F ooy P oA A2 T Sl PoiF B E R
He Rl R A

A Parameterizable Generator for High-Performance and

Low-Cost FFT Cores



&
o

Ed

<k
S

B R k2 T Sl Pl & E
HAiA 4

A Parameterizable Generator for High-Performance

and Low-Cost FFT Cores

Pyt i31am Student: Yu-Hsiang Wang
hERER YAy K& Advisors: Jing-Yang Jou
T hE #L Juinn-Dar Huang

3
|4
“k
(=
/\‘
%

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering & Institute of Electronics

September 2009
Hsinchu, Taiwan, Republic of China

PERRA4 L ARES D



Ik
Qb
o)
e
|5
Q-
-
N
gl
9%
tal
TF
(:{q;
i
—h
gt
&
W

Frioiam hERE PR PEL SR

iF &

Poif B E R T BA G B LB ML AIR kAL E A kLY o
BRI e Rk 0 3 i B E AL B & R i R ik

™ P

&

’|§,\£L‘VTJ ’]‘%"_lﬁa— I[}?}Béi-ﬁ e I R Af o — i "‘é' 1 i‘bﬁ

-n\«

i
ROLEA S Fod T UHSRPNL B RS T OUGEE B R

FEOFAL biEhihy ) SO R Sl EIE R R 6 A

BE BT RN F TN AR A B EERT c FREEET AP A
R T > F AL AW G ] P -



A Parameterizable Generator for

High-Performance and Low-Cost FFT Cores

Student: Yu-Hsiang Wang Advisor: Dr. Jing-Yang Jou
Dr. Juinn-Dar Huang

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

Abstract

The Fast Fourier Transform (FFT) processors are widely used in signal
processing systems and communication systems. Many FFT architectures are
proposed in literature to meet different applications. While designing an FFT
processor, one of the most difficult issues is to choose the best architecture under the
design constraints. An FFT generator can not only improve the productivity but also
shorten time-to-market. In this thesis, we propose approaches which can make
appropriate design trade-off between throughput and area of pipeline FFT
architectures, and automatically generate the corresponding hardware design. The
experimental results show that the proposed methodology can generate area-efficient

architectures under throughput constraints.



Acknowledgment

| deeply appreciate my advisor Professor Jing-Yang Jou, for his guidance and
encouragement. | am very thankful to my co-guidance advisor Professor Juinn-Dar
Huang, for his guidance. | also deeply appreciate Bu-Ching Lin for his constructive
suggestion in this work. Special thanks to all members of NCTU EE EDA LAB for the
happy time during the past two years. Finally, | would like to express my sincere

appreciate to my family for their support and encouragement.



Content

Boga ! MA AT SRR EPERE ANMAL B i
7RO ii
A Parameterizable Generator for High-Performance and Low-Cost FFT Cores ......... v
Y 0111 = V! APPSR PPPPPPUPPRRPRPT \Y
ACKNOWIEAGIMENT ... e e e e e e et e et et e et bbb e e e e e e e e e e aaeaes %
(0] 01 1= o | ST UPPPPPTRR T Vi
LISE OF FIQUIES ..ottt e e e e e e e e e e e e e aeeeeesennnnnnnas Vii
IS Ao I 1= 11 = RSSO IX
(@ gF=T o] (= g A [ 01 (o o 18 [ox i [0 o ISP 1
Chapter 2 Preliminary ... e e e e e e e e e e eeeeeananeee 4
P2 R e I [0 o T 11 ] 1TSS 4
2.1.1 Radix-2 DIF AlgOrithm ........coooiiiiic e 4
2.1.2 Radix-4 DIF AlgOrithm ..o 8
2.1.3 RAIX-2 AIGOTtNM . ..ottt 9
2.1.4 Split-Radix Algorithm.........cooiiiiiiiii e 12
2.2 FFT AICRITECIUIES ...ttt e e e e 12
2.2.1 Pipeline ArchiteCtUIES ........oooiiiiiiiiiiiiiccir e 12
2.2.2 Memory-Based ArChiteCtUIes ..o 15
2.3 AutomatiC FFT GENEration ............uuuuiiiiiiiiieiie et 16
Chapter 3 PropoSed APPIOACK .........uuuuuiiiieiieee ettt e e e e e e eeeeeeeeeeananes 22
G 300 |V o 111 Z= 11 0] o OO U U PP PPUTPPTUPRPRRN 22
3.2 RZMDC Vertical EXpansion ArChiteCtUIe ...........c.oeeeveeeeeeeeeeeeeeeen e 23
3.2.1 Interconnection Permutation MatriX .............ooovviiiiiiiiiiiiiiiiinnneeee e 24
3.2.2 The Proposed REDC Vertical Expansion Architecture .................. 25
3.2.3 The Limitation of RAMDC COMPIeSSION .......coovevevereeeeeereeeeserneeennns 27
3.3 R2MDC Horizontal Compression ArchiteCture............ooovvvviiiiiiiiiiiineeeeeeenn 30
34 SUIMIMIATY ..ttt ettt e e e e e ettt e e e e e e eeba e e e e e eesba e e e eaeennnnnaeaeas 32
Chapter 4 EXPEIIMENTS......ccooiiiiiieiiiiiitee ettt a s e e e e e e e e e aeeeeeeeeesnnnnnns 33
4.1 Experimental ENVIFONMENT .......oouiiiiiiiiiiiee et e e 33
4.2 EXperimental RESUILS .......ccoiiiie s 34
Chapter 5 Conclusions and FUture WOrK .............coo e 39
] (=] (= o PSR PRPPPPPRTRPPPPPRN 40

Vi



List of Figures

Figure 1 An example architecture of OFDM system 1
Figure 2 Characteristic 2 of twiddle factor 5
Figure 3 Characteristic 3 of twiddle factor 5
Figure 4 Flow graph of the decomposition of an N-point DFT computation into two
(N/2)-point DFT computations (N=16) 7
Figure 5 Flow graph of the complete decomposition of a 16-point FFT computation 7
Figure 6 Butterfly graph of Radix-2 DIF FFT 8
Figure 7 Butterfly graph of Radix-4 DIF FFT 9
Figure 8 Flow graph of the decomposition of an N-point DFT computation into four
(N/4)-point DFT computations (N=16) with radix-algorithm 11
Figure 9 Flow graph of the complete decomposition of a 16-point FFT computation
with radix-2 algorithm 11
Figure 10 R2SDF architecture (N=16) 13
Figure 11 R4SDF architecture (N=16) 13
Figure 12 R2SDF architecture (N=16) 14
Figure 13 R2MDC architecture (N=16) 14
Figure 14 R4AMDC Architecture (N=16) 15
Figure 15 R2MIDC architecture (N=16) 15
Figure 16 A memory-based architecture example 16
Figure 17 Pease architecture (N=16) 17
Figure 18 Overview of the folded techniques 17
Figure 19 Overview of the folded techniques example for N=16 18
Figure 20 A full horizontally-folded Pease FFT for N=16 19
Figure 21 A full horizontally-folded and vertically-folded Pease FFT for N=16 19
Figure 22 An overview of stride permutation 20
Figure 23 An example of.} 20
Figure 24 The Rblock 20
Figure 25 An example of (j,k)=(1,1) 21
Figure 26 An example of (j,k)=(2,1) 21
Figure 27 An example of (j,k)=(2,2) 21
Figure 28 An example of (j,k)=(4,1) 21
Figure 29 lllustration of —nultiplication 22
Figure 30 RAVIDC architecture with throughput—;:, N=16 23

