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Abstract

MIMO technology has proven:to be the key enabler of high-speed, bandwidth
efficient broadband communication systems such as IEEE 802.16e, 3GPP LTE and
LTE-Advanced. Similar to many traditional systems, these advanced communication
systems rely heavily on ‘proper signaling in order to obtain correct channel state
information and perform precise. synchronization. Unfortunately, traditional signaling
methods can incur a loss of spectral efficiency due to transmission of overhead data such
as preamble, guard bits and pilots. Moreover, accurate spatial correlation information is
crucial in achieving the theoretical capacity gain promised by MIMO. Furthermore, with
the use of OFDM, high PAPR is often incurred, thus lowering the power efficiency at the
transmitter. The problem is worsened when OFDM is combined with MIMO as more RF

chains are required for transmission.

In this thesis, a new signaling scheme is proposed for spatially correlated MIMO
channels which exploits affine precoding to produce robust superimposed training
sequence such that CSI can be accurately obtained even when uncertainty in the spatial

correlation matrix exists. The sequence is algebraically added to the data such that there



is no loss of spectral efficiency. The proposed scheme does not require accurate
knowledge about the spatial correlation matrix and it is shown to outperform previously
proposed robust correlated MIMO channel estimators such as relaxed MMSE (RMMSE)
and least-squares-RMMSE (LS-RMMSE). A solution for the sequence can be obtained
easily by using a projection on convex sets based iterative algorithm which is guaranteed
to converge as long as the training sequence matrix is initialized to have full rank.
Furthermore, it is shown that the proposed scheme is asymptotically identical to the
RMMSE based schemes when the MIMO channel is spatially uncorrelated. A power

allocation scheme is also proposed that can maximize the detection performance.

Next, a joint superimposed sequence design is proposed to jointly perform robust
channel estimation and lower the PAPR of MIMO-OFDM systems. A per-tone affine
precoding technique is proposed to reduce the PAPR such that no side information is
required to be transmitted for the removal of the sequence at the receiver. This is in
contrast to previous known ‘techniques which incurs a large amount of transmission
overhead, or can dramatically increase the BER. Furthermore, some of these techniques
are based on heuristics that cannot optimally lower the PAPR. Even though redundant
information has to be sent, this can be as small as 1 symbol/subcarrier. Furthermore, the
proposed design allows the designer to easily trade off between BER and PAPR reduction
performance. Simulation results have shown that the proposed scheme outperforms the

tone reservation scheme not only in PAPR reduction but also in transmit efficiency.
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Chapter 1

Introduction

1.1 Research Motivation and Contribution

Rapidly growing demand for wireless services requires wireless communication systems
to have faster transmission speed.and higher throughput. In the last decade, SU-MIMO
has drawn a great deal of attention since it has potential-to provide spatial multiplexing
gain and achieve higher diversity , which scale linearly. with the number of antennas,
without sacrificing spectral efficiency [3-5]. To realize such gains, CSI must be obtained
accurately. As compared to the SISO channel; the MIMO channel contains more unknown
coefficients. Therefore, it is more difficult to estimate the MIMO channel than the SISO
one. Although techniques such as differential space-time coding [8,9] and differential
orthogonal space-time block coding [10, 11| have been proposed to blindly demodulate
and decode the received signal without CSI, this is done by sacrificing both performance
(compared to coherent techniques) and spectrum efficiency. Coherent detection is thus
widely used in current systems where CSI is usually obtained using time-multiplexed pilot
symbols. This, however, reduces the transmission efficiency, especially in cases where the
channel is undergoing fast fading due to the fact that pilot signals have to be placed more

frequently [2]. Moreover, the theoretic capacity gain promised by SU-MIMO can only
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Superimposed training Superimposed training
Data Data
Time

Figure 1.1: structure of superimposed training sequence

be achieved if the the channel is spatially uncorrelated . In scenarios where channels are
spatially correlated, this correlation has to be accurately estimated in order to maximize
MIMO capacity gain. Increased antenna correlation can be attributed to reduction in
antenna spacing or angular spread, which is caused by lack of a rich scattering environment
around the transceiver. Hence, some degree of spatial correlation will be experienced at
the transmitter and/or receiver.

Many techniques have been proposed.to. tackle the problem of correlated channel
estimation [14,15,23,24,30,55] with some techniques focusing on training sequence design
[14,23,55] while others dealt with channel estimator design [15, 23,24, 30]. Despite the
tremendous focus that has been placed on this problem; most works have ignored the
effect that inaccurate spatial correlation has on the channel estimate. This inaccurately,
as shall be shown in the sequel, does have a-dramatic impact on the accuracy of the CSI. In
this thesis, a robust sequence design is proposed which accounts for the mismatch between
the actual and estimated spatial correlation. The sequence is then applied to the MMSE
estimator to estimate the MIMO channel. For ease of presentation, such an estimator
shall be called RoOMMSE estimator. Moreover, the sequence is designed in the context of
superimposed training sequence, which was recently proposed by [16] in order to tackle
the spectral efficiency problem. Rather than using dedicated timeslots, the SIT sequence
is algebraically added to the information bearing signal as illustrated in Figure 1.1. Since
the training sequence is overlaid onto the information-bearing signal, it allows for greater

spectral efficiency as compared to conventional systems that use time-multiplexed pilot

1.1 Research Motivation and Contribution 2
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Figure 1.2: multi-path fading in wireless channel

symbols.

Despite having multiple antennas, the fading channel can severely hamper the per-
formance of a wireless system by scattering the transmitted signal, thereby causing the
receiver to receive multiple copies of the same signal as illustrated in Figure 1.2. OFDM,
which is one of the most popular multi-carrier-modulation techniques due to its low com-
putation complexity, offers immunity to the multi-path fading channels by allowing the
signal to transmit through multiple flat-fading channels.” This is accomplished by using
FFT which explain its computation efficiency.-Thus, combining MIMO and OFDM offers
an attractive solution toward achieving low-complexity high-throughput communication
systems . Unfortunately, due to the use of the IFFT at the transmitter, the transmitted
signal is no longer constrained, thus causing the signal to have a high peak-to-average
power ratio. This demands the use of highly linear and inefficient power amplifiers. This
problem is exasperated in MIMO-OFDM systems as multiple RF chains are deployed.
Hence, a superimposed sequence is proposed to be added to the data sequence in order to
mitigate the PAPR. Unlike previous proposed techniques such as selective mapping and
partial transmit sequence [51], the proposed design can easily trade off between bit error
rate and throughput in order to increase the effectiveness of the PAPR reduction. This is
particularly important as different applications have different throughput, error rate and

delay sensitivity requirements.

1.1 Research Motivation and Contribution 3
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1.2 Thesis Organization

The thesis mainly focuses on the sequence design to enhance system performance. It is

organized as follows :

e An introduction to the MIMO and the MIMO-OFDM systems is given in Chapter

2. A review of MIMO channel estimation and PAPR reduction are also included.

e Robust superimposed sequence design for spatially correlated MIMO channels is
proposed in Chapter 3. MIMO system with affine precoder is first introduced, fol-

lowed by problem formulation and simulation results are shown later in this chapter.

e PAPR reduction of MIMO-OFDM using optimal superimposed sequence is proposed
in Chapter 4. Detailed system model, problem formulation and simulation results

for PAPR reduction are shown.

e Conclusions and future weorks arein Chapter.5.

1.3 Publications

Conference:

Chin-Te Chiang and C.C. Fung, “Robust training sequence design for spatially correlated
MIMO channel estimation using affine precoder,” Proc. of the Intl. Conf. on Communi-
cations, May 2010.

Journal:

Chin-Te Chiang and C.C. Fung, “Robust training sequence design for spatially correlated
MIMO channel estimation, 7 to be submitted to the IEEE Transactions on Vehicular

Technology.

1.2 Thesis Organization 4
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Background

Required background information is overviewed in this chapter. Two wireless communi-

cation systems and repective problems are introduced.
e An introduction of MIMO system-and MIMO channel estimation is presented first.

e MIMO-OFDM system and PAPR reduction are discussed in Chapter 2.2.

2.1 MIMO System

MIMO refers to multiple antennas both at transmitter and receiver. The schematic illus-
tration of a MIMO system with N, transmit antennas and N, receive antennas is shown
in Figure 2.1 . The spatial dimension is exploited to increase the transmission rate and
also offer better reliability. With spatial multiplexing, the transmission rate can be in-
creased by sending multiple data streams with multiple antennas in parallel. On the other
hand, data for transmission can also be coded using STC techniques such as space-time
trellis coding and space-time block coding. The idea of STC is transmitting multiple and
redundant copies of a data stream to achieve transmit diversity. The coding techniques

usually applied to MIMO systems with transmit diversity.
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Figure 2.1: Simple schematic illustration of a SU-MIMO system
Pilots Data Pilots Data
Superimposed training Superimposed training
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Time

Figure 2.2: comparison of time-multiplexed pilots and superimposed training sequence
2.1.1 MIMO Channel Estimation

SU-MIMO ! has brought tremendous research effort devoted in this area in maximizing
diversity and spatial multiplexing gain [6,7] over the last decade. Perfect knowledge about
the CSI is usually assumed in the work. But in practice, CSI must be estimated accurately
to achieve such gain. Coherent detection is widely used in current MIMO system where
CSI is usually estimated using time-multiplexed pilot symbols. Time-multiplexed pilots

decrease the transmission rate because it occupies a certain number of times slots. SIT

n this work, only SU-MIMO systems are dealt with as multiuser MIMO systems have different

scenarios and performance compared to SU-MIMO systems.

