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Abstract

In this thesis, we discuss «the problem of collaborative spectrum sensing in
cognitive radio networks from the perspective  of “distance measures between
probability distributions. The rationale behind using the distance measures as the
performance metric lies on the difficulty of having a closed-form expression for the
log likelihood ratio. We adopt the’distance measure as the metric to design the

decision criterion in each of the secondary users in the cooperative environment.

The thesis is mainly consisted of two parts. In the first part, we consider the case
of centralized detection in which every secondary user sends un-quantized signal to
the fusion center for the ultimate detection of the spectrum hole. We use two distance
measures, J-divergence and L2 distance, to design the local decision rule. In particular,
we attempt to devise a power allocation scheme among secondary users, as well as a
combination scheme to gather received signals in the fusion center, for maximizing
the probability of detection of a spectrum hole while keeping the interference

observed by the primary user within a predetermined level. The analytical and



simulated results show that we can improve the detection probability by optimizing
the distance measures as compared to the equal power allocation and equal weight
combination.

In the second part, we consider the case of decentralized detection with censoring.
The censoring means the secondary users only transmit informative observations to
the fusion center or keep silent. In this case, it’s also hard to maximize detection
probability because of the underlying Gaussian mixture model (GMM). We again use
the distance measures as the performance metric. Simulation results show that the
detection probability of the censoring scheme is better than that of the non-censoring

approach.
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Chapter 1

Introduction

Cognitive radio has been viewed as a promising technology in next generation wireless
communication networks striving for a better utilization of the wireless spectrum. In many
countries, most of frequency bands are assigned to different wireless services. But some
frequency bands are under-utilized.In [1], it has been shown that 70% of the allocated
spectrum in the U.S. are not efficiently utilized. If we allow secondary users (unlicensed
users) to use the frequency band of primary users (licensed users) when the primary users
are idle, the utilization of spectrum.will be enhanced. In other words, the main purpose of
the cognitive radio systems is to utilize the spectrum and limit the interference to primary

users in a efficient and intelligent manner.

o Related work:

There are many papers in cognitive radio. The work in [2]-[5] discuss the basic
concepts and limitations of the cognitive radios. In [6], the authors propose 3 local
sensing methods, the matched filter detection, the energy detection, and the cyclo-
stationary feature detection. The detection probability of matched filter detection is
optimal. In local sensing, it’s hard to distinguish between the noise and the weak
signal because of deep fading. To improve the spectrum detection performance,

cooperative spectrum sensing has been proposed in [7]-[19].

— Centralized detection

The centralized detection is that the secondary users transmit the observation
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without quantization. In [10] and [11], the authors propose a cooperation
scheme among secondary users to mitigate possible deep fading or shadow-
ing, and thereby improve the detection probability. The work in [12], discuss
several optimization methods in a linear combination system, which combines
signals from all the antennas in the fusion center, with orthogonal channel in
centralized detection. The work discusses 3 systems, conservative system,
aggressive system, and hostile system, and a detection performance measure,
modified deflection coefficient(MDC). But in this paper, it only concerns the

orthogonal channel and doesn’'t have any power constraint on secondary users.

Distributed detection

The distributed detection is that the secondary users transmit the observation
with quantization. Because:of bandwidth constraint, it is often desirable to
quantize data before transmitting. Many papers in distributed detection use
only 1 bit. In distributed detection, we can reduce the data rate between fu-
sion center and secondary users. But the detection performance of distributed
detection is worse than centralized detection. The work in [13], discuss the
semidefinite programming in distributed system in linear combination. The
authors in [19] and [18] use distance measures to solve the power allocation
problem. The work in [19] considers the approximated J-divergence, instead
of the likelihood function, as the performance matric in distributed sensor net-
work with multiple input multiple output(MIMO) channels, for the reason that
the log likelihood ratio(LLR) does not have a closed-form expression and thus
an explicit decision rule does not exist. In [18], the authors propose using ap-
proximated J-divergence to approximate the J-divergence of gaussian mixture
model. To have better detection probability, the authors adopt the element dis-
tance measure, instead of the approximated J-divergence, as the performance
matric in [19]. The work in [14] discusses the trade-off between the sensing
time and throughput. If sensing time is shorter, the transmitting time is longer
and the throughput is higher. The authors propose a multi-slot spectrum sens-

ing scheme to maximize the detection probability of local sensing. The multi-
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slot spectrum sensing approach divides the sensing timelihtmini-slots
and uses those slots to maximize the detection probability. This work also
discusses the centralized detection and distributed detection to maximize the

detection probability in cooperative spectrum sensing.

— Distance measure

In [17], the L2 distance approach is applied in the problem of speech recogni-
tion. In addition, the work [20] and [21] discuss about fundamental properties
of the distance measures. In [20], the J-divergence and B-divergence can lead
to, respectively, a lower bound and an upper bound of the Bayesian error prob-

ability.
— Censoring scheme

The work [22]-[23] propose a censoring.scheme in which secondary users only
transmit informative observation to the fusion center. The censoring scheme
can reduce the interference to primary users. In [22], it transmits LLR to
fusion center. When LLR is greater than a threshold, the user will transmit
this LLR to fusion.center.or keep silent. -In this paper, it discusses that the
detection performance of one.threshold is equal to the performance of two
thresholds. In [23], it proposes a simple censoring scheme. By censoring the
observation, only the users with enough information will transmit their local
bit decision (0 or 1) to the fusion center. The detection probability and false
alarm probability of spectrum sensing are investigated for both perfect and

imperfect reporting channel.

e Motivation:

In this thesis, we still focus on the spectrum sensing problems in cognitive radio
systems. When primary users use frequency bands, secondary users should be able
to detect the existence of primary users. When secondary users transmit data or re-
ceive data, they can't cause intolerable interference on the primary users, if accurate

detection fails.

In much of the previous work, they only constraint the interference to primary users
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when transmitting. However, when secondary users send signals to the fusion cen-
ter for spectrum sensing, they should also have power constraint. In this thesis, we
focus on the power constraint when secondary users are in the sensing phase. Here
we use target signal to interference plus noise ratio(SINR) as the performance con-
straint. The SINR of the primary users should be greater than the target SINR. We
are interested in finding the weighting factor that maximizes the probability of de-
tection while restricting the interference on the primary user within a predetermined

level. In summary, our objectives in this research are,

— Maximize the detection probability.

— Satisfy the SINR constraint of primary users.

e Contributions:

— We use a distance measure of the probability distribution as the metric, instead

of the likelihood measure, to find the detection rule at the fusion center.

— We find the optimal power allocation scheme among secondary users and op-

timal linear combination.approach in‘the fusion center, both to maximize the

detection probability.

— We propose a censoring scheme in secondary users when transmitting signals
to the fusion center, attempting to lower interference while achieving accept-

able performance.

In the first part of the thesis, we consider two schemes, namely the optimal power
allocation and the optimal linear combination, in centralized cooperative spectrum
sensing. Optimal power allocation scheme is that we control the power of every
secondary user and optimize the detection probability. Optimal linear combination
is that we combine the signal of every antenna by different weighting to maximize
the detection probability. In centralized detection, it's not easy to have the closed-
form expression of detection probability and false alarm probability. But we can

approach the detection probability, as promised by the likelihood detection rule,



by the use of distance measures. Analytical results show if the distance is larger,
the detection probability is higher. In the second part of the thesis, we propose
a censoring scheme in which secondary users transmit only the informative data
to the fusion center. In censoring scheme, we use J-divergence and L2 distance
to maximize the detection probability. Analytical results show that the censoring

scheme have better detection probability than non-censoring schemes.

Organization of the Thesis:

The thesis is organized as follows. In chapter 2, we talk about the fundamental
concept of spectrum sensing in cognitive radio networks. In chapter 3, we intro-
duce two different distance measures, the J-divergence and the L2 distance, in the
optimal power allocation and optimal linear combination schemes. And the simu-
lation results show that the ‘performance are better than equal power allocation and
equal linear combination.” In-chapter 4, we use the censoring method in optimal
power allocation and optimal linear combination. And we show the simulation of

the censoring method.-Finally, chapter 5 gives the conclusion.



