Performance-Driven Architectural Synthesis for Distributed

Register-File Microarchitecture with Inter-Island Delay

SR A
hERE AP K&
W ki R

o 3 R/ 4 L+ o~ E 4

YRR BB B PSS Y BHEEHE
2%y REHEE
Performance-Driven Architectural Synthesis for
Distributed Register-File Microarchitecture with

Inter-Island Delay

S Student: Wan-Ling Hsu
pERE Y AY KR Advisor: Jing-Yang Jou
T kE K Juinn-Dar Huang
Bzl o F
TR & RFFLT
A~
A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering & Institute of Electronics

September 2009
Hsinchu, Taiwan, Republic of China

PERRA4 L AES

A B B Y Ko

x
A

R

&

iF &

BMTEAE PER S S i R RS B 1 AR S SR B o

i

_

B BB FGI BN AR ERIR Y REDOTF B G T A RS DF R
o RS RN e BAR® Y o APRN - ARG L ST R

B A S B S A BB RN B2 S W 3

Fadilddr o gpAo AREE I ED - B RE S RF 1T F RH ok
feen> 2 > PR g%k o d FRESEF Ea iTipt o AT KT B 4

Tyag Pl A2 - 4 8o

Performance-Driven Architectural Synthesis for
Distributed Register-File Microarchitecture with Inter-Island

Delay

Student: Wan-Ling Hsu Advisor: Prof. Jing-Yang Jou
Prof. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

In deep-submicron era, wire delay is:becoming the bottleneck while pursuing high system
clock speed. Several distributed register: (DR) architectures are proposed to cope with this
problem by keeping most wires local. A distributed register-file microarchitecture with
inter-island delay (DRFM-IID), proposed in this thesis, is one of the DR-based architectures.
We also provide a performance-driven architectural synthesis framework targeting DRFM-1ID.
First, Island Assignment is performed to bind operations into islands. Then, a procedure
performing lterative Latency Minimization is utilized further improve outcomes. The
experimental results indicate that the latency can be reduced by 17.6% ~ 29.2% on average, as

compared to the prior one.

Fh O ARRHAOL B RPHESF EEE L el EE Y A
m,\:}?”:‘frii@v ,E;\‘«u _\}_&:j,ﬁqﬁﬂ'i“}fﬁb% , ’ér_ﬁ d ﬁ"g? iy %LT ’i%%/\ﬂ'lﬁ?lﬁﬂz“m

R R REPEES FRL L f S HEE PR g o E 2 e o7 0

2o
FALRRAETAE A S A HA SR 2 @ P ,;i&;;»}s LphR e
EHOEAT kA FB e oty P MIP KRR ARKR Al Rz

Sedn A AL F B L RARIT P U B
Ay BRBFEHZTORE BRI E G4 BL Fo 2Bk WP &RoidHm 2
/»\%frp"’sk%:in\j\ LAzt - Biaia g;@.rﬁﬁqgﬂ.;ﬁ,#i{;\;ié_ggggul ﬁ—iﬁ\,—ﬁ 1

g - Az oo

F LR ARG T L T R e - R Fem @,

Contents

ADSITACE (CHINESE) ...ttt ste e e st esbe e e e sreesreeeeaneeas i
ADSIFACE (ENGHISN) ...t ettt I
ACKNOWIEAGEMENT ...t e b e e neenreeneeenes ii
(000] =T £ TR T PP PP PRPTRPPRPI 0\
LISt OF TADIES ... Y
LISE OF FIQUIES......eeteiiee ettt ettt b et b e et enes vi
Chapter 1 INTrOUUCTION......c.uiiieieee ettt sb e enreesreenee e 1
Chapter 2 Related WOTKSooiiii e et 5
2.1 Distributed Register ArChItECIUIEccveiiee e 5
2.2 Distributed Register-File MicroarChiteCture.ccoovvveveiinneniecieseee e 7
Chapter 3 Distributed Register-File Microarchitecture With Inter-Island Delay 9
Chapter 4 Motivational EXamMPIES....... fueicrmesurrsmnseeeshtiteesteeeesieesieesiesseesiesseessesseeseesseessens 10
4.1 EFFECES OF TITS oo o ettt 10
4.2 Effects Of CrtiCAILYoceoiiieiiecece s 11
4.3 Effects of Islands UtIliZations...........cccocvveiiinincincee e 13
Chapter 5 Proposed AlGOrthmooiiiiiiieiie e 15
5.1 OVEIVIBW .ottt 15
5.2 1S1and ASSIGNMENToiiiiiiiiieie e et sre e 17
5.3 Iterative Latency MiNIMIZationcccevveieiieiieie e 21
5.3 1 HT REFINEMENT ..o 22

5.3.2 CoNVEYEN INSEITIONueeiiieiecieeie e 26
Chapter 6 Experimental RESUILSccooiiiiiiii e 27
Chapter 7 CONCIUSIONecuviiiceee ettt et e s te e e sra e teennesraenee s 33
RETEIEINCES ...ttt b b 34

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

List of Tables

The utilizations OF ISIANUS..........ccoiiiii e 14
The utilizations OF ISIANGSc..oiiiiie s 14
The corresponding island iNfOrmMation............cccocveviienieenecc e 24
Gain and partial sum of gain in 0Ne Ierationccocevereeninie e 25
The basic information of benchmarks ... 30
Experimental results of the latency in Configuration 1.ccccoeviiiiiniiiiciieneen, 31
Experimental results of I1Ts and 11Cs in Configuration 1.c.cccceeevvvevieieiiennnn, 31
Experimental results of the latency in Configuration 2...........ccccoecveviiniiiieieenien, 32
Experimental results of 11Ts and 11Cs in Configuration 2c.cccceecvvvevieieiiennnn, 32

