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考量島間傳遞延遲的分散式暫存器檔案架構 

之效能考量架構合成 

 

研究生：許婉玲        指導教授：周景揚 教授 

                                黃俊達 教授 

                                  
 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘     要 

進入深次微米時代，過長的連線導致過大的延遲，使得系統的效能難以繼續提高。

在過去數種分散式暫存器架構已被提出，企圖使用較短的區域連線進行大部分的資料傳

輸，以解決延遲的問題。在本篇論文中，我們提出一種分散式架構，稱之為考慮島間傳

遞延遲的分散式暫存器檔案的架構。在這個架構上，提出一個合成流程使得整體效能盡

可能達到最好。首先，分配運算子到島上得到一個初步的結果；接著，利用反覆增加效

能的方法，嘗試得到更佳的結果。由實驗結果得知，與前作相比，我們可以將效能增加

平均達到百分之二十九點二。 
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Abstract 

In deep-submicron era, wire delay is becoming the bottleneck while pursuing high system 

clock speed. Several distributed register (DR) architectures are proposed to cope with this 

problem by keeping most wires local. A distributed register-file microarchitecture with 

inter-island delay (DRFM-IID), proposed in this thesis, is one of the DR-based architectures. 

We also provide a performance-driven architectural synthesis framework targeting DRFM-IID. 

First, Island Assignment is performed to bind operations into islands. Then, a procedure 

performing Iterative Latency Minimization is utilized further improve outcomes. The 

experimental results indicate that the latency can be reduced by 17.6% ~ 29.2% on average, as 

compared to the prior one. 
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Chapter 1  

Introduction 

 
As advancing into the deep-submicron (DSM) era, interconnects have become a crucial 

issue for electronic circuit and system designs. In particular, global interconnections extremely 

affect the performance, area and power dissipation of modern systems [1]–[3]. 

Fig. 1 shows that the interconnect delay, especially the global one, does not decrease well when 

the feature size decreases. In addition, it is reported that interconnections are responsible for 

over 50% of the entire dynamic power of a microprocessor in 130 nm technology [4]. Previous 

studies also show that interconnections overwhelmingly control the total area and power in 

FPGA applications [5][6]. 

 

 
 

Fig. 1 : Delay versus feature size 

 

Several approaches have been proposed to deal with the critical issue arisen from long 

interconnects. Globally-asynchronous locally-synchronous (GALS) designs adopt handshaking 

protocols for communication between different modules over long interconnects [7]. In a 
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synchronous latency-insensitive system (LIS), special pipelining elements, named relay 

stations, are inserted to break a long interconnect into shorter wire segments in order to sustain 

high operating clock frequency [8]. Moreover, several types of distributed register (DR) 

architectures, in which the entire system is divided into several logic clusters, are also broadly 

studied [9]–[20]. In general, all DR-based architectures try to keep most interconnects local 

within a cluster and thus minimize the number of required inter-cluster long interconnects for 

better performance and smaller area. 

Distributed register-file microarchitecture (DRFM) is one of the DR-based architectures 

and is recently proposed in [9]. As shown in Fig. 2, DRFM consists of multiple islands and each 

of them has its own register file, functional units (FUs), and data-routing logic. Moreover, 

DRFM is adequate for platforms with a rich set of distributed memory blocks, e.g., modern 

FPGAs [21]–[22]. It is proven in [9] that the total number of inter-island connections (IICs) is 

highly correlated with the area and performance of synthesized designs. Therefore, the number 

of IICs is a good evaluation metric for quality of result (QoR) on DRFM. Accordingly, a 

resource constraint binding algorithm was also proposed in [9], and its target is to minimize the 

number of IICs. 