Chapter 2

Spectrum Sensing and System Model

Cognitive Radio is the solution of the spectrum utilization. The users who have license
are primary users. In some frequency bands; the spectrum utilization is not high. It means
that primary users seldom use the frequency bands. Those frequency bands are under
low utilization. To enhance-the spectrum- utilization; primary users should share their
frequency bands to other users who don’t have the license. The users who want to use
the frequency bands are secondary users. But-one important thing is that secondary users
should return the spectrum to primary users as.soon as possible when primary users want
to use and secondary users don’t cause much interference on primary users. Therefore,
spectrum sensing is the key technique of cognitive radio. Secondary users should sense
whether the primary users use the spectrum or not. If they are sure that primary users
don’t use the spectrum now, they could use it. But there are still many problems in the

spectrum sensing.

2.1 The Problems of Spectrum Sensing

The detection of the existence of primary user can be viewed as binary hypothesis. When
primary users exist, it's under hypothegis. When primary users don't exist and sec-
ondary users can use the spectrum, it's under hypotligsis

The main problems we want to solve in spectrum sensing are:

e Maximize the detection probability,

6



e Minimize the false alarm probability;

e Minimize the sensing time

2.1.1 Detection Probability and False Alarm Probability

The definition of detection probability is

P, = P(H = Hy|H,). (2.1)
And the definition of false alarm probability is

Py = P(H = H,y|H,). (2.2)

H means secondary users make a decision which hypothesis is posgjbteeans the
probability that the secondary users decide hypothesis and primary users is really
using the spectrumP; means the probability the secondary users degiglaypothesis

and primary users is not really using the spectrum. Obviously, the system performance
will be better if P, is higher andP; is lower..\WhenF; is higher, secondary users won't

use the spectrum when primary users exist. \WHkens lower, it means the spectrum

utilization is higher.

Transmitting time

Figure 2.1: Sensing time and transmitting time



2.1.2 Sensing Time

Because we can’t exactly know when primary users want to use the spectrum, we peri-
odically sense the spectrum to solve this problem. Fig. 2.1 shows that it can be separated
into the sensing time and the transmitting time. It is obvious that the sensing time should
be short. In other words, if the sensing time is too long, the transmitting time will be short
and the average data rate will be low. But in our system model, we assume a fixed sensing

time and periodically sense the spectrum.

2.2 Maximize the Detection Probability

Why should we maximize the detection probability? The reason is that secondary users
should return the spectrum when the primary.users exist. The definition of detection
probability is that we decide primary users.is using the spectrum and primary users is
really using the spectrum. Therefore, when secondary users detect the primary users
is using the spectrum, secondary users will stop transmitting data. When the detection
probability is low, secondary.users will frequently use.the spectrum to transmit data when
primary users exists, like in Fig. 2.2. It may cause intolerance interference on primary

users.

2.2.1 Local Sensing

Local sensing means every secondary user makes his own decision without cooperation.
In [6], there are 3 methods to implement the local detection. For example, matched fil-
ter detection. The matched filter detection maximizes the signal-to-noise ratio. But the
matched filter detection needs to know the prior knowledge of primary users signal at both
PHI and MAC layers. It's not practical. Energy detection is another method. It collects
the energy of every sensing sample. But the energy detection still has drawbacks. For ex-
ample, how to decide the threshold of the decision rule. Obviously, the local sensing will
depends on the power of primary users, the channel between primary users and secondary

users, and so on. For example, if the signal of primary users is weak, the detection proba-
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bility of secondary users will be low-and the secondary users will transmit data frequently.
To avoid this problem, we should consider cooperative spectrum sensing to enhance the

detection probability.

2.2.2 Cooperative Sensing

Cooperative sensing means some secondary users cooperate with each other to enhance
the detection probability. Many papers use cooperative scheme because of poor perfor-
mance of local sensing. In the cooperative spectrum sensing, every secondary user sends
the data to the fusion center. The fusion center can be viewed as a common receiver of
secondary users. Because the fusion center has more data than every secondary user, it
can have more accuracy detection. There are two schemes to solve the cooperative spec-
trum sensing, centralized detection and distributed detection. The centralized detection is
that every secondary user transmits unquantized observation to the fusion center. Then
the fusion center uses the observations to make the decision. The distributed detection
is that every secondary user transmits quantized signal to the fusion center, like ”-1” and
"1”. "-1” means H, hypothesis and "1” meand; hypothesis. In [14], it uses the major-

ity decision method. If the number of ”-1” at the fusion center is greater than the number
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of "1” at the fusion center, the fusion center will decié hypothesis. Obviously, the
performance of the centralized detection is better than the distributed detection. And in
[10], secondary users can sense lower power of primary users than local sensing because
of cooperation. We can enhance the performance by the use of the cooperative spectrum
sensing. The following section will discuss our system model of the cooperative spectrum

sensing.

2.3 System Model

Fig. 2.3 shows the system model. Firstly, secondary users sense data for detecting the ex-
istence of the primary user. Here we use multiple input multiple output (MIMO) channel
between secondary users and the fusion.center. Every user sends the data to the fusion
center for the cooperative spectrum sensing and the fusion center has multiple antennas.
Every secondary user has only one antenna. Itiis reasonable because secondary users of-
ten have the power constraint. There is only one primary user and the primary users has
only one antenna. Assume every:secondary user uses the same spectrum in sensing time
and in transmitting time. Obviously, it will producea problem. When secondary users
transmit their sensing data to the fusion center for spectrum sensing and primary users
want to access spectrum in the same time, the data of secondary users transmitting may
cause intolerance interference to the primary user. This problem should be avoided. We

list the problems we should solve:

e Maximize the detection probability
e Minimize the false alarm probability
e Minimize the interference when cooperative spectrum sensing

e Minimize sensing time

But in our system model, the sensing time will be a fixed time for simplicity. The
detection probability and the interference of primary users should be minimized. Assume

the power of the primary user is known by the fusion center. When secondary users

10



Cognitive users Fusion
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T user

Figure 2.3: System model of MIMO channel

transmit the data to the fusion center and the primary user exists, we can set a target
SINR, SIN R;, for the primary user and the SINR of the primary user should be greater
thanSINR;.
The equation of SINR is
Pp
Ziv hy, Ps, + ag’

where P, is the transmitting power ofth secondary usen,, is the channel between

SINR, =

(2.3)

secondary users and the primary ugéris the number of secondary users, arids the
variance of noise.

Therefore, the capacity of the primary user is
1 1
Cp = ;log(1+ SINR,) > S log(1+ SINRy), (2.4)

where(, is the capacity of the primary user.

If the SINR; is high, it means that the primary user can't allow much interference
from secondary users and the secondary users can’t use much power for transmission. In
other words, we should satisfy the quality of service (QoS) requirement of the primary
user. Therefore, it should have power constraint on secondary users. And the final objec-

tive is to optimize the detection probability under the SINR constraint. In the following

11



chapters, we will discuss how to satisfy the target SINR and optimize the detection prob-

ability.
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Chapter 3

Centralized Detection in Optimal Power
Allocation and Optimal Linear

Combination

3.1 Introduction

In cooperative spectrum sensing, every secondary user transmits the observation to the
fusion center. The fusion center can use those observations to have accuracy detection.
If all secondary users send their data to the fusion center without quantization, this is

called centralized detection. For example, consider a simple centralized detection scheme.
Fig. 3.1 shows the system model. Every secondary user transmits the observation to the

fusion center. From Fig. 3.1, the received signal of the fusion center is

N
=1

wherez; is the signal from théth secondary user and there &esecondary users.

Then the fusion center uses this signalto make the decision. A simple decision
method is that whether the value pis greater than or not. Ify is greater than, we
can decide that it is under hypothesis.

