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以統計距離分布為基礎之感知無線電合作式頻譜偵測

技術 

 

研究生: 陳信宏                         指導教授:簡鳳村博士 

 

國立交通大學電子工程學系    電子研究所碩士班 

 

摘要 

 
在此論文中，我們討論了在感知無線電的環境中，使用了距離量測 (Distance 

measure)在機率分佈下之頻譜感測。使用距離量測當作效能之度量的原因是基於

我們並不能輕易的從 log likelihood ratio 中得到近似解。所以在每一個次要使用

者 (Secondary users)中，我們採用距離量測作為度量。 

這篇論文主要分為兩部分。在第一部分中，我們考慮集中式偵測的方式：每

一個次要使用者傳送沒有量化過的訊號到共同接收器 (Fusion center)來偵測是否

有頻譜洞 (Spectrum hole)存在。在此，我們使用兩種距離量測方法，J-divergence

及 L2 distance 來設計決策方法(Decision rule)。實際上，我們嘗試使用最佳功率

分配(Optimal power allocation)及最佳線性組合(Optimal linear combination)兩種方

法使偵測頻譜洞之偵測機率最大同時維持主要使用者收到的干擾在一定的程度

之內。從模擬結果可以看出，使用距離量測下所得到的偵測機率的確比相同功率

分布(Equal power allocation)及相同加權組合(Equal weighting combination)來的

好。 

在第二部分中，我們考慮了使用設限(Censoring)之非集中式偵測。設限代表

了次要使用者只傳有資訊的資料到共同接收器，否則便不傳任何資料。因為高斯
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混合模型(Gaussian mixture model)的關係，依然很難最大化偵測機率。所以我們

一樣使用距離量測的方式當作效能之度量。從模擬結果中我們可以看到，在設限

方法下的偵測機率，的確比原本沒有任何限制的方法還好。 
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Abstract 

In this thesis, we discuss the problem of collaborative spectrum sensing in 

cognitive radio networks from the perspective of distance measures between 

probability distributions. The rationale behind using the distance measures as the 

performance metric lies on the difficulty of having a closed-form expression for the 

log likelihood ratio. We adopt the distance measure as the metric to design the 

decision criterion in each of the secondary users in the cooperative environment.  

 

The thesis is mainly consisted of two parts. In the first part, we consider the case 

of centralized detection in which every secondary user sends un-quantized signal to 

the fusion center for the ultimate detection of the spectrum hole. We use two distance 

measures, J-divergence and L2 distance, to design the local decision rule. In particular, 

we attempt to devise a power allocation scheme among secondary users, as well as a 

combination scheme to gather received signals in the fusion center, for maximizing 

the probability of detection of a spectrum hole while keeping the interference 

observed by the primary user within a predetermined level. The analytical and 
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simulated results show that we can improve the detection probability by optimizing 

the distance measures as compared to the equal power allocation and equal weight 

combination. 

In the second part, we consider the case of decentralized detection with censoring. 

The censoring means the secondary users only transmit informative observations to 

the fusion center or keep silent. In this case, it’s also hard to maximize detection 

probability because of the underlying Gaussian mixture model (GMM). We again use 

the distance measures as the performance metric. Simulation results show that the 

detection probability of the censoring scheme is better than that of the non-censoring 

approach. 
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Chapter 1

Introduction

Cognitive radio has been viewed as a promising technology in next generation wireless

communication networks striving for a better utilization of the wireless spectrum. In many

countries, most of frequency bands are assigned to different wireless services. But some

frequency bands are under-utilized. In [1], it has been shown that 70% of the allocated

spectrum in the U.S. are not efficiently utilized. If we allow secondary users (unlicensed

users) to use the frequency band of primary users (licensed users) when the primary users

are idle, the utilization of spectrum will be enhanced. In other words, the main purpose of

the cognitive radio systems is to utilize the spectrum and limit the interference to primary

users in a efficient and intelligent manner.

• Related work:

There are many papers in cognitive radio. The work in [2]-[5] discuss the basic

concepts and limitations of the cognitive radios. In [6], the authors propose 3 local

sensing methods, the matched filter detection, the energy detection, and the cyclo-

stationary feature detection. The detection probability of matched filter detection is

optimal. In local sensing, it’s hard to distinguish between the noise and the weak

signal because of deep fading. To improve the spectrum detection performance,

cooperative spectrum sensing has been proposed in [7]-[19].

– Centralized detection

The centralized detection is that the secondary users transmit the observation
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without quantization. In [10] and [11], the authors propose a cooperation

scheme among secondary users to mitigate possible deep fading or shadow-

ing, and thereby improve the detection probability. The work in [12], discuss

several optimization methods in a linear combination system, which combines

signals from all the antennas in the fusion center, with orthogonal channel in

centralized detection. The work discusses 3 systems, conservative system,

aggressive system, and hostile system, and a detection performance measure,

modified deflection coefficient(MDC). But in this paper, it only concerns the

orthogonal channel and doesn’t have any power constraint on secondary users.

– Distributed detection

The distributed detection is that the secondary users transmit the observation

with quantization. Because of bandwidth constraint, it is often desirable to

quantize data before transmitting. Many papers in distributed detection use

only 1 bit. In distributed detection, we can reduce the data rate between fu-

sion center and secondary users. But the detection performance of distributed

detection is worse than centralized detection. The work in [13], discuss the

semidefinite programming in distributed system in linear combination. The

authors in [19] and [18] use distance measures to solve the power allocation

problem. The work in [19] considers the approximated J-divergence, instead

of the likelihood function, as the performance matric in distributed sensor net-

work with multiple input multiple output(MIMO) channels, for the reason that

the log likelihood ratio(LLR) does not have a closed-form expression and thus

an explicit decision rule does not exist. In [18], the authors propose using ap-

proximated J-divergence to approximate the J-divergence of gaussian mixture

model. To have better detection probability, the authors adopt the element dis-

tance measure, instead of the approximated J-divergence, as the performance

matric in [19]. The work in [14] discusses the trade-off between the sensing

time and throughput. If sensing time is shorter, the transmitting time is longer

and the throughput is higher. The authors propose a multi-slot spectrum sens-

ing scheme to maximize the detection probability of local sensing. The multi-

2



slot spectrum sensing approach divides the sensing time intoM mini-slots

and uses those slots to maximize the detection probability. This work also

discusses the centralized detection and distributed detection to maximize the

detection probability in cooperative spectrum sensing.

– Distance measure

In [17], the L2 distance approach is applied in the problem of speech recogni-

tion. In addition, the work [20] and [21] discuss about fundamental properties

of the distance measures. In [20], the J-divergence and B-divergence can lead

to, respectively, a lower bound and an upper bound of the Bayesian error prob-

ability.

– Censoring scheme

The work [22]-[23] propose a censoring scheme in which secondary users only

transmit informative observation to the fusion center. The censoring scheme

can reduce the interference to primary users. In [22], it transmits LLR to

fusion center. When LLR is greater than a threshold, the user will transmit

this LLR to fusion center or keep silent. In this paper, it discusses that the

detection performance of one threshold is equal to the performance of two

thresholds. In [23], it proposes a simple censoring scheme. By censoring the

observation, only the users with enough information will transmit their local

bit decision (0 or 1) to the fusion center. The detection probability and false

alarm probability of spectrum sensing are investigated for both perfect and

imperfect reporting channel.

• Motivation:

In this thesis, we still focus on the spectrum sensing problems in cognitive radio

systems. When primary users use frequency bands, secondary users should be able

to detect the existence of primary users. When secondary users transmit data or re-

ceive data, they can’t cause intolerable interference on the primary users, if accurate

detection fails.

In much of the previous work, they only constraint the interference to primary users

3



when transmitting. However, when secondary users send signals to the fusion cen-

ter for spectrum sensing, they should also have power constraint. In this thesis, we

focus on the power constraint when secondary users are in the sensing phase. Here

we use target signal to interference plus noise ratio(SINR) as the performance con-

straint. The SINR of the primary users should be greater than the target SINR. We

are interested in finding the weighting factor that maximizes the probability of de-

tection while restricting the interference on the primary user within a predetermined

level. In summary, our objectives in this research are,

– Maximize the detection probability.

– Satisfy the SINR constraint of primary users.

• Contributions:

– We use a distance measure of the probability distribution as the metric, instead

of the likelihood measure, to find the detection rule at the fusion center.

– We find the optimal power allocation scheme among secondary users and op-

timal linear combination approach in the fusion center, both to maximize the

detection probability.

– We propose a censoring scheme in secondary users when transmitting signals

to the fusion center, attempting to lower interference while achieving accept-

able performance.

In the first part of the thesis, we consider two schemes, namely the optimal power

allocation and the optimal linear combination, in centralized cooperative spectrum

sensing. Optimal power allocation scheme is that we control the power of every

secondary user and optimize the detection probability. Optimal linear combination

is that we combine the signal of every antenna by different weighting to maximize

the detection probability. In centralized detection, it’s not easy to have the closed-

form expression of detection probability and false alarm probability. But we can

approach the detection probability, as promised by the likelihood detection rule,

4



by the use of distance measures. Analytical results show if the distance is larger,

the detection probability is higher. In the second part of the thesis, we propose

a censoring scheme in which secondary users transmit only the informative data

to the fusion center. In censoring scheme, we use J-divergence and L2 distance

to maximize the detection probability. Analytical results show that the censoring

scheme have better detection probability than non-censoring schemes.

• Organization of the Thesis:

The thesis is organized as follows. In chapter 2, we talk about the fundamental

concept of spectrum sensing in cognitive radio networks. In chapter 3, we intro-

duce two different distance measures, the J-divergence and the L2 distance, in the

optimal power allocation and optimal linear combination schemes. And the simu-

lation results show that the performance are better than equal power allocation and

equal linear combination. In chapter 4, we use the censoring method in optimal

power allocation and optimal linear combination. And we show the simulation of

the censoring method. Finally, chapter 5 gives the conclusion.
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Chapter 2

Spectrum Sensing and System Model

Cognitive Radio is the solution of the spectrum utilization. The users who have license

are primary users. In some frequency bands, the spectrum utilization is not high. It means

that primary users seldom use the frequency bands. Those frequency bands are under

low utilization. To enhance the spectrum utilization, primary users should share their

frequency bands to other users who don’t have the license. The users who want to use

the frequency bands are secondary users. But one important thing is that secondary users

should return the spectrum to primary users as soon as possible when primary users want

to use and secondary users don’t cause much interference on primary users. Therefore,

spectrum sensing is the key technique of cognitive radio. Secondary users should sense

whether the primary users use the spectrum or not. If they are sure that primary users

don’t use the spectrum now, they could use it. But there are still many problems in the

spectrum sensing.

2.1 The Problems of Spectrum Sensing

The detection of the existence of primary user can be viewed as binary hypothesis. When

primary users exist, it’s under hypothesisH1. When primary users don’t exist and sec-

ondary users can use the spectrum, it’s under hypothesisH0.