 

 
Fig. 2 : The island architecture of DRFM 

 

Inter-island transfer (IIT) delay is ignored in original DRFM [9]. However, the delay 
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model appears oversimplified. In order to incorporate the IIT delay, we propose a new 

architecture named distributed register-file microarchitecture with inter-island delay 

(DRFM-IID), which considers unit inter-cluster delay and makes a move toward reality. Of 

course, the corresponding synthesis task is inherently more complicated. As shown in Fig. 3, 

DRFM-IID consists of multiple islands, each island having a local register file, functional units 

(FUs), data-routing logic. In DRFM-IID, data from other islands should be stored in the local 

register file first and then go to local functional unit at the next control step (cstep). Therefore, 

the system latency would increase due to the IIT delay. In this thesis, we propose a resource 

constraint binding algorithm targeting DRFM-IID for minimizing system latency. Given a data 

flow graph (DFG) and a resource constraint (i.e., number of available islands). First, we realize 

that binding nodes on the critical path to the same island could reduce the latency. Hence, our 

approach takes the criticality as an important factor. Second, an iterative rebinding and 

rescheduling procedure is performed. At each cstep, rebinding and rescheduling are used to get 

better solutions in terms of latency. 

 

 
 

Fig. 3 : The island architecture of DRFM-IID  

 

The rest of this thesis is organized as follows. The related works are discussed in Chapter 2. 

Chapter 3 and Chapter 4 present the details of DRFM-IID synthesis and motivational examples. 
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Chapter 5 presents the details of our proposed algorithm for DRFM-IID synthesis. The 

experimental results and analyses are given in Chapter 6, followed by the conclusions in 

Chapter 7.  
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Chapter 2  

Related Works  

 

2.1 Distributed Register Architecture 
Conventionally, centralized register (CR) architectures are usually presumed in high level 

synthesis. In a CR-based architecture, as shown in Fig. 4, there exists a large aggregate register 

file shared by all FUs and an FU is expected to access any register within one clock cycle. 

Moreover, if this assumption is still preserved, the increasing delay of global interconnects 

would significantly stretch the clock cycle time. In order to deal with this problem, the 

DR-based architecture, as shown in Fig. 5, and a design flow were proposed in [12]. 

 
 

Fig. 4 : Centralized register architecture 
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Fig. 5 : Distributed register architecture 

 

In a DR-based architecture, the whole system is partitioned into a set of clusters and each 

cluster contains its own local register file and FUs. As a result, most register accesses are kept 

within a cluster while only few accesses require long inter-cluster communication.
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2.2 Distributed Register-File Microarchitecture 
The island structure of DRFM is shown in Fig. 2. An island is composed of a local register 

file , FUs, and input routing logic. The local register file is used to supply data for internal FUs 

and external FUs in other islands, and store computation results produced by internal FUs. 

DRFM allows use of the platform-featured on-chip memory or register-file IP blocks to 

implement its local register files, and the results in substantial saving of multiplexing logic and 

global interconnects [9]. 

 Because the correlation between the number of IICs in DRFM and the area and 

performance of designs is high, the number of IICs in DRFM is a good measure of QoR in early 

design phases [9]. As shown in Fig. 6, the number of IICs can be calculated after scheduling and 

binding. The operations in the same shaded region are bound to the same island, and the ones in 

the same row are scheduled at the same cstep. Then, data transfers whose start node and end 

node are in different islands become inter-island transfers (IITs). In the example of Fig. 6, IIT1,6 

and IIT2,8 are IITs from island A to island B, IIT6,3 is an IIT from island B to island A, and IIT5,9 

and IIT6,9 are IITs from island B to island C. Since DRFM assumes point-to-point IICs, two IITs 

can share an IIC if and only if they are produced from a common island and consumed in 

another common island at different csteps [9]. In the example of Fig. 6, IIT1,6 and IIT2,8 can 

share an IIC between island A and island B. On the contrary, IIT5,9 and IIT6,9 must use two 

different IICs between island B and island C because they are consumed at the same cstep.  

