
i

國立交通大學國立交通大學國立交通大學國立交通大學

電子工程學系電子工程學系電子工程學系電子工程學系 電子研究所電子研究所電子研究所電子研究所

碩碩碩碩 士士士士 論論論論 文文文文

高效能且低成本之可參數化快速傅利葉轉

換硬體產生器

A Parameterizable Generator for High-Performance and

Low-Cost FFT Cores

研 究 生：王毓翔

 指導教授：周景揚 博士

 黃俊達 博士

中 華 民 國 九 十 八 年 九 月

ii

高效能且低成本之可參數化快速傅利葉轉換高效能且低成本之可參數化快速傅利葉轉換高效能且低成本之可參數化快速傅利葉轉換高效能且低成本之可參數化快速傅利葉轉換

硬體產生器硬體產生器硬體產生器硬體產生器

A Parameterizable Generator for High-Performance

and Low-Cost FFT Cores

研究生：王毓翔 Student: Yu-Hsiang Wang

指導教授：周景揚 教授 Advisors: Jing-Yang Jou

黃俊達 博士 Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering & Institute of Electronics

September 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年九月

iii

高效能且低成本之可參數化快速傅利葉轉換高效能且低成本之可參數化快速傅利葉轉換高效能且低成本之可參數化快速傅利葉轉換高效能且低成本之可參數化快速傅利葉轉換

硬體產生器硬體產生器硬體產生器硬體產生器

研究生：王毓翔 指導教授：周景揚博士 黃俊達博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要摘要摘要摘要

快速傅利葉轉換處理器相當廣泛的應用在訊號處理系統及通訊系統中。雖

然現存的文獻提供了許多快速傅利葉轉換處理器的架構，但要能夠在給定的條

件下挑選出最適合的架構仍是一個相當重要的技術問題。一個快速傅利葉轉換

處理器產生器，不但可以增加設計的生產力，同時也可以縮短整個系統設計開

發的時程。在這篇論文中，我們針對管線化的快速傅利葉轉換架構提出了面積

與通量折衷的方法，且能自動地產生對應的硬體設計。實驗結果顯示，我們在

通量的限制之下，可以產生硬體面積較小的架構。

iv

A Parameterizable Generator for

High-Performance and Low-Cost FFT Cores

 Student: Yu-Hsiang Wang Advisor: Dr. Jing-Yang Jou

 Dr. Juinn-Dar Huang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

The Fast Fourier Transform (FFT) processors are widely used in signal

processing systems and communication systems. Many FFT architectures are

proposed in literature to meet different applications. While designing an FFT

processor, one of the most difficult issues is to choose the best architecture under the

design constraints. An FFT generator can not only improve the productivity but also

shorten time-to-market. In this thesis, we propose approaches which can make

appropriate design trade-off between throughput and area of pipeline FFT

architectures, and automatically generate the corresponding hardware design. The

experimental results show that the proposed methodology can generate area-efficient

architectures under throughput constraints.

v

Acknowledgment

I deeply appreciate my advisor Professor Jing-Yang Jou, for his guidance and

encouragement. I am very thankful to my co-guidance advisor Professor Juinn-Dar

Huang, for his guidance. I also deeply appreciate Bu-Ching Lin for his constructive

suggestion in this work. Special thanks to all members of NCTU EE EDA LAB for the

happy time during the past two years. Finally, I would like to express my sincere

appreciate to my family for their support and encouragement.

vi

Content

高效能且低成本之可參數化快速傅利葉轉換 硬體產生器....................................... i

摘要.. iii

A Parameterizable Generator for High-Performance and Low-Cost FFT Cores iv

Abstract ... iv

Acknowledgment ... v

Content .. vi

List of Figures .. vii

List of Tables ... ix

Chapter 1 Introduction ... 1

Chapter 2 Preliminary .. 4

2.1 FFT Algorithms .. 4

2.1.1 Radix-2 DIF Algorithm ... 4

2.1.2 Radix-4 DIF Algorithm ... 8

2.1.3 Radix-22 Algorithm ... 9

2.1.4 Split-Radix Algorithm ... 12

2.2 FFT Architectures .. 12

2.2.1 Pipeline Architectures ... 12

2.2.2 Memory-Based Architectures ... 15

2.3 Automatic FFT Generation .. 16

Chapter 3 Proposed Approach ... 22

3.1 Motivation .. 22

3.2 R22MDC Vertical Expansion Architecture .. 23

3.2.1 Interconnection Permutation Matrix ... 24

3.2.2 The Proposed R22MDC Vertical Expansion Architecture 25

3.2.3 The Limitation of R22MDC Compression .. 27

3.3 R2MDC Horizontal Compression Architecture ... 30

3.4 Summary .. 32

Chapter 4 Experiments ... 33

4.1 Experimental Environment .. 33

4.2 Experimental Results ... 34

Chapter 5 Conclusions and Future Work ... 39

Reference ... 40

vii

List of Figures
Figure 1 An example architecture of OFDM system 1

Figure 2 Characteristic 2 of twiddle factor 5

Figure 3 Characteristic 3 of twiddle factor 5

Figure 4 Flow graph of the decomposition of an N-point DFT computation into two

(N/2)-point DFT computations (N=16) 7

Figure 5 Flow graph of the complete decomposition of a 16-point FFT computation 7