Figure 31 Examples of bnd § 24

Vii



Figure 32 General form of RRIDC vertical expansion architecture 25

Figure 33 Example of RRIDC vertical expansion architecture for t=1 25
Figure 34 Example of RRIDC vertical expansion architecture for t=2 26
Figure 35 Example of RRIDC vertical expansion architecture for t=4 26
Figure 36 Example of RRIDC vertical expansion architecture for t=8 27

Figure 37 Hardware usage comparison based 6MBE architecture for N=16,
throughput% . 28
Figure 38 Hardware usage comparison based on R2ZMDC architecture for N=16,

throughput% . 29

Figure 39 Examples of horizontal compression for N=16 &} t :% (o)t =% 31

Figure 40 Complex Multiplier 33

Figure 41 Relation between throughput and area for Pease and R2MDC, N=256 34
Figure 42 Relation between throughput and area for Pease and R2MDC, N=1024 35
Figure 43 Relation between throughput and area for Pease aMDR2N=256 36

Figure 44 Relation between throughput and area for Pease ad®R2N=1024 36

Figure 45 Relation between throughput and area for Pease and R2ZMDC/R22MDC,
N=256 37

Figure 46 Relation between throughput and area for Pease and R2MBIDI&2

N=1024 37

viii



List of Tables

Table 1 Comparison of hardware cost and throughput ...,
Table 2 Hardware Requirement COmMPAriSON .....cceeueiiiieeeeeeeeeeeieeeeeeeviiiie e 32
Table 3 Hardware Requirement Comparison with theesdmoughput..................... 32
Table 4 Area COMPATISON.....iiiii et e e e ee e e s s e e e e e e e e e e e aaaeeeeaessssansnnaaaeaaeeaeaeeeeeeeees 38



Chapter 1

Introduction

Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) are
widely used algorithms for calculating the Discrete Fourier Transform (DFT) and
Inverse Discrete Fourier Transform (IDFT) because of the low computation
complexity. FFT processor is an important block in communication system and signal
processing system. For example, as shown in Figure 1, Orthogonal Frequency
Division Multiplexing (OFDM) system is widely used in many communication
applications such as xDSL modem, HDTV, and wide band mobile terminals. In those
applications, FFT and IFFT are the most important processing blocks to meet the

design constraints.

X bits

e

Serial [ Guard
Daa | g/p : ]\:TIWL IFFT PiS > Interval - LDP? - C.“L‘l,gmr
Input H appe i i Insertion °
Y
Channel
Serijal Guard
Data  «—] P/S One-tap . FE ! sip Interval U.)F Down

Equalizer | i Insertion AD Converter
Output H H

Figure 1 An example architecture of OFDM system



An automatic FFT generator can not only improve productivity but also
shorten time-to-market. To support user customization, the automatic FFT
generator provides some parameters to customize for the design constraints, such as
the FFT transform sizes, I/O data ordering, data bitwidth, and the various
architectures. In this thesis, we mainly focus on the trade-off between throughput
and area of the FFT architectures.

Since the FFT algorithm was proposed by Cooley and Turkey in 1965 [1],
many similar algorithms have been proposed to reduce the computation complexity
of FFT. As the technology progress and algorithm improvement, FFT is widely
used in Digital Signal Processing (DSP) applications. According to different
algorithms, many kinds of FFT architectures have been proposed. Generally, there
are two kinds of popular FFT architectures. One is memory-based architecture and
the other is pipelined-based architecture. A single processing elements (PE) is used
in memory-based architecture. It can be easily extended to other FFT transform
sizes, so the memory-based architectures are usually used for low hardware cost
and low throughput designs. Pipeline-based architectures have features such as
regularity, simplicity, and high throughput rate. In this thesis, we only focus on
pipelined-based architectures.

Several pipeline-based FFT architectures are proposed, such as the Radix-2
Multi-path Delay Commutator (R2MDC) [2], Radix-4 Multi-path Delay
Commutator (R4MDC) [2], Radix-2 Single-path Delay Feedback (R2SDF) [3],
Radix-4 Single-path Delay Feedback (R4SDF) [4], RadiSihgle-path Delay
Feedback (RESDF) [5], Radix-2 Multi-path Delay Commutator (RRIDC)[6] and
Radix-2 Single-path Delay Feedback (&DF) [7]. In these architectures, the
R4SDF requires fewer multipliers than the R2SDF; however the R2SDF

architecture is simpler and more regular than the R4SDF. The R2MDC requires

2



fewer multipliers, adders and memory size than the R4MDC; however, the R4MDC
can provide higher throughput. The 8DF has the same multiplier complex as
R4SDF, but retains the butterfly structure of radix-2 algorithm. THMREZ uses

the same algorithm as the DF, and the RMDC has higher throughput. As a
result, in this work, our proposed FFT generator is based on théOR2and the
R2MDC architectures.

The rest of this thesis is organized as follows. In Chapter 2, a brief review of
FFT algorithms, architectures, and automatic FFT generation is made. In Chapter 3,
a detailed introduction of our approach of automatic FFT generation is made. The
experimental result is presented in Chapter 4. Finally, the conclusions and the

future works are given in Chapter 5.



Chapter 2

Preliminary

2.1 FFT Algorithms

2.1.1 Radix-2 DIF Algorithm

An FFT computes the DFT and produces exactly the same result as evaluating

the DFT definition directly; the only difference is that an FFT is much faster.

