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摘     要 

進入深次微米時代，過長的連線導致過大的延遲，使得系統的效能難以繼續提高。

數種分散式暫存器架構被提出，企圖使用較短的區域連線進行大部分的資料傳輸，以解

決延遲的問題。最近，一種名為分散式暫存器檔案的架構被提出，此架構將系統分為數

個構造相同的島，而島間連線數目被用作設計早期階段評估系統好壞之指標。這篇論文

提出一個合成流程，在分散式暫存器檔案架構上，將島間連線數目減到最少。首先，使

用反覆綁定和重新排程之技巧，得到比先前作品更好的結果；接著，資料傳輸被重新規

劃，使得島間連線數目能更進一步減少。由實驗結果得知，與前作相比，我們可以將島

間連線數目減少達百分之二十四。 
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Abstract 

In deep-submicron era, global interconnect delay has become the bottleneck while 

pursuing higher system clock speed. Several distributed register (DR) architectures have been 

proposed to cope with this problem by keeping most interconnects local. The recently 

proposed distributed register-file microarchitecture (DRFM) is one of the DR-based 

architectures. On DRFM, the number of inter-island connections (IICs) is used as an 

evaluation metric for quality of results in early design phases. This thesis proposes a 

two-phase resource-constrained communication synthesis algorithm for IIC minimization 

targeting DRFM. First, an iterative binding-then-rescheduling procedure is used to obtain a 

better outcome in the expanded solution space. Then, a data detouring procedure is utilized to 

further minimize the number of IICs. The experimental results show that an average of 24% 

IIC reduction can be achieved as compared to the previous work. 
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Chapter 1 

Introduction 

 
Interconnects have become a crucial factor for electronic circuits and systems as IC 

technology advances into the deep-submicron era. In particular, global interconnects 

significantly affect the performance, area and power dissipation of modern systems [1]–[3]. 

The graph shown in Fig. 1 indicates that the interconnect delay, especially the global one, 

does not decrease well when the feature size shrinks. Furthermore, It is reported that 

interconnects are responsible for over 50% of the overall dynamic power of a microprocessor 

in 130 nm technology [4]. Previous studies also show that interconnects overwhelmingly 

dominate the total area and power in FPGA applications [5][6]. 

 

Several approaches have been proposed to deal with the critical issue arising from long 

interconnects. Globally-asynchronous locally-synchronous designs adopt handshaking 

 

Fig. 1: Delay versus feature size. 
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protocols for communication between different modules over long interconnects [7]. In a 

synchronous latency-insensitive system, special pipelining elements, named relay stations, are 

inserted to break long interconnects into short segments so as to sustain high operating 

frequency [8]. In addition, several kinds of distributed register (DR) architectures, in which 

systems are divided into several logic clusters, are also broadly studied [9]–[20]. Generally 

speaking, all DR-based architectures try to keep interconnects local within a cluster, and thus 

minimize the required number of long inter-cluster interconnects for better performance and 

smaller area. 

A DR-based architecture called distributed register-file microarchitecture (DRFM) was 

recently proposed in [9]. DRFM consists of multiple islands, each having a local register file, 

functional units (FUs) and data-routing logic, as shown in Fig. 2. Also, it is particularly 

adequate for platforms with rich distributed memory or register-file blocks, e.g., modern 

FPGAs. On DRFMs, the total number of inter-island connections (IICs) is regarded as an 

evaluating metric for quality of results (QoR) in early design phases because of its high 

correlation with the area and performance of synthesized designs [9]. Hence, a resource 

binding algorithm was also proposed in [9], and the goal was to minimize the number of IICs. 

 

In this thesis, we propose a new resource binding algorithm targeting DRFM for 

minimization of the number of IICs and the latency of systems. Given a data flow graph 

 

Fig. 2: The island architecture of DRFM. 
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(DFG) and a resource constraint (i.e., number of islands), an iterative 

binding-then-rescheduling procedure is performed. At each control step (cstep), operations 

scheduled at this cstep are appropriately assigned to islands first, and then a simultaneous 

rescheduling and rebinding technique is used to get better solutions in terms of the number of 

IICs and to avoid read port access conflicts of register files. After the iterative procedure, a 

data-detouring one via edge splitting is utilized for further IIC minimization. 

