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Abstract

In this thesis, we present a.compressor tree synthesis algorithm, named DOCT,
which guarantees the delay optimal implementation in lookup-table (LUT) based
FPGAs. Given a targeted K-input LUT architecture, DOCT firstly derives a finite
set of prime patterns as essential building blocks. Then, it shows that a delay
optimal compressor tree can always be constructed by those derived prime patterns
via integer linear programming (ILP). Without loss of delay optimality, a
post-processing procedure is invoked to reduce the number of demanded LUTSs for
the generated compressor tree design. DOCT has been evaluated over a broad set of
benchmark circuits. Compared to the previous heuristic approach, the experimental
results show that DOCT reduces the depth of the compressor tree by 32%, and the
number of LUTs by 21% on average based on the modern 6-input LUT-based

FPGA architecture.
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Chapter 1

Introduction

1.1 Technology Trend

As the manufacturing cost and time-to-market pressure of developing
ASIC/SoC increase, the design and verification processes demand a better way to
reduce the development cost. The advantages of low risk, low NRE cost, and fast
time-to-market, have made FPGA a significant alternative for the electronic system
design, and then FPGA is usually used for flexible and low-volume applications
without regard to system performance. However, a high-performance system can be
possibly implemented with-modern FPGAS, since an FPGA device can have a very
rich set of logic elements and very high-speed I/O interfaces under recent DSM
technologies [1-4]. The arithmetic circuit, rather than the control-dominated circuit,
is often the performance bottleneck for a high-performance system implemented
with FPGAs [5, 6] and thus this thesis presents an algorithm for the delay optimal

compressor tree synthesis.

1.2 Previous Works

A compressor tree is used to implement a multi-operand addition, which is one
of the essential operations in most DSP applications, e.g., FIR/IIR filters [7],
discrete cosine transform (DCT), multipliers, multiplier-accumulators (MAC) [8],

motion estimation (ME) [9], and so on. In ASIC designs, the concept of the



compressor tree has been introduced by Wallace and Dadda for more than 40 years
[10, 11]. An efficient method, called Three-Greedy Approach, is proposed in [12]
for the delay-optimized compressor tree synthesis. A delay optimal algorithm
without considering wire delay is further presented in [13]. All the building blocks
for the above two researches are restricted to full-adders and half-adders. However,
since the basic programmable logic block in a modern FPGA is a K-input LUT
(K=50r6), 3-input full-adders and 2-input half-adders are apparently not the
appropriate building blocks for compressor tree synthesis from both area and delay
perspectives.

Algorithms proposed in [14] and [15] have made significant progresses in
reducing the delay of the compressor. tree in FPGA designs. Although the GPC
heuristic has achieved reasonably good, results [14], its inherently heuristic nature
cannot guarantee optimal selutions. Moreover, an algorithm which utilizes a set of
GPC patterns is presented in [15] ‘for the delay-optimized compressor tree
construction via integer linear‘programming (ILP). However, this method does not
consider all valid GPC patterns under a given input constraint (i.e., K); therefore, it
cannot guarantee optimal solutions, either. According to [15], the compressor trees
synthesized by the above two algorithms even have the same depth in many cases.

A hybrid architecture is presented to obtain advantages of both ASIC and
FPGA technologies [16]. ASICs offer advantages of density and performance. On
the other hand, FPGAs offer advantages of flexibility and fast time-to-market. By
the same manner, hard configurable IP cores are developed to integrate into FPGAS
for accelerating the speed of compressor trees [17, 18]. But this kind of approaches

is beyond the scope of this thesis.



1.3 Contribution

In this thesis, we present a delay optimal compressor tree synthesis algorithm,
named DOCT, for LUT-based FPGAs. It firstly derives a set of prime patterns as
essential building blocks, and then utilizes them to construct the delay optimal
compressor tree via ILP. Besides, a post-processing procedure is invoked to
minimize the number of demanded LUTs without loss of delay optimality.
Compared to the GPC heuristic [14], the experimental results show that DOCT
reduces the depth of the compressor tree by 32% and the number of LUTs by 21%

on average based on the modern 6-input LUT-based FPGA architecture.

1.4 Thesis Organization

The rest of this thesis is.organized-as follows. Terminology, definitions,
fundamental theorems, and problem formulation -are introduced in Chapter 2.
Chapter 3 details the proposed.delay optimal.compressor tree synthesis algorithm
with ILP formulation. The experimental results are then presented in Chapter 4.

Finally, Chapter 5 concludes this thesis.



Chapter 2

Preliminaries

2.1 Compressor Trees

A compressor tree is a circuit dealing with a multi-operand addition. Before
1960s, the multi-operand addition was often accumulated by the carry-propagate
adder (CPA). To minimize the delay of the carry chain produced by several CPAs,
Wallace and Dadda proposed an efficient implementation in 1960s to reduce all
partial products into two partial,products by full-adders and half-adders, and to add
the final two partial products by a -CPA.. Three. reduction rules are used for
constructing compressor trees: (1) any three dots with the same rank can be mapped
onto a full adder, (ii) the remaining two dots with the same rank can be mapped
onto a half adder or passed to the next stratum, and (iii) the last dots are directly
passed to the next stratum. The full adder acts as a 3:2 counter to add as many dots

as possible with the same rank. Figure 2.1 shows an example of a compressor tree

@ ()

Oth stratum
o
o

} 1st stratum

Figure 2.1  An example of a compressor tree on ASICs.



on ASICs, which reduces three partial products into two partial products.