In this thesis, we consider two optimization schemes, optimal power allocation and

optimal linear combination.

13



X, Fusion center

Figure 3.1: Simple centralized detection

3.1.1 Processing of Transmitting Signal

Assume that secondary users sense their signals in a sensing tiere the sampling

rate isd. Therefore, the number of samplesis= 70.. For the secondary users, if they
transmit their signal directly without any signal processing, the detection probability will
be low. Before transmitting, every secondary user sums the square of every sample and
transmits it to the fusion center. The equation of the sensing sigrit#i sécondary user

in kth sample is

vi(k), underH,

yi(k) = (3.2)
hyis(k) +v;(k), underHy,

wherey; (k) is the signal sensed liyh secondary user; (k) is the sensing noise and its

distribution isN (0, 0?2 ), s(k) is the signal of the primary uset,meanskth sample, and

hyi is the channel betweeith secondary user and the primary user. Assume all sensing

samples in one secondary user are independent.

The overall power of primary user imsamples is

E. =) |s(k) (3.3)
k=1

14
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u; 1S the transmitting signal ath secondary user. The equationgfis

ui = k). (3.4)
k=1

Then samples are identical and independent distribution in one secondary user. The dis-
tribution of u; can be viewed as a non-centralized Chi-square distributionmakgrees.

If n is large enough, it can be asymptotical to a Gaussian distribution by the central limit
theorem.

After some computation, the asymptotical distributionpfs:

no?, underH,

(n+mn;)os, underH,
and

2not | underH,

Varfu;) = ' (3.6)

2(n + 2m;)o, . underHy,
wheren, = “‘pg# Therefore, the distribution can be represented as a Gaussian random
variable.

In the simulation result, it will prove the detection probability will be higher after the

signal processing.
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3.2 Optimal Power Allocation

In optimal power allocation scheme, we multiply weighting factor to the transmitting
signal of every secondary user. There are two reasons why we multiply weighting factor

to transmitting signal.
e Maximize the detection probability
e Satisfy the power constraint

In the following sections, we will discuss the optimal power allocation.

3.2.1 System Model

In the cognitive radio environment;assume thattherévasecondary users and the fusion
center has\/ receiving antennas. To simplify the system, there is only one primary user.
The primary user and every.secondary user only has one antenna.

Our objective is to maximum the global detection probabilfy, and reduce the
interference to primary users when secondary users-transmit data to the fusion center. In
other words, when the primary users use the frequency bands, the secondary users can’t
produce the intolerance interference to primary users. The Fig. 3.3 shows the system
model. In the centralized method, secondary users send their observation to the fusion

center for the detection. But we should guarantee the QoS requirement of primary users.

Vi S

Fusion
center

Wy a=HWu+n

Figure 3.3: System model of optimal power allocation
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In other words, we should guarantee the SINR of the primary users should be greater than
one determined valué,/ N R,. The secondary users can not transmit their signal directly
because of the power constraint. They should have the weighting factors for the power
control.

The received signal of the fusion center is

a=HWu +n, (3.7)
where L } )
a1 hin  hia ... hin
a h h ... h
o 2 H = 21 .22 2N
_GM_ _hMl hare ... hMN_
wy =0 0 Uy n
0 =wy, ... 0 U n
M) W - 2 ) u N 2 ) n - 2
0
0 0 e WN un ny

u is the signal vector transmitted by secondary uséfs= diag([wy, wo, ..., wy|") is the
power control, H is channel matrix between the fusion center and the secondary users,
n ~ N(0,02I,«2s) is the noise received by the fusion center, anslthe signal received
of the fusion center.
Assume that the signals sensed by the secondary users are independent. Therefore,

we can have the distribution of

1 % ]. T 2 —1
p(u|HZ) = |27TO'1211| eXp[_i(u - El) O-ul' (u - El)]7 (38)
where ~ .
2(n + 2o 0 0
- 0 2(n + 2ot .. 0
Ou, = .
0
0 0 2(n + 2ny)ol
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2not 0 .. 0
) 0 2not ... 0
7Ju0 =
0
0 0 2no
(n+m)o; no;
n+m)oz no?
B | g |
(n+ny)o? no?

From the equation (3.8), we can have the distributioa.of

1
a|H;) = ———+sexp|—-(a— iTZZ-_la— i)l
plalH) = e e — )
where
X, = HWo, WH” 1071
and

1 = HWE,.

(3.9)

(3.10)

(3.11)

Then we can discuss the detection method by the use of the likelihood ratio test.

3.2.2 The Performance Matric of Detection Probability

The final goal of our scheme is to maximum the detection probability. In the Neyman-

Pearson detection, we should calculate likelihood ratio firstly. By the use of the likelihood

ratio, we can have the detection probability.

. (a—p1)"E7 (@ — )]

1
L)  PaH) _ frmT P72 <
p(alHo) — exp[—5(a — p10) "5 " (a — po)] 7o

T
[2730]2

wherey is the detection threshold.
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Therefore, the log likelihood ratio (LLR) is

l(a) =InZ 4 (—1(a—)"SHa - )

|$1]2

—(=5(a—10) S5 (a — p10)) Z 7 In .
From equation (3.10) and equation (3.11), the log likelihood ratio is

I(a) —lmﬁ (—3(a—p)TS M (@ — ) — (—3(a — 1) "S5 (2 — o))

1
= 20 al (355 = 2 ha+al (B0 = Bt ) + 500" = 55 20 o
[HWo2 WTHT +021| 3

[HWo,, WTHT 021 3

+3a’ (HWo2 WTHT + 02I)! — (HWo2 WTH” 4 62I) !)a

+al (HWo2 WTHT + 021) " (HWE,) — (HWo2 WTH? + 021)-L(HWE,))
+L{HWE,)T(HWo2 WTHT + ¢21) | (HWE, )

—LHWE,)T (HWo2 WIH? + 021) | (HWE,).

=In

(3.13)

Therefore, the detection probabilitp, is
Pp = P(l(a) >1n7y|Hi)- (3.14)
The optimization problem is

maxw PD
st. Py;<P, (3.15)
SINR, > SINR,.

P,; is the power ofth secondary user anféd is the power constraint of secondary users.

The equation o6/ NR,, is

P
SINR, =57 ;;si g (3.16)

whereP, is the power of the primary usef,, is the channel between the primary user
andith secondary user, amrip is the noise power of the primary users.

Becausé(a) is a nonlinear combination af, it is difficult to calculate the distribution
of i(a). Obviously, it's hard to have the closed-from expression of the detection proba-

bility. And from the equation (3.13), it's also hard to optimize the detection probability.
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Therefore, it’'s hard to use the likelihood ratio based detection for optimization. But we
can use the performance matric, such as the distance measure, instead of calculating the
detection probability directly. We use this performance matric to optimize the detection
probability. In the following sections, we will introduce the distance based detection by

the use of J-divergence in the optimal linear combination.

J-divergence

J-divergence is a distance measure. For example, if we have two random variables, the
distance measure can be viewed as the distance between this two random variables. If the
distance between them is long, we can easily distinguish them and the detection proba-
bility will be high. Like in the Fig. 3.4, if distance between them is small, it's not easy to
justify which hypothesis really exists: Under this condition, it's easy to make a fault deci-
sion. In the distance measure method, the objective is to maximize the distance between
two distributions.