The rest of this thesis is organized as follows. The related works and motivations are 

discussed in Chapter 2. Chapter 3 presents the detail of our proposed algorithm for DRFM 

synthesis. Experimental results and analysis are given in Chapter 4, followed by conclusions 

in Chapter 5. 
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Chapter 2 

Related Works and Motivations 

 

2.1 Distributed Register Architecture 

Conventionally, centralized register (CR) architectures are usually presumed in high level 

synthesis. On a CR-based architecture, FUs access data from register files through relatively 

long interconnects in one clock cycle. The clock cycle time is almost determined by the sum 

of the latency of FUs and the delay of interconnects, so the increasing delay of long 

interconnects would significantly stretch the clock cycle time. To cope with this issue, the DR 

architecture, as shown in Fig. 3, and a design flow were proposed in [12]. 

The DR architecture in [12] allows global data transfers to take multiple clock cycles to 

complete, and minimizes the effect of interconnect delay on clock cycle time. Moreover, the 

synthesis flow in [12] incorporates the concept of multicycle interconnect delay into 

scheduling and binding to improve overall system latency. 

 

 

Fig. 3: Distributed register architecture. 
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2.2 Regular Distributed Register Microarchitecture 

The regular distributed register (RDR) microarchitecture was proposed in [13]. It divides 

the entire chip into an array of islands which contains a local computational cluster (LCC), 

local storages and an FSM (i.e., a local controller), as shown in Fig. 4. Due to the highly 

regular layout, it is capable of providing accurate delay estimation for inter-island 

communication in early design phases. 

The corresponding synthesis system called architectural synthesis for multicycle 

communication (MCAS) was also proposed in [13]. MCAS integrates global placement with 

scheduling and binding to effectively utilize the underlying architecture. The related studies 

focusing on behavior synthesis as well as scheduling and routing of global transfers can be 

found in [14]–[18]. 

 

 
Fig. 4: 2 × 3 island-based RDR microarchitecture. 
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2.3 Distributed Register-File Microarchitecture 

The island structure of DRFM is shown in Fig. 2. An island is composed of FUs, a local 

register file and input routing logic. The local register file is used to store computation results 

produced by internal FUs, and is responsible for feeding data to internal FUs and external FUs 

in other islands. DRFM allows use of the platform-featured on-chip memory or register-file IP 

blocks to implement its local register files, and this results in substantial saving of 

multiplexing logic and global interconnects [9]. 

The number of IICs on DRFM is used as the metric for QoR in early design phases 

because it is highly correlated with the area and performance of designs after synthesized [9]. 

Given a DFG, the required number of IICs can be identified after scheduling and binding, as 

shown in Fig. 5. The operations in the same shaded region are bound to the same island, and 

the ones in the same row are scheduled at the same cstep. Then, data transfers whose start 

node and end node are on different islands become inter-island transfers (IITs). Since DRFM 

assumes point-to-point IICs, two IITs can share an IIC, if and only if they are produced from a 

common island and consumed in another common island at different csteps [9]. In the 

example of Fig. 5, IIT1,6 and IIT2,8 can share an IIC between island A and island B, whereas 

IIT5,9 and IIT6,9 must use two different IICs between island B and island C because they are 

consumed at the same cstep. 

 

 

Fig. 5: A scheduled and bound DFG. 
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An approach for IIC minimization on DRFM was also proposed in [9]. However, it takes 

scheduled DFGs as inputs and does not touch the scheduling during the synthesis process. 

This unavoidably loses some opportunities for optimization. [10] recognizes this issue, so it 

minimizes the cost of interconnections first to fully exploit the effects of scheduling on 

interconnect and then to schedule the operations later [10]. Although [10] takes the effects of 

scheduling into account, it models the problem as a timing-constrained one. As a result, [10] 

and our work are not comparable because it does not minimize the latency of DFGs whereas 

our work does. 