2.2 Definitions

Firstly, this subsection describes a formal expression to characterize the
topology of the compressor tree. A compressor tree consists of a series of strata.

Each stratum is represented by a dot plane. A dot plane with respect to the s-th

stratum is denoted as an n-tuple d, =<t _,t ,,...,t, >eZ*"xN"?xZ", where N is

n-1? "n-271""

the set of non-negative integers, Z* is the set of positive integers, and t; indicates the
number of dots which is in the i-th column of the dot plane on the s-th stratum of

the compressor tree. The set of dot planes is defined as D, and then the function

o
o0
® ® ® ;0-th stratum
o0 0
column: 2 1 0 column: 1 0
00
(a) (b)
+> 6-LUT =)

——{ 6LUT —
—f = 6LUT —

()

Figure 2.2 (a) Adotplane d, =<3,4,2>. (b) Apattern <2,1> e PS(3). (c)

The pattern <2,1>_ is mapped onto 3 6-input LUTs.



r:DxN — N can indicate the i-th element of the dot plane d, by r(d.,i)=t,.

The function w: D — Z* defines the width of each dot plane such that w(d ) =n
iff d. is an n-tuple; meanwhile, the function h: D — Z" defines the height of
the dot plane d, according to h(d,) =max{r(d,,i)|0<i<w(d,)}. Figure 2.2(a)

provides an illustrative example as follows. The dot plane d, =<3,4,2> is the
input of a compressor tree consisting of three columns: two dots in the Oth column,

four dots in the 1st column, and three dots in the 2nd column. Therefore, the height

and the width of the dot plane do are h(d,)=max{3,4,2}=4 and w(d,)=3,
respectively.

The following subsection describes a formal expression to characterize the

pattern. A pattern is denoted asan'm-tuple p=c.<t ,t ,,..t;> eZ" xN"*xZ",

where t; indicates the number of dots which is in the j-th column of the pattern p.

The set of patterns is denoted as' P, and then the function v: PxN — N can

indicate the j-th element of ‘the patternp* by v(p,j)=t, . The function
iw: P—2Z" defines the number of input columns of each pattern, i.e., iw(p)=m

iff p=<t .t ...t >,. All patterns have the corresponding number of their

P3
P2 P4
" s .e
. _e
® o0 o0 000
(a) (b) ()

Figure 2.3 (a) PPS(1). (b) PPS(2). (c) PPS(3).



output bits. Thus the function ow: P — Z* calculates the minimal number of the
required output bits by ow(p) :[Iogz(zéﬁgp)*v(p, i)><2‘)1. A pattern is similar to a
counter in functionality, but it can sum inputs with value 1 in different ranks. For
example, a 3:2 counter like ps as shown in Figure 2.3(c) sums three rank-0 inputs

while the pattern <2,1>_ as shown in Figure 2.2(b) sums two rank-1 inputs and

one rank-0 input. Furthermore, the number of input columns of the pattern
<2,1>_ is iw(<2,1> ) =2, and the number of its output bits is ow(<2,1> ) =3.

The function PS: Z* — 2(P) points out the power set of patterns such that
pePS(k) iff >""*v(p,i) =k, e.g., a pattern p belongs to PS(3), which
implies Y™P*y(p,i)=3. Moreover, the function UPS: Z* — 2(P) points out a
union of pattern sets such that, "UPS (k).=Ji_PS(i) .

Since a single LUT in the FPGA has the input constraint K (K =6 for modern

technologies), a pattern p€UPS(K)“can be mapped onto ow(p) copies of the

K-input LUT. For example, the pattern <2,1>" can be mapped onto 3 copies of

the 6-input LUT as shown in Figure 2.2(c). The delay is obviously equal to a LUT
delay as all patterns belong to UPS(K) . The delay optimal compress tree can be
constructed with UPS(K), but UPS(K) is an infinite set. In other words, we

cannot determine the optimal solution with  UPS(K) unless there is a finite set to

construct the compressor tree without loss of delay optimality.

This thesis shows that a finite subset of the infinite set UPS(K) does exist to

construct the compressor tree without loss of delay optimality. We denote the finite

set as PP and take patterns in it as prime patterns. Therefore, pe PP iff
p=<1>¢ePS(1), or p has the property > v(p,i)x2' >2' for 0< j<iw(p).

In other words, a prime pattern p with the property iw(p)>1 possibly produces



the carry propagation in each of its columns. For example, the prime pattern

p,=<L2>_ as shown in Figure 2.3(c) possibly produces two valid carries in the
Oth and 1st columns due to v(p,,0)x2°>2" and >, v(p,,i)x2' >2° ,

respectively. On the other hand, the pattern <2,1>_ is not a prime pattern because

it will never produce a valid carry in the Oth column due to v(<2,1>_,0)x2° < 2"

The function PPS: Z* — 2(PP) points out a power set of prime patterns such
that pePPS(k) iff pe{PPNPS(k)}. For instance, a pattern p belongs to
PPS(3), which implies pe PP and >*"*v(p,i)=3, as shown in Figure 2.3(c).
Moreover, Figure 2.3 illustrates three sets of prime patterns as follows:
PPS() ={p} , PPS(2)={p,} , .and PPS(3)={p,,p,} - The function

UPPS: Z* —2(PP) pointstout a_union of. prime pattern sets such that
UPPS (k) = U, PPS(i), and the function UNPPS: Z* — 2(PP) points out a set
of non-prime patterns by UNPPS(k)=UPS(k) —UPPS (k) .