The formulation of Length N DFT is define as
N-1
X(k):Zx(n)WNnk , k=0,1,...N-1 (2.1) where the coefficientVis

n=0

called twiddle factor, and is defined &4} = e_jz':mk = cos(2T7mk ) sin%k L X(K)

is in frequency domain, andin] is in time domain. Radix-2 Decimation-In-Frequency
(DIF) Algorithm divided the frequency sequenX€k) into even-numbered frequency
samples and odd-numbered frequency samples. Three characteristics of twiddle factor

are shown below and are illustrated in Figure 2 and Figure 3.

—-j2mN )
1W"N=e N =gl¥m=1

2 -W,\Tk+ N/2 = _W,\Tk

(n+tN)k _— nk
WMk =y



w; Wy
Hra 2

Figure 2 Characteristic 2 of twiddle factor

mﬁzlﬁ“
W) = R W = W

ng Vi w;g
Figure 3 Characteristic 3 of twiddle factor

We introduce the radix-2 DIF algorithm with characteristics of twiddle factor.
For a discrete Fourier transform of length N sequexjog the even-numbered

frequency samples can be indicated as

N-:
X[2r] = ZX[n]WZ’” r :0,1,...%— 1
n=0

N

ZZX[ W2rn +Z ){r]WZrn

n_f
2

|z

-1
2r (n+ )

[\’1ho

w2z +Z>{ n+—]W

>
I
o



|z

(X[n] +X r1+—])Wm

MI\J

1l
o

n

= DFT, (4 +3{n+) (2.2)

And the odd-numbered frequency samples can be indicated as
Ny
2 N-1 N
X[2r +1]= 2 W+ 5 e r =0,1,...— 1
n=0

n=——
2

N, N
ZZ X[n]Wn(2r+1) + Z X[n + ]W(n+%)(2r+l)
n=0 n=0
=5 g s S Z {n+ W
n=0 n=0 2
N N
2
- Z X[n]Wn(2r+1) Z X[n + ]W|\T(2r+1)
n=0 n=0

DICUERGERS) Qwowy
= DFTN/Z{(x[n] —){n+%]WN') } 2.3)
From the equation (2.2) and (2.3), withg[n] =X +% n+%lj and
hnl =X - n+ﬁz‘] it can be seen that the original N-points FFT operation has

been divided into two% -points FFT operations as shown in Figure 4.



N/2-point DFT

————-o0 X[0]
0 X8]
0 X[4]
————0 X[12]
0 X[2]
————0 X[10]
—>—0 X[6]

—>——0 X[14]

wy

E hi21 Wi

xm]/ DANNENE

\ihw w;

E}h[ﬂ wy

\gih[ﬁl we

Ejhm W

N/2-point DFT

——0 X[1]
————0 X[9]
————0 X[5]
————0 X[13]
———0 X[3]
————0 X[11]
>0 X[7]

>0 X[15]

Figure 4 Flow graph of the decomposition of an N-point DFT computation into
two (N/2)-point DFT computations (N=16)

Finally, as shown in Figure 5, the complete decimation result can be derived by the

similar manner that decomposes N-point DFT computation into two (N/2)-point

DFT computations.

X[1] o\
x2]

X[0] 0 X[0]
N A g
Al AR

X[4] 0 X[2]
X[7] ~ L 0 X[14]
(8] W W, B N 5 o X[1]
(9] o/ ><><><><><>< : Wi 0 X[9]
e e e e

w;

x[111o/ IWN W . o X[13]
X[12] > ”s ><><\b 0 X[3]
X[14] C/ 1WN7 \i e /\i v>< O X1
X[15] 2 & O X[15]

Figure 5 Flow graph of the complete decomposition of a 16-point FFT

computation

7



The addition and the subtraction operation are called the butterfly operation, as
show in Figure 6.

X(r] x[n]+>{n+%

qn+2 X - n+2]
2 2
Figure 6 Butterfly graph of Radix-2 DIF FFT

2.1.2 Radix-4 DIF Algorithm

Similar to radix-2 DIF algorithm, in the radix-4 DIF algorithm, the frequency
sequenceX (K) is divided intoX(4k), X(4k+1), X(4k +2), X(4k +3) frequency

samples as derived below.

INP-4
-

X (4k)

:X[n]+)<[n+%] +X n+%|] +X n+34|;ljl :W'\T(4k)

>
Il
o

INP-4
-

_x[n]+>{n+%] +% n+% +X n+3421 —W;,}ku k=0,1,..., N/4 -1

>
Il
o

DFTN/4{x[n]+>{n+%1 +n+) +3n+i}} (24)

|
=

Xl o+ —{n+ Dy e 20 e

NP

X (4k +1)

=}
Il
o

|
=

X - j BN+ —)En+% rign+=N ww® k=01, N1
i 4 4 NV 4

DFTNM{(x[n]—jD{m%] —*n% +] E{<n+37':i ij“} (2.5)

NP

=}
Il
o



NP4

=}
1
(=)

X (4k + 2) = _x[n]—x[n+%] +>{n+%] ~% n+342] e

NP
AN

= _ - N - 3 ] nk N _
_n:O_X[n] >{n+z] +>[n+% {<n+421 _VVN”W% k:O,l,...,Z 1
] DFTN/“{(X[H] A g o) g S ijn} 2.6)

X(4k +3)= x[n]+jD([n+%]—){n+%]—jDEn+342] W,\’l‘\N'\TMk)

=}
I
o

NP4
iR

X+ {n+Y - % n+%‘| S+ 3N wew k0,1, N
i 4 4 NV 4

=}
o

:DFTNM{(x[n]ﬂD{n%] —>tn+% —jq<n+ié'} jw;} 2.7)

The mapping butterfly graph of radix-4 algorithm is shown in Figure 7

X (4K)
X (4K +1)

X(4k + 2)

X(4k +3)

Figure 7 Butterfly graph of Radix-4 DIF FFT

2.1.3 Radix-22 Algorithm

Radix-4 algorithm has the lower multiplicative complexity than radix-2

algorithm, but the hardware structure of butterfly of radix-4 algorithm is more



complex than that of radix-2 algorithm. Combining the advantages of radix-2 and
radix-4 algorithm, Radix-2algorithm [5] has the same multiplicative complexity as
radix-4 algorithm, but retains the butterfly structure of radix-2 algorithm. For a

discrete Fourier transform of length N sequerjog x

X(k)=§x[n]w,3k,k:O,l,...,N—] (2.8)

n=0

Let n =Enl +%n2 +n,andk =k + X,+ &, we can rewrite equation (2.8) as

n2+n3)(k1+2k2+ 4k 3)

X (k, + 2K, + 4k,) = ZZZX(—n +—n +n3)W2 (2.9)
n;=0n,=0n,=0
After simplification, we can then write
Ny
X (b + 2k, + 4;)= D [ H Kok n 2 Wik, where (2.10)
BFI BFI
A A
4 B / B
G+ 1) =| X+ (x5 o (1)) i +5) e 2|
N Y
g
BFII (2.11)

From equation (2.10) and (2.11), we can find that the original N-points FFT

operation has been partitioned into fOb‘IiF-pOIntS FFT operations as shown in

Figure 8. After proceeding in a manner similar to the technique, a complete

decimation result can be derived as shown in Figure 9.

