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摘   要 

 

近來由於無線及可攜式裝置的普及，高速低功率的維特比解碼器成為設計上

重要的考量。為了有效降低維特比解碼器的功率消耗，本論文提出一個脈波閂鎖

器來實現解碼器的記憶體部分。由於電壓低擺伏的優點及通行電晶體的特性，可

降低單一記憶體單元的功率消耗，進而降低資料存取時的功率消耗。模擬結果顯

示，在雜訊比為 3 分貝的環境下，本研究所提出的方法可省下 21％的解碼器功

率消耗與 29％的存活記憶體單元功率消耗。 
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ABSTRACT 
 

Recently, a high-speed and low-power Viterbi decoder is needed due to 

wireless and portable devices. In order to reduce the power consumption of Viterbi 

decoder, we proposed a full-custom pulse latch as the data storage unit in the survivor 

memory. Because of the low-swing and the characteristic of pass transistor, the power 

consumption of single register is reduced, so the power of data access in survivor 

memory also be reduced. According to the implementation result, 29% of survivor 

memory power and 21% of overall decoder power could be reduced as Eb/No is 3dB. 
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Chapter 1

Introduction

1.1 Research Motivation

Fig. 1.1 shows a digital communication system. A communication system connects an

information source to a destination through a channel. The transmission end is composed

of source encoder, channel encoder, and modulator. The receiving end is composed of

demodulator, channel decoder, and source decoder.

Figure 1.1: Block diagram of a digital communication system

During the data transmission, the signal will be distorted by the noises, interference

1



as it passes through the channel. In order to eliminate those effects, the channel encoder

transforms the source codeword into channel codeword by adding some redundant bits.

These redundant bits could be used for error detection and error correcting. Next, the

modulator converts the channel codeword into analog signals and transmits through the

channel. In the receiver end, the demodulator, making some errors because of channel

noise, generates the receive sequence. The channel decoder uses those redundant bits to

correct the errors in the receive sequence, maintaining the performance of overall system.

Viterbi decoder is widely used in channel coding. Modern wireless communication

systems are required to transmit in high data rate and low power. But high data rate

and power consumption are still challenges. So how to reduce power and achieve high

throughput are our design goals. In this thesis, some methods are proposed for a low-

power Viterbi decoder.

1.2 Thesis Organization

This thesis consists of five chapters. In chapter 2, the fundamental convolutional code

and Viterbi algorithms [1] are introduced, the architectures of general Viterbi decoder

are described in chapter 3. The differential trellis decoding algorithm is introduced in

chapter4. In chapter 5 the proposed low-power Viterbi decoder will be presented, including

performance results, and hardware architectures. Finally, the conclusion and future work

are given in chapter 6.
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Chapter 2

Introduction of Convolutional Code

2.1 Convolutional code

Convolutional codes are widely used in error control coding for digital communication sys-

tem, because they have powerful error correcting capabilities and low hardware complexi-

ties. The Viterbi algorithm, an optimal decoding method, uses maximum-likelyhood(ML)

decoding and becomes the popular method to deal with convolutional codes. All of above

will be introduced in this chapter.

2.2 Encoding of Convolutional Code

A convolutional encoder contains memory. Its output data depends not only on the

input at that time but the previous inputs. A general convolutional encoder can be

specified as (n, k, m) format, which n stands for the number of outputs, k stands for the

number of inputs, and m is the number of memories, the coding rate is k/n respectively.

Fig. 2.1 shows (2, 1, 2) convolutional encoder, it produces two output coded bits for

3



one information bit. In this example, the inputs of encoder is u = (u1, u2, u3, · · · ), the

3, 2, 1
  u u u…

1 1 1

1, 2, 3,
   C C C …

2 2 2

1, 2, 3,
   C C C …

Figure 2.1: The (2, 1, 2) convolutional code

corresponding output sequence is C = (C1
1 , C

2
1 , C

1
2 , C

2
2 , C

1
3 , C

2
3 , · · · ). For time index i, the

coded bits C1
i and C2

i are generated by

C1
i = ui ⊕ ui−1 ⊕ ui−2

C2
i = ui ⊕ ui−2

(2.1)

In general, the (n, k, m) convolutional code can be seen as the convolution of input

sequence with encoder impulse responses. The impulse responses can be formulated as

follows:

g1 = (g1
0, g

1
1, g

1
2, · · · , g1

m)

...

gn = (gn
0 , gn

1 , gn
2, · · · , gn

m)

(2.2)

For the matrix form, we can arrange the impulse responses in the form of

G =









































g1
0 g1

1 · · · g1
m g2

0 g2
1 · · · g2

m · · · gn
0 gn

1 · · · gn
m

g1
0 g1

1 · · · g1
m g2

0 g2
1 · · · g2

m · · · gn
0 gn

1 · · · gn
m

· · ·

· · ·

· · ·

· · ·









































(2.3)
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so the encoding process can be presented as C = uG, where C are the coded bit sequences,

u are the information sequences, and G is the generator matrix.