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

List of Figures

1 : Delay VErsus fEAtUIE SIZE.........cuciviiieieeiie e et e e e sae e sneeeeanes 1
2 : The island architecture of DRFMccoooiiiiiiiii e 2
3 : The island architecture of DRFM-IID..........cccooiiiiiiiiiiciiece e 3
4 : Centralized register architeCtUIEc.ooiiiiiieie e 5
5 : Distributed register arChiteCIUIEcvviieie e 6
6 : A scheduled and boUNd DFG ..ot 7
7(2): ADFG 0N DRFIM ...ttt nte e e e 9
7(0): ADFG 0N DRFM-ID ..ot 9
8(a) : Ascheduled and BOUNA DFGccoooveiiiiiiiece e 10
8(b) : A scheduled and bound DEG after conveyer inSertion............cccoceveereneeseeneesnenn 10
8(c) A scheduled and bound DG ..o ittt 10
8(d) : A scheduled and bound DFG after conveyerinsertion...........ccccceveveveeiinecieecneene, 10
9 1 ASChEdUIBA DFG ... e it tiaea b ettt 11
10(a) : A scheduled and BOUNA DEGcccooiiiiiiieiie e 12
10(b) : A scheduled and bound DFG after conveyer inSertion............cccceevverveieesvenennens 12
10(c) : Ascheduled and BOUNA DFGcccooiiiiiiiiie e 12
10(d) : A scheduled and bound DFG after conveyer inSertion............cccoevevvervesiveseernennnns 12
11(a) : Ascheduled and bound DFGcoooiiiiiiiceeeee e 14
11 (b) : A scheduled and bound DFG after conveyer inSertion...........ccccceevevvevesivesnennns 14
11 (c) : A scheduled and boUNd DFGccoiiiiiieiiesieee e e 14
11 (d) : A scheduled and bound DFG after conveyer insertion...........ccccccevevevveiveriveinennnn 14
12 : The overall flow of the proposed algorithm...........cccoceveiiiiiiniiin e 15
13(a) : A scheduled and bound DFG, #iSIands = 2ccccoevieieiii e 17
13(b) : A compatiDility graphooveiiiiii s 17

Vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

14 : A compatibility graph with pseudo source and Sinkccccoecveieiivenieeiesieseeennn 18
15 : An example of edge weight calculationccooeiiiiiiiiiei e 19
16 : An edge-weighted compatibility graph ..o 19
17 : The scheduled and binding result............ccoooiiiiie i 20
18 : Two key steps of Iterative Latency Minimization...........c.ccoocvevveieivenesieseese e 21
19 D AFSPS €XAMPIE ... e 22
20 : An example of swap gain calCulationccoocveiiiieiieeic s 23
21(a) : The DFG at the beginning of the Iteration............c.ccooveiiiriieieneseee e 24
21 (b) : The DFG at the end of the Iteration...........ccccviveveeiesii e 24
22 : An example of CoNVEYEr INSEITIONccoueiiiiiiieie e 26
23 EXPerimental TIOWScvoiieece e 30

vii

Chapter 1

Introduction

As advancing into the deep-submicron (DSM) era, interconnects have become a crucial
issue for electronic circuit and system designs. In particular, global interconnections extremely
affect the performance, area and power dissipation of modern systems [1]-[3].

Fig. 1 shows that the interconnect delay, especially the global one, does not decrease well when
the feature size decreases. In addition, it is reported that interconnections are responsible for
over 50% of the entire dynamic power of a'microprocessor in 130 nm technology [4]. Previous
studies also show that interconnections-overwhelmingly control the total area and power in

FPGA applications [5][6].

100 —

— Gate Delay
(Fan out 4)
- Local
(scaled)
| =i Global with
Repeaters
= Global wio
Repealers

5

Relative Delay

- &

01 i
250 180 130 a0 65 45 a2
Process Technology Node (nm)

Fig. 1 : Delay versus feature size

Several approaches have been proposed to deal with the critical issue arisen from long
interconnects. Globally-asynchronous locally-synchronous (GALS) designs adopt handshaking

protocols for communication between different modules over long interconnects [7]. In a

synchronous latency-insensitive system (LIS), special pipelining elements, named relay
stations, are inserted to break a long interconnect into shorter wire segments in order to sustain
high operating clock frequency [8]. Moreover, several types of distributed register (DR)
architectures, in which the entire system is divided into several logic clusters, are also broadly
studied [9]-[20]. In general, all DR-based architectures try to keep most interconnects local
within a cluster and thus minimize the number of required inter-cluster long interconnects for
better performance and smaller area.

Distributed register-file microarchitecture (DRFM) is one of the DR-based architectures
and is recently proposed in [9]. As shown in Fig. 2, DRFM consists of multiple islands and each
of them has its own register file, functional units (FUs), and data-routing logic. Moreover,
DRFM is adequate for platforms with a rich set of distributed memory blocks, e.g., modern
FPGAs [21]-[22]. It is proven in [9] that:the total number of inter-island connections (I1Cs) is
highly correlated with the area and-performance of synthesized designs. Therefore, the number
of 1ICs is a good evaluation metric for quality of result (QoR) on DRFM. Accordingly, a
resource constraint binding algorithm was also proposed in [9], and its target is to minimize the

number of 11Cs.