Figure 6 Butterfly graph of Radix-2 DIF FFT 8

Figure 7 Butterfly graph of Radix-4 DIF FFT 9

Figure 8 Flow graph of the decomposition of an N-point DFT computation into four

(N/4)-point DFT computations (N=16) with radix-22 algorithm 11

Figure 9 Flow graph of the complete decomposition of a 16-point FFT computation

with radix-22 algorithm 11

Figure 10 R2SDF architecture (N=16) 13

Figure 11 R4SDF architecture (N=16) 13

Figure 12 R22SDF architecture (N=16) 14

Figure 13 R2MDC architecture (N=16) 14

Figure 14 R4MDC Architecture (N=16) 15

Figure 15 R22MDC architecture (N=16) 15

Figure 16 A memory-based architecture example 16

Figure 17 Pease architecture (N=16) 17

Figure 18 Overview of the folded techniques 17

Figure 19 Overview of the folded techniques example for N=16 18

Figure 20 A full horizontally-folded Pease FFT for N=16 19

Figure 21 A full horizontally-folded and vertically-folded Pease FFT for N=16 19

Figure 22 An overview of stride permutation 20

Figure 23 An example of 4
2L 20

Figure 24 The Dm block 20

Figure 25 An example of (j,k)=(1,1) 21

Figure 26 An example of (j,k)=(2,1) 21

Figure 27 An example of (j,k)=(2,2) 21

Figure 28 An example of (j,k)=(4,1) 21

Figure 29 Illustration of –j multiplication 22

Figure 30 R22MDC architecture with throughput =
1

8
, N=16 23

Figure 31 Examples of I4 and I8 24

viii

Figure 32 General form of R22MDC vertical expansion architecture 25

Figure 33 Example of R22MDC vertical expansion architecture for t=1 25

Figure 34 Example of R22MDC vertical expansion architecture for t=2 26

Figure 35 Example of R22MDC vertical expansion architecture for t=4 26

Figure 36 Example of R22MDC vertical expansion architecture for t=8 27

Figure 37 Hardware usage comparison based on R22MDC architecture for N=16,

throughput=
1

8
. 28

Figure 38 Hardware usage comparison based on R2MDC architecture for N=16,

throughput=
1

8
. 29

Figure 39 Examples of horizontal compression for N=16, (a) t=1(b) t =
1

2
(c) t =

1

4
 31

Figure 40 Complex Multiplier 33

Figure 41 Relation between throughput and area for Pease and R2MDC, N=256 34

Figure 42 Relation between throughput and area for Pease and R2MDC, N=1024 35

Figure 43 Relation between throughput and area for Pease and R22MDC, N=256 36

Figure 44 Relation between throughput and area for Pease and R22MDC, N=1024 36

Figure 45 Relation between throughput and area for Pease and R2MDC/R22MDC,

N=256 37

Figure 46 Relation between throughput and area for Pease and R2MDC/R22MDC,

N=1024 37

ix

List of Tables
Table 1 Comparison of hardware cost and throughput .. 21

Table 2 Hardware Requirement Comparison ... 32

Table 3 Hardware Requirement Comparison with the same throughput 32

Table 4 Area Comparison ... 38

1

Chapter 1

Introduction

Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) are

widely used algorithms for calculating the Discrete Fourier Transform (DFT) and

Inverse Discrete Fourier Transform (IDFT) because of the low computation

complexity. FFT processor is an important block in communication system and signal

processing system. For example, as shown in Figure 1, Orthogonal Frequency

Division Multiplexing (OFDM) system is widely used in many communication

applications such as xDSL modem, HDTV, and wide band mobile terminals. In those

applications, FFT and IFFT are the most important processing blocks to meet the

design constraints.

Figure 1 An example architecture of OFDM system

2

An automatic FFT generator can not only improve productivity but also

shorten time-to-market. To support user customization, the automatic FFT

generator provides some parameters to customize for the design constraints, such as

the FFT transform sizes, I/O data ordering, data bitwidth, and the various

architectures. In this thesis, we mainly focus on the trade-off between throughput

and area of the FFT architectures.

Since the FFT algorithm was proposed by Cooley and Turkey in 1965 [1],

many similar algorithms have been proposed to reduce the computation complexity

of FFT. As the technology progress and algorithm improvement, FFT is widely

used in Digital Signal Processing (DSP) applications. According to different

algorithms, many kinds of FFT architectures have been proposed. Generally, there

are two kinds of popular FFT architectures. One is memory-based architecture and

the other is pipelined-based architecture. A single processing elements (PE) is used

in memory-based architecture. It can be easily extended to other FFT transform

sizes, so the memory-based architectures are usually used for low hardware cost

and low throughput designs. Pipeline-based architectures have features such as

regularity, simplicity, and high throughput rate. In this thesis, we only focus on

pipelined-based architectures.

Several pipeline-based FFT architectures are proposed, such as the Radix-2

Multi-path Delay Commutator (R2MDC) [2], Radix-4 Multi-path Delay

Commutator (R4MDC) [2], Radix-2 Single-path Delay Feedback (R2SDF) [3],

Radix-4 Single-path Delay Feedback (R4SDF) [4], Radix-22 Single-path Delay

Feedback (R22SDF) [5], Radix-22 Multi-path Delay Commutator (R22MDC)[6] and

Radix-23 Single-path Delay Feedback (R23SDF) [7]. In these architectures, the

R4SDF requires fewer multipliers than the R2SDF; however the R2SDF

architecture is simpler and more regular than the R4SDF. The R2MDC requires

3

fewer multipliers, adders and memory size than the R4MDC; however, the R4MDC

can provide higher throughput. The R22SDF has the same multiplier complex as

R4SDF, but retains the butterfly structure of radix-2 algorithm. The R22MDC uses

the same algorithm as the R22SDF, and the R22MDC has higher throughput. As a

result, in this work, our proposed FFT generator is based on the R22MDC and the

R2MDC architectures.

The rest of this thesis is organized as follows. In Chapter 2, a brief review of

FFT algorithms, architectures, and automatic FFT generation is made. In Chapter 3,

a detailed introduction of our approach of automatic FFT generation is made. The

experimental result is presented in Chapter 4. Finally, the conclusions and the

future works are given in Chapter 5.

4

Chapter 2

Preliminary

2.1 FFT Algorithms

2.1.1 Radix-2 DIF Algorithm

An FFT computes the DFT and produces exactly the same result as evaluating

the DFT definition directly; the only difference is that an FFT is much faster.

The formulation of Length N DFT is define as
1

0

() = ()
−

=
∑
N

nk
N

n

X k x n W , k=0, 1,…,N-1 (2.1) where the coefficient nk
NW is

called twiddle factor, and is defined as
2 2 2

cos() sin()
π π π−

= = −
j nk

nk N
N

nk nk
W e j

N N
. X (k)

is in frequency domain, and x[n] is in time domain. Radix-2 Decimation-In-Frequency

(DIF) Algorithm divided the frequency sequence X (k) into even-numbered frequency

samples and odd-numbered frequency samples. Three characteristics of twiddle factor

are shown below and are illustrated in Figure 2 and Figure 3.