[10] also points out the other issue about read port limitation of register files. [9] assumes 

that the number of read ports of register files is unlimited, but in practice, the number of read 

ports is usually limited because it directly affects the cost of register files. [10] deals with the 

access conflict of read ports by data forwarding only if it occurs after scheduling and binding. 

Unlike the approach in [10], our work combines the limitation of read ports with scheduling 

and binding to avoid the conflict increasing the latency of DFGs. 

For simplicity, [9] assumes: (i) every operation can be executed in any island in one cstep 

and produces exactly one result; (ii) a local register file has only one write port for the 

writeback of FUs on the same island. We also take these two assumptions in our work. 
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2.4 Motivational Examples 

2.4.1 Effects of Scheduling 

As mentioned above, scheduling may limit the solution space. Given a scheduled DFG as 

shown in Fig. 6(a) and the resource constraint of two islands, the best result one can get 

through binding is presented in Fig. 6(b). The number of IICs in the example of Fig. 6(b) is 

two. If rescheduling is allowed during binding, a better solution than the one in Fig. 6(b) can 

be reached as shown in Fig. 6(c), where the number of IICs is one. 

Note that the required numbers of csteps in two solutions are both minimized. That means 

the IIC reduction by rescheduling is not a tradeoff with the latency of DFGs. 

 

2.4.2 Data Detouring 

Data detouring can further decrease the number of IICs. Special nodes called bubbles are 

inserted into the DFG representing the idle csteps of islands explicitly, as shown in Fig. 7(a). 

The bubbles can be used as intermediate stops to detour IITs, as shown in Fig. 7(b). The 

intra-island transfers in Fig. 7(a) and (b) are not shown for simplicity. The number of IICs in 

the example in Fig. 7(a) is three while the number of IICs in the example of Fig. 7(b) is two. 

Fig. 6(a): The scheduled DFG, 

(b): the scheduled and bound DFG, and 

(c): the rescheduled and bound DFG. 
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2.4.3 Read Port Limitation 

Incorporating consideration of read port limitation into scheduling and binding can avoid 

the increase of DFG latency due to access conflict of read ports. A scheduled and bound DFG, 

as shown in Fig. 8(a), is given without the consideration of the number of read ports during 

the process of scheduling and binding. Assume that each local register file has only two read 

ports. Access conflict of read ports would occur at cstep 4 because three variables, produced 

by v1, v2 and v3 are read from island A but the register file has only two read ports. One read 

access of v4, v7 or v11 has to be postponed which consequently increases the latency of the 

DFG to five. However, the access conflict can be avoided if the read port limitation is taken 

into account during the process of scheduling and binding, as shown in Fig. 8(b), where v6 

and v7 are scheduled at cstep 4 and cstep 3 respectively. 

The two solutions in Fig. 8(a) and (b) have the same number of IICs. Consequently, the 

access conflict can be avoided while maintaining the minimized number of IICs. 

 
Fig. 7(a): The schedule and bound DFG with bubbles and 

(b): the scheduled and bound DFG after data detouring. 
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Fig. 8(a): A scheduled and bound DFG and 

(b): the same DFG with another scheduling. 
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Chapter 3 

Proposed Algorithm 

 

3.1 Overview 

The problem formulation of this work is as follows: Given a DFG and a resource 

constraint (the number of islands), obtain a scheduled and bound DFG with the minimized 

latency as well as minimize the number of required IICs. 