The error probability is defined as
P. = P(Hy)P(l(a) > Invy|Hy) + P(Hy)P(l(a) < In~y|H;) (3.17)
, and J-divergence can provide the lower boun#¢20].
P, > P(Hy)P(Hy)e" %), (3.18)

where P(H,) is the probability that primary users don’t use the spectrumd,) is
the probability that primary users use the spectrum.
From the above equation, we can use the J-divergence for replacing calculate the error

probability directly. The definition of J-divergence is
J =FE[|(L—-1)InL
! it (3.19)
= [TZ[(L = 1) In L]p: (x)dx

whereZ(x) = 24,

In our case,L(x) = ﬁgz}g‘ig J-divergence is the symmetric form of the Kullback-
Leibler (KL) distance.
J(F,G) = Dk o(F||G) + Dr(G]|F), (3.20)
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(a) Long distance (b) Small distance

Figure 3.4. Two different distances

whereDg(.) is the KL distance. The-definition of the KL distance is

Dk (F||G) == =3 f(@) log g() + X7of (z) log f ()
- H(E,G)Y+ H(P),

(3.21)

whereH (F, GG) is the cross entropy.anl (F') is the entropy ofF'. The physical mean of
the KL distance is expected number of extra bits using a code bas@dather thanF'.
If the distance is larger, it will use more bits to transmit.
By adopting J-divergence as the performance matric, the optimization problem be-

comes to
maxw J(p(a|Hy), p(a|H;))

SINR, > SINR;.
After computation, we can using the variance and meantofcalculate the value of

J-divergence,

J(p(alHy), p(alHy)) =
s T [EoX + 2030 + (B0 + 271 (1 — o) (= o) = M.

(3.23)

Therefore, we can use the optimization method to find the maximum value of J-divergence

in the optimal power allocation.
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Here we discuss a special condition. Assume the received SNR of the fusion center is
low. LetE = (E; —E;) andHWo. WH" < ¢21. ThereforeX; ~ ¢21. The equation
(3.23) becomes to

J(p(alHo),p(alH1))
= ITo[Z + %1 + (2(02]) (HWE)(HWE)")] — M
= > Ti(HWEE"W"H") (3.24)
= »Tr(E"'W"H"HWE)
= éETWTHTHWE.
Letw = [wy, ws, ..., wy]T. The equation (3.24) becomes to

J(p(alHo), p(alH1))
= Lwldiag(EYH"Hdiag(E)w.

2
T

(3.25)

Obviously, the equation (3.25) is a convex function. Therefore, when the receiving
SNR of the fusion center is low, J-divergenceiis a convex function. Here we can't prove the
J-divergence only has the global optimal solution. \We may only find the local maximum
by the optimization method. We only know that J-divergence will be a convex function
under low SNR condition. But in simulation, the optimal power allocation by the use of

J-divergence has much better detection probability than the equal power allocation.

3.3 Optimal Linear Combination

In the optimal linear combination, we combine the received signal by every antenna with
weighting factors, like in the Fig. 3.5. Therefore, the signal which we want to detect
becomes to

a=./gHu+n, (3.26)

wherea = [ay,as,...,ay]", H = [hy,hy, ..., hy], andh, is N x 1 channel vector,
i = 1,2,..,M. /g is the power control and it is a constant. The power summation
of all secondary users can not excded For simplicity, let the power summation of all

secondary users are equalRo Then the value of is
N
9y hP;=P.. (3.27)
i=1
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Fusion center

IR T B )
AlS- 0 Q)

Figure 3.5: System model of optimal power allocation

From the above equation, we can calculatd he value ofP. is decided bySINR;. In
other wordsg = w; = wy = ... = wyin'the optimal linear combination.

a; 1S the received signal by-thigh antenna. Itis the'-Gaussian distribution and its mean
and variance are

E.\m, =+/gh; E; (3.28)

and
Varymy=ghlothy + o, (3.29)

The fusion center can detect the primary users by the signal,
M
T = Z wlia’i = W;Ta, (330)

wherew; = [wy,w;,...w;,,|T. r is a Gaussian random variable and its mean and variance

are
Vow,THE,, underH,

Vow,THE;, underH,

E, = (3.31)

and
w! (gHo? HT + 02I)w;, underH,
Var, = W 0How, Dwi ° (3.32)
wi'(gHop H” + 02T)w;, underH;.
Here we use another distance measure, L2 distance, in the optimal linear combination. J-

divergence can’t optimize in the optimal linear combination. The definition of L2 distance
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Dpy = /(fl — f2)%dx, (3.33)

where f; and f5 are two distribution functions.

Here we use the; in L2 distance instead of The L2 distance scheme can be viewed
as that the fusion center linearly combines the distribution of every antenna. Obviously,
the distribution ofr is not the linear combination of the distribution of every antenna.
But in the simulation result, L2 distance will have better detection probability than other
distance measure.

Rewrite the equation (3.33) as
/(WZTPaH1 — WlTPaHO)QdX, (3.34)

wherew; = [wy,, wy, ..., wy,,]T andP, ;1= [p(as | H;), p(as|H;), oy playr | H))T.
From equation (3.28) and (3.29), is a Gaussian random variable. The L2 distance
can be write as
Dps (WZTPaHl ) WlTPaHO) — f(WlTPaHl / WlTPaHO)QdX
. f[(WlTPaHl)Q » C 2WlTPaH1 WlTPaHO + (WlTPaHO)z]dX
=20 Zj Wy, Wy fp(@z‘|H1)P(aj|H1)dX
-2 Zz Zj wy; Wi, fp(ai|H1>p(aj|H0>dX

+ ZZ Zj Wy, Wy, fp(ai\Ho)p(aj|H0)dx.
(3.35)

Assume two Gaussian random variables have the measd;.;,, and the variances,
o2 anda?. The integration of this two random variables is

1
\/det(27r(ag + o}))

e~ 3 Ha—mp)" (03 +07) " (pa—pm)

JECRAR YOS
(3.36)
Therefore, we can rewrite all the multiplications of two Gaussian random variables by the

use of three matriced/'!, M'°, andM®,

MY = [ ploiHi)plas| Hi)x (3.37)

lejo = /p(ai|H1)p(aj\HO)dx. (3.38)
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M?JQ = /p(ai|H0)p(aj|H0)dx. (3.39)

The equation of L2 distance which we want to optimize is

T T _ 11 10
DL?(WZ PaH1 » W PaHO) - Zz Zj Wy Wy Mij —2 Zz Zj Wy, Wi Mz‘j
00
+ Zz Zj wliwleij
= w] M'w; — 2w/ M""w, + w]/ M"w,

= w] (MY — 2M"0 + M©)w;,.

(3.40)

Obviously, the equation we want to optimize is a convex problem. If we don’t have
any constraint onw;, the value of the L2 distance will become to infinity. To avoid this

problem, letw] w; = 1. Therefore, the optimization problem becomes to

maxy, Dpa(wWiPa, , Wi Py, )=w/(M"—-2M"+M»")w,
s.t. wy, > 0,4 =1,2,.0,M (3.41)

wliw, =1.

The optimization problem can be easily solved by the optimization method. Here we
use the active set method. The active set method is that checking the inequality constraints
are active or not. If the inequality. constraints are active, we can view the inequality con-
straints as the equality constraints and use the Lagrange multiplier to solve this problem.
If all the computation results satisfy the Karush-Kuhn-Tucker (KKT) condition, it's one
iteration. After several iterations, we can find the optimal solution.

Then we discuss a simple decision rule:
r>t, (3.42)

wheret is the detection threshold. The equation (3.31) and (3.32) show the distribution
of r. It's easy to calculate the detection probability and the false alarm probability. The

equations of the detection probability and the false alarm probability are

B t— B,
and
ﬂ:@&lﬁﬂ%. (3.44)

Vv Varym,
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The optimal linear combination is simpler than the optimal power allocation. The
optimal linear combination usesfor the power control. Every secondary user uses the
same scalal. Therefore, the fusion center can broadgasi secondary users. But the
optimal power allocation should tell secondary users their own weighting factors. In the
L2 distance method, the antenna which has the better L2 distance, its weighting will be
larger. For example, if there are 2 antennas, the L2 distance of the first antenna is greater

than the second antenna, its weighting is larger.

3.4 Simulation Results

In this section, we present the simulation by the use of the distance measures. Assume
the MIMO channel and the noise are all random and the power of the primary user is
known. The SNR of the primary user is 5. The probability that primary users use the
frequency band is 0.2 and the probability that don’t use the frequency band is 0.8 because
the primary users seldom exist. In the following, we will discuss simulation of the optimal

power allocation and the optimal linear combination.

