SR B AR TRORE

Communication Synthesis on

Distributed Register-File Microarchitecture



R TR ANE R A ‘f#i ?Fﬂ‘ﬂfﬁﬁéj £
Communication Synthesis on

Distributed Register-File Microarchitecture

Fyd kg Student: Yen-Ting Lin
R R EE L Advisor: Dr. Juinn-Dar Huang
=il ~ §
T EARE N R AT
AL wm=
A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering & Institute of Electronics

July 2009
Hsinchu, Taiwan, Republic of China

t’iﬁi‘i’\@qii,\_’&; 1



AEC R BRI TR GRS S

i# &

BRI PR SRR i R RUE At B @ F L SLamrnan e SR o

&ﬁ&ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂ’i@@?m@ﬁ%ﬁ@@@ﬁkﬁaﬁﬁﬁ@@,u@

Aeat AR AL o BoiT o - B L G A SGUETE B R B A o

Y
B R g > A b R RED AT ERF R DIEFER F BRI SRk

- AN ARG BRSNS R FRRED BT o F AR
PR RUR e EATR AL 3T B AT FELH DS RF 0 TR OHREITR
2] REFE T ERED o (B HRD oD FHREE T FE it s AT LG
Fasfp i daprza-te -
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Distributed Register-File Microarchitecture

Student: Yen-Ting Lin Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

In deep-submicron era, global interconnect ‘delay -has become the bottleneck while
pursuing higher system clock speed:Several distributed register (DR) architectures have been
proposed to cope with this problem by keeping most interconnects local. The recently
proposed distributed register-file microarchitecture (DRFM) is one of the DR-based
architectures. On DRFM, the number of inter-island connections (1ICs) is used as an
evaluation metric for quality of results in early design phases. This thesis proposes a
two-phase resource-constrained communication synthesis algorithm for I1IC minimization
targeting DRFM. First, an iterative binding-then-rescheduling procedure is used to obtain a
better outcome in the expanded solution space. Then, a data detouring procedure is utilized to
further minimize the number of 11Cs. The experimental results show that an average of 24%

I1C reduction can be achieved as compared to the previous work.
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Chapter 1

Introduction

Interconnects have become a crucial factor for electronic circuits and systems as IC
technology advances into the deep-submicron era. In particular, global interconnects
significantly affect the performance, area and power dissipation of modern systems [1]-[3].
The graph shown in Fig. 1 indicates that the interconnect delay, especially the global one,
does not decrease well when the feature ‘size shrinks. Furthermore, It is reported that
interconnects are responsible for over 50% of-the overall dynamic power of a microprocessor
in 130 nm technology [4]. Previous studies also show-that interconnects overwhelmingly

dominate the total area and power in FRGA applications [5][6].
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Fig. 1: Delay versus feature size.

Several approaches have been proposed to deal with the critical issue arising from long
interconnects. Globally-asynchronous locally-synchronous designs adopt handshaking
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protocols for communication between different modules over long interconnects [7]. In a
synchronous latency-insensitive system, special pipelining elements, named relay stations, are
inserted to break long interconnects into short segments so as to sustain high operating
frequency [8]. In addition, several kinds of distributed register (DR) architectures, in which
systems are divided into several logic clusters, are also broadly studied [9]-[20]. Generally
speaking, all DR-based architectures try to keep interconnects local within a cluster, and thus
minimize the required number of long inter-cluster interconnects for better performance and
smaller area.

A DR-based architecture called distributed register-file microarchitecture (DRFM) was
recently proposed in [9]. DRFM consists of multiple islands, each having a local register file,
functional units (FUs) and data-routing logic, as shown in Fig. 2. Also, it is particularly
adequate for platforms with rich distributed memory or register-file blocks, e.g., modern
FPGAs. On DRFMs, the total number of inter-island’ connections (1ICs) is regarded as an
evaluating metric for quality of results.(QoR)in_early design phases because of its high
correlation with the area and performanee of synthesized designs [9]. Hence, a resource

binding algorithm was also proposed in [9], and the goal was to minimize the number of I1Cs.