For the modern technology, there.are only 37 distinct prime patterns in
UPPS(6) ; therefore, we can find the delay optimal compressor tree based on
UPPS(6) . For simplicity, all examples are demonstrated under K =3 in the rest

of this thesis.

2.3 Problem Formulation

Before formulating the compressor tree problem, this thesis introduces the
relationship between the dot plane and the pattern. In this thesis, a match is a
subgraph indicating the relationship between a pattern and a collection of dots, and

then the mapping is defined as match: PxN — M, where M is the set of matches.
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Figure 2.4  Matches under d, =<3, 4, 2>:(a) match(p,,0)=m,. (b)
match(p,,1) =m,. (c) match(p,,2)=m,.

Figure 2.4 demonstrates three feasible matches under the dot plane d, =<3,4,2>:
match(p,,0) =m,, match(p,,1)=m,, and match(p,,2)=m,. In other words,
Figure 2.4(b) illustrates that three dots in the 1st column of dy are matched to the
prime pattern ps by m,. Furthermore, a.cover. Is a set of matches such that each dot
in the same dot plane is matched exactly once by a certain pattern, and then the
mapping is defined as cover: 2(M) = C, where C is the set of covers. Figure 2.5

demonstrates two feasible covers under the dot plane d, =<3,4,2>: the cover

cover({m;, m,,m,}) =c, with m, = match(p,, 2) ; the cover

cover({m,m,,m;,m})=c, with m, =match(p,,2) and m, =match(p,,1).

Since the dot plane d_, depends on the cover under the dot plane d_, we can

express d_, by the output derived from the cover under d . Therefore, the

s+1
function map: DxC — D determines the resultant dot plane d_, after the dot
plane d_ is covered by the specific cover. For instance, Figure 2.5 shows two
resultant dot planes, map(d,,c)=<13,2,1> and map(d,,c,)=<2,3,31> ,

derived from covers ¢, and c, under the dot plane d, =<3,4,2 >, respectively.
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Figure 2.5 Illustrations for covers under d, =<3,4,2>.

On modern FPGAs, a ternary adder_can sum three operands simultaneously. For
flexibility, we denote the maximum quantity of operands as H for a CPA on the
targeted FPGA. Therefore, H is.equal to 3 in modern FPGAs. In the future, H may
be increased to 4, 5, 6, and:so on; therefore, we can construct the compressor tree
by executing a sequence of covers until the height of the dot plane is less than or
equal to H. After the compressor tree is constructed completely by the sequence of
covers, at most H numbers are summed by a CPA. Since the delay of a pattern in
UPS(K) isequal to a LUT delay, the depth of the compressor is equal to the times
of executing covers. Apparently, the fewer the times of executing covers is, the less
the depth of the compressor tree is. This thesis describes a general pseudo code to
construct compressor trees, as shown in Figure 2.6. Before we execute the loop
body, the height of the dot plane will be checked whether it is larger than H. If the

condition is true, the dot plane needs a specific cover to reduce its height. After the

dot plane d_ is covered by the cover cs, the resultant dot plane d_,, will be

+17

produced by map(d,,c,). Therefore, the depth of the compressor tree is equal to

the times of executing loop. The unit delay model is used such that the delay is

10



Procedure: Compressor Tree Synthesis

Input: do, H

Output: s, {Cs1, Cs-2, ...,Co}

1 s=0;

2 While (h(ds) > H)

3 Find a feasible cover ¢, for the dot plane ds;

4, ds+1 = map(ds, Cs);

5 S =s+1,;

6 Return the depth s and the cover set {Cs.1, Cs-2, ...,Co};

Figure 2.6 General compressor tree synthesis pseudo code.

determined by the depth of the compressor tree. Thus, we can declare that a

compressor tree is delay optimal if its depth is the minimum.

2.4 Properties of'Prime Patterns

In order to synthesize the delay optimal compressor tree, the set of building
blocks should contain patterns where the number of inputs (i.e., >*P*v(p,i)) is
equal to or less than K. In other words, the set of building blocks will be UPS(K)
exactly. Since UPS(K) is an infinite pattern set, considering all combinations of

the compressor tree with UPS(K) is impossible. This thesis describes the truth

(@) (b) (€)

Figure 2.7 All subpatterns of the pattern p, =<1,2> .
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that the delay optimal compressor tree can be constructed by the finite set

UPPS(K), rather than UPS(K), without loss of delay optimality.
Before describing the fundamental theorem, we define the subpattern firstly.

The function sub: NxNxP—>P defines the subpattern

sub(j,i, p) =<v(p, j),v(p, j=1),....v(p,i) > P with the constraint
0<i<j<iw(p). Figure 2.7 shows all subpatterns of the pattern p, =<1,2>:

sub(L,1, p,)=<1>_, sub(0,0,p,)=<2>_ , and sub(y0,p,)=<L2>_ . In the

following, this thesis defines pattern decomposition. The function
decompose: P — 2(M) defines a list of feasible matches {(sub(j,i, p),k)} such
that the following conditions can be satisfied: (i) V(x,i) € decompose(p):x e PP,

and (i) V((x,i),(y, j)) e decompose(p)’,.i >j.ow(y)+ j—1<i . Figure 2.8

shows that the pattern <3,1,0;4>_ can be partitioned into {p,, p,, p,} because of

the pattern decomposition. . decompose(<3,1,0,1> ) ={(p,,0),(p,,2),(p;.3)} .