3.4.1 Optimal Power Allocation

In the optimal power allocation scheme, the distance measure is J-divergence . In this
scheme, the decision rule is Neyman-Pearson detection at the fusion center. We set that
the false alarm probability is 0.4. It means that the spectrum utilization is 60% in this
simulation environment. As we mentioned before, it's hard to calculate and optimize the
detection probability directly because LLR is not a linear combinatioa. of herefore,

we simulate the detection probability by the Monte Carlo method.

Fig. 3.6 shows two different transmitting signals of secondary users. If the signal
doesn’t have any signal processing and transmits it directly to the fusion center, its detec-
tion probability is worse than the signal with the signal processing. Obviously, it’s trade
off between the sensing time and the detection probability because the signal with the
signal processing needs more sensing samples.

Fig. 3.7(a) shows when the target SINR is high, the value of J-divergence is low. When
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the target SINR is high, it means that the total power of secondary users can use is low.
In the equal power allocation, the detection probability of J-divergence is lower than the
optimal power allocation. But only Fig. 3.7(a) can’t prove the J-divergence can be viewed
as a performance matric.

Fig. 3.7(b) shows the detection probability. In Fig. 3.7(a) and Fig. 3.7(b), we can
observe that when the value of J-divergence is higher, the detection probability is higher.
Therefore, J-divergence can be a performance matric in the optimal power allocation. And
in Fig. 3.7(b), the detection probability of the optimal power allocation is much better than
equal power allocation.

Fig. 3.8(a) shows four cases, 2x2, 2x4, 4x2, and 4x4. 4x2 means there are 4 receive
antennas and 2 secondary users in the simulation, and so on. Obviously, the more antennas
or the more secondary users, the betterperformance. Therefore, the fusion center can have
benefit by using the MIMO channel'in the optimal linear combination. Then compare the
2x4 case and the 4x2 case. In this figure, the 2x4 case is better than the 4x2 case. The
reason is that it optimizes the detection probability by multiplying the weighting factors
to secondary users in the optimal power allocation. 'If there are more users, we can have
more degrees of freedom. Therefore, If there are more users or more receiving antennas
of the fusion center in cognitive radio system, the detection probability will be better. But
increasing the number of secondary users is better than increasing the number of receiving
antenna of the fusion center. Fig. 3.9 shows the error probability and the lower bound.
If the target SINR is lower, the error probability will also be lower. From the equation
(3.18),F, > P(HO)P(Hl)e(—%X the error probability has a lower bound. Fig. 3.10 shows
this property.

3.4.2 Optimal Linear Combination

In this simulation, we also use the Neyman-Pearson decision rule in the fusion center.
And in the later section, we will compare the performance between the optimal power
allocation and the optimal linear combination.

Fig. 3.11(a) shows the simulation result of the optimal linear combination by using

L2 distance. In this figure, when target SINR is high, it means the power that secondary
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Figure 3.6: Signal processing and without signal processing

users can use for transmitting is low-and the L2 distance is small.

Fig. 3.11(b) shows the detection probability. Thisfigure can tell us that L2 distance
can be really as a performance matric. When the L2 distance is larger, the detection prob-
ability is larger. Therefore, we canwuse this distance measure to maximize the detection
probability in the linear combination.

Fig. 3.12(a) shows the four cases of optimal linear combination, 2x2, 2x4, 4x2, 4x4.
In this figure, the 4x2 case is better than the 2x4 case. The reason is that it optimizes the
detection probability by the use of the weighting factor of every receive antenna in the
optimal linear combination. Therefore, if there are more antennas in the fusion center,
the degree of freedom is high. Increasing the number of receiving antennas of the fusion
center is better than increasing the number of secondary users. Fig. 3.12(b) shows the
detection probability. In this figure, when L2 distance is high, the detection probability

will also be high.

3.4.3 Comparison

In this subsection, we will compare 2 schemes, the optimal power allocation and the

optimal linear combination.
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Figure 3.7: J-divergence and the detection probability of optimal power allocation and

equal power allocation
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Figure 3.8: Detection probability and J-divergence of four cases in optimal power alloca-

tion
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Figure 3.9: The error probability of four cases.in optimal power allocation
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Figure 3.10: The error probability and the lower bound of four cases in optimal power

allocation
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Figure 3.11: The L2 distance and detection probability of optimal linear combination and

equal weighting combination
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Figure 3.12: The L2 distance and detection probability of four cases in optimal linear

combination
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By the equation (3.43) and (3.44), we can calculgteand P; by the use of a simple
detection method in the optimal linear combination. In [12], it focuses on the optimization
of optimal linear combination in the cognitive radio and proposes 3 optimization methods
in 3 different systems, conservative system, aggressive system, and hostile system. In
this paper, we can know the optimization of the equation (3.43) is hard. Only in the
aggressive system, the equation (3.43) is a convex problem. But in the final part of this
paper, it proposes a modified deflection coefficient (MDC) method. In the MDC method,
it's also a distance measure and combines the receiving data of every antenna in the fusion
center. In other words, it’s also a distance measure in the optimal linear combination. Let
h' = [I3,h3,..h3 )"

The definition of the MDC is
(Bqh'Tw))?

d? = : 3.45
(W) wilVar,w, ( )
And the optimization problem is
MaXy, d2(W
Z (3.46)
s.t. wiw, = 1.
_T
and letw; = Varrlfhh’. The optimal solution of equation (3.46) is
Varié W)
Wlopt = i‘fl l . (3.47)
|Var, 2 willz

Fig. 3.13 shows the comparison between the MDC method and the L2 distance method.
Consider a simple decision rule,> t. In this decision rule, we can fix the value Bf
and maximize the detection probability. In Fig. 3.13, the detection probability of the L2
distance method is little better than the detection probability of the MDC method under
the same false alarm probability. But in [12], the system model of the MDC method is in
the orthogonal channel. But L2 distance can also use not only in the orthogonal channel.
The L2 distance method is more general than the MDC method.

Fig. 3.14 shows the detection probability of 3 schemes, optimal power allocation,
optimal linear combination, and MDC. This simulation uses 2 secondary users and 2

receiving antennas in the fusion center. In this simulation, the decision criterion in the
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fusion center is the Neyman-Pearson detection. The performance of the optimal linear
combination is the best and the MDC is the worst. The optimal power allocation is the
best because it controls the power of secondary users. If one of secondary users has
lower sensing noise or receives a stronger signal from primary users, it will have more
transmitting power and the fusion center can be more sure which hypothesis is right. The
optimal linear combination only combines the received data, so it can’t have benefit on
the data directly. Therefore, the detection probability of the optimal linear combination is
worse than the detection probability of the optimal power allocation.

The MDC method also uses in the optimal linear combination, like L2 distance. But
comparing to L2 distance, the MDC method only uses variance and mean for the maxi-
mization, it's worse than the L2 distance method in the simulation results.

Fig. 3.15 and Fig. 3.16 show that the simulated optimal detection probability and
the distance based detection probability. In thisfigure, we can know the distance based
detection probability will smaller thanthe real optimal detection probability. But the com-
putation complexity of the distance based detection method is much lower than finding

the optimal detection probability exhaustedly.
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3.5 Summary

In this chapter, we discuss the optimal power allocation and the optimal linear combi-
nation. We adopt J-divergence as a performance matric in the optimal power allocation
and adopt L2 distance as a performance matric in the optimal linear combination. In the
optimal power allocation, the detection probability is better than the detection probability

in the equal power allocation. The detection probability of the optimal linear combi-
nation is better than the detection probability of the equal weighting combination, too.