2.1 MIMO System 6
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sequence is arithmetically overlaid on the information-bearing data, it is transmitted using
all the time slots as the data. The comparison of the two schemes is shown in Figure 2.2.
SIT sequence increases the transmission rate as compared to the time-multiplexed pilots.
SIT can be extracted at the receiver by using first-order statistics [17,18], but information-
bearing data is always viewed as an interference for channel estimation since they share
the same time slots. In order to have a better separation of information-bearing data and
SIT at the receiver, affine precoder post-multiplies the information bearing data in [54].
It is independent from the channel matrix due to the post multiplication. It also helps
the receiver remove the unwanted received signals for channel estimation and so as for
data detection. Removal can be done by post-multiplied with well-designed decoupling
matrices. A SIT sequence design for spatially correlated MIMO channel using affine
precoder is proposed in [55]. Optimal SIT sequence, which is dependent on the spatial
correlation and the signal-to-noise ratio, can minimize the mean square error of channel

estimation.

2.1.2 Spatial Correlation of MIMO channels

Under the ideal assumption of independent and identically distributed(i.i.d.) wireless
channel coefficients, the optimal training sequence using MMSE channel estimator has the
orthogonal property [29]. However, the assumption does not hold for several conditions
such as little spacing between the antennas and small angular spread. Therefore, MIMO
channel is spatially correlated. In other words, spatial correlation matrix Ry, of the
vectorized channel h = vec(H) is no more an identity matrix multiplied by the variance

of the coeflicient.

Rpn = E[hh'’] € NN Nelr (2.1)

There are several analytical models to describe the spatial correlated MIMO channel.

Kronecker model is the most popular since its simple analytic expression of the correlation

2.1 MIMO System 7
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matrix. The model has been widely used for theoretical analysis of MIMO systems [31].
Drawback of the kronecker model is the assumption of physical separation between the
transmitter and receiver. Correlation is modeled at the transmitter and receiver sides
separately. It neglects the interdependency between the two sides, which is not accurate

when the transmitter and receiver are close.
R=3 3, (2.2)

H=%2H,>2, (2.3)

where H,, is the random matrix with i.i.d. zero mean complex normal entries with unit
variance. Eé € CN~*Nr and Et% € CNtxNt are the Cholesky factorizations of spatial
correlation at the receiver and transmitter, respectively. In order to capture the joint
correlation between the transmitter and receiver, Weichselberger model is proposed in [33].
It describes the joint spatial correlation between the two link ends using the coupling

matrix 2. The spatial correlated MIMO channel can be expressed as,

HWeichselberger = .U-T(f2 @ G)U£ (24)

Q denotes the element-wise square root of -G is an i.i.d random matrix with zero mean
and unit variance. Ur and Upg denotes the eigenvector matrices of spatial correlation at
transmitter and receiver respectively. For correlated MIMO channel estimation, kronecker

model is usually considered due to the ease of analysis. It is also used in the thesis.

2.1.3 Previous Work on Correlated MIMO Channel Estimation

Many techniques have been proposed to tackle the problem of correlated MIMO channel
estimation. [12] proposed using a state-space approach to estimate and track time-varying
correlated MIMO channels, where the channel correlation matrix is estimated from the

received data and treated as part of the state variable. In [13], a precoder assisted linear

2.1 MIMO System 8
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MMSE estimator was proposed to estimate the channel. In [14], two channel estimators
were derived under the MMSE and conditional mutual information criteria by exploiting
the virtual channel representation. Unfortunately, there is no closed-form solution, thus
the solution has to be computed numerically. [15] derived another MMSE based channel
estimator using structured correlation, which allows it to obtain better MSE performance
than unstructured based MMSE estimator. One major drawback that is shared among
these estimators is that they require exact knowledge about the spatial correlation in
order to outperform channel estimators that do not take such correlation into account.
Another disadvantage they shared is that they were all derived under the premise that
time-multiplex pilot symbols are used, which can drastically reduce transmission efficiency;,
especially in cases where the channel is undergoing fast fading.

To bypass the second problem, [16] has proposed a channel estimation algorithm which
uses a SIT sequence that is arithmetically added into the transmitted signal; this frees
up valuable time slots that were previously used by time-multiplex pilot symbols. The
training sequence can also be used to deal with problem of synchronization [19]. Improved
channel estimation algorithms based on these training .sequence have since appeared in
literature [17-19]. The sequence itself can-be-extracted at the receiver by using first-order
statistics [17,18] or by using affine precoding [22,54,55]. However, the effectiveness of these
algorithms still hinges on acquiring accurate estimates of the spatial correlation, making
these methods somewhat infeasible in real situations. To combat against this problem,
the relaxed MMSE (RMMSE) and least-squares RMMSE (LS-RMMSE) algorithms have
recently been proposed by [23] that can circumvent the dependency on the correlation
matrix by using diagonal loading while [24] has proposed a different approach by using

basis expansion.

2.1 MIMO System 9
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Figure 2.3: Block diagrams of OFDM

2.2 MIMO-OFDM System

Mutil-path fading and high transmission rates make the wireless channels to be frequency
selective, which is the same case for the MIMO channel. Frequency selective channel brings
the unwanted inter-symbol interference and inter-carrier interference. Therefore, OFDM is
used to combat the mentioned problems under assumption that the length of cyclic prefix
is long enough. Although OFDM.is‘a powerful technique, there are still disadvantages
such as sensitivity to synchronization-error and high peak-to-average power ratio. The
use of multiple antennas is a trend since it provides diversity and spatial multiplexing
gain. That is, parallel OFDM transmission, denoted as-MIMO-OFDM, is the candidate

for the next-generation wireless communication.

2.2.1 Concepts of OFDM and PAPR

OFDM, which is one of the multi-carrier modulation, offers immunity to the frequency
selective channels and also guarantees for high data transmission efficiency. Hardware
implementation can be easily realized using FFT techniques. That is, it has been adopted
in many wireless communication standards, such as IEEE 802.11a, IEEE 802.16e, 3GPP
LTE and the LTE-Advanced. . OFDM system can turn the frequency selective channels
into parallel frequency flat subchannels when the CP is greater than or equal to the order

of the channel. Figure 2.4 shows the structure of CP, which prefixes a repetition of the

2.2 MIMO-OFDM System 10
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Figure 2.4: cyclic preix

tail part of the OFDM symbol. With the CP, linear convolution of the equivalent channel,
which is composed of the CP insertion, removal and the frequency selective channels, has
the circulant property. The property is favored since it makes the equivalent channel be
diagonalized by the IFFT and FFT blocks, which makes the frequency selective channel
to be parallel frequency flat.

Since IFFT block transforms.the signals from frequency domain into time domain,
sum of the Gaussian-like time-domain waveforms contributes to the high PAPR. High
PAPR does not only decrease the efficieney of the power amplifier but also introduce the
out-of-band noise. Definition of PAPR for the signal s(t) is defined as,

PAPR (s(t)) — % (2.5)

2.2.2  Structure of MIMO-OFDM system

In order to have a higher transmission rate, OFDM can be combined with MIMO. Consider
a MIMO-OFDM system with N; transmit antennas and N, receive antennas. A simple
schematic presentation is shown in Figure 2.5. The input data of the serial to parallel
can be the modulation using space time frequency block codes or space frequency block
codes techniques. The techniques mainly map information symbols to antennas and tones
as a way for using both spatial and frequency diversity. The frequency-selective MIMO

channels can be further flatten as in OFDM system. At the receiver, diversity from

2.2 MIMO-OFDM System 11
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Figure 2.5: MIMO-OFDM system

multiple antennas can boost the data detection performance.

Although MIMO-OFDM have the-advantages from-both MIMO and OFDM, it still
suffers from the high PAPR. Definition of the PAPR in.MIMO-OFDM system is more
general as compared to the one introduced in equation .. It is defined as the maximum

PAPR among all the transmit antennas [53].

PAPR (s(t)) = %
PAPRpy im0 = | fmax PAPR(s(t)) (2.6)

where [ is the index for the transmitter. s;(¢) denotes the signal in the time domain at

antenna [. It can also describe the PAPR of the SISO-OFDM system.

2.2.3 Previous Works on PAPR reduction

It is well known that nonlinearity in high power amplifier causes distortion in the transmit
signal. Such distortion can lead to undesirable spectral regrowth, thus interfering with

signals in the neighboring subcarriers. Large amount of distortion caused by high PAPR

2.2 MIMO-OFDM System 12
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can cause in-band self-interference, which increases bit error rate. It is customary for
power amplifiers to operate with a certain power backoff, which is defined as the ratio
of maximum saturation output power to lower average output power [34]. However,
such backoff schemes lowers the efficiency of the power amplifier and increases overall
power consumption. Such problem can be avoided by employing clipping [35], it can be
implemented by setting a saturation level. Once the signal exceeds the threshold, the

amplitude is set as the level without changing the phase.

s(t), s(t)| < A,
B(s(t)) = " 0] (2.7)

AedC0) () > A

B is the clipping operation of the signal s(¢). A is the amplitude threshold. Clipping
does not decrease the transmission rates, but its distortion contributes to the bit-error
rate degradation and also brings out-of-band noise. A blocking coding scheme was pro-
posed in [37] in which codewords that-cause high PAPR are avoided and are instead
coded with a different set of (longer) codewords. Since the signal is not distorted, such
technique does not increase the BER. Unfortunately, it decreases the spectral efficiency
and requires changes in the transmit. frame structure to allow error-free decoding at the
receiver. Distortionless techniques are prefered, but there is still drawbacks, which leads
to the low transmission efficiency and high computation complexity. Tone reservation
and tone injection [47] techniques are data-dependent methods which adds signal to the
information-bearing signal in order to lower the PAPR. Tone reservation in Figure 2.6
reserves certain subcarriers such that they can be set to optimal values to minimize the
PAPR without affecting the information-bearing subcarriers. Unlike the TI method, the
TR method does not distort the original signal as the added signal is injected into set
of subcarriers that have been reserved for PAPR reduction. This, of course, lowers the
spectral efficiency of the system. TI avoids this problem by increasing the constellation

size and injecting extra data into the new constellation points which tend to decrease the

2.2 MIMO-OFDM System 13



Chapter 2

»
»

Frequency

Figure 2.6: tone reservation, the black blocks are the reserved frequency subcarriers