Data from other islands Data to other islands
s

Input Routing Logic Local Register File

MUX

l !

Functional Units

An island

Fig. 2: The island architecture of DRFM.

In this thesis, we propose a new resource binding algorithm targeting DRFM for
minimization of the number of 1ICs and the latency of systems. Given a data flow graph
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(DFG) and a resource constraint (i.e., number of islands), an iterative
binding-then-rescheduling procedure is performed. At each control step (cstep), operations
scheduled at this cstep are appropriately assigned to islands first, and then a simultaneous
rescheduling and rebinding technique is used to get better solutions in terms of the number of
I1Cs and to avoid read port access conflicts of register files. After the iterative procedure, a
data-detouring one via edge splitting is utilized for further 11C minimization.

The rest of this thesis is organized as follows. The related works and motivations are
discussed in Chapter 2. Chapter 3 presents the detail of our proposed algorithm for DRFM
synthesis. Experimental results and analysis are given in Chapter 4, followed by conclusions

in Chapter 5.



Chapter 2

Related Works and Motivations

2.1 Distributed Register Architecture

Conventionally, centralized register (CR) architectures are usually presumed in high level
synthesis. On a CR-based architecture, FUs access data from register files through relatively
long interconnects in one clock cycle. The'clock tycle time is almost determined by the sum
of the latency of FUs and the delay of iaterconnects, so the increasing delay of long
interconnects would significantly stretch the clock cycle time. To cope with this issue, the DR
architecture, as shown in Fig. 3, and a'design flow were proposed in [12].

The DR architecture in [12] allows global data transfers to take multiple clock cycles to
complete, and minimizes the effect of interconnect delay on clock cycle time. Moreover, the
synthesis flow in [12] incorporates the concept of multicycle interconnect delay into

scheduling and binding to improve overall system latency.

s Fas o
U ! U
| 1 t 1 Register
[ | L | E file
----

Fig. 3: Distributed register architecture.



2.2 Regular Distributed Register Microarchitecture

The regular distributed register (RDR) microarchitecture was proposed in [13]. It divides
the entire chip into an array of islands which contains a local computational cluster (LCC),
local storages and an FSM (i.e., a local controller), as shown in Fig. 4. Due to the highly
regular layout, it is capable of providing accurate delay estimation for inter-island
communication in early design phases.

The corresponding synthesis system called architectural synthesis for multicycle
communication (MCAS) was also proposed in [13]. MCAS integrates global placement with
scheduling and binding to effectively utilize the underlying architecture. The related studies
focusing on behavior synthesis as well as scheduling and routing of global transfers can be

found in [14]-[18].

=L e
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Global Interconnect
'| T !
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Fig. 4: 2 x 3 island-based RDR microarchitecture.



2.3 Distributed Register-File Microarchitecture

The island structure of DRFM is shown in Fig. 2. An island is composed of FUs, a local
register file and input routing logic. The local register file is used to store computation results
produced by internal FUs, and is responsible for feeding data to internal FUs and external FUs
in other islands. DRFM allows use of the platform-featured on-chip memory or register-file IP
blocks to implement its local register files, and this results in substantial saving of
multiplexing logic and global interconnects [9].

The number of 11ICs on DRFM is used as the metric for QoR in early design phases
because it is highly correlated with the area and performance of designs after synthesized [9].
Given a DFG, the required number of 11Cs can be identified after scheduling and binding, as
shown in Fig. 5. The operations in the:same shaded region are bound to the same island, and
the ones in the same row are scheduled at the same cstep. Then, data transfers whose start
node and end node are on differentiislands-become.inter-island transfers (11Ts). Since DRFM
assumes point-to-point 11Cs, two 11Ts can share an-dIC, if and only if they are produced from a
common island and consumed in another common island at different csteps [9]. In the
example of Fig. 5, T and 11T, g can share an 11C between island A and island B, whereas
1Ts9 and 11Tg9 must use two different 1ICs between island B and island C because they are

consumed at the same cstep.

Intra-island transfer

#ICs=4

Fig. 5: A scheduled and bound DFG.