 

 
 

Fig. 6 : A scheduled and bound DFG 
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An approach for IIC minimization in DRFM was proposed in [9]. For simplicity, it proposes 

the following two assumptions. First, every operation can be executed in any island in one cstep 

and produces exactly one result. Second, a local register file has only one write port for the 

writeback of FUs on the same island. We also take these two assumptions in our work. In 

DRFM, IIT delay is ignored. To be more practical, IIT delay should be considered. Therefore, 

we propose DRFM-IID to solve this problem.  
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Chapter 3  

DRFM-IID 

 

As mentioned above, DRFM ignores IIT delay. In this thesis, we propose a new 

architecture, named DRFM-IID to overcome this issue. In DRFM-IID, we assume every IIT 

takes one cstep delay. Data from other islands should be stored in the local register file at first 

and then go to the internal FUs at the next cstep. After calculation, computation results are 

stored in the local register file. Since the architecture is modified, the DFG and scheduling 

have to be altered accordingly. A special node, named conveyer, which represents the endpoint 

of an inter-island data transfer, is added on the IIT destination island. As shown in Fig. 7(a), 

there exists an IIT2,4 in the DFG on DRFM. For IIT2,4, v2 is at cstep2 and v4 is at cstep3. After 

conveyer insertion, the corresponding DFG is shown in Fig. 7(b). We add a conveyer C into the 

destination island, island B, at cstep3, and move v4 to cstep4. As a result, the latency increases 

from 3 csteps to 4 csteps. Since inserting conveyers can increase the latency, the synthesis task 

must make a good care of it. In this thesis, we propose an algorithm to minimize the latency 

by rescheduling and rebinding. The proposed algorithm is introduced in Chapter 4. 

 
 

Fig. 7 (a): A DFG on DRFM 

(b): A DFG on DRFM-IID 
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Chapter 4  

Motivational Examples 

 

4.1 Effects of IITs  
The number of IITs may affect the latency because extra conveyers may make critical 

paths even longer. An example is shown in Fig. 8. Two binding solutions are depicted in Fig. 

8(a) and Fig. 8(c). In Fig. 8(a), the number of IITs is 2. After inserting conveyers, the latency 

increases from 3 csteps to 5 csteps, as shown in Fig. 8(b). In Fig. 8(c), the number of IITs is 1. 

After inserting conveyers, the latency remains 3 cstps, as shown in Fig. 8(d).  

 

 
 

Fig. 8(a) : A scheduled and bound DFG 

(b) : A scheduled and bound DFG after conveyer insertion 

(c) A scheduled and bound DFG 

(d) : A scheduled and bound DFG after conveyer insertion 

 

The result, as depicted in Fig. 8(d), is better than the result shown in Fig. 8(b) in terms of 

the latency because the number of IITs is minimal in Fig. 8(b). In conclusion, the number of 

IITs is a key factor to minimize latency.  
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4.2 Effects of Criticality  
How to insert conveyers depends on results of binding. Therefore, different binding 

solutions lead to different latency. An example of a scheduled DFG is shown in Fig. 9, in which 

the critical path is from v1, through v4, to v7. Two binding results without conveyer insertion are 

shown in Fig. 10(a) and Fig. 10(c). In Fig. 10(a), nodes on the critical path are bound on island 

A, island B and island C separately. The number of IITs is 3, and the number of IICs is 2. In 

Fig. 10(c), nodes on the critical path are bound on the same island, island A. The number of IITs 

is 2 and the number of IICs is 2. In Fig. 10(a), the critical path includes two IITs, IIT1,4 and 

IIT4,7. After inserting conveyers, the latency increases frrm 3 csteps to 5 csteps, as shown in 

Fig. 10(b). In Fig. 10(c), the critical path is bound on the same island. Therefore, after 

inserting conveyers, the latency is still 3 csteps, as shown in Fig. 10(d). 

 

  

Fig. 9 : A scheduled DFG 
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Fig. 10(a) : A scheduled and bound DFG 

(b) : A scheduled and bound DFG after conveyer insertion 

(c) : A scheduled and bound DFG 

(d) : A scheduled and bound DFG after conveyer insertion 

 

 

The result, shown in Fig. 10(d), is better than the result shown in Fig. 10(b) in terms of the 

latency because the nodes on the critical path are bound on the same island. In conclusion, the 

criticality and the number of IITs are two other key factors to minimize latency.  
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4.3 Effects of Islands Utilizations 
 

For a scheduled and bound DFG, if most nodes are bound on few islands, the latency is 

dominated by these crowed islands. Furthermore, other islands with few nodes are frequently 

idle. Therefore, distributing nodes evenly among islands might lead to shorter latency. For this 

reason, we define the utilization of island I as an index of nodes distribution and it is defined as 

(1). When the difference between islands utilizations shrinks, it represents nodes distribution on 

islands more even. 