1.
2

2 1
π

π
−

−= = =
j nN

nN j nN
NW e e

2. 2+ = −nk N nk
N NW W

3. ()+ =n N k nk
N NW W

5

Figure 2 Characteristic 2 of twiddle factor

Figure 3 Characteristic 3 of twiddle factor

We introduce the radix-2 DIF algorithm with characteristics of twiddle factor.

For a discrete Fourier transform of length N sequence x[n], the even-numbered

frequency samples can be indicated as

1
2

0

[2] []
−

=
=∑

N
rn

N
n

X r x n W , 0,1,..., 1
2

= −N
r

1

12
2 2

0
2

[] []
− −

= =

= +∑ ∑

N
N

rn rn
N N

Nn n

x n W x n W

1

12 2 ()2 2

0 0

[] []
2

− − +

= =

= + +∑ ∑

N
NN r nrn

N N
n n

N
x n W x n W

6

1

2

0 2

([] [])
2

−

=

= + +∑

N

rn
N

n

N
x n x n W

 2([] [])
2

= + +N

N
DFT x n x n (2.2)

And the odd-numbered frequency samples can be indicated as

1
12

(2 1) (2 1)

0
2

[2 1] [] [] , 0,1,..., 1
2

− −
+ +

= =

+ = + = −∑ ∑

N
N

n r n r
N N

Nn n

N
X r x n W x n W r

1 1

2 2
()(2 1)(2 1) 2

0 0

[] []
2

− −
+ ++

= =

= + +∑ ∑

N N

Nn rn r
N N

n n

N
x n W x n W

1 1

2 2(2 1)(2 1) (2 1)2

0 0

[] []
2

− −
++ +

= =

= + +∑ ∑

N N
N

rn r n r
N N N

n n

N
x n W W x n W

1 1

2 2
(2 1) (2 1)

0 0

[] []
2

− −
+ +

= =

= − +∑ ∑

N N

n r n r
N N

n n

N
x n W x n W

1

2

0 2

([] [])
2

−

=

= − +∑

N

n nr
N N

n

N
x n x n QW W

 2 ([] [])
2

 = − + 
 

n
N N

N
DFT x n x n W (2.3)

From the equation (2.2) and (2.3), with [] [] []
2

= + + N
g n x n x n and

[] [] []
2

= − + N
h n x n x n , it can be seen that the original N-points FFT operation has

been divided into two
2

N
-points FFT operations as shown in Figure 4.

7

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

x[9]

x[15]

x[14]

x[13]

x[12]

x[11]

x[10]

N/2-point DFT

N/2-point DFT

X[0]

X[8]

X[4]

X[12]

X[2]

X[10]

X[6]

X[14]

X[1]

X[9]

X[5]

X[13]

X[3]

X[11]

X[7]

X[15]

h[0]

h[1]

h[2]

h[3]

g[0]

g[1]

g[2]

g[3]

h[4]

h[5]

h[6]

h[7]

g[4]

g[5]

g[6]

g[7]

0

NW

1

NW

2

NW

3

NW

4

NW

5

NW

6

NW

7

NW

1−

1−

1−

1−

1−

1−

1−

1−

Figure 4 Flow graph of the decomposition of an N-point DFT computation into

two (N/2)-point DFT computations (N=16)

Finally, as shown in Figure 5, the complete decimation result can be derived by the

similar manner that decomposes N-point DFT computation into two (N/2)-point

DFT computations.

1

N
W

2

N
W

3

NW

4

NW

5

NW

6

NW

7

NW

0

N
W

0

N
W

2

N
W

4

N
W

6

N
W

0

NW

2

NW

4

NW

6

NW

0

NW

4

NW

0

NW

4

NW

0

NW

4

NW

0

NW

4

NW

0

NW

0

NW

0

NW

0

NW

0

NW

0

NW

0

NW

0

NW

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

Figure 5 Flow graph of the complete decomposition of a 16-point FFT

computation

8

The addition and the subtraction operation are called the butterfly operation, as

show in Figure 6.

[]x n

[]
2

+ N
x n

[] []
2

+ + N
x n x n

[] []
2

− + N
x n x n

Figure 6 Butterfly graph of Radix-2 DIF FFT

2.1.2 Radix-4 DIF Algorithm

Similar to radix-2 DIF algorithm, in the radix-4 DIF algorithm, the frequency

sequence X (k) is divided into (4)X k , (4 1)+X k , (4 2)+X k , (4 3)+X k frequency

samples as derived below.

1
4

(4)

0

1
4

4
0

4

3
(4) [] [] [] []

4 2 4

3
[] [] [] [] , 0,1,..., 4 1

4 2 4

3
[] [] [] [] (2.

4 2 4

−

=

−

=

 = + + + + + +  

 = + + + + + + = −  

 = + + + + + + 
 

∑

∑

N

n k
N

n

N

nk
N

n

N

N N N
X k x n x n x n x n W

N N N
x n x n x n x n W k N

N N N
DFT x n x n x n x n 4)

1
4

(4)

0

1
4

40

4

3
(4 1) [] [] [] []

4 2 4

3
[] [] [] [] , 0,1,..., 1

4 2 4 4

3
[] [] [] []

4 2 4

−

=

−

=

 + = − ⋅ + − + + ⋅ +  

 = − ⋅ + − + + ⋅ + = −  

  = − ⋅ + − + + ⋅ +  
  

∑

∑

N

n n k
N N

n

N

n nk
N N

n

n
N N

N N N
X k x n j x n x n j x n W W

N N N N
x n j x n x n j x n W W k

N N N
DFT x n j x n x n j x n W (2.5)

9

1
4

(4)

0

1
4

40

4

3
(4 2) [] [] [] []

4 2 4

3
[] [] [] [] , 0,1,..., 1

4 2 4 4

3
[] [] [] [] (

4 2 4

−

=

−

=

 + = − + + + − +  

 = − + + + − + = −  

  = − + + + − +  
  

∑

∑

N

n n k
N N

n

N

n nk
N N

n

n
N N

N N N
X k x n x n x n x n W W

N N N N
x n x n x n x n W W k

N N N
DFT x n x n x n x n W 2.6)

1
4

(4)

0

1
4

40

4

3
(4 3) [] [] [] []