An approach for IIC minimization on DRFM was also proposed in [9]. However, it takes
scheduled DFGs as inputs and does not touch the scheduling during the synthesis process.
This unavoidably loses some opportunities for optimization. [10] recognizes this issue, so it
minimizes the cost of interconnections first to fully exploit the effects of scheduling on
interconnect and then to schedule the operations later [10]. Although [10] takes the effects of
scheduling into account, it models the problem as a timing-constrained one. As a result, [10]
and our work are not comparable because it does not minimize the latency of DFGs whereas
our work does.

[10] also points out the other issue about read port limitation of register files. [9] assumes
that the number of read ports of register files is unlimited, but in practice, the number of read
ports is usually limited because it directly affects the cost of register files. [10] deals with the
access conflict of read ports by data forwarding only if it occurs after scheduling and binding.
Unlike the approach in [10], our work combines_the limitation of read ports with scheduling
and binding to avoid the conflict increasing the latency of DFGs.

For simplicity, [9] assumes: (i) every operation ¢an be executed in any island in one cstep
and produces exactly one result; (ii) a local register file has only one write port for the

writeback of FUs on the same island. We also take these two assumptions in our work.



2.4 Motivational Examples

2.4.1 Effects of Scheduling

As mentioned above, scheduling may limit the solution space. Given a scheduled DFG as
shown in Fig. 6(a) and the resource constraint of two islands, the best result one can get
through binding is presented in Fig. 6(b). The number of 11Cs in the example of Fig. 6(b) is
two. If rescheduling is allowed during binding, a better solution than the one in Fig. 6(b) can
be reached as shown in Fig. 6(c), where the number of II1Cs is one.

Note that the required numbers of csteps in two solutions are both minimized. That means

the 11C reduction by rescheduling is not a tradeoff with the latency of DFGs.

#ICs = 1

Fig. 6(a): The scheduled DFG,

(b): the scheduled and bound DFG, and

(c): the rescheduled and bound DFG.

2.4.2 Data Detouring

Data detouring can further decrease the number of 11Cs. Special nodes called bubbles are
inserted into the DFG representing the idle csteps of islands explicitly, as shown in Fig. 7(a).
The bubbles can be used as intermediate stops to detour IITs, as shown in Fig. 7(b). The
intra-island transfers in Fig. 7(a) and (b) are not shown for simplicity. The number of IICs in
the example in Fig. 7(a) is three while the number of 11Cs in the example of Fig. 7(b) is two.
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(a) #IICs =3 (b) #lICs =2

Fig. 7(a): The schedule and bound DFG with bubbles and

(b): the scheduled and bound DFG after data detouring.

2.4.3 Read Port Limitation

Incorporating consideration of read port limitation into scheduling and binding can avoid
the increase of DFG latency due to access conflict-of read ports. A scheduled and bound DFG,
as shown in Fig. 8(a), is given without the consideration of the number of read ports during
the process of scheduling and binding. Assume that each local register file has only two read
ports. Access conflict of read ports would occur at cstep 4 because three variables, produced
by v1, v, and vs are read from island A but the register file has only two read ports. One read
access of vy, v7 or vy has to be postponed which consequently increases the latency of the
DFG to five. However, the access conflict can be avoided if the read port limitation is taken
into account during the process of scheduling and binding, as shown in Fig. 8(b), where vg
and vy are scheduled at cstep 4 and cstep 3 respectively.

The two solutions in Fig. 8(a) and (b) have the same number of 11Cs. Consequently, the

access conflict can be avoided while maintaining the minimized number of I1Cs.



Fig. 8(a): A scheduled and bound DFG and

(b): the same DFG with another scheduling.
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Chapter 3

Proposed Algorithm

3.1 Overview

The problem formulation of this work is as follows: Given a DFG and a resource
constraint (the number of islands), obtain a scheduled and bound DFG with the minimized

latency as well as minimize the number of required4ICs.