10



x[0] C\ G 0 ——o X[0]
x[1] C\ ; o é N/4 DFT |9 Xl
x[2] O 0 (k1=0,k2=0) | —o x14]
x[3] z\ ; o ><></: 0 X[12]
XX KK
x[4] © o X[2]
NN KRS ] o o
(6] WZ / \*? Wy (k1=0,k2=1) o X6
<071 W / % Wy Lo X[14]
x[9] o P N/4 DFT |—© XU
(1010 W § 5 e / W: (k1=1,k2=0) |_o x5
x[ll](/ ><>< . ——0O adl ——o X[13]
x[lZ]/ Xl j :\>/<><><><; " Lo x
x[13] O O > N/4 DFT r—= X[11]
x[14] O \33 2 / \\b Wy (kI=1k2=1) o X7
1 -1 9
x[lS]C/ \_&1 L / o W Lo X[15]

Figure 8 Flow graph of the decomposition of an N-point DFT computation into
four (N/4)-point DFT computations (N=16) with radix-2 algorithm

x[0] o X[0]
x[1] O\ f o / \/ v><: Wiy o xs]
Py S S S
(3] 0 ; /ﬂ - FA_} -] ><; wp 0 X12]
X[4] o Hh— o X[2]
NNV KA W e W g
(8] /p . ————o o X[1]
x[10]0 /><>< \§ /v,: o _1+O><: o X[5]
x[ll]/ 5 -jw (i _1*;]_0 % Wy o X[13]
x[lz]/ é 'j m Zzz —>—o><: » O X[3]
x[13] > > ———0 L o X[11]
\&1 ] / o -1
x[14]0 — ® ! % o X[7]
x[15]o/ % ] \}; w; /\ff ] v><_lwi o X[15]

Figure 9 Flow graph of the complete decomposition of a 16-point FFT
computation with radix-22 algorithm



2.1.4 Split-Radix Algorithm

The split-radix algorithm can further reduce the complexity of the FFT algorithm.
It has fewer multiplications and additions than radix-2 and radix-4 algorithm, but
radix-2 and radix-4 algorithm are more regular than split-radix algorithm. The most

popular split-radix algorithm including radix-2/4 and radix-2/8 were proposed in [8].

2.2 FFT Architectures

Generally, there are two kinds of popular FFT architectures to implement FFT
algorithms. One is memory-based architectures and the other is pipeline-based
architectures. Memory-based architectures are suitable for low throughput and low
hardware cost designs; however, pipeline-based architectures are usually regular and
suitable for high throughput and high hardware cost designs. In this thesis, we focus
on pipeline-based FFT architectures. The details of pipeline-based architectures are

presented in the following subsections.

2.2.1 Pipeline Architectures

Pipeline-based architectures can be further divided into two kinds of
architectures depend on the design of register. One is Single-path Delay Feedback
(SDF) architecture, and the other one is Multi-path Delay Commutator (MDC)
architecture. SDF architecture has higher hardware usage and lower hardware cost;
however, MDC architecture has higher throughput than SDF architecture. We
introduce these architectures below.

We first introduce the SDF architecture. The Radix-2 SDF (R2SDF)
architecture [3] is shown in Figure 10. By storing the butterfly output into the shift

registers, R2SDF uses the registers efficiently. The butterfly passes the output to the

12



next stage when doing addition operation, and storing the output into the shift
register when doing subtraction operation. In each cycle, only one output passes

through the multiplier.

R o B o B o E R

Radix-2 Radix-2 Radix-2 Radix-2
BF BF BF BF

Figure 10 R2SDF architecture (N=16)

The Radix-4 SDF (R4SDF) architecture [4] is shown in Figure 11. Similar to the
R2SDF architecture, radix-4 butterfly store three of outputs into shift registers, and

only one output passes through the multiplier in each cycle.

3*%4 |« R
» Radix-4 » Radix-4
» BF » BF
A .\ L R N

Figure 11 R4SDF architecture (N=16)

The Radix-2 SDF (RZSDF) [5] architecture is similar to the R2SDF
architecture and reduces the number of multipliers’SRE uses two types of
butterflies, one is the same as that in R2SDF architecture and the other contains also
some logic to implement the multiplication of twiddle factor of —j, as shown in Figure

12.

13



BFI BFII BFI BFII
—> > —>(X)—> > —>
Xr(l’l) . P Zr(n)
Xr(n+N/ 2) / \/\@ Zr(n"‘N/ 2)
X;(n+N/2) . =P, z(n+N/2)
BFI
X(n) ¢ T z(n)
X/(n+N/2) . = z(n+N/2)
X{(n+N/2) — / B + zi(n+N/2)
BFII

Figure 12 RZSDF architecture (N=16)

The Radix-2 MDC (R2MDC) architecture [2] is straightforward. The inputs are
separated into two streams by the control of switches, and then go to butterflies in

parallel, as shown in Figure 13.

3] Radix-2 Radix-2 Radix-2 (> Radix2 |
c2 pes c2 e 2 pes 2 pes
& > 2] > Q-[1] L,

Figure 13 R2MDC architecture (N=16)

The Radix-4 MDC (R4MDC) architecture [2] is also similar to R2MDC

architecture besides the raidx-4 butterfly and the number of registers, as shown in

Figure 14.



8 | Radix-4
C4 BF

Radix-4
BF

vYv oy

Figure 14 R4AMDC Architecture (N=16)

The Radix-2 MDC (RZMDC) architecture [6] is the MDC type architecture of
Radix-Z algorithm. In the flow graph of the complete decomposition of an N-point
FFT computation with radix?2algorithm, the even-numbered stages multiple twiddle
factors not only the subtraction output but the addition output, so tAkIDR2

architecture needs two complex multipliers in even-numbered stages, as shown in

Figure 15.
.,
C2 BFI BFII BFII
_>

Figure 15 RZMDC architecture (N=16)

2.2.2 Memory-Based Architectures

The memory-based architecture is another widely used FFT architecture. It only
uses one radix-r processing element to compute all butterflies in signal flow graph.
The basic components of memory-based architecture are shown in Figure 16. In
Figure 16, the multiplexers are used to control the input and output data, and because
of only single PE, the controller of memory-based architecture is very complex.
Because of low hardware cost and low power properties, memory-based architecture

is suitable for modern communication system.

