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摘要摘要摘要摘要 

     在寬頻通訊系統中，多輸入多輸出技術已經被證明可以提供高速以及增進頻

帶效率的重要技術。寬頻通訊系統標準例如 IEEE 802.16e、3GPP LTE 和 LTE Advanced

都採用多天線技術。而這些先進的通訊系統十分依賴適當設計後的訊號，來獲得正確

的通道狀態並且執行精確的同步。但因傳送這些非資料訊號，例如像保護位元和指標，

使得無線通訊系統會蒙受頻率效率的降低。為了達到多輸入多輸出系統所保證的資料

傳輸率增益，準確的空間相關訊息是非常重要的。此外，使用正交分頻多工技術雖然

有許多益處像是簡單的等化器設計，但高的峰值因數往往會發生，因而降低了發射機

的功率效率。當多輸入多輸出系統和正交分頻多工系統結合時，由於越來越多的傳送

端，高峰質因數更容易發生並嚴重地對系統造成影響。 

 

在這篇論文裡頭，利用仿射編碼來設計耐用(robust)疊加訓練序列，即使只有不

確定性存在的空間相關訊息，此序列依舊可以幫助預測空間相關的多輸入多輸出通道
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狀態。序列是直接加到資料訊號上，不會造成頻率效率的損失。此設計不需要準確的

空間相關訊息（矩陣），在這篇論文中，我們也證明此耐用設計優於之前被提出用來預

估空間相關多通道的方法，例如 RMMSE 和 LS-RMMSE。這個耐用設計可以用投影凸集的

迭代算法來解決，只要訓練序列的初始化是滿秩的，此迭代保證會收斂。當通道是不

空間相關時，我們證明出耐用設計和 RMMSE 是漸近相同的。除此之外，我們也提出一

個功率分配方法來達到最佳的資料檢測效能。 

 

由於使用多輸入多輸出正交多頻分工系統，我們提出了疊加序列來執行耐用通道

預測並且來降低峰值因數。我們提出了載波仿射編碼來降低高峰質因數，而接收端不

需要知道任何的額外訊息來解調資料訊號。相對於之前已知的技術，我們提出的方法

降低了很多的額外傳輸開銷，也增進資料檢測效能。即使我們提出的設計也要傳送額

外的訊號，但此多餘的訊號可以小到每個載波只要一個符號。此設計可以讓設計者很

容易的權衡資料檢測和降低峰值因數的效能。在模擬結果中，我們的方法明顯在降低

峰值因數和傳輸效率上都優於 Tone Reservation。 
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Abstract 

MIMO technology has proven to be the key enabler of high-speed, bandwidth 

efficient broadband communication systems such as IEEE 802.16e, 3GPP LTE and 

LTE-Advanced. Similar to many traditional systems, these advanced communication 

systems rely heavily on proper signaling in order to obtain correct channel state 

information and perform precise synchronization. Unfortunately, traditional signaling 

methods can incur a loss of spectral efficiency due to transmission of overhead data such 

as preamble, guard bits and pilots. Moreover, accurate spatial correlation information is 

crucial in achieving the theoretical capacity gain promised by MIMO. Furthermore, with 

the use of OFDM, high PAPR is often incurred, thus lowering the power efficiency at the 

transmitter. The problem is worsened when OFDM is combined with MIMO as more RF 

chains are required for transmission. 

 

In this thesis, a new signaling scheme is proposed for spatially correlated MIMO 

channels which exploits affine precoding to produce robust superimposed training 

sequence such that CSI can be accurately obtained even when uncertainty in the spatial 

correlation matrix exists. The sequence is algebraically added to the data such that there 
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is no loss of spectral efficiency. The proposed scheme does not require accurate 

knowledge about the spatial correlation matrix and it is shown to outperform previously 

proposed robust correlated MIMO channel estimators such as relaxed MMSE (RMMSE) 

and least-squares-RMMSE (LS-RMMSE).  A solution for the sequence can be obtained 

easily by using a projection on convex sets based iterative algorithm which is guaranteed 

to converge as long as the training sequence matrix is initialized to have full rank.  

Furthermore, it is shown that the proposed scheme is asymptotically identical to the 

RMMSE based schemes when the MIMO channel is spatially uncorrelated. A power 

allocation scheme is also proposed that can maximize the detection performance. 

 

Next, a joint superimposed sequence design is proposed to jointly perform robust 

channel estimation and lower the PAPR of MIMO-OFDM systems.  A per-tone affine 

precoding technique is proposed to reduce the PAPR such that no side information is 

required to be transmitted for the removal of the sequence at the receiver.  This is in 

contrast to previous known techniques which incurs a large amount of transmission 

overhead, or can dramatically increase the BER.  Furthermore, some of these techniques 

are based on heuristics that cannot optimally lower the PAPR.  Even though redundant 

information has to be sent, this can be as small as 1 symbol/subcarrier.  Furthermore, the 

proposed design allows the designer to easily trade off between BER and PAPR reduction 

performance.  Simulation results have shown that the proposed scheme outperforms the 

tone reservation scheme not only in PAPR reduction but also in transmit efficiency. 
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Chapter 1

Introduction

1.1 Research Motivation and Contribution

Rapidly growing demand for wireless services requires wireless communication systems

to have faster transmission speed and higher throughput. In the last decade, SU-MIMO

has drawn a great deal of attention since it has potential to provide spatial multiplexing

gain and achieve higher diversity , which scale linearly with the number of antennas,

without sacrificing spectral efficiency [3–5]. To realize such gains, CSI must be obtained

accurately. As compared to the SISO channel, the MIMO channel contains more unknown

coefficients. Therefore, it is more difficult to estimate the MIMO channel than the SISO

one. Although techniques such as differential space-time coding [8, 9] and differential

orthogonal space-time block coding [10, 11] have been proposed to blindly demodulate

and decode the received signal without CSI, this is done by sacrificing both performance

(compared to coherent techniques) and spectrum efficiency. Coherent detection is thus

widely used in current systems where CSI is usually obtained using time-multiplexed pilot

symbols. This, however, reduces the transmission efficiency, especially in cases where the

channel is undergoing fast fading due to the fact that pilot signals have to be placed more

frequently [2]. Moreover, the theoretic capacity gain promised by SU-MIMO can only

1
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Data
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Data
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Time
 

Figure 1.1: structure of superimposed training sequence

be achieved if the the channel is spatially uncorrelated . In scenarios where channels are

spatially correlated, this correlation has to be accurately estimated in order to maximize

MIMO capacity gain. Increased antenna correlation can be attributed to reduction in

antenna spacing or angular spread, which is caused by lack of a rich scattering environment

around the transceiver. Hence, some degree of spatial correlation will be experienced at

the transmitter and/or receiver.

Many techniques have been proposed to tackle the problem of correlated channel

estimation [14,15,23,24,30,55] with some techniques focusing on training sequence design

[14, 23, 55] while others dealt with channel estimator design [15, 23, 24, 30]. Despite the

tremendous focus that has been placed on this problem, most works have ignored the

effect that inaccurate spatial correlation has on the channel estimate. This inaccurately,

as shall be shown in the sequel, does have a dramatic impact on the accuracy of the CSI. In

this thesis, a robust sequence design is proposed which accounts for the mismatch between

the actual and estimated spatial correlation. The sequence is then applied to the MMSE

estimator to estimate the MIMO channel. For ease of presentation, such an estimator

shall be called RoMMSE estimator. Moreover, the sequence is designed in the context of

superimposed training sequence, which was recently proposed by [16] in order to tackle

the spectral efficiency problem. Rather than using dedicated timeslots, the SIT sequence

is algebraically added to the information bearing signal as illustrated in Figure 1.1. Since

the training sequence is overlaid onto the information-bearing signal, it allows for greater

spectral efficiency as compared to conventional systems that use time-multiplexed pilot

1.1 Research Motivation and Contribution 2
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Figure 1.2: multi-path fading in wireless channel

symbols.

Despite having multiple antennas, the fading channel can severely hamper the per-

formance of a wireless system by scattering the transmitted signal, thereby causing the

receiver to receive multiple copies of the same signal as illustrated in Figure 1.2. OFDM,

which is one of the most popular multi-carrier modulation techniques due to its low com-

putation complexity, offers immunity to the multi-path fading channels by allowing the

signal to transmit through multiple flat-fading channels. This is accomplished by using

FFT which explain its computation efficiency. Thus, combining MIMO and OFDM offers

an attractive solution toward achieving low-complexity high-throughput communication

systems . Unfortunately, due to the use of the IFFT at the transmitter, the transmitted

signal is no longer constrained, thus causing the signal to have a high peak-to-average

power ratio. This demands the use of highly linear and inefficient power amplifiers. This

problem is exasperated in MIMO-OFDM systems as multiple RF chains are deployed.

Hence, a superimposed sequence is proposed to be added to the data sequence in order to

mitigate the PAPR. Unlike previous proposed techniques such as selective mapping and

partial transmit sequence [51], the proposed design can easily trade off between bit error

rate and throughput in order to increase the effectiveness of the PAPR reduction. This is

particularly important as different applications have different throughput, error rate and

delay sensitivity requirements.

1.1 Research Motivation and Contribution 3
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1.2 Thesis Organization

The thesis mainly focuses on the sequence design to enhance system performance. It is

organized as follows :

• An introduction to the MIMO and the MIMO-OFDM systems is given in Chapter

2. A review of MIMO channel estimation and PAPR reduction are also included.

• Robust superimposed sequence design for spatially correlated MIMO channels is

proposed in Chapter 3. MIMO system with affine precoder is first introduced, fol-

lowed by problem formulation and simulation results are shown later in this chapter.

• PAPR reduction of MIMO-OFDM using optimal superimposed sequence is proposed

in Chapter 4. Detailed system model, problem formulation and simulation results

for PAPR reduction are shown.

• Conclusions and future works are in Chapter 5.

1.3 Publications

Conference:

Chin-Te Chiang and C.C. Fung, “Robust training sequence design for spatially correlated

MIMO channel estimation using affine precoder,” Proc. of the Intl. Conf. on Communi-

cations, May 2010.

Journal:

Chin-Te Chiang and C.C. Fung, “Robust training sequence design for spatially correlated

MIMO channel estimation, ” to be submitted to the IEEE Transactions on Vehicular

Technology.

1.2 Thesis Organization 4
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Background

Required background information is overviewed in this chapter. Two wireless communi-

cation systems and repective problems are introduced.

• An introduction of MIMO system and MIMO channel estimation is presented first.

• MIMO-OFDM system and PAPR reduction are discussed in Chapter 2.2.

2.1 MIMO System

MIMO refers to multiple antennas both at transmitter and receiver. The schematic illus-

tration of a MIMO system with Nt transmit antennas and Nr receive antennas is shown

in Figure 2.1 . The spatial dimension is exploited to increase the transmission rate and

also offer better reliability. With spatial multiplexing, the transmission rate can be in-

creased by sending multiple data streams with multiple antennas in parallel. On the other

hand, data for transmission can also be coded using STC techniques such as space-time

trellis coding and space-time block coding. The idea of STC is transmitting multiple and

redundant copies of a data stream to achieve transmit diversity. The coding techniques

usually applied to MIMO systems with transmit diversity.