DFG

Initial scheduling

]

Island assignment

¥ i

IIC refinement

Iterative binding-then-rescheduling

Y

Data detouring

Scheduled and bound
DFG
L-._._________,_r-"'"_'_.___‘_‘_““

Fig. 9: The overall flow of the proposed algorithm.

The overall flow of the proposed method is shown in Fig. 9. Given a DFG, list scheduling
is first performed to obtain an initial scheduling result and followed by the iterative

cstep-by-cstep binding-then-rescheduling process. In each iteration, two procedures, island
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assignment (binding) and IIC refinement (rescheduling and rebinding), are applied
consecutively. The way used for island assignment in this work is similar to the horizontal
assignment adopted in [9]. Namely, island assignment is formulated as a minimum-weighted
bipartite matching problem, where a weight on an edge represents the number of extra 11Cs
induced by the corresponding matching. However, the foregoing algorithm does not allow
rescheduling and generally produces a locally optimized solution. Hence, an IIC refinement
process is proposed to look for a better result from the expanded solution space via
rescheduling. More details are described in Section 3.2. After the iterative phase, data
detouring is then conducted and responsible for further I1C reduction. The related details are
given in Section 3.3. In Section 3.2 and 3.3, the number of read ports of register files is
unlimited, and then Section 3.4 explains how to integrate the consideration of read port
limitation into the flow. In the end, a scheduled and bound DFG with minimized IICs is

derived.
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3.2 lIC Refinement

As mentioned above, the algorithm for island assignment generally leads to a locally
optimized solution. However, further improvement can still be achieved by allowing certain
operation rescheduling and rebinding, as depicted in Fig. 6(b) and Fig. 6(c), as long as the
data dependency is still intact.

The proposed 1IC refinement process is based on KL algorithm [23], which is broadly
used in partitioning-related problem. Within the process, nodes and bubbles are swapped for
I1C minimization. A swap can be made between two nodes or between a node and a bubble. A
swap is considered feasible only on two conditions: (i) nodes must be unlocked, and (ii) data
dependency must be preserved after swapping. For example, in Fig. 10(a), the feasible swap
candidates for node 5 are {node 1, node 7, node a}. A feasible swap pair of node u and
node/bubble v is denoted as (u, v). The gain of.a swap.pair is defined as how many IICs it can
reduce, i.e., the difference between the numbers.of LICs before and after the swap. The gain of
a swap pair (u, v) is denoted as g,,. All'feasible swap-pairs are collected into the feasible swap
pair set (FSPS). After performing an actual swap, FSPS and gains of swap pairs are updated

accordingly. The key steps of 11C refinement are described as follows:

(i) Set all operation nodes unlocked.

(i) Find a swap pair with the largest gain from FSPS.

(iii) Swap the pair then lock the operation node.

(iv) Update FSPS and recalculate the gains of pairs in FSPS.

(v) Repeat (ii) to (iv) until FSPS is empty.

(vi) Keep the fist k swaps and undo the rest if the partial gain sum
of the first k swaps is the largest and positive; go to (i).

(vii)  Otherwise, terminate 11C refinement.

13



Swap candidates of v
= {vy, V7, Va}

(a) (b)
Fig. 10(a): The DFG at the beginning of the iteration and

(b): the DFG at the 'end of the iteration.

For example, a partially scheduled.and bound DFG-is shown in Fig. 10(a) with an IIC
number equal to 4. Initially, the gains of all_feasible swap pairs in FSPS are calculated as

follows:

015=0 017=-1 g2a=-1 0g28=-1 g3s=0
¥039=-2 U4p=0 Qac=-1 g57=-2 0g52=0

O69=-1 0Usa=-1 Q9c=0 Qop=1

Then the swap pair (9, b) is selected to be swapped and node 9 is locked after the swap.
This process is not terminated until FSPS is empty. Table 1 shows the gain and the partial gain
sum of the eight consecutive feasible swaps in this iteration. As a result, only the first three
swaps, including (9, b), (1, 5) and (2, a), are actually desired. The resultant DFG at the end of

this iteration is shown in Fig. 10(b) and it merely requires 2 I1Cs instead of 4 in Fig. 10(a).