Data from other islands Data to other islands
F 3

v
Input Routing Logic Local Register File

e T

MUX /
v _ v

‘ Functional Units ‘

I

An island

Fig. 2 : The island architecture of DRFM

Inter-island transfer (11T) delay is ignored in original DRFM [9]. However, the delay

model appears oversimplified. In order to incorporate the IIT delay, we propose a new
architecture named distributed register-file microarchitecture with inter-island delay
(DRFM-IID), which considers unit inter-cluster delay and makes a move toward reality. Of
course, the corresponding synthesis task is inherently more complicated. As shown in Fig. 3,
DRFM-IID consists of multiple islands, each island having a local register file, functional units
(FUs), data-routing logic. In DRFM-IID, data from other islands should be stored in the local
register file first and then go to local functional unit at the next control step (cstep). Therefore,
the system latency would increase due to the IIT delay. In this thesis, we propose a resource
constraint binding algorithm targeting DRFM-I1D for minimizing system latency. Given a data
flow graph (DFG) and a resource constraint (i.e., number of available islands). First, we realize
that binding nodes on the critical path to the same island could reduce the latency. Hence, our
approach takes the criticality as an important factor. Second, an iterative rebinding and
rescheduling procedure is performed. Ateach cstep, rebinding and rescheduling are used to get

better solutions in terms of latency.

Data from other islands Data to other islands
| W}

v
Input Routing Logic

Y v
MUX

v

Local Register File

v r
Functional Units
|

An island

Fig. 3 : The island architecture of DRFM-IID

The rest of this thesis is organized as follows. The related works are discussed in Chapter 2.

Chapter 3 and Chapter 4 present the details of DRFM-IID synthesis and motivational examples.

Chapter 5 presents the details of our proposed algorithm for DRFM-IID synthesis. The
experimental results and analyses are given in Chapter 6, followed by the conclusions in

Chapter 7.

Chapter 2

Related Works

2.1Distributed Register Architecture

Conventionally, centralized register (CR) architectures are usually presumed in high level
synthesis. In a CR-based architecture, as shown in Fig. 4, there exists a large aggregate register
file shared by all FUs and an FU is expected to access any register within one clock cycle.
Moreover, if this assumption is still preserved,.the increasing delay of global interconnects
would significantly stretch the clock cycle time. In order to deal with this problem, the

DR-based architecture, as shown:in Fig. 5, and a design flow were proposed in [12].

REGs FUs

] A

FUs

FUs

Fig. 4 : Centralized register architecture

Inter-cluster
interconnection

| |REGs || [REGs | [REGs | -.-... REGs
B g I i
| Fus |i| Fus | | Fus | ... FUs
{ Cluster

Fig. 5 : Distributed register architecture

In a DR-based architecture, the whole system is partitioned into a set of clusters and each
cluster contains its own local register file and FUs. As a result, most register accesses are kept

within a cluster while only few accesses require long inter-cluster communication.

2.2Distributed Register-File Microarchitecture

The island structure of DRFM is shown in Fig. 2. An island is composed of a local register
file , FUs, and input routing logic. The local register file is used to supply data for internal FUs
and external FUs in other islands, and store computation results produced by internal FUs.
DRFM allows use of the platform-featured on-chip memory or register-file IP blocks to
implement its local register files, and the results in substantial saving of multiplexing logic and
global interconnects [9].

Because the correlation between the number of 1ICs in DRFM and the area and
performance of designs is high, the number of I1ICs in DRFM is a good measure of QoR in early
design phases [9]. As shown in Fig. 6, the number of 11Cs can be calculated after scheduling and
binding. The operations in the same shaded region are bound to the same island, and the ones in
the same row are scheduled at the same cstep. Then, data transfers whose start node and end
node are in different islands become inter-island transfers (11Ts). In the example of Fig. 6, 11Ty 6
and 1T, g are 1ITs from island A to island B, 11Tg 5 is anlIT from island B to island A, and 11Ts g
and I1Tg g are 11Ts from island B to island.C. Since DRFM assumes point-to-point I1Cs, two 11 Ts
can share an IIC if and only if they are produced from a common island and consumed in
another common island at different csteps [9]. In the example of Fig. 6, 11T, and 11T, g can
share an IIC between island A and island B. On the contrary, 11Tsg and 11Tgg must use two

different 11Cs between island B and island C because they are consumed at the same cstep.

Inter-island transfer
—_—
Intra-island transfer

HMiTs=5
#ICs=4

Fig. 6 : A scheduled and bound DFG

An approach for [1C minimization in DRFM was proposed in [9]. For simplicity, it proposes
the following two assumptions. First, every operation can be executed in any island in one cstep
and produces exactly one result. Second, a local register file has only one write port for the
writeback of FUs on the same island. We also take these two assumptions in our work. In
DRFM, IIT delay is ignored. To be more practical, IIT delay should be considered. Therefore,

we propose DRFM-IID to solve this problem.

Chapter 3
DRFM-1ID

As mentioned above, DRFM ignores IIT delay. In this thesis, we propose a new
architecture, named DRFM-I1ID to overcome this issue. In DRFM-IID, we assume every 1T
takes one cstep delay. Data from other islands should be stored in the local register file at first
and then go to the internal FUs at the next cstep. After calculation, computation results are
stored in the local register file. Since therarchitecture is modified, the DFG and scheduling
have to be altered accordingly. A special-node, named conveyer, which represents the endpoint
of an inter-island data transfer, is added on the 1T destination island. As shown in Fig. 7(a),
there exists an 11T, 4 in the DFG on DRFM. For 11T4, v, is at cstep2 and vy, is at cstep3. After
conveyer insertion, the corresponding DFG is shown in Fig. 7(b). We add a conveyer C into the
destination island, island B, at cstep3, and move v, to cstep4. As a result, the latency increases
from 3 csteps to 4 csteps. Since inserting conveyers can increase the latency, the synthesis task
must make a good care of it. In this thesis, we propose an algorithm to minimize the latency

by rescheduling and rebinding. The proposed algorithm is introduced in Chapter 4.