PAPR. Unfortunately, the injected data occupy the same subcarrier as the information-
bearing signal which may adversely affect BER performance. The added signal may also
increase transmit power. The TR method was extended by [48] such that the power
injected into the reserved subcarriers for PAPR reduction is formulated as a power al-
location problem which can be efficiently solved using linear programming. The active
constellation extension(ACE) method [49] exploits the constant modulus structure by dy-
namically extending the some of the other-signal constellation point such that the PAPR
of the information-bearing signal can be reduced. This technique does not increase the
BER and no side information is-required to be sent. However, the degree of PAPR reduc-
tion is inversely proportional to-the constellation size of the modulation, thus limiting its
ability to lower PAPR in systems employing high order modulation. Furthermore, similar
to the TI method, it may also increase the transmit signal power. But side informa-
tion is still needed for data decoding. A more extensive treatment of previous proposed
PAPR reduction techniques are given in [51,52]. Advantages and disadvantages of the
mentioned techniques are discussed in several criterion such as distortion, power increase,
data rate loss and implementation complexity. The table 2.2.3 shows the comparison in
different criterion. The techniques mentioned can be easily extended from SISO-OFDM
to MIMO-OFDM, but it has not taken use of the spatial domain. A PAPR reduction
scheme specifically designed for MIMO-OFDM systems called cross-antenna rotation and
inversion, or CARI, was proposed in [50]. The technique perform subblockwise rotation

and inversion across all antennas for subcarriers to achieve the PAPR reduction. The tech-

2.2 MIMO-OFDM System 14
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Table 2.1: comparison of different PAPR reduction techniques

distortion | power increase | data rate loss
clipping Yes No No
TR/TI No Yes Yes
PTS/SLM No No Yes
ACE No Yes No

nique utilizes additional degrees of freedom in the spatial domain to decrease the PAPR.

But side information is needed for data decoding. Nevertheless, every PAPR technique

has its own advantages and disadvantages, it has no optimal solution for all multicarrier

transmission systems.

2.2 MIMO-OFDM System
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Robust Training Sequence Design for
Spatially Correlated MIMO

Channels

3.1 Overview of Channel Estimation

To realize the diversity and spatial multiplexing gain of MIMO system, channel CSI must
be obtained accurately. Instead of using time-multiplexed pilots, superimposed training
sequence is applied for channel estimation since its higher transmission efficiency. As
compared to the SISO channel, the multiple-input MIMO channel contains more unknown
coefficients to be estimated, which makes it more difficult. In MIMO system, small angular
spread and little spacing between antennas are usually seen due to the small device and
poor scattering environment, which cause the spatially correlated MIMO channel. Many
algorithms have been discussed in section 2.1.3 to estimate the spatially correlated MIMO
channels. However, the effectiveness of these algorithms still hinges on acquiring accurate
estimates of the spatial correlation, making these methods somewhat infeasible in real

situations.
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A approach to the problem is proposed in this chapter by designing a superimposed
training sequence that is robust toward spatial correlation uncertainty. The proposed
design exploits the affine precoder scheme proposed in [26,55] to extract the training se-
quence for channel estimation. System models and derivation of the iterative algorithm
are discussed in details. Simulation results shows that the proposed scheme performs
extremely well against estimator in [55] which does not take into account the spatial cor-
relation estimate error. Moreover, the ROMMSE estimator also outperforms the RMMSE
and LS-RMMSE estimators when the MIMO channel is spatially correlated. Finally, the
RoMMSE estimator will also be compared to the RMMSE and LS-RMMSE estimators
for uncorrelated MIMO channels in which it is shown that the three estimators perform

almost identically and that they are asymptotically equivalent.

3.2 Methodology

3.2.1 System Model

The system model used in [55] is"adepted herein. For the sake of completeness, the model
will also be described in the sequel. Consider aspatially correlated flat-fading MIMO chan-

nel with N; transmit and N, receive antenna, as shown in Figure 3.1. The information-
T

bearing signal vector is denoted as u(k) = | w(kN,) w(kN,+1) --- w(kN,+N,—1) | »
where £ is the block index and N, denotes the block size. Each block of the signal is en-
coded using a space-time block coder (STBC), which can be used to increase transmit
diversity or multiplexing gain [25]. The STBC has N; number of output vectors, with

each vector containing K > N; symbols as full rate STBC is assumed. This can be rep-
T

resented in matrix form as X = l X] Xy oo Xy, € CNexK where x; € CFK, for

i=1,2,..., Ny, denotes the i output vector. Each vector is then fed into the precoder
T

P = Pi P2 - Pk } e CEX(EFL) which adds L > N, redundant symbols to each

3.2 Methodology 17
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block of signal, resulting in the output signal vector d; € CE*E for i = 1,2,..., N,. All

N, output of the precoder can be represented in matrix form as

df x{ P
A dg X%P Ny x(K+L
D2| ° |=XP= ‘ € CNex(E+L), (3.1)
d%t X%tP

As seen in the sequel, the precoder is used to assist in the channel estimation [22,54,55] by
eliminating the information-bearing signal at the receiver, thus leaving the superimposed
training sequence used for channel estimation. It was shown in [26] that the precoder
can also be designed to improve symbol detection rate or to minimize mean-squared error
between the transmitted and recovered signal [54]. After precoding, the superimposed
training sequence vector c;, for ¢ = 1,2,.::,./N; is added to d;. Each vector is then
serialized before it is transmitted.across the flat-fading MIMO channel, represented in

(CNT X Ny

matrix form as H € . Thus, the received signal can be written as

Y = H(C + D)4 =HC + HXP + 1, (3.2)

where

e CNtX(K+L),and ne (CNTX(K-&-L)

T
CNt

are the superimposed training sequence matrix and the additive channel noise matrix,
respectively. Notice in (3.2) that the received signal in space lies in the rows of Y. Thus,
the rows of the information-bearing portion of the signal, i.e. xI'P, for i = 1,2,..., N,
belong to the row space of P. Hence, the rows of HXP also belong to the same subspace.
This is different than the conventional model used in [22,27,28] where the information-

bearing portion of the received signal is embedded inside the range space of the unknown
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Figure 3.1:Block diagram of MIMO- transceiver.

channel matrix, thus making it difficult for channel estimation using SIT sequence. The
affine precoding approach adopted herein eases the decoupling of the information-bearing
signal and the training sequence because decoupling can now be done by postmultiplying

T

Y by a decoupling matrix, Q = | q; q € CHE+L)XN: regulting in

AdK+L
YQ = HCQ + HXPQ + Q. (3.3)

Thus, by requiring the columns of Q to lie in N'(P), i.e. PQ = Ok, then (3.3) becomes
YQ =HCQ + nQ. (3.4)

In other words, the training sequence vector c;, for « = 1,2,..., N; should lie in the
column space of Q. Therefore, the condition that CP¥ = 0y, , ;¢ guarantees the subspaces

spanned by the vectors in P and C are complementary [55]. This suggests a simple way
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to design P and Q is by extracting components off of an orthogonal matrix, i.e.

K+L
P = 4 ; O(1:K,:) € CKXK+D) anq

Q = (O((K+1):(K+N,),:)"ectrim

Note that O(1 : K,:) and O ((K +1): (K + Ny),:) keep only rows 1 to K and rows
(K +1) to (K + N;) of an orthogonal matrix O € CK+N)x(K+L) [26] Hence, Q7 Q = Iy,
so that noise amplification will not occur in the channel estimation process.

In addition to channel estimation, another decoupling matrix, Qp, can be designed
to maximize symbol detection performance. Such decoupling matrix can be chosen to
satisfy the condition Qp = P# (PP# )_1, where P is designed such that CP# = Oy, k.
This ensures the detection process is free of interference from the SIT sequence when Qp

is postmultiplied to Y. Therefore,

o K4 L
PP7 = (Q}Qp) t= ; Ik,

such that tr (PPH ) = K + L. This is to ensure that the average transmitted power of
the information-bearing signal is-unchanged after precoding.

According to the Kronecker model [25};-the-channel matrix can be decomposed as
H=XH,X?, (3.5)

1 1
where 32 € CV-*Mr and ¥? € CM*M are the Cholesky factors of the spatial corre-
lation matrix of the receiver and transmitter, respectively. Hence, the overall spatial
correlation is R = 3, ® ¥,. The entries of H,, € CN"*M are independent and identi-

cally distributed zero-mean complex Gaussian random variables with unit variance. Thus,

E [vec(H,)vec (H,)] = Iy, n,.
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3.2.2 MMSE estimator and training sequence design

To derive the proposed ROMMSE estimator, (3.4) is first vectorized to obtain the received
signal vector

y = Ch +n, (3.6)

where y = vec(YQ) € CVM | C = (CQ)T @Iy, € CNoNexNeNe by — yee(H) € CVM and
n = vec(nQ) € CNNe. Ennf] = 621y, y,. From the vectorized received signal y, the

linear minimum mean-squared error estimator of h is [29, p.387]
h=RAR,ly = RC’(CRC" + 02 Iy, v,) "y, (3.7)

where Ryy, = E [yy”], Ryn £ E[yh”] and R £ E [hh”] are the autocorrelation
matrix of the received signal y, the cross-correlation matrix of y and h, and the spatial
correlation matrix of the channel, respectively.» All matrices are of size N,.N; x N,.N,.
Therefore, the optimal MMSE estimate of h.can be-obtained by finding the optimal
training sequence matrix C. Note that the mean-squared error matrix between h and h

is written as [29, p.387]

¢ = Bl(h=h)(h - h)7]

 » ~\ —1
- (R—1 +CH(0I2mINTNt)_1C) . (3.8)

From (3.8), [55] proposed to design the optimal training sequence matrix C by minimizing
the trace of &, subject to the power constraint tr (CCH) < Ny{(K + L)o?, & Pr, where
o2, is the average power of the training sequence. It was assumed in [55] that the average

transmitted power, which includes the power of the information-bearing and the training