14



Table 1: Gains and partial gain sums in an iteration

n-th swap 1 2 3 4 5 6 7 8
Swapped pair | (9,b) | (1,5) | (2,a) | (5,a) | (7,a) | (4,¢) | (3,b) | (6,b)

Gain 1 0 1 0 -1 -1 1 -2

Partial gain sum 1 1 2 2 1 0 1 -1
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3.3 Data Detouring

As shown in Fig. 7 previously, data detouring can further reduce the number of IICs.
However, not all the 1ITs can be detoured. Only the 11T with slack greater than zero, named
splittable 11T, can be detoured. The slack of an IIT is defined as (1), where T(v;) is the cstep in

which v; is scheduled.
slack(v,,v,) =T(v,)-T(v,)-1 (1)

On the contrary, an IIT with zero slack is called a non-splittable IIT. As shown in Fig.
11(a), 1T, 7 and 11T, g are splittable, while 11Ts, and 11T3 11 are non-splittable. For a splittable
IIT, it is possible to detour the transfer through a series of bubbles. For instance, 11T, 7 in Fig.

11(a) can be detoured through 11Ty and T, 7 as shown in Fig. 11(b).

Fig. 11(a): The splittable and non-splittable 11Ts, and

(b): the resultant DFG after data detouring.

Fig. 12 outlines the data detouring procedure. Since a non-splittable 1T cannot be
detoured, an IIC is surely demanded for it. Hence, the objective for data detouring is to

16



reroute certain splittable 11Ts so that the number of 1I1Cs can be further minimized. However,
there can be no IIC reduction even after an 1T is successfully detoured. As discussed
previously, the reason is that an 1IC can be shared by several 11Ts, and it cannot be safely
removed unless all the 11Ts utilizing it are successfully detoured. Therefore, to eliminate an

I1C, all IITs utilizing it should be identified first, as indicated in Fig. 12.

Map lITs onto lICs

Y

Remove soft lICs by iterative edge
splitting

e — - = = - - - - - - = - - - - - - = = - - = =

Fig. 12: Two key steps of the data detouring procedure.

Fig. 13 gives a heuristic-based policy to determine which I1C an IIT actually utilizes. If
there are multiple 11Cs, this mapping strategy tries to assign fewer 11Ts with larger slack to
latter 11Cs. It is because that an 11C is'more likely remeved when fewer 11Ts utilize it or those

I1Ts are with larger slack. As shown in Fig. 11(a), nine 11Ts are mapped onto six II1Cs. For
1 . 2 . 1
example, IIC . contains I1Te 10 and 11T711, and 1IC . contains 11Ts 10, where 1IC , . denotes

the i-th inter-island connection between island 15 and Ig. After mapping all the I1Ts onto I1Cs,

two kinds of 1ICs are identified — the one containing at least one non-splittable IIT is a hard

. . . 1
I1C; the other containing no non-splittable IIT is a soft 1IC. As the above example, 11C . isa

hard 11C because I1Tg 10 is non-splittable, while 11C ; . is a soft 1IC since it only contains a

splittable 11Ts10. It is impossible to remove a hard I1C via data detouring due to non-splittable

I1Ts. On the contrary, a soft 1IC can be eliminated if all the I1Ts utilizing it are successfully

detoured. For example, there are two soft I1Cs in Fig. 11(a) — IIClAB can be removed if 11T ;

17



2 .
and 11T, can both be detoured, as well as 11C . can be removed if [1Ts 10 can be detoured. In

addition, an IIC is fixed if it is inherently a hard IIC or a soft I1C with at least one IIT which

cannot be detoured.

For every source-destination island pair (I, Ig):
Sort all 11Ts (vi, vj), where v; € la and vj € Ig, in:
(i) Increasing order of T(v;) as the primary key, and
(i) Decreasing order of T(v;) as the secondary key.
Map I1Ts onto IICs in the order generated above:
(i)  Attempt mapping an IIT onto the first 11C.
(i)  Attempt mapping an 1T onto the second I1C only when the first one

is occupied, and so on.so forth:.