() Operation
@ Bubble
] Conveyer

Fig. 7 (a): ADFG on DRFM
(b): ADFG on DRFM-IID

9

Chapter 4

Motivational Examples

4.1 Effects of 1ITs

The number of 1ITs may affect the latency because extra conveyers may make critical
paths even longer. An example is shown in Fig. 8. Two binding solutions are depicted in Fig.
8(a) and Fig. 8(c). In Fig. 8(a), the number of 11Ts is 2. After inserting conveyers, the latency
increases from 3 csteps to 5 csteps, as.shown in-Fig. 8(b). In Fig. 8(c), the number of 1ITs is 1.

After inserting conveyers, the latency remains 3 cstps, as shown in Fig. 8(d).

s | ©

Ia lg

(a) (b) (c) (d)
#1ITs=2, #lICs=1,latency =5 #lITs=1, #lICs=1 latency =3

Fig. 8(a) : A scheduled and bound DFG
(b) : A scheduled and bound DFG after conveyer insertion
(c) A scheduled and bound DFG

(d) : A scheduled and bound DFG after conveyer insertion

The result, as depicted in Fig. 8(d), is better than the result shown in Fig. 8(b) in terms of
the latency because the number of 11Ts is minimal in Fig. 8(b). In conclusion, the number of

[1Ts is a key factor to minimize latency.

10

4.2 Effects of Criticality

How to insert conveyers depends on results of binding. Therefore, different binding
solutions lead to different latency. An example of a scheduled DFG is shown in Fig. 9, in which
the critical path is from vy, through v,, to v7. Two binding results without conveyer insertion are
shown in Fig. 10(a) and Fig. 10(c). In Fig. 10(a), nodes on the critical path are bound on island
A, island B and island C separately. The number of IITs is 3, and the number of IICs is 2. In
Fig. 10(c), nodes on the critical path are bound on the same island, island A. The number of 11 Ts
is 2 and the number of IICs is 2. In Fig. 10(a), the critical path includes two IITs, 11T, 4 and
I1T,47. After inserting conveyers, the latency increases frrm 3 csteps to 5 csteps, as shown in
Fig. 10(b). In Fig. 10(c), the critical path is bound on the same island. Therefore, after

inserting conveyers, the latency is still 3 csteps, as shown in Fig. 10(d).

Fig. 9 : Ascheduled DFG

11

(b)

(d)

(b) (c)
Critical path: vi—=vs—=vy
#ITs = 3, latency = 5, #lICs = 2

Fig. 10(a) : A scheduled and bound DFG

: Ascheduled and bound DFG after conveyer insertion

(c) : Ascheduled and bound DFG

: Ascheduled and bound DFG after conveyer insertion

Critical path: vi—vs—vy
#lITs = 2, latency = 3, #lICs

The result, shown in Fig. 10(d), is better than the result shown in Fig. 10(b) in terms of the

latency because the nodes on the critical path are bound on the same island. In conclusion, the

criticality and the number of I1Ts are two other key factors to minimize latency.

12

4.3 Effects of Islands Utilizations

For a scheduled and bound DFG, if most nodes are bound on few islands, the latency is
dominated by these crowed islands. Furthermore, other islands with few nodes are frequently
idle. Therefore, distributing nodes evenly among islands might lead to shorter latency. For this
reason, we define the utilization of island I as an index of nodes distribution and it is defined as
(1). When the difference between islands utilizations shrinks, it represents nodes distribution on

islands more even.

#nodes + #conveyers
ui) = ¢ yers) (1)
i #total csteps

As mentioned above, an IIT adds a conveyer on its destination island. Therefore, reducing
the number of edges into islands with the maximum-U(l;) can minimize the latency. The
following example illustrates this key observation.

Given a scheduled DFG, two binding solutions are shown in Fig. 11(a) and Fig. 11(c). For
Fig. 11(a), island utilizations are shown in Table 1. The number of in-edges incident to the
island Ik is defines as #in-edge(lx). From Table 1, the maximum utilization islands are island A
and island C. Their corresponding in-edges, #in-edge(l») and #in-edge(lc), are 2 and 0. During
conveyer insertion, we insert a conveyer D between vs and v, and a conveyer E between vqg
and vs. Finally, the latency increases from 4 csteps to 6 csteps in Fig. 11(b). For Fig. 11(c),
island utilizations are shown in Table 2. From Table 2, the maximum utilization is island C. Its
corresponding in-edges, #in-edge(lc), is 0. During conveyer insertion, we insert a conveyer D
between vg and v, and a conveyer E between v; and v,. Finally, the latency increases from 4

csteps to 5 csteps in Fig. 11(d).

13

Table 1 The utilizations of islands Table 2 The utilizations of islands

Island la Is Ic Island Ia Ig lc
U(Uy) 1 025 | 1 U(Uy) 075 | 05 | 1
#In-edges(l;) 2 0 0 #In-edges(1;) 1 1 0

(a) (b) (c) (d)
#lITs =2, #ICs = 2 latency = 6 #lITs = 2, #lICs = 2 latency = 5

Fig. 11(a) : A scheduled and bound DFG
(b) : A scheduled and bound DFG after conveyer insertion
(c) : Ascheduled and bound DFG

(d) : A scheduled and bound DFG after conveyer insertion

The result, shown in Fig. 11(d), is better than the result shown in Fig. 11(b) in terms of the
latency because the difference of island utilizations is minimal. From this example, we find out
that the number of edges incident to islands with the maximum U(l;) would also affect the final

latency.

14

Chapter 5

Proposed Algorithm

5.10verview
The problem formulation of this work is as follows: Assume an IIT delay takes one cstep
in DRFM-IID. Given a DFG and a resource constraint (the number of available islands),

obtain a scheduled and bound DFG with the minimized latency.