 

The overall flow of the proposed method is shown in Fig. 9. Given a DFG, list scheduling 

is first performed to obtain an initial scheduling result and followed by the iterative 

cstep-by-cstep binding-then-rescheduling process. In each iteration, two procedures, island 

 
Fig. 9: The overall flow of the proposed algorithm. 
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assignment (binding) and IIC refinement (rescheduling and rebinding), are applied 

consecutively. The way used for island assignment in this work is similar to the horizontal 

assignment adopted in [9]. Namely, island assignment is formulated as a minimum-weighted 

bipartite matching problem, where a weight on an edge represents the number of extra IICs 

induced by the corresponding matching. However, the foregoing algorithm does not allow 

rescheduling and generally produces a locally optimized solution. Hence, an IIC refinement 

process is proposed to look for a better result from the expanded solution space via 

rescheduling. More details are described in Section 3.2. After the iterative phase, data 

detouring is then conducted and responsible for further IIC reduction. The related details are 

given in Section 3.3. In Section 3.2 and 3.3, the number of read ports of register files is 

unlimited, and then Section 3.4 explains how to integrate the consideration of read port 

limitation into the flow. In the end, a scheduled and bound DFG with minimized IICs is 

derived. 
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3.2 IIC Refinement 

As mentioned above, the algorithm for island assignment generally leads to a locally 

optimized solution. However, further improvement can still be achieved by allowing certain 

operation rescheduling and rebinding, as depicted in Fig. 6(b) and Fig. 6(c), as long as the 

data dependency is still intact. 

The proposed IIC refinement process is based on KL algorithm [23], which is broadly 

used in partitioning-related problem. Within the process, nodes and bubbles are swapped for 

IIC minimization. A swap can be made between two nodes or between a node and a bubble. A 

swap is considered feasible only on two conditions: (i) nodes must be unlocked, and (ii) data 

dependency must be preserved after swapping. For example, in Fig. 10(a), the feasible swap 

candidates for node 5 are {node 1, node 7, node a}. A feasible swap pair of node u and 

node/bubble v is denoted as (u, v). The gain of a swap pair is defined as how many IICs it can 

reduce, i.e., the difference between the numbers of IICs before and after the swap. The gain of 

a swap pair (u, v) is denoted as gu,v. All feasible swap pairs are collected into the feasible swap 

pair set (FSPS). After performing an actual swap, FSPS and gains of swap pairs are updated 

accordingly. The key steps of IIC refinement are described as follows: 

 

(i) Set all operation nodes unlocked. 

(ii) Find a swap pair with the largest gain from FSPS. 

(iii) Swap the pair then lock the operation node. 

(iv) Update FSPS and recalculate the gains of pairs in FSPS. 

(v) Repeat (ii) to (iv) until FSPS is empty. 

(vi) Keep the fist k swaps and undo the rest if the partial gain sum 

of the first k swaps is the largest and positive; go to (i). 

(vii) Otherwise, terminate IIC refinement. 
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For example, a partially scheduled and bound DFG is shown in Fig. 10(a) with an IIC 

number equal to 4. Initially, the gains of all feasible swap pairs in FSPS are calculated as 

follows: 

 

Then the swap pair (9, b) is selected to be swapped and node 9 is locked after the swap. 

This process is not terminated until FSPS is empty. Table 1 shows the gain and the partial gain 

sum of the eight consecutive feasible swaps in this iteration. As a result, only the first three 

swaps, including (9, b), (1, 5) and (2, a), are actually desired. The resultant DFG at the end of 

this iteration is shown in Fig. 10(b) and it merely requires 2 IICs instead of 4 in Fig. 10(a). 

 

Fig. 10(a): The DFG at the beginning of the iteration and 

(b): the DFG at the end of the iteration. 

g1,5 = 0 g1,7 = –1 g2,a = –1 g2,8 = –1 g3,6 = 0 

g3,9 = –2 g4,b = 0 g4,c = –1 g5,7 = –2 g5,a = 0 

g6,9 = –1 g8,a = –1 g9,c = 0 g9,b = 1 
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Table 1: Gains and partial gain sums in an iteration 

n-th swap 1 2 3 4 5 6 7 8 
Swapped pair (9, b) (1, 5) (2, a) (5, a) (7, a) (4, c) (3, b) (6, b)

Gain 1 0 1 0 -1 -1 1 -2 
Partial gain sum 1 1 2 2 1 0 1 -1 
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3.3 Data Detouring 

As shown in Fig. 7 previously, data detouring can further reduce the number of IICs. 