Another format which describes the impulse responses of (n, k, m)convolutional code is the

generator polynomial, and the encoding process can be seen the polynomial multiplication

as below:

C1(D) = u(D)g1(D)

C2(D) = u(D)g2(D)

(2.4)

where g1(D) and g2(D) are the generator polynomials, the coefficient of each term is

dependent on whether a connection between register and modulu-2 adder, and D means

the unit delay. There is a simple example for Fig. 2.1, the input sequence can be repre-

sented as

u(D) = 1 + D2 + D3 + D4 (2.5)

and the generator polynomials are

g1(D) = 1 + D + D2

g2(D) = 1 + D2

(2.6)

the encoding process becomes

C1(D) = (1 + D2 + D3 + D4)(1 + D + D2) = 1 + D + D4 + D6

C2(D) = (1 + D2 + D3 + D4)(1 + D2) = 1 + D3 + D5 + D6

(2.7)

so the codeword sequences are

c = 11, 10, 00, 01, 10, 01, 11 (2.8)

5



2.3 Decoding of Convolutional Code

In 1967, Viterbi proposed a decoding algorithm for convolutional code that has become

a well-known as Viterbi algorithm.Then, Forney [2] proved the Viterbi algorithm was in

fact that a maximum likelyhood(ML) decoding algorithm. In this section, the Viterbi

algorithm and decoding method will be introduced.

2.3.1 Trellis Diagram of Convolutional Code

In the convolutional code, the encoder has finite memory that stores information of the

past, and we define at any time instant, the information symbol stored in the encoder as

a state. Because the information are shifted into memory serially, there is a transition

from one state to another, so the encoder can be seen as a finite-state machine. Fig. 2.2

shows the state diagram of convolutional code in Fig. 2.1.

01

00

11

10

1/11

0/00

1/00

1/11

0/10

1/01

1/10

0/01

Figure 2.2: State diagram of convolutional code in figure 2.1

When the information sequences are large, the state diagram is not easy to represent
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00

01

10

11

00

01

10

11

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

0u =

1u =

Time=0 Time=1 Time=2 Time=3 Time=4 Time=5 Time=6

00

01

10

11

00 00 00 00 00

00 00 00 00

1111 11 11 11

11 11 11 11

01 01 01 01

01 01 01 01

10 10 10 10

10

10

10 1010

Figure 2.3: Trellis diagram of convolutional code in figure 2.1

the codeword sequences. Therefore, another representation of convolutional code called

trellis diagram,which is obtained by considering the dimension of time. With the trellis

diagram, it is easy to illustrate decoding process. Fig. 2.3 shows the trellis diagram of

convolutional code in figure 2.1.

2.3.2 Viterbi Decoding Algorithm

The goal of Viterbi algorithm is to maximize the probability of P (r|c), where r stands for

received sequences from channel, c stands for codewords from encoder. According to the

maximum likelyhood decoding, Viterbi proposed an algorithm to compute the minimum

Euclidean distance as time goes on. There are two basic measures defined in the Viterbi

algorithm, which are branch metric BM t
x→y and path matric PM t

y. At time t, this two

measures are computed as follows:

BM t
x→y =

n
∑

i=1

(rt
i − ct

i)
2 (2.9)
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PM t
y = min(PM t−1

x→y + BM t
x→y, PM t−1

z→y + BM t
z→y, · · · ) (2.10)

BM t
x→y denotes the Euclidean distance between state x and state y at time t , and PM t

y

denotes the minimum distance along the decoding process. In other words, the path met-

ric is the accumulation of branch metrics that across the corresponding paths. Therefore,

the Viterbi algorithm can find the minimum path metric at each time instant.

For a (n, k, m) convolutional code, the Viterbi decoding algorithm process is described

as follows:

1. Initially, set path metrics as

PM0
0 = 0, PM0

1 = ∞, PM0
2 = ∞, · · · , PM0

2m
−1 = ∞

2. At any time instant, update the path metrics

PM t
y = min(PM t−1

x→y + BM t
x→y, PM t−1

z→y + BM t
z→y, · · · )|y ∈ (0, 1, · · · , 2m − 1)

and store the survivor. The survivor means the decision bit corresponding to the

chosen branch from all branches merge into state y .