5
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Figure 2.1: Simple schematic illustration of a SU-MIMO system
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Figure 2.2: comparison of time-multiplexed pilots and superimposed training sequence

2.1.1 MIMO Channel Estimation

SU-MIMO 1 has brought tremendous research effort devoted in this area in maximizing

diversity and spatial multiplexing gain [6,7] over the last decade. Perfect knowledge about

the CSI is usually assumed in the work. But in practice, CSI must be estimated accurately

to achieve such gain. Coherent detection is widely used in current MIMO system where

CSI is usually estimated using time-multiplexed pilot symbols. Time-multiplexed pilots

decrease the transmission rate because it occupies a certain number of times slots. SIT

1In this work, only SU-MIMO systems are dealt with as multiuser MIMO systems have different

scenarios and performance compared to SU-MIMO systems.
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sequence is arithmetically overlaid on the information-bearing data, it is transmitted using

all the time slots as the data. The comparison of the two schemes is shown in Figure 2.2.

SIT sequence increases the transmission rate as compared to the time-multiplexed pilots.

SIT can be extracted at the receiver by using first-order statistics [17,18], but information-

bearing data is always viewed as an interference for channel estimation since they share

the same time slots. In order to have a better separation of information-bearing data and

SIT at the receiver, affine precoder post-multiplies the information bearing data in [54].

It is independent from the channel matrix due to the post multiplication. It also helps

the receiver remove the unwanted received signals for channel estimation and so as for

data detection. Removal can be done by post-multiplied with well-designed decoupling

matrices. A SIT sequence design for spatially correlated MIMO channel using affine

precoder is proposed in [55]. Optimal SIT sequence, which is dependent on the spatial

correlation and the signal-to-noise ratio, can minimize the mean square error of channel

estimation.

2.1.2 Spatial Correlation of MIMO channels

Under the ideal assumption of independent and identically distributed(i.i.d.) wireless

channel coefficients, the optimal training sequence using MMSE channel estimator has the

orthogonal property [29]. However, the assumption does not hold for several conditions

such as little spacing between the antennas and small angular spread. Therefore, MIMO

channel is spatially correlated. In other words, spatial correlation matrix Rhh of the

vectorized channel h = vec(H) is no more an identity matrix multiplied by the variance

of the coefficient.

Rhh = E[hhH ] ∈ CNtNr×NtNr (2.1)

There are several analytical models to describe the spatial correlated MIMO channel.

Kronecker model is the most popular since its simple analytic expression of the correlation

2.1 MIMO System 7
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matrix. The model has been widely used for theoretical analysis of MIMO systems [31].

Drawback of the kronecker model is the assumption of physical separation between the

transmitter and receiver. Correlation is modeled at the transmitter and receiver sides

separately. It neglects the interdependency between the two sides, which is not accurate

when the transmitter and receiver are close.

R = Σt ⊗Σr (2.2)

H = Σ
1
2
r HwΣ

1
2
t , (2.3)

where Hw is the random matrix with i.i.d. zero mean complex normal entries with unit

variance. Σ
1
2
r ∈ CNr×Nr and Σ

1
2
t ∈ CNt×Nt are the Cholesky factorizations of spatial

correlation at the receiver and transmitter, respectively. In order to capture the joint

correlation between the transmitter and receiver, Weichselberger model is proposed in [33].

It describes the joint spatial correlation between the two link ends using the coupling

matrix Ω. The spatial correlated MIMO channel can be expressed as,

HWeichselberger = UT (Ω̃
⊙

G)UT
R. (2.4)

Ω̃ denotes the element-wise square root of Ω. G is an i.i.d random matrix with zero mean

and unit variance. UT and UR denotes the eigenvector matrices of spatial correlation at

transmitter and receiver respectively. For correlated MIMO channel estimation, kronecker

model is usually considered due to the ease of analysis. It is also used in the thesis.

2.1.3 Previous Work on Correlated MIMO Channel Estimation

Many techniques have been proposed to tackle the problem of correlated MIMO channel

estimation. [12] proposed using a state-space approach to estimate and track time-varying

correlated MIMO channels, where the channel correlation matrix is estimated from the

received data and treated as part of the state variable. In [13], a precoder assisted linear

2.1 MIMO System 8
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MMSE estimator was proposed to estimate the channel. In [14], two channel estimators

were derived under the MMSE and conditional mutual information criteria by exploiting

the virtual channel representation. Unfortunately, there is no closed-form solution, thus

the solution has to be computed numerically. [15] derived another MMSE based channel

estimator using structured correlation, which allows it to obtain better MSE performance

than unstructured based MMSE estimator. One major drawback that is shared among

these estimators is that they require exact knowledge about the spatial correlation in

order to outperform channel estimators that do not take such correlation into account.

Another disadvantage they shared is that they were all derived under the premise that

time-multiplex pilot symbols are used, which can drastically reduce transmission efficiency,

especially in cases where the channel is undergoing fast fading.

To bypass the second problem, [16] has proposed a channel estimation algorithm which

uses a SIT sequence that is arithmetically added into the transmitted signal; this frees

up valuable time slots that were previously used by time-multiplex pilot symbols. The

training sequence can also be used to deal with problem of synchronization [19]. Improved

channel estimation algorithms based on these training sequence have since appeared in

literature [17–19]. The sequence itself can be extracted at the receiver by using first-order

statistics [17,18] or by using affine precoding [22,54,55]. However, the effectiveness of these

algorithms still hinges on acquiring accurate estimates of the spatial correlation, making

these methods somewhat infeasible in real situations. To combat against this problem,

the relaxed MMSE (RMMSE) and least-squares RMMSE (LS-RMMSE) algorithms have

recently been proposed by [23] that can circumvent the dependency on the correlation

matrix by using diagonal loading while [24] has proposed a different approach by using

basis expansion.

2.1 MIMO System 9
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Figure 2.3: Block diagrams of OFDM

2.2 MIMO-OFDM System

Mutil-path fading and high transmission rates make the wireless channels to be frequency

selective, which is the same case for the MIMO channel. Frequency selective channel brings

the unwanted inter-symbol interference and inter-carrier interference. Therefore, OFDM is

used to combat the mentioned problems under assumption that the length of cyclic prefix

is long enough. Although OFDM is a powerful technique, there are still disadvantages

such as sensitivity to synchronization error and high peak-to-average power ratio. The

use of multiple antennas is a trend since it provides diversity and spatial multiplexing

gain. That is, parallel OFDM transmission, denoted as MIMO-OFDM, is the candidate

for the next-generation wireless communication.

2.2.1 Concepts of OFDM and PAPR

OFDM, which is one of the multi-carrier modulation, offers immunity to the frequency

selective channels and also guarantees for high data transmission efficiency. Hardware

implementation can be easily realized using FFT techniques. That is, it has been adopted

in many wireless communication standards, such as IEEE 802.11a, IEEE 802.16e, 3GPP

LTE and the LTE-Advanced. . OFDM system can turn the frequency selective channels

into parallel frequency flat subchannels when the CP is greater than or equal to the order

of the channel. Figure 2.4 shows the structure of CP, which prefixes a repetition of the

2.2 MIMO-OFDM System 10
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CP CP

Tg Td Tg Td  

Figure 2.4: cyclic preix

tail part of the OFDM symbol. With the CP, linear convolution of the equivalent channel,

which is composed of the CP insertion, removal and the frequency selective channels, has

the circulant property. The property is favored since it makes the equivalent channel be

diagonalized by the IFFT and FFT blocks, which makes the frequency selective channel

to be parallel frequency flat.

Since IFFT block transforms the signals from frequency domain into time domain,

sum of the Gaussian-like time-domain waveforms contributes to the high PAPR. High

PAPR does not only decrease the efficiency of the power amplifier but also introduce the

out-of-band noise. Definition of PAPR for the signal s(t) is defined as,

PAPR (s(t)) =
max |s(t)|2
E(|s(t)|2) . (2.5)

2.2.2 Structure of MIMO-OFDM system

In order to have a higher transmission rate, OFDM can be combined with MIMO. Consider

a MIMO-OFDM system with Nt transmit antennas and Nr receive antennas. A simple

schematic presentation is shown in Figure 2.5. The input data of the serial to parallel

can be the modulation using space time frequency block codes or space frequency block

codes techniques. The techniques mainly map information symbols to antennas and tones

as a way for using both spatial and frequency diversity. The frequency-selective MIMO

channels can be further flatten as in OFDM system. At the receiver, diversity from

2.2 MIMO-OFDM System 11
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Figure 2.5: MIMO-OFDM system

multiple antennas can boost the data detection performance.

Although MIMO-OFDM have the advantages from both MIMO and OFDM, it still

suffers from the high PAPR. Definition of the PAPR in MIMO-OFDM system is more

general as compared to the one introduced in equation . It is defined as the maximum

PAPR among all the transmit antennas [53].

PAPR (sl(t)) =
max |sl(t)|2
E(|sl(t)|2) ,

PAPRMIMO = max
l=1,2···Nt

PAPR(sl(t)) (2.6)

where l is the index for the transmitter. sl(t) denotes the signal in the time domain at

antenna l. It can also describe the PAPR of the SISO-OFDM system.

2.2.3 Previous Works on PAPR reduction

It is well known that nonlinearity in high power amplifier causes distortion in the transmit

signal. Such distortion can lead to undesirable spectral regrowth, thus interfering with

signals in the neighboring subcarriers. Large amount of distortion caused by high PAPR

2.2 MIMO-OFDM System 12
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can cause in-band self-interference, which increases bit error rate. It is customary for

power amplifiers to operate with a certain power backoff, which is defined as the ratio

of maximum saturation output power to lower average output power [34]. However,

such backoff schemes lowers the efficiency of the power amplifier and increases overall

power consumption. Such problem can be avoided by employing clipping [35], it can be

implemented by setting a saturation level. Once the signal exceeds the threshold, the

amplitude is set as the level without changing the phase.