However, not all the IITs can be detoured. Only the IIT with slack greater than zero, named 

splittable IIT, can be detoured. The slack of an IIT is defined as (1), where T(vi) is the cstep in 

which vi is scheduled. 

 

On the contrary, an IIT with zero slack is called a non-splittable IIT. As shown in Fig. 

11(a), IIT1,7 and IIT2,8 are splittable, while IIT6,2 and IIT3,11 are non-splittable. For a splittable 

IIT, it is possible to detour the transfer through a series of bubbles. For instance, IIT1,7 in Fig. 

11(a) can be detoured through IIT1,c and IITc,7 as shown in Fig. 11(b). 

 

Fig. 12 outlines the data detouring procedure. Since a non-splittable IIT cannot be 

detoured, an IIC is surely demanded for it. Hence, the objective for data detouring is to 

1 2 2 1( , ) ( ) ( ) 1slack v v T v T v= − −  (1) 

 

Fig. 11(a): The splittable and non-splittable IITs, and 

(b): the resultant DFG after data detouring. 
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reroute certain splittable IITs so that the number of IICs can be further minimized. However, 

there can be no IIC reduction even after an IIT is successfully detoured. As discussed 

previously, the reason is that an IIC can be shared by several IITs, and it cannot be safely 

removed unless all the IITs utilizing it are successfully detoured. Therefore, to eliminate an 

IIC, all IITs utilizing it should be identified first, as indicated in Fig. 12. 

 

Fig. 13 gives a heuristic-based policy to determine which IIC an IIT actually utilizes. If 

there are multiple IICs, this mapping strategy tries to assign fewer IITs with larger slack to 

latter IICs. It is because that an IIC is more likely removed when fewer IITs utilize it or those 

IITs are with larger slack. As shown in Fig. 11(a), nine IITs are mapped onto six IICs. For 

example, IIC
1

B,C contains IIT6,10 and IIT7,11, and IIC
2

B,C contains IIT5,10, where IIC
1

A,B denotes 

the i-th inter-island connection between island IA and IB. After mapping all the IITs onto IICs, 

two kinds of IICs are identified – the one containing at least one non-splittable IIT is a hard 

IIC; the other containing no non-splittable IIT is a soft IIC. As the above example, IIC
1

B,C is a 

hard IIC because IIT6,10 is non-splittable, while IIC
2

B,C is a soft IIC since it only contains a 

splittable IIT5,10. It is impossible to remove a hard IIC via data detouring due to non-splittable 

IITs. On the contrary, a soft IIC can be eliminated if all the IITs utilizing it are successfully 

detoured. For example, there are two soft IICs in Fig. 11(a) – IIC
1

A,B can be removed if IIT1,7 

 

Fig. 12: Two key steps of the data detouring procedure. 
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and IIT2,8 can both be detoured, as well as IIC
2

B,C can be removed if IIT5,10 can be detoured. In 

addition, an IIC is fixed if it is inherently a hard IIC or a soft IIC with at least one IIT which 

cannot be detoured. 

 

An iterative edge splitting (i.e., IIT detouring) procedure is proposed to eliminate soft IICs 

as shown in Fig. 14. Bubbles are used while performing IIT detouring as mentioned 

previously. Since the number of bubbles is a constant, the fewer bubbles the current IIT 

consumes, the more bubbles the latter IITs can use for detouring. Furthermore, some bubbles 

can be used to detour many IITs while others can only be used by few IITs. For example, in 

Fig. 11(a), bubble c can be used to detour IIT1,7 or IIT5,10, but bubble a can only be used by 

IIT5,10. Hence, the overall objective of the proposed iterative edge splitting procedure is to 

detour a given IIC by using as fewer and less popular bubbles as possible. First, the detouring 

graph for each IIT belonging to some soft IIC is created. It enumerates all possible detouring 

paths via the existing fixed IICs. The detouring graphs of the example in Fig. 11(a) are shown 

in Fig. 15(a), 15(b) and 15(c). A weight is associated with a node and an edge to indicate its 

importance and popularity. 

