 x 20 x 20 (m), median room with 

10 x 10 x 10 (m) and small room with 4 x 4 x 4 (m), which are shown in Fig. 4.33. 
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 (a) 

 (b) 

 (c) 

Fig. 4.33 Different Room Sizes 

(a) Large Room (b) Medium Room (c) Small Room 

 

 From Fig. 4.34 to Fig. 4.41, we can observe the effects of ATF to the waveforms and 

the spectrograms. By the comparisons of the figures in (a) and the ones in (c), it can be 

identified that the ATFs change the waveforms of the separated signals; the difference is 

implicit without reflection (NR), but it is visible for perfect reflectors (PR) as the wall 

material in the three different room sizes (Small, Medium, Large). The effect of room sizes 
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to ATFs can be observed in (f). The longer the reverberation time is, the faster the changes 

in the adjacent frequencies are. The explanation comes from the sum of different time 

domain shifting of signals cause the frequency domain magnitude variation: 

2
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Therefore, for a larger room, there exists some larger value of k mt t  which cause a faster 

oscillation of the spectrum. By comparing the spectrograms in (e) with those in (b), we are 

able to see some blue slices at the frequencies with lower spectrum magnitudes in (f). After 

the HRTF filtering, the interchannel level difference (ILD) is noticeable in (d), which is 

related to the HRTF azimuth angle. For the signals at 45 , the left channel amplitude is 

much larger than the right one; in the other hand, for those at 45  , the right channel 

amplitude is larger than the left one.  
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(a)          (b) 

  

 (c)         (d) 

  

(e)         (f) 

Fig. 4.34 “f01m01”, Separated Signal 1, NR, HRTF at 45  

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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(a)          (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.35 “f01m01”, Separated Signal 1, Small Room, PR, HRTF at 45  

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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(a)          (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.36 “f01m01”, Separated Signal 1, Medium Room, PR, HRTF at 45  

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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(a)          (b) 

  

(c)         (d) 

  

 (e)         (f) 

Fig. 4.37 “f01m01”, Separated Signal 1, Large Room, PR, HRTF at 45  

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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(a)          (b) 

  

(c)         (d) 

  

 (e)         (f) 

Fig. 4.38 “winter”, Separated Signal 2, NR, HRTF at 45   

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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(a)          (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.39 “winter”, Separated Signal 2, Small Room, PR, HRTF at 45   

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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(a)          (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.40 “winter”, Separated Signal 2, Medium Room, PR, HRTF at 45   

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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(a)          (b) 

  

(c)         (d) 

  

(e)         (f) 

Fig. 4.41 “winter”, Separated Signal 2, Large Room, PR, HRTF at 45   

(a) Separated Signal in Time Domain (b) Separated Signal in Time-Frequency Domain 

(c) After ATF in Time Domain (d) After HRTF in Time Domain 

(e) After ATF in Time-Frequency Domain (f) Log 10 Magnitude of ATF 
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Chapter 5 

Conclusion and Future Work 

5.1  Conclusion 

 The main propose of this thesis is to synthesize the 3D acoustic signal at a virtual 

listening point from the captured microphone array signals. We adopt the known BSS 

method to separate the sound source signals from the received microphone array signals. 

The PCA method is used to extract on the direct components of the source signals and 

discard the reverberant components and the noise energy. The permutation and scaling 

problems of FD-ICA are solved by the hybrid DOA and correlation method and the MDP, 

respectively. A least squares optimization technique based on the cross-power-spectrum 

approach with the gradient descent algorithm is used for the blind separation of the 

convolutive mixture signals. The separated signal quality is evaluated by SIR. The 

simulation and discussion on the SIR values, waveforms, and spectrograms of each input 

sequence are presented in section 4.1.  

 To construct a 3D audio on the headphone, the separated signals are filtered by the 

HRTF and the ATF at the virtual listening point. The interpolation methods of the HRTF and 

the ATF at the virtual listening point are derived in chapter 3. Chapter 4 discusses the ATFs 

of different room sizes and different wall materials. The spatial impression, which is given 

by the combination of the HRTF and the ATF, is demonstrated with the resulting 3D 

acoustic signals.  

 The SLAB software is used to generate the audio signals in a room, to capture the 

microphone array signals, and to measure the ATFs in different room sizes and wall 

materials. The afterward signal processing implementation is done in MATLAB. The 
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spectrograms of signals in each stage are shown to visualize the signal envelope transition 

process. Different HRTF scenarios are employed to demonstrate the 3D acoustic feeling of 

the synthesized signals. 

5.2  Future Work 

 This thesis concentrates on the overall combination of BSS, HRTF and ATF to produce 

the 3D acoustic signal at a virtual listening point. Yet there are many extensions can be 

made to improve the quality of the 3D acoustic signal. For example, the source signal 

location detection can complete the sound field reconstruction and it is also helpful to obtain 

the corresponding ATF. Another possible subsequent work is the synthesis of moving 3D 

acoustic signals considering the Doppler effect of the frequency variation along with the 

relative velocity of each source signal to the virtual listening point. It is also expected to 

reduce the computational complexity of the overall process, which aims at the real time 

synthesis of the 3D acoustic signals. Additionally, the graphic user interface (GUI) can 

improve the interaction of selecting the virtual listening point in the specific acoustic room.  
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