If two schemes use the same decision rule, such as the Neyman-Pearson detection rule,
the detection probability of the optimal linear combination is worse than the detection
probability of the optimal power allocation. But as mentioned before, the optimal linear

combination is simpler than the optimal power allocation.
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Chapter 4

Censoring Scheme in Centralized

Detection

4.1 Introduction

In the cognitive environment, when secondary users. transmit their observations to the
fusion center, they should reduce interference when primary users exists. Here we propose
a new method, censoring, to reduce the interference of primary users. Before secondary
users transmit their observations to the ‘fusion center, they can judge their observations
whether the observations are worthy to transmit or not. For example, if the observation is
too small or too high, it may not be worth to transmit and the secondary users can keep
silence. In this chapter, we will discuss a censoring scheme.

The censoring scheme means that every secondary user doesn’t transmit all data they
sensing. In [22], the users transmit the log likelihood ratio (LLR) to the fusion center and
the fusion center uses received LLR to make a decision. But we don’t transmit the LLR to
the fusion center. Because every secondary user uses the energy detection method, it's not
easy to have the distribution of the LLR of transmitting signal. Therefore, we consider
another simple method. For example, when the signal sensed by the secondary user is
great thany, the secondary user will transmit this signal to the fusion center. If the signal
is less thany, this secondary user will keep silent. Therefore, the distribution of the signal

transmitted by secondary users can be viewed as a truncated Gaussian distribution, like
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Figure 4.1: Truncated gaussian

in Fig. 4.1. In Fig. 4.1, when the observation is greater thathis observation will be
transmitted. Like in chapter 3, here we discuss two schemes, the optimal power allocation

and the optimal linear combination.

4.2 Optimal Power Allocation
Here we still use the optimal power allocation to satisfy the power constraint. We still
have two objectives:

e Maximize the detection probability

e Satisfy the power constraint

When all secondary users transmit their observations to the fusion center at the same time,
they can not produce much interference on primary users and maximize the detection

probability.

4.2.1 System Model

Fig. 4.2 shows the system model of the optimal power allocation. For simplicity, it's the

orthogonal MIMO channel between the fusion center and secondary users. In Fig. 4.1, the
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Figure 4.2: System model of censoring scheme

transmitting signal of every secondary user is a truncated Gaussian. If sensing signal is
greater than, the secondary users will transmit it. By using moment generating function,
we can have the mean and the variance of the truncated Gaussian. Assume the distribution
of the signal of theéth secondary user sensedfisand-its mean and variance arg and

aZ. From Fig. 4.2, the truncated signal, is added with'a Gaussian noise, Therefore,

the received signal of fusion center is
a=HWu+n. (4.1)

Therefore, the distribution of is

+o0
fuy(2) = / fo (& — ) fu(r)dr, (4.2)

wheref;  is the distribution of a truncated Gaussigpis the distribution of noise received
by fusion center, and, is the distribution received bjth antenna.

Because the equation (4.2) doesn’t have the closed form expression, we approximate
this distribution to the Gaussian distribution. Assume the mean and variance of the signal
sensed byth secondary user are, andafi. We calculate the moment generating function
of a truncated Gaussian random variable with threshaldQ-function here is used for

calculating the probability when distribution is a Gaussian random variable, define as:

Q(y) = /OO Le(’é)alx. (4.3)
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The distribution of a truncated Gaussian with threshoisl

f(.’L') = ! Yi—Ht, e(i 2%2; )7 x 2 Vi
\/%O'tiQ(Tiz) (4.4)
The moment generating function is
— f tzf
= [ e f(x)d
(7(90*%-)2)
0tz 1 207,
= f € —— ;= € i dx
4 27T0'tiQ(07tiZ)
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Q(%) (i 143 2moy
;2 t2 5
_ M th—5— foo Le(_%)(# 274 tT+0t12t2)dT (45)
Q(%% 7,) Vi— Kt \/ﬂ at,
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wherer = = — yu;, andz = = — oy,t. From the above, the moment generating function

is
2,2

Q(P)/; - Jtit> oMt t+ Ut !
Q()

Vit
ot;, "

where~, =
From M, (t), the mean and the variance of the signal itilasecondary user transmit-
ting are
pe, = My (1)]i=o0
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Form equation (4.7) and equation (4.8), the variance is
= My/()]e=0 — (M}, (t)]¢=0)? 4.9)

08

e A of 2

= VoS UM Ere 2 T Ti

Therefore, the mean and the variance of transmitting signdhafecondary user are

+ . underu; #0, H;
Hu, | (4.10)

Milvaui B
0, underu; =0, H;

12 underu; # 0, H;
7 0.1, (4.11)

and
Utz‘\Hj )

2 _
O’i‘H]’,ui -
0, underu, = 0, H;.

The receiving signal ofth antenna of fusion center i = h;w;u; + n. The noise

distribution is a Gaussian distributioi,(0, o)
From the equation (4.10) and the equation (4.11), the mean and the variance of antenna

a; underH; hypothesis are
hlwl,uft B Under’di 7é O, Hj
Hairr, 0y = i (4.12)
0, underu; = 0, H;
and
hiw?o?> + o2, underu; # 0, H;
P # 0.4 (4.13)
underu; = 0, Hj;.

2
2

From the above equation, we can have the approximated distributin of
Fig. 4.3(a) is the noise distribution and Fig. 4.3(b) is the truncated distribution. In

Fig 4.3(c), the red line is real distribution af and the blue line is the approximation

o =
az\Hj,ui
g,
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of a; distribution. In Fig. 4.3(c), the approximated distributionzofs close to the real
distribution.

Here we usey; to present the data ath secondary user transmitting to the fusion
center. When, # 0, it means the secondary users send the data to the fusion center.
Whenu = 0, it means the secondary user doesn’t send the data to the fusion center.
Therefore, there i8"¥ combinations ofi. Assume the probability thath secondary user
sends data to the fusion centefisend; ; andj means that it's under hypothedi§. The
equation ofp(ug|H;) is

p(ug|Hj) H Piend,, ; H (1 = Piend, ), (4.14)
U #0 ut=0

wherek = 1,2, ..., 2 andk is kth combination.

Therefore, the distribution aof under different:-hypothesis is
p(al Hy) Zp afuy, Hy)p(ug|H;). (4.15)

Obviously,p(a|H;) is a Gaussian mixture model(GMM) becausg p(u;|H;) = 1

andp(alug, H;) is a Gaussian-random variable. The likelihood ratio is

L p(alHi)

L(a) ~ p(alHo) (4.16)
_ 2 p(alug, Hy)p(ug|Hy)
T Y pp(alug,Hi)p(ug|Ho)

Obviously, solving this problem by.(a) is hard. We still need the distance measure to

solve the Gaussian mixture model problem.

4.2.2 GMM J-divergence

Here we consider the optimal power allocation. But it doesn't have the closed-form ex-
pression of J-divergence in the Gaussian mixture model(GMM). Therefore, we must mod-
ify the equation of J-divergence in GMM.

Consider two different Gaussian mixture models(GMM),

D aifi=a"f, (4.17)
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Figure 4.4: Structure of GMM J-divergence

wherea = [y, as, ..., ay]T andf =[fy, fo, o ]

and

> Bigi=05"g (4.18)
J

Whereﬁ = [ﬁl:ﬁ% "'7ﬁN]T andg = [917927 "'7gN]T-
Define J-divergence in the GMM. As Fig. 4.4 showing, the structure of GMM J-

divergence is
> D il (fig): (4.19)
i

In Fig. 4.4, we can know the GMM J-divergence adds the J-divergence of évang g;
together._; a; f; is equal to) _; p(alu;, Hi)p(u;|H1) and}_; B;g; is equal to
>_;p(aluy, Ho)p(u;|Ho). Therefore, we can rewrite equation

Joum (p(alHy), p(alHy)) = Z Zp(ui|H1)P(uj|H0)J(P(a|uia Hy),p(aluy, Hy)).

(4.20)
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The optimization problem becomes to

maxw Joum(p(alHy), p(alHy))

st.  SINR,> SINR,.

(4.21)

Obviously ,this is the linear combination of all J-divergence. We can also use the opti-

mization method to solve this problem.