The main problems we want to solve in spectrum sensing are:

• Maximize the detection probabilityPd

6



• Minimize the false alarm probabilityPf

• Minimize the sensing time

2.1.1 Detection Probability and False Alarm Probability

The definition of detection probability is

Pd = P (Ĥ = H1|H1). (2.1)

And the definition of false alarm probability is

Pf = P (Ĥ = H1|H0). (2.2)

Ĥ means secondary users make a decision which hypothesis is possible.Pd means the

probability that the secondary users decideH1 hypothesis and primary users is really

using the spectrum.Pf means the probability the secondary users decideH0 hypothesis

and primary users is not really using the spectrum. Obviously, the system performance

will be better ifPd is higher andPf is lower. WhenPd is higher, secondary users won’t

use the spectrum when primary users exist. WhenPf is lower, it means the spectrum

utilization is higher.

Figure 2.1: Sensing time and transmitting time
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2.1.2 Sensing Time

Because we can’t exactly know when primary users want to use the spectrum, we peri-

odically sense the spectrum to solve this problem. Fig. 2.1 shows that it can be separated

into the sensing time and the transmitting time. It is obvious that the sensing time should

be short. In other words, if the sensing time is too long, the transmitting time will be short

and the average data rate will be low. But in our system model, we assume a fixed sensing

time and periodically sense the spectrum.

2.2 Maximize the Detection Probability

Why should we maximize the detection probability? The reason is that secondary users

should return the spectrum when the primary users exist. The definition of detection

probability is that we decide primary users is using the spectrum and primary users is

really using the spectrum. Therefore, when secondary users detect the primary users

is using the spectrum, secondary users will stop transmitting data. When the detection

probability is low, secondary users will frequently use the spectrum to transmit data when

primary users exists, like in Fig. 2.2. It may cause intolerance interference on primary

users.

2.2.1 Local Sensing

Local sensing means every secondary user makes his own decision without cooperation.

In [6], there are 3 methods to implement the local detection. For example, matched fil-

ter detection. The matched filter detection maximizes the signal-to-noise ratio. But the

matched filter detection needs to know the prior knowledge of primary users signal at both

PHI and MAC layers. It’s not practical. Energy detection is another method. It collects

the energy of every sensing sample. But the energy detection still has drawbacks. For ex-

ample, how to decide the threshold of the decision rule. Obviously, the local sensing will

depends on the power of primary users, the channel between primary users and secondary

users, and so on. For example, if the signal of primary users is weak, the detection proba-

8



Figure 2.2: Interference of primary users

bility of secondary users will be low and the secondary users will transmit data frequently.

To avoid this problem, we should consider cooperative spectrum sensing to enhance the

detection probability.

2.2.2 Cooperative Sensing

Cooperative sensing means some secondary users cooperate with each other to enhance

the detection probability. Many papers use cooperative scheme because of poor perfor-

mance of local sensing. In the cooperative spectrum sensing, every secondary user sends

the data to the fusion center. The fusion center can be viewed as a common receiver of

secondary users. Because the fusion center has more data than every secondary user, it

can have more accuracy detection. There are two schemes to solve the cooperative spec-

trum sensing, centralized detection and distributed detection. The centralized detection is

that every secondary user transmits unquantized observation to the fusion center. Then

the fusion center uses the observations to make the decision. The distributed detection

is that every secondary user transmits quantized signal to the fusion center, like ”-1” and

”1”. ”-1” meansH0 hypothesis and ”1” meansH1 hypothesis. In [14], it uses the major-

ity decision method. If the number of ”-1” at the fusion center is greater than the number
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of ”1” at the fusion center, the fusion center will decideH0 hypothesis. Obviously, the

performance of the centralized detection is better than the distributed detection. And in

[10], secondary users can sense lower power of primary users than local sensing because

of cooperation. We can enhance the performance by the use of the cooperative spectrum

sensing. The following section will discuss our system model of the cooperative spectrum

sensing.

2.3 System Model

Fig. 2.3 shows the system model. Firstly, secondary users sense data for detecting the ex-

istence of the primary user. Here we use multiple input multiple output (MIMO) channel

between secondary users and the fusion center. Every user sends the data to the fusion

center for the cooperative spectrum sensing and the fusion center has multiple antennas.

Every secondary user has only one antenna. It is reasonable because secondary users of-

ten have the power constraint. There is only one primary user and the primary users has

only one antenna. Assume every secondary user uses the same spectrum in sensing time

and in transmitting time. Obviously, it will produce a problem. When secondary users

transmit their sensing data to the fusion center for spectrum sensing and primary users

want to access spectrum in the same time, the data of secondary users transmitting may

cause intolerance interference to the primary user. This problem should be avoided. We

list the problems we should solve:

• Maximize the detection probability

• Minimize the false alarm probability

• Minimize the interference when cooperative spectrum sensing

• Minimize sensing time

But in our system model, the sensing time will be a fixed time for simplicity. The

detection probability and the interference of primary users should be minimized. Assume

the power of the primary user is known by the fusion center. When secondary users

10
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Figure 2.3: System model of MIMO channel

transmit the data to the fusion center and the primary user exists, we can set a target

SINR, SINRt, for the primary user and the SINR of the primary user should be greater

thanSINRt.

The equation of SINR is

SINRp =
PP

∑N

i hpi
Psi

+ σ2
n

, (2.3)

wherePsi
is the transmitting power ofith secondary user,hpi

is the channel between

secondary users and the primary user,N is the number of secondary users, andσ2
n is the

variance of noise.

Therefore, the capacity of the primary user is

CP =
1

2
log(1 + SINRp) ≥

1

2
log(1 + SINRt), (2.4)

whereCp is the capacity of the primary user.

If the SINRt is high, it means that the primary user can’t allow much interference

from secondary users and the secondary users can’t use much power for transmission. In

other words, we should satisfy the quality of service (QoS) requirement of the primary

user. Therefore, it should have power constraint on secondary users. And the final objec-

tive is to optimize the detection probability under the SINR constraint. In the following
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chapters, we will discuss how to satisfy the target SINR and optimize the detection prob-

ability.
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Chapter 3

Centralized Detection in Optimal Power

Allocation and Optimal Linear

Combination

3.1 Introduction

In cooperative spectrum sensing, every secondary user transmits the observation to the

fusion center. The fusion center can use those observations to have accuracy detection.

If all secondary users send their data to the fusion center without quantization, this is

called centralized detection. For example, consider a simple centralized detection scheme.

Fig. 3.1 shows the system model. Every secondary user transmits the observation to the

fusion center. From Fig. 3.1, the received signal of the fusion center is

y =
N

∑

i=1

xi, (3.1)

wherexi is the signal from theith secondary user and there areN secondary users.

Then the fusion center uses this signal,y, to make the decision. A simple decision

method is that whether the value ofy is greater thanγ or not. If y is greater thanγ, we

can decide that it is under hypothesisH1.

In this thesis, we consider two optimization schemes, optimal power allocation and

optimal linear combination.
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Figure 3.1: Simple centralized detection

3.1.1 Processing of Transmitting Signal

Assume that secondary users sense their signals in a sensing time,τ , and the sampling

rate isδ. Therefore, the number of samples isn = τδ. For the secondary users, if they

transmit their signal directly without any signal processing, the detection probability will

be low. Before transmitting, every secondary user sums the square of every sample and

transmits it to the fusion center. The equation of the sensing signal ofith secondary user

in kth sample is

yi(k) =







vi(k), underH0

hpis(k) + vi(k), underH1,
(3.2)

whereyi(k) is the signal sensed byith secondary user,vi(k) is the sensing noise and its

distribution isN(0, σ2
vi

), s(k) is the signal of the primary user,k meanskth sample, and

hpi is the channel betweenith secondary user and the primary user. Assume all sensing

samples in one secondary user are independent.

The overall power of primary user inn samples is

Es =

n
∑

k=1

|s(k)|2. (3.3)
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Figure 3.2: N samples in the sensing time

ui is the transmitting signal ofith secondary user. The equation ofui is

ui =

n
∑

k=1

|yi(k)|2. (3.4)

Then samples are identical and independent distribution in one secondary user. The dis-

tribution ofui can be viewed as a non-centralized Chi-square distribution withn degrees.

If n is large enough, it can be asymptotical to a Gaussian distribution by the central limit

theorem.

After some computation, the asymptotical distribution ofui is:

E[ui] =







nσ2
vi
, underH0

(n + ηi)σ
2
vi
, underH1

(3.5)

and

V ar[ui] =







2nσ4
vi
, underH0

2(n + 2ηi)σ
4
vi
, underH1,

(3.6)

whereηi =
|hpi|2Es

σ2
vi

. Therefore, the distribution can be represented as a Gaussian random

variable.

In the simulation result, it will prove the detection probability will be higher after the

signal processing.
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3.2 Optimal Power Allocation

In optimal power allocation scheme, we multiply weighting factor to the transmitting

signal of every secondary user. There are two reasons why we multiply weighting factor

to transmitting signal.

• Maximize the detection probability

• Satisfy the power constraint

In the following sections, we will discuss the optimal power allocation.

3.2.1 System Model

In the cognitive radio environment, assume that there areN secondary users and the fusion

center hasM receiving antennas. To simplify the system, there is only one primary user.

The primary user and every secondary user only has one antenna.

Our objective is to maximum the global detection probability,PD, and reduce the

interference to primary users when secondary users transmit data to the fusion center. In

other words, when the primary users use the frequency bands, the secondary users can’t

produce the intolerance interference to primary users. The Fig. 3.3 shows the system

model. In the centralized method, secondary users send their observation to the fusion

center for the detection. But we should guarantee the QoS requirement of primary users.

1

N

0 1

nHWua  !

1
u

Nu

1
y

Ny

1
w

Nw

1
a

Ma

Figure 3.3: System model of optimal power allocation
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In other words, we should guarantee the SINR of the primary users should be greater than

one determined value,SINRt. The secondary users can not transmit their signal directly

because of the power constraint. They should have the weighting factors for the power

control.

The received signal of the fusion center is

a = HWu + n, (3.7)

where

a =

















a1

a2

...

aM

















,H =

















h11 h12 ... h1N

h21 h22 ... h2N

...
...

. . .
...

hM1 hM2 ... hMN

















,W =

















w1 0 ... 0

0 w2 ... 0
...

...
. . . 0

0 0 ... wN

















,u =

















u1

u2

...

uN

















,n =

















n1

n2

...

nM

















u is the signal vector transmitted by secondary users,W = diag([w1, w2, ..., wN ]T ) is the

power control,H is channel matrix between the fusion center and the secondary users,

n ∼ N(0, σ2
nIM×M) is the noise received by the fusion center, anda is the signal received

of the fusion center.

Assume that the signals sensed by the secondary users are independent. Therefore,

we can have the distribution ofu.

p(u|Hi) =
1

|2πσ2
ui
|

1
2

exp[−1

2
(u− Ei)

T σ2
ui

−1
(u− Ei)], (3.8)

where

σ2
u1

=

















2(n + 2η1)σ
4
v 0 ... 0

0 2(n + 2η2)σ
4
v ... 0

...
...