Resource
DFG constraint

}
Initial scheduling

Island assignment

lterative latency
minimization

Scheduled and Bound
DFG

Fig. 12 : The overall flow of the proposed algorithm

The overall flow of the proposed algorithm is shown in Fig. 12. Given a DFG (V,E), List
Scheduling is first performed to obtain an initial scheduling result and followed by Island

Assignment. Island Assignment is aware that binding nodes on the critical path to the same

15

island and reducing number of IITs can potentially minimize the latency. Therefore, the
problem is formulated as a maximum cost flow problem and the criticality is taken into
consideration. More details are described in Section 5.2. However, Island Assignment does
not allow rescheduling and rebinding. During the process of Island Assignment, it only
potentially estimates the latency, but not practically minimizes the latency. Hence, Iterative
Latency Minimization is proposed to obtain a better result via rebinding and rescheduling.
This phase is composed of IIT Refinement and Conveyer Insertion. The way used for 1T
Refinement in this work is similar to KL partitioning [23]. During the process of Conveyer
Insertion, we insert conveyers and preserve the data dependency. The related details are

described in Section 5.3.

16

5.21sland Assignment

As mentioned in Section 4.2, nodes on the critical path and the number of 11Ts should be
the main concerns while binding. In this phase, we use the network flow-based partitioning
method to bind nodes. The details are as following. Given a scheduled DFG, a weighted
compatibility graph is built first, as depicted in Fig. 13. Cstep(v;) denotes the cstep at which
node i is scheduled. In Fig. 13(a), if cstep(vi) is smaller than cstep(v;), there exists an edge;; in
the compatibility graph. For example, cstep(vy) is smaller than cstep(vs) in Fig. 13(a), then
there is an edge; 5 in the compatibility graph in Fig. 13(b). In the compatibility graph, a solid
line denotes this edge exists in DFG, and a dotted line denotes this edge does not exists in

DFG.

— edge, cE
(a) (b) - edge, ¢ E

Fig. 13(a) : A scheduled and bound DFG, #islands = 2
(b) : A compatibility graph

After building the compatibility graph, we add two pseudo nodes vs and vr. Then vs

connects to all nodes and all nodes connect to vy, as depicted in Fig. 14.

17

Fig. 14 : A compatibility graph with pseudo source and sink

In a network flow, the weight of an edge, w(ei;), is defined in (2).

0 e ¢E

W)= Y
(,-,,-) 1+cri(eij) € eE @)

In (2), if an edge in the compatibility graph does not exist in the original DFG, the weight
of this edge is zero. If an edge in the compatibility graph exists in the original DFG, the
weight of this edge consists of two terms — the first one represents an edge is a real data
transfer, and the second represents the criticality. Conceptually, W(e;;) indicates the latency
impact if the edge; ; becomes an 1IT. In other words, the higher the weight of an I1T is, the worse
the latency can be.

The criticality of an edgei;, cri(eij), is defined in (3).

1 o
crife;;) = Criticalit
@) csetp(v,) - cstep(v;) (V) (3)

18

The slack of edge;jis regard as the critical indicator between vjand v;, that is, edges with

smaller slacks are more critical. The following example shows edge weight calculation.

Fig. 15 : An example of edge weight calculation

After properly setting the weights of all edges in the compatibility graph, Island Assignment
problem is formulated as finding a solution in which the total weighted sum of all IITs is
minimal. This binding problem can already be optimally solved by the max-cost flow algorithm
described in [23]. Fig. 17 is an edge-weighted compatibility graph. In the end, vi, vs and v are

bound on island A and v, and v, are bound on island B,-as shown in Fig. 17.

Fig. 16 : An edge-weighted compatibility graph

19

(a) (b)

Fig. 17 : The scheduled and binding result

20

5.3 Iterative Latency Minimization

As mentioned above, the algorithm for Island Assignment potentially minimizes the
latency. However, further improvement can still be achieved by rebinding and rescheduling
during inserting conveyers as long as the data dependency is still intact. The overall algorithm
of Iterative Latency Minimization is depicted in Fig. 18. In this section, we consider
operations within one cstep at a time. Each iteration consists of 11T Refinement and Conveyer
Insertion. In IIT Refinement, horizontal rebinding operations can further minimize the number
of 11Ts and the number of edges incident to islands with the maximum U(l;), as mentioned in
Section 4.2. The related details of IIT Refinement are described in Section 5.3.1 and the

related details of Conveyer Insertion are described in Section 5.3.2.

Resource
constraint

:

Initial scheduling lterative latency minimization

Island assignment IIT refinement

Iterative latency Conveyer insertion
minimization

Scheduled and Bound
DFG

Fig. 18 : Two key steps of Iterative Latency Minimization

21

5.3.1 1IT Refinement

The proposed I1C refinement process is based on KL algorithm [24], which is broadly used
in partitioning-related problem. Within the process, nodes and bubbles are swapped for 1T
minimization. A swap can be made between two nodes or between a node and a bubble.
Feasible swaps include two kinds of candidates, nodes and bubbles. Nodes are considered
feasible only on following conditions: (i) nodes must be unlocked, (ii) in-edges of nodes are
not from conveyers and (iii) nodes must be in the current cstep. Bubbles are considered
feasible only if they are in the current cstep. For example, in Fig. 19, at csteps, the feasible swap
candidates for v3 are { vio, bubble, }. A feasible swap pair of node u and node/bubble v is
denoted as (u, v). All feasible swap pairs are collected into the feasible swap pair set (FSPS). As

depicted in Fig. 19, FSPS are { (3,b), (10,b), (3,10) }.

ﬂﬂﬂ ‘FSF’S {(3,b), (10,b), (3,10) }

> o))

Fig. 19 : AFSPS example

In IIT Refinement, the gain of a swap pair (u,v), as defined in (4), is denoted as gy,. It
consists of two elements, E and T. All islands with the maximum utilization are collected into
the maximum utilization island set (MUIS). E is the total number of reduced IITs into islands
in MUIS. T is the number of reduced IITs. For example, in Fig. 20, we assume ¢« is 10, and

the gain of swap pair v and bubbley, , g3y, is calculated in (6).