4.2.3 GMM L2 Distance

L2 distance can also use the in optimal power allocation. From equation (4.15), we know
thatp(a| H;) is a Gaussian mixture model. The L2 distance compares the distance between
p(a|H,) andp(a|H,). The equation of GMM L2 distance is

Dia(p(alHy), p(alHo)) = [(p(alHy)—p(alHy))’dx
= [ 2 plaglHy) plalw, Hy)— >°, p(u;|Ho)p(aluy, Hp))>dx
= 201 >y plw | Hy)p(uy| Hy) [p(alw;, Hy)p(alu;, Hy)dx
—237, >, plwilHi)p(u,| Ho) fp(alw, Hi)p(alu;, Ho)dx
+ 2% 2ol Ho)p(us [ Hy) [ p(alw;, Ho)p(aluy, Ho)dx

=Pu, Ma''Py,yy
—2P 1, Ma'""Pus,
+Pu,H0TMaOOPu,H07
(4.22)
where
Py, = [p(wi|H1), p(ug| Hy), ..., plun | H1)]"
Py, = [p(wi|Ho), p(ua| Hp), ..., p(un|Ho)]"
1\/15111]1 [ p(aju;, Hy)p(alu;, Hy)dx
M., = [ p(alw;, Hi)p(alu;, Ho)dx
M.y = [ p(alus, Ho)p(alu;, Ho)dx
and
M.;;" = [p(alw, H,)p(alu;, H,) (4.23)

— 1 eié(lu‘aim 7/"Lajn)T(Zaim+Eajn)_l('u'aim 7‘uaj")
\/det(2m(Sa,,, +5a;,)) ’
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where

h201|Hm w T 0n 0 0
0 wihiody, o t0n - 0
Eaim = '
0 0 h20N|Hm w T 0on
wlhlul\Hm,ui 0 0
0 wlhl,ugmm,ui 0
/’Laim = . . . .
i 0 0 w1h1MN|Hm7ui._

Letw; > 0fori =0,1,2,..., N. Because of the orthogonal channel, we can rewrite
the equation (4.23) to:

M.ji" = (1L 2W(wl%h%‘72|1{ s +07 + hkalen + ‘72))7%
Nk[Hm u; ~Mk|Hp, u; )
x eXp( Zk wihi k"k|H +‘7 Fwihioy Tk| Hnyu +‘7721) (424)
= ([1), 2m (wihi Uk|H i T WRhROT .+ 207))”
2

Hk\Hm u; —Hk|Hpy u; )
X exp(—3 i w2h2(a e u')+20% ).
]

MIH

k| Hm

For simplicity, we consider 2 receiving antennas and 2 secondary users.

4.2.4 2x2 Case

Considering two special cases, are all equal to zero and; are all very big.

Whenw; are all equal to zero, the equation (4.24) becomes to
mn 2 _1 Hk\Hm u; ~Hk|Hp, u; )
Mazy (Hk 27'('(11} hk0k|H S + wkhkak\H ,u; + 207, )) 2 eXp( Zk w? h (Uk\Hm u; +0’k‘H o )+202)

1

— (T2 7(202)) 4.

(4.25)

Every M, is a constant whem; are all equal to zero. Therefore, the L2 distance

a”
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becomes to

Dra(p(alHy), p(alHo)) =32, >0, p(wi|Hy)p(u,| Hy)Ma,;
23 Zj P(uz‘|Hl)p(uj|1L]0)1V[aulj0
+202 p(w| Ho)p(u,| Ho)Majy
= 37 32, p(w | Hy)p(uy | Hy)(TT, 27 (202)) 2
—237, 32, p(wi| Hy)p(uw; | Ho) ([T, 27(202)) 2
+ 32, 32 p(wil Ho)p(w | Ho)(TT, 2(207)) 2.

(4.26)

And we know
>0 >, p(wi| Hy)p(uy|Hy) =1
> 2 (| Hi)p(u;|Hop) = 1 (4.27)
> 2 p(wi|Ho)p(u;|Ho) = 1.
From equation (4.26) and equation (4.27),ihe(p(a| H1), p(a|Hy)) are equal t® when
w; are all equal to zero.

Whenw; andw, are smaller thaan?, we canrewrite the equation (4.24) as

Hk\Hm u; Hk\Hnu )2 )
(Uk\Hm w10 T Hn uj )+207,

M. = (T1; 27 (WERROR s TR R 1 T 2T )2 exp(—3 2, W§h2

azj

wk k(ﬂlem u; ﬂk\Hn,uj)Q)

([T; 27(202)) "2 exp(=3 3, S

(4.28)
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Therefore,

dDra(p(alH1),p(alHo))
dwl

= 5,5, plul H)p <uJ|H1>dd;;f
23 ij(ui|H1) (uJ‘HO) dwz
+ Zj p(w;|Ho)p (uj|H0) dwl

w2h (pu —p )2
1 k""k\Mk|Hm u; k\Hn,uJ h2 _ ) 2
= 3, 3, p(w Hy)p(uy | Hy) ([T dmo2)~3e 22 (g M)
| (chy, SR ) it )’
—2 32,57 plw | Hy)p(wy| Ho) ([T} 4mo2) ze’ 75 (—wy )
2 1 (-iy w%h%wkmm’ui_“km”’“f')2) R (w g | Hp )2
+ 30 30 p(wi| Ho)p(uy | Ho ) ([T, 4mon) "2 2= (—w= méaz )
wih? (u = )2
1 k"k\WE|Hm u; k|Hn,u h2 — w 2
= (S, X, plwl H)p (| H) ([T 4mo) 7362 I
w2h? (p o 2 .
_1 k7R R Hm k\Hn,u] h2( m,u; nU')2
230, 5, plwl H)p(uy Ho) (IT; Amgide "™ S

2 2
W (Bl oy v, —H| Fopy ;) 5 5
i I ) hif (1) Hyp uZ*HZ\Hn,u]') )

_1 (—— ) o
+ 5, 5, plwi| Ho)p(uy| Ho) ([T Amo?) =3 2
= —wlC.

(4.29)
In the equation (4.29), it's easy to-kno®w < 0. Because there are many terms

becomes to 0 if¥all andMal including diagonal terms. But most termsﬁgﬂﬁ are not

zero. Butwhen allv; — 0, Do (p(alHy); plalHy)) must be an increasing function. If it's
not an increasing functiorl)»(p(a|Hy), p(a|Hy)) will be negative and it's impossible.

Therefore,D»(p(alH ), p(a|Hy)) is an increasing function when aii approach to zero.

Now considens?hio} > o2. The table (4.1) shows the structureldt,;|, M,;?, and
M,
I, 111110 01|00
11 |o |o |o |o
10 |o |x |0 [X
01 (o |o |X |X
00 |o |x [X |X

Table 4.1: Table of, and/,
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Whenw?hio? > o2, we can write the following equation.