For every source-destination island pair (IA, IB): 

Sort all IITs (vi, vj), where vi ∈ IA and vj ∈ IB, in: 

(i) Increasing order of T(vj) as the primary key, and 

(ii) Decreasing order of T(vi) as the secondary key. 

Map IITs onto IICs in the order generated above: 

(i) Attempt mapping an IIT onto the first IIC. 

(ii) Attempt mapping an IIT onto the second IIC only when the first one 

is occupied, and so on so forth. 

Fig. 13: Mapping IITs onto IICs. 
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The weight of a source node of an IIT is defined as (2) to reflect its importance. Then 

weights of other nodes and edges are computed in topological order by (3) and (4). 

 

Fig. 14: The iterative edge splitting procedure. 

 
Fig. 15: The detouring graphs for (a) IIT1,7 , (b) IIT2,8 and (c) IIT5,10. 
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The bubble weights are therefore obtained by summing up weights in all detouring graphs. 

As the example in Fig. 15, the weights of node a, b, c and d are 0.5, 0, 1, and 0.5, respectively. 

After all bubble weights are available, the path with minimum-bubble-weight is identified then 

used to detour the given IIT. The minimum-bubble-weight problem can be formulated as the 

shortest path problem then solved accordingly. Once the given IIT is detoured, certain 

detouring graphs should be updated since some bubbles have already been consumed and are 

not available anymore. Since the fewer IITs a soft IIC contains, the more easily it can be 

detoured – the soft IICs containing fewer IITs would be processed earlier. For example, 

IIC
2

B,C is processed before IIC
1

A,B. 

Overall, the proposed procedure described in Fig. 14 attempts to detour IITs related to the 

target soft IIC in increasing order of their slacks. If there is one IIT which cannot be split, all 

previously-split IITs are recovered and the target IIC is therefore marked as a fixed IIC. On 

the contrary, if all IITs in the target IIC are successfully split, it can then be safely removed. In 

either case, the proposed procedure proceeds to the next candidate soft IIC. Note that the data 

detouring procedure never increases the number of IICs. The worst-case scenario which can 

be anticipated is that all soft IICs become fixed IICs and no IIC reduction is achieved. One 

last thing, the resultant DFG after data detouring is shown in Fig. 11(b), where the number of 

IICs is reduced from 6 to 4. 

1weight of a source node = 
number of edges this IIC contains  

(2) 

,
weight of weight of  = 

out-degree of 
i

i j
i

vedge
v  

(3) 

( ),weight of  = weight of j i j
i

v edge∑
 

(4) 
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3.4 Extension for Read Port Limitation 

As shown in Fig. 8, combining the read port limitation with scheduling and binding can 

avoid the access conflicts. This section gives an extended algorithm that takes the read port 

limitation into account. 

In IIC Refinement, a secondary gain of swaps, defined as the decreased number of access 

conflicts of all islands at all csteps, is added. The number of access conflicts of an island at a 

cstep is calculated by demanded variables on that island at the cstep minus the number of read 

ports that a register file has. In Fig. 8, for example, the secondary gain of (6, 7) is one because 

there is a conflict (three demanded variables minus two read ports) at cstep 4 on island A 

before the swap (i.e., Fig. 8(a)), but there is no conflict after the swap (i.e., Fig. 8(b)). 

Meanwhile, the original gain (i.e., the reduced number of IICs) is called the primary gain. 

The second step of IIC refinement is modified as follows: find a swap pair with the largest 

primary gain from FSPS; if there are many pairs with the same largest primary gain, choose 

the pair with the largest secondary gain. By means of secondary gain, read port limitation is 

well complied during scheduling and binding, so the access conflicts can be minimized. 