Then, this thesis shows that all patterns‘can be partitioned into a set of prime

patterns.

| decompose > E@ @
L N o

Figure 2.8 Illustration for decompose(<3,1,0,1> ).
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Lemma 1: For each pattern p €UPS(k), p can be partitioned into a set of prime

patterns E_ ={p|(p,i)  decompose(p)}.

Proof: In the beginning, we identify whether p belongs to UPPS(k). If

peUPPS(k), E =p. Otherwise, we check the carry propagation possibility

from the Oth column to (iw(p)—1)-th column in the pattern p. Because p belongs to

UNPPS(K), there exists a set of non-negative integers

Q, ={q|0§q<iw(p) and Y, v(p,i)x2' <2q+1}; otherwise, p should belong to
UPPS(K), which contradicts p eUNPPS(k). Based on q=min{Q,}, let the
pattern p, be the identified pattérn with the property iw(p,)<qg+1 such that
v(p,,i)=v(p,i) for 0<i<iw(p,) and v(p,j)=0 for iw(p,)<j<q. Due to

q=min{Q }, P, is a prime subpattern-of.p. Similarly, let p' be the subpattern

of p with the property w(p) <iw(p)—q such that
v(p,i)=v(p,iw(p)—iw(p)+i) for O<i<iw(p) , and v(p,j)=0 for
q< j<iw(p)—iw(p") . Obviously, p'=sub(iw(p)-1iw(p)—iw(p’), p) e UPS(k)

is true. If p' is prime, p can be partitioned into E ={p,, p'}; therefore, this

lemma holds true. The above process, called cut, can extract another prime

subpattern on p'. After we repeat cuts on p', p can be partitioned into

E, ={0,. B.,... p,} suchthat p, isa prime pattern for 0<i</. Since p belongs

to UPS(k), all patterns in E_ do belong to UPPS(k). Moreover, E is surely

P
finite since each cut extracts a pattern P, under iw(p,)>1. In other words, the

recursion of cuts always terminates. In summary, for each pattern p € UNPPS(k),

13



p can be partitioned into a set of prime patterns E_ ={p|(p,i) € decompose(p)}.

According to Lemma 1, it is obvious that a non-prime pattern can be replaced
by a set of prime patterns. Therefore, Lemma 2 can be deduced by Lemma 1. Due

to pattern decomposition, the output of a non-prime pattern p may be different to

that of E_ . For example, the pattern <3,1,0,1>  has the output <1,1,1,1,1>, but

its decomposition decompose(<3,1,0,1> ) ={(p,,0),(p,,2),(p,,3)} has the
output <1,1,1,0,1>, as shown in Figure 2.8(b). The new cover ¢ is derived after
every non-prime pattern p is partitioned into E , where match(p,i)ec, cisa

feasible cover under the dot plane «d.,’and *0 <i<w(d,) . Thus, map(d,,€) never

produces more dots than map(d.; c) ydoes. In.the following, Lemma 2 shows that a

compressor tree constructed ‘with non-prime patterns can be replaced by a
compressor tree constructed-with prime patterns, and then the latter has the same or

less depth.

Lemma 2: If there exists a compressor tree T constructed with UPS(k), there exists

another compressor tree T' constructed with UPPS (k) such that the depth of T'

is equal to or less than that of T.

Proof: Let T be a compressor tree constructed with UPS(k) and the depth of T be
z. The cover c, is assumed to be under the dot plane d, on the s-th stratum of T

for 0<s<z . According to Lemma 1, a non-prime pattern

pe{p'|Fa:match(p',a)ec, and p'€UNPPS(k)} could be partitioned into a set

of prime patterns E, cUPPS(k). After pattern decomposition, the new cover is

14



A

denoted as €, and map(d,,C,) is denoted as dl. Since the decomposition may

0
delete some dots of d,, ie., r(d,a)=r(d,a)—A, for 0<a<w(d), where
A, >0. Thus, there is a new cover ¢, under &1 such that a non-empty set of dots

Q' in &l is matched by a certain match m'ec,' iff Q'cQ, Q' and Q are
maximal, and Q is matched by a certain match mec,. In the same way, a

non-prime  pattern  pe{p'|match(p',b) ec, and p'eUNPPS(k)} can be

partitioned into a set of prime patterns E  cUPPS(k) . After pattern
decomposition, the new cover is denoted as ¢, , and then the dot plane
d, =map(d,,¢,) is derived such thatsw(d,)<w(d,) and r(d,,b)=r(d,,b)—A,

for 0<b <W(c§2), where A, =0. This thesis.calls the above process as transfer.
By executing transfers from d, to d.;, we can partition each non-prime pattern

in T into a set of prime patterns. In the end, ‘there are two cases of €. for
0<s<z: (i) each dot in &S is match to p, =<1>_ , and (ii) €, contains at least
one match match(p,i), where 0£i<w(ds) and p=#<1>_ . If ¢ belongs to

Case (i), €, makes no delay; otherwise, €, has a LUT delay. Therefore, T could

be transferred recursively into T' with the depth z' suchthat z'<z.