2

<« is the variance of the information-

signals, is normalized as o2+ o2, = 1, where o
bearing signal. This assumption will also be applied to the proposed RoOMMSE estimator.
Since C = (CQ)T @1y, , using the properties that tr(AB) = tr(BA), (A ® B) (C ® D) =

(AC)® (BD), (A @ B)" = A# @B and tr(A®B) = tr(A)tr(B), the power constraint
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on C can be written as

rettr (G6%) = 1 ([(0Q)" @1y ] [(CQ)" @1x,]")
= tr ([(CQ)T ®Iy][(CQ)® INJH)
= tr ([(CQ)T(CQ)"] ®1y,)
= tr ((CQT(CQ)) tr (Iy,)
= Nitr(Q'CTcrqQ)

= N,tr (CTC*)

IN

N,Pr 2 Pr. (3.9)

The inequality is obtained because tr (CTC*) = tr(C*C) = tr(CCH) = IC|% < Pr. Tt
is important to note that the performance of the ROMMSE estimator is dependent on the
total transmission power, Pr, and not the number of redundant vectors, L. The latter
is however necessary to allow for decoupling of the SIT sequence from the information-
bearing signal at the receiver:- Figures 3.2 and 3.3 show the MSE performance of the
proposed RoOMMSE estimator (to be'described in the next section) for 2 x 2 correlated
MIMO channels when L is increased with different and fixed Pr, respectively. In the latter
case, 02, is decreased while L is increased in"order to keep Pr constant. From Figure 3.2,
it is clear that MSE performance improves as L increases, while Figure 3.3 shows that
such performance improvement is due to the increase in Pr, not just L, because as Py is

kept constant even while L is increased, there is no change in MSE performance.

3.2.3 Proposed training sequence design

It is clear from (3.8) that exact knowledge of R is required at the receiver in order
to obtain an accurate estimate of h using (3.7). However, in all likelihood, only an
estimate of R can be obtained, for example, using the method proposed in [30]. In order

to desensitize the MSE from the estimation error of R, a novel SIT sequence design
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Figure 3.2: MSE vs. SNR performance comparison between different numbers of redun-
dant vectors with different Pp.for spatially correlated 2 x 2 MIMO system, A = 5°,

d; = 0.5\ and d, = 0.2\. ¢ = 0.3,

is proposed herein which incorporates such estimation error. As the spatial correlation
matrix is estimated at the receiver before it is fed back to the transmitter using a low-
rate control channel, quantization error will also contribute to the error in the spatial
correlation estimate, causing the mismatch between the estimated and the actual spatial
correlation to be uniformly distributed. Hence, a deterministic approach is proposed
herein to bound the error in a norm ball. Applying such a SIT sequence into the MMSE
estimator in (3.7) allows the estimator to be more robust against estimation error in
the spatial correlation than other MMSE based estimators which do not take such error
into account. Even though the rate of change of the channel statistics is slower than
that of the channel coefficients, imperfect channel statistics will still adversely affect the

channel estimation performance and thus the BER, if not properly accounted for in the
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Figure 3.3: MSE vs. SNR performance comparison between different numbers of redun-
dant vectors with fixed Pr is fixed for spatially correlated 2 x 2 MIMO system, A = 5°,

d; = 0.5\ and d, = 0.2\. ¢ = 0.3,

system design. Moreover, better robust channel estimation can be obtained if the spatial
correlation mismatch and channel coefficient mismatch can be separately accounted for
as the structure of the spatial correlation mismatch matrix will be different from that of
the channel coefficient matrix.

Let

R=R+E, (3.10)

where R denotes the estimate of R and E is its corresponding spatial correlation mismatch
matrix, respectively. In the present scheme, the error power is upper bounded such that
|E||r < e, where ¢ is a predefined error power bound. Using this bound with (3.9) and

(3.10), the training sequence matrix C (or its equivalent C) can be designed by minimizing
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the maximum mean-squared error &, i.e.

. -1 17t
min  max tr<{<R+E) —l—CH(aIZmINTNt)_lCJ} )

||e||2F§15T IBlr< e

(3.11)

Note that (3.11) is not a convex problem with respect to E and C. However, the problem
can be decomposed into two separate convex optimization problems, one with respect to
E and the other to C. Furthermore, performing SVD on é, ie. C= UCEGVg and using
the property tr (AB) = tr(BA), the objective function of the maximization problem in

(3.11) can be rewritten as
T, 1 _ L~ 1
tr | [(R+E) +C¥ (2aLv.x) c}

_ R 1 1
S <R+E> +angvézgzévg} )

- » 1 -1
= tr| |VE (R+E> Vé+an§2gzé} )
(3.12)

Next, using the property tr(A++ B) = tr(A) + ¢tr(B) and the matrix inversion lemma
(A+BCD)! = A™' — A7'B(CT1 + DA™B) ' DA™, and letting A = 0,.22Z %,
. -1
C= Vfl (R + E) Vg and B = D = Iy, then (3.12) becomes
-1
—Iyv—H _ 2 s—ly—H 1 H 2 s—ly—H
tr (a o SRR b 3 [ > S (R+E VC] 02,525 )

_ 2 Al 4 - H 1

= tr (annAé> — Opnl’ (Aé [a A + Vg <R+E c)
— (aﬁnAél> — o2 tr ([AC + o 2A VY (R + E Ve A )

-~ SNSRI -1

— 1 <afmAé1) — o2 tr ([CHC +o2CHC (R + E) CHC] ) , (3.13)
where Ag = ZgZé. Since the first term of (3.13) does not depend on E, maximizing
(3.11) is equivalent to minimizing the second term in (3.13). Therefore, the maximization

problem in (3.11) becomes

— ([aHé +0,26¢ (R +E) 67C] ) | (3.14)

IE|F<e
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and it can be easily solved using convex optimization toolbox such as cvz [59] since the
<f{ + E) - term is eliminated.

Unfortunately, even if (3.14) is substituted into (3.11), it is difficult to find a closed-
form solution for C. Therefore, the iterative algorithm in Figure 3.4 is proposed. As
seen from the figure, C is first initialized to be a full rank matrix satisfying the condition
C(0)PH = 0. C(0) is then used in (3.17) (or equivalently (3.14)) to solve for a solution

for E. This is then used in (3.18) to solve for C. This process will be repeated until

|E(n)—E(n-1)|”

- is less than some preset threshold a. Note that C needs to be initialized to

have full rank otherwise the inverse in (3.17) cannot be taken.
Assuming that C has full row rank. Initializing C in the algorithm shown in Figure

3.4 to be C(0), it is obvious that

C(0) = Uc) [Zew) ! Onix(x+L-n)] V), (3.15)

where Ug(o), Vo), and () are the left and singular vector matrix of C(0), and the
invertible portion of the singular walue matrix-of C(0), respectively. Hence, to satisfy
the condition that CP# = 0y .k, it is hecessary that Vo) = Uq, where Ugq is the

eigenvector matrix of QQ*. That is,

QQ" = UqAqUg
A 0 _
Q NtX(K-i-L Nt)
= Uq Ug.
Ok+r-N)xN: O(K4L-N)x(K+L-N,)

where A € CM"*M is a diagonal matrix containing the non-zero eigenvalues of QQ".
Assuming that the diagonal values of Aq are arranged in descending order. Hence,
62(n) = <Uc(n)Ac(n)Ug(n)>* ® Iy, for n = 0,1,...,n9, where n and ny denote the
iteration index and the iteration time when |[E(n) — E(n — 1)||* /e < a, respectively, and
Acin) = Ec(n)Z*C(n). Thus, Vg = Vo) = Uq for n = 0,1,...,n9 and the training

sequence when convergence has been reached becomes

C(”O) = UC(nO) [EC(no) ONtx(K—i-L—Nt)} Ug, (3.16)

3.2 Methodology 26



Chapter 3

where Ug,,) is the singular vector matrix for C(ng) and X¢(ny) € CNexNe g a singular
value matrix of C(ny) containing all non-zero singular values. This conforms to the

structure previously derived in [55].
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3.2.4 Convergence analysis

Theorem 1 The iteration depicted in Figure 3.4 will always converge to the global op-
timal solution given that C is initialized as a matriz with full rank, where the constraint

C(0)PH = On,«x is satisfied.

Proof. Define the convex sets & = {(é,E) NE|z < 5} and C = {(6,E> ‘Hé i < ﬁT}

1 Expressing the objective function in (3.11) as

containing elements that are 2-tuples.
f (6, E) . Given é, it is clear that max f (6, E> with respect to the E is a non-expansive

operator, i.e.

0= £ (€B2) ~ oox 1 (€.2)|
IE1llr<e |E2||r<e
< [|E; — Eqf. (3.19)

Similarly, given E, min f (6, E) with respect-to the C is also a non-expansive operator,

i.e.
°= e T (61’ E) _Sped) : <62’E>
< Hé - 62“ . (3.20)

Moreover, the solutions in (3.19) and (3.20) will always belong to either £ or C. Then
according to the theory of alternating projections [32], the algorithm depicted in Figure
3.4 will always converge, given appropriate initial conditions. Since the two sets are
convex, there is a unique point of intersection and thus the solution obtained in Figure
3.4 will always be the global optimal solution.