. . . 0

0 0 ... 2(n + 2ηN)σ4
v
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, σ2
u0

=

















2nσ4
v 0 ... 0

0 2nσ4
v ... 0

...
...

. . . 0

0 0 ... 2nσ4
v

















,E1 =

















(n + η1)σ
2
v

(n + η2)σ
2
v

...

(n + ηN)σ2
v

















,E0 =

















nσ2
v

nσ2
v

...

nσ2
v

















From the equation (3.8), we can have the distribution ofa.

p(a|Hi) =
1

|2πΣi|
1
2

exp[−1

2
(a − µi)

TΣ−1
i (a− µi)], (3.9)

where

Σi = HWσ2
ui

WTHT + σ2
nI (3.10)

and

µi = HWEi. (3.11)

Then we can discuss the detection method by the use of the likelihood ratio test.

3.2.2 The Performance Matric of Detection Probability

The final goal of our scheme is to maximum the detection probability. In the Neyman-

Pearson detection, we should calculate likelihood ratio firstly. By the use of the likelihood

ratio, we can have the detection probability.

L(a) =
p(a|H1)

p(a|H0)
=

1

|2πΣ1|
1
2

exp[−1
2
(a − µ1)

TΣ−1
1 (a− µ1)]

1

|2πΣ0|
1
2

exp[−1
2
(a − µ0)TΣ−1

0 (a− µ0)]

H1

≷
H0

γ, (3.12)

whereγ is the detection threshold.
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Therefore, the log likelihood ratio (LLR) is

l(a) = ln |Σ0|
1
2

|Σ1|
1
2

+ (−1
2
(a− µ1)

TΣ−1
1 (a− µ1))

−(−1
2
(a − µ0)

TΣ−1
0 (a − µ0)) ≷H1

H0
ln γ.

From equation (3.10) and equation (3.11), the log likelihood ratio is

l(a) = ln |Σ0|
1
2

|Σ1|
1
2

+ (−1
2
(a − µ1)

TΣ−1
1 (a− µ1)) − (−1

2
(a − µ0)

TΣ−1
0 (a− µ0))

= ln |Σ0|
1
2

|Σ1|
1
2

+ 1
2
aT (Σ−1

0 − Σ−1
1 )a + aT (Σ−1

1 µ1 − Σ−1
0 µ0) + 1

2
µT

1 Σ−1
0 µ1 − 1

2
µT

0 Σ−1
0 µ0

= ln
|HWσ2

u0
W

T
H

T +σ2
nI|

1
2

|HWσ
u2
1
WT HT +σ2

nI|
1
2

+1
2
aT ((HWσ2

u0
WTHT + σ2

nI)
−1 − (HWσ2

u1
WTHT + σ2

nI)
−1)a

+aT ((HWσ2
u1

WTHT + σ2
nI)

−1(HWE1) − (HWσ2
u0

WTHT + σ2
nI)

−1(HWE0))

+1
2
(HWE1)

T (HWσ2
u1

WTHT + σ2
nI)

−1(HWE1)

−1
2
(HWE0)

T (HWσ2
u0

WTHT + σ2
nI)

−1(HWE0).

(3.13)

Therefore, the detection probability,PD, is

PD = P (l(a) > ln γ|H1). (3.14)

The optimization problem is

maxW PD

s.t. Psi ≤ Pc

SINRp ≥ SINRt.

(3.15)

Psi is the power ofith secondary user andPc is the power constraint of secondary users.

The equation ofSINRp is

SINRp =
Pp

∑

i h
2
pi
w2

i Psi + σ2
np

, (3.16)

wherePp is the power of the primary user,hpi
is the channel between the primary user

andith secondary user, andσ2
np

is the noise power of the primary users.

Becausel(a) is a nonlinear combination ofa, it is difficult to calculate the distribution

of l(a). Obviously, it’s hard to have the closed-from expression of the detection proba-

bility. And from the equation (3.13), it’s also hard to optimize the detection probability.
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Therefore, it’s hard to use the likelihood ratio based detection for optimization. But we

can use the performance matric, such as the distance measure, instead of calculating the

detection probability directly. We use this performance matric to optimize the detection

probability. In the following sections, we will introduce the distance based detection by

the use of J-divergence in the optimal linear combination.

J-divergence

J-divergence is a distance measure. For example, if we have two random variables, the

distance measure can be viewed as the distance between this two random variables. If the

distance between them is long, we can easily distinguish them and the detection proba-

bility will be high. Like in the Fig. 3.4, if distance between them is small, it’s not easy to

justify which hypothesis really exists. Under this condition, it’s easy to make a fault deci-

sion. In the distance measure method, the objective is to maximize the distance between

two distributions.

The error probability is defined as

Pe = P (H0)P (l(a) > ln γ|H0) + P (H1)P (l(a) < ln γ|H1) (3.17)

, and J-divergence can provide the lower bound ofPe[20].

Pe > P (H0)P (H1)e
(−J

2
), (3.18)

whereP (H0) is the probability that primary users don’t use the spectrum andP (H1) is

the probability that primary users use the spectrum.

From the above equation, we can use the J-divergence for replacing calculate the error

probability directly. The definition of J-divergence is

J = E1[(L − 1) ln L]

=
∫ +∞
−∞ [(L − 1) lnL]p1(x)dx

(3.19)

whereL(x) = p0(x)
p1(x)

.

In our case,L(x) = P (a|H0)
P (a|H1)

. J-divergence is the symmetric form of the Kullback-

Leibler (KL) distance.

J(F, G) = DKL(F ||G) + DKL(G||F ), (3.20)
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(a) Long distance (b) Small distance

Figure 3.4: Two different distances

whereDKL(.) is the KL distance. The definition of the KL distance is

DKL(F ||G) = −
∑

f(x) log g(x) +
∑

f(x) log f(x)

= H(F, G) + H(F ),
(3.21)

whereH(F, G) is the cross entropy andH(F ) is the entropy ofF . The physical mean of

the KL distance is expected number of extra bits using a code based onG rather thanF .

If the distance is larger, it will use more bits to transmit.

By adopting J-divergence as the performance matric, the optimization problem be-

comes to
maxW J(p(a|H0), p(a|H1))

s.t. Psi ≤ Pc

SINRp ≥ SINRt.

(3.22)

After computation, we can using the variance and mean ofa to calculate the value of

J-divergence,

J(p(a|H0), p(a|H1)) =

1
2
Tr[Σ0Σ

−1
1 + Σ1Σ

−1
0 + (Σ−1

0 + Σ−1
1 )(µ1 − µ0)(µ1 − µ0)

T ] − M.
(3.23)

Therefore, we can use the optimization method to find the maximum value of J-divergence

in the optimal power allocation.
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Here we discuss a special condition. Assume the received SNR of the fusion center is

low. LetE = (E1−E0) andHWσ2
ui

WTHT ≪ σ2
nI. Therefore,Σi ≃ σ2

nI. The equation

(3.23) becomes to

J(p(a|H0), p(a|H1))

= 1
2
Tr[σ2

nI

σ2
nI

+ σ2
nI

σ2
nI

+ (2(σ2
nI)

−1(HWE)(HWE)T )] − M

= 1
σ2

n
Tr(HWEETWTHT )

= 1
σ2

n
Tr(ETWTHTHWE)

= 1
σ2

n
ETWTHTHWE.

(3.24)

Let w = [w1, w2, ..., wN ]T . The equation (3.24) becomes to

J(p(a|H0), p(a|H1))

= 1
σ2

n
wT diag(E)HTHdiag(E)w.

(3.25)

Obviously, the equation (3.25) is a convex function. Therefore, when the receiving

SNR of the fusion center is low, J-divergence is a convex function. Here we can’t prove the

J-divergence only has the global optimal solution. We may only find the local maximum

by the optimization method. We only know that J-divergence will be a convex function

under low SNR condition. But in simulation, the optimal power allocation by the use of

J-divergence has much better detection probability than the equal power allocation.

3.3 Optimal Linear Combination

In the optimal linear combination, we combine the received signal by every antenna with

weighting factors, like in the Fig. 3.5. Therefore, the signal which we want to detect

becomes to

a =
√

gHu + n, (3.26)

wherea = [a1, a2, ..., aM ]T , H = [h̃1, h̃2, ..., h̃M ], and h̃i is N × 1 channel vector,

i = 1, 2, ..., M .
√

g is the power control and it is a constant. The power summation

of all secondary users can not exceedPc. For simplicity, let the power summation of all

secondary users are equal toPc. Then the value ofg is

g

N
∑

i=1

h2
piPsi = Pc. (3.27)
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Figure 3.5: System model of optimal power allocation

From the above equation, we can calculateg. The value ofPc is decided bySINRt. In

other words,g = w1 = w2 = ... = wN in the optimal linear combination.

ai is the received signal by theith antenna. It is the Gaussian distribution and its mean

and variance are

Eai|Hj
=

√
gh̃T

i Ej (3.28)

and

V arai|Hj
= gh̃T

i σ2

uj
h̃i + σ2. (3.29)

The fusion center can detect the primary users by the signal,r.

r =
M

∑

i

wliai = wT
l a, (3.30)

wherewl = [wl1wl2...wlM ]T . r is a Gaussian random variable and its mean and variance

are

Er =







√
gwl

THE0, underH0

√
gwl

THE1, underH1

(3.31)

and

V arr =







wT
l (gHσ2

u0
HT + σ2

nI)wl, underH0

wT
l (gHσ2

u1
HT + σ2

nI)wl, underH1.
(3.32)

Here we use another distance measure, L2 distance, in the optimal linear combination. J-

divergence can’t optimize in the optimal linear combination. The definition of L2 distance

23



is

DL2 =

∫

(f1 − f2)
2dx, (3.33)

wheref1 andf2 are two distribution functions.

Here we use theai in L2 distance instead ofr. The L2 distance scheme can be viewed

as that the fusion center linearly combines the distribution of every antenna. Obviously,

the distribution ofr is not the linear combination of the distribution of every antenna.

But in the simulation result, L2 distance will have better detection probability than other

distance measure.

Rewrite the equation (3.33) as
∫

(wT
l PaH1

− wT
l PaH0

)2dx, (3.34)

wherewl = [wl1 , wl2, ..., wlM ]T andPaHi
= [p(a1|Hi), p(a2|Hi), ..., p(aM |Hi)]

T .

From equation (3.28) and (3.29),ai is a Gaussian random variable. The L2 distance

can be write as

DL2(w
T
l PaH1

,wT
l PaH0

) =
∫

(wT
l PaH1

− wT
l PaH0

)2dx

=
∫

[(wT
l PaH1

)2 − 2wT
l PaH1

wT
l PaH0

+ (wT
l PaH0

)2]dx

=
∑

i

∑

j wliwlj

∫

p(ai|H1)p(aj |H1)dx

−2
∑

i

∑

j wliwlj

∫

p(ai|H1)p(aj|H0)dx

+
∑

i

∑

j wliwlj

∫

p(ai|H0)p(aj |H0)dx.