 

 

(#nodes + #conveyers)( )  =  
#total cstepsi

U I  (1) 

 

As mentioned above, an IIT adds a conveyer on its destination island. Therefore, reducing 

the number of edges into islands with the maximum U(Ii) can minimize the latency. The 

following example illustrates this key observation. 

Given a scheduled DFG, two binding solutions are shown in Fig. 11(a) and Fig. 11(c). For 

Fig. 11(a), island utilizations are shown in Table 1. The number of in-edges incident to the 

island IK is defines as #in-edge(IK). From Table 1, the maximum utilization islands are island A 

and island C. Their corresponding in-edges, #in-edge(IA) and #in-edge(IC), are 2 and 0. During 

conveyer insertion, we insert a conveyer D between v5 and v2, and a conveyer E between v9 

and v3. Finally, the latency increases from 4 csteps to 6 csteps in Fig. 11(b). For Fig. 11(c), 

island utilizations are shown in Table 2. From Table 2, the maximum utilization is island C. Its 

corresponding in-edges, #in-edge(IC), is 0. During conveyer insertion, we insert a conveyer D 

between v9 and v3, and a conveyer E between v1 and v2. Finally, the latency increases from 4 

csteps to 5 csteps in Fig. 11(d).  
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Table 1  The utilizations of islands      Table 2  The utilizations of islands 

 
     

 

 

 

Fig. 11(a) : A scheduled and bound DFG 

(b) : A scheduled and bound DFG after conveyer insertion 

(c) : A scheduled and bound DFG  

(d) : A scheduled and bound DFG after conveyer insertion 

 

 

The result, shown in Fig. 11(d), is better than the result shown in Fig. 11(b) in terms of the 

latency because the difference of island utilizations is minimal. From this example, we find out 

that the number of edges incident to islands with the maximum U(Ii) would also affect the final 

latency. 

 

 

Island IA IBB IC

U(Ui) 1 0.25 1 

#In-edges(Ii) 2 0 0 
 

Island IA IBB IC

U(Ui) 0.75 0.5 1 

#In-edges(Ii) 1 1 0 
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Chapter 5   

Proposed Algorithm 

 

5.1 Overview 
The problem formulation of this work is as follows: Assume an IIT delay takes one cstep 

in DRFM-IID. Given a DFG and a resource constraint (the number of available islands), 

obtain a scheduled and bound DFG with the minimized latency. 

 

 
 

Fig. 12 : The overall flow of the proposed algorithm 

 

The overall flow of the proposed algorithm is shown in Fig. 12. Given a DFG (V,E), List 

Scheduling is first performed to obtain an initial scheduling result and followed by Island 

Assignment. Island Assignment is aware that binding nodes on the critical path to the same 
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island and reducing number of IITs can potentially minimize the latency. Therefore, the 

problem is formulated as a maximum cost flow problem and the criticality is taken into 

consideration. More details are described in Section 5.2. However, Island Assignment does 

not allow rescheduling and rebinding. During the process of Island Assignment, it only 

potentially estimates the latency, but not practically minimizes the latency. Hence, Iterative 

Latency Minimization is proposed to obtain a better result via rebinding and rescheduling. 

This phase is composed of IIT Refinement and Conveyer Insertion. The way used for IIT 

Refinement in this work is similar to KL partitioning [23]. During the process of Conveyer 

Insertion, we insert conveyers and preserve the data dependency. The related details are 

described in Section 5.3. 
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5.2 Island Assignment 
As mentioned in Section 4.2, nodes on the critical path and the number of IITs should be 

the main concerns while binding. In this phase, we use the network flow-based partitioning 

method to bind nodes. The details are as following. Given a scheduled DFG, a weighted 

compatibility graph is built first, as depicted in Fig. 13. Cstep(vi) denotes the cstep at which 

node i is scheduled. In Fig. 13(a), if cstep(vi) is smaller than cstep(vj), there exists an edgei,j in 

the compatibility graph. For example, cstep(v1) is smaller than cstep(v5) in Fig. 13(a), then 

there is an edge1,5 in the compatibility graph in Fig. 13(b). In the compatibility graph, a solid 

line denotes this edge exists in DFG, and a dotted line denotes this edge does not exists in 

DFG.  