4 2 4

3
[] [] [] [] , 0,1,..., 1

4 2 4 4

3
[] [] [] []

4 2 4

−

=

−

=

 + = + ⋅ + − + − ⋅ +  

 = + ⋅ + − + − ⋅ + = −  

  = + ⋅ + − + − ⋅ +  
  

∑

∑

N

n n k
N N

n

N

n nk
N N

n

n
N N

N N N
X k x n j x n x n j x n W W

N N N N
x n j x n x n j x n W W k

N N N
DFT x n j x n x n j x n W (2.7)

The mapping butterfly graph of radix-4 algorithm is shown in Figure 7

[]x n

[]
4

+ N
x n

[]
2

+ N
x n

3
[]

4
+ N

x n

0n
NW

1n
NW
2n

NW
3n

NW

(4)X k

(4 1)+X k

(4 2)+X k

(4 3)+X k

Figure 7 Butterfly graph of Radix-4 DIF FFT

2.1.3 Radix-22 Algorithm

Radix-4 algorithm has the lower multiplicative complexity than radix-2

algorithm, but the hardware structure of butterfly of radix-4 algorithm is more

10

complex than that of radix-2 algorithm. Combining the advantages of radix-2 and

radix-4 algorithm, Radix-22 algorithm [5] has the same multiplicative complexity as

radix-4 algorithm, but retains the butterfly structure of radix-2 algorithm. For a

discrete Fourier transform of length N sequence x[n],

1

0

() [] , 0,1,..., 1
−

=
= = −∑

N
nk

N
n

X k x n W k N (2.8)

Let 1 2 3 1 2 3 and 2 4 ,
2 4

= + + = + +N N
n n n n k k k k we can rewrite equation (2.8) as

1 2 3 1 2 3

3 2 1

1
1 14 ()(2 4)

2 4
1 2 3 1 2 3

0 0 0

(2 4) ()
2 4

−
+ + + +

= = =
+ + = + +∑∑∑

N
N N

n n n k k k

N
n n n

N N
X k k k x n n n W (2.9)

After simplification, we can then write

3 1 2 3 3

3

1
4

(2)
1 2 3 1 2 3

40

(2 4) (, ,)
−

+

=

 + + =  ∑

N

n k k n k
N N

n

X k k k H k k n W W , where (2.10)

1 1 2 1(2)
1 2 3 3 3 3 3

3
() () (1) () () () (1) ()

2 4 4
+   + + = + − + + − + + − +      

k k k kN N
H k k n x n x n j x n x n N

(2.11)

From equation (2.10) and (2.11), we can find that the original N-points FFT

operation has been partitioned into four
4

N
-points FFT operations as shown in

Figure 8. After proceeding in a manner similar to the technique, a complete

decimation result can be derived as shown in Figure 9.

11

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

x[9]

x[15]

x[14]

x[13]

x[12]

x[11]

x[10]

4

NW

6

NW

2

NW

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

-j

-j

-j

-j

3

NW

3

NW

1

NW

2

NW

9

NW

6

NW

N/4 DFT

(k1=0,k2=0)

N/4 DFT

(k1=0,k2=1)

N/4 DFT

(k1=1,k2=0)

N/4 DFT

(k1=1,k2=1)

X[0]

X[8]

X[4]

X[12]

X[2]

X[10]

X[6]

X[14]

X[1]

X[9]

X[5]

X[13]

X[3]

X[11]

X[7]

X[15]

Figure 8 Flow graph of the decomposition of an N-point DFT computation into

four (N/4)-point DFT computations (N=16) with radix-22 algorithm

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

1−

4

N
W

6

N
W

2

N
W

3

N
W

3

NW

1

NW

2

N
W

9

N
W

6

N
W

0

N
W

0

N
W

0

NW

0

N
W

0

N
W

0

N
W

0

N
W

0

N
W

0

N
W

0

N
W

0

N
W

Figure 9 Flow graph of the complete decomposition of a 16-point FFT

computation with radix-22 algorithm

12

2.1.4 Split-Radix Algorithm

The split-radix algorithm can further reduce the complexity of the FFT algorithm.

It has fewer multiplications and additions than radix-2 and radix-4 algorithm, but

radix-2 and radix-4 algorithm are more regular than split-radix algorithm. The most

popular split-radix algorithm including radix-2/4 and radix-2/8 were proposed in [8].

2.2 FFT Architectures

Generally, there are two kinds of popular FFT architectures to implement FFT

algorithms. One is memory-based architectures and the other is pipeline-based

architectures. Memory-based architectures are suitable for low throughput and low

hardware cost designs; however, pipeline-based architectures are usually regular and

suitable for high throughput and high hardware cost designs. In this thesis, we focus

on pipeline-based FFT architectures. The details of pipeline-based architectures are

presented in the following subsections.

2.2.1 Pipeline Architectures

Pipeline-based architectures can be further divided into two kinds of

architectures depend on the design of register. One is Single-path Delay Feedback

(SDF) architecture, and the other one is Multi-path Delay Commutator (MDC)

architecture. SDF architecture has higher hardware usage and lower hardware cost;

however, MDC architecture has higher throughput than SDF architecture. We

introduce these architectures below.

We first introduce the SDF architecture. The Radix-2 SDF (R2SDF)

architecture [3] is shown in Figure 10. By storing the butterfly output into the shift

registers, R2SDF uses the registers efficiently. The butterfly passes the output to the

13

next stage when doing addition operation, and storing the output into the shift

register when doing subtraction operation. In each cycle, only one output passes

through the multiplier.

Figure 10 R2SDF architecture (N=16)

The Radix-4 SDF (R4SDF) architecture [4] is shown in Figure 11. Similar to the

R2SDF architecture, radix-4 butterfly store three of outputs into shift registers, and

only one output passes through the multiplier in each cycle.

Figure 11 R4SDF architecture (N=16)

The Radix-22 SDF (R22SDF) [5] architecture is similar to the R2SDF

architecture and reduces the number of multipliers. R22SDF uses two types of

butterflies, one is the same as that in R2SDF architecture and the other contains also

some logic to implement the multiplication of twiddle factor of –j, as shown in Figure

12.

14

Figure 12 R22SDF architecture (N=16)

The Radix-2 MDC (R2MDC) architecture [2] is straightforward. The inputs are

separated into two streams by the control of switches, and then go to butterflies in

parallel, as shown in Figure 13.