B(s(t)) =





s(t), |s(t)| ≤ A,

Aejθ(s(t)) |s(t)| > A

(2.7)

B is the clipping operation of the signal s(t). A is the amplitude threshold. Clipping

does not decrease the transmission rates, but its distortion contributes to the bit-error

rate degradation and also brings out-of-band noise. A blocking coding scheme was pro-

posed in [37] in which codewords that cause high PAPR are avoided and are instead

coded with a different set of (longer) codewords. Since the signal is not distorted, such

technique does not increase the BER. Unfortunately, it decreases the spectral efficiency

and requires changes in the transmit frame structure to allow error-free decoding at the

receiver. Distortionless techniques are prefered, but there is still drawbacks, which leads

to the low transmission efficiency and high computation complexity. Tone reservation

and tone injection [47] techniques are data-dependent methods which adds signal to the

information-bearing signal in order to lower the PAPR. Tone reservation in Figure 2.6

reserves certain subcarriers such that they can be set to optimal values to minimize the

PAPR without affecting the information-bearing subcarriers. Unlike the TI method, the

TR method does not distort the original signal as the added signal is injected into set

of subcarriers that have been reserved for PAPR reduction. This, of course, lowers the

spectral efficiency of the system. TI avoids this problem by increasing the constellation

size and injecting extra data into the new constellation points which tend to decrease the

2.2 MIMO-OFDM System 13
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Frequency
 

Figure 2.6: tone reservation, the black blocks are the reserved frequency subcarriers

PAPR. Unfortunately, the injected data occupy the same subcarrier as the information-

bearing signal which may adversely affect BER performance. The added signal may also

increase transmit power. The TR method was extended by [48] such that the power

injected into the reserved subcarriers for PAPR reduction is formulated as a power al-

location problem which can be efficiently solved using linear programming. The active

constellation extension(ACE) method [49] exploits the constant modulus structure by dy-

namically extending the some of the other signal constellation point such that the PAPR

of the information-bearing signal can be reduced. This technique does not increase the

BER and no side information is required to be sent. However, the degree of PAPR reduc-

tion is inversely proportional to the constellation size of the modulation, thus limiting its

ability to lower PAPR in systems employing high order modulation. Furthermore, similar

to the TI method, it may also increase the transmit signal power. But side informa-

tion is still needed for data decoding. A more extensive treatment of previous proposed

PAPR reduction techniques are given in [51, 52]. Advantages and disadvantages of the

mentioned techniques are discussed in several criterion such as distortion, power increase,

data rate loss and implementation complexity. The table 2.2.3 shows the comparison in

different criterion. The techniques mentioned can be easily extended from SISO-OFDM

to MIMO-OFDM, but it has not taken use of the spatial domain. A PAPR reduction

scheme specifically designed for MIMO-OFDM systems called cross-antenna rotation and

inversion, or CARI, was proposed in [50]. The technique perform subblockwise rotation

and inversion across all antennas for subcarriers to achieve the PAPR reduction. The tech-

2.2 MIMO-OFDM System 14
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Table 2.1: comparison of different PAPR reduction techniques

distortion power increase data rate loss

clipping Yes No No

TR/TI No Yes Yes

PTS/SLM No No Yes

ACE No Yes No

nique utilizes additional degrees of freedom in the spatial domain to decrease the PAPR.

But side information is needed for data decoding. Nevertheless, every PAPR technique

has its own advantages and disadvantages, it has no optimal solution for all multicarrier

transmission systems.
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Robust Training Sequence Design for

Spatially Correlated MIMO

Channels

3.1 Overview of Channel Estimation

To realize the diversity and spatial multiplexing gain of MIMO system, channel CSI must

be obtained accurately. Instead of using time-multiplexed pilots, superimposed training

sequence is applied for channel estimation since its higher transmission efficiency. As

compared to the SISO channel, the multiple-input MIMO channel contains more unknown

coefficients to be estimated, which makes it more difficult. In MIMO system, small angular

spread and little spacing between antennas are usually seen due to the small device and

poor scattering environment, which cause the spatially correlated MIMO channel. Many

algorithms have been discussed in section 2.1.3 to estimate the spatially correlated MIMO

channels. However, the effectiveness of these algorithms still hinges on acquiring accurate

estimates of the spatial correlation, making these methods somewhat infeasible in real

situations.

16
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A approach to the problem is proposed in this chapter by designing a superimposed

training sequence that is robust toward spatial correlation uncertainty. The proposed

design exploits the affine precoder scheme proposed in [26, 55] to extract the training se-

quence for channel estimation. System models and derivation of the iterative algorithm

are discussed in details. Simulation results shows that the proposed scheme performs

extremely well against estimator in [55] which does not take into account the spatial cor-

relation estimate error. Moreover, the RoMMSE estimator also outperforms the RMMSE

and LS-RMMSE estimators when the MIMO channel is spatially correlated. Finally, the

RoMMSE estimator will also be compared to the RMMSE and LS-RMMSE estimators

for uncorrelated MIMO channels in which it is shown that the three estimators perform

almost identically and that they are asymptotically equivalent.

3.2 Methodology

3.2.1 System Model

The system model used in [55] is adopted herein. For the sake of completeness, the model

will also be described in the sequel. Consider a spatially correlated flat-fading MIMO chan-

nel with Nt transmit and Nr receive antenna, as shown in Figure 3.1. The information-

bearing signal vector is denoted as u(k) =

[
u(kNs) u(kNs + 1) · · · u(kNs + Ns − 1)

]T

,

where k is the block index and Ns denotes the block size. Each block of the signal is en-

coded using a space-time block coder (STBC), which can be used to increase transmit

diversity or multiplexing gain [25]. The STBC has Nt number of output vectors, with

each vector containing K ≥ Nt symbols as full rate STBC is assumed. This can be rep-

resented in matrix form as X =

[
x1 x2 · · · xNt

]T

∈ CNt×K , where xi ∈ CK , for

i = 1, 2, . . . , Nt, denotes the ith output vector. Each vector is then fed into the precoder

P =

[
p1 p2 · · · pK

]T

∈ CK×(K+L) which adds L ≥ Nt redundant symbols to each

3.2 Methodology 17
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block of signal, resulting in the output signal vector di ∈ CK+L, for i = 1, 2, . . . , Nt. All

Nt output of the precoder can be represented in matrix form as

D ,




dT
1

dT
2

...

dT
Nt




= XP =




xT
1 P

xT
2 P

...

xT
Nt

P




∈ CNt×(K+L). (3.1)

As seen in the sequel, the precoder is used to assist in the channel estimation [22,54,55] by

eliminating the information-bearing signal at the receiver, thus leaving the superimposed

training sequence used for channel estimation. It was shown in [26] that the precoder

can also be designed to improve symbol detection rate or to minimize mean-squared error

between the transmitted and recovered signal [54]. After precoding, the superimposed

training sequence vector ci, for i = 1, 2, . . . , Nt is added to di. Each vector is then

serialized before it is transmitted across the flat-fading MIMO channel, represented in

matrix form as H ∈ CNr×Nt . Thus, the received signal can be written as

Y = H(C + D) + η = HC + HXP + η, (3.2)

where

C ,




cT
1

cT
2

...

cT
Nt




∈ CNt×(K+L), and η ∈ CNr×(K+L)

are the superimposed training sequence matrix and the additive channel noise matrix,

respectively. Notice in (3.2) that the received signal in space lies in the rows of Y. Thus,

the rows of the information-bearing portion of the signal, i.e. xT
i P, for i = 1, 2, . . . , Nt,

belong to the row space of P. Hence, the rows of HXP also belong to the same subspace.

This is different than the conventional model used in [22, 27, 28] where the information-

bearing portion of the received signal is embedded inside the range space of the unknown
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Figure 3.1: Block diagram of MIMO transceiver.

channel matrix, thus making it difficult for channel estimation using SIT sequence. The

affine precoding approach adopted herein eases the decoupling of the information-bearing

signal and the training sequence because decoupling can now be done by postmultiplying

Y by a decoupling matrix, Q =

[
q1 q2 . . . qK+L

]T

∈ C(K+L)×Nt , resulting in

YQ = HCQ + HXPQ + ηQ. (3.3)

Thus, by requiring the columns of Q to lie in N (P), i.e. PQ = 0K×Nt , then (3.3) becomes

YQ = HCQ + ηQ. (3.4)

In other words, the training sequence vector ci, for i = 1, 2, . . . , Nt should lie in the

column space of Q. Therefore, the condition that CPH = 0Nt×K guarantees the subspaces

spanned by the vectors in P and C are complementary [55]. This suggests a simple way
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to design P and Q is by extracting components off of an orthogonal matrix, i.e.

P =

√
K + L

K
O (1 : K, :) ∈ CK×(K+L), and

Q = (O ((K + 1) : (K + Nt), :))
H ∈ C(K+L)×Nt .

Note that O(1 : K, :) and O ((K + 1) : (K + Nt), :) keep only rows 1 to K and rows

(K +1) to (K +Nt) of an orthogonal matrix O ∈ C(K+Nt)×(K+L) [26]. Hence, QHQ = INt

so that noise amplification will not occur in the channel estimation process.

In addition to channel estimation, another decoupling matrix, QD, can be designed

to maximize symbol detection performance. Such decoupling matrix can be chosen to

satisfy the condition QD = PH
(
PPH

)−1
, where P is designed such that CPH = 0Nt×K .

This ensures the detection process is free of interference from the SIT sequence when QD

is postmultiplied to Y. Therefore,

PPH =
(
QH

DQD

)−1
=

K + L

K
IK ,

such that tr
(
PPH

)
= K + L. This is to ensure that the average transmitted power of

the information-bearing signal is unchanged after precoding.

According to the Kronecker model [25], the channel matrix can be decomposed as

H = Σ
1
2
r HwΣ

1
2
t , (3.5)

where Σ
1
2
r ∈ CNr×Nr and Σ

1
2
t ∈ CNt×Nt are the Cholesky factors of the spatial corre-

lation matrix of the receiver and transmitter, respectively. Hence, the overall spatial

correlation is R = Σt ⊗ Σr. The entries of Hw ∈ CNr×Nt are independent and identi-

cally distributed zero-mean complex Gaussian random variables with unit variance. Thus,

E
[
vec(Hw)vecH(Hw)

]
= INrNt .
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3.2.2 MMSE estimator and training sequence design

To derive the proposed RoMMSE estimator, (3.4) is first vectorized to obtain the received

signal vector

y = C̃h + n, (3.6)

where y = vec(YQ) ∈ CNrNt , C̃ = (CQ)T ⊗ INr ∈ CNrNt×NrNt , h = vec(H) ∈ CNrNt and

n = vec(ηQ) ∈ CNrNt . E[nnH ] = σ2
nINrNt . From the vectorized received signal y, the

linear minimum mean-squared error estimator of h is [29, p.387]

ĥ = RH
yhR

−1
yyy = RC̃H(C̃RC̃H + σ2

nnINrNt)
−1y, (3.7)

where Ryy , E
[
yyH

]
, Ryh , E

[
yhH

]
and R , E

[
hhH

]
are the autocorrelation

matrix of the received signal y, the cross-correlation matrix of y and h, and the spatial

correlation matrix of the channel, respectively. All matrices are of size NrNt × NrNt.

Therefore, the optimal MMSE estimate of h can be obtained by finding the optimal

training sequence matrix C̃. Note that the mean-squared error matrix between h and ĥ

is written as [29, p.387]

ξ = E[(h− ĥ)(h− ĥ)H ]

=
(
R−1 + C̃H(σ2

nnINrNt)
−1C̃

)−1
. (3.8)

From (3.8), [55] proposed to design the optimal training sequence matrix C̃ by minimizing

the trace of ξ, subject to the power constraint tr
(
CCH

) ≤ Nt(K + L)σ2
cc , PT , where

σ2
cc is the average power of the training sequence. It was assumed in [55] that the average

transmitted power, which includes the power of the information-bearing and the training

signals, is normalized as σ2
xx + σ2

cc = 1, where σ2
xx is the variance of the information-

bearing signal. This assumption will also be applied to the proposed RoMMSE estimator.