15



Control Unit

A

Memory

Mux Radix-r PE Mux

A 4

A\ 4

Y
v

Figure 16 A memory-based architecture example

2.3 Automatic FFT Generation

An automatic FFT Generator can improve productivity and shorten
time-to-market. A customized FFT generator with parameterized options can be
tailored for application-specific trade-off in performance. Three papers about
parameterized FFT Generator have been published [11]. In the following, we
briefly introduce the techniques in [11] and [13].

In [11] and [13], they make the trade-off between area and throughput based on
Pease architecture. After replacing twiddle factors with complex multipliers and
exchanging the positions of butterflies, thel6-points Pease architecture can be derived
from the flow graph of the complete decomposition of the 16-point FFT computation

with radix-2 algorithm, as shown in Figure 17. From Figure 17, we can derive the

number of multipliers isI;l—Iog2 N, and the number of addersN$og, N . For N=16,

the number of multipliers is 32 and the number of adders is 64.

16



Processing Element (PE)

o)
)
X
o)
)
X

<7

X

W

"7

?
)

0

<>
<>

<>
<>

oS
V

SIS

Tf

{
{

i

0
0
S

o Q Q Q Q Q Q Q O O O O O O O (@]
<>

~__—

X A’:.
pe—— e e
,A,:,. o=~ & o o=~ & o .A,:,
.v O .v O ‘v o ‘v

& &Ko & &—o

Figure 17 Pease architecture (N=16)

Based on Pease architecture, two dimensions folded techniques of Pease

Architecture are proposed. The overview of these techniques is shown in Figure 18.

k
( A )
PE PE ........ PE
PE PE |..... ... PE
] <
PE PE ........ PE

Figure 18 Overview of the folded techniques

As shown in Figure 18, parameteindicates the number of PEs per stage, jand
needs to be one of the factors e'}; parametek indicates the number of stages,

and k needs to be one of the factorslod, N . Several different architectures can

17



be derived by choosing parameteaandk. For N=16, all possible choices gf K)
are (1,1), (1,2), (1,4), (2,2), (2,2), (2,4), (4,1), (4,2), (4,4, (8,1), (8,2) and (8,4),

Figure 19 shows some overviews of choices of N=16.

(8,4) (8,1)
PE PE PE PE PE
PE PE PE PE PE
PE PE PE PE PE
PE PE PE PE PE
PE PE PE PE PE
PE PE PE PE PE (2,2)

PE PE

PE PE PE PE PE (1’4) (1,1)
PE PE PE PE PE PE PE PE PE PE PE PE

Figure 19 Overview of the folded techniques example for N=16

We further introduce the folded techniques. From Figure 17, we can
straightforward fold the Pease architecture fully in horizontal direction by using a
multiplexer and inserting registers at the outputs of PEs. A vector iterates over the

feedback log, N times to compute the FFT. Figure 20 shows a full

horizontally-folded Pease FFT for N=16.

18



16

16 16

register

Figure 20 A full horizontally-folded Pease FFT for N=16

Starting from the full horizontally-folded architecture, thl;le PEs can be further

folded in vertical direction to achieve different degrees of parallelism and therefore
different throughputs. A full horizontally-folded and vertically-folded Pease FFT for

N=16 is shown in Figure 21.

A
\
\/

o Y2 B Tz 2 2
’ K | >< 2
/ J ®_

Figure 21 A full horizontally-folded and vertically-folded Pease FFT for N=16

The main problem of vertically-folded is how to buffer and reorder the data.
Without vertical folding, data buffering is just inserting registers at the PES’ outputs,

and data reordering is a simple wiring. Takala et al. [14] describes a vertically-folded

19



implementation of general stride permutation. Figure 22 is the overview of stride

permutation. The stride permutation can be decomposed into two structures. One is

interconnection permutatiori_zjj (L5, :i> mi modn-1(i<n-1)n- &n- 1,

an example ofL} is shown in Figure 23, and the other is Block, as shown in

Figure 24. The R block contains two m-entry synchronous FIFOs and a switch that
allows the two either to pass-through for m cycles or to criss-cross for m cycles.

Comparison of hardware cost and throughput is listed in Table 1.

Duaj || Dasgj | == D,

2j inputs szj 2j outputs
Diygj | e D,

D

Figure 22 An overview of stride permutation

Figure 23 An example of L}

FIFO m —

— FIFO m

Figure 24 The Dy, block

20



Following Figures are some examples for N=16.

D4 D2 D1
2 | e B 116 N
— 2 B Emy A A &
Figure 25 An example of (j,k)=(1,1)
L42 D1 D2
[ ] E [— i G
I 2 Q1 | 4
4 — L
4 i i [— N| 5) | ¥
I — 2 H 8 &
Figure 26 An example of (j,k)=(2,1)
L D, L D;
(=] b
2 [ e | T QTR e ®*4 4
) (] 71 Iy
’ T & 1 e
Figure 27 An example of (j,k)=(2,2)
L Dy =
(T o
®—
— s gy B
8 IHL Q| | 8
I | >
2 ®—
|
1 }# %_
Figure 28 An example of (j,k)=(4,1)
Table 1 Comparison of hardware cost and throughput
FFT Length multipliers adders registers throughpt
N jk 2jk N 20k
: J Nlog, N

21



Chapter 3

Proposed Approach

3.1 Motivation

An exhaustive search approach is proposed to find all possible FFT architectures
and then generate a set of acceptable FFT architecture according to the design
constraints. However, from Table 1, we can find that all the possible solutions have
the same number of multipliers, number of adders and number of registers usage

under the throughput constraint.

Pease architecture bases on the radix-2 algorithm. Observing the foek-2
graph in Figure 5, each butterfly is followed by a multiplication operation at the
output of subtraction operation. Therefore, Pease architecture is a very regular
architecture. However, the radix-2 algorithm contains many trivial multiplications
which do not need multipliers to calculate. For example, multiplication of —j

involves only real-imaginary swapping and sign inversion, as shown in Figure 29.

Zj 2it

I
N

zj

2i1 7§’ = -Zj

Figure 29 lllustration of —j multiplication

22



The radix-2 algorithm considers the multiplication of -gnd merges the

multiplication of 4 into odd-numbered columns, as shown in Figure 9. And the

architecture of radix2algorithm contains two kinds of butterflies, BFI and BFII.

From the view of architecture, the radik-algorithm is more irregular than the

radix-2 algorithm.