Figure 13 R2MDC architecture (N=16)

The Radix-4 MDC (R4MDC) architecture [2] is also similar to R2MDC

architecture besides the raidx-4 butterfly and the number of registers, as shown in

Figure 14.

15

Figure 14 R4MDC Architecture (N=16)

The Radix-22 MDC (R22MDC) architecture [6] is the MDC type architecture of

Radix-22 algorithm. In the flow graph of the complete decomposition of an N-point

FFT computation with radix-22 algorithm, the even-numbered stages multiple twiddle

factors not only the subtraction output but the addition output, so the R22MDC

architecture needs two complex multipliers in even-numbered stages, as shown in

Figure 15.

Figure 15 R22MDC architecture (N=16)

2.2.2 Memory-Based Architectures

The memory-based architecture is another widely used FFT architecture. It only

uses one radix-r processing element to compute all butterflies in signal flow graph.

The basic components of memory-based architecture are shown in Figure 16. In

Figure 16, the multiplexers are used to control the input and output data, and because

of only single PE, the controller of memory-based architecture is very complex.

Because of low hardware cost and low power properties, memory-based architecture

is suitable for modern communication system.

16

Figure 16 A memory-based architecture example

2.3 Automatic FFT Generation

An automatic FFT Generator can improve productivity and shorten

time-to-market. A customized FFT generator with parameterized options can be

tailored for application-specific trade-off in performance. Three papers about

parameterized FFT Generator have been published [11]. In the following, we

briefly introduce the techniques in [11] and [13].

In [11] and [13], they make the trade-off between area and throughput based on

Pease architecture. After replacing twiddle factors with complex multipliers and

exchanging the positions of butterflies, the16-points Pease architecture can be derived

from the flow graph of the complete decomposition of the 16-point FFT computation

with radix-2 algorithm, as shown in Figure 17. From Figure 17, we can derive the

number of multipliers is 2log
2

N
N , and the number of adders is 2logN N . For N=16,

the number of multipliers is 32 and the number of adders is 64.

17

Figure 17 Pease architecture (N=16)

Based on Pease architecture, two dimensions folded techniques of Pease

Architecture are proposed. The overview of these techniques is shown in Figure 18.

Figure 18 Overview of the folded techniques

As shown in Figure 18, parameter j indicates the number of PEs per stage, and j

needs to be one of the factors of
2

N
; parameter k indicates the number of stages,

and k needs to be one of the factors of 2log N . Several different architectures can

18

be derived by choosing parameter j and k. For N=16, all possible choices of (j, k)

are (1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (4,1), (4,2), (4,4), (8,1), (8,2) and (8,4),

Figure 19 shows some overviews of choices of N=16.

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

(8,4)

Figure 19 Overview of the folded techniques example for N=16

We further introduce the folded techniques. From Figure 17, we can

straightforward fold the Pease architecture fully in horizontal direction by using a

multiplexer and inserting registers at the outputs of PEs. A vector iterates over the

feedback 2log N times to compute the FFT. Figure 20 shows a full

horizontally-folded Pease FFT for N=16.

19

Figure 20 A full horizontally-folded Pease FFT for N=16

Starting from the full horizontally-folded architecture, the
2

N
PEs can be further

folded in vertical direction to achieve different degrees of parallelism and therefore

different throughputs. A full horizontally-folded and vertically-folded Pease FFT for

N=16 is shown in Figure 21.

Figure 21 A full horizontally-folded and vertically-folded Pease FFT for N=16

The main problem of vertically-folded is how to buffer and reorder the data.

Without vertical folding, data buffering is just inserting registers at the PEs’ outputs,

and data reordering is a simple wiring. Takala et al. [14] describes a vertically-folded

 2j
jL

20

implementation of general stride permutation. Figure 22 is the overview of stride

permutation. The stride permutation can be decomposed into two structures. One is

interconnection permutation 2 (: mod 1 (0 1), 1 1)− ≤ < − −a a
j n

j mL L i mi n i n n - n ,

an example of 4
2L is shown in Figure 23, and the other is Dm block, as shown in

Figure 24. The Dm block contains two m-entry synchronous FIFOs and a switch that

allows the two either to pass-through for m cycles or to criss-cross for m cycles.

Comparison of hardware cost and throughput is listed in Table 1.

2j
jL

Figure 22 An overview of stride permutation

Figure 23 An example of 4
2L

Figure 24 The Dm block

21

Following Figures are some examples for N=16.

Figure 25 An example of (j,k)=(1,1)

Figure 26 An example of (j,k)=(2,1)

Figure 27 An example of (j,k)=(2,2)

Figure 28 An example of (j,k)=(4,1)

Table 1 Comparison of hardware cost and throughput

FFT Length multipliers adders registers throughput

N jk 2jk N
2

2

log

jk

N N

D2

D2
4

2
L

4

2
L

4

2
L D1

8

4
L

22

Chapter 3

Proposed Approach

3.1 Motivation

An exhaustive search approach is proposed to find all possible FFT architectures

and then generate a set of acceptable FFT architecture according to the design

constraints. However, from Table 1, we can find that all the possible solutions have

the same number of multipliers, number of adders and number of registers usage

under the throughput constraint.

Pease architecture bases on the radix-2 algorithm. Observing the raidx-2 flow

graph in Figure 5, each butterfly is followed by a multiplication operation at the

output of subtraction operation. Therefore, Pease architecture is a very regular

architecture. However, the radix-2 algorithm contains many trivial multiplications

which do not need multipliers to calculate. For example, multiplication of –j

involves only real-imaginary swapping and sign inversion, as shown in Figure 29.

Figure 29 Illustration of –j multiplication

23

The radix-22 algorithm considers the multiplication of –j and merges the

multiplication of –j into odd-numbered columns, as shown in Figure 9. And the

architecture of radix-22 algorithm contains two kinds of butterflies, BFI and BFII.

From the view of architecture, the radix-22 algorithm is more irregular than the

radix-2 algorithm.

The R22MDC [6] is a pipeline architecture that implements the radix-22

algorithm with throughput
2

N
, so R22MDC architecture is more irregular than Pease

architecture. In the following subsections, we introduce how we make the trade-off

between hardware and throughout based on R22MDC and R2MDC architecture.