Since C̃ = (CQ)T⊗INr , using the properties that tr(AB) = tr(BA), (A⊗B) (C⊗D) =

(AC)⊗(BD), (A⊗B)H = AH⊗BH , and tr(A⊗B) = tr(A)tr(B), the power constraint
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on C̃ can be written as

rcltr
(
C̃C̃H

)
= tr

([
(CQ)T ⊗ INr

] [
(CQ)T ⊗ INr

]H
)

= tr
([

(CQ)T ⊗ INr

]
[(CQ)∗ ⊗ INr ]

H
)

= tr
([

(CQ)T (CQ)∗
]⊗ INr

)

= tr
(
(CQ)T (CQ)∗

)
tr (INr)

= Nrtr
(
QTCTC∗Q∗)

= Nrtr
(
CTC∗)

≤ NrPT , P̃T . (3.9)

The inequality is obtained because tr
(
CTC∗) = tr(CHC) = tr(CCH) = ‖C‖2

F ≤ PT . It

is important to note that the performance of the RoMMSE estimator is dependent on the

total transmission power, PT , and not the number of redundant vectors, L. The latter

is however necessary to allow for decoupling of the SIT sequence from the information-

bearing signal at the receiver. Figures 3.2 and 3.3 show the MSE performance of the

proposed RoMMSE estimator (to be described in the next section) for 2 × 2 correlated

MIMO channels when L is increased with different and fixed PT , respectively. In the latter

case, σ2
cc is decreased while L is increased in order to keep PT constant. From Figure 3.2,

it is clear that MSE performance improves as L increases, while Figure 3.3 shows that

such performance improvement is due to the increase in PT , not just L, because as PT is

kept constant even while L is increased, there is no change in MSE performance.

3.2.3 Proposed training sequence design

It is clear from (3.8) that exact knowledge of R is required at the receiver in order

to obtain an accurate estimate of h using (3.7). However, in all likelihood, only an

estimate of R can be obtained, for example, using the method proposed in [30]. In order

to desensitize the MSE from the estimation error of R, a novel SIT sequence design
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Figure 3.2: MSE vs. SNR performance comparison between different numbers of redun-

dant vectors with different PT for spatially correlated 2 × 2 MIMO system, ∆ = 5◦,

dt = 0.5λ and dr = 0.2λ. ε = 0.3.

is proposed herein which incorporates such estimation error. As the spatial correlation

matrix is estimated at the receiver before it is fed back to the transmitter using a low-

rate control channel, quantization error will also contribute to the error in the spatial

correlation estimate, causing the mismatch between the estimated and the actual spatial

correlation to be uniformly distributed. Hence, a deterministic approach is proposed

herein to bound the error in a norm ball. Applying such a SIT sequence into the MMSE

estimator in (3.7) allows the estimator to be more robust against estimation error in

the spatial correlation than other MMSE based estimators which do not take such error

into account. Even though the rate of change of the channel statistics is slower than

that of the channel coefficients, imperfect channel statistics will still adversely affect the

channel estimation performance and thus the BER, if not properly accounted for in the
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Figure 3.3: MSE vs. SNR performance comparison between different numbers of redun-

dant vectors with fixed PT is fixed for spatially correlated 2 × 2 MIMO system, ∆ = 5◦,

dt = 0.5λ and dr = 0.2λ. ε = 0.3.

system design. Moreover, better robust channel estimation can be obtained if the spatial

correlation mismatch and channel coefficient mismatch can be separately accounted for

as the structure of the spatial correlation mismatch matrix will be different from that of

the channel coefficient matrix.

Let

R = R̂ + E, (3.10)

where R̂ denotes the estimate of R and E is its corresponding spatial correlation mismatch

matrix, respectively. In the present scheme, the error power is upper bounded such that

‖E‖F ≤ ε, where ε is a predefined error power bound. Using this bound with (3.9) and

(3.10), the training sequence matrix C (or its equivalent C̃) can be designed by minimizing
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the maximum mean-squared error ξ, i.e.

min
‖C̃‖2

F
≤P̃T

max
‖E‖F≤ ε

tr

([(
R̂ + E

)−1

+ C̃H(σ2
nnINrNt)

−1C̃

]−1
)

.

(3.11)

Note that (3.11) is not a convex problem with respect to E and C. However, the problem

can be decomposed into two separate convex optimization problems, one with respect to

E and the other to C. Furthermore, performing SVD on C̃, i.e. C̃ = UC̃ΣC̃VH
C̃

and using

the property tr (AB) = tr(BA), the objective function of the maximization problem in

(3.11) can be rewritten as

tr

([(
R̂ + E

)−1

+ C̃H
(
σ2

nnINrNt

)−1
C̃

]−1
)

= tr

([(
R̂ + E

)−1

+ σ−2
nnVC̃ΣH

C̃
ΣC̃VH

C̃

]−1
)

= tr

([
VH

C̃

(
R̂ + E

)−1

VC̃ + σ−2
nnΣ

H
C̃
ΣC̃

]−1
)

.

(3.12)

Next, using the property tr(A + B) = tr(A) + tr(B) and the matrix inversion lemma

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, and letting A = σ−2
nnΣ

H
C̃
ΣC̃,

C = VH
C̃

(
R̂ + E

)−1

VC̃ and B = D = INrNt , then (3.12) becomes

tr

(
σ2

nnΣ
−1

C̃
Σ−H

C̃
− σ2

nnΣ
−1

C̃
Σ−H

C̃

[
σ2

nnΣ
−1

C̃
Σ−H

C̃
+ VH

C̃

(
R̂ + E

)
VC̃

]−1

σ2
nnΣ

−1

C̃
Σ−H

C̃

)

= tr
(
σ2

nnΛ
−1

C̃

)
− σ4

nntr

(
Λ−1

C̃

[
σ2

nnΛ
−1

C̃
+ VH

C̃

(
R̂ + E

)
VC̃

]−1

Λ−1

C̃

)

= tr
(
σ2

nnΛ
−1

C̃

)
− σ2

nntr

([
ΛC̃ + σ−2

nnΛC̃VH
C̃

(
R̂ + E

)
VC̃ΛC̃

]−1
)

= tr
(
σ2

nnΛ
−1

C̃

)
− σ2

nntr

([
C̃HC̃ + σ−2

nnC̃
HC̃

(
R̂ + E

)
C̃HC̃

]−1
)

, (3.13)

where ΛC̃ , ΣH
C̃
ΣC̃. Since the first term of (3.13) does not depend on E, maximizing

(3.11) is equivalent to minimizing the second term in (3.13). Therefore, the maximization

problem in (3.11) becomes

min
‖E‖F≤ε

tr

([
C̃HC̃ + σ−2

nnC̃
HC̃

(
R̂ + E

)
C̃HC̃

]−1
)

, (3.14)
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and it can be easily solved using convex optimization toolbox such as cvx [59] since the
(
R̂ + E

)−1

term is eliminated.

Unfortunately, even if (3.14) is substituted into (3.11), it is difficult to find a closed-

form solution for C. Therefore, the iterative algorithm in Figure 3.4 is proposed. As

seen from the figure, C̃ is first initialized to be a full rank matrix satisfying the condition

C(0)PH = 0. C(0) is then used in (3.17) (or equivalently (3.14)) to solve for a solution

for E. This is then used in (3.18) to solve for C̃. This process will be repeated until

‖E(n)−E(n−1)‖2
ε

is less than some preset threshold α. Note that C̃ needs to be initialized to

have full rank otherwise the inverse in (3.17) cannot be taken.

Assuming that C has full row rank. Initializing C in the algorithm shown in Figure

3.4 to be C(0), it is obvious that

C(0) = UC(0)

[
ΣC(0) 0Nt×(K+L−Nt)

]
VH

C(0), (3.15)

where UC(0), VC(0), and ΣC(0) are the left and singular vector matrix of C(0), and the

invertible portion of the singular value matrix of C(0), respectively. Hence, to satisfy

the condition that CPH = 0Nt×K , it is necessary that VC(0) = UQ, where UQ is the

eigenvector matrix of QQH . That is,

QQH = UQΛQUH
Q

= UQ




Λ′
Q 0Nt×(K+L−Nt)

0(K+L−Nt)×Nt 0(K+L−Nt)×(K+L−Nt)


UH

Q,

where Λ′
Q ∈ CNt×Nt is a diagonal matrix containing the non-zero eigenvalues of QQH .

Assuming that the diagonal values of ΛQ are arranged in descending order. Hence,

C̃2(n) =
(
UC(n)ΛC(n)U

H
C(n)

)∗
⊗ INr , for n = 0, 1, ..., n0, where n and n0 denote the

iteration index and the iteration time when ‖E(n)− E(n− 1)‖2 /ε < α, respectively, and

ΛC(n) = ΣC(n)Σ
∗
C(n). Thus, VC(n) = VC(0) = UQ for n = 0, 1, ..., n0 and the training

sequence when convergence has been reached becomes

C(n0) = UC(n0)

[
ΣC(n0) 0Nt×(K+L−Nt)

]
UH

Q, (3.16)
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where UC(n0) is the singular vector matrix for C(n0) and ΣC(n0) ∈ CNt×Nt is a singular

value matrix of C(n0) containing all non-zero singular values. This conforms to the

structure previously derived in [55].
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3.2.4 Convergence analysis

Theorem 1 The iteration depicted in Figure 3.4 will always converge to the global op-

timal solution given that C is initialized as a matrix with full rank, where the constraint

C(0)PH = 0Nt×K is satisfied.

Proof. Define the convex sets E =
{(

C̃,E
)
|‖E‖F ≤ ε

}
and C =

{(
C̃,E

) ∣∣∣∣
∥∥∥C̃

∥∥∥
2

F
≤ P̃T

}

containing elements that are 2-tuples.1 Expressing the objective function in (3.11) as

f
(
C̃,E

)
. Given C̃, it is clear that max f

(
C̃,E

)
with respect to the E is a non-expansive

operator, i.e.

0 =

∥∥∥∥ max
‖E1‖F≤ε

f
(
C̃,E1

)
− max

‖E2‖F≤ε
f

(
C̃,E2

)∥∥∥∥
≤ ‖E1 − E2‖ . (3.19)

Similarly, given E, min f
(
C̃,E

)
with respect to the C̃ is also a non-expansive operator,

i.e.

0 =

∥∥∥∥∥ min
‖C̃1‖2F≤P̃T

f
(
C̃1,E

)
− min

‖C̃2‖2F≤P̃T

f
(
C̃2,E

)∥∥∥∥∥
≤

∥∥∥C̃1 − C̃2

∥∥∥ . (3.20)

Moreover, the solutions in (3.19) and (3.20) will always belong to either E or C. Then

according to the theory of alternating projections [32], the algorithm depicted in Figure

3.4 will always converge, given appropriate initial conditions. Since the two sets are

convex, there is a unique point of intersection and thus the solution obtained in Figure

3.4 will always be the global optimal solution.

Note that it is possible for C(n) to lose rank when the SNR is low and when ε is

sufficiently small (e.g. SNR = 0 dB and ε = 0.1). To prevent this from occurring, C̃2(n)

is diagonally loaded, i.e. C̃2(n) = C̃2(n) + ρINtNr , where ρ is a small value compared to
∥∥∥C̃2(n)

∥∥∥
F
, e.g. ρ = 0.01

∥∥∥C̃2(n)
∥∥∥

F
.

1Both sets are convex because their respective constraints form a norm ball.

3.2 Methodology 28



Chapter 3

Define:

C(n) : training sequence matrix at the nth iteration

E(n) : error mismatch matrix at the nth iteration

C̃(n) , (C(n)Q)T ⊗ INr

C̃2(n) , C̃H(n)C̃(n)

Algorithm:

initialize C(0) to any full rank matrix, s.t.