22

9,= E+aT (Criticality) (@)

> #In-edge(l;) > #In-edge (I;)
l;eMUI l;eMUI
E=] _] ‘ 5
IMUIS| ‘Mms‘ ©)
Assume a= 10
1 2
=(=-=) +107(1-2
93 (3 3) ()
Fig. 20: An example of swap.gain calculation
12
ga,b = (g'g) + 10*(1'2) (6)

After performing an actual swap, FSPS, MUIS, and gains of swap pairs are updated

accordingly. The key steps of 1T refinement are described as follows:

begin
do
set all operation nodes unlocked
compute gij, V (i,j) € FSPS
m=0
while (FSPS is not empty)
find a pair (i,j) with the largest gain, g;;, from FSPS

lock v; and vjand store the gain g;; into g,

23

update FSPS and recalculate the gains of pairs in FSPS

m++

Find k, such that G, =Zk,09m is maximized

If(Gk>0)
for (m=0 to m=Kk)
swap v;andv;, which is the swap pair (i,j) with the gain g,
while (G¢>0)

end

At cstep3

Fig. 21(a) : The DFG at the beginning of the iteration
(b) : The DFG at the end of the iteration

Table 3 The corresponding island information

Island A g Ic Io
u(ly) 0.6 0.6 1 0.8
#In-edge(l;) 1 1 1 2

For example, a partially scheduled and bound DFG is shown in Fig. 21(a).The maximum

24

U(l;) is 1 and MUIS = {Ic}. At the beginning, an IIT number equal to 5, the number of 1ITs
into islands in MUIS is 1. Initially, the gains of all feasible swap pairs in FSPF are calculated

as follows:

11
936 = (1'1) +10(0) =0
15
= (3-2) + 10(-1) = -11.5
93¢ (l 2) (-1)

12
= (5-5) + 10(2) = 20
gy = (;-3) + 102

Then the swap pair (6, b) is selected to be swapped and node 6 is locked after the swap. This
process is not terminated until FSPS is'empty. Table 4 shows the gain and the partial gain sum
of the two consecutive feasible swaps in this iteration. As a result, only the first swap, including

(6, b), is actually desired. The resultant DFG at'the end of this iteration is shown in Fig. 21(b)

Table 4 Gain and partial sum of gain in one iteration

n-th swap 1 2

Swapped pair (ve,bubbler) | (vs,bubbley)
Gain 20 0

Partial sum of gain 20 20

25

5.3.2 Conveyer Insertion

Conveyer Insertion consists of two key steps, inserting conveyers and preserving the data
dependency. In this phase, we consider 1ITs in the current cstep. However, not all 11Ts require
conveyers in the destination. The following principles avoid inserting conveyers: (i) the input
data is already in the island, and (ii) there are usable bubbles in the island. For example, as
depicted in Fig. 22(a), edges > should conventionally insert a conveyer at cstepson island A. In
accordance with principle (i), input data(from vs) is already on island A at cstep,. Therefore,
edges, is deleted, a new edgey is added and no conveyer is needed. Another IIT, edges 1o,
should insert a conveyer at cstep, on island C. In accordance with principle (ii), there is an
usable bubble in the island C. Therefore, bubble d becomes into a conveyer d at csteps, edges g
and edgeq 1o are added, and edges o is deleted. Finally, as depicted in Fig. 22(a), edge; s

requires a conveyer C at cstep, on island B to preserve the data dependency.

At cstepy

Fig. 22 : An example of Conveyer Insertion

26

Chapter 6

Experimental Results

The proposed algorithm has been implemented in C++/Linux environment, and all
experiments are conducted on a workstation with an Intel Xeon 3.2GHz CPU and 4GB RAM.
The test cases are from different benchmark sets [25]-[27], which are frequently used in the
high-level synthesis field. The basic information of these test cases (DFGSs) is shown in Table 5.
The first column shows the test case name; and the followings show the number of nodes, the
number of edges of the DFGs, respectively, and the last one reports the latency obtained by
ASAP scheduling with unlimited resources islands. For fair and comprehensive comparison,
two different synthesis flows are presented, as shown in Fig. 23. Given an input DFG and a
resource constraint, list scheduling is first performed to provide an initial scheduling result for
both flows. Flowl implements the approach proposed in [9] and Conveyer Insertion; Flow2
applies the algorithm proposed in this work.

Two configurations are considered in our experiments — synthesis is performed
without/with a resource constraint in Configuration 1/2, respectively. In the first configuration,
the number of islands is set as the minimum number that still guarantees the synthesis outcome
with the minimum latency indicated in Table 5. In Configuration 2, the number of islands is

reduced by half as:

number of islands in Config. 2 = [number of islands in Config. 1—1

: ™)

27

The results of the Configuration 1 are shown in Table 6, and Table 7, respectively. Table 6
gives the latency result and Table 7 reports the result of number of 11Ts and the result of
number of 11Cs. The results of the Configuration 2 are shown in Table 8 and Table 9 and,
respectively. Table 8 gives the latency result, Table 9 reports the result of number of I1Ts the
result of number of IICs. In Table 6, the second column is the number of the given islands,
and the third one is the latency of DFGs after list scheduling is applied; the fourth is the latency
by Flowl, the fifth is the latency by Flow2 and the sixth is the percentage of reduction in terms
of the latency. In Table 7, the second column is the number of the given island, the third one is
the number of 11Ts by Flow1, the forth one is the number of I11Ts by Flow2, and the fifth one is
the percentage of reduction in terms of the number of 11Ts; The sixth one is the number of 11Cs
by Flowl, the seventh one is the number of 11Cs by Flow2 and the eighth one is the percentage
of increment in terms of the number of I1Cs!