3.2 R22MDC Vertical Expansion Architecture

The R22MDC architecture for N=16 is shown in Figure 30. Because of the

property of this architecture, the throughput of R22MDC architecture is
2

N
, and the

throughput is
1

8
 for N=16.

Figure 30 R22MDC architecture with throughput =
1

8
, N=16

Now, if we want to increase the throughput, a straightforward approach is to

parallelize the original architecture. However, parallelizing the R22MDC architecture

is not an easy task because of the complexity of the controller and data dependence. It

may not be a hard task by using two R22MDC architectures to parallelize, but the

difficulty will increase if we want to increase the degree of parallelism. An automatic

generation of parallelizing the architecture is needed to save the design cost. We

propose the approach to parallel the R22MDC architecture automatically.

24

3.2.1 Interconnection Permutation Matrix

We first introduce the interconnection permutation matrix, In. The

interconnection permutation matrix represents wiring relationship between different

R22MDC architectures. The rules of In are shown in following.

I n: , (mod 2) (1)
2 2

< + × −a
n N

i i i i

 , (mod 2) (1) (1)
2 2 2

≥ + × − − −a
n N N

i i i i

Following the rules, two examples are shown in Figure 31

0

1

2

3

0

1

2

3

I4

0

1

2

3

0

1

2

3

I8

4

5

6

7

4

5

6

7
Figure 31 Examples of I4 and I8

25

3.2.2 The Proposed R22MDC Vertical Expansion Architecture

A general form of R22MDC vertical expansion architecture is shown in Figure 32.

Parameter N indicates the FFT transform size, where 2 , 1,2,3...= =mN m .Parameter t

indicates the degree of parallelism, where 11,2,4..., 2−= mt . The number of registers of

each original R22MDC architecture decreases as the degree of parallelism increases,

and the number of interconnection permutation matrix also increases. With the

interconnection permutation matrix, data dependence would be kept. From Figure 32,

we can derive the number of multipliers is
4

(2 log - 2)t N   , the number of adders is

2
2 logt N , the number of registers is 2N t− and the throughput is

2t

N
.

16

N

t8

N

t4

N

t
1

16

N

t8

N

t4

N

t
1

Figure 32 General form of R22MDC vertical expansion architecture

Figure 33 shows the case when t =1, the original R22MDC architecture, the

number of multiplier is 2, the number of adders is 8, the number of registers of

datapath is 14, and the throughput is
1

8
.

Figure 33 Example of R22MDC vertical expansion architecture for t=1

Figure 34 shows the case when t =2, the number of multipliers is 4, the number

26

of adders is 16, the number of registers of datapath is 12, and the throughput is
1

4
.

Figure 34 Example of R22MDC vertical expansion architecture for t=2

Figure 35 shows the case when t =4, the number of multipliers is 8, the number

of adders is 32, the number of registers of datapath is 8, and the throughput is
1

2
.

Figure 35 Example of R22MDC vertical expansion architecture for t=4

Figure 36 shows the case when t =8, namely, a fully parallelized R22MDC

vertical expansion architecture, the number of multipliers is 16, the number of adders

is 64, the number of registers of datapath is 0, and the throughput is
1

2
.

27

Figure 36 Example of R22MDC vertical expansion architecture for t=8

3.2.3 The Limitation of R22MDC Compression

As mentioned in previous work, they provide two dimensions folded techniques

for trade-off between area cost and throughput. However, horizontal compression

approach of R22MDC architecture is not suitable. Because of the irregularity of the

R22MDC architecture, advantages would be eliminated when compressing the

R22MDC architecture, as illustrated in Figure 37. Figure 37 is an example that shows

three architectures for the same throughput
1

8
. Figure 37(a) shows the R22MDC

architecture with t = 1, the number of adders is 8, and the number of multipliers is 2,

Figure 37(b) shows the horizontal compression R22MDC architecture after paralleling

with t = 2, the number of adders is 8, and the number of multipliers is 4, and Figure

28

37(c) shows the horizontal compression R22MDC architecture after paralleling with t

= 4, the number of adders is 8, and the number of multipliers is 8. We can find that

hardware requirement of horizontal compression architectures is worse than the

R22MDC architecture without horizontal compression under the same throughput

constraint.

(a)

(b) (c)

Figure 37 Hardware usage comparison based on R22MDC architecture for N=16,

throughput=
1

8
.

Therefore, we choose another base architecture if horizontal compression is

necessary. The R2MDC architecture is more suitable than R22MDC architecture for

horizontal compression, as illustrates in Figure 38. In Figure 38 (a), the number of

adders is 8, and number of multipliers is 3, in Figure 38 (b), the number of adders is 8,

and number of multipliers is 4, in Figure 38 (c), the number of adders is 8, and

number of multipliers is 4. We can find that Figure 38 (b) and (c) have the same

number of multipliers and adders, although Figure 38 (a) has few number of

29

multipliers, we do not use this architecture because of the choice of R22MDC

architecture.

(a)

 (b) (c)

Figure 38 Hardware usage comparison based on R2MDC architecture for N=16,

throughput=
1

8
.

30

3.3 R2MDC Horizontal Compression Architecture

In section 3.2, we introduced the R22MDC vertical expansion architecture which

can increase the throughput with increasing the area cost, and as mentioned in section

3.2.3, R2MDC architecture is suitable for horizontal compression. In this section, we

illustrate how to compress the R2MDC architecture horizontally.

For an R2MDC architecture with transform size N, we can divide the N-points

R2MDC architecture into 2log N stages. In our approach, we can provide m kinds of

horizontal architectures, where m is the number of the factors of 2log N , and the

factors f indicates the compression degree. We define t =
1

f
 for horizontal

compression. For example, assume N=16, then the factors of 4 are 1, 2, 4. We have

three kinds of architectures for N=16, and 1, 2, 4 indicate different degrees of

compression as illustrate in Figure 39. In Figure 39(a), t =
1

f
=1, the compression

degree is 1 means no horizon compression occurs, the architecture of t = 1 is the same

as the R2MDC architecture. In Figure 39(b), the compression degree is
1

2
 which

means compressing the number of stages of R2MDC architecture to half of original

architecture, so, the number of stages in decreases to 2, and the data need to iterate

twice. In Figure 39 (c), only have one stage and need to iterate four times.