The RZMDC [6] is a pipeline architecture that implements the radix-2

algorithm with throughpuﬁ—, so RZMDC architecture is more irregular than Pease

architecture. In the following subsections, we introduce how we make the trade-off

between hardware and throughout based GVIRZ and R2MDC architecture.

3.2 R2°MDC Vertical Expansion Architecture

The RZMDC architecture for N=16 is shown in Figure 30. Because of the

property of this architecture, the throughput ofIRRC architecture isli—, and the

throughput i% for N=16.

Radix-2
BF

I Radix-2
N 2 BF

Now, if we want to increase the throughput, a straightforward approach is to

c2
-

Radix-2
BF

i
~>&>{1]

Radix-2
BF

Figure 30 R?MDC architecture with throughput = é N=16

parallelize the original architecture. However, parallelizing th&VRC architecture

is not an easy task because of the complexity of the controller and data dependence. It

may not be a hard task by using two’RBC architectures to parallelize, but the

difficulty will increase if we want to increase the degree of parallelism. An automatic

generation of parallelizing the architecture is needed to save the design cost. We

propose the approach to parallel théMRRC architecture automatically.

23




3.2.1 Interconnection Permutation Matrix

We first introduce the interconnection permutation matrik, The
interconnection permutation matrix represents wiring relationship between different

R2’MDC architectures. The rules gfdre shown in following.
e i <D i+ (mod 2y - 1
2 2
izg,i > i + (i mod 2)x (%— 1 @2— 1

Following the rules, two examples are shown in Figure 31

I

0 o o 0

1 1

o

Ly 3 3

0 o o 0 4 4
1 1 5 o o5
2 AT o6
30 03 7 © o 7

Figure 31 Examples of 4 and Ig

24



3.2.2 The Proposed R2°MDC Vertical Expansion Architecture

A general form of RAMDC vertical expansion architecture is shown in Figure 32.
ParameteN indicates the FFT transform size, whire 2", m=1,2,3...Parametet
indicates the degree of parallelism, wherd, 2,4..., 2. The number of registers of
each original RAMDC architecture decreases as the degree of parallelism increases,
and the number of interconnection permutation matrix also increases. With the

interconnection permutation matrix, data dependence would be kept. From Figure 32,

we can derive the number of multipliers &2 log, /|- 2) , the number of adders is

2t
2tlog, V, the number of registers i/ —2¢ and the throughput i% .

N N / A 1
4t 8t 16t - > —
] Q) &
BFI BFII BFI BFIL Bl | BFI Lz BFI
PO AT L =1
Lat Lz
N N N ] L2
4t 8t 16t - Lt —
- & R > i & —| -
BFI a Hgrmp e BFII BFI }V{ﬁ BFII| BFI grrr| ~ | |Lw2 BFI H BFII
oy Eleody Ee L] L el -

Figure 32 General form of RZMDC vertical expansion architecture

Figure 33 shows the case wherrl, the original RAMDC architecture, the

number of multiplier is 2, the number of adders is 8, the number of registers of

datapath is 14, and the throughpugst is

BFI L4 Mg 1€ BFI Ly
— A 1

Figure 33 Example of R2MDC vertical expansion architecture for t=1

Figure 34 shows the case when2, the number of multipliers is 4, the number

25



of adders is 16, the number of registers of datapath is 12, and the througjlhput is

l4

) Az H b AT H

BFI BFII BFI BFII
—_ Pz e ST ><
7 BFI Ilﬁ BFII @ m BFI BFII
—_ Pz Q- 1]

Figure 34 Example of R2MDC vertical expansion architecture for t=2

Figure 35 shows the case whend, the number of multipliers is 8, the number

of adders is 32, the number of registers of datapath is 8, and the throug]éhput 1S

y— |8 I4
— S T R % — =
BFI BFII BFI BFII
o >< N
— >'| 1 =
BFI BFII BFI BFII
Pt K
BFI BFII BFI BFII
e I . >< N
— ﬁ' 1 |3 —>
BFI BFII BFI BFII
s R P& >

Figure 35 Example of R3MDC vertical expansion architecture for t=4

Figure 36 shows the case wher8, namely, a fully parallelized R2DC

vertical expansion architecture, the number of multipliers is 16, the number of adders

is 64, the number of registers of datapath is 0, and the throug%p.ut 5

26



|16 |8

T

S [ L -

BFI BFII BFI BFII

1

BFI BFII BFI

BFII

BFI BFII BFI BFII

/
o>
BFI BFII ~S BFI
B9
3

BFII

N A A A A

BFII

BFI BFII BFI BFII

BFI BFII BFI BFII

\

BFI BFII BFI BFII

@ =

Figure 36 Example of R2MDC vertical expansion architecture for t=8

N A N A A A

3.2.3 The Limitation of R2°MDC Compression

As mentioned in previous work, they provide two dimensions folded techniques
for trade-off between area cost and throughput. However, horizontal compression
approach of RAMDC architecture is not suitable. Because of the irregularity of the
R2MDC architecture, advantages would be eliminated when compressing the

R22MDC architecture, as illustrated in Figure 37. Figure 37 is an example that shows
three architectures for the same throug%nuFigure 37(a) shows the RZDC

architecture witht = 1, the number of adders is 8, and the number of multipliers is 2,
Figure 37(b) shows the horizontal compressioAME2C architecture after paralleling

with t = 2, the number of adders is 8, and the number of multipliers is 4, and Figure

27



37(c) shows the horizontal compressiorflRRC architecture after paralleling with t
= 4, the number of adders is 8, and the number of multipliers is 8. We can find that
hardware requirement of horizontal compression architectures is worse than the

R2MDC architecture without horizontal compression under the same throughput

constraint.
(5
BFI BFII BFI BFII
)
()
©
BFII
©
©
BFII
©
® sFil 2
BFI BFII ® ©
® BFII ®
BFI BFII B ®
(b) (c)

Figure 37 Hardware usage comparison based on B2DC architecture for N=16,

throughput= é

Therefore, we choose another base architecture if horizontal compression is
necessary. The R2MDC architecture is more suitable thdRR2 architecture for
horizontal compression, as illustrates in Figure 38. In Figure 38 (a), the number of
adders is 8, and number of multipliers is 3, in Figure 38 (b), the number of adders is 8,
and number of multipliers is 4, in Figure 38 (c), the number of adders is 8, and
number of multipliers is 4. We can find that Figure 38 (b) and (c) have the same

number of multipliers and adders, although Figure 38 (a) has few number of

28



multipliers, we do not use this architecture because of the choice MCR2

architecture.