(3.35)

Assume two Gaussian random variables have the means,µa andµb, and the variances,

σ2
a andσ2

b . The integration of this two random variables is
∫

N(x, µa, σ
2
a)N(x, µb, σ

2
b )dx =

1
√

det(2π(σ2
a + σ2

b ))
e−

1
2
(µa−µb)

T (σ2
a+σ2

b
)−1(µa−µb).

(3.36)

Therefore, we can rewrite all the multiplications of two Gaussian random variables by the

use of three matrices,M11, M10, andM00.

M11
ij =

∫

p(ai|H1)p(aj |H1)dx. (3.37)

M10
ij =

∫

p(ai|H1)p(aj |H0)dx. (3.38)
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M00
ij =

∫

p(ai|H0)p(aj |H0)dx. (3.39)

The equation of L2 distance which we want to optimize is

DL2(w
T
l PaH1

,wT
l PaH0

) =
∑

i

∑

j wliwljM
11
ij − 2

∑

i

∑

j wliwljM
10
ij

+
∑

i

∑

j wliwljM
00
ij

= wT
l M11wl − 2wT

l M10wl + wT
l M00wl

= wT
l (M11 − 2M10 + M00)wl.

(3.40)

Obviously, the equation we want to optimize is a convex problem. If we don’t have

any constraint onwl, the value of the L2 distance will become to infinity. To avoid this

problem, letwT
l wl = 1. Therefore, the optimization problem becomes to

maxwl
DL2(w

T
l PaH1

,wT
l PaH0

) = wT
l (M11 − 2M10 + M00)wl

s.t. wli ≥ 0, i = 1, 2, ..., M

wT
l wl = 1.

(3.41)

The optimization problem can be easily solved by the optimization method. Here we

use the active set method. The active set method is that checking the inequality constraints

are active or not. If the inequality constraints are active, we can view the inequality con-

straints as the equality constraints and use the Lagrange multiplier to solve this problem.

If all the computation results satisfy the Karush-Kuhn-Tucker (KKT) condition, it’s one

iteration. After several iterations, we can find the optimal solution.

Then we discuss a simple decision rule:

r > t, (3.42)

wheret is the detection threshold. The equation (3.31) and (3.32) show the distribution

of r. It’s easy to calculate the detection probability and the false alarm probability. The

equations of the detection probability and the false alarm probability are

PD = Q(
t − Er|H1
√

V arr|H1

) (3.43)

and

Pf = Q(
t − Er|H0
√

V arr|H0

). (3.44)
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The optimal linear combination is simpler than the optimal power allocation. The

optimal linear combination usesg for the power control. Every secondary user uses the

same scalar,g. Therefore, the fusion center can broadcastg to secondary users. But the

optimal power allocation should tell secondary users their own weighting factors. In the

L2 distance method, the antenna which has the better L2 distance, its weighting will be

larger. For example, if there are 2 antennas, the L2 distance of the first antenna is greater

than the second antenna, its weighting is larger.

3.4 Simulation Results

In this section, we present the simulation by the use of the distance measures. Assume

the MIMO channel and the noise are all random and the power of the primary user is

known. The SNR of the primary user is 5. The probability that primary users use the

frequency band is 0.2 and the probability that don’t use the frequency band is 0.8 because

the primary users seldom exist. In the following, we will discuss simulation of the optimal

power allocation and the optimal linear combination.

3.4.1 Optimal Power Allocation

In the optimal power allocation scheme, the distance measure is J-divergence . In this

scheme, the decision rule is Neyman-Pearson detection at the fusion center. We set that

the false alarm probability is 0.4. It means that the spectrum utilization is 60% in this

simulation environment. As we mentioned before, it’s hard to calculate and optimize the

detection probability directly because LLR is not a linear combination ofa. Therefore,

we simulate the detection probability by the Monte Carlo method.

Fig. 3.6 shows two different transmitting signals of secondary users. If the signal

doesn’t have any signal processing and transmits it directly to the fusion center, its detec-

tion probability is worse than the signal with the signal processing. Obviously, it’s trade

off between the sensing time and the detection probability because the signal with the

signal processing needs more sensing samples.

Fig. 3.7(a) shows when the target SINR is high, the value of J-divergence is low. When
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the target SINR is high, it means that the total power of secondary users can use is low.

In the equal power allocation, the detection probability of J-divergence is lower than the

optimal power allocation. But only Fig. 3.7(a) can’t prove the J-divergence can be viewed

as a performance matric.

Fig. 3.7(b) shows the detection probability. In Fig. 3.7(a) and Fig. 3.7(b), we can

observe that when the value of J-divergence is higher, the detection probability is higher.

Therefore, J-divergence can be a performance matric in the optimal power allocation. And

in Fig. 3.7(b), the detection probability of the optimal power allocation is much better than

equal power allocation.

Fig. 3.8(a) shows four cases, 2x2, 2x4, 4x2, and 4x4. 4x2 means there are 4 receive

antennas and 2 secondary users in the simulation, and so on. Obviously, the more antennas

or the more secondary users, the better performance. Therefore, the fusion center can have

benefit by using the MIMO channel in the optimal linear combination. Then compare the

2x4 case and the 4x2 case. In this figure, the 2x4 case is better than the 4x2 case. The

reason is that it optimizes the detection probability by multiplying the weighting factors

to secondary users in the optimal power allocation. If there are more users, we can have

more degrees of freedom. Therefore, if there are more users or more receiving antennas

of the fusion center in cognitive radio system, the detection probability will be better. But

increasing the number of secondary users is better than increasing the number of receiving

antenna of the fusion center. Fig. 3.9 shows the error probability and the lower bound.

If the target SINR is lower, the error probability will also be lower. From the equation

(3.18),Pe > P (H0)P (H1)e
(−J

2
), the error probability has a lower bound. Fig. 3.10 shows

this property.

3.4.2 Optimal Linear Combination

In this simulation, we also use the Neyman-Pearson decision rule in the fusion center.

And in the later section, we will compare the performance between the optimal power

allocation and the optimal linear combination.

Fig. 3.11(a) shows the simulation result of the optimal linear combination by using

L2 distance. In this figure, when target SINR is high, it means the power that secondary
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Figure 3.6: Signal processing and without signal processing

users can use for transmitting is low and the L2 distance is small.

Fig. 3.11(b) shows the detection probability. This figure can tell us that L2 distance

can be really as a performance matric. When the L2 distance is larger, the detection prob-

ability is larger. Therefore, we can use this distance measure to maximize the detection

probability in the linear combination.

Fig. 3.12(a) shows the four cases of optimal linear combination, 2x2, 2x4, 4x2, 4x4.

In this figure, the 4x2 case is better than the 2x4 case. The reason is that it optimizes the

detection probability by the use of the weighting factor of every receive antenna in the

optimal linear combination. Therefore, if there are more antennas in the fusion center,

the degree of freedom is high. Increasing the number of receiving antennas of the fusion

center is better than increasing the number of secondary users. Fig. 3.12(b) shows the

detection probability. In this figure, when L2 distance is high, the detection probability

will also be high.

3.4.3 Comparison

In this subsection, we will compare 2 schemes, the optimal power allocation and the

optimal linear combination.
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Figure 3.7: J-divergence and the detection probability of optimal power allocation and

equal power allocation
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Figure 3.8: Detection probability and J-divergence of four cases in optimal power alloca-

tion
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Figure 3.9: The error probability of four cases in optimal power allocation
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Figure 3.10: The error probability and the lower bound of four cases in optimal power

allocation
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Figure 3.11: The L2 distance and detection probability of optimal linear combination and

equal weighting combination
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Figure 3.12: The L2 distance and detection probability of four cases in optimal linear

combination
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By the equation (3.43) and (3.44), we can calculatePD andPf by the use of a simple

detection method in the optimal linear combination. In [12], it focuses on the optimization

of optimal linear combination in the cognitive radio and proposes 3 optimization methods

in 3 different systems, conservative system, aggressive system, and hostile system. In

this paper, we can know the optimization of the equation (3.43) is hard. Only in the

aggressive system, the equation (3.43) is a convex problem. But in the final part of this

paper, it proposes a modified deflection coefficient (MDC) method. In the MDC method,

it’s also a distance measure and combines the receiving data of every antenna in the fusion

center. In other words, it’s also a distance measure in the optimal linear combination. Let

h′ = [h2
11h

2
22...h

2
NN ]T .

The definition of the MDC is

d2
m(wl) =

(Esh
′Twl)

2

wT
l V arrwl

. (3.45)

And the optimization problem is

maxwl
d2

m(wl)

s.t. wT
l wl = 1.

(3.46)

and letw′
l = V ar

−T
2

r|H1
h′. The optimal solution of equation (3.46) is

wlopt
=

V ar
− 1

2

r|H1
w′

l

‖V ar
− 1

2

r|H1
w′

l‖2

. (3.47)

Fig. 3.13 shows the comparison between the MDC method and the L2 distance method.

Consider a simple decision rule,r > t. In this decision rule, we can fix the value ofPf

and maximize the detection probability. In Fig. 3.13, the detection probability of the L2

distance method is little better than the detection probability of the MDC method under

the same false alarm probability. But in [12], the system model of the MDC method is in

the orthogonal channel. But L2 distance can also use not only in the orthogonal channel.

The L2 distance method is more general than the MDC method.

Fig. 3.14 shows the detection probability of 3 schemes, optimal power allocation,

optimal linear combination, and MDC. This simulation uses 2 secondary users and 2

receiving antennas in the fusion center. In this simulation, the decision criterion in the
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fusion center is the Neyman-Pearson detection. The performance of the optimal linear

combination is the best and the MDC is the worst. The optimal power allocation is the

best because it controls the power of secondary users. If one of secondary users has

lower sensing noise or receives a stronger signal from primary users, it will have more

transmitting power and the fusion center can be more sure which hypothesis is right. The

optimal linear combination only combines the received data, so it can’t have benefit on

the data directly. Therefore, the detection probability of the optimal linear combination is

worse than the detection probability of the optimal power allocation.

The MDC method also uses in the optimal linear combination, like L2 distance. But

comparing to L2 distance, the MDC method only uses variance and mean for the maxi-

mization, it’s worse than the L2 distance method in the simulation results.

Fig. 3.15 and Fig. 3.16 show that the simulated optimal detection probability and

the distance based detection probability. In this figure, we can know the distance based

detection probability will smaller than the real optimal detection probability. But the com-

putation complexity of the distance based detection method is much lower than finding

the optimal detection probability exhaustedly.
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Figure 3.13: MDC and L2 distance with fixed false alarm probability by the use of the

simple detection
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Figure 3.14: Comparison between optimal power allocation, L2 distance, and MDC by

the use of Neyman-Pearson detection
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Figure 3.15: Simulated optimal detection probability and distance based detection proba-

bility in optimal power allocation
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Figure 3.16: Simulated optimal detection probability and distance based detection proba-

bility in optimal linear combination

37



3.5 Summary

In this chapter, we discuss the optimal power allocation and the optimal linear combi-

nation. We adopt J-divergence as a performance matric in the optimal power allocation

and adopt L2 distance as a performance matric in the optimal linear combination. In the

optimal power allocation, the detection probability is better than the detection probability

in the equal power allocation. The detection probability of the optimal linear combi-

nation is better than the detection probability of the equal weighting combination, too.