3. If t < the length of information sequence, go to step 2, otherwise, stop.
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Chapter 3

Architecture of Viterbi Decoder

In this chapter, the basic hardware implementation of Viterbi decoder will be introduced.

A Viterbi decoder is composed of four units, that is, branch metric unit(BMU), add-

compare-select unit(ACSU), path metric unit(PMU), and survivor memory unit(SMU).

Fig. 3.1 shows the block diagram of Viterbi decoder.

ACS_0

Branch

Metric

Unit

Survivor

Memory

PM_0

ACS_1
PM_1

 ACS_2ν
PM_2υ

Figure 3.1: Block diagram of Viterbi decoder

9



3.1 Branch Metric Unit

This unit generates all branch metrics from received symbol. Usually, we adopt q-bit

quantization when receiving the transmitted symbol, to indicate received values from

channel. The larger q is, the better the performance of decoder, but the complexity also

increases. In general, considering the tradeoff between performance and cost, we usually

use 3-bit quantization soft decision. Fig. 3.2 shows the quantization result.

000

+1-1

001 010 011 100 101 110 111

Figure 3.2: 3-bit quantization result

There is a simple example for (2, 1, m) convolutional code. The codeword symbols

corresponding trellis branches will be 00 , 01 , 10 , 11 .Then the computation will be

BM(00) = |r1 − 0| + |r2 − 0|

BM(01) = |r1 − 0| + |r2 − (2q − 1)|

BM(10) = |r1 − (2q − 1)| + |r2 − 0|

BM(10) = |r1 − (2q − 1)| + |r2 − (2q − 1)|

(3.1)

We can simplify the above equation

BM(00) = r1 + r2

BM(01) = r1 +
−

r2

BM(10) =
−

r1 +r2

BM(11) =
−

r1 +
−

r2

(3.2)

Fig. 3.3 shows the architecture of branch metric unit.
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1

2

BM(00)

BM(01)

BM(10)

BM(11)

4

4

4

4

3

3

Figure 3.3: The architecture of branch metric unit

3.2 Add-Compare-Select Unit

There are many issues in designing an ACS unit because the ACS unit is the key compo-

nent in Viterbi decoder to calculate the minimum path metric and estimate the survivor

path. As modern communication systems require a high data rate condition, the fully

parallel architecture is prefer. In the following, we introduce the most popular architec-

tures.

3.2.1 Radix-2 ACS Architecture

Radix-2 ACS architecture is the simplest structure of Viterbi ACS unit. From Fig. 2.3, we

see that for every state in any time instant, there are two incoming paths. In ACS unit,

it adds the previous path metric with branch metric for every path, then, it compares all

the paths to choose the minimum partial path metric. And all compared results of ACS

units are saved in the survivor memory. Moreover, the minimum path metric is selected

as the new path metric. Fig. 3.4 shows the trellis diagram and ACS structure for state 0

of 4-state concolutional code. In Fig. 3.4, we find the state 0 has two predecessor states

11



state 0 and state 1. First, the previous path metric and branch metric are added. Then,

the two results are compared to decide which one is the survivor and which path metric

is updated. Finally, the updated path metric becomes the predecessor path at next time.

CMP

0
t

PM

1
1
t

PM
−

1
0
t

PM
−

0 0
t

BM →

1 0
t

BM →

0
t

Sel
00

01

10

11

00

01

10

11

1
0
t

PM
−

1
1
t

PM
−

0 0
t

BM →

1 0
t

BM →

0
t

PM

Figure 3.4: The architecture of radix-2 ACS unit

3.2.2 Radix-2n ACS Architecture

ACS unit is the bottleneck for a high-speed Viterbi decoder due to the recursive operation.

For high-speed design, decreasing the critical path of ACS unit is a solution. So the high

radix architectures [3] [4] are popular. The high radix structure unrolls the ACS loop in

order to perform multi-step of trellis in one clock cycle. Fig. 3.5 shows the 4-state radix-2

and radix-4 architectures. We see that in radix-4 architectures, it combines two stages of

radix-2 trellis into one stage radix-4 trellis, so the radix-4 structure is two times faster

than radix-2 structure. In the same way, we can obtain a higher radix structure. For one

clock cycle, a radix-2n structure can achieve n times speed up than a radix-2 structure.

However, the number of branches for every state, the complexity of comparator and

multiplexer, are increasing. So the overall complexity of ACS unit also increases n times.

12



t-2 t-2t-1 t t

Figure 3.5: The 4-state radix-2 and radix-4 trellis diagrams

Table 3.1 shows the comparison of different radix ACS unit.