BF BF BF BF
Q) ® &)
(@)
BF
®
BF
®
BF
BE o] BF kg ®
BF
NS B
(b) ()

Figure 38 Hardware usage comparison based on R2ZMDC architecture for N=16,

throughput= 2—13

29



3.3 R2MDC Horizontal Compression Architecture

In section 3.2, we introduced the ®IDC vertical expansion architecture which
can increase the throughput with increasing the area cost, and as mentioned in section
3.2.3, R2MDC architecture is suitable for horizontal compression. In this section, we
illustrate how to compress the R2MDC architecture horizontally.

For an R2MDC architecture with transform sidewe can divide thé-points
R2MDC architecture intolog, N stages. In our approach, we can providkinds of

horizontal architectures, whera is the number of the factors dég, N, and the

factors f indicates the compression degree. We deﬁne:% for horizontal

compression. For example, assuN®l6, then the factors of 4 are 1, 2, 4. We have

three kinds of architectures faM=16, and 1, 2, 4 indicate different degrees of

compression as illustrate in Figure 39. In Figure 39(82)%:1, the compression
degree is 1 means no horizon compression occurs, the architedturd f the same
as the R2MDC architecture. In Figure 39(b), the compression degrée wahich

means compressing the number of stages of R2ZMDC architecture to half of original
architectureso, the number of stages in decreases to 2, and the data need to iterate

twice. In Figure 39 (c), only have one stage and need to iterate four times.

30



— 4 ] {2 _ { 1 1
BFI (N BFI BFI BFI
—_ P&t 2 1 X
(@)
2 1y ] { 1 1 ] 2 2
2 7@': BFI T BFI bzl
— PO— 4+ {1 ] 2
(b)
2 { 4 o 2 1 2
2 BFI oA
72N 3 [ 2 | 1
(©

Figure 39 Examples of horizontal compression for N=16, (a¥1(b) t:% (o)t :?11

31



3.4 Summary

In section 3, we proposed two directional trades-off approaches based on

R2MDC architecture and R2MDC architecture. In vertical direction, we provide an

expansion approach for R@DC architecture to increase the throughput, and in

horizontal direction, we provide a compression approach for R2ZMDC architecture to

decrease the throughput. Under the throughput constraint, our approach can provide

only one exact solution; however, as mentioned in section 2, they search the desired

solution exhaustively. Table 2 lists the hardware and throughput comparison between

our approach and previous work. Table 3 lists the hardware and throughput

comparison with the same throughput by replacipigwith tlog, N .

Table 2 Hardware Requirement Comparison

FFT length (N) multipliers adders registers throughput
p " Jik N 2jk
ease j j Nloa N o0, N
2t
R?MDC_P | t(2[log,N]-2)| 2tlog, N N-2t N
2t
R2MDC_F tlog, N 2tlog, N N N

Table 3 Hardware Requirement Comparison with the same throughput

FFT length (N) multipliers adders registers throughput
2t
Pease tlog, N 2tlog, N N N
2t
R?MDC_P | t(2[log,N|-2)| 2tlog, N N-2t N
2t
R2MDC_F tlog, N 2tlog, N N N

32



Chapter 4

Experiments

4.1 Experimental Environment

We implement two kinds of FFT architectures, including?MR2C vertical
expansion architecture and R2MDC horizontal architecture. Each PE stage of FFT
architecture is piped. The complex adder contains two real adders and the complex
multiplier contains four real multipliers and two real adders, as shown in Figure 40. For
each complex multiplier, we design a ROM which contains all the possible twiddle factor

values for this complex multiplier.

Figure 40 Complex Multiplier

Logic gate model includes adder, multiplier, and multiplexer. We use UMC 0.18um
cell library and Synopsys DesignWare [15] to synthesis under 100MHz clock rate. The
platform is built in an Intel dual Pentium Xeon at 2.5GHzith 32GB of main memory,
running Linux.

We use Matlab [16] to generate random inputs, and calculate the SQNR to guarantee
the correctness of the generated FFT architecture. Our simulation results of SQNR are

between 80 (db) and 90 (db).

33



4.2 Experimental Results

Figure 41 shows the relation between throughput and area for N=256, where area
indicates the number of gate counts. For Pease, three architectures are generated, from left to

right, the parameters ar¢ =1, j=2, and j=4respectively. For all architectures, we

assume k=1. For R2ZMDC, three architectures are generated, from left to right, the parameters

are t::—;, t:%, and t:% respectively. We can find that the area of Pease is almost the

same as the area of R2ZMDC under the same throughput. From Table 3, we can find that the
hardware requirement is also the same under the same throughput. Figure 42 shows the
relation between throughput and area for N=1024. For Pease, three architectures are
generated, from left to right, the parameters qrel, j=2, and j =4 respectively. For

all architectures, we also assume k=1. For R2ZMDC, three architectures are generated, from

left to right, the parameters arte:%), t:%, and t:% respectively. The trend is almost

the same as N=256 in Figure 41.

FFT Length N=256

140

. 120 __—

3

% 80 —o— Pease
o) —-

= 60 R2MDC
&

<

40

20

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045
Throughput

Figure 41 Relation between throughput and area for Pease and R2ZMDC, N=256

34



Area

FFT Length N=1024

380

370 /
360 /

350

. A
-

320 ‘
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

—— Pease

—*—R2MDC

Throughput

Figure 42 Relation between throughput and area for Pease and R2ZMDC, N=1024

Figure 43 shows the relation between throughput and area for N=256. For Pease, five
architectures are generated, from left to right, the parameterg afs | =16,...,

and j =128 respectively. For RMDC, six architectures are generated, from left to
right, the parameters are=1, t=2,..., and t =32 respectively. We can find that

the area of Pease is greatly larger than the area W¥IIR2 vertical expansion
architectures under the same throughput because of the great number of multipliers
usage of Pease. It can be also seen in Table 3. Figure 44 shows the relation between
throughput and area for N=1024. For Pease, five architectures are generated, from left
to right, the parameters arg =8, |j=16,..., and j =128 respectively. For
R2’MDC, five architectures are generated, from left to right, the parametets=dre
t=2,..., and t =16 respectively. We can find that the area of Pease is still greatly
larger than the area of RZDC vertical expansion architectures under the same

throughput.