 

 
 

 

Fig. 13(a) : A scheduled and bound DFG, #islands = 2 

(b) : A compatibility graph 

 

After building the compatibility graph, we add two pseudo nodes vS and vT. Then vS 

connects to all nodes and all nodes connect to vT , as depicted in Fig. 14.  



 

 18

  

Fig. 14 : A compatibility graph with pseudo source and sink 

 

In a network flow, the weight of an edge, w(ei,j), is defined in (2). 

 

 

,

0       , 
( ) =  

1+ ( )  ,
i, j

i j
i, j i, j

e E
W e

cri e e E

∉⎧⎪
⎨ ∈⎪⎩

 (2) 

 

In (2), if an edge in the compatibility graph does not exist in the original DFG, the weight 

of this edge is zero. If an edge in the compatibility graph exists in the original DFG, the 

weight of this edge consists of two terms – the first one represents an edge is a real data 

transfer, and the second represents the criticality. Conceptually, W(ei,j) indicates the latency 

impact if the edgei,j becomes an IIT. In other words, the higher the weight of an IIT is, the worse 

the latency can be. 

The criticality of an edgei,j , cri(ei,j), is defined in (3). 

 

 

1( ) =   
( ) - ( )i, j

j i

cri e   
csetp v cstep v

       (Criticality) (3) 
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The slack of edgei,j is regard as the critical indicator between vi and vj, that is, edges with 

smaller slacks are more critical. The following example shows edge weight calculation.  

 

 
 

1( )  =  1  +    =  2
(2 -1)

1

1.2W e

( )  =  1  +    =  1.5
(3 -1)1.3W e

 

Fig. 15 : An example of edge weight calculation 

 

After properly setting the weights of all edges in the compatibility graph, Island Assignment 

problem is formulated as finding a solution in which the total weighted sum of all IITs is 

minimal. This binding problem can already be optimally solved by the max-cost flow algorithm 

described in [23]. Fig. 17 is an edge-weighted compatibility graph. In the end, v1, v5 and v3 are 

bound on island A and v2 and v4 are bound on island B, as shown in Fig. 17.  

 

 
 

Fig. 16 : An edge-weighted compatibility graph  
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Fig. 17 : The scheduled and binding result 
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5.3 Iterative Latency Minimization 
As mentioned above, the algorithm for Island Assignment potentially minimizes the 

latency. However, further improvement can still be achieved by rebinding and rescheduling 

during inserting conveyers as long as the data dependency is still intact. The overall algorithm 

of Iterative Latency Minimization is depicted in Fig. 18. In this section, we consider 

operations within one cstep at a time. Each iteration consists of IIT Refinement and Conveyer 

Insertion. In IIT Refinement, horizontal rebinding operations can further minimize the number 

of IITs and the number of edges incident to islands with the maximum U(Ii), as mentioned in 

Section 4.2. The related details of IIT Refinement are described in Section 5.3.1 and the 

related details of Conveyer Insertion are described in Section 5.3.2. 

 

 

 

 

Fig. 18 : Two key steps of Iterative Latency Minimization 
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5.3.1 IIT Refinement 

The proposed IIC refinement process is based on KL algorithm [24], which is broadly used 

in partitioning-related problem. Within the process, nodes and bubbles are swapped for IIT 

minimization. A swap can be made between two nodes or between a node and a bubble. 

Feasible swaps include two kinds of candidates, nodes and bubbles. Nodes are considered 

feasible only on following conditions: (i) nodes must be unlocked, (ii) in-edges of nodes are 

not from conveyers and (iii) nodes must be in the current cstep. Bubbles are considered 

feasible only if they are in the current cstep. For example, in Fig. 19, at cstep3, the feasible swap 

candidates for v3 are { v10, bubbleb }. A feasible swap pair of node u and node/bubble v is 

denoted as (u, v). All feasible swap pairs are collected into the feasible swap pair set (FSPS). As 

depicted in Fig. 19, FSPS are { (3,b), (10,b), (3,10) }. 