If two schemes use the same decision rule, such as the Neyman-Pearson detection rule,

the detection probability of the optimal linear combination is worse than the detection

probability of the optimal power allocation. But as mentioned before, the optimal linear

combination is simpler than the optimal power allocation.
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Chapter 4

Censoring Scheme in Centralized

Detection

4.1 Introduction

In the cognitive environment, when secondary users transmit their observations to the

fusion center, they should reduce interference when primary users exists. Here we propose

a new method, censoring, to reduce the interference of primary users. Before secondary

users transmit their observations to the fusion center, they can judge their observations

whether the observations are worthy to transmit or not. For example, if the observation is

too small or too high, it may not be worth to transmit and the secondary users can keep

silence. In this chapter, we will discuss a censoring scheme.

The censoring scheme means that every secondary user doesn’t transmit all data they

sensing. In [22], the users transmit the log likelihood ratio (LLR) to the fusion center and

the fusion center uses received LLR to make a decision. But we don’t transmit the LLR to

the fusion center. Because every secondary user uses the energy detection method, it’s not

easy to have the distribution of the LLR of transmitting signal. Therefore, we consider

another simple method. For example, when the signal sensed by the secondary user is

great thanγ, the secondary user will transmit this signal to the fusion center. If the signal

is less thanγ, this secondary user will keep silent. Therefore, the distribution of the signal

transmitted by secondary users can be viewed as a truncated Gaussian distribution, like
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Figure 4.1: Truncated gaussian

in Fig. 4.1. In Fig. 4.1, when the observation is greater thanγ, this observation will be

transmitted. Like in chapter 3, here we discuss two schemes, the optimal power allocation

and the optimal linear combination.

4.2 Optimal Power Allocation

Here we still use the optimal power allocation to satisfy the power constraint. We still

have two objectives:

• Maximize the detection probability

• Satisfy the power constraint

When all secondary users transmit their observations to the fusion center at the same time,

they can not produce much interference on primary users and maximize the detection

probability.

4.2.1 System Model

Fig. 4.2 shows the system model of the optimal power allocation. For simplicity, it’s the

orthogonal MIMO channel between the fusion center and secondary users. In Fig. 4.1, the
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Figure 4.2: System model of censoring scheme

transmitting signal of every secondary user is a truncated Gaussian. If sensing signal is

greater thanγ, the secondary users will transmit it. By using moment generating function,

we can have the mean and the variance of the truncated Gaussian. Assume the distribution

of the signal of theith secondary user sensed isfti and its mean and variance areµti and

σ2
ti

. From Fig. 4.2, the truncated signal,ui, is added with a Gaussian noise,n. Therefore,

the received signal of fusion center is

a = HWu + n. (4.1)

Therefore, the distribution ofa is

faj
(x) =

∫ +∞

−∞
ftj (x − τ)fn(τ)dτ, (4.2)

whereftj is the distribution of a truncated Gaussian,fn is the distribution of noise received

by fusion center, andfaj
is the distribution received byjth antenna.

Because the equation (4.2) doesn’t have the closed form expression, we approximate

this distribution to the Gaussian distribution. Assume the mean and variance of the signal

sensed byith secondary user areµti andσ2
ti

. We calculate the moment generating function

of a truncated Gaussian random variable with thresholdγi. Q-function here is used for

calculating the probability when distribution is a Gaussian random variable, define as:

Q(γ) =

∫ ∞

γ

1√
2π

e(−x2

2
)dx. (4.3)
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The distribution of a truncated Gaussian with thresholdγ is














f(x) = 1√
2πσti

Q(
γi−µti

σti
)
e
(−

(x−µti
)2

2σ2
ti

)

, x ≥ γi

f(x) = 0, x < γi.

(4.4)

The moment generating function is

E[etx] =
∫ ∞
−∞ etxf(x)dx

=
∫ ∞

γi
etxf(x)dx

=
∫ ∞

γi
etx 1√

2πσti
Q(

γi−µti
σti

)
e
(−

(x−µti
)2

2σ2
ti

)

dx

= 1

Q(
γi−µti

σti
)

∫ ∞
γi−µti

et(τ+µti
) 1√

2πσti

e
(− (τ)2

2σ2
ti

)

dτ

= e
µti

t+
σ2

ti
t2

2

Q(
γi−µti

σti
)

∫ ∞
γi−µti

1√
2π

e
(− 1

2
)( τ2

σti
2 −2

σtitτ

σti
+σti

2t2) dτ
σti

= e
µtt+

σ2
ti

t2

2

Q(
γi−µti

σti
)

∫ ∞
γi−µti

1√
2π

e
(− 1

2
)( τ

σti
−σtit)2 dτ

σti

= e
µti

t+
σ2

ti
t2

2

Q(
γi−µti

σti
)

∫ ∞
γi−µti

σti
−σti

t

1√
2π

e(− 1
2
)z2

dz

=
Q(

γi−µti
σti

−σti
t)

Q(
γi−µti

σti
)

eµti
t+

σ2
ti

t2

2 ,

(4.5)

whereτ = x − µti andz = τ
σti

− σtit. From the above, the moment generating function

is

Mti(t) =
Q(γ′

i − σtit)

Q(γ′
i)

eµti
t+

σ2
ti

t2

2 , (4.6)

whereγ′
i =

γi−µti

σti

.

FromMti(t), the mean and the variance of the signal thatith secondary user transmit-

ting are

µ′
ti

= M ′
ti
(t)|t=0

=
σti√
2π

e−
(γ′i−σti

t)2

2

Q(γ′
i)

eµti
t+

σ2
ti

t2

2 |t=0

+
Q(γ′

i−σtit)

Q(γ′
i)

(µti + σ2
ti
t)eµti

t+
σ2

ti
t2

2 |t=0

=
σti√
2π

e
−

(γ′i)
2

2

Q(γ′
i)

+ µti

(4.7)
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and

M ′′
ti
(t)|t=0 =

σ2
ti√
2π

e−
(γ′i−σti

t)2

2

Q(γ′
i
)

eµti
t+

σ2
ti

t2

2 (γ′
i − σtit)|t=0

+
σti√
2π

e−
(γ′i−σti

t)2

2

Q(γ′
i)

eµti
t+

σ2
ti

t2

2 (µti + σ2
ti
t)|t=0

+

σ2
ti√
2π

e
−

(γ′i−σti
t)2

2

Q(γ′
i)

(µti + σ2
ti
t)eµti

t+
σ2

ti
t2

2 |t=0

+
Q(γ′

i−σtit)

Q(γ′
i)

(σ2
ti
)eµti

t+
σ2

ti
t2

2 |t=0

+
Q(γ′

i−σtit)

Q(γ′
i)

(µti + σ2
ti
t)eµti

t+
σ2

ti
t2

2 (µti + σ2
ti
t)|t=0

=

σ2
ti

γ′i√
2π

e
−

γ′2i
2

Q(γ′
i)

+
σti√
2π

e
−

γ′2i
2

Q(γ′
i)

µti +
σti√
2π

e
−

γ′2i
2

Q(γ′
i)

µti + σ2
ti

+ µ2
ti
.

(4.8)

Form equation (4.7) and equation (4.8), the variance is

σ′2
ti

= M ′′
ti
(t)|t=0 − (M ′

ti
(t)|t=0)

2

=
σ′2

ti
γ′

i√
2πQ(γ′

i)
e−

γ′2i
2 − σ2

ti

2πQ(γ′)2 e
−γ′2

i + σ2
ti
.

(4.9)

Therefore, the mean and the variance of transmitting signal ofith secondary user are

µi|Hj ,ui
=







µ′
ti|Hj

, underui 6= 0, Hj

0, underui = 0, Hj

(4.10)

and

σ2
i|Hj ,ui

=







σ′2
ti|Hj

, underui 6= 0, Hj

0, underui = 0, Hj.
(4.11)

The receiving signal ofith antenna of fusion center isai = hiwiui + n. The noise

distribution is a Gaussian distribution,N(0, σ2
n).

From the equation (4.10) and the equation (4.11), the mean and the variance of antenna

ai underHj hypothesis are

µai|Hj,ui
=







hiwiµ
′
ti|Hj

, underui 6= 0, Hj

0, underui = 0, Hj

(4.12)

and

σ2
ai|Hj ,ui

=







h2
i w

2
i σ

′2
ti|Hj

+ σ2
n, underui 6= 0, Hj

σ2
n, underui = 0, Hj.

(4.13)

From the above equation, we can have the approximated distribution ofa.

Fig. 4.3(a) is the noise distribution and Fig. 4.3(b) is the truncated distribution. In

Fig 4.3(c), the red line is real distribution ofai and the blue line is the approximation
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Figure 4.3: Approximation of truncated Gaussian
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of ai distribution. In Fig. 4.3(c), the approximated distribution ofa is close to the real

distribution.

Here we useui to present the data ofith secondary user transmitting to the fusion

center. Whenu 6= 0, it means the secondary users send the data to the fusion center.

Whenu = 0, it means the secondary user doesn’t send the data to the fusion center.

Therefore, there is2N combinations ofu. Assume the probability thatith secondary user

sends data to the fusion center isPsendi,j andj means that it’s under hypothesisHj. The

equation ofp(uk|Hj) is

p(uk|Hj) =
∏

um 6=0

Psendm,j

∏

ut=0

(1 − Psendt,j
), (4.14)

wherek = 1, 2, ..., 2N andk is kth combination.

Therefore, the distribution ofa under different hypothesis is

p(a|Hi) =
∑

k

p(a|uk, Hi)p(uk|Hi). (4.15)

Obviously,p(a|Hi) is a Gaussian mixture model(GMM) because
∑

k p(uk|Hi) = 1

andp(a|uk, Hi) is a Gaussian random variable. The likelihood ratio is

L(a) = p(a|H1)
p(a|H0)

=
∑

k p(a|uk,Hi)p(uk|H1)
∑

k p(a|uk,Hi)p(uk|H0)
.

(4.16)

Obviously, solving this problem byL(a) is hard. We still need the distance measure to

solve the Gaussian mixture model problem.

4.2.2 GMM J-divergence

Here we consider the optimal power allocation. But it doesn’t have the closed-form ex-

pression of J-divergence in the Gaussian mixture model(GMM). Therefore, we must mod-

ify the equation of J-divergence in GMM.

Consider two different Gaussian mixture models(GMM),

∑

i

αifi = αT f , (4.17)
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f1 f2 fN 1 fN

g1 g2 gN 1 gN

Figure 4.4: Structure of GMM J-divergence

whereα = [α1, α2, ..., αN ]T andf = [f1, f2, ..., fN ]T

and
∑

j

βjgj = βTg, (4.18)

whereβ = [β1, β2, ..., βN ]T andg = [g1, g2, ..., gN ]T .