Table 3.1: Comparison of different radix ACS unit

Radix Throughput Hardware complexity

2 1 1

4 2 2

8 3 4

16 4 8

3.2.3 CSA Stucture

In this subsection, another ACS structure, called compare-select-add (CSA) structure [5],

is introduced. In CSA structure, the addition is postponed to the last procedure. In this

way, the recursive operation can be broken, and the critical path is decreased. Fig. 3.6

shows the CSA architecture.
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3.3 Survivor Memory Unit

In Survivor memory unit, there are two well-known approaches, one is register-exchange(RE)

method, and the other is trace-back(TB) [6] method. This section will introduce these

methods.

3.3.1 Register-exchange Approach

The register-exchange approach is the simplest used technique which assigns a set of regis-

ters to each state. Fig. 3.7 shows an example. These registers record the decoded outputs

which are produced by survivor paths. At each time step, these registers will change their

contents to update new decoded outputs. Therefore, this approach doesn’t need to trace

back the survivor path, that is, the latency will reduce dramatically. However, due to

exchaging every register, the power consumption is large, it is not power efficient.

In register-exchange approach, there are three methods for implementation. First is best

state approach, second is fixed state approach, and last is majority vote approach. In
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Figure 3.7: Register-exchange of SMU

conventional method, best state approach is be used according to maximum likelyhood

algorithm. Fig. 3.8 shows the architecture of best state approach with truncation length

4. When the truncation length is long enough, all survivor paths will merge together. In

0
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1

Decision 0

Decision 1

Decision 2

Decision 3

Best state

Decoded

bit

Figure 3.8: The best state approach

the same time, we don’t need to search the best state. Instead, one can choose the con-

tent of state 0 as decoded bit. However, more registers are required to save long enough
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survivor path. Fig. 3.9 shows the architecture of fixed state approach with truncation

length 4. A compromising approach between best state approach and fixed state appoach
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Decoded

bit

Figure 3.9: The fixed state approach

is majority vote approach. In this method, the best state search is replaced by majority

vote circuit. That is, at truncation length L, if the number of 1’s of the registers is larger

than the number of 0’s of the registers, the decoded bit is 1, vice versa. Fig. 3.10 shows

the architecture of majority vote approach with truncation length 4.
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Figure 3.10: The majority vote approach
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3.3.2 Trace-back Approach

Unlike register-exchange approach, the trace-back approach only stores the comparison

results corresponding to one stage in a trellis diagram, and after the truncation length

reaching, the decoded bits are produced by tracebacking the trellis diagram. In this

method, the latency will increase, but it consumes less power and suits for portable

devices. There are three types of operations performed inside the trace-back unit.

1. Writing(WR):The decisions made by the ACS are written into lacations correspod-

ing to the states. The write pointer advances forward as ACS operations move from

one stage to the next in the trellis, and data are written to locations just freed by

the decode read operation.

2. Traceback Read(TB): Pointer values from this operation are not output as decoded

values, instead they are used to ensure that all paths have converged with some

high probability, so that actual decoding amy take place. The traceback operation

is usually run to a predetermined depth T before being used to initiate the decode

read operation.

3. Decode Read(DC):When The TB operation finishing, the decode read operation

begin to decode bits in reverse order. This operation proceeds in exactly the same

fashion as TB operation, but on older data. The values from this operation are

stored in a last-in-first-out(LIFO) memory, and sent out when DC operation finish-

ing.

There are four types of well-known trace-back algorithm , that is, the k-pointer even algo-

rithm, the k-pointer odd algorithm, the one-pointer algorithm, and the hybrid algorithm.

In the following, we introduce these four methods.

17



1. The k-Pointer Even Algorithm:

Fig. 3.11 shows the structure of k-pointer even algorithm with k=3. The memory

is divided into 2k memory banks, each of size L
k−1

. Each read pointer is used to

perform the TB operation in two memory banks, and the DC in one memory bank.

First, the WR operation is performed in the first three memory banks. Then,

the TB operation in the third memory bank is started, at the same time, the WR

operation continues in the fourth memory bank. The trace-back operation continues

across the third and the second banks, while the ACS decisions are written to the

fourth and the fifth banks. Note that the combined length of the second and the

third banks is exactly the truncation length L. Hence, a merging state at the first

memory bank is determined by trace-back operation of length L. Then, the decoding

operation starts and the decoded bits are generated in reverse order. The latency

of the k-pointer even approach is 2kL
k−1

, which is the time delay from writing the first

column to decoding the first symbol. In this example of 3-pointer even algorithm,

the latency is 3L as shown in Fig. 3.11. With this decoding process, one can generate

the decoded bits sequentially.