 

 
 

Fig. 19 : A FSPS example  

 

In IIT Refinement, the gain of a swap pair (u,v), as defined in (4), is denoted as gu,v. It 

consists of two elements, E and T. All islands with the maximum utilization are collected into 

the maximum utilization island set (MUIS). E is the total number of reduced IITs into islands 

in MUIS. T is the number of reduced IITs. For example, in Fig. 20, we assume α is 10, and 

the gain of swap pair v3 and bubbleb , g3,b, is calculated in (6). 
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Fig. 20 : An example of swap gain calculation 

 

 

 
 

After performing an actual swap, FSPS, MUIS, and gains of swap pairs are updated 

accordingly. The key steps of IIT refinement are described as follows: 

 

 

1 2 =  ( - )  +  10 * (1- 2)
3 33,bg   (6) 

∈ ∈

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∑
  

'MUI MUI
'

# (# ( )

 = 
MUIS MUIS

i i

'
ii

I I

In - edge IIn - edge I

E

)
 (5) 

 

begin 

do 

set all operation nodes unlocked 

compute gi,j, ∀(i,j)∈FSPS 

m=0 
while ( FSPS is not empty )  

find a pair (i,j) with the largest gain, gi,j, from FSPS 

lock vi and vj and store the gain gi,j into gm

= +g E αT
i, j

      (Criticality) (4) 
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update FSPS and recalculate the gains of pairs in FSPS 

m++ 

Find k, such that  is maximized 
0

k
k m

G
=

= ∑ mg

If ( Gk > 0 ) 

for (m=0 to m=k) 
swap vi and vj , which is the swap pair (i,j) with the gain gm

while ( Gk > 0 ) 

end 

 

 

 

Fig. 21(a) : The DFG at the beginning of the iteration  

(b) : The DFG at the end of the iteration  

 

 

Table 3  The corresponding island information  

 
 

 

For example, a partially scheduled and bound DFG is shown in Fig. 21(a).The maximum 

Island IA IBB IC ID

U(Ii) 0.6 0.6 1 0.8 

#In-edge(Ii) 1 1 1 2 
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U(Ii) is 1 and MUIS = {IC}. At the beginning, an IIT number equal to 5, the number of IITs 

into islands in MUIS is 1. Initially, the gains of all feasible swap pairs in FSPF are calculated 

as follows: 

 

 

 

1 1=  ( - )  +  10(0)  =  0
1 13,6g  

1 5=  ( - )  +  10(-1)  =  -11.5
1 23,fg  

1 2=  ( - )  +  10(2)  =  20
1 26,fg  

 

Then the swap pair (6, b) is selected to be swapped and node 6 is locked after the swap. This 

process is not terminated until FSPS is empty. Table 4 shows the gain and the partial gain sum 

of the two consecutive feasible swaps in this iteration. As a result, only the first swap, including 

(6, b), is actually desired. The resultant DFG at the end of this iteration is shown in Fig. 21(b)  

 

Table 4  Gain and partial sum of gain in one iteration 

 

n-th swap 1 2 

Swapped pair (v6,bubblef) (v3,bubblef) 

Gain 20 0 

Partial sum of gain 20 20 
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5.3.2 Conveyer Insertion 

Conveyer Insertion consists of two key steps, inserting conveyers and preserving the data 

dependency. In this phase, we consider IITs in the current cstep. However, not all IITs require 

conveyers in the destination. The following principles avoid inserting conveyers: (i) the input 

data is already in the island, and (ii) there are usable bubbles in the island. For example, as 

depicted in Fig. 22(a), edge3,2 should conventionally insert a conveyer at cstep4 on island A. In 

accordance with principle (i), input data(from v3) is already on island A at cstep2. Therefore, 

edge3,2 is deleted, a new edgeb,2 is added and no conveyer is needed. Another IIT, edge4,10, 

should insert a conveyer at cstep4 on island C. In accordance with principle (ii), there is an 

usable bubble in the island C. Therefore, bubble d becomes into a conveyer d at cstep3, edge4,d 

and edged,10 are added, and edge4,10 is deleted. Finally, as depicted in Fig. 22(a), edge1,6 

requires a conveyer C at cstep4 on island B to preserve the data dependency.  