By Lemma 2, we acknowledge that every compressor tree containing
non-prime patterns can be transformed into the compressor tree which only
contains prime patterns. In the following, this thesis deduces the key theorem by
Lemma 2. Theorem 1 illustrates that the compressor tree with the minimum depth

can be archived by the set of prime patterns only.
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Theorem 1: The minimum depth of compressor tree constructed with UPS(K) is

the same as that of the compressor tree constructed with UPPS (k).

Proof: Let T be the compressor tree constructed with UPS(k), and T' be the
compressor tree constructed with UPPS(k); meanwhile, T and T' have the
minimum depth z and z’. Since UPS(k) contains UPPS(k), i.e., the solution
space with UPPS(k) is the subset of that with UPS(k), we can derive that
z'>7z. According to Lemma 2, a compressor tree constructed with UPPS (k) has
the depth z"<z. Since T' is the compressor tree constructed with UPPS (k) to
have the minimum depth, we can derive that z'<z"<z. Due to z'>z and

z2'<z,zisequalto z'.

According to the theorem, the-delay optimal compressor can be constructed

with UPPS(K), rather than UPS(K). In other'words, UPPS(K) is a compact

set of basic building blocks for compressor trees. Throughout the rest of this thesis

we deal the compressor tree problem with only UPPS(K).
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Chapter 3

Proposed Algorithm

In this chapter, this thesis describes a delay optimal compressor tree synthesis
algorithm, DOCT, to synthesis compressor trees. The detail processes are shown in
Figure 3.1. Step 1 generates all prime patterns in UPPS(K). Step 2 determines the
upper bound of the minimum depth, denoted as UB, under the given input of the

compressor tree. Under UB, Step 3 unrolls the loop as shown in Figure 2.6 to

Specified input of the
compressor tree do

H and K

Step 1. generate all prime
patterns, i.e., UPPS(K)

Y

Step 2: determine the upper
bound UB

A 4

Step 3: generate all the
corresponding constraints

¥

Step 4: use ILP solver to
synthesize the compressor tree

¥

Step 5: use the post-processing
procedure to minimize area

y
The compressor tree
with minimum depth

Figure 3.1 DOCT flow.
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generate all the corresponding constraints and the objective function. Step 4 gains
the delay optimal compressor tree via the ILP solver. Furthermore, Step 5 uses a

post-processing procedure to minimize area overhead.

3.1 Upper Bound Determination

Since this thesis unrolls the loop as shown in Figure 2.6 to get the delay
optimal compressor tree, the upper bound of the minimum depth needs to be

determined in advance. Therefore, this subsection describes how to determine UB.

Given a dot plane d, which is the input of the compressor tree, we can construct
another dot plane d, such thatysw(d,)=w(d,) and r(d,,i)=h(d,) for
O0<i<w(d,). We call this. process as extend.-For example, we can extend

d,=<3,4,2> to d,'=<4,4,4>, as shown in Figure 3.2(a). The prime pattern

C N

o0 o

o 00 W)

LA extend LA LAL A

oo o C N o060
o0

—~
O
—

(@)

Figure 3.2 (a) Extending d, =<3,4,2> to d,'=<4,4,4>.(b) The resultant
dot plane d,'=map(d,',c) with d,' covered by a collection of p; and ps such
that h(d,") =3.
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x=<K>_ matches as many dots in the dot plane d,' as possible if K is equal to

or less than h(d,’). Then, the prime pattern y=<h(d,)modK >_ matches the

remaining dots, where K is the given input constraint of a LUT. Since d,' is
regular, we can determine h(d,") precisely by the equation (1), where
d,'=map(d,',c) is a dot plane derived from the  cover

¢ ={Urs"" *match(x,i)} U{U;&> *match(y, j)}. Therefore, the upper bound of the

estimation, min{h(d,)|3c eC:d, =map(d,’,c)} can be determined by h(d,’).

h(d

s+1

) =[ h(d,")/ K |xow( <K>)==ow( <h(d,’) mod K> ) (1)

In all cases of this thesis we assume- H-= 2 ./ To determine UB, we execute the

equation (1) recursively until h(d_;"). is-equal to or less than H. As the times of

s+l

executing the equation (1) is z', z' and UB should be equal. For example, based

on K=3 and d,'=<4,4,4> , nine dots in d,' are matched to p,=<3>,

firstly, and then the others are matched to p, =<4mod3>_, as shown in Figure

3.2(b). Therefore, we can derive the upper bound of the minimum height of the dot
plane d' as (| 4/3]xow(<3> )+ow(<4mod3>))=3. Moreover, we can

determine the upper bound of the minimum height of the dot plane d,' as 2 by the
equation (1). Since h(d,") is equal to H, the determination process for UB is
terminated. In this example, the times of executing the equation (1) is 2. Hence, UB

is equal to 2.
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3.2 Variables

This subsection introduces the variables used in ILP formulation.