C(0)PH = 0Nt×K

initialize E(1) = 0NrNt×NrNt

initialize α to the value of a given threshold

initialize ε to the value of a given error bound

initialize ρ to a given value for the diagonal loading

n = 1

DO:

if rank
(
C̃2(n)

)
< NtNr

C̃2(n) = C̃2(n) + ρINrNt

endif

Eopt(n) = arg min

‖E(n)‖F≤ε

tr(R̂+E(n))=NtNr

tr

([
C̃2(n− 1) + σ−2

nnC̃2(n− 1)
(
R̂ + E(n)

)
C̃2(n− 1)

]−1
)

(3.17)

C̃opt(n) = arg min
‖C̃(n)‖2

F
≤P̃T

tr

([(
R̂ + Eopt(n)

)−1

+ σ−2
nnC̃H(n)C̃(n)

]−1
)

(3.18)

C̃(n) = C̃opt(n)

n = n + 1

E(n) = Eopt(n)

Until ‖E(n)−E(n−1)‖2
ε < α

Figure 3.4: Algorithm pseudocode for training sequence design.
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3.2.5 Power Allocation

Since the use of the SIT sequence requires reducing the power of the information-bearing

signal, this will have an adverse effect on the recovery of the information-bearing signal.

A suboptimal power allocation scheme for the training sequence was derived in [55] in

which the effective SNR

SNReff =

E

[∥∥∥ĤX
∥∥∥

2
]

E

[∥∥∥H̃X + NQD

∥∥∥
2
] (3.21)

was maximized. A similar power allocation scheme can similarly be derived with the

spatial correlation mismatch matrix, E, taken into account. The method is suboptimal

due to the fact that the numerator in (3.21) can be written as

E

[∥∥∥ĤX
∥∥∥

2
]

= tr
(
E

[
ĤXXHĤH

])

= Kσ2
xtr

(
E

[
HHH

]
+ E

[
H̃H̃H

])

= Kσ2
x

(
tr

(
R̂ + E

)
+ ε

)

= Kσ2
xx (NtNr + ε) , (3.22)

where it has been assumed that tr
(
E

[
HHH

])
= tr

(
R̂ + E

)
= NtNr, with ε = tr

(
E

[
H̃H̃H

])

denoting the mean-squared error of the channel. Note that the received SNR is defined

as SNR = −10 log10 σ2
nn under the assumption that the power of the received signal is

normalized to 1. Thus, trace(R̂ + E) = NtNr. In addition, it should be noted that there

is an error in the expression for E

[∥∥∥ĤX
∥∥∥

2
]

in [55] in which ε was preceded by a minus

sign, even if it should be preceded by a plus sign instead, as indicated in (3.22). Hence,

SNReff becomes

SNReff =
σ2

xx (NtNr + ε)

σ2
xxε + γ

, (3.23)

where γ = Nrσ
2
nn

K
K+L

. Using the property that if tr (A) > tr (B), then tr (B−1) >

tr (A−1), given that A and B are positive definite matrices. It then follows that ε is
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upper bounded by NrNt

Nr+Nt

σ2
nn

σ2
cc

= β σ2
nn

σ2
cc

. Substituting this upper bound into (3.22), the

effective SNR is then lower bounded as

SNReff

(
σ2

cc

) ≥ (1− σ2
cc) [(NtNr+) σ2

cc + βσ2
nn]

βσ2
nn − βσ2

nnσ2
cc + γσ2

cc

. (3.24)

The maximum of the effective SNR can then be achieved by maximizing the lower bound

in (3.24), which can be accomplished by differentiating the bound with respect to σ2
cc,

setting the result to zero, and solving for σ2
cc. This results in the suboptimal power

allocation for the SIT sequence

σ2
cc,subopt =

δβσ2
nn −

√
δγβσ2

nn (δ − γ + βσ2
nn)

δ(βσ2
nn)

, (3.25)

where δ = NtNr. σ2
cc,subopt in (3.25) is similar to the expression derived in [55] except for

the sign error as previously indicated. The difference is due to the sign error in (3.22).

However, the power allocation expression above is derived directly with inclusion of the

spatial correlation mismatch, thus generalizing the result previously reported in [55].

3.3 Simulation Results

Monte-Carlo simulations were used to demonstrate the robustness of the proposed scheme.

Channels used in all simulations are assumed to be quasi-static block Rayleigh fading and

spatially correlated, unless otherwise specified. The one-ring model [31] is used to generate

entries of the Cholesky factors of the spatial transmit and receive correlation matrices

Σt(m,n) ≈ J0

(
∆

2π

λ
dt|m− n|), (3.26)

and

Σr(i, j) ≈ J0

(2π

λ
dr|i− j|), (3.27)

where dt and dr are the spacing between transmit and receive antennas, respectively. ∆

denotes the angular spread, λ denotes the carrier wavelength, and J0 is the 0th-order Bessel
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Figure 3.5: MSE vs. SNR performance comparison between RoMMSE and [55] for spa-

tially correlated 2× 2 MIMO channel. ∆ = 5◦, dt = 0.5λ and dr = 0.2λ. ε = 0.3.

function of the first kind. The power allocation scheme in (3.25) for the training sequence

is adopted. QPSK and Alamouti STBC are used for modulation of the information-

bearing signals. In all simulations, the threshold for the iteration algorithm is α = 10−6.

With this value for α, the proposed algorithm required only at most 6 iterations before

convergence in all the simulations.

A 2 × 2 spatially correlated MIMO system with ∆ = 5◦, dt = 0.5λ and dr = 0.2λ

is considered in Figure 3.5. The data block size K is 60, and L = Nt = 2. When the

correlation matrix R is estimated perfectly, i.e. R = R̂, the sequence design in [55]

outperforms the proposed RoMMSE algorithm with ε = 0.3. This is the case since

the sequence design in [55] is MMSE optimal when perfect knowledge of R is available.

However, when R is not estimated accurately, i.e. R = R̂ + E, the proposed RoMMSE

estimator outperforms the estimator in [55] by as much as 8 dB.
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Figure 3.6: MSE vs. ε performance comparison between RoMMSE and [55] for spatially

correlated 2× 2 MIMO channel. ∆ = 5◦, dt = 0.5λ and dr = 0.2λ. SNR = 5 dB.

Figure 3.6 compares the MSE performance of the proposed scheme with that of [55]

when the spatial correlation matrix error power is varied. The channel parameters in this

figure is identical to those in Figure 3.5 with SNR = 5 dB. For the case of “imperfect R”,

i.e. E 6= 0NrNt×NrNt , the results for [55] is obtained by solving (3.8) with R = R̂. In the

case of “perfect R”, i.e. E = 0NrNt×NrNt , the exact matrix channel correlation matrix

is used to design the training sequence for both algorithms. Observed from the figure

that the algorithm in [55] outperforms the proposed scheme when an accurate spatial

correlation matrix is available for estimation. However, when R̂ 6= R, then the proposed

scheme outperforms [55]. Moreover, as the estimation error ε increases, the MSE of the

RoMMSE estimator rises only gradually while the MSE increases unbounded for [55].

Figures 3.7 and 3.8 illustrate the same performance comparison as Figures 3.5 and 3.6,

but for 4×4 MIMO systems. The angular spread ∆ is set to be 15◦ and antenna spacing dt
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Figure 3.7: MSE vs. SNR performance comparison between RoMMSE and [55] for spa-

tially correlated 4× 4 MIMO channel. ∆ = 15◦, dt = 0.5λ and dr = 0.2λ. ε = 0.3.

and dr are 0.5λ and 0.2λ, respectively. K = 60 and L = Nt = 4. ε = 0.3 is used in Figure

3.7 while SNR = 5 dB is used for Figure 3.8. From Figure 3.7, the performance of both

algorithms for the 4× 4 system follows the same pattern as that of the 2× 2. Specifically,

the proposed RoMMSE estimator outperforms the estimator in [55] by as much as 9 dB

when the MSE = −1 dB. Also, unlike the algorithm in [55], the RoMMSE estimator

performance does not flatten out as the SNR increases. This is because the inaccuracy

in R has been taken into account during the channel estimation process. However, since

there are more parameters to be estimated in the 4 × 4 system compared to the 2 × 2,

there is a performance degradation not only in terms of the absolute MSE, but also the

rate of decrease of the MSE has also diminished.

Besides MSE performance, Figures 3.9 and 3.10 compare the BER performance of the

RoMMSE algorithm and that of [55] when the estimate of spatial correlation is imperfect
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Figure 3.8: MSE vs. ε performance comparison between RoMMSE and [55] for spatially

correlated 4× 4 MIMO channel. ∆ = 15◦, dt = 0.5λ and dr = 0.2λ. SNR = 5 dB.

and when it is perfect, respectively. 2 × 2 MIMO systems are used. From Figure 3.9, it

can be seen that the RoMMSE algorithm outperforms the algorithm in [55] by 2 dB when

the SNR is low. However, when the spatial correlation has been perfectly estimated, the

RoMMSE algorithm and the algorithm in [55] render identical performance.

Figures 3.11 and 3.12 compare the MSE performance for spatially correlated and

uncorrelated MIMO channels of the RoMMSE estimator to the RMMSE and LS-RMMSE

estimators in [23]. The spatial correlation in Figure 3.11 is created by letting ∆ = 5◦, dt =

0.5λ, and dr = 0.2λ. The RMMSE uses diagonal loading to derive an MMSE estimator

that requires only knowledge of tr(R) instead of R to estimate the MIMO channel. LS-

RMMSE further relaxes the requirement in RMMSE by using LS method to derive an

MMSE estimator that no longer requires knowledge of tr(R). Instead, only knowledge

about the Frobenius norm of the received signal matrix is required. As seen in Figure
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Figure 3.9: BER vs. SNR performance comparison between RoMMSE and [55] for spa-

tially correlated 2× 2 MIMO channel. ∆ = 5◦, dt = 0.5λ and dr = 0.2λ. ε = 0.3.

3.11, when spatial correlation exists, the proposed RoMMSE algorithm outperforms the

RMMSE and LS-RMMSE algorithms in low SNR by 4 dB when ε = 0.05, but only about

2 dB when ε = 0.2. This shows that the upper error power bound cannot be too high,

otherwise performance of the proposed scheme will degrade. The reason for this behavior

is because as ε increases, E obtained from the iterative algorithm will decorrelate the

spatial correlation more, thus adversely affecting the performance of the proposed scheme.