  

 
 

Fig. 22 : An example of Conveyer Insertion 
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Chapter 6  

Experimental Results 

 

The proposed algorithm has been implemented in C++/Linux environment, and all 

experiments are conducted on a workstation with an Intel Xeon 3.2GHz CPU and 4GB RAM. 

The test cases are from different benchmark sets [25]–[27], which are frequently used in the 

high-level synthesis field. The basic information of these test cases (DFGs) is shown in Table 5. 

The first column shows the test case name, and the followings show the number of nodes, the 

number of edges of the DFGs, respectively, and the last one reports the latency obtained by 

ASAP scheduling with unlimited resources islands. For fair and comprehensive comparison, 

two different synthesis flows are presented, as shown in Fig. 23. Given an input DFG and a 

resource constraint, list scheduling is first performed to provide an initial scheduling result for 

both flows. Flow1 implements the approach proposed in [9] and Conveyer Insertion; Flow2 

applies the algorithm proposed in this work. 

Two configurations are considered in our experiments – synthesis is performed 

without/with a resource constraint in Configuration 1/2, respectively. In the first configuration, 

the number of islands is set as the minimum number that still guarantees the synthesis outcome 

with the minimum latency indicated in Table 5. In Configuration 2, the number of islands is 

reduced by half as: 

 

 

⎡ ⎤
⎢ ⎥⎢ ⎥
number of islands in Config. 1number of islands in Config. 2 = 

2
 (7) 
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The results of the Configuration 1 are shown in Table 6, and Table 7, respectively. Table 6 

gives the latency result and Table 7 reports the result of number of IITs and the result of 

number of IICs. The results of the Configuration 2 are shown in Table 8 and Table 9 and, 

respectively. Table 8 gives the latency result, Table 9 reports the result of number of IITs the 

result of number of IICs. In Table 6, the second column is the number of the given islands, 

and the third one is the latency of DFGs after list scheduling is applied; the fourth is the latency 

by Flow1, the fifth is the latency by Flow2 and the sixth is the percentage of reduction in terms 

of the latency. In Table 7, the second column is the number of the given island, the third one is 

the number of IITs by Flow1, the forth one is the number of IITs by Flow2, and the fifth one is 

the percentage of reduction in terms of the number of IITs; The sixth one is the number of IICs 

by Flow1, the seventh one is the number of IICs by Flow2 and the eighth one is the percentage 

of increment in terms of the number of IICs. 

The experiment results showed that latency was reduced by the proposed algorithm on 

average by 17.62% without resource constraints (i.e., configuration 1); the number of IITs was 

reduced by the proposed algorithm on average by 28.27% and the number of IIC was 

increased by the proposed algorithm on average by 36.76%. In conclusion, the area and the 

performance are trade off in experimental results.  

In Table 8, the second column is the number of the given island, and the third one is the 

latency of a DFG after list scheduling is applied; the fourth is the latency by Flow1, the fifth is 

the latency by Flow2 and the sixth one is the percentage of reduction in terms of the latency. In 

Table 9, the second column is the number of the given island, the third one is the number of 

IITs by Flow1, the forth one is the number of IITs by Flow2, and the fifth one is the percentage 

of reduction in terms of the number of IITs; The sixth one is the number of IICs by Flow1, the 

seventh one is the number of IICs by Flow2 and the eighth one is the percentage of increment 

in terms of the number of IICs. 

The experiment results showed that latency was reduced by the proposed algorithm on 

average by 29.24% with resource constraints (i.e., configuration 2); the number of IITs was 
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reduced by the proposed algorithm on average by 37.54% and the number of IIC was 

increased by the proposed algorithm on average by 32.86%. In the experimental results, the 

area and the performance are trade off. Moreover, when the number of islands decreased, the 

improvement of the latency increased. However, the number of IICs did not increase like that.   
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Table 5  The basic information of benchmarks 

 
 

 

 

 

Test case #nodes #edges ASAP latency 

wang 48 58 7 
lee 49 62 9 

feedback 53 50 7 
h2v2 53 54 17 
fft4 62 88 8 

cosine1 66 76 8 
writebmp 106 88 7 

matmul 109 116 9 

smooth 197 196 11 

invert 333 354 11 

 

Fig. 23 : Experimental flows 
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Table 6  Experimental results of the latency in Configuration 1. 