31

(a)

(b)

(c)

Figure 39 Examples of horizontal compression for N=16, (a) t=1(b) t =
1

2
(c) t =

1

4

32

3.4 Summary

In section 3, we proposed two directional trades-off approaches based on

R22MDC architecture and R2MDC architecture. In vertical direction, we provide an

expansion approach for R22MDC architecture to increase the throughput, and in

horizontal direction, we provide a compression approach for R2MDC architecture to

decrease the throughput. Under the throughput constraint, our approach can provide

only one exact solution; however, as mentioned in section 2, they search the desired

solution exhaustively. Table 2 lists the hardware and throughput comparison between

our approach and previous work. Table 3 lists the hardware and throughput

comparison with the same throughput by replacing jk with 2logt N .

Table 2 Hardware Requirement Comparison

FFT length (N) multipliers adders registers throughput

Pease jk 2jk N
2

2

log

jk

N N

R22MDC_P 4(2 log 2)−  t N 22 logt N N-2t
2t

N

R2MDC_F 2logt N 22 logt N N
2t

N

Table 3 Hardware Requirement Comparison with the same throughput

FFT length (N) multipliers adders registers throughput

Pease 2logt N 22 logt N N
2t

N

R22MDC_P 4(2 log 2)−  t N 22 logt N N-2t
2t

N

R2MDC_F 2logt N 22 logt N N
2t

N

33

Chapter 4

Experiments

4.1 Experimental Environment

We implement two kinds of FFT architectures, including R22MDC vertical

expansion architecture and R2MDC horizontal architecture. Each PE stage of FFT

architecture is piped. The complex adder contains two real adders and the complex

multiplier contains four real multipliers and two real adders, as shown in Figure 40. For

each complex multiplier, we design a ROM which contains all the possible twiddle factor

values for this complex multiplier.

×
×
×
×

+

+

Figure 40 Complex Multiplier

Logic gate model includes adder, multiplier, and multiplexer. We use UMC 0.18um

cell library and Synopsys DesignWare [15] to synthesis under 100MHz clock rate. The

platform is built in an Intel dual Pentium Xeon at 2.5GHz with 32GB of main memory,

running Linux.

We use Matlab [16] to generate random inputs, and calculate the SQNR to guarantee

the correctness of the generated FFT architecture. Our simulation results of SQNR are

between 80 (db) and 90 (db).

34

4.2 Experimental Results

Figure 41 shows the relation between throughput and area for N=256, where area

indicates the number of gate counts. For Pease, three architectures are generated, from left to

right, the parameters are 1=j , 2=j , and 4=j respectively. For all architectures, we

assume k=1. For R2MDC, three architectures are generated, from left to right, the parameters

are
1

8
=t ,

1

4
=t , and

1

2
=t respectively. We can find that the area of Pease is almost the

same as the area of R2MDC under the same throughput. From Table 3, we can find that the

hardware requirement is also the same under the same throughput. Figure 42 shows the

relation between throughput and area for N=1024. For Pease, three architectures are

generated, from left to right, the parameters are 1=j , 2=j , and 4=j respectively. For

all architectures, we also assume k=1. For R2MDC, three architectures are generated, from

left to right, the parameters are
1

10
=t ,

1

5
=t , and

1

2
=t respectively. The trend is almost

the same as N=256 in Figure 41.

FFT Length N=256FFT Length N=256FFT Length N=256FFT Length N=256

0

20

40

60

80

100

120

140

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

KKKK

ThroughputThroughputThroughputThroughput

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

Pease

R2MDC

Figure 41 Relation between throughput and area for Pease and R2MDC, N=256

35

FFT Length N=1024FFT Length N=1024FFT Length N=1024FFT Length N=1024

320

330

340

350

360

370

380

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

KKKK

ThroughputThroughputThroughputThroughput

A
re

a
A

re
a

A
re

a
A

re
a Pease

R2MDC

Figure 42 Relation between throughput and area for Pease and R2MDC, N=1024

Figure 43 shows the relation between throughput and area for N=256. For Pease, five

architectures are generated, from left to right, the parameters are 8=j , 16=j ,…,

and 128=j respectively. For R22MDC, six architectures are generated, from left to

right, the parameters are 1=t , 2=t ,…, and 32=t respectively. We can find that

the area of Pease is greatly larger than the area of R22MDC vertical expansion

architectures under the same throughput because of the great number of multipliers

usage of Pease. It can be also seen in Table 3. Figure 44 shows the relation between

throughput and area for N=1024. For Pease, five architectures are generated, from left

to right, the parameters are 8=j , 16=j ,…, and 128=j respectively. For

R22MDC, five architectures are generated, from left to right, the parameters are 1=t ,

2=t ,…, and 16=t respectively. We can find that the area of Pease is still greatly

larger than the area of R22MDC vertical expansion architectures under the same

throughput.

36

FFT Length N=256FFT Length N=256FFT Length N=256FFT Length N=256

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25 0.3

KKKK

ThroughputThroughputThroughputThroughput

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

Pease

R22MDC

Figure 43 Relation between throughput and area for Pease and R22MDC, N=256

FFT Length N=1024FFT Length N=1024FFT Length N=1024FFT Length N=1024

0

500

1000

1500

2000

2500

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

KKKK

ThroughputThroughputThroughputThroughput

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

A
re

a
 (

g
a
te

 c
o

u
n

ts
)

Pease

R22MDC

Figure 44 Relation between throughput and area for Pease and R22MDC, N=1024

Figure 45 shows the joint result of Figure 41 and Figure 43. And Figure 46 shows the

joint result of Figure 42 and Figure 44. We can find that the areas of our architectures are

almost lower the areas of Pease architecture under throughput constraint.