This can be explained as follows. The RoMMSE estimator strives to minimize the worst

case MSE as seen in (3.11). The worst case MSE can be attained by increasing the number

of parameters that needs to be estimated, the maximum being NrNt. In other words, the

present method attempts to increase the degrees of freedom in the correlated MIMO

channel by reducing the spatial correlation. As ε increases, ‖E‖F also increases, which

allows E more freedom to zero out the off-diagonal elements of R, therefore lessening the
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Figure 3.10: BER vs. SNR performance comparison between RoMMSE and [55] for

spatially correlated 2× 2 MIMO channel. ∆ = 5◦, dt = 0.5λ and dr = 0.2λ. ε = 0.3.

spatial correlation. Complete decorrelation of R is attained as ε →∞. In addition, it has

been observed that when the threshold α is met, E and C̃2 share the same eigenvector

matrix as R̂. This has been proven analytically in Appendix 3.4. When there is no

spatial correlation mismatch, it was shown in [14] that the transmitted signal corresponds

to transmitting in specific eigenmodes of the spatial correlation, which determines which

particular eigenmode of the channel will be estimated. Furthermore, the power on each

eigenmode is determined by waterfilling solution based on some optimization criteria, such

as minimum MSE and maximum conditional mutual information. When the SNR is low,

it was found that all the power will be allocated to the strongest eigenmode. However,

when the SNR is high, power is evenly distributed among all eigenmodes. When spatial

correlation mismatch has been accounted, it can be seen from the simulations that no

matter if the system is operating under low or high SNR, the mismatch matrix E not
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Figure 3.11: MSE vs. SNR performance comparison between RoMMSE, LS-RMMSE and

RMMSE [23] for spatially correlated 2× 2 MIMO system. ∆ = 5◦, dt = 0.5λ, dr = 0.2λ.

only decorrelates the channel, but it also equalizes all the diagonal value of R such that

tr
(
R̂ + E

)
= NrNt given that ε is sufficiently large. Note that this is also true even when

tr
(
R̂ + E

)
= NrNt is not a constraint in (3.17). Hence, the robust training sequence

evenly distributes power across all eigenmodes. This is summarizes in Table 3.1. This

can easily be explained due to the fact that the worst-case mismatch matrix Ew can be

obtained only when R̂, E, and C̃2 are all diagonalized and that E and C̃2 share the same

eigenvectors as R̂ (see Appendix 3.4). With the constraint that tr
(
R̂ + E

)
= NrNt, this

forces E to diagonalize R̂ and equalizes the diagonal values of R̂ such that the constraint

is satisfied. Hence, the mismatch matrix E will evenly distribute power across all the

eigenmodes of R. If ε is not sufficient large, that E will not have enough degrees of

freedom to diagonalize and equalize the diagonal values of R̂.

Performance of the RoMMSE estimator is also compared to that of the RMMSE and
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Figure 3.12: MSE vs. SNR performance comparison between RoMMSE, LS-RMMSE and

RMMSE [23] for spatially uncorrelated 2× 2 MIMO system, i.e. R = INrNt . ε = 0.3.

LS-RMMSE when the MIMO channel is spatially uncorrelated. Figure 3.12 indicates that

in this situation all three estimators render similar MSE performance, which suggests that

all three estimators are identical. This is indeed the case as it is proven in Appendix 3.5.

Data detection performance for RMMSE and RoMMSE algorithms are also compared

in the case of spatially correlated and uncorrelated channels. Since the RMMSE algorithm

is proposed in time-multiplexed pilots scheme, both MSE and BER are compared using

Table 3.1: Number of eigenmodes used during channel estimation for spatially correlated

MIMO channel.

Low SNR High SNR

E = 0NrNt×NrNt one all

E 6= 0NrNt×NrNt all all
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Figure 3.13: MSE vs. SNR performance comparison using time-multiplexed pilots be-

tween RoMMSE, LS-RMMSE and RMMSE [23] for spatially correlated 2 × 2 MIMO

system. ∆ = 5◦, dt = 0.5λ, dr = 0.2λ.

time-multiplexed pilots. Channel estimation performance using time-multiplexed pilots

is shown in Figure 3.13, where the RoMMSE algorithm outperforms the RMMSE and

LS-RMMSE algorithms, similar to the performance shown in Figure 3.11. Notice that

the estimation performance of the RoMMSE algorithm in Figure 3.13 is worse than that

shown in Figure 3.11. This is because the power of the pilot is less than that of the

SIT sequence. Next, the BER performance comparison is shown in Figure 3.14. With

ε = 0.05, RoMMSE outperforms the RMMSE by 2.5 dB in the low SNR region.

The BER performance of the RoMMSE algorithm vs. different values of ε is shown

in Figure 3.15. Notice that lower BER is obtained with increasing ε. As previously

explained, this is because the mismatch matrix has more freedom to decorrelate the spatial

correlation matrix as ε increases, which enhances the spatial diversity of the system, thus
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Figure 3.14: BER vs. SNR performance comparison using time-multiplexed pilots be-

tween RoMMSE and RMMSE [23] for spatially correlated 2× 2 MIMO channel. ∆ = 5◦,

dt = 0.5λ and dr = 0.2λ. ε = 0.05.

improving the BER performance.

Table 3.2 shows the number of iterations needed before the algorithm in Figure 3.4

converges under different initial conditions for C(0). It shows that the proposed iterative

algorithm always, on the average, converges faster if C(0) is initialized to be an orthogonal

matrix than when it is initialized to be a random matrix. Even though the table only

shows performance when SNR is 5 dB, this convergence behavior has been observed for

all the SNR values that have been tested. This speed up is due to the fact that the

worst-case MSE is achieved if the argument inside the trace operator in (3.17) forms a

diagonal matrix. Hence, if C(0) is initialized to be an orthogonal matrix, C̃(n), for n > 0,

will be closer to the optimal solution than when C(0) is initialized to be a random matrix

as it is already equaled to a diagonal matrix of the form αINrNt , for α being equal to an
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Figure 3.15: BER vs. SNR performance comparison using time-multiplexed pilots of

RoMMSE with different ε for spatially correlated 2×2 MIMO channel. ∆ = 5◦, dt = 0.5λ

and dr = 0.2λ.

arbitrary constant.

3.4 Decorrelation of R̂

Inserting (3.14) into (3.11), and noting that the SVDs of C̃HC̃ and R̂ are VC̃2ΛC̃2VH
C̃2

and

UR̂ΛR̂UH
R̂

, respectively. The sequence design problem in (3.11) is equivalent to solving

(3.17) and (3.18) iteratively. Using the SVD, (3.17) can be rewritten as

min
‖E‖F≤ε

tr
([

ΛC̃2 + ΛC̃2V
H
C̃2

(
UR̂ΛR̂UH

R̂
+ E

)
VC̃2ΛC̃2

]−1
)

.

Defining A , ΛC̃2 + ΛC̃2VH
C̃2

(
UR̂ΛR̂UH

R̂
+ E

)
VC̃2ΛC̃2 . The objective function can

then be written as f(λ(A)) =
∑

i
1

λi(A)
, where λ (A) denotes a vector composed of
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Table 3.2: Average number of iterations required for convergence for the proposed

RoMMSE estimator. dt = 0.5λ, dr = 0.2λ, ε = 0.3 and SNR = 5 dB, angular spread =

15◦ (4× 4), 5◦ (2× 2).

Nt ×Nr C(0) Average number of iterations

4× 4 randomly generated 5.742

4× 4 orthogonal 4.000

2× 2 randomly generated 3.524

2× 2 orthogonal 3.000

eigenvalues of A. Since φ(λi(A)) = 1
λi(A)

is a convex function, f(λ(A)) is Schur-

convex [14]. Moreover, A is a symmetric matrix. Therefore, f(λ(A)) majorizes f (d (A)),

i.e. f(λ(A)) ≥ f (d (A)) [14], where d (A) denotes a vector which is composed of diago-

nal values of A. Since the equality will hold when A is a diagonal matrix, then the worst

case mismatch error will be Ew = VC̃ΛEVH
C̃

, which ensures that the lower bound of the

MSE is reached. This implies that VH
C̃2

UR̂ has to be a diagonal matrix and that E shares

the same eigenvectors as R̂. The first condition can thus be achieved if R̂ and C̃2 also

share the same eigenvector matrix.

3.5 Comparison of RoMMSE and RMMSE estima-

tors

When the MIMO system is spatially uncorrelated, i.e. R = INrNt , the channel estimate

from the RMMSE channel estimator in [23] becomes

ĥRMMSE = C̃H


C̃C̃H +

σ2
nnNrNt

tr
(
R̂

) INrNt



−1

y

= C̃H
(
C̃C̃H + σ2

nnINrNt

)−1

y.
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It is assumed orthogonal sequences are employed for the RMMSE channel estimator [23],

i.e. CHC = PT

Nt
I. The estimate of the RoMMSE estimator is written as

ĥRoMMSE =
(
R̂ + Ew

)
C̃H

(
C̃

(
R̂ + Ew

)
C̃H + σ2

nnINrNt

)−1
y

= (INrNt + Ew) C̃H
(
C̃(INrNt + Ew)C̃H + σ2

nnINrNt

)−1
y,

where Ew is the worst case error of the estimated spatial correlation. Let VC̃2 and ΛC̃2

to denote the eigenvector and eigenvalue matrix of C̃2, respectively. From (3.13), (3.17)

is equivalent to

min
‖E‖F≤ε

tr
([

ΛC̃2 + ΛC̃2V
H
C̃2 (INrNt + E)VC̃2ΛC̃2

]−1
)

= min
‖E‖F≤ε

tr
([

ΛC̃2 + Λ2
C̃2 + ΛC̃2V

H
C̃2EVC̃2ΛC̃2

]−1
)

. (3.28)

Defining A , ΛC̃2 +Λ2
C̃2 +ΛC̃2VH

C̃2
EVC̃2ΛC̃2 . The objective function can then be written

as f(λ(A)) =
∑

i
1

λi(A)
, where λ (A) denotes a vector composed of eigenvalues of A. Since

φ(λi(A)) = 1
λi(A)

is a convex function, f(λ(A)) is Schur-convex [14]. Moreover, A is a

symmetric matrix. Therefore, f(λ(A)) majorizes f (d (A)), i.e. f(λ(A)) ≥ f (d (A)) [14],

where d (A) denotes a vector which is composed of diagonal values of A. Since the

equality will hold when A is a diagonal matrix, then the worst case mismatch error will

be Ew = VC̃ΛEVH
C̃

, which ensures that the lower bound of the MSE is reached. Since

R̂ = INrNt , from Section 3.3, Ew will have to be a diagonal matrix (or a linear combination

of one) as not to minimize the degrees of freedom in the MIMO channel. This implies that

either VC̃2 or ΛE is an identity matrix. However, since C̃2 is not necessarily a diagonal

matrix, it is not necessary for VC̃2 to be an identity matrix. This implies that ΛE must

be either an identity or an all zero matrix. Since the constraint tr(R̂ + E) = NtNr must

be satisfied, therefore, Ew must be an all zero matrix, i.e. Ew = 0NrNt×NrNt . Substituting

Ew = 0NrNt×NrNt into (3.11) and solving for C, C becomes an orthogonal matrix. That

is, the optimal SIT sequence is an orthogonal sequence, which agrees with the conclusion

in [23] that the optimal training sequence for spatially uncorrelated MIMO channel is an
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orthogonal sequence. Therefore, ĥRoMMSE becomes

ĥRoMMSE = C̃H
(
C̃C̃H + σ2

nnINrNt

)−1

y,

which implies that the estimation performance of the proposed RoMMSE estimator and

the RMMSE estimator is identical when the MIMO channel is spatially uncorrelated, thus

agreeing with the simulation results in Section 3.3.
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Joint Sequence Design for Robust

Channel Estimation and PAPR

Reduction for MIMO-OFDM

Systems

4.1 Overview of PAPR Reduction

To combat the unfavorable effects brought about by wideband channels, OFDM is a

promising candidate that can easily remove intersymbol interference without inducing

great penalty in computational complexity. Unfortunately, due to the use of the IFFT

at the transmitter, the amplitude of the transmitted signal is no longer constrained, thus

incurring a high peak-to-average power ratio. The problem is worsened when the OFDM

systems are combined with MIMO as more RF chains are required for transmission where

different antennas may exhibit varying large degrees of PAPR. It is well known that non-

linearity in high power amplifier causes distortion in the transmit signal. Such distortion

can lead to undesirable spectral regrowth, thus interfering with signals in the neighboring
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subcarriers. Large amount of distortion can also cause in-band self-interference, which

increases bit error rate. Hence, it is customary for power amplifiers to operate with a

certain power backoff, which is defined as the ratio of maximum saturation output power

to lower average output power [34]. However, such backoff schemes lowers the efficiency

of the power amplifier and increases overall power consumption.