Xs,ij- the count of the match match(p,,i) occurringon d,

hs,i: the number of dots in the i-th column of d, i.e., r(d_,i)

S,i

[ r(d,.i)>H
0, r(d,,iy<H

1 h(d)) > H
%710, h(d,)<H

000000
o0

(@)

> Oth strutum <

U\
N/

> 1st strutum <

J k

} 2nd strutum {

OO X

(b)

Figure 3.3 (a) The compressor tree before area minimization. (b) The
compressor tree after Phase | of the post-processing procedure.
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Figure 3.3(a) shows that the dot plane d,=<3,4,2> has a cover
¢, =cover({m,m,,m,}) which is constructed from m, =match(p, =<1,2>,0),
m, = match(p, =<3>,1), and m, =match(p,,2): therefore X,,, =X, 5 =%,,;=1

and other variables X, on the Oth stratum are equal to zero. Furthermore, the dot

i
plane d, =<1,3,2,1> hasacover c, =cover({m,,m,,m,,m}) which is constructed
from m, =match(p, =<1>,0), m, =match(p,=<2>_,1), and m, =match(p,,3);

therefore, Xo1 = X1, = X,5 = X5, =1 and other variables X, on the 1lst stratum

are equal to zero.

3.3 Covering and Succeeding Constraints

The constraint (2) is called as covering constraint used to enforce a feasible
cover under the dot plane ds. We‘use the.covering constraint to ensure that every dot
is matched exactly once. The inner summation of the constraint (2) sums the

amount of dots in the i-th column of ds, and they are matched to the prime pattern p;

by the match match(p,,i—k) for O<k<min{iw(p,),i+1}. Further, the outer

summation of the constraint (2) sums all the results of the inner summation for all

prime patterns. Figure 3.3(a) shows that the covering constraint enforces a feasible

cover cover({m,m,,m}) under the dot plane d,=<3,4,2> such that

=2=h,, 3%, +%,,=4=h,,and 3x,,,=3=h,,.
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JUPPS (K)| iw(pj)-1

o o V(P K)xX ., ;=h;,VO<i<w(d,),VO<s<UB @)

Since the dot plane ds+; depends on how the preceding dot plane ds is covered,

we need the constraint (3) to construct the dot plane ds+; such that h . =r(d,.,,i)

for 0<i<w(d_,). This thesis calls the constraint (3) as succeeding constraint.

Firstly, the inner summation of the constraint (3) sums the number of matches

match(p,,i—k) for 0<k <min{fow(p,),i+1} to get the dots in the i-th column

of the dot plane d_,,; meanwhile, the dots are contributed by the pattern p;.

Further, the outer summation-of the constraint (3)'sums all the results of the inner

summation for all prime patterns to get-hs+1 . Figure 3.3(a) shows h =x,,, =1,
h, =X+ %0, =2, N, =X0atX,,+X,,=3,and h,=x,,=1, where the dot

planed, =<3,4,2> has the cover cover({(p,,0),(p,.1),(p,.2)}).

JUPPS (K)| x ow( pj ) .
YN Xy =N, VO <i<w(d,), VO<s<UB 3)

3.4 Column and Stratum Constraints

The union of the constraints (4) and (5) is used to compute the correct cg;. This

thesis calls the union of the two constraints as column constraint. If the i-th element

of the dot plane d, is more than H, the column constraint should enforce c; to be
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1. On the other hand, cs; will be enforced to be 0 as hs; is equal to or less than H. In

Figure 3.3(a), dueto h,=2 and h,=3,cyiissetas 0and cy, is setas 1 viathe

column constraint. Besides, the term Inf used in the constraints (5) and (7) can be

setas X'5o*r(d,,i).

(H+2)xc,, —1<h, ,v0<i<w(d,), VO<s<UB (4)

Inf xc,+H >h,,vVO<i<w(d,), vVO<s<UB (%)

When the compressor tree is constructed completely, g, =0 and h(d,)<H

should be satisfied iff the depth is equal to s..Therefore, a CPA can be used.
Otherwise, the dot plane dg still.-need be covered to reduce its height. This thesis
uses Cs; to obtain gs via the censtraints (6) and- (7). The union of these two

constraints is called as stratum.constraint. Figure 3.3(a) shows an illustrative

example. The variable q; is set as 1 via the stratum constraint due to h(d,)=3>H .

On the other hand, the variable g, issetas O dueto h(d,)=2=H.

g, <> "““c ,v0<s<UB (6)

i=0 si?

Inf xq, > Z:V:(;S)flcs,i ,V0<s<UB (1)
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3.5 Objective Function

As stated above, the summation of gs will be the depth of the compressor tree
and it is equal to the equation (8). When we minimize the equation (8), the depth of

the compressor tree is minimized.

Minimize: > g, (8)

For example, the depth of, the compressor tree is 2 when the dot plane

d,=<3,4,2> has the specific cover -¢, =cover({(p,,0),(p,,1),(p,,2)}), and

d, =<1,3,2,1> has the cover c, =cover{(p,,0),(p,.1),(p,,2),(p,,3)} as shown

in Figure 3.3(a).

3.6 Complexity Analysis

Here, this thesis analyzes the complexity of the number of variables and
constrains in our ILP formulation. Firstly, the number of variables is proportional to

the number of patterns (i.e., |UPPS(K)|); the number of columns in every dot

plane; the upper bound of the minimum depth UB. This thesis denotes the number

of patterns as | P |. Besides, the minimum depth upper bound UB is proportional to
log(h(d,) ) . Therefore, the complexity of the number of variables is
O(log(h(d,))xw(d,)x| P). Secondary, this thesis makes the analysis of the number
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of the constraints in the following. Similar to the complexity of the number of
variables, the number of the constraints is proportional to the number of columns in
every dot plane and the minimum depth upper bound UB. Therefore, the

complexity of the number of the constraints is O(log(h(d,)) xw(d,)).