In Data Detouring, only the paths which would not produce any access conflicts of read 

ports are considered while building detouring graphs. As a result, Data Detouring does not 

inject any access conflicts. 



 22

Chapter 4 

Experimental Results 

 
The proposed algorithm is implemented in C++/Linux environment, and all experiments 

are conducted on a workstation with an Intel Xeon 3.2GHz CPU and 4GB RAM. The test 

cases are from different benchmark sets [24]–[26], which are frequently used in the high-level 

synthesis field. The basic information of these test cases (DFGs) is shown in Table 2. The first 

three columns are the names, number of nodes and number of edges of the DFGs respectively, 

and the last one is the latency obtained by ASAP scheduling with unlimited resources. For fair 

and comprehensive comparison, two different synthesis flows are presented, as shown in Fig. 

16. Given an input DFG and a resource constraint, list scheduling is first performed to provide 

an initial scheduling result for both flows. Flow1 implements the approach proposed in [9]; 

Flow2 applies the algorithm proposed in this work. 

Two configurations are considered in our experiments – synthesis is performed 

without/with a resource constraint in Configuration 1/2, respectively. In the first configuration, 

the number of islands is set as the minimum number that still guarantees the synthesis 

outcome with the minimum latency indicated in Table 2. In Configuration 2, the number of 

islands is reduced by half as: 

 

The results of the configuration 1 and 2 are shown in Table 3 and Table 4 respectively. The 

numbers of islands in Config. 1numbers of islands in Config. 2 = 
2

⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 
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second column is the number of the given island, and the third one is the latency of DFGs 

after list scheduling is applied; the fourth and fifth ones are the number of IICs by Flow1 and 

Flow2 respectively, and the sixth one is the percentage of reduction in terms of the number of 

IICs. 

The experimental results of [9] showed that [9] was able to produce good solutions, but 

there is still room for improvement. The proposed algorithm can reduce the number of IICs on 

average by 21.1% without resource constraints (i.e., configuration 1). When the resource 

constraints (i.e., configuration 2) are applied, the results show that the number of IICs can still 

be reduced by 24.5% on average. Furthermore, the number of nodes of DFGs ranges from 40 

up to 500, so the proposed algorithm remains consistent in the size of DFGs and the number 

of islands. 

Moreover, the number of read ports is unlimited in the above experiments. Thus another 

experiment is conducted under read port number limitation, as shown in Fig. 17. A 

post-processing is added to remove the access conflicts. When access conflicts occur at a 

cstep, the operation with the smallest ALAP value is postponed one cstep, and the scheduling 

has to be modified to maintain data dependency. 

The experiments are also conducted in the two different configurations, respectively. The 

results are shown in Table 4 and 5. The third column is the latency of DFGs after list 

scheduling, and the fourth and fifth ones are the latency by Flow3 and Flow4 after the 

post-processing; the sixth and seventh ones are the number of IICs by Flow3 and Flow4. 

The number of csteps of Flow3 increases by 12% on average because of the access 

conflicts, whereas that of Flow4 remains the same because the proposed algorithm integrates 

the read port limitation into scheduling and binding. The percentage of IIC reduction of Flow4 

remains consistent, so the IIC reduction is not a tradeoff with the consideration of read port 

limitation. 

The experimental results clearly demonstrate that our algorithm outperforms the previous 
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art both with/without read port limitation. We believe that the advantage comes from the joint 

effects of the iterative binding-then-rescheduling scheme, the data-detouring process utilizing 

bubbles and the consideration of read port conflict. 

 

Table 2: The basic information of benchmarks 

Test case #nodes #edges ASAP latency 
fir2 40 39 11 
fir1 44 43 11 
lee 49 62 9 

cosine 82 91 8 
honda 105 104 15 

wribmp 106 88 7 
dir 127 126 15 

chem 342 327 15 
fft16 414 672 14 
u5ml 564 557 26 
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Fig. 16: Experimental flows w/o read port limitation. 

 

Fig. 17: Experimental flows w/ read port limitation. 
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Table 3: Experimental results of configuration 1 (w/o read port limitation). 