Miscellaneous approaches have been proposed to reduce the PAPR including coding,

TR, TI and multiple signal representation such as PTS and SLM and interleaving. In

chapter 2.2.3 , advantages and disadvantages of the existing techniques are discussed in

several criterion such as distortion, power increase, data rate loss and implementation

complexity. Since distortion is the main contribution for the BER degradation, a distor-

tionless technique is the first concern. For the techniques like PTS, SLM and interleaving,

although they are distortionless, side information is needed. Side information should be

estimated correctly, otherwise, BER performance gets worsened.

Herein, a superimposed sequence design using per-tone affine precoding technique

is proposed to reduce the peak-to-average power ratio (PAPR) for MIMO-OFDM sys-

tems and estimate MIMO-OFDM channels even if spatial correlation uncertainty exists.

The proposed technique can easily trade-off between BER and PAPR reduction perfor-

mance. Moreover, it does not require side information to be transmitted for the removal

of the sequence at the receiver, and the transmit redundancy can be as small as 1 sym-

bol/subcarrier. The superimposed sequence is designed using linear programming and

has a computational complexity of O (N log(N)). Simulation results have shown that the

proposed technique, which shall be called superimposed sequence for PAPR reduction, or

SIPR, outperforms methods such as tone reservation in terms of PAPR reduction. The

chapter is organized as follows. The system model and a detailed description of SIPR are

given in Section 4.2, followed by the simulation results in Section 4.3.
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4.2 Methodology

4.2.1 System Model

Consider an affine precoded MIMO-OFDM system with Nt transmit and Nr receive

antennas as shown in Figure 4.1. Nf -point DFT and IDFT are adopted. u(k) =[
u(kNs) u(kNs + 1) · · · u(kNs + Ns − 1)

]T

is the information-bearing signal vector,

with k denoting the block index and Ns denoting the block size. Without loss of general-

ity, Nt = 2 is assumed such that 2× 2 Alamouti STBC is used. The STBC encodes two

adjacent OFDM symbols at a time for each subcarrier for a total of K ≥ Nt symbols. The

output signal from the ith subcarrier at the `th antenna can then be grouped together to

form xi,` ∈ CK , for i = 1, 2, . . . , Nf . Defining Xi ,
[

xi,1 xi,2 · · · xi,Nt

]T

∈ CNt×K .

The information-bearing signal can then be written as an NfNt × NfK complex-valued

matrix

X =




X1

X2

. . .

XNf




. (4.1)

X is then premultiplied by the precoder matrix P =

[
PT

1 PT
2 · · · PT

Nf

]T

∈ CNf K×(K+L)

to form

G = XP =




X1P1

X2P2

...

XNf PNf




∈ CNf Nt×(K+L), (4.2)

where Pi =

[
pi,1 pi,2 · · · pi,K

]T

∈ CK×(K+L) is the per-tone affine precoder matrix

which adds L ≥ Nt redundant symbols to the signal at the ith subcarrier. pi,j ∈ CK+L

denotes the precoder vector for j = 1, 2, . . . K. The premultiplication of the ith per-tone
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affine precoder to the data matrix Xi in (4.2) runs in contrast to conventional precoding

techniques where the precoding matrix is postmultiplied to the data matrix. It is clear

that xT
i,`Pi belongs to the range space of PT

i , which as will be explained in the sequel, eases

the removal of the superimposed sequences as the sequences and data belongs to different

orthogonal subspaces. As explained in [55, 56], removal of the sequences will be more

difficult if the precoding matrix is postmultiplied to the data matrix as the information-

bearing signal belongs to the range space of the channel, which cannot guarantee to be

orthogonal to the spaces occupied by the sequences. For ease of derivation, the precoded

data shall be presented as

D` = G (` : Nt : ` + (Nf − 1)Nt, :) . (4.3)

Defining the NtNf × (K + L) complex-valued aggregate precoded data matrix D =[
DT

1 DT
2 · · · DT

Nt

]T

, the NfNt × (K + L) complex-valued superimposed training

(SIT) sequence matrix, C1 =

[
CT

1,1 CT
1,2 · · · CT

1,Nt

]T

, as proposed in [56], and the

complex-valued SIPR matrix C2 =

[
CT

2,1 CT
2,2 · · · CT

2,Nt

]T

∈ CNf Nt×(K+L) of the

same size, where C1,` =

[
c1,1,` · · · c1,Nf ,`

]T

∈ CNf×(K+L) and C2,` =

[
c2,1,` · · · c2,Nf ,`

]T

∈

CNf×(K+L) with c1,i,`, c2,i,` ∈ CK+L denoting the SIT and SIPR vector for the `th antenna

at the ith subcarrier, respectively. The superimposed sequence matrices will then be added

to the precoded data before the IFFT resulting in

U = C + D = C1 + C2 + D ∈ CNtNf×(K+L), (4.4)

as illustrated in Figure 4.1.

Combining IFFT, cyclic prefix (CP) insertion, CP removal, and FFT with the frequency-
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Figure 4.1: Block diagram of MIMO-OFDM transceiver with affine precoder.

selective MIMO channel results in an equivalent channel matrix

H =




H11 H12 · · · H1Nt

H21
. . . H2Nt

...
. . .

...

HNr1 · · · · · · HNrNt




∈ CNf Nr×Nf Nr , (4.5)

where Hm` ∈ CNf×Nf is a diagonal matrix containing the Fourier coefficients of the

channel between the mth receive and `th transmit antenna. Thus, the receive data after

CP removal can be written as

Y = HU + W

= H (C1 + C2 + D) + W, (4.6)
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where W denotes the channel noise matrix of appropriate size.

4.2.2 Proposed Sequence Design

It is clear from (4.6) that recovery of the data-bearing signal embedded inside D requires

the removal of C1, C2 and W, which can only be carried out after channel estimation

has been performed using C1. However, C2 will have to be removed during the channel

estimation and the detection phase as C2 is only exploited by the transmitter.

Defining

Ci
1 , C1 (i : Nf : i + (Nt − 1)Nf , :)

Ci
2 , C2 (i : Nf : i + (Nt − 1)Nf , :)

Yi , Y (i : Nf : i + (Nr − 1)Nf . :)

for ease for derivation, where i denotes the index for subcarrier. In previous techniques

[55,56], the decoupling of the SIT sequence Ci
1 can be achieved by premultiplying Yi by

the per-tone decoder Qi =

[
qi,1 qi,2 . . . qi,K+L

]T

∈ C(K+L)×Nt , for i = 1, 2 . . . Nf ,

where Qi ∈ N (Pi), resulting in

YiQi = Hi
(
XiPi + Ci

1 + Ci
2

)
Qi + WQi,

= Hi
(
Ci

1 + Ci
2

)
Qi + WQi

where Hi ∈ CNr×Nt is the matrix containing the Fourier coefficients at the ith subcarrier

for all transmit and receive antennas. In other words, the SIT vector c1,i,` should lie in

the column space of Qi. Therefore, the condition that Ci
1P

H
i = 0Nf Nt×K guarantees the

subspaces spanned by the vectors in Pi and Ci
1 are complementary. In [56], the SVD of

Ci
1 is written as

Ci
1 = UCi

1

[
ΣCi

1
0Nt×(K+L−Nt)

]
VH

Ci
1
, (4.7)

where UCi
1
, VCi

1
, and ΣCi

1
are the left and singular vector matrix of Ci

1, and the invertible
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portion of the singular value matrix of Ci
1, respectively. Notice that CPH = 0Nt×K if

VCi
1

= UQi
, where UQi

is the eigenvector matrix of QiQ
H
i .

In the detection phase, the information-bearing signal can be recovered by premulti-

plying Y by the decoding matrix QDi
= PH

i

(
PiP

H
i

)−1 ∈ C(K+L)×K , i.e.

YiQDi
= Hi

(
XiPi + Ci

1 + Ci
2

)
QDi

+ WQDi
,

= Hi
(
Xi + Ci

2QDi

)
+ WQDi

.

Hence, a simple way to design Pi and Qi is by extracting components off of an orthogonal

matrix Oi ∈ C(K+L)×(K+L), i.e.

Pi =

√
K + L

K
Oi (1 : 1 : K, :) ∈ CK×(K+L),

Qi = OH
i ((K + 1) : 1 : (K + Nt), :) ∈ C(K+L)×Nt .

Unfortunately, this is insufficient for the purpose herein as Ci
2 remains. However,

suppose

Ci
2 = BiMi, (4.8)

where Bi =

[
bi,1 bi,2 · · · bi,Nt

]T

∈ CNt×(L−Nt) contains arbitrary scalars, and

Mi = Oi ((K + Nt + 1) : 1 : (K + L), :) (4.9)

denotes the matrix extracted from the remaining rows of the orthogonal matrix Oi after

Pi and Qi have been extracted. That is, Ci
2 is a linear combination of the remaining rows

of the orthogonal matrix Oi after Pi and Qi have been extracted. Therefore, the row

vectors of Di, Ci
1, and Ci

2 are guarantee to be orthogonal, as illustrated in Figure 4.2.

Then, Ci
2 will satisfy the constraints

Ci
2Qi = 0Nr×Nt ,

Ci
2QDi

= 0Nr×K ,

(4.10)
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1
iC

iD

2
iC

Figure 4.2: Three-dimensional illustration of the orthogonality between the row space of

Di, Ci
1, and Ci

2. Note that the row space of Ci
2 is coming out of the page.

thus allowing the SIPR matrix Ci
2 to be completely eliminated by Qi and QDi

such that it

will not interfere with either the channel estimation nor the detection phase. This clearly

can be done without transmission of any side information from the transmitter to the

receiver, therefore, does not further impact the spectral efficiency. Note that the number

of superimposed subcarriers for Ci
2 can be arbitrary chosen. For example, if there are Nf

subcarriers, C2 is only added to the equally spaced
Nf

∆f
subcarriers, where ∆f is the an

arbitrarily chosen subcarrier spacing. For the subcarriers which contain C2, L > Nt, else

L ≥ Nt. Thus, K and L can be different for each subcarrier as long as the sum of K and

L for each subcarrier is identical. This is done so that it minimizes the impact on the

spectral efficiency.

To account for uncertainty in the spatial correlation matrix, C1 can be designed using

the technique proposed in [56] in order to improve MSE performance over that of [55].

The design of C2 requires the minimization of [53]

PAPRMIMO = max
`=1,2...Nt

max |s`(t)|2
E(|s`(t)|2) , (4.11)
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where s`(t) denotes the signal in time domain at the `th antenna. From (4.4), the output

from the IFFT becomes

S = FH(C1 + C2 + D),

where

F =




FNf

FNf

. . .

FNf




∈ CNf Nt×Nf Nt .