Define J-divergence in the GMM. As Fig. 4.4 showing, the structure of GMM J-

divergence is
∑

i

∑

j

αiβjJ(fi, gj). (4.19)

In Fig. 4.4, we can know the GMM J-divergence adds the J-divergence of everyfi andgi

together.
∑

i αifi is equal to
∑

i p(a|ui, H1)p(ui|H1) and
∑

j βjgi is equal to
∑

j p(a|uj , H0)p(uj|H0). Therefore, we can rewrite equation

JGMM(p(a|H1), p(a|H0)) =
∑

i

∑

j

p(ui|H1)p(uj |H0)J(p(a|ui, H1), p(a|uj , H0)).

(4.20)
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The optimization problem becomes to

maxW JGMM(p(a|H1), p(a|H0))

s.t. SINRp ≥ SINRt.
(4.21)

Obviously ,this is the linear combination of all J-divergence. We can also use the opti-

mization method to solve this problem.

4.2.3 GMM L2 Distance

L2 distance can also use the in optimal power allocation. From equation (4.15), we know

thatp(a|Hi) is a Gaussian mixture model. The L2 distance compares the distance between

p(a|H1) andp(a|H0). The equation of GMM L2 distance is

DL2(p(a|H1), p(a|H0)) =
∫

(p(a|H1) − p(a|H0))
2dx

=
∫

(
∑

i p(ui|H1)p(a|ui, H1) −
∑

j p(uj |H0)p(a|uj , H0))
2dx

=
∑

i

∑

j p(ui|H1)p(uj|H1)
∫

p(a|ui, H1)p(a|uj, H1)dx

−2
∑

i

∑

j p(ui|H1)p(uj |H0)
∫

p(a|ui, H1)p(a|uj, H0)dx

+
∑

i

∑

j p(ui|H0)p(uj|H0)
∫

p(a|ui, H0)p(a|uj , H0)dx

= Pu,H1

TMa
11Pu,H1

−2Pu,H1

TMa
10Pu,H0

+Pu,H0

TMa
00Pu,H0

,

(4.22)

where
Pu,H1

= [p(u1|H1), p(u2|H1), ..., p(uN |H1)]
T

Pu,H0
= [p(u1|H0), p(u2|H0), ..., p(uN |H0)]

T

Ma
11
ij =

∫

p(a|ui, H1)p(a|uj , H1)dx

Ma
10
ij =

∫

p(a|ui, H1)p(a|uj , H0)dx

Ma
00
ij =

∫

p(a|ui, H0)p(a|uj , H0)dx

and

Ma
mn
ij =

∫

p(a|ui, Hm)p(a|uj , Hn)

= 1√
det(2π(Σaim

+Σajn
))
e−

1
2
(µaim

−µajn
)T (Σaim

+Σajn
)−1(µaim

−µajn
),

(4.23)
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where

Σaim
=

















w2
1h

2
1σ

2
1|Hm,ui

+ σ2
n 0 ... 0

0 w2
1h

2
1σ

2
2|Hm,ui

+ σ2
n ... 0

...
...

. . .
...

0 0 ... w2
1h

2
1σ

2
N |Hm,ui

+ σ2
n

















µaim
=

















w1h1µ1|Hm,ui
0 ... 0

0 w1h1µ2|Hm,ui
... 0

...
...

. . .
...

0 0 ... w1h1µN |Hm,ui
.

















Let wi ≥ 0 for i = 0, 1, 2, ..., N . Because of the orthogonal channel, we can rewrite

the equation (4.23) to:

Ma
mn
ij = (

∏

k 2π(w2
kh

2
kσ

2
k|Hm,ui

+ σ2
n + w2

kh
2
kσ

2
k|Hn,uj

+ σ2
n))−

1
2

× exp(−1
2

∑

k

w2
k
h2

k
(µk|Hm,ui

−µk|Hn,uj
)2

w2
k
h2

k
σ2

k|Hm,ui
+σ2

n+w2
k
h2

k
σ2

k|Hn,uj
+σ2

n
)

= (
∏

k 2π(w2
kh

2
kσ

2
k|Hm,ui

+ w2
kh

2
kσ

2
k|Hn,uj

+ 2σ2
n))−

1
2

× exp(−1
2

∑

k

w2
i h2

i (µk|Hm,ui
−µk|Hn,uj

)2

w2
k
h2

k
(σ2

k|Hm,ui
+σ2

k|Hn,uj
)+2σ2

n
).

(4.24)

For simplicity, we consider 2 receiving antennas and 2 secondary users.

4.2.4 2x2 Case

Considering two special cases,wi are all equal to zero andwi are all very big.

Whenwi are all equal to zero, the equation (4.24) becomes to

Ma
mn
ij = (

∏2
k 2π(w2

kh
2
kσ

2
k|Hm,ui

+ w2
kh

2
kσ

2
k|Hn,uj

+ 2σ2
n))−

1
2 exp(−1

2

∑

k

w2
k
h2

k
(µk|Hm,ui

−µk|Hn,uj
)2

w2
k
h2

k
(σ2

k|Hm,ui
+σ2

k|Hn,uj
)+2σ2

n
)

= (
∏2

k π(2σ2
n))−

1
2 .

(4.25)

Every Ma
mn
ij is a constant whenwi are all equal to zero. Therefore, the L2 distance
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becomes to

DL2(p(a|H1), p(a|H0)) =
∑

i

∑

j p(ui|H1)p(uj |H1)Ma
11
ij

−2
∑

i

∑

j p(ui|H1)p(uj |H0)Ma
10
ij

+
∑

i

∑

j p(ui|H0)p(uj |H0)Ma
00
ij

=
∑

i

∑

j p(ui|H1)p(uj |H1)(
∏

k 2π(2σ2
n))−

1
2

−2
∑

i

∑

j p(ui|H1)p(uj |H0)(
∏

k 2π(2σ2
n))−

1
2

+
∑

i

∑

j p(ui|H0)p(uj |H0)(
∏

k 2π(2σ2
n))−

1
2 .

(4.26)

And we know
∑

i

∑

j p(ui|H1)p(uj |H1) = 1
∑

i

∑

j p(ui|H1)p(uj |H0) = 1
∑

i

∑

j p(ui|H0)p(uj |H0) = 1.

(4.27)

From equation (4.26) and equation (4.27), theDL2(p(a|H1), p(a|H0)) are equal to0 when

wi are all equal to zero.

Whenw1 andw2 are smaller thanσ2
n, we can rewrite the equation (4.24) as

Ma
mn
ij = (

∏2
k 2π(w2

kh
2
kσ

2
k|Hm,ui

+ w2
kh

2
kσ

2
k|Hn,uj

+ 2σ2
n))−

1
2 exp(−1

2

∑

k

w2
k
h2

k
(µk|Hm,ui

−µk|Hn,uj
)2

w2
k
h2

k
(σ2

k|Hm,ui
+σ2

k|Hn,uj
)+2σ2

n
)

= (
∏2

k 2π(2σ2
n))−

1
2 exp(−1

2

∑

k

w2
k
h2

k
(µk|Hm,ui

−µk|Hn,uj
)2

2σ2
n

).

(4.28)
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Therefore,

dDL2(p(a|H1),p(a|H0))
dwl

=
∑

i

∑

j p(ui|H1)p(uj |H1)
dMa

11
ij

dwl

−2
∑

i

∑

j p(ui|H1)p(uj|H0)
dMa

10
ij

dwl

+
∑

i

∑

j p(ui|H0)p(uj |H0)
dMa

00
ij

dwl

=
∑

i

∑

j p(ui|H1)p(uj |H1)(
∏2

k 4πσ2
n)−

1
2 e

(− 1
2

∑

k

w2
k

h2
k
(µk|Hm,ui

−µk|Hn,uj
)2

2σ2
n

)
(−wl

h2
l
(µl|Hm,ui

−µl|Hn,uj
)2

2σ2
n

)

−2
∑

i

∑

j p(ui|H1)p(uj|H0)(
∏2

k 4πσ2
n)−

1
2 e

(− 1
2

∑

k

w2
k

h2
k
(µk|Hm,ui

−µk|Hn,uj
)2

2σ2
n

)
(−wl

h2
l
(µl|Hm,ui

−µl|Hn,uj
)2

2σ2
n

)

+
∑

i

∑

j p(ui|H0)p(uj |H0)(
∏2

k 4πσ2
n)−

1
2 e

(− 1
2

∑

k

w2
k

h2
k
(µk|Hm,ui

−µk|Hn,uj
)2

2σ2
n

)
(−wl

h2
l
(µl|Hm,ui

−µl|Hn,uj
)2

2σ2
n

)

= −wl(
∑

i

∑

j p(ui|H1)p(uj |H1)(
∏2

k 4πσ2
n)−

1
2 e

(− 1
2

∑

k

w2
k

h2
k
(µk|Hm,ui

−µk|Hn,uj
)2

2σ2
n

) h2
l
(µl|Hm,ui

−µl|Hn,uj
)2

2σ2
n

−2
∑

i

∑

j p(ui|H1)p(uj|H0)(
∏2

k 4πσ2
n)−

1
2 e

(− 1
2

∑

k

w2
k

h2
k
(µk|Hm,ui

−µk|Hn,uj
)2

2σ2
n

) h2
l
(µl|Hm,ui

−µl|Hn,uj
)2

2σ2
n

+
∑

i

∑

j p(ui|H0)p(uj |H0)(
∏2

k 4πσ2
n)−

1
2 e

(− 1
2

∑

k

w2
k

h2
k
(µk|Hm,ui

−µk|Hn,uj
)2

2σ2
n

) h2
l
(µl|Hm,ui

−µl|Hn,uj
)2

2σ2
n

)

= −wlC.

(4.29)

In the equation (4.29), it’s easy to knowC ≤ 0. Because there are many terms

becomes to 0 indMa11
dwl

andMa
00

dwl
including diagonal terms. But most terms inMa

10

dwl
are not

zero. But when allwi → 0, DL2(p(a|H1), p(a|H0)) must be an increasing function. If it’s

not an increasing function,DL2(p(a|H1), p(a|H0)) will be negative and it’s impossible.

Therefore,DL2(p(a|H1), p(a|H0)) is an increasing function when allwi approach to zero.

Now considerw2
kh

2
kσ

2
k ≫ σ2

n. The table (4.1) shows the structure ofMa
11
ij , Ma

10
ij , and

Ma
00
ij

I1I2 11 10 01 00

11 o o o o

10 o x o x

01 o o x x

00 o x x x

Table 4.1: Table ofI1 andI2
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Whenw2
kh

2
kσ

2
k ≫ σ2

n, we can write the following equation.