2. The k-Pointer Odd Algorithm:

Fig. 3.12 shows the structure of k-pointer odd approach with k=3. There are 2k-1

memory banks, each of size L
k−1

. The decoding process of the k-pointer odd approach

is similar to the k-pointer even approach. The main difference is that the k-pointer

odd approach combines decoding operation and write operation into one memory

bank.

3. One-Pointer Algorithm:
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Figure 3.11: The k-pointer even algorithm structure

The one-pointer approach differs significantly from the k-pointer approach. Instead

of the k-pointer, this approach adopts only one read pointer but accelerating the

read operation. For example, if a k-pointer approach is converted to one-pointer

approach, the trace-back and decoding operations need to be performed k times

faster. However, the number of memory banks can be reduced. Fig. 3.13 shows

the memory structure and operation of one-pointer approach with k=3. First, write

operation is executed. After write operation is completed in the third memory bank,

the read pointer starts trace-back operation in the third memory bank at the best

path metric. At the same time, write operation continues in the fourth memory

bank. Notice that the read operation is 3 times faster than the write operation.
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Figure 3.12: The k-pointer odd algorithm structure

Therefore, when the write operation finishes in the fourth memory bank, the trace-

back and decoding operation must be completed in the other three memory banks.

By a similar fashion, the decoded bits can be generated sequentially. Furthermore,

the number of memory banks and latency of this example are 4 and 2L respectively,

which are smaller than those of the 3-pointer approach. In conclusion, if a k-pointer

approach is converted to one-pointer approach, k+1 memory banks are needed, each

of size L
k−1

, and the latency is k+1
k−1

L

4. The Hybrid Algorithm:
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Figure 3.13: The one-pointer algorithm structure

The hybrid trace-back approach combines the k-pointer approach and one-pointer

approach. That is, the trace-back and decoding operations become k1 times faster

to determine the merging state and decoded bits, which is like the one-pointer

approach. In addition, it uses k2 read pointers simultaneously when trace-back and

decoding operations are executed, which is like the k-pointer approach. Fig. 3.14

shows the memory structure and operation of even hybrid approach with k1=2 and

k2=2. In this approach, the number of memory banks are k2(k1+1) and k2(k1+1)-

1 for the even hybrid approach and the odd hybrid approach, respectively. Each

memory bank size is L
k1k2−1

and the latency is k2(k1+1)L
k1k2−1

.

In the end of this subsection, table 3.2 summarizes these two survivor approaches.
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Table 3.2: Comparison of survivor memory approach

register-exchange k-pointer even k-pointer odd one-pointer hybrid

Memory size L ∗ 2n 2k
k−1

L ∗ 2n k+1
k−1

L ∗ 2n 2k−1
k−1

L ∗ 2n k2(k1+1)L
k1k2−1

∗ 2n

Latency T 2k
k−1

L k+1
k−1

L 2k
k−1

L
k2(k1+1)L

k1k2−1
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Figure 3.14: The hybrid algorithm structure
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Chapter 4

The Proposed Low-power Viterbi

Decoder

In this chapter, some proposed designs are presented. In the Viterbi decoder, the survivor

memory unit is the power critical part because of data accessing. In order to reduce

the power consumption of survivor memory, a low-power pulse latch is proposed for our

decoder design. Based on the proposed design, the power saving of the survivor memory

unit is increasing.

At the beginning of the chapter, we will describe state-of-the-arts for low-power Viterbi

decoder. Then, the proposed low-power pulse latch will be introduced. Next, some

simulation and implementation results are shown. Finally, the comparison between some

different design will be shown.
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4.1 Low Power Schemes for Viterbi Decoder

In this section, we will introduce some low power schemes for the Viterbi decoder. First

is the scarce-state-transition (SST) algorithm [7]. SST technique could reduce the state

transition activities as channel is high SNR condition. Fig. 4.1 shows the architecture of

SST Viterbi decoder and some extra circuits are needed: The pre-decoder and re-encoder.

The pre-decoder provides the inverse function of convolutional encoder to pre-decodes the

channel values, and the re-encoder is the same as convolutional encoder.

Viterbi

decoder

Re-

encoder

Pre-

decoder

Decoded 

bits

Channel 

values

Figure 4.1: The model of SST Viterbi decoding

The SST decoding is described as follows: First, the channel values are pre-decoded by

the pre-decoder. Then, the pre-decoded bits is send to the re-encoder to re-encode. The

new decoder inputs are composed of the re-encoded bits and the channel values. Finally,

the decoded bits are the modulo-2 addition of pre-decoded bits and thr output of Viterbi

decoder.

The SST algorithm performs a transformation of channel values. The input sequences

of Viterbi decoder are almost zero sequences as channel condition is good enough. As

a result, the state transition activities is reduced and the survivor path is nearly passed

through zero state as Fig. 4.2. Therefore, the dynamic power is reduced.