37

FFT Length N=256FFT Length N=256FFT Length N=256FFT Length N=256

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25 0.3

K

ThroughputThroughputThroughputThroughput

A
re

a
(g

at
e

c
o

u
n

ts
)

A
re

a
(g

at
e

c
o

u
n

ts
)

A
re

a
(g

at
e

c
o

u
n

ts
)

A
re

a
(g

at
e

c
o

u
n

ts
)

Pease

R2MDC/R22MDC

Figure 45 Relation between throughput and area for Pease and R2MDC/R22MDC, N=256

0

500

1000

1500

2000

2500

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
re

a
(g

at
e

co
u
nt

s)
A

re
a

(g
at

e
co

u
nt

s)
A

re
a

(g
at

e
co

u
nt

s)
A

re
a

(g
at

e
co

u
nt

s)

K

ThroughputThroughputThroughputThroughput

FFT Length N=1024FFT Length N=1024FFT Length N=1024FFT Length N=1024

Pease

R2MDC/R22MDC

Figure 46 Relation between throughput and area for Pease and R2MDC/R22MDC, N=1024

Compared with the Pease architecture, for the length of 256 and 1024 cases, the

generated FFT processor saves about 30.8% area under throughput constraints, as shown

in Table 4.

38

Table 4 Area comparison

FFT

Length (N)

Pease R22MDC Area Reduction

Percentage (%) Throughput Area Throughput Area

256

0.0078 190524 0.0078 128033 32.8

0.0156 307040 0.0156 202469 34.06

0.0313 533357 0.0313 350469 34.29

0.0625 1044244 0.0625 641511 38.57

1024

0.0016 434154 0.002 313669 27.75

0.0031 565576 0.0039 417760 26.14

0.0063 825269 0.0078 623772 24.42

0.0125 1314636 0.0156 1029338 21.70

39

Chapter 5

Conclusions and Future Work

The FFT processor is an important computing block in communication and

signal processing systems. To improve productivity and shorten time-to-market, an

automatic FFT generator can be used to design a specified FFT processor. In this

thesis, we propose a parameterizable FFT generator with two approaches to make

good design trade-off between throughput and area under the design constraints. First,

the vertical expansion approach parallels the datapath to increase the throughput.

Second, the horizontal compression approach folds the datapath to reduce the

hardware usage. Besides, only the best FFT architecture is generated under the

user-specified throughput constraint to reduce the computation time in our proposed

FFT generator. Compared with the Pease architecture, for the length of 256 and 1024

cases, the generated FFT processor saves about 30.8% area under throughput

constraints.

Various FFT architectures are proposed in literature. It can be implemented into

our proposed FFT generator. In the future, more FFT algorithms such as the R23MDC

FFT algorithm, mixed-radix FFT [17] algorithm will be considered to enlarge the

search space. Besides, the bitwidth optimization techniques proposed in [18] will also

be considered.

40

Reference

[1] J. W. Cooley and J. W. Turkey, “An Algorithm for Machine Computation of

Complex Fourier Series,” Math. Computation, Vol. 19, pp. 297-301, April 1965.

[2] L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing.

Prentice-Hall, Inc., 1975.

[3] E. H. Wold and A. M. Despain, “Pipeline and Parallel-Pipeline FFT Processors

for VLSI Implementation,” IEEE Trans. Computers, vol. 33, no. 5, pp. 414-426,

May 1984.

[4] A.M. Despain. “Fourier Transform Computer using CORDIC Iterations,” IEEE

Trans. Comput., C-23(10):993-1001, Oct.1974.

[5] S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor,” in Proc.

10th Int’l Parallel Processing Symp. (IPPS ’96), pp.766-770, 1996.

[6] R. Storn. “Radix-2 FFT-pipeline Architecture with Reduced Noise-to-signal

Ratio,” IEE Proceedings- Vision, Image and Signal Processing, 141:81-86,

1994.

[7] S. He and M. Torkelson, "Designing Pipeline FFT Processor for OFDM

(de)Modulation", International Symposium on Signals, Systems, and Electronics,

pp. 257- 262, Oct. 1998.

[8] P. Duhamel, H. Hollmann, “Split Radix FFT Algorithm,” Electronics Letters, vol.

20, pp.14-16, January 1984.

[9] P. Duhamel, and H. Hollmann, “Split Radix FFT Algorithm,” Electronics Letters,

vol. 20, pp. 14-16, Jan. 5, 1984.

[10] D. Takahashi, “An Extended Split-Radix FFT Algorithm,” IEEE Signal

Processing Letters, vol. 8, no. 5, pp. 145-147, May 2001.

41

[11] G. Nordin, P. A. Milder, J. C. Hoe, and M. Püschel, “Automatic Generation of

Customized Discrete Fourier Transform IPs,” In Proc. of ACM/IEEE Design

Automation Conf., pp. 471-474, 2005.

[12] P. A. Milder, M. Ahmad, J.C. Hoe, and M. Püschel, “Fast and Accurate

Resource Estimation of Automatically Generated Custom DFT IP Cores,” In

Proc. of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, pp. 211-220 2006.

[13] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal Datapath

Representation and Manipulation for Implementing DSP Transforms,”In Proc.

of ACM/IEEE Design Automation Conf., pp. 385-390, 2008.

[14] J. Takala, T.Jarvinen, P. Salmela, and D. Akopial. Multi-port Interconnection

Networks for Radix-r Algorithms. In Proc. IEEE International Conference

Acoustics, Speech, Signal Processing, pp. 1177-1180, 2001.

[15] Synopsys DesignWare[Online], Available: http://www.synopsys.com .

[16] Matlab [Online], Available: http://www.mathworks.com .

[17] R.C. Singleton, “An Algorithm for Computing the Mixed Radix Fast Fourier

Transform,” IEEE Trans. on AudioElectroacoust., vol. 1, no. 2, pp. 93-103, June

1969.

[18] C.Y. Wang, C.B. Kuo, and J.Y. Jou, “Hybrid Word-Length Optimization

Methods of Pipelined FFT Processors”, IEEE Trans. Computers, vol. 56, no. 8,

pp. 1105- 1118, Aug. 2007.

[19] P.D. Welch, “A Fixed-Point Fast Fourier Transform Error Analysis,” IEEE

Trans. Audio Electroacoustics, vol. 17, pp. 151-157, June 1969.

[20] A. Pomerleau, H.L. Buijs, and M. Fournier, “A Two-Pass Fixed Point Fast

Fourier Transform Error Analysis,” IEEE Trans. Acoustics, Speech, and Signal

Processing, vol. 25, pp. 582-585, Dec. 1977.