#IICs 
Test case #islands #csteps 

Flow1 (1) Flow2 (2) 

Reduction
(2 to 1) 

fir2 5 11 7 5 28.6% 
fir1 6 11 8 7 12.5% 
lee 6 9 11 10 9.1% 

cosine 12 8 27 24 11.1% 
honda 10 15 17 14 17.6% 

wribmp 16 7 18 14 22.2% 
dir 11 15 24 17 29.2% 

chem 24 15 61 38 37.7% 
fft16 32 14 204 178 12.7% 
u5ml 29 26 102 71 30.4% 
Avg.     21.1% 

Table 4: Experimental results of configuration 2 (w/o read port limitation). 

#IICs 
Test case #islands #csteps 

Flow1 (3) Flow2 (4) 
Reduction 

(4 to 3) 
fir2 2 21 2 1 50.0% 

fir1 3 17 4 3 25.0% 

lee 3 18 6 5 16.7% 

cosine 6 16 14 12 14.3% 

honda 5 23 9 8 11.1% 

wribmp 8 14 14 10 28.6% 

dir 5 27 11 8 27.3% 

chem 12 29 41 28 31.7% 

fft16 16 27 97 83 14.4% 

u5ml 14 42 55 41 25.5% 

Avg.     24.5% 
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Table 5: Experimental results of configuration 3, #read_ports = 2. 

#csteps #IICs 
Test case #islands

LS (5) Flow3 (6) Flow4 Flow3 (7) Flow4 (8) 
cstep_inc 
(6 to 5) 

IIC_red
(8 to 7)

fir2 5 11 11 11 7 5 0.0% 28.6%
fir1 6 11 12 11 8 7 9.1% 12.5%
lee 6 9 12 9 11 10 33.3% 9.1% 

cosine 12 8 9 8 27 24 12.5% 11.1%
honda 10 15 16 15 17 13 6.7% 23.5%

wribmp 16 7 8 7 18 12 14.3% 33.3%
dir 11 15 16 15 24 18 6.7% 25.0%

chem 24 15 18 15 61 43 20.0% 29.5%
fft16 32 14 16 14 204 182 14.3% 10.8%
u5ml 29 26 27 26 102 69 3.8% 32.4%
Avg.       12.1% 21.6%

Table 6: Experimental results of configuration 4, #read_ports = 2. 

#csteps #IICs 
Test case #islands

LS (9) Flow3 (10) Flow4 Flow3 (11) Flow4 (12) 
cstep_inc 
(10 to 9) 

IIC_red
(12 to 11)

fir2 2 21 21 21 2 1 0.0% 50.0% 

fir1 3 17 17 17 4 3 0.0% 25.0% 

lee 3 18 22 18 6 5 22.2% 16.7% 

cosine 6 16 17 16 14 12 6.3% 14.3% 

honda 5 23 25 23 9 8 8.7% 11.1% 

wribmp 8 14 15 14 14 10 7.1% 28.6% 

dir 5 27 29 27 11 8 7.4% 27.3% 

chem 12 29 33 29 41 26 13.8% 36.6% 

fft16 16 27 41 27 97 84 51.9% 13.4% 

u5ml 14 42 46 42 55 42 9.5% 23.6% 

Avg.       12.7% 24.7% 
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Chapter 5 

Conclusion 

 
The number of IICs on DRFM is used as the metric for QoR in early design phases 

because it is highly correlated with the area and performance of designs. In this work, we 

have proposed a two-phase resource-constrained synthesis algorithm for IIC minimization 

targeting DRFM. The iterative binding-then-rescheduling procedure is first performed. Island 

Assignment maps operations onto islands, and a better result can be derived because the 

solution space is expanded by IIC Refinement. Moreover, the read port limitation is also 

considered in this work. Next, data detouring is applied for further elimination of IICs. The 

experimental results indicate that the proposed algorithm reduces the number of IICs by 24% 

on average as compared to the prior art. 
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