3.7 Post-processing for Area Minimization

This thesis describes a post-processing procedure to reduce the area overhead
without losing delay optimality. This post-processing procedure is described as two

phases. Before detailing this two phases, we would define redundant matches firstly.

A match m on the dot plane ds is redundant iff h(d_) does not increase while all

dots matched by m can be matched by p, Instead. In Phase I, we would delete all

redundant matches under the-dot plane d.-on the penultimate stratum when the

minimum depth of the delay optimal compress tree is z. Figure 3.3(a) shows that a
redundant match match(p,,1) exists onthe dot plane d, =<1,3,2,1>, based on the

specific cover cover({(p,,0),(p,,1),(p,,2),(p,,3)}). Figure 3.3(b) shows that the

depth of the compressor tree does not increase after deleting the redundant match

match(p,,1) on d;. According to this phenomenon, this thesis presents Phase | of the

post-processing procedure for area minimization. Firstly, we check the existence of

redundant matches under the dot plane d_, . If there is a redundant match m, it will be
deleted from the compressor tree, e.g., the two dots of the match match(p,,1) on the

dot plane d; can be matched by p; instead such that they can be passed through from

the dot plane d, to the dot plane d,, as shown in Figure 3.3(b). Otherwise, Phase |
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The covered penultimate
stratum dot plane

Any redundant match m in the

N penultimate stratum dot plane d,;
0

\ 4

Phase |
complete

Delete the redundant
match m

Figure 3.4 Phase | of the post-processing procedure.

is finished. As shown in Figure 3.4, the process statedabove is one of the iterations in
Phase I; therefore, this post-processing procedure will repeat the process until there is
no redundant match on the penultimate stratum.

Practically, basic logic cells on modern FPGAs are flexible. In other words,
modern FPGAs employ two single-output LUTs with shared inputs as shown in
Figure 3.5. In general, this kind of circuits is called two-output LUTs. We observe that
two-output LUTs can map two single-output Boolean functions simultaneously if the
two functions satisfy two conditions: (i) the summation of the two function’s distinct
variables should be fewer than or equal to the physical-input constraint denoted as
PIC (PIC=8 on Altera Stratix IV, and PIC =5 in Xilinx Vertex V, e.g., PIC is
equal to 6 in the example as shown in Figure 3.5), and (ii) the summation of the LUT

size of the two functions should be fewer than or equal to the
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|r 6-inpt LUT

¢ 5-inpt LUT |—

5-inpt LUT

Figure 3.5  Atwo-output LUT with shared inputs.

physical-capacity constraint denoted as PCC (PCC =64 on Altera Stratix IV, and
PCC =64 in Xilinx Vertex V [1,2]) . Actually, PCC is equal to 2¥, where K is the
input constraint of a LUT. Besides, a two-output LUT can map a single output
function if the number of variables of ‘the function is K'(K = 6) as shown in Figure 3.5.
Moreover, we can merge the two.distinct LUTs among all strata if the two functions

mapped by these two distinct cells satisfy PIC and PCC. Suppose we want to map the
two prime patterns p,=<1,2>  as shown in Figure 3.6(a) (i.e., PIC=6,
PCC =64), and then we can map the two patterns onto four two-output LUTs as

shown in Figure 3.6(a). Obviously, the summation of the number of inputs of LUT 2

and 4 is equal to 6 which is fewer than PIC, and the summation of the LUT size is

equal to 2°+2° which is fewer than PCC. Hence, we can merge LUT 2 and LUT 4

into a single LUT as shown in Figure 3.6(b). In Phase 1, we merge the distinct LUTs

to map different patterns if these two functions mapped by them satisfy PIC and PCC.
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Figure 3.6 (&) The mapping before Phase I1. (b) The mapping after Phase I1.
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Chapter 4

Experimental Results

4.1 Experimental Information

We implement DOCT and the GPC heuristic [14] in C/C++ language on a
workstation with an Intel Xeon 2-GHz processor and 16 GB main memory under
the Centos 5.2 operating system. Besides, an open source package, Ip_solve 5.5.13,
is used to solve the linear formulations. A set of benchmark circuits is evaluated
including three Radix-4 unsigned Booth-encoded multipliers (8 by 8 and 16 by16),
multiplier accumulators (MAC), discrete-cosine transformation (DCT) [20], finite
impulse response filters (FIR), and motion estimations (ME). The input of each
compressor trees is extracted from'the simulation result produced by MATLAB
Simulink toolbox. All compressor trees in ‘our experiments are directly synthesized
without pipelined.

Table I illustrates the detail information of the benchmark circuits. In Table I,
Column 1 shows the variety of our benchmark circuits. Column 2 and Column 3
show the width and the height of the input dot plane, respectively. Column 4 shows

the number of dots in the input dot plane.
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TABLE |
CIRCUIT INFORMATION

Circuit Width Height | Total
8by8 16 5 56
16 by 16 32 9 176
DCT_1 22 10 150
DCT_2 20 6 83
DCT_3 20 5 82
DCT 4 20 8 116
DCT 5 22 7 105
FIR_1 15 9 72
FIR_2 23 13 167
FIR_3 39 21 374
ME_1 10 10 100
ME_2 14 14 196
MAC 1 9 6 34
MAC_2 11 7 47

4.2 Parameters Setup

We implement two compressor tree synthesis algorithms DOCT and the GPC

heuristic. The following is the setting of parameters in our experiment.