The experiment results showed that latency was reduced by the proposed algorithm on
average by 17.62% without resource constraints (i.e., configuration 1); the number of 11Ts was
reduced by the proposed algorithm. on average by 28.27% and the number of 1IC was
increased by the proposed algorithm on average by 36.76%. In conclusion, the area and the
performance are trade off in experimental results.

In Table 8, the second column is the number of the given island, and the third one is the
latency of a DFG after list scheduling is applied; the fourth is the latency by Flowl, the fifth is
the latency by Flow?2 and the sixth one is the percentage of reduction in terms of the latency. In
Table 9, the second column is the number of the given island, the third one is the number of
I1Ts by Flowl, the forth one is the number of 11Ts by Flow2, and the fifth one is the percentage
of reduction in terms of the number of I1Ts; The sixth one is the number of 1ICs by Flow1, the
seventh one is the number of 1ICs by Flow2 and the eighth one is the percentage of increment
in terms of the number of I1Cs.

The experiment results showed that latency was reduced by the proposed algorithm on

average by 29.24% with resource constraints (i.e., configuration 2); the number of I1Ts was
28

reduced by the proposed algorithm on average by 37.54% and the number of 1IC was
increased by the proposed algorithm on average by 32.86%. In the experimental results, the
area and the performance are trade off. Moreover, when the number of islands decreased, the

improvement of the latency increased. However, the number of 11Cs did not increase like that.

29

Table 5 The basic information of benchmarks

Test case #nodes #edges ASAP latency

wang 48 58 7
lee 49 62 9
feedback 53 50 7
h2v2 53 94 17

fft4 62 88

cosinel 66 76

writebmp 106 88
matmul 109 116 9
smooth 197 196 11
invert 333 354 11

DFG Resource constraint

List scheduling

Y

Approach
in previous work

v

Conveyer
insertion

Flow1

List scheduling

Y

Island assignment

'

lterative latency
minimization

Flow?2

Scheduled and bound DFG

Fig. 23 : Experimental flows

30

Table 6 Experimental results of the latency in Configuration 1.

. Latency(#csteps) | Reduction
Test case |#islands| #csteps

Flowl | Flow2 2to1

wang 8 16 12 25.00%
lee 6 17 14 17.65%
feedback 9 13 11 15.38%
h2v2 4 17 32 27 15.63%
fft4 8 21 16 23.81%
cosinel 9 16 15 6.25%
writebmp 16 13 11 15.38%
matmul 16 16 14 12.50%
smooth 27 11 21 16 23.81%
invert 36 11 24 19 20.83%
Avg. 17.62%

Table 7 Experimental results of II'Ts.and I1Cs in Configuration 1.

. #11Ts Reduction #11Cs Increment
Test case [#islands
Flowl|Flow2| 2tol [Flowl|[Flow2| 2tol

wang 8 39 26 33.33% 17 21 23.53%
lee 6 32 20 37.50% 11 14 27.27%
feedback| 9 27 18 33.33% 12 17 | 41.67%
h2v2 4 24 17 29.17% 6 9 50.00%
fft4 8 63 45 28.57% 24 34 | 41.67%
cosinel 9 48 33 31.25% 20 29 | 45.00%
writebmp| 16 29 25 13.79% 18 26 | 44.44%
matmul 16 39 38 2.56% 27 38 | 40.74%
smooth 27 91 67 26.37% 49 63 28.57%
invert 36 175 | 93 46.86% 77 96 24.68%
Avg. 28.27% 36.76%

31

Table 8 Experimental results of the latency in Configuration 2

. Latency(#csteps) | Reduction

Test case |#islands| #csteps

Flowl | Flow2 2to1

wang 4 13 26 20 23.08%
lee 3 18 36 25 30.56%
feedback 4 14 28 20 28.57%
h2v2 2 29 43 26 39.53%
fft4 4 16 37 29 21.62%
cosinel 4 17 34 24 29.41%
writebmp 8 14 24 19 20.83%
matmul 8 15 29 21 27.59%
smooth 13 17 37 23 37.84%
invert 18 20 42 28 33.33%
Avg. 29.24%

Table 9 Experimental results.of 1ITs:and I1Cs in Configuration 2

. #11Ts Reduction #11Cs Increment
Test case |#islands

Flowl|Flow2| 2tol |[Flowl|Flow2| 2tol

wang 4 35 24 | 31.43% | 16 12 | -25.00%
lee 3 36 23 | 36.11% 6 0.00%
feedback| 4 31 14 | 54.84% 10 25.00%
h2v2 2 16 13 | 18.75% 2 0.00%
fft4 4 58 44 24.14% 10 12 20.00%
cosinel 4 46 26 | 43.48% 8 11 37.50%
writebmp| 8 42 27 | 35.71% | 14 24 71.43%
matmul 8 68 37 | 4559% | 19 28 47.37%
smooth 13 111 | 69 | 37.84% | 32 65 | 103.13%
invert 18 204 | 107 | 47.55% | 63 94 49.21%
Avg. 37.54% 32.86%

32

Chapter 7

Conclusion

In this work, we proposed DRFM-IID, which takes IIT delay into consideration. On
DRFM-IID, we develop an architecture synthesis flow for latency minimization. Island
Assignment is first performed. It maps operations onto islands by network flow-based
partitioning. Next, Iterative Latency Minimization is applied. It consists of two terms — IIT
Refinement and Conveyer Insertion. 11T Refinement rebinds operations between islands to
derive a better solution and Conveyer Insertion inserts conveyers into the DFG. The

experimental results indicate that latency can be reduced by 17.6% ~ 29.2% on average.