35



FFT Length N=256

2500

2000

1500

—— Pease
—8— R22MDC

1000

Area (gate counts)

500

0 0.05 0.1 0.15 0.2 0.25 0.3
Throughput

Figure 43 Relation between throughput and area for Pease and B2DC, N=256

FFT Length N=1024

2500

2000

1500 e Pease

—=—R22MDC

1000

Area (gate counts)

500

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Throughput

Figure 44 Relation between throughput and area for Pease and R2DC, N=1024

Figure 45 shows the joint result of Figure @id Figure 43. And Figure 46 shows the
joint result of Figure 42 and Figure 44. We can find that the areas of our architectures are

almost lower the areas of Pease architecture under throughput constraint.

36



FFT Length N=256

2500
K
2000

1500

—e— Pease

—#*— R2MDC/R22MDC

1000

Area (gate counts)

500

[}

0.05 0.1 0.15 0.2 0.25 0.3
Throughput

Figure 45 Relation between throughput and area for Pease and R2MDC/RADC, N=256

FFT Length N=1024
2500
K

2000

1500

*— Pease

—®— ROMDC/R22MDC

1000

Area (gate counts)

500

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Throughput

Figure 46 Relation between throughput and area for Pease and R2MDC/B2DC, N=1024

Compared with the Pease architecture, for the length of 256 and 1024 cases, the
generated FFT processor saves about 30.8% area under throughput constraints, as shown

in Table 4.

37



Table 4 Area comparison

FFT Pease R2°MDC Area Reduction
Length (N) | Throughput Area Throughput Area Percentage (%)
0.0078 190524 0.0078 128033 32.8
0.0156 307040 0.0156 202469 34.06
256 0.0313 533357 0.0313 350469 34.29
0.0625 1044244 0.0625 641511 38.57
0.0016 434154 0.002 313669 27.75
1024 0.0031 565576 0.0039 417760 26.14
0.0063 825269 0.0078 623772 24.42
0.0125 1314636 0.0156 1029338 21.70

38




Chapter 5

Conclusions and Future Work

The FFT processor is an important computing block in communication and
signal processing systems. To improve productivity and shorten time-to-market, an
automatic FFT generator can be used to design a specified FFT processor. In this
thesis, we propose a parameterizable FFT generator with two approaches to make
good design trade-off between throughput and area under the design constraints. First,
the vertical expansion approach parallels the datapath to increase the throughput.
Second, the horizontal compression approach folds the datapath to reduce the
hardware usage. Besides, only the best FFT architecture is generated under the
user-specified throughput constraint to reduce the computation time in our proposed
FFT generator. Compared with the Pease architecture, for the length of 256 and 1024
cases, the generated FFT processor saves about 30.8% area under throughput
constraints.

Various FFT architectures are proposed in literature. It can be implemented into
our proposed FFT generator. In the future, more FFT algorithms such as’MIB®R2
FFT algorithm, mixed-radix FFT [17] algorithm will be considered to enlarge the
search space. Besides, the bitwidth optimization techniques proposed in [18] will also

be considered.

39



Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. W. Cooley and J. W. Turkey, “An Algorithm for Machine Computation of
Complex Fourier Series,” Math. Computation, VVol. 19, pp. 297-301, April 1965.

L. R. Rabiner and B. Goldheory and Application of Digital Sgnal Processing.
Prentice-Hall, Inc., 1975.

E. H. Wold and A. M. Despain, “Pipeline and Parallel-Pipeline FFT Processors
for VLSI Implementation,TEEE Trans. Computers, vol. 33, no. 5, pp. 414-426,
May 1984.

A.M. Despain. “Fourier Transform Computer using CORDIC lIteratioHsSEFE
Trans. Comput., C-23(10):993-1001, Oct.1974.

S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor,” in Proc.
10" Int'l Parallel Processing Symp. (IPPS '96), pp.766-770, 1996.

R. Storn. “Radix-2 FFT-pipeline Architecture with Reduced Neligesignal
Ratio,” |EE Proceedings- Mision, Image and Sgnal Processing, 141:81-86,
1994,

S. He and M. Torkelson, "Designing Pipeline FFT Processor for OFDM
(de)Modulation" International Symposium on Sgnals, Systems, and Electronics,
pp. 257- 262, Oct. 1998.

P. Duhamel, H. Hollmann, “Split Radix FFT AlgorithnEtectronics Letters, vol.
20, pp.14-16, January 1984.

P. Duhamel, and H. Hollmann, “Split Radix FFT Algorithr&Jéctronics Letters,
vol. 20, pp. 14-16, Jan. 5, 1984.

[10] D. Takahashi, “An Extended Split-Radix FFT Algorithm/EEE Sgnal

Processing Letters, vol. 8, no. 5, pp. 145-147, May 2001.

40



[11] G. Nordin, P. A. Milder, J. C. Hoe, and M. PischefAutomatic Generation of
Customized Discrete Fourier Transform IPs[h Proc. of ACM/IEEE Design
Automation Conf., pp. 471-474, 2005.

[12] P. A. Milder, M. Ahmad, J.C. Hoe, and M. PischeffFast and Accurate
Resource Estimation of Automatically Generated Custom DFT IP Corés,
Proc. of the ACM/S GDA International Symposium on Field Programmable Gate
Arrays, pp. 211-220 2006.

[13] P. A. Milder, F. Franchetti, J. C. Hoe, and M. PischéFormal Datapath
Representation and Manipulation for Implementing DSP TransforimsProc.
of ACM/IEEE Design Automation Conf., pp. 385-390, 2008.

[14] J. Takala, T.Jarvinen, P. Salmela, and D. Akopial. Multi-port Interconnection
Networks for Radix-r Algorithms. InProc. |EEE International Conference

Acoustics, Speech, Sgnal Processing, pp. 1177-1180, 2001.

[15] Synopsys DesignWare[Online], Available: http://www.synopsys.com

[16] Matlab [Online], Available: http://www.mathworks.com

[17] R.C. Singleton, “An Algorithm for Computing the Mixed Radix Fast Fourier
Transform,”lEEE Trans. on AudioElectroacoust., vol. 1, no. 2, pp. 93-103, June
1969.

[18] C.Y. Wang, C.B. Kuo, and J.Y. Jou,”Hybrid Word-Length Optimization
Methods of Pipelined FFT ProcessorslEEE Trans. Computers, vol. 56, no. 8,
pp. 1105- 1118, Aug. 2007.

[19] P.D. Welch, “A Fixed-Point Fast Fourier Transform Error Analysi§EE
Trans. Audio Electroacoustics, vol. 17, pp. 151-157, June 1969.

[20] A. Pomerleau, H.L. Buijs, and M. Fournier, “A Two-Pass Fixed Point Fast

Fourier Transform Error AnalysisJEEE Trans. Acoustics, Speech, and Sgnal
Processing, vol. 25, pp. 582-585, Dec. 1977.

41