Ma
mn
ij ≈ (

∏

k 2π(w2
kh

2
kσ

2
k|Hm,ui

+ w2
kh

2
kσ

2
k|Hn,uj

))−
1
2 exp(−1

2

∑

k

w2
k
h2

k
(µk|Hm,ui

−µk|Hn,uj
)2

w2
k
h2

k
(σ2

k|Hm,ui
+σ2

k|Hn,uj
)
)

= (
∏

k w−1
k )(

∏

k 2πh2
k(σ

2
k|Hm,ui

+ σ2
k|Hn,uj

)))−
1
2 exp(−1

2

∑

k

(µk|Hm,ui
−µk|Hn,uj

)2

σ2
k|Hm,ui

+σ2
k|Hn,uj

)

= (
∏

k w−1
k )Ma

′mn
ij ,

(4.30)

whereMa
′mn
ij = (

∏

k 2πh2
k(σ

2
k|Hm,ui

+ σ2
k|Hn,uj

)))−
1
2 exp(−1

2

∑

k

(µk|Hm,ui
−µk|Hn,uj

)2

σ2
k|Hm,ui

+σ2
k|Hn,uj

)

In table (4.1),Im = 1 representsum 6= 0 andIm = 0 representsum = 0. ”o” means

we can use equation (4.30) without any problem and ”x” meansσ2
k|Hm,ui

andσ2
k|Hn,uj

are

both equal to zero. Whenσ2
k|Hm,ui

andσ2
k|Hn,uj

are both equal to zero, we can’t eliminate

σ2
n in equation (4.30). Now consider an example,Ma

11
44. The value ofMa

11
44 is

Ma
11
44 = (

∏2
k 2πw2

kh
2
k(σ

2
k|H1,u4

+ σ2
k|H1,u4

) + 2σ2
n)−

1
2 exp(−1

2

∑2
k

w2
k
h2

k
(µk|H1,u4

−µk|H1,u4
)2

w2
k
h2

k
(σ2

k|H1,u4
+σ2

k|H1,u4
)+2σ2

n
).

(4.31)

But from the table (4.1), we know thatσ2
k|H1,u4

andµk|H1,u4
are all equal to zero. Then

the equation (4.31) becomes to

Ma
11
44 = (

∏2
k 2π(2σ2

n))−
1
2 . (4.32)

Ma
11
44 is a constant .

Then we considerMa
11
24. σ2

2|H1,u2
,σ2

1|H1,u4
, andσ2

2|H1,u4
are equal to zero butσ2

1|H1,u2

is not equal to zero. The value ofMa
11
24 is

Ma
11
24 = (4π2(w2

1h
2
1σ

2
1|H1,u2

+ 2σ2
n)2σ2

n)−
1
2 exp(−1

2

w2
1h2

1µ2
1|H1,u2

w12h2
1σ2

1|H1,u2
+2σ2

n
)

= (4π2(w2
1h

2
1σ

2
1|H1,u2

)2σ2
n)−

1
2 exp(−1

2

w2
1h2

1µ2
1|H1,u2

w2
i h2

1σ2
1|H1,u2

)

= (4π2(w2
1h

2
1σ

2
1|H1,u2

)2σ2
n)−

1
2 exp(−1

2

µ2
1|1,u2

σ2
1|1,u2

)

= w−1
1 (4π2h2

1σ
2
1|H1,u2

2σ2
n)−

1
2 exp(−1

2

µ2
1|H1,u2

σ2
1|H1,u2

)

= w−1
1 Ma

′11
24 .

(4.33)

Then we considerMa
34
11. σ2

1|H1,u3
,σ2

1|H1,u4
, andσ2

2|H1,u4
are equal to zero butσ2

2|H1,u3
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is not equal to zero. The value ofMa
11
24 is

Ma
11
34 = (4π2(w2

2h
2
2σ

2
2|H1,u3

+ 2σ2
n)2σ2

n)−
1
2 exp(−1

2

w2
2h2

2µ3
2|H1,u2

w12h2
1σ2

2|H1,u3
+2σ2

n
)

= (4π2(w2
2h

2
2σ

2
2|H1,u3

)2σ2
n)−

1
2 exp(−1

2

w2
2h2

2µ2
2|H1,u3

w2
i h2

1σ2
2|H1,u3

)

= (4π2(w2
2h

2
2σ

2
2|H1,u3

)2σ2
n)−

1
2 exp(−1

2

µ2
2|H1,u3

σ2
2|H1,u3

)

= w−1
2 (4π2h2

2σ
2
2|H1,u3

2σ2
n)−

1
2 exp(−1

2

µ2
2|H1,u3

σ2
2|H1,u3

)

= w−1
2 Ma

′11
34 .

(4.34)

From the equation (4.30), (4.32), (4.33), and (4.34), we can separate allMa
mn
ij into

four sets.S1 means the1st secondary user and the2nd secondary user both transmit signal

to the fusion center.S2 means only the1st secondary user transmits signal to the fusion

center but the2nd secondary user keeps silent.S3 means only the2st secondary user

transmits signal to the fusion center but the1nd secondary user keeps silent.S4 means

both the1st secondary user and the2nd secondary user keep silent.

When allwk → ∞, from the above equation, allMa
mn
ij in S1, S2, andS3 are equal to

zero. For the 2x2 case, the equation (4.30) becomes to

DL2(p(a|H1), p(a|H0))

= p(u4|H1)p(u4|H1)Ma
11
44 − 2p(u4|H1)p(u4|H0)Ma

10
44 + p(u4|H0)p(u4|H0)Ma

00
44

= (
∏2

k 2π(2σ2
n))−

1
2 (p4(u|H1) − p4(u|H0))

2.

(4.35)

From the above equation, when allwi → ∞, DL2(p(a|H1), p(a|H0)) will be a constant.
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But whenw2
kh

2
kσ

2
k|Hm,ui

≫ σ2
n, the equation of L2 distance becomes to

DL2(p(a|H1), p(a|H0))

=
∑

i

∑

j p(ui|H1)p(uj |H1)Ma
11
ij

−2
∑

i

∑

j p(ui|H1)p(uj|H0)Ma
10
ij

+
∑

i

∑

j p(ui|H0)p(uj |H0)Ma
00
ij

≃ w−1
1 w−1

2 (
∑

ij∈S1
p(ui|H1)p(uj |H1)M

′
a

11
ij

−2p(ui|H1)p(uj |H0)M
′
a

10
ij

+p(ui|H0)p(uj|H0)M
′
a

00
ij )

+w−1
1 (

∑

ij∈S2
p(ui|H1)p(uj |H1)M

′
a

11
ij

−2p(ui|H1)p(uj |H0)M
′
a

10
ij

+p(ui|H0)p(uj|H0)M
′
a

00
ij )

+w−1
2 (

∑

ij∈S3
p(ui|H1)p(uj |H1)M

′
a

11
ij

−2p(ui|H1)p(uj |H0)M
′
a

10
ij

+p(ui|H0)p(uj|H0)M
′
a

00
ij )

+(
∑

ij∈S4
p(ui|H1)p(uj |H1)M

′
a

11
ij

−2p(ui|H1)p(uj |H0)M
′
a

10
ij

+p(ui|H0)p(uj|H0)M
′
a

00
ij ).

(4.36)

Let

C1 =
∑

ij∈S1
p(ui|H1)p(uj|H1)M

′
a

11
ij − 2p(ui|H1)p(uj|H0)M

′
a

10
ij + p(ui|H0)p(uj |H0)M

′
a

00
ij

C2 =
∑

ij∈S2
p(ui|H1)p(uj|H1)M

′
a

11
ij − 2p(ui|H1)p(uj|H0)M

′
a

10
ij + p(ui|H0)p(uj |H0)M

′
a

00
ij

C3 =
∑

ij∈S3
p(ui|H1)p(uj|H1)M

′
a

11
ij − 2p(ui|H1)p(uj|H0)M

′
a

10
ij + p(ui|H0)p(uj |H0)M

′
a

00
ij

C4 =
∑

ij∈S4
p(ui|H1)p(uj|H1)M

′
a

11
ij − 2p(ui|H1)p(uj|H0)M

′
a

10
ij + p(ui|H0)p(uj |H0)M

′
a

00
ij .

(4.37)

The equation (4.36) becomes to

DL2(p(a|H1), p(a|H0)) ≃ w−1
1 w−1

2 C1 + w−1
1 C2 + w−1

2 C3 + C4. (4.38)

From the equation (4.38), we can have the following equations.

dDL2

dw1
= −w−2

1 w−1
2 C1 − w−2

1 C2 = −w−2
1 (w−1

2 C1 + C2) (4.39)

and
dD2

L2

d2w1
= 2w−3

1 w−1
2 C1 + 2w−3

1 C2 = 2w−3
1 (w−1

2 C1 + C2). (4.40)
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From the equation (4.37), we can know the value ofCi is composed of many integra-

tions of two Gaussian distributions. When two Gaussian distributions are the same, the

value of the integration will be maximum. The diagonal terms inMa
11
ij andMa

00
ij will

dominate the value ofC1, C2, C3, andC4 and they are all larger than zero. Therefore, we

can know thatC1, C2, C3, andC4 are greater than zero. IfC1 ≥ 0, C2 ≥ 0, andC3 ≥ 0 ,

the equation (4.38) is a decreasing function and it is a convex problem.
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Figure 4.5: L2 distance optimal diagram

From the above discussion, we can know:

• When allwk approach to0, DL2(p(a|H1), p(a|H0)) is a increasing function

• When allw2
kh

2
kσ

2
k|Hm,ui

≫ σ2
n, DL2(p(a|H1), p(a|H0)) is a decreasing function

Therefore, the L2 distance may have one optimal solution. Like in Fig. 4.5, whenw1 is

small, the value of L2 distance approaches 0. But whenw1 → ∞, the value of L2 distance

is close to a constant. In Fig. 4.5, it only has one optimal solution.
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4.3 Optimal Linear Combination

4.3.1 System Model

The system model of the optimal linear combination is like in the chapter 3. But here

we still use the orthogonal channel and approximate the convolution of the truncated

Gaussian distribution and the Gaussian distribution into the Gaussian distribution. Fig. 4.6

shows the system model.

In the optimal linear combination, we combine the signal received by every antenna

with weighting factors, like in Fig. 4.6. The signal which we want to detect becomes to

a =
√

gHu + n, (4.41)

wherea = [a1, a2, ..., aM ]T andH = diag([h1, h2, ..., hN ]).
√

g is the power control and

it is a constant. The power summation of all secondary users can not exceedPc. The

value ofg is

g

N
∑

i=1

h2
piPsi = Pc. (4.42)

The value ofPc can be calculated by the target SINR.