Note that it is possible for C(n) to lose rank when the SNR is low and when ¢ is
sufficiently small (e.g. SNR = 0 dB and & = 0.1). To prevent this from occurring, C(n)

is diagonally loaded, i.e. C2(n) = C2(n) + ply,n,, where p is a small value compared to

o

,eg. p=0.01 HGQ(n)H :
F F

'Both sets are convex because their respective constraints form a norm ball.
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Define:
C(n) : training sequence matrix at the n'" iteration
E(n) : error mismatch matrix at the n'" iteration
Cn) 2 (CmQ)” @ Ty,
C2(n) £ CH(n)C(n)
Algorithm:
initialize C(0) to any full rank matrix, s.t.
C(0)PH =0y, xx
initialize E(1) = On, N, x N, N,
initialize o to the value of a given threshold
initialize € to the value of a given error bound
initialize p to a given value for the diagonal loading
n=1
DO:
if rank (62(71)) < N¢N,
C2(n) = C2(n) + pl,
endif

Epi(n) = arg min tr <{C~32(n — D)4052C?*(n — 1) (ﬁ—i— E(n)) C?(n — 1)] _1) (3.17)

[E(n)|lF<e

tr(ﬁ—&-E(n)):NtNr

C i R - —2NH () ¢ -
Copt(n) = arg ||é(7gl||1£1§15T tr ({(R—&- Eopt(n)> +o.aC (n)C(n)] ) (3.18)

E(n) = Eop(n)

2

Until IB0-B@-D? _

Figure 3.4: Algorithm pseudocode for training sequence design.
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3.2.5 Power Allocation

Since the use of the SIT sequence requires reducing the power of the information-bearing
signal, this will have an adverse effect on the recovery of the information-bearing signal.

A suboptimal power allocation scheme for the training sequence was derived in [55] in

T

E MﬁX+NQDm

which the effective SNR

E Mﬁx

eff = (3.21)

was maximized. A similar power allocation scheme can similarly be derived with the
spatial correlation mismatch matrix, E, taken into account. The method is suboptimal

due to the fact that the numerator in (3.21) can be written as
~ 12 . ~
E {HHXH ] = tn (B AXXI A" )
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where it has been assumed that ¢r (E [HHH]) =" (f{ + E) = N;N,, withe = tr <E [ﬁﬁﬂ)
denoting the mean-squared error of the channel. Note that the received SNR is defined
as SNR = —10log,, 02, under the assumption that the power of the received signal is

normalized to 1. Thus, trace(R + E) = N,N,. In addition, it should be noted that there

~ 2
is an error in the expression for F {HHX } in [55] in which € was preceded by a minus

sign, even if it should be preceded by a plus sign instead, as indicated in (3.22). Hence,
SNR.fs becomes

2 (NN
SR, — Do NelVr £6)

2
o2+ (3.23)

where v = NTUIQmKLJrL. Using the property that if ¢r (A) > tr(B), then tr (B™!) >

tr (A71), given that A and B are positive definite matrices. It then follows that e is
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upper bounded by NeNi Tan ﬁa‘z‘“. Substituting this upper bound into (3.22), the

Nr+Ny U<2:c Ugc

effective SNR is then lower bounded as

(1 — Ugc) [(NtNT+) 0(2:c + ﬁoﬁn]

2 2 2 2
ﬂo_nn - 50—nn0-cc + YO¢c

SNRes (0ce) = (3.24)

The maximum of the effective SNR can then be achieved by maximizing the lower bound

2
cc)

in (3.24), which can be accomplished by differentiating the bound with respect to o

2

cc’

setting the result to zero, and solving for o This results in the suboptimal power

allocation for the SIT sequence

8802, — /0B, (6 — 2
02 — 60—nn \/ fyﬁann ( Y + ﬁann) ’ (325>
cc,subopt 6(ﬁ0121n>
where § = NyNy.. 02 qupope 10 (3.25) is similar to the expression derived in [55] except for

the sign error as previously indicated. The difference is due to the sign error in (3.22).
However, the power allocation expression above is derived directly with inclusion of the

spatial correlation mismatch, thus generalizing the result. previously reported in [55].

3.3 Simulation Results

Monte-Carlo simulations were used to demonstrate the robustness of the proposed scheme.
Channels used in all simulations are assumed to be quasi-static block Rayleigh fading and
spatially correlated, unless otherwise specified. The one-ring model [31] is used to generate

entries of the Cholesky factors of the spatial transmit and receive correlation matrices
2

and

. 2T
Zr(zaj) ~ JO(TdT“ _j|)7 (327)

where d; and d,. are the spacing between transmit and receive antennas, respectively. A

denotes the angular spread, A denotes the carrier wavelength, and J; is the 0"*-order Bessel
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Figure 3.5: MSE vs. SNR performance comparison between RoMMSE and [55] for spa-

tially correlated 2 x 2 MIMO channel: A = 5°7 d; = 0.5 and d, = 0.2\. € =0.3.

function of the first kind. The power allocation scheme in (3.25) for the training sequence
is adopted. QPSK and Alamouti STBC are used for modulation of the information-
bearing signals. In all simulations, the threshold for the iteration algorithm is av = 1075,
With this value for «, the proposed algorithm required only at most 6 iterations before
convergence in all the simulations.

A 2 x 2 spatially correlated MIMO system with A = 5° d; = 0.5\ and d, = 0.2\
is considered in Figure 3.5. The data block size K is 60, and L = N; = 2. When the
correlation matrix R is estimated perfectly, i.e. R = f{, the sequence design in [55]
outperforms the proposed RoMMSE algorithm with ¢ = 0.3. This is the case since
the sequence design in [55] is MMSE optimal when perfect knowledge of R is available.
However, when R is not estimated accurately, i.e. R = R + E, the proposed RoMMSE

estimator outperforms the estimator in [55] by as much as 8 dB.
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Figure 3.6: MSE vs. e performance comparisen-between RoMMSE and [55] for spatially

correlated 2 x 2 MIMO channel. /A =5° d; =05\ and d, = 0.2\. SNR = 5 dB.

Figure 3.6 compares the MSE performance of the proposed scheme with that of [55]
when the spatial correlation matrix error power is varied. The channel parameters in this
figure is identical to those in Figure 3.5 with SNR = 5 dB. For the case of “imperfect R”,
i.e. E # On,.n,xn, N, the results for [55] is obtained by solving (3.8) with R = R. In the
case of “perfect R”, i.e. E = Oy n,xn,nN,, the exact matrix channel correlation matrix
is used to design the training sequence for both algorithms. Observed from the figure
that the algorithm in [55] outperforms the proposed scheme when an accurate spatial
correlation matrix is available for estimation. However, when R # R, then the proposed
scheme outperforms [55]. Moreover, as the estimation error € increases, the MSE of the
RoMMSE estimator rises only gradually while the MSE increases unbounded for [55].

Figures 3.7 and 3.8 illustrate the same performance comparison as Figures 3.5 and 3.6,

but for 4 x4 MIMO systems. The angular spread A is set to be 15° and antenna spacing d;
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Figure 3.7: MSE vs. SNR performance comparison between RoOMMSE and [55] for spa-

tially correlated 4 x 4 MIMO channel. A = 15° 4 = 0.5\ and d, = 0.2\. ¢ = 0.3.

and d, are 0.5\ and 0.2\, respeetively. &K = 60.and L = N; = 4. ¢ = 0.3 is used in Figure
3.7 while SNR = 5 dB is used for'Figure 3.8. From Figure 3.7, the performance of both
algorithms for the 4 x 4 system follows the same pattern as that of the 2 x 2. Specifically,
the proposed RoOMMSE estimator outperforms the estimator in [55] by as much as 9 dB
when the MSE = —1 dB. Also, unlike the algorithm in [55], the RoMMSE estimator
performance does not flatten out as the SNR increases. This is because the inaccuracy
in R has been taken into account during the channel estimation process. However, since
there are more parameters to be estimated in the 4 x 4 system compared to the 2 x 2,
there is a performance degradation not only in terms of the absolute MSE, but also the
rate of decrease of the MSE has also diminished.

Besides MSE performance, Figures 3.9 and 3.10 compare the BER performance of the

RoMMSE algorithm and that of [55] when the estimate of spatial correlation is imperfect
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Figure 3.8: MSE vs. e performance comparisen-between RoMMSE and [55] for spatially

correlated 4 x 4 MIMO channel. ‘A =15°% d; = 0.5\ and«d, = 0.2)\. SNR = 5 dB.

and when it is perfect, respectively. 2 x 2 MIMO systems are used. From Figure 3.9, it
can be seen that the ROMMSE algorithm outperforms the algorithm in [55] by 2 dB when
the SNR is low. However, when the spatial correlation has been perfectly estimated, the
RoMMSE algorithm and the algorithm in [55] render identical performance.

Figures 3.11 and 3.12 compare the MSE performance for spatially correlated and
uncorrelated MIMO channels of the ROMMSE estimator to the RMMSE and LS-RMMSE
estimators in [23]. The spatial correlation in Figure 3.11 is created by letting A = 5°, d; =
0.5\, and d, = 0.2\. The RMMSE uses diagonal loading to derive an MMSE estimator
that requires only knowledge of tr(R) instead of R to estimate the MIMO channel. LS-
RMMSE further relaxes the requirement in RMMSE by using LS method to derive an
MMSE estimator that no longer requires knowledge of ¢tr(R). Instead, only knowledge

about the Frobenius norm of the received signal matrix is required. As seen in Figure
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Figure 3.9: BER vs. SNR performance comparison between RoOMMSE and [55] for spa-

tially correlated 2 x 2 MIMO channel: A = 5°7 d; = 0.5 and d, = 0.2\. € =0.3.