Another low-power technique is the path merge algorithm. In practical, the length of

information is very large. To reduce the storage requirement, the survivor path should
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Conventional Decoder

SST Decoder

Figure 4.2: The survivor path over a noiseless channel

be truncated to finite length. As truncation length is long enough, all survivor paths will

merge together, as Fig. 4.3 shows. so some low-power techniques are proposed.

Based on register-exchange method, Lin et.al. [7] proposed a path detection unit to

detect path merge phenomenon. When the survivor paths are merged together, the clock

gating technique is applied to survivor memory to reduce the power consumption. Fig 4.4

shows the decoding technique.

Based on trace-back method, Lin et.al. [5] proposed a low-power technique by using

the buffer to store decisions of previous trace-back result. Next time, the trace-back

results will update the contents of buffer when decisions are different. On the contrary,

when the trace-back results is the same with the contents of buffer, the access of survivor

memory is stopped. Fig. 4.5 shows the decoding technique. According to above methods,
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Figure 4.3: Path merge phenomenon

the power of survivor memory could be reduced.

4.2 The Design of Low Power Survivor Memory

Although [5] [7] could achieve low-power scheme, the power of register is still not op-

timized. In long constrain length condition, the state numbers and truncation length

are increased, so the number of registers also increases. In another word, the puntured

convolutional codes are necessary for different coding rate of some standards. In order to

maintain the system performance, the truncation length will be increased, so the number

of registers also increase. In this way, register optimization is still necessary. Due to the

data storage, registers are widely used in the design of Viterbi decoder. In Fig. 3.9, the

survivor memory of decoder based on register-exchange method is composed of registers.

Because of registers turning on and turning off, the survivor memory is the most power

critical part of decoder. In Fig. 4.6, we show the power analysis of conventional Viteri

decoder.
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4.2.1 The Differential Cascade Voltage Switch Pulse Latch

In order to design a low-power decoder, the design of register is a problem, so a full-custom

register is an appropriate design. There are three major types of registers: master-slave

flip-flop, pulse register [8], sense-amplifier-based register [9]. Fig. 4.7 shows the master-

slave flip-flop, it is composed of a negative latch (master) with a positive latch (slave) to

cascade together. The sense-amplifier-based register is often used in memory cores and

in low-swing bus driver, but the more complex circuit and the more transistors are its

drawbacks. The smaller clock loadings and fewer transistors are the advantages of pulse

register. However, the internal node capacitances cause the power dissipation out of our
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expectation. Recently, a edge-trigger latch (ETL) is popular for its smaller pulse width,

and the latch is transparent during pulse active, the behavior of ETL is just like a flip-flop.

In our Viterbi decoder design, we first adopt a full-custom pulse latch, called differ-

ential cascade voltage switch (DCVS) pulse latch [10]. Fig. 4.8 shows the design of this

pulse latch. The footer is added to the bottom of inverter chain to prevent full swing

(Vdd to Vt) for saving power. Another, a small pulse is generated by the pulse generator

to trigger the latch, just like Fig. 4.8 shows. Finally, the pulse can be shared to another

latch, that is, two latches can be triggered by just one pulse generator.

In the design of Viterbi decoder, we usually adopt standard cell design flow to use

standard cells to accomplish the decoder. However, due to using the full-custom pulse

latch, the cell characterization for the pulse latch must be finished firstly, so extending

our design flow to finish our work is necessary. First, we need to develop a library file and

a library exchange format (LEF) file to check the timing and physical attributes for the

pulse latch. We adopt spice simulation to help us to check function, also to finish timing
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and power data extraction. After the cell characterization, we can use the pulse latch

for the standard cell design flow to implement the decoder design. But in the synthesis

stage and P&R stage, we should notice that some constraints to use the pulse latch are

necessary. Fig. 4.9 shows our design flow.
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Figure 4.7: The architecture of master-slave flip-flop

29



VDD

CLK

VDD

Q

D

CLK

CLKb

pulse
CLKb

Figure 4.8: The design of DCVS pulse latch

Layout
Spice simulation

& check function
.lib & . lef

extraction

RTL 
implementation

Synthesis
Placement

& route

Post- layout 
simulation

Spice pre-
sim check

Flow 

start

Flow 

end
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4.2.2 Implementation Result of DCVS-based Viterbi Decoder

This section will show the implementation result of of DCVS-based Viterbi decoder. Ac-

cording to the cell characterization results in section 4.3.1, we adopt the (3, 1, 6) con-

volutional code for UWB system with 3-bit soft-decision and 1
3

code rate, we also select

128 as the truncation length in our design. Table 4.1 lists the design parameter of the

decoder, also shows the comparison of our work.
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Table 4.1: Comparison of Viterbi decoders