Fig. 13: Mapping:-1ITs onto IICs.

An iterative edge splitting (i.e., I'T.detouring) procedure is proposed to eliminate soft 11Cs
as shown in Fig. 14. Bubbles are used ‘while “performing IIT detouring as mentioned
previously. Since the number of bubbles is a constant, the fewer bubbles the current IIT
consumes, the more bubbles the latter 11Ts can use for detouring. Furthermore, some bubbles
can be used to detour many I1Ts while others can only be used by few IITs. For example, in
Fig. 11(a), bubble c can be used to detour 11T, 7 or 11Ts 10, but bubble a can only be used by
I1Ts 10. Hence, the overall objective of the proposed iterative edge splitting procedure is to
detour a given 11C by using as fewer and less popular bubbles as possible. First, the detouring
graph for each IIT belonging to some soft 1IC is created. It enumerates all possible detouring
paths via the existing fixed 11Cs. The detouring graphs of the example in Fig. 11(a) are shown
in Fig. 15(a), 15(b) and 15(c). A weight is associated with a node and an edge to indicate its

importance and popularity.
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Build/update
detouring graph

! v

Move to the next edge

e Calculate weights

Find a minimum-bubble-weight
path

This edge can
be split?

All edges are split?

Undo all split edges

\i
Remove the IIC Mark this IIC as fixed lIC

Y Y

Move to the next soft [IC

Iterative edge splitting

Fig. 14: Th'eV ‘iterat‘iye edge splittihg procedure.

12 1/2 1/2 1/2 12 1/2

d
(a) (b)

Fig. 15: The detouring graphs for (a) 11Ty 7, (b) 1IT,g and (¢) HTs 10.

The weight of a source node of an IIT is defined as (2) to reflect its importance. Then
weights of other nodes and edges are computed in topological order by (3) and (4).
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1

weight of a source node = - - (2)
number of edges this I1IC contains
. weight of v,
weight ofedge, , = ——————
J %) out-degree of v, (3)
weight of v; = " (weight of edge, ;) 4)

The bubble weights are therefore obtained by summing up weights in all detouring graphs.
As the example in Fig. 15, the weights of node a, b, c and d are 0.5, 0, 1, and 0.5, respectively.
After all bubble weights are available, the path with minimum-bubble-weight is identified then
used to detour the given IIT. The minimum-bubble-weight problem can be formulated as the
shortest path problem then solved accordingly. Once the given IIT is detoured, certain
detouring graphs should be updated since some bubbles have already been consumed and are
not available anymore. Since the fewer IITs a soft 1IC-contains, the more easily it can be

detoured — the soft 11Cs containing: fewer IITs would-be processed earlier. For example,
2 . 1
HC ;. is processed before 11C B

Overall, the proposed procedure described in Fig. 14 attempts to detour 11Ts related to the
target soft 11C in increasing order of their slacks. If there is one IIT which cannot be split, all
previously-split 11Ts are recovered and the target 11C is therefore marked as a fixed I11C. On
the contrary, if all 11Ts in the target 11C are successfully split, it can then be safely removed. In
either case, the proposed procedure proceeds to the next candidate soft I1C. Note that the data
detouring procedure never increases the number of 11Cs. The worst-case scenario which can
be anticipated is that all soft 11Cs become fixed 11Cs and no IIC reduction is achieved. One
last thing, the resultant DFG after data detouring is shown in Fig. 11(b), where the number of

II1Cs is reduced from 6 to 4.
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3.4 Extension for Read Port Limitation

As shown in Fig. 8, combining the read port limitation with scheduling and binding can
avoid the access conflicts. This section gives an extended algorithm that takes the read port
limitation into account.

In 1IC Refinement, a secondary gain of swaps, defined as the decreased number of access
conflicts of all islands at all csteps, is added. The number of access conflicts of an island at a
cstep is calculated by demanded variables on that island at the cstep minus the number of read
ports that a register file has. In Fig. 8, for example, the secondary gain of (6, 7) is one because
there is a conflict (three demanded variables minus two read ports) at cstep 4 on island A
before the swap (i.e., Fig. 8(a)), but there is no conflict after the swap (i.e., Fig. 8(b)).
Meanwhile, the original gain (i.e., the reduced number.of 11Cs) is called the primary gain.