3.11, when spatial correlation exists, the proposed RoMMSE algorithm outperforms the
RMMSE and LS-RMMSE algorithms-in low SNR by 4'dB when € = 0.05, but only about
2 dB when € = 0.2. This shows that the upper error power bound cannot be too high,
otherwise performance of the proposed scheme will degrade. The reason for this behavior
is because as ¢ increases, E obtained from the iterative algorithm will decorrelate the
spatial correlation more, thus adversely affecting the performance of the proposed scheme.
This can be explained as follows. The RoOMMSE estimator strives to minimize the worst
case MSE as seen in (3.11). The worst case MSE can be attained by increasing the number
of parameters that needs to be estimated, the maximum being N, N;. In other words, the
present method attempts to increase the degrees of freedom in the correlated MIMO
channel by reducing the spatial correlation. As e increases, ||E||r also increases, which

allows E more freedom to zero out the off-diagonal elements of R, therefore lessening the
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Figure 3.10: BER vs. SNR performance-comparison between RoMMSE and [55] for

spatially correlated 2 x 2 MIMQ channel. A = 5° d; = 0:5)\ and d, = 0.2\. € = 0.3.

spatial correlation. Complete decorrelation of R.is attained as ¢ — oo. In addition, it has
been observed that when the threshold « is met, E‘and C? share the same eigenvector
matrix as R. This has been proven analytically in Appendix 3.4. When there is no
spatial correlation mismatch, it was shown in [14] that the transmitted signal corresponds
to transmitting in specific eigenmodes of the spatial correlation, which determines which
particular eigenmode of the channel will be estimated. Furthermore, the power on each
eigenmode is determined by waterfilling solution based on some optimization criteria, such
as minimum MSE and maximum conditional mutual information. When the SNR is low,
it was found that all the power will be allocated to the strongest eigenmode. However,
when the SNR is high, power is evenly distributed among all eigenmodes. When spatial
correlation mismatch has been accounted, it can be seen from the simulations that no

matter if the system is operating under low or high SNR, the mismatch matrix E not
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Figure 3.11: MSE vs. SNR perforinance comparison -between RoOMMSE, LS-RMMSE and

RMMSE [23] for spatially correlated 2-x 2 MIMO system. A = 5° d; = 0.5\, d, = 0.2.

only decorrelates the channel, but it ‘also equalizes all the diagonal value of R such that
tr (ﬁ + E) = N, N, given that ¢ is sufficiently large. Note that this is also true even when
tr <ﬁ—i— E) = N, N; is not a constraint in (3.17). Hence, the robust training sequence
evenly distributes power across all eigenmodes. This is summarizes in Table 3.1. This
can easily be explained due to the fact that the worst-case mismatch matrix E,, can be
obtained only when R, E, and C? are all diagonalized and that E and C? share the same
eigenvectors as R (see Appendix 3.4). With the constraint that ¢r (f{ + E> = N, Ny, this
forces E to diagonalize R and equalizes the diagonal values of R such that the constraint
is satisfied. Hence, the mismatch matrix E will evenly distribute power across all the
eigenmodes of R. If ¢ is not sufficient large, that E will not have enough degrees of
freedom to diagonalize and equalize the diagonal values of R.

Performance of the ROMMSE estimator is also compared to that of the RMMSE and
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Figure 3.12: MSE vs. SNR perforinance comparison -between RoMMSE, LS-RMMSE and

RMMSE [23] for spatially uncorrelated 2 x 2-MIMO system, i.e. R = Iy, y,. € = 0.3.

LS-RMMSE when the MIMO channel is spatially uncorrelated. Figure 3.12 indicates that
in this situation all three estimators render similar MSE performance, which suggests that
all three estimators are identical. This is indeed the case as it is proven in Appendix 3.5.

Data detection performance for RMMSE and RoMMSE algorithms are also compared
in the case of spatially correlated and uncorrelated channels. Since the RMMSE algorithm

is proposed in time-multiplexed pilots scheme, both MSE and BER are compared using

Table 3.1: Number of eigenmodes used during channel estimation for spatially correlated

MIMO channel.

Low SNR | High SNR

E = ONT N¢x NN one all

E 7£ ONT N¢x N, Ny all all
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Figure 3.13: MSE vs. SNR performance comparison-using time-multiplexed pilots be-
tween RoMMSE, LS-RMMSE«and RMMSE 23] for spatially correlated 2 x 2 MIMO

system. A =5°, d; = 0.5), d, = 0.2,

time-multiplexed pilots. Channelestimation performance using time-multiplexed pilots
is shown in Figure 3.13, where the RoMMSE algorithm outperforms the RMMSE and
LS-RMMSE algorithms, similar to the performance shown in Figure 3.11. Notice that
the estimation performance of the ROMMSE algorithm in Figure 3.13 is worse than that
shown in Figure 3.11. This is because the power of the pilot is less than that of the
SIT sequence. Next, the BER performance comparison is shown in Figure 3.14. With
¢ = 0.05, ROMMSE outperforms the RMMSE by 2.5 dB in the low SNR region.

The BER performance of the RoOMMSE algorithm vs. different values of ¢ is shown
in Figure 3.15. Notice that lower BER is obtained with increasing . As previously
explained, this is because the mismatch matrix has more freedom to decorrelate the spatial

correlation matrix as € increases, which enhances the spatial diversity of the system, thus
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Figure 3.14: BER vs. SNR performance jcomparisonusing time-multiplexed pilots be-
tween RoOMMSE and RMMSE 23] for spatially correlated 2 x 2 MIMO channel. A = 5°,

d; = 0.5\ and d,, = 0.2\, € = 0.05.

improving the BER performance.

Table 3.2 shows the number of iterations needed before the algorithm in Figure 3.4
converges under different initial conditions for C(0). It shows that the proposed iterative
algorithm always, on the average, converges faster if C(0) is initialized to be an orthogonal
matrix than when it is initialized to be a random matrix. Even though the table only
shows performance when SNR is 5 dB, this convergence behavior has been observed for
all the SNR values that have been tested. This speed up is due to the fact that the
worst-case MSE is achieved if the argument inside the trace operator in (3.17) forms a
diagonal matrix. Hence, if C(0) is initialized to be an orthogonal matrix, é(n), for n > 0,
will be closer to the optimal solution than when C(0) is initialized to be a random matrix

as it is already equaled to a diagonal matrix of the form aly, y,, for a being equal to an
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Figure 3.15: BER vs. SNR performancescomparison: using time-multiplexed pilots of
RoMMSE with different e for spatially correlated2 x 2 MIMO channel. A = 5°, d; = 0.5\

and d, = 0.2)\.

arbitrary constant.

3.4 Decorrelation of f{

Inserting (3.14) into (3.11), and noting that the SVDs of C¥C and R are Ve AgVE, and
URARUg, respectively. The sequence design problem in (3.11) is equivalent to solving

(3.17) and (3.18) iteratively. Using the SVD, (3.17) can be rewritten as

min tr ([Aéz + AengQ (UﬁAﬁUg + E) V62A62] _1> .

Bl F<e

Defining A = Ag + A& VE, (UﬁAﬁUg + E) Vea:Age. The objective function can

then be written as f(A(A)) = Ziﬁ, where A (A) denotes a vector composed of
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Table 3.2: Average number of iterations required for convergence for the proposed
RoMMSE estimator. d; = 0.5\, d, = 0.2\, ¢ = 0.3 and SNR = 5 dB, angular spread =

15° (4 x 4), 5° (2 x 2).

N; x N, C(0) Average number of iterations
4 x4 | randomly generated 5.742
4 x4 orthogonal 4.000
2 x 2 | randomly generated 3.524
2 %2 orthogonal 3.000
eigenvalues of A. Since ¢(N\;(A)) = /\i(lA) is a convex function, f(A(A)) is Schur-

convex [14]. Moreover, A is a symmetric matrix. Therefore, f(A(A)) majorizes f (d (A)),
ie. f(A(A)) > f(d(A)) [14], where d (A) denotes a vector which is composed of diago-
nal values of A. Since the equality will ‘hold when A is a diagonal matrix, then the worst
case mismatch error will be E "= VéAEVg , which ensures that the lower bound of the
MSE is reached. This implies that Vg2Uﬁ has to be a diagonal matrix and that E shares
the same eigenvectors as R. The first condition ¢an thus be achieved if R and C? also

share the same eigenvector matrix.

3.5 Comparison of ROMMSE and RMMSE estima-
tors

When the MIMO system is spatially uncorrelated, i.e. R = Iy y,, the channel estimate

from the RMMSE channel estimator in [23] becomes
-1

. - - 2
hpyse = C7 [ CCH 4 22

= & (G + o2 In,n,) Ty
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It is assumed orthogonal sequences are employed for the RMMSE channel estimator [23],

ie. CHC = %I. The estimate of the ROMMSE estimator is written as

. N ISR _ 1
hrovivse = (R + Ew) cH (C (R + Ew) cH 4 U?mINTNt) y

~ ~ ~ —1
= (In,n, + Ey) C¥ (C(INTNt +E,)C" + UﬁnIN,«Nt) Y,

where E,, is the worst case error of the estimated spatial correlation. Let Vg, and Ag.
to denote the eigenvector and eigenvalue matrix of C2, respectively. From (3.13), (3.17)

is equivalent to

min tr ([A@ + A& VE (Iny + E) Ve Ag:] _1>

IEllr<e
= s ([Ae + AL + A VEEVeAg] ). (3.28)
Defining A = Agz +A%2 +A(~:2ng EV& Ag.. The objective function can then be written

1

as f(A(A)) =D, 3(ays Where A (A.)'denotes a vector composed of eigenvalues of A. Since

d(Ni(A)) = )\i(lA) is a convex function, f(A(A)) is.Schur-convex [14]. Moreover, A is a

symmetric matrix. Therefore, f(A(A)) majorizes f(d(A)),i.e. f(A(A)) > f(d(A)) [14],

where d (A) denotes a vector which is-composed of diagonal values of A. Since the

equality will hold when A is a diagonal matrix, then the worst case mismatch error will

be E,, = VéAEVg , which ensures that the lower bound of the MSE is reached. Since
R=1 N,N,, from Section 3.3, E,, will have to be a diagonal matrix (or a linear combination
of one) as not to minimize the degrees of freedom in the MIMO channel. This implies that
either V&, or Ag is an identity matrix. However, since C? is not necessarily a diagonal
matrix, it is not necessary for Vg, to be an identity matrix. This implies that Ag must
be either an identity or an all zero matrix. Since the constraint tr(f{ + E) = N;N, must
be satisfied, therefore, E,, must be an all zero matrix, i.e. E, = Oy, n,xn,n,. Substituting
E, = On,n,xn,n, into (3.11) and solving for C, C becomes an orthogonal matrix. That

is, the optimal SIT sequence is an orthogonal sequence, which agrees with the conclusion

in [23] that the optimal training sequence for spatially uncorrelated MIMO channel is an
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orthogonal sequence. Therefore, h RoMMSE becomes
N ~H [ SNNH 2 -t
hroyvmse = C (CC + UnnINrNt> Yy,

which implies that the estimation performance of the proposed RoOMMSE estimator and
the RMMSE estimator is identical when the MIMO channel is spatially uncorrelated, thus

agreeing with the simulation results in Section 3.3.
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Joint Sequence Design for Robust
Channel Estimation and PAPR