From the above equation, we can calculate the value ofg. But like in chapter 3,

it’s not easy to optimize the detection probability. Here we still use L2 distance as the

performance matric.
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Figure 4.6: System model of censoring scheme of optimal linear combination
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4.3.2 GMM L2 Distance

The signal of every antenna received is the GMM distribution. First of all, consider the

signal received byith antenna,ai. The distribution of the signal received byai is

p(ai|Hj) =
∑2

i=1 p(ai|ui, Hj)p(ui|Hj)

= Psendi,j
p(ai|ui 6= 0, Hj) + (1 − Psendi,j

)p(ai|ui = 0, Hj),
(4.43)

wherej = 0, 1 andi = 1, 2, ..., N . p(ai|ui 6= 0, Hj) andp(ai|ui = 0, Hj) are Gaussian

distributions. Therefore,p(ai|Hj) is also GMM.

The equation of L2 distance in GMM is
∫

(wT
l PaH1

− wT
l PaH0

)2dx, (4.44)

wherewl = [wl1 , wl2, ..., wlN ]T andPaHj
= [p(a1|Hj), p(a2|Hj), ..., p(aN |Hj)]

T .

The equation (4.44) becomes to

DL2(w
T
l PaH1

,wT
l PaH0

) =
∫

(wT
l PaH1

− wT
l PaH0

)2dx

=
∫

[(wT
l PaH1

)2 − 2wT
l PaH1

wT
l PaH0

+ (wT
l PaH0

)2]dx

=
∑

i

∑

j wliwlj

∫

p(ai|H1)p(aj |H1)dx

−2
∑

i

∑

j wliwlj

∫

p(ai|H1)p(aj|H0)dx

+
∑

i

∑

j wliwlj

∫

p(ai|H0)p(aj |H0)dx.

(4.45)

The integration of two Gaussian mixture models is

C =
∫

(
∑

i αifi)(
∑

j βjgj)dx

=
∫

∑

i

∑

j αifiβjgjdx

=
∑

i

∑

j

∫

αifiβjgjdx,

(4.46)

where
∑

i αifi and
∑

j βjgj are Gaussian mixture models.

From the equation (4.46), the value of
∫

p(ai|Hm)p(aj |Hn)dx is

∫

p(ai|Hm)p(aj|Hn) =
∫

(
∑2

i=1 p(ai|ui, Hm)p(ui|Hm))(
∑2

j=1 p(aj |uj, Hn)p(uj|Hn))dx

=
∫

∑2
i=1

∑2
j=1 p(ai|ui, Hm)p(ui|Hm)p(aj |uj, Hn)p(uj|Hn)dx

=
∑2

i=1

∑2
j=1

∫

p(ai|ui, Hm)p(ui|Hm)p(aj |uj, Hn)p(uj|Hn)dx

=
∑2

i=1

∑2
j=1 p(ui|Hm)p(uj|Hn)

∫

p(ai|ui, Hm)p(aj|uj, Hn)dx.

(4.47)
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From the equation (4.47), we can have the value of
∫

p(ai|Hm)p(aj|Hn).

Like in chapter 3, let

MGMM
11
ij =

∫

p(ai|H1)p(aj |H1)dx

MGMM
10
ij =

∫

p(ai|H1)p(aj |H0)dx

MGMM
00
ij =

∫

p(ai|H0)p(aj |H0)dx.

(4.48)

Therefore, the equation (4.45) becomes to

DL2(w
T
l PaH1

,wT
l PaH0

) =
∑

i

∑

j wliwljMGMM
11
ij − 2

∑

i

∑

j wliwljMGMM
10
ij

+
∑

i

∑

j wliwljMGMM
00
ij

= wT
l MGMM

11wl − 2wT
l MGMM

10wl + wT
l MGMM

00wl

= wT
l (MGMM

11 − 2MGMM
10 + MGMM

00)wl.

(4.49)

The optimization problem is

maxwl
DL2(w

T
l PaH1

,wT
l PaH0

) = wT
l (MGMM

11 − 2MGMM
10 + MGMM

00)wl

s.t. wli ≥ 0, i = 1, 2, ..., N

wT
l wl = 1.

(4.50)

This problem can be solved by the active set method.

4.4 Simulation Result

In the following simulation results, they have 2 secondary users and 2 receiving antennas.

The SNR of the primary user is 5. For convenience, we set the transmitting probability

of all secondary users is 0.3 underH0 hypothesis. The MIMO channel and sensing noise

are all random. Here we still use Neyman-Pearson detection in the fusion center and the

false alarm probability is 0.4.

4.4.1 Optimal Power Allocation

Fig. 4.7(a) and Fig. 4.7(b) show the simulated GMM J-divergence and detection proba-

bility in the optimal power allocation and the equal power allocation. In Fig. 4.7(a), when
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the target SINR is high, the value of GMM J-divergence will be low. And in Fig. 4.7(b)

shows the detection probability in the optimal power allocation and the equal power al-

location. In Fig. 4.7(b), when the target SINR is low, the detection probability will be

high. And the detection probability of the optimal power allocation is much better than

the equal power allocation. Fig. 4.7(a) and Fig. 4.7(b) can prove the GMM J-divergence

can be viewed as a performance matric for optimizing the detection probability.

Fig. 4.8(a) and Fig. 4.8(b) show the simulated GMM L2 distance and detection proba-

bility in the optimal power allocation and the equal power allocation. In Fig. 4.8(a), when

the target SINR is high , the value of GMM L2 distance will be low. And the Fig. 4.8(b)

shows the detection probability of GMM L2 distance in optimal power allocation. In

Fig. 4.8(b), when the target SINR is low, the detection probability will be high. And the

detection probability of the optimal power allocation is much better than the equal power

allocation. Fig. 4.8(a) and Fig. 4.8(b) can prove the GMM L2 distance can be viewed as

a performance matric for maximizing the detection probability.

4.4.2 Optimal Linear Combination

Fig. 4.9(a) shows the optimal linear combination by the use of GMM L2 distance. When

target SINR is high , the value of GMM L2 distance will be low. And Fig. 4.9(b) shows the

detection probability of GMM in the optimal linear combination and the equal weighting

combination. In Fig. 4.9(b), when the target SINR is low, the detection probability will be

high. And the detection probability in the optimal linear combination is better than in the

equal weighting combination. Comparing two figures can prove the GMM L2 distance

can be viewed as a performance matric in the optimal linear combination.

4.4.3 Comparison

Fig. 4.10 shows that the detection probability of the censoring scheme is better than the

non-censoring scheme in the optimal power allocation. But the GMM L2 method is a lit-

tle better than the GMM J-divergence method. In Fig. 4.12(a), the interference of primary

users by the use of the censoring method is lower than by the use of non-censoring. From
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(a) GMM J-divergence of optimal power allocation and equal power allocation
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Figure 4.7: The GMM J-divergence and detection probability of optimal power allocation

censoring scheme
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(b) Detection probability of L2 distnance of optimal power allocation

Figure 4.8: The GMM L2 distance and detection probability of optimal power allocation

censoring scheme
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(b) Detection probability

Figure 4.9: The L2 distance and detection probability of optimal linear combination cen-

soring scheme
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Fig. 4.10 and Fig. 4.12(a), we can know that the censoring scheme has lower interference

and higher detection probability. In Fig. 4.10, the detection probability of L2 distance is

greater than the detection probability of GMM j-divergence. But in Fig. 4.12(a), the inter-

ference of GMM L2 distance is little higher than the interference of GMM J-divergence.

Therefore, GMM L2 distance has the better detection probability and produces the lower

interference in the optimal power allocation. The GMM L2 distance method is better than

the GMM J-divergence method.

Fig. 4.11 shows that the detection probability of the censoring scheme is also bet-

ter than the non-censoring scheme in the optimal linear combination. Like in the optimal

power allocation scheme, the secondary users only transmit the informative data to the fu-

sion center. And as we mentioned before, the censoring scheme will keep silent when the

signal is not informative enough. Therefore, the received interference of the primary users

in the censoring scheme will be little lower than the interference in the non-censoring

scheme. Fig. 4.12(b) shows this result.

In [19], it uses the distributed detection in the MIMO channel in the optimal power

allocation and it’s also a censoring scheme. In this system, every user makes his own

decision and transmits this decision to the fusion center. In this paper, the secondary user

transmits ”1” when this user decides that it’s underH1 and keeps silent when this user

decides that it’s underH0. We let the transmitting probability of the proposed scheme

is equal to the transmitting probability of the distributed detection and have the same

constraint. And in [19], it approximates the GMM into the Gaussian distribution in the

distributed detection.

In Fig. 4.13, it shows the comparison between the distributed detection and the our

proposed censoring scheme. In this figure, the proposed scheme is better than the dis-

tributed scheme. In the distributed detection, it quantizes the observation and lose the

information. Therefore, the detection probability of the proposed scheme will be better.
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Figure 4.10: Comparison between censoring and non-censoring in the optimal power

allocation
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Figure 4.11: Comparison between censoring and non-censoring in the optimal linear com-

bination
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(a) The interference of the primary user in optimal power allocation

−4 −3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Target SINR

T
he

 in
te

rf
er

en
ce

 o
f p

rim
ar

y 
us

er
s

 

 
Non censoring
Optimal linear combination

(b) The interference of the primary user in optimal linear combination

Figure 4.12: Comparison between the power of censoring scheme and the power of non-

censoring scheme
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Figure 4.13: Comparison between distributed scheme and proposed scheme

4.5 Summary

In this chapter, we use the censoring scheme to reduce the average interference of the

primary users. The censoring scheme is that every secondary user transmits the obser-

vation with enough information to the fusion center or keeps silent. The distribution of

transmitting signal is the truncated Gaussian. Because the convolution of the truncated

Gaussian distribution and a Gaussian distribution doesn’t have the closed-form expres-

sion, we use the Gaussian distribution to approximate it. We use the GMM J-divergence

and the L2 distance as the performance metrics in the optimal linear combination. In

the optimal linear combination, we still use the L2 distance. In simulation results of the

optimal power allocation and the optimal linear combination, the detection probability of

the censoring scheme is better than the detection probability of the non-censoring scheme

and the interference of primary users is also lower than non-censoring scheme.
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Chapter 5

Conclusion and Future Work

In this thesis, we discuss two different schemes, the optimal power allocation and the op-

timal linear combination, by the use of the cooperative spectrum sensing in the cognitive

radio network. In part 1, we adopt the centralized detection in the fusion center. We focus

on maximizing the detection probability and satisfying the target SINR of primary users.

Because the LLR doesn’t have a closed-form expression of the detection probability, we

use distance measures to optimize the detection probability. In this thesis, we use two

distance measures, J-divergence and L2 distance, to maximize the detection probability.

In simulation results, we can know that the detection probability of the optimal power

allocation is better than the equal power allocation and the detection probability of the

optimal linear combination is better than the equal weighting combination. In part 2,

we propose another method, the censoring method, to reduce the average interference of

primary users but has better detection probability than non-censoring scheme.

In this thesis, we assume that the channel and the power of primary users are known.

But in practical system, they may not be known by the fusion center or secondary users.

We could estimate these parameters and observe the affect of the system performance.

And in censoring scheme, we don’t discuss the affect of transmitting thresholds,γi, of

secondary users. Obviously, the thresholds will affect the detection probability in cen-

soring scheme. We can try to find the relation between the thresholds and the detection

probability.
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