DOCT: Compressor tree synthesis using DOCT described in preceding sections
under K=6 and H =3. This thesis supposes that DOCT is evaluated on Altera
Stratix IV. Thus, the physical input constraint (PIC) is set to 8 and the physical
capacity constraint (PCC) is set to 64. The compressor tree produces three outputs

summed by ternary adder.

GPC: Compressor tree synthesis using the generalized parallel counter (GPC)

heuristic. In the GPC heuristic, there are three parameters: (i) M is the input
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constraint of GPC patterns (the input constraint of LUTSs in the targeted FPGA, e.g.,
6 for Altera Stratix IV, and Xilinx Vertex V), (ii) N is the output constraint of GPC
patterns, and (iii) k is the number of inputs of the final CPA (i.e., k is equal to H). In
our experiments, M is set as 6; N is set as 4; k is set as 3. The setting is the same as

[14].

4.3 Experimental Results

In our experiment, we compare both the depth and area produced by DOCT to

that by the GPC heuristic. Table 11, 111, and 1V show the experimental results under
TABLE I
SYNTHESIS RESULT UNDERK =5
K=5
delay LUTs
Circuit UB

DOCT GPC DOCT GPC

8by8 1 1 2 29 45
16 by 16 3 2 4 149 222
DCT_1 3 3 3 160 171
DCT_2 2 2 2 103 109
DCT_3 1 1 1 42 47
DCT_4 2 2 2 101 107
DCT_5 2 2 3 86 132
FIR_1 3 2 4 61 97
FIR_2 3 3 4 177 222
FIR_3 4 4 4 536 580
ME_1 3 3 3 107 110
ME_2 4 3 4 222 240
MAC_1 2 1 3 17 40
MAC_2 2 2 3 34 50

Avg. 0.83 0.73 1 0.83 1
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different input constraints of LUTs: K=5, K=6, and K=7, respectively. In
Table 11, 111, and IV, Column 2 illustrates upper bounds of all benchmark circuits.
Column 3 and Column 4 illustrate the depth of compressor trees produced by
DOCT and the GPC heuristic. Meanwhile, Column 5 and Column 6 illustrate the
area in terms of LUTs on Altera Vertex Stratix IV produced by DOCT and the GPC
heuristic. Compared to the GPC heuristic, DOCT has 27% less depth with 17%
fewer LUTs under K =5; 32% less depth with 21% fewer LUTs under K=6;
and 20% less depth with 2% fewer LUTs under K =7. For all benchmark circuits,
the GPC heuristic was finished in few seconds; meanwhile, DOCT was finished in

500 seconds.

TABLE Il
SYNTHESIS RESULT UNDER K =6
K=6
delay LUTs
Circuit UB

DOCT GPC DOCT GPC

8 by 8 1 1 1 24 30
16 by 16 2 2 3 132 174
DCT_1 2 2 3 127 152
DCT_2 2 2 3 98 120
DCT_3 1 1 2 35 70
DCT_4 2 2 3 90 118
DCT 5 2 2 3 66 104
FIR_1 2 2 2 52 58
FIR_2 3 2 3 131 160
FIR_3 3 3 4 400 459
ME_1 2 2 3 78 105
ME_2 3 3 4 174 193
MAC_1 1 1 2 16 26
MAC_2 2 1 2 19 38

Avg. 0.73 0.68 1 0.79 1
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It is evident that DOCT always have better or the same result in depth
compared to the GPC heuristic. The reason is that DOCT consider all combinations
of all prime patterns for constructing a compressor tree. Although DOCT does not

outperform the GPC heuristic in area for every case, it provides smaller area on

average.
TABLE IV
SYNTHESIS RESULT UNDER K =7
K=7
delay LUTs
Circuit UB

DOCT GPC DOCT GPC

8by8 1 1 2 26 40
16 by 16 2 2 2 125 119
DCT_1 2 2 3 109 127
DCT_2 2 2 2 83 78
DCT_3 1 1 2 40 62
DCT_4 2 2 2 82 78
DCT_5 1 1 1 44 44
FIR_1 2 2 2 51 48
FIR_2 2 2 3 125 135
FIR_3 3 3 3 397 334
ME_1 2 2 2 78 69
ME_2 2 2 3 123 153
MAC_1 1 1 1 12 16
MAC_2 1 1 2 22 33

Avg. 0.8 0.8 1 0.98 1
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Chapter 5

Conclusions and Future Work

A delay optimal compressor tree synthesis algorithm, DOCT, has been
presented in this thesis. Since the infinite set of patterns can be superseded by the
finite set of prime patterns without loss of delay optimality, DOCT adopts an
ILP-based methodology to map prime patterns onto the compress tree with the
minimum depth and utilizes a post-processing procedure to minimize area overhead.
Therefore, DOCT can authentically archive compressor trees with minimum depths
by all prime patterns under the.input constraint of a LUT. On average, compressor
trees produced by DOCT have 32% less depth and 21% fewer LUTs than those
produced by the GPC heuristic on modern technologtes.

Although DOCT has'made a progress in reducing area overhead compared
to the GPC heuristic, we believe that there is still room for improvement. In the
beginning, we have put the area cost in the cost function of ILP formulation.
Unfortunately, the run time of DOCT is too long and unacceptable. But according
to the result of some smaller case, DOCT considering area cost in the cost function
could archive around 50% fewer LUTSs than that does not consider. Yet, we believe

that the research of reducing area optimally is worth being performed in the future.
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