Reduction for MIMO-OFDM

Systems

4.1 Overview of PAPR Reduction

To combat the unfavorable effects brought about by wideband channels, OFDM is a
promising candidate that can easily remove intersymbol interference without inducing
great penalty in computational complexity. Unfortunately, due to the use of the IFFT
at the transmitter, the amplitude of the transmitted signal is no longer constrained, thus
incurring a high peak-to-average power ratio. The problem is worsened when the OFDM
systems are combined with MIMO as more RF chains are required for transmission where
different antennas may exhibit varying large degrees of PAPR. It is well known that non-
linearity in high power amplifier causes distortion in the transmit signal. Such distortion

can lead to undesirable spectral regrowth, thus interfering with signals in the neighboring
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subcarriers. Large amount of distortion can also cause in-band self-interference, which
increases bit error rate. Hence, it is customary for power amplifiers to operate with a
certain power backoff, which is defined as the ratio of maximum saturation output power
to lower average output power [34]. However, such backoff schemes lowers the efficiency
of the power amplifier and increases overall power consumption.

Miscellaneous approaches have been proposed to reduce the PAPR including coding,
TR, TI and multiple signal representation such as PTS and SLM and interleaving. In
chapter 2.2.3 | advantages and disadvantages of the existing techniques are discussed in
several criterion such as distortion, power increase, data rate loss and implementation
complexity. Since distortion is the main contribution for the BER degradation, a distor-
tionless technique is the first concern. For the techniques like PTS, SLM and interleaving,
although they are distortionless, side information is needed. Side information should be
estimated correctly, otherwise, BER performance gets worsened.

Herein, a superimposed sequence-design using per-tone affine precoding technique
is proposed to reduce the peak-to-average power ratio (PAPR) for MIMO-OFDM sys-
tems and estimate MIMO-OFDM channels even if spatial correlation uncertainty exists.
The proposed technique can easily trade-off-between BER and PAPR reduction perfor-
mance. Moreover, it does not require side information to be transmitted for the removal
of the sequence at the receiver, and the transmit redundancy can be as small as 1 sym-
bol/subcarrier. The superimposed sequence is designed using linear programming and
has a computational complexity of O (N log(/N)). Simulation results have shown that the
proposed technique, which shall be called superimposed sequence for PAPR reduction, or
SIPR, outperforms methods such as tone reservation in terms of PAPR reduction. The
chapter is organized as follows. The system model and a detailed description of SIPR are

given in Section 4.2, followed by the simulation results in Section 4.3.
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4.2 Methodology

4.2.1 System Model

Consider an affine precoded MIMO-OFDM system with N; transmit and N, receive

antennas as shown in Figure 4.1. Njg-point DFT and IDFT are adopted. u(k) =
T

uw(kNy) w(kNy+1) -+ w(kN,+ N, —1) is the information-bearing signal vector,

with k& denoting the block index and N, denoting the block size. Without loss of general-

ity, Ny = 2 is assumed such that 2 x 2 Alamouti STBC is used. The STBC encodes two

adjacent OFDM symbols at a time for each subcarrier for a total of K > N, symbols. The

output signal from the ¥ subcarrier at the /"* antenna can then be grouped together to
T

K : - i A Nix K
form x;, € C*, for ¢ = 1,2,..., Ny. Defining X* = X1 Xio ccc Xin, e CHex,

The information-bearing signal can then be written as an NyN; x NyK complex-valued

matrix
_Xl g
X2
X = (4.1)
XN
T
X is then premultiplied by the precoder matrix P = | pT pT ... P%f € CNsEX(K+L)
to form ) )
X'P,
X2P,
G=XP= € CNiNex(K+L), (4.2)
XNrP Ny
T
where P; = | p,, pia -+ pix | € CF*UT) s the per-tone affine precoder matrix

which adds L > N; redundant symbols to the signal at the i* subcarrier. p;; € CK*+E

denotes the precoder vector for j = 1,2, ... K. The premultiplication of the i*" per-tone
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affine precoder to the data matrix X’ in (4.2) runs in contrast to conventional precoding
techniques where the precoding matrix is postmultiplied to the data matrix. It is clear
that XZePi belongs to the range space of P!, which as will be explained in the sequel, eases
the removal of the superimposed sequences as the sequences and data belongs to different
orthogonal subspaces. As explained in [55, 56], removal of the sequences will be more
difficult if the precoding matrix is postmultiplied to the data matrix as the information-
bearing signal belongs to the range space of the channel, which cannot guarantee to be
orthogonal to the spaces occupied by the sequences. For ease of derivation, the precoded

data shall be presented as
D/ =G{:Ny : L+ (Ny—1)Ny, ). (4.3)

Defining the NNy x (K + L) complex-valued aggregate precoded data matrix D =

T
DT DI ... D%t ] , the NNy x (K + L) eomplex-valued superimposed training
T
(SIT) sequence matrix, C; = [ CI, €Ty ~..cl, } , as proposed in [56], and the

T
complex-valued SIPR matrix Cy = |i crct, ... .ct, ] € CNrNex(K+L) of the
) ) s Ve
@ T
same size, where C; ; = [ Ciie v G } € CNXEFL) and Cyy = [ ot 0 Cangi €

CNr*(E+L) with ¢y 4, €40 € CEFL denoting the SIT and SIPR vector for the ¢t antenna
at the i*" subcarrier, respectively. The superimposed sequence matrices will then be added

to the precoded data before the IFFT resulting in
U=C+D=C, +C,+D e CVN>EHL) (4.4)

as illustrated in Figure 4.1.

Combining IFFT, cyclic prefix (CP) insertion, CP removal, and FFT with the frequency-
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Figure 4.1: Block diagram of MIMO-OFDM transceiver with affine precoder.
selective MIMO channel results in an.equivalent channel matrix
Hyy Hiyp - Hiyp,
H - H
H— 21 2Ny c (CNfNrXNfN'r" (4.5)
Hy, - - Hy, y,

where H,,,, € CV7*Ys is a diagonal matrix containing the Fourier coefficients of the

h

channel between the m'* receive and ¢** transmit antenna. Thus, the receive data after

CP removal can be written as

Y =HU+W

=H(C;+Cy+D)+W, (4.6)
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where W denotes the channel noise matrix of appropriate size.

4.2.2 Proposed Sequence Design

It is clear from (4.6) that recovery of the data-bearing signal embedded inside D requires
the removal of C;, C, and W, which can only be carried out after channel estimation
has been performed using C;. However, C, will have to be removed during the channel
estimation and the detection phase as Csy is only exploited by the transmitter.

Defining

C, £ Cy(i: Ny:i+ (N, —1)Ny,»)
Céé02<iINfii+(Nt—1>Nf,Z)

YZéY(ZNfZ—i—(NT—l)Nf 3)

for ease for derivation, where ? denotes the index for subcarrier. In previous techniques
[55,56], the decoupling of the SIT sequence C! can be achieved by premultiplying Y* by

T

the per-tone decoder Q; = | @1 Qi+ QgL € CEHLIXN: for j = 1,2... Ny,

where Q; € N (P;), resulting in

Y'Q; = H' (X'P; + C} + C}) Q; + WQ;,

= H'(C] +C) Qi + WQ;

where H? € CN*M is the matrix containing the Fourier coefficients at the i** subcarrier
for all transmit and receive antennas. In other words, the SIT vector ¢ ;, should lie in
the column space of Q;. Therefore, the condition that C:PH = 0 NyN;x K guarantees the
subspaces spanned by the vectors in P; and C} are complementary. In [56], the SVD of
Ci is written as

C. = Ugi [ECzi ONtx(K+L—Nt)] ngi’ (4.7)

where Ugi, Vi, and ¢ are the left and singular vector matrix of Ci, and the invertible

4.2 Methodology 51



Chapter 4

portion of the singular value matrix of C{, respectively. Notice that CP = Oy, .k if
Vei = Ug,, where Ug, is the eigenvector matrix of Q:QE.
In the detection phase, the information-bearing signal can be recovered by premulti-

plying Y by the decoding matrix Qp, = P# (P;P#) ™! € CEHDK e,

= H' (X' +CyQp,) + WQp,.

Hence, a simple way to design P; and Q; is by extracting components off of an orthogonal

matrix O, € CEFLIXKHL) o

K+L
P, =/ ; 0,(1:1: K,:) € CKX(K+D),

Qi =O"((K+1):1:(K+N,),:) € CHEHIxN:,

Unfortunately, this is insufficient for the purpose herein as C! remains. However,

suppose
T
where Bi = | b;; b, -+ by € CNex(L=Ne) ¢optains arbitrary scalars, and

denotes the matrix extracted from the remaining rows of the orthogonal matrix O, after
P; and Q; have been extracted. That is, C is a linear combination of the remaining rows
of the orthogonal matrix O; after P; and Q; have been extracted. Therefore, the row
vectors of DY, Ci, and C} are guarantee to be orthogonal, as illustrated in Figure 4.2.