Standard cell 1 DCVS-based

Technology UMC 90-nm process UMC 90-nm process

State no. 64 64

Gate count 126.8k 143.38k

ACS architecture Radix-4 Radix-4

Operating frequency (MHz) 250 250

Core area (mm2) 0.4225 0.429

Power 2(mW) 71.78 87.614

Density 96.11% 94.6%

Buffer no. 14740 3365

1 UMC low-power cell: LDFQM2N

2 Post-layout simulation, SNR=3.0dB, 0.9v, 250MHz

4.2.3 The Differential Cascade Voltage Switch Pass-Gate Pulse

Latch

In table 4.1, the power consumption of DCVS-based decoder is more than conventional

decoder, but the number of buffer is smaller. So in order to achieve low power target and

preserve smaller buffers, we have to make some effort on low power cell. A differential

cascade voltage switch with the pass-gate (DCVSPG) pulse latch is another solution.

It uses the pass transistors as inputs so fewer transistors are needed, and two diode

transistors prevent full-swing. So the power consumption will be smaller. Fig. 4.10

shows the circuit of design. During the spice simulation, the amazing power reduction is
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expressed. Table 4.2 displays the simulation result.

Moreover, we propose a modified circuit to achieve more power reduction. The drains

of three NMOS transistors could be connected together, and exchange the connection

of clock and clock bar. In this way, the voltage swing could be less than conventional

DCVSPG pulse latch, as Fig. 4.11 shows. Finally, we also propose two further improve-

ments. One is the gated clock pulse latch in Fig. 4.12, the main idea is we turn off the

pulse generator by adding an XNOR gate when the input and output of pulse latch are

the same. During the simulation, we found that the power consumption is more than

conventional DCVSPG pulse latch because of the glitch problem. So we propose another

improvement, the pulse generator shared pulse latch. Based on the generator could be

shared, we combine two pulse latches but only one pulse generator in this approach, so

some power dissipation could be saved. Fig. 4.13 shows the improved result. According

the simulation result in the Table 4.3, the power reduction of single DCVSPG pulse latch

can achieve 52%. Based on shared genetrator, we also propose the low-power survivor

memory. In spice simulation, the power consumption could be reduced 21%, the design

parameters and comparison are appeared in table 4.4. From the power profiling in the

Fig. 4.14, the power saving of survivor memory is 45% based on the pulse generator shar-

ing. In the future, we will consider proper transistor size of pulse generator to have enough

driving ability in the Viterbi decoder and make this pulse generator sharing method can

be one of the candidate for low power design.
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Table 4.2: Simulation result and comparison of proposed pulse latch

Pre-layout power Post-layout power Cell area

Standard cell 2 5.1504 µW 6.2084 µW 12.701 mm2

DCVS 4.6662 µW 7.3798 µW 13.406 mm2

DCVSPG 3.5061 µW - -

Proposal 3.3315 µW 4.590 µW 9.3744 mm2

1 TT corner, 1.0v, 25◦C, clock rate: 250MHz, output loading: 8.36f

2 UMC low-power cell: LDFQM2N
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Q

CLK
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D

Q

Figure 4.12: The design of clock gating pulse latch
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Figure 4.13: The design of pulse sharing pulse latch

Table 4.3: Simulation result of pulse sharing of double pulse latches

Without sharing With sharing

Standard cell 2 10.3142 µW -

DCVS 9.306 µW 7.3282 µW

DCVSPG 7.0423 µW 5.7679 µW

Proposal 6.6634 µW 5.5766 µW

1 TT corner, 1.0v, 25◦C, 250MHz, output loading

is 8.36f

2 UMC low-power cell: LDFQM2N
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Table 4.4: Comparison of survivor memories

Standard cell 1 Without sharing With sharing

Technology UMC 90-nm process UMC 90-nm process UMC 90-nm process

State no. 64 64 64

ACS architecture Radix-4 Radix-4 Radix-4

Operating frequency (MHz) 250 250 250

Power 2(mW) 38.12 30.58 27.76

1 UMC low-power cell: LDFQM2N

2 Pre-simulation @SNR=3.0dB, 0.9v

Standard cell (LDFQM2N)

The power of register :19.83 mW

Proposed pulse latch

The power of register :9.47 mW

others

48%
register

 52%

others

 66%

register

 34%

Figure 4.14: Power profiling of survivor memory based on pulse sharing pulse latch
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Chapter 5

Implementation Result

5.1 Chip Specification

Based on the low-power cell in section 4.2.3, we proposed a low-power Viterbi decoder for