In other words, F is a block diagonal matrix composed of Nt number of Nf -point DFT

matrices FNf
. From (4.8), C2 can be expressed as

C2 = BM, (4.12)

where

B =




bT
1,1

bT
2,1

. . .

bT
Nf ,1

bT
1,2

bT
2,2

. . .

bT
Nf ,2

...
...

bT
1,Nt

bT
2,Nt

. . .

bT
Nf ,Nt




∈ CNf Nt×Nf (L−Nt)

and M =

[
MT

1 MT
2 · · · MT

Nf

]T

. C2 is then parameterized by B, which is composed of
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all the bi,l. Using the vectorization property vec (AEB) = (BT ⊗A)vec(E) and (4.12),

the transmitted block matrix S can then be written

s = vec
(
FH (C1 + BM + D)

)

The sequence in C2 can then be designed by solving

min
‖C2‖F≤P2

‖s‖∞

= min
‖C2‖F≤P2

∥∥(
I⊗ FH

)
vec (C1 + C2 + D)

∥∥
∞

= min
‖B‖F≤P2

∥∥(
I⊗ FH

)
vec (C1 + BM + D)

∥∥
∞ (4.13)

where P2 is the power allocated to C2. It is known that C2 can be stacked using Ci
2, so

‖C2‖2
F =

∑
i

tr(Ci
2C

iH
2 ),

=
∑

i

tr(BiMiM
H
i BH

i ),

=
∑

i

tr(BiB
H
i ),

= tr(BBH),

= ‖B‖2
F ,

which makes the equality in (4.13) hold and the designs of C2 and B be equivalent. B

thus has less coefficients to be designed compared to what C2 has. Note that the total

signal power is normalized, i.e. σ2
D + σ2

C1
+ σ2

C2
= 1, where σ2

D, σ2
C1

and σ2
C2

denote

the variance of D, C1 and C2, respectively. It is assumed that the information-bearing

signal, and superimposed sequences all have zero-mean and are statistically independent

from each other. Thus, P2 =
σ2
C2

NtNf (K+L)

∆f
. Note that (4.13) can be recasted as a linear

programming problem [58]

min

−t1Ns×1 ¹
(
I⊗ FH

)
vec (C1 + BM + D) ¹ t1Ns×1

‖B‖F ≤ P2

t
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, where Ns = NfNt(K + L) denotes the size of the vector s. And the computational

complexity is similar to that of [48] so that the computatonal complexity is O (Ns log (Ns)).

4.2.3 Power Allocation

Thus far, no optimal method is found to optimally allocate the power between D, C1,

and C2. However, the suboptimal power allocation algorithm in [57] can be employed to

allocate power between D and C1 +C2. From the results in [57], since the BER and MSE

performance are not linearly related, the MSE performance can be traded off in order to

increase the PAPR reduction performance without significantly impacting the BER. The

proper amount of tradeoff may be computed using a greedy algorithm, which is currently

under investigation.

4.3 Simulation Results

Complementary cumulative distribution function (CCDF) of the PAPR is used for per-

formance comparison. A MIMO system with Nt = Nr = 2 is considered. Nf = 128 and

K = 10 are used throughout all the simulations. σ2
C1

is equal to 0.1 for the proposed SIPR

scheme unless otherwise specified. QPSK and Alamouti STBC are used to modulate the

information-bearing signals.

In Figure 4.3 shows the CCDF performance of the proposed SIPR scheme with different

frequency spacings. The result is compared to a system without the addition of C2. The

number of the redundant vectors L equals to 4, and σ2
C2

= 0.2. When the value of ∆f

decreases, the number of superimposed subcarriers increases, which allows σC2 to have

more design freedom in the frequency domain to lower the PAPR. When CCDF is equal

to 10−3 and ∆f = 4, the proposed technique outperforms the one without C2 by 3 dB.

When ∆f equals to 8 and 16, the SIPR algorithm outperforms the system without C2 by
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Figure 4.3: CCDF comparison of proposed SIPR method with different frequency spac-

ings, and to a system without C2. L = 4 and σ2
C2

= 0.2.

about 2.2 dB and 1.2 dB, respectively.

Performance comparison of the SIPR method with different number of redundant

vectors and to a system without C2 is shown in Figure 4.4. Frequency spacing is set to

be 4 and σ2
C2

is equal to 0.2. When L = 3 and CCDF = 10−3, the PAPR performance

of the SIPR method outperforms the system without C2 by 2.5 dB. Furthermore, as the

number of redundant vectors increases, the PAPR performance improves. This is expected

because as L increases, the number of elements in MA,i also increases, thereby increasing

the design freedom of C2. When L = 5, the performance gain of the SIPR scheme over

that of the system without C2 becomes 3.2 dB when CCDF is equal to 10−3.

Next, the PAPR reduction performance of the SIPR scheme is examined by varying

σ2
C2

. Figure 4.5 shows the performance comparison of the SIPR method with different
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Figure 4.4: CCDF comparison of proposed SIPR method with different number of redun-

dant vectors L. ∆f = 4 and σ2
C2

= 0.2.

values of σ2
C2

and a system without C2. From the figure, it is clear that the performance of

the SIPR method improves as σ2
C2

increases. However, σ2
C2

cannot be increased indefinitely

as that will decrease the power allocated to C1 and D, thus, degrading the channel

estimation and data detection performance. As alluded in Section 4.2.3, the optimal

(or suboptimal) amount of power to be allocated for PAPR reduction is currently under

investigation.

Performance comparison of tone reservation and the proposed SIPR method is shown

in Figure 4.6. To make the comparison fair in the sense of total number of blocks transmit-

ted, K and L are set to be 12 and 2 for the TR method. The total power for
Nf

∆f
reserved

subcarriers of all the Nt transmit antenna is upbounded by the normalized power
Nf Nt

∆f
in

Nt symbols. When CCDF is equal to 10−3, the SIPR method outperforms the TR method
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Figure 4.5: CCDF comparison of proposed SIPR method with different σ2
C2

. L = 4, and

∆f = 4.

in PAPR reduction by 0.7 dB. For TR method, since the subcarriers are reserved only

for PAPR reduction, it can significantly decrease the throughput if large PAPR reduction

is desired. In the SIPR method, if C1 is not required for channel estimation, then from

(4.9), the necessary condition for the existence of C2 is for L ≥ 1 (given that Nt = 1).

Thus, the transmit redundancy can be as small as 1 symbol/subcarrier, which does not

significantly reduce the spectral efficiency. To gain further insight into the impact of the

transmit redundancy, define the transmit efficiency as

ρ , κ

τ
, (4.14)

where κ denotes the number of the transmitted symbols used for channel estimation and

data detection, and τ denotes the total transmitted symbols. In Figure 4.6, ρ is equal to

75% for the TR method because the number of reserved subcarriers used is 25% of the
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Figure 4.6: CCDF comparison of proposed method and tone reservation, equal power for

redundancy , frequency spacing is set to be 4.

total number of subcarriers. However,

ρ =

Nf

∆f
K1 +

(
Nf − Nf

∆f

)
K2

K2Nf

=
(32)(12) + (96)(14)

(14)(128)
= 96.4%

for the proposed SIPR scheme, where K1 = 12 is the number of symbols per subcarrier

which are transmitted when C2 is employed on that particular subcarrier, and K2 = 14

is the number of symbols per subcarrier which are transmitted when C2 is not used.

These values match the values which have been used for the TR method in the current

simulation. It can be seen that the proposed scheme outperforms the tone reservation not

only in CCDF performance comparison but also the transmit efficiency.
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Conclusions and Future Works

5.1 Conclusions

A robust superimposed training sequence design algorithm for spatially correlated MIMO

channel estimation has been proposed. The algorithm has shown to be robust against error

in the spatial correlation estimate. When the robust training sequence is inserted into the

MMSE estimator, a robust MMSE, or RoMMSE, estimator is derived. Also, the corrected

sub-optimal power allocation, which is sub-optimal in maximizing the effective SNR, of

the superimposed training sequence is also shown in this thesis. Simulation results have

shown that the proposed RoMMSE estimator not only outperforms the optimal MMSE

estimator in [55] when error in the spatial correlation exists, but it also outperforms other

robust designs, such as RMMSE and LS-RMMSE [23]. Channel estimation error affects

the data detection performance directly. Simulations have also shown that the proposed

design outperforms other techniques mentioned in the sense of data detection.

A joint sequence design is proposed for robust channel estimation and PAPR reduction

for MIMO-OFDM systems. The proposed SIPR method is able to accurately estimate

MIMO-OFDM channels even with error in the spatial correlation estimate, and also sig-

nificantly lower the PAPR without significantly impacting the spectral efficiency. When
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channel estimation using superimposed training sequence is not required, the transmit

redundancy has been shown to be as small as 1 symbol/subcarrier. The computational

complexity is shown to be O (NfNt log (NfNt)). Simulation results show that the pro-

posed scheme is able to outperform the tone reservation method in certain SNR range

and has a significantly higher transmit efficiency.

5.2 Future Works

In the thesis, RoMMSE estimator only concerns the worst case mismatch of the spatial

correlation in SU-MIMO systems. Since worst case mismatch does not occur frequently,

probabilistic constraint of the mismatch can also be considered. Therefore, it is more close

to the practical situation. RoMMSE estimator is proposed in the SU-MIMO system. In

MU-MIMO, there might be some interference from other unwanted users. Therefore,

mismatch of the interference correlation can also be considered in the training sequence

design. Design of interference correlation estimator is also a possible direction, which can

further enhance the performance of training sequence design.

Since power allocation for the superimposed sequence, which is for lowering the PAPR,

is arbitrary designed, there is still room to find a optimal power allocation. The optimal

power allocation could not only make the signal operating in the linear region of the power

amplifier but also enhance the channel estimation and also data detection.
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[50] M. Tan, Z. Latinović, and Y. Bar-Ness, “STBC MIMO-OFDM peak-to-average power

ratio reduction by cross-antenna rotation and inversion,” IEEE Communications Let-

ters, vol. 9(7), pp. 592-594, Jul. 2005.

[51] S.H. Han and J.H. Lee, “An overview of peak-to-average power ratio reduction tech-

niques for multicarrier transmission, ” IEEE Wireless Communications, vol. 12(2),

pp. 56-65, Apr. 2005.

[52] T. Jiang and Y. Wu “ An overview: peak-to-average power ratio reduction techniques

for OFDM signals,” IEEE Trans. on Broadcasting, vol. 54(2), pp.257-268, Jun. 2008.

[53] R.F.H. Fischer and M. Hoch “Peak-to-average power ratio reduction in MIMO

OFDM,” IEEE Intl. Conf. on Communications, Jun. 2007.

[54] D.H. Pham and J.H. Manton, “Orthogonal superimposed training on linear precod-

ing: a new affine precoder design,” Proc. of the IEEE Workshop on Signal Processing

Advances in Wireless Communications, pp. 445-449, Jun. 2005.

[55] V. Nguyen et al., “Optimal superimposed training design for spatially correlated

fading MIMO channels,” IEEE Trans. on Wireless Communications, vol. 7(8), pp.

3206-3217, Aug. 2008.

[56] C.-T. Chiang and C.C. Fung, “Robust training sequence design for spatially corre-

lated MIMO channel estimation using affine precoder,” Proc. of the Intl. Conf. on

Communications, May 2010.

BIBLIOGRAPHY 69



Chapter 5

[57] C.-T. Chiang and C.C. Fung, “Robust training sequence design for spatially corre-

lated MIMO channel estimation,” submitted to the IEEE Trans. on Vehicular Tech-

nology, May 2010.

[58] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press,

2004.

[59] M. Grant and S. Boyd, “cvx User’s Guide”, Feb. 2009.

BIBLIOGRAPHY 70


	thesis_header_jeremy
	Main.pdf