33

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

International Technology Roadmap for Semiconductors. Semiconductor Industry
Association, 2005.

D. Matzke, “Will physical scalability sabotage performance gains?” IEEE Computer,
vol.20, pp. 37-39, 1997.

L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency in SOC design,”
IEEE Micro, vol. 22, pp. 24-35, 2002.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a
microprocessor,” Proc. Int’l Workshop System Level Interconnect Prediction, pp. 7-13,
2004.

Singh, G. Parthasarathy, and:M. Marek-Sadowska, “Efficient circuit clustering for area and
power reduction in FPGAs,” ACM-Trans. Design Automation of Electronics Systems, vol.
7, no. 4, pp. 643-663, Oct. 2002.

E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,” Proc. Int’l Symp. Low
Power Electronics and Design, pp. 155-160, 1998.

D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,” Ph.D. dissertation,
Stanford Univ., Stanford, CA, 1984.

L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli, “A
methodology for correct-by-construction latency insensitive design,” Proc. Int’l Conf.
Computer Aided Design, pp. 309-315, 1999.

J. Cong, Y. Fan, and W. Jiang, “Platform-based resource binding using a distributed
register-file microarchitecture,” Proc. Int’l Conf. Computer Aided Design, pp. 709-715,

2006.

[10] K. Lim, Y. Kim, and T. Kim, “Interconnect and communication synthesis for distributed

34

register-file microarchitecture,” Proc. Design Automation Conf., pp. 765-770, 2007.

[11] D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-to-placed RTL synthesis with
performance-driven placement,” Proc. Int’l Conf. Computer Aided Design, pp. 320-325,
2001.

[12] J. Jeon, D. Kim, D. Shin, and K. Choi, “High-level synthesis under multi-cycle
interconnect delay,” Proc. Asia South Pacific Design Automation Conf., pp. 662667,
2001.

[13] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and synthesis for on-chip
multicycle communication,” IEEE Trans. Computer-Aided Design Integrated Circuits and
Systems, vol. 23, no. 4, pp. 550-564, Apr. 2004.

[14] C.-I Chen and J.-D. Huang, “CriAS: A performance-driven criticality-aware synthesis
flow for on-chip multicycle communication architecture,” Proc. Asia and South Pacific
Design Automation Conf., pp: 67=72, Jan. 2009.

[15] S.-H. Huang, C.-H. Chiang, and C.-H. Cheng, “Three-dimension scheduling under
multi-cycle interconnect communications,” IEICE Electronics Express, vol. 2, no. 4
pp.108-114, Feb. 2005.

[16] J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for automatic interconnect
pipelining,” Proc. Design Automation Conf., pp. 602-607, 2004.

[17] W.-S. Huang, Y.-R. Hong, J.-D. Huang, and Y.-S. Huang, “A multicycle communication
architecture and synthesis flow for global interconnect resource sharing,” Proc. Asia and
South Pacific Design Automation Conf., pp. 16-21, 2008.

[18] Y.-J. Hong, Y.-S. Huang, and J.-D. Huang, “Simultaneous data transfer routing and
scheduling for interconnect minimization in multicycle communication architecture,”
Proc. Asia and South Pacific Design Automation Conf., pp. 19-24, Jan. 2009.

[19] Ohchi, N. Togawa, M. Yanagisawa, and T. Hothuki, “High-level synthesis algorithms with
floorplanning for distributed/shared-register architectures,” Proc. Int’l Symp. VLSI

Design, Automation and Test, pp. 164-167, 2008.
35

[20] S. Gao, K. Seto, S. Komatsu, and M. Fujita, "Pipeline scheduling for array based
reconfigurable architectures considering interconnect delays,” Proc. Int’l Conf.
Field-Programmable Technology, pp. 137-144, Dec. 2005.

[21] Altera website. [Online]. Available: http://www.altera.com

[22] Xilinx website. [Online]. Available: http://www.xilinx.com

[23] R. Ahuja, T. Magnanti, and J. Orlin, Network flows: theory, algorithms, and applications,
Prentice Hall, Inc., 1993.

[24] B. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell
System Technical Journal, pp. 291-307, Feb. 1970.

[25] MCAS: multicycle architectural synthesis system. [Online]. Available:

http://cadlab.cs.ucla.edu/software release/mcas/

[26] EXPRESS group. [Online]. Available: http://express.ece.ucsb.edu/

[27] T. Cormen, C. Leiserson, R. Rivest,-and C. Stein, Introduction to algorithms, 2nd edition,
the MIT press, 2001.

[28] D. Herrmann and R. Ernst, “Improved interconnect sharing by identity operation
insertion,” Proc. IEEE/ACM Int’l Conf. Computer Aided Design, pp. 489-493, 1999.

[29] M. Potkonjak and S. Dey, “Optimizing resource utilization and testability using hot potato
techniques,” Proc. Design Automation Conf., pp. 201-205, 1994.

[30] C.-1 Chen, Y.-T. Lin, W.-L. Hsu, and J.-D. Huang, "Communication synthesis for
interconnect minimization targeting distributed register-file microarchitecture,” Proc.
Electronic Technology Symposium, Jun. 2009.

[31] G. De Micheli, Synthesis and optimization of digital circuits, McGraw-Hill, 1994.

36

http://www.altera.com/
http://www.xilinx.com/
http://cadlab.cs.ucla.edu/software_release/mcas/
http://express.ece.ucsb.edu/

	thesis_許婉玲_3_0.pdf
	thesis_許婉玲_3_2.pdf
	Chapter 1 Introduction
	Chapter 2 Related Works
	Chapter 3 DRFM-IID
	Chapter 4 Motivational Examples
	
	Chapter 5 Proposed Algorithm
	Chapter 6 Experimental Results
	Chapter 7 Conclusion
	 References