The second step of 11C refinement is modified.as follows: find a swap pair with the largest
primary gain from FSPS; if there are many- pairs.with the same largest primary gain, choose
the pair with the largest secondary gain. By means of secondary gain, read port limitation is
well complied during scheduling and binding, so the access conflicts can be minimized.

In Data Detouring, only the paths which would not produce any access conflicts of read
ports are considered while building detouring graphs. As a result, Data Detouring does not

inject any access conflicts.
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Chapter 4

Experimental Results

The proposed algorithm is implemented in C++/Linux environment, and all experiments
are conducted on a workstation with an Intel Xeon 3.2GHz CPU and 4GB RAM. The test
cases are from different benchmark sets [24]-[26], which are frequently used in the high-level
synthesis field. The basic information of these test cases (DFGs) is shown in Table 2. The first
three columns are the names, number of nodes andnumber of edges of the DFGs respectively,
and the last one is the latency obtained by ASAP,scheduling with unlimited resources. For fair
and comprehensive comparison, two different synthesis flows are presented, as shown in Fig.
16. Given an input DFG and a resource constraint, list scheduling is first performed to provide
an initial scheduling result for both flows. Flowl implements the approach proposed in [9];
Flow2 applies the algorithm proposed in this work.

Two configurations are considered in our experiments — synthesis is performed
without/with a resource constraint in Configuration 1/2, respectively. In the first configuration,
the number of islands is set as the minimum number that still guarantees the synthesis
outcome with the minimum latency indicated in Table 2. In Configuration 2, the number of

islands is reduced by half as:

numbers of islands in Config. 2 = [numbers of islands in Config. 1J

> ©)

The results of the configuration 1 and 2 are shown in Table 3 and Table 4 respectively. The
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second column is the number of the given island, and the third one is the latency of DFGs
after list scheduling is applied; the fourth and fifth ones are the number of 11Cs by Flow1 and
Flow2 respectively, and the sixth one is the percentage of reduction in terms of the number of
lICs.

The experimental results of [9] showed that [9] was able to produce good solutions, but
there is still room for improvement. The proposed algorithm can reduce the number of 11Cs on
average by 21.1% without resource constraints (i.e., configuration 1). When the resource
constraints (i.e., configuration 2) are applied, the results show that the number of 11Cs can still
be reduced by 24.5% on average. Furthermore, the number of nodes of DFGs ranges from 40
up to 500, so the proposed algorithm remains consistent in the size of DFGs and the number
of islands.

Moreover, the number of read poris is unlimited in the above experiments. Thus another
experiment is conducted under read.port number. limitation, as shown in Fig. 17. A
post-processing is added to remove thesaccess._conflicts. When access conflicts occur at a
cstep, the operation with the smallest ALAP. value-is postponed one cstep, and the scheduling
has to be modified to maintain data dependency.

The experiments are also conducted in the two different configurations, respectively. The
results are shown in Table 4 and 5. The third column is the latency of DFGs after list
scheduling, and the fourth and fifth ones are the latency by Flow3 and Flow4 after the
post-processing; the sixth and seventh ones are the number of 11Cs by Flow3 and Flow4.

The number of csteps of Flow3 increases by 12% on average because of the access
conflicts, whereas that of Flow4 remains the same because the proposed algorithm integrates
the read port limitation into scheduling and binding. The percentage of 11C reduction of Flow4
remains consistent, so the I1C reduction is not a tradeoff with the consideration of read port
limitation.

The experimental results clearly demonstrate that our algorithm outperforms the previous
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art both with/without read port limitation. We believe that the advantage comes from the joint
effects of the iterative binding-then-rescheduling scheme, the data-detouring process utilizing

bubbles and the consideration of read port conflict.