 

 

Table 7  Experimental results of IITs and IICs in Configuration 1. 

 
 

 
 
 
 
 
 

#IITs Reduction #IICs Increment 
Test case #islands 

Flow1 Flow2 2 to 1 Flow1 Flow2 2 to 1 
wang 8 39 26 33.33% 17 21 23.53% 
lee 6 32 20 37.50% 11 14 27.27% 

feedback 9 27 18 33.33% 12 17 41.67% 
h2v2 4 24 17 29.17% 6 9 50.00% 
fft4 8 63 45 28.57% 24 34 41.67% 

cosine1 9 48 33 31.25% 20 29 45.00% 
writebmp 16 29 25 13.79% 18 26 44.44% 
matmul 16 39 38 2.56% 27 38 40.74% 
smooth 27 91 67 26.37% 49 63 28.57% 
invert 36 175 93 46.86% 77 96 24.68% 
Avg.    28.27%   36.76% 

Latency(#csteps) Reduction 
Test case #islands #csteps

Flow1 Flow2 2 to 1 
wang 8 7 16 12 25.00% 
lee 6 9 17 14 17.65% 

feedback 9 7 13 11 15.38% 
h2v2 4 17 32 27 15.63% 
fft4 8 8 21 16 23.81% 

cosine1 9 8 16 15 6.25% 
writebmp 16 7 13 11 15.38% 
matmul 16 9 16 14 12.50% 
smooth 27 11 21 16 23.81% 
invert 36 11 24 19 20.83% 
Avg.     17.62% 
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Table 8  Experimental results of the latency in Configuration 2 

 

 

 

 

 

 

 

Table 9  Experimental results of IITs and IICs in Configuration 2 

 
 

 

Latency(#csteps) Reduction 
Test case #islands #csteps

Flow1 Flow2 2 to 1 
wang 4 13 26 20 23.08% 
lee 3 18 36 25 30.56% 

feedback 4 14 28 20 28.57% 
h2v2 2 29 43 26 39.53% 
fft4 4 16 37 29 21.62% 

cosine1 4 17 34 24 29.41% 
writebmp 8 14 24 19 20.83% 
matmul 8 15 29 21 27.59% 
smooth 13 17 37 23 37.84% 
invert 18 20 42 28 33.33% 
Avg.     29.24% 

#IITs Reduction #IICs Increment 
Test case #islands 

Flow1 Flow2 2 to 1 Flow1 Flow2 2 to 1 
wang 4 35 24 31.43% 16 12 -25.00% 
lee 3 36 23 36.11% 6 6 0.00% 

feedback 4 31 14 54.84% 8 10 25.00% 
h2v2 2 16 13 18.75% 2 2 0.00% 
fft4 4 58 44 24.14% 10 12 20.00% 

cosine1 4 46 26 43.48% 8 11 37.50% 
writebmp 8 42 27 35.71% 14 24 71.43% 
matmul 8 68 37 45.59% 19 28 47.37% 
smooth 13 111 69 37.84% 32 65 103.13% 
invert 18 204 107 47.55% 63 94 49.21% 
Avg.    37.54%   32.86% 
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Chapter 7  

Conclusion 
In this work, we proposed DRFM-IID, which takes IIT delay into consideration. On 

DRFM-IID, we develop an architecture synthesis flow for latency minimization. Island 

Assignment is first performed. It maps operations onto islands by network flow-based 

partitioning. Next, Iterative Latency Minimization is applied. It consists of two terms — IIT 

Refinement and Conveyer Insertion. IIT Refinement rebinds operations between islands to 

derive a better solution and Conveyer Insertion inserts conveyers into the DFG. The 

experimental results indicate that latency can be reduced by 17.6% ~ 29.2% on average. 
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