Then, C} will satisfy the constraints

i
CQQi - ONTXN,H
i

C5Qp, = On, xk,

(4.10)
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Figure 4.2: Three-dimensional illustration of the orthogonality between the row space of

D¢, Ci, and C%. Note that the row space of C} is coming out of the page.

thus allowing the SIPR matrix C} tobe completely eliminated by Q; and Qp, such that it
will not interfere with either the channel estimation nor the detection phase. This clearly
can be done without transmission of any side information from the transmitter to the
receiver, therefore, does not further.impact the spectral efficiency. Note that the number
of superimposed subcarriers for C} can be arbitrary chosen. For example, if there are N
subcarriers, C, is only added to the equally spaced Z—’; subcarriers, where Ay is the an
arbitrarily chosen subcarrier spacing. For the subcarriers which contain Cy, L > Ny, else
L > N,;. Thus, K and L can be different for each subcarrier as long as the sum of K and
L for each subcarrier is identical. This is done so that it minimizes the impact on the
spectral efficiency.

To account for uncertainty in the spatial correlation matrix, C; can be designed using
the technique proposed in [56] in order to improve MSE performance over that of [55].

The design of Cy requires the minimization of [53]

2
PAPRM[MO = ma maX|S€(t)|

Z:1,2..}.<Nt W’ (4.11)
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where s,(t) denotes the signal in time domain at the /** antenna. From (4.4), the output
from the IFFT becomes

S =F7(C,+C, +D),

where

F — f E (CNthXNth

In other words, F is a block diagonal matrix composed of N; number of N;-point DFT

matrices F . From (4.8), Cy can be expressed as

C, = BM, (4.12)
where ) /
by,
B = c (CNthXNf(L—Nt)
by, 2
b{’Nt
by,
L LY i
T

and M = Y ENR.Y EAR M%f . Cs is then parameterized by B, which is composed of
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all the b;;. Using the vectorization property vec (AEB) = (BT ® A)vec(E) and (4.12),

the transmitted block matrix S can then be written
s = vec (F"(C; + BM + D))
The sequence in Cy can then be designed by solving

min - |s|

|C2llp <P
— ; H

= Jmin |(T@ F")vec(Cy + Cy +D)||

— ; H

= i, | (I® F7) vec(Cy + BM 4+ D)|| (4.13)

where P, is the power allocated to Cy. Tt is known that C, can be stacked using C, so

ICa 17 = ) tr(Ciecy™),

=y tn(B;B/),
= tr(BBY),

= Bl

which makes the equality in (4.13) hold ‘and the designs of Cy and B be equivalent. B
thus has less coefficients to be designed compared to what Cs, has. Note that the total
signal power is normalized, i.e. of + o0&, + 0g, = 1, where of), 0¢, and og, denote
the variance of D, C; and C,, respectively. It is assumed that the information-bearing

signal, and superimposed sequences all have zero-mean and are statistically independent

Ué2 N¢Ng(K+L)

X . Note that (4.13) can be recasted as a linear

from each other. Thus, P, =
programming problem [58]
min t
—t1y,x1 = (I@FT)vec (C; + BM + D) < 1y,

||B||F <P
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, where Ny = NyN,(K + L) denotes the size of the vector s. And the computational

complexity is similar to that of [48] so that the computatonal complexity is O (N log (Ny)).

4.2.3 Power Allocation

Thus far, no optimal method is found to optimally allocate the power between D, Cj,
and C,. However, the suboptimal power allocation algorithm in [57] can be employed to
allocate power between D and C; + C,. From the results in [57], since the BER and MSE
performance are not linearly related, the MSE performance can be traded off in order to
increase the PAPR reduction performance without significantly impacting the BER. The
proper amount of tradeoff may be computed using a greedy algorithm, which is currently

under investigation.

4.3 Simulation Results

Complementary cumulative distribution function (CCDF) of the PAPR is used for per-
formance comparison. A MIMO system with -N; = N, = 2 is considered. Ny = 128 and
K = 10 are used throughout all the simulations. 0201 1s equal to 0.1 for the proposed SIPR,
scheme unless otherwise specified. QPSK and Alamouti STBC are used to modulate the
information-bearing signals.

In Figure 4.3 shows the CCDF performance of the proposed SIPR scheme with different
frequency spacings. The result is compared to a system without the addition of C,. The
number of the redundant vectors L equals to 4, and 0%2 = 0.2. When the value of Ay
decreases, the number of superimposed subcarriers increases, which allows oc, to have
more design freedom in the frequency domain to lower the PAPR. When CCDF is equal
to 107 and A; = 4, the proposed technique outperforms the one without Cy by 3 dB.

When Ay equals to 8 and 16, the SIPR algorithm outperforms the system without C, by
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Figure 4.3: CCDF comparison of proposed.SIPR method with different frequency spac-

ings, and to a system without 'C;. L= 4 and g¢g, = 0.2.

about 2.2 dB and 1.2 dB, respectively.

Performance comparison of the" SIPR-method with different number of redundant
vectors and to a system without Cs is shown in Figure 4.4. Frequency spacing is set to
be 4 and og, is equal to 0.2. When L = 3 and CCDF = 107?, the PAPR performance
of the SIPR method outperforms the system without Cs by 2.5 dB. Furthermore, as the
number of redundant vectors increases, the PAPR performance improves. This is expected
because as L increases, the number of elements in M4 ; also increases, thereby increasing
the design freedom of Cy. When L = 5, the performance gain of the SIPR scheme over
that of the system without Cy becomes 3.2 dB when CCDF is equal to 1073.

Next, the PAPR reduction performance of the SIPR scheme is examined by varying

0202. Figure 4.5 shows the performance comparison of the SIPR method with different
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Figure 4.4: CCDF comparison of proposed SIPR method with different number of redun-

dant vectors L. Ay =4 and g, = 0.2.

values of 0%2 and a system without Cy. From the figure, it is clear that the performance of
the SIPR method improves as o¢, increases:-However, o¢, cannot be increased indefinitely
as that will decrease the power allocated to C; and D, thus, degrading the channel
estimation and data detection performance. As alluded in Section 4.2.3, the optimal
(or suboptimal) amount of power to be allocated for PAPR reduction is currently under
investigation.

Performance comparison of tone reservation and the proposed SIPR method is shown
in Figure 4.6. To make the comparison fair in the sense of total number of blocks transmit-
ted, K and L are set to be 12 and 2 for the TR method. The total power for Z—; reserved

£ Nt

subcarriers of all the N; transmit antenna is upbounded by the normalized power NA—f in

N, symbols. When CCDF is equal to 1073, the SIPR method outperforms the TR method
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Figure 4.5: CCDF comparison of proposéd SIPR method with different o2, ,- L =4, and

Aj=4.

in PAPR reduction by 0.7 dB."For TR method, since the subcarriers are reserved only
for PAPR reduction, it can significantly deerease the throughput if large PAPR reduction
is desired. In the SIPR method, if C; is not required for channel estimation, then from
(4.9), the necessary condition for the existence of Cs is for L > 1 (given that N; = 1).
Thus, the transmit redundancy can be as small as 1 symbol/subcarrier, which does not
significantly reduce the spectral efficiency. To gain further insight into the impact of the

transmit redundancy, define the transmit efficiency as

AL

p , (4.14)

S =

where k denotes the number of the transmitted symbols used for channel estimation and
data detection, and 7 denotes the total transmitted symbols. In Figure 4.6, p is equal to

75% for the TR method because the number of reserved subcarriers used is 25% of the
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Figure 4.6: CCDF comparison of proposed method, and tone reservation, equal power for

redundancy , frequency spacing is set to be 4.

total number of subcarriers. However,

- >N,
_(32)(12) + (96)(14)
B (14)(128)

= 96.4%

for the proposed SIPR scheme, where K; = 12 is the number of symbols per subcarrier
which are transmitted when C, is employed on that particular subcarrier, and K, = 14
is the number of symbols per subcarrier which are transmitted when C, is not used.
These values match the values which have been used for the TR method in the current
simulation. It can be seen that the proposed scheme outperforms the tone reservation not

only in CCDF performance comparison but also the transmit efficiency.
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Conclusions and Future Works

5.1 Conclusions

A robust superimposed training sequence'design algorithm for spatially correlated MIMO
channel estimation has been proposed. The algorithm has shown to be robust against error
in the spatial correlation estimate.-When the robust training sequence is inserted into the
MMSE estimator, a robust MMSE, or. ROMMSE, estimator is derived. Also, the corrected
sub-optimal power allocation, which is sub-optimalin maximizing the effective SNR, of
the superimposed training sequence is also shown in this thesis. Simulation results have
shown that the proposed RoOMMSE estimator not only outperforms the optimal MMSE
estimator in [55] when error in the spatial correlation exists, but it also outperforms other
robust designs, such as RMMSE and LS-RMMSE [23]. Channel estimation error affects
the data detection performance directly. Simulations have also shown that the proposed
design outperforms other techniques mentioned in the sense of data detection.

A joint sequence design is proposed for robust channel estimation and PAPR reduction
for MIMO-OFDM systems. The proposed SIPR method is able to accurately estimate
MIMO-OFDM channels even with error in the spatial correlation estimate, and also sig-

nificantly lower the PAPR without significantly impacting the spectral efficiency. When
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channel estimation using superimposed training sequence is not required, the transmit
redundancy has been shown to be as small as 1 symbol/subcarrier. The computational
complexity is shown to be O (N;yN;log (NyN;)). Simulation results show that the pro-
posed scheme is able to outperform the tone reservation method in certain SNR range

and has a significantly higher transmit efficiency.

5.2 Future Works

In the thesis, ROMMSE estimator only concerns the worst case mismatch of the spatial
correlation in SU-MIMO systems. Since worst case mismatch does not occur frequently,
probabilistic constraint of the mismatch can also be considered. Therefore, it is more close
to the practical situation. RoOMMSE estimator is proposed in the SU-MIMO system. In
MU-MIMO, there might be some _interference from. other unwanted users. Therefore,
mismatch of the interference correlation can also be considered in the training sequence
design. Design of interference correlation estimator is also a possible direction, which can
further enhance the performance of training sequence design.

Since power allocation for the superimposed sequence, which is for lowering the PAPR,
is arbitrary designed, there is still room to find a optimal power allocation. The optimal
power allocation could not only make the signal operating in the linear region of the power

amplifier but also enhance the channel estimation and also data detection.
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