Table 2: The basic information of benchmarks

Test case #nodes #edges ASARP latency
fir2 40 39 11
firl 44 43 11
lee 49 62 9

cosine 82 91
honda 105 104 15
wribmp 106 88 7
dir 127 126 15
chem 342 327 15
fft16 414 672 14
usmi 564 557 26
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Table 3: Experimental results of configuration 1 (w/o read port limitation).

Test case #islands | #csteps ALes Reduction
Flowl (1) | Flow2(2) | (2to1)
fir2 11 7 5 28.6%
firl 11 8 7 12.5%
lee 11 10 9.1%
cosine 12 27 24 11.1%
honda 10 15 17 14 17.6%
wribmp 16 7 18 14 22.2%
dir 11 15 24 17 29.2%
chem 24 15 61 38 37.7%
fft16 32 14 204 178 12.7%
usml 29 26 102 71 30.4%
Avg. 21.1%

Table 4: Experimental results of configuration2 (w/o read port limitation).

) #11Cs Reduction
Test case #islands [- #csteps

Flewl (3) | Flow2 (4) (4t03)
fir2 2 21 2 1 50.0%
firl 3 17 4 3 25.0%
lee 3 18 6 5 16.7%
cosine 6 16 14 12 14.3%
honda 5 23 9 8 11.1%
wribmp 8 14 14 10 28.6%
dir 5 27 11 8 27.3%
chem 12 29 41 28 31.7%
fft16 16 27 97 83 14.4%
usml 14 42 55 41 25.5%
Avg. 24.5%
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Table 5: Experimental results of configuration 3, #read_ports = 2.

. #csteps #l1Cs cstep_inc| 11C_red
Test case|#islands
LS (5) |Flow3 (6) | Flow4 |Flow3 (7)| Flow4 (8) | (6to5) | (8to 7)
fir2 11 11 11 7 5 0.0% | 28.6%
firl 11 12 11 8 7 9.1% | 12.5%
lee 12 11 10 33.3% | 9.1%
cosine 12 9 27 24 12.5% | 11.1%
honda 10 15 16 15 17 13 6.7% | 23.5%
wribmp | 16 7 8 7 18 12 14.3% | 33.3%
dir 11 15 16 15 24 18 6.7% 25.0%
chem 24 15 18 15 61 43 20.0% | 29.5%
fft16 32 14 16 14 204 182 14.3% | 10.8%
usml 29 26 27 26 102 69 3.8% | 32.4%
Avg. 12.1% | 21.6%
Table 6: Experimental results of configuration 4, #read_ports = 2.
. #csteps #11Cs cstep_inc| 1IC_red
Test case|#islands
LS (9)|Flow3 (10)| Flow4 {Flow3 (1%)| Flow4 (12) | (10 to 9) |(12 to 11)
fir2 2 21 21 21 2 1 0.0% | 50.0%
firl 3 17 17 17 4 3 0.0% | 25.0%
lee 3 18 22 18 6 5 22.2% | 16.7%
cosine 6 16 17 16 14 12 6.3% | 14.3%
honda 5 23 25 23 9 8 8.7% | 11.1%
wribmp 8 14 15 14 14 10 7.1% | 28.6%
dir 5 27 29 27 11 8 7.4% | 27.3%
chem 12 29 33 29 41 26 13.8% | 36.6%
fft16 16 27 41 27 97 84 51.9% | 13.4%
usml 14 42 46 42 55 42 9.5% | 23.6%
Avg. 12.7% | 24.7%
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Chapter 5

Conclusion

The number of 11ICs on DRFM is used as the metric for QoR in early design phases
because it is highly correlated with the area and performance of designs. In this work, we
have proposed a two-phase resource-constrained synthesis algorithm for 1IC minimization
targeting DRFM. The iterative binding-then-rescheduling procedure is first performed. Island
Assignment maps operations onto islapds; and a:better result can be derived because the
solution space is expanded by IIC=Refinement. Moreover, the read port limitation is also
considered in this work. Next, data detouring-is applied-for further elimination of 11Cs. The
experimental results indicate that the‘proposed algorithm reduces the number of 11Cs by 24%

on average as compared to the prior art.
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