UWB system. The primary chip specification of decoder is given in Table 5.1, which is

implemented by mixed-design flow in UMC 90-nm 1P9M standard CMOS process. The

total gate count is 119k and core size is 0.372 mm2, the survivor memory occupied 66%

in our design. Fig. 5.1 shows the power profiling of proposed decoder and Fig. 5.2 is

the layout photo. The operating frequency can achieve 250MHz and the throughput is

500Mb/s which meets the requirement of UWB system. By the proposed DCVSPG pulse

latch, the power consumption, operated at 250MHz with 0.9V supply voltage, 3dB SNR,

is 56.86mW which is estimated by post-layout simulation. Also, the power saving could

be achieved 21% which compare with UMC standard cell-based Viterbi decoder.
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Table 5.1: The Implementation result

Technology UMC 90-nm 1P9M CMOS process

State no. 64

Gate count 119.2k

ACS architecture Radix-4

Soft-decision 3-bit

PM width 9-bit

Operating frequency (MHz) 250

Core area (mm2) 0.372

Power 1(mW) 56.86

Density 92.39%

1 Post-layout simulation, SNR=3.0dB, 0.9v, 250MHz

5.2 Comparison with UMC Standard Cell

This section will show the comparison of DCVSPG-based Viterbi decoder with UMC

standard cell. We adopt the (3, 1, 6) convolutional code for UWB system with 3-bit

soft-decision and 1
3

code rate, we also select 128 as the truncation length in our design.

Table 5.2 lists the design parameter of the decoder, also shows the comparison of our

work. To compare with UMC standard cell-based decoder, our Proposed Viterbi decoder

is lower hardware complexity and power efficient.
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Table 5.2: Comparison of Viterbi decoders

Standard cell 1 Proposal

Technology UMC 90-nm process UMC 90-nm process

State no. 64 64

Gate count 126.8k 119.21k

ACS architecture Radix-4 Radix-4

Operating frequency (MHz) 250 250

Core area (mm2) 0.4225 0.372

Power 2(mW) 71.78 56.86

Density 96.11% 92.39%

1 UMC low-power cell: LDFQM2N

2 Post-layout simulation, SNR=3.0dB, 0.9v, 250MHz

5.3 Comparison with Other Relative Work

Some of the published Viterbi decoders are list in Table 5.3. According to the power

efficient row, the low power design can be achieved in our implementation. For the

ref. [7], the SST algorithm and path merge techniques are used. The former technique

could reduce the state transition activity in high SNR condition, and the latter technique

could reduce the power of survivor memory because of clock gating. According to this

two methods, more power reduction is achieved. So in the future, we will combine the

techniques with our work together to achieve ultra low-power scheme.
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Figure 5.2: Layout photo of proposed decoder
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Table 5.3: Comparison of Viterbi decoders

Proposal TCAS I′07 [11] VLSI−DAT′09 [12] VLSI−DAT07 [7]

Technology 90-nm process 0.13-µm process 0.18-µm process 90-nm process

State no. 64 64 64 64

Truncation 128 40 36 64

length (TL)

Code rate 1
3

1
2

1
2

1
3

ACS architecture Radix-4 Radix-2 N/A Radix-4

Operating 250 200 100 250

frequency (MHz)

Gate count 119.207k 49.4k N/A N/A

Core area (mm2) 0.3721 N/A 0.69 0.25

Power (mW) 56.86 1(37.53 2) 49.94 (36.42 2) 58 (12.08 2) 28.52 (4.85 2)

Energy - (0.586 2) - (2.694 2) - (1.036 2) - (0.152 2)

efficiency (pJ/TL/bit)

1 Post-layout simulation @SNR=3.0dB, 250MHz, 0.9v

2 Survivor memory only
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Chapter 6

Conclusion and Future Work

In this thesis, a low-power decoder based on the low-power pulse latch survivor memory

design is proposed. With this low-power pulse latch, the power consumption of data access

in the survivor memory is reduced. Experimental results indicate the power reduction of

the whole decoder and the survivor memory can achieve 21% and 29% as Eb/N0
is 3dB,

which compare to UMC standard cell-based Viterbi decoder. In addition to reducing the

power consumption, our proposal also reduces 8% gate count of the whole decoder.

In the future, we want to design a high-speed and low-power Viterbi decoder to apply

to IEEE 802.15.3c standard. In the high-speed issue, the radix-4x4 is a feasible solution.

And in the low-power method, we will combine the low-power pulse latch with scarce-

state-transition algorithm, and path merge methodology to attain more power reduction.

Also, we will finish the pulse sharing-based Viterbi decoder.
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