2p2( _ )2
mn 2 2 2 _1 1 Wi \Fk| Hyp, 1 Mk\Hn,uj
M.;" =~ (I1, 2m(wih? ROk s +wkhk0k‘H u ) Zexp(—35 ), T2 (o2 +o7 3
EVE\"k|Hm,u; "~ k|Hn,u

(“\ mou; M| n,u')
= ([T, wy, )(HkQWhQ(UMH w o k\Hn )™ 26Xp(—l k ;H Y

k\Hm,uiJ”’k\Hn,uj
= ([T, wy Maif™,

(4.30)

_1 (K| Hopy iy —H| Hipu ;)
WhereMaZ’m = (IIk QWhi(U}f\Hm,ui + 013;|Hn,uj))) 2 exp(—% >k =)

2 2
g g
k| Hymouy T k|Hp u;

In table (4.1),/,, = 1 represents,,, # 0 and/,, = 0 represents,,, = 0. "0” means

we can use equation (4.30) without any problem and "x” meén,s andak| Hou, r€
both equal to zero. Whery, ;. and0k|Hn,uj are both equal to zero, we can't ellminate

o2 in equation (4.30). Now consider an examié&, ;;. The value ofM,; is

w h ( ,aug ,u )2
Moy = (Hk QkahQ(UmHl w T Uk;|H1 ) H297)” 3 exp(—3 3 Z w2 hk( — fgzuk‘Hl )1202 )-
Tk|Hy,ug k| Hyuy n
(4.31)
But from the table (4.1), we.know thaﬁwhu4 andyu gy, are all equal to zero. Then

the equation (4.31) becomes to

1

M = ([T 2ni2o2)f 5. (4.32)

M., is a constant .
2 2
Then we consideM,};. O3ty 3 01y g and02|H u, are equal to zero bunt”H1 w

is not equal to zero. The value M3} is

M.y, = (42 (w h2‘71|H s T 207)207)" %eXp( ;w#h?h%ﬂ;}[l :—220,%)
= (472 (w h201|H ug)QO-TQZ)_% exp(— %%::
= (4m*(w h101|H HQ)QJTQL)*% exp(— 20?1—“2) (4.33)
= (47r2h2<71u1,1 u2202)_% exp(— 20?1{71“2)
[Hy,ug

a1l
= w; May,

2 2 2 2
Then we consideM,,?}. O3y s 01| Hy g and02|H1,u4 are equal to zero bu;t2|Hh113
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is not equal to zero. The value M3} is

h 3
Maé}l = ( ( h20'2|H s _'_20, )20. ) %eXp( 1 2“2\H1 uo )

2 wi12h2o T3\t u S T20%
_1 WEh3H3 b
= (472 (w h202|H w)207) 2 exp(— 12};%1213
ug
2
= (47 (W3h303 1, ) 2070) 2 oxp(— ) (4.34)

Q\Hu
2 1,43

= Wy (47%2‘72\1{1 uSQU) QeXp( 1@)

T2|Hy ,ug
= Wy 1Ma§41

From the equation (4.30), (4.32), (4.33), and (4.34), we can separd#,gdft into
four sets.S; means thést secondary user and thied secondary user both transmit signal
to the fusion centerS, means only thést secondary user transmits signal to the fusion
center but thend secondary user keeps silerff; means only th&st secondary user
transmits signal to the fusion center but thed secondary user keeps silest, means
both thelst secondary user and tBed secondary user keep silent.

When allw, — oo, from the above equation, &ll,;*" in S, S, andS3 are equal to

a@j

zero. For the 2x2 case, the'equation (4.30) becomes to

DLQ(p(a|H1)>p(a|H0))
= p(u4|H1)p(u4\H1)Ma}1}1 - 2p(u4|H1)p(u4|H0)Ma}19l + p(u4|H0)p(u4\H0)Ma919l

= ([T; 2m(202)) 72 (pa(u| Hy) — pa(u|Ho))>.
(4.35)

From the above equation, when all — oo, D15(p(alH:), p(alHy)) will be a constant.
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But whenwjhiop .. > or, the equation of L2 distance becomes to

Drs(p(alHy), p(alHo))

= > 22 p(w| Hy)p(u; | Hy)Ma,;

—237, > p(wi| Hy)p(u;| Ho) M)

+ 225 2, p(wi|Ho)p(uy | Ho)May);

~ witwy (3 jes, P Hy)p(u; | H)M
)

—2p(u;| Hy)p(u;| Ho) M,
+P(Ui|H0)P(uj|H0)MQ?JO)
T (s, PO HO)p(uw | H)MS) .35)
—2p(w; | Hy)p(u;| Ho) M,
+p(ui|Ho)P(uj\Ho)M;?Jo)
wy (X4 csn RO H Py | H1 )M,
—2p(u; | Hi)p(u;| Hg) Mig?
+p(ui|H0)P(ujiHo)M;?f)
+(3 s, P(us | Hy)p(ug| Hy )M,
—2p(u; Hy )p(g| Ho)M ;>
+p(ui|Ho)P(uj\Ho)M;?f)
Let
Cr = Yijes, (W H)p(uy [ Hy)My ) — 2p(u| Hy)p(u;| Ho) My, + p(us| Ho)p(u, | Ho
Co = Yjes, P(wil Hy)p(uy | H )My — 2p(ui| Hy)p(u; | Ho )My, + p(u;| Ho)p(u; | Ho
Cs =Y es, P Hy)p(u; | H)My 5 — 2p(w| Hy )p(uy| Ho) My, + p(w| Ho)p(u;| Ho
C1 = Yijes, P HO)p(uy [ Hy)My ) — 2p(u| Hy)p(u;| Ho) My, + p(us| Ho)p(u, | Ho
(4.37)
The equation (4.36) becomes to
Dia(p(alHy), p(alHy)) ~ wytwy *C + wi'Cy + wy ' Oy + Cy. (4.38)
From the equation (4.38), we can have the following equations.
TP G~y = 'O+ C) (4.39)
and
4Dy = 2w Pwy 'Oy + 2wy PCy = 2w (wy TCh + Cs). (4.40)
d?w,
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From the equation (4.37), we can know the valu€’'pis composed of many integra-
tions of two Gaussian distributions. When two Gaussian distributions are the same, the
value of the integration will be maximum. The diagonal terms\ip} and M}, will
dominate the value af', Cs, C3, andC, and they are all larger than zero. Therefore, we
can know that”;, (s, C3, andC, are greater than zero. df, > 0, C; > 0, andC3 > 0,

the equation (4.38) is a decreasing function and it is a convex problem.

35

25 : .
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wl

Figure 4.5: L2 distance optimal diagram

From the above discussion, we can know:
e When allw;, approach td), D, (p(a|H,), p(a|Hy)) is a increasing function
o When allwihiof ;. .. > o, Dia(p(alHi), p(alHy)) is a decreasing function

Therefore, the L2 distance may have one optimal solution. Like in Fig. 4.5, wheés
small, the value of L2 distance approaches 0. But when- oo, the value of L2 distance

is close to a constant. In Fig. 4.5, it only has one optimal solution.
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4.3 Optimal Linear Combination

4.3.1 System Model

The system model of the optimal linear combination is like in the chapter 3. But here
we still use the orthogonal channel and approximate the convolution of the truncated
Gaussian distribution and the Gaussian distribution into the Gaussian distribution. Fig. 4.6
shows the system model.

In the optimal linear combination, we combine the signal received by every antenna

with weighting factors, like in Fig. 4.6. The signal which we want to detect becomes to
a=,/gHu+n, (4.41)

wherea = [ay, as, ..., ay)" andH = diag({hy, hs, .., hy]). /g is the power control and
it is a constant. The power summation-of all secondary users can not eRceddhe

value ofg is
N
9y hyPi=P. (4.42)
=1

The value ofP, can be calculated by the target SINR.
From the above equation, we can calculate the valug. oBut like in chapter 3,
it's not easy to optimize the detection probability. Here we still use L2 distance as the

performance matric.

Fusion center

2y
80 1 ©
- " @
I _|uNZ7N
5] 0 ©
g W,

T
N r:Wla

Figure 4.6: System model of censoring scheme of optimal linear combination
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4.3.2 GMM L2 Distance

The signal of every antenna received is the GMM distribution. First of all, consider the

signal received byth antennag;. The distribution of the signal received hyis

plailHy) =S5 plafus, Hy)p(ui|H)) .43)
= Pyeng, ;p(ailu; # 0, H;) + (1 = Paeng, ; )p(ai|lu; = 0, Hj),
wherej = 0,1 andi = 1,2, ..., N. p(a;|u; # 0, H;) andp(a;|u; = 0, H;) are Gaussian
distributions. Thereforey(a;| H;) is also GMM.
The equation of L2 distance in GMM is

/ (W] Pay, — W Py, )2dx, (4.44)

wherew; = [w;,, w,, ...,wlN]T andPaHj = [p(a1|H;), plas|H;), ...,p(aN|Hj)]T.

The equation (4.44) becomes to

Dpo(w/ Pay, ,w/P = [(w W/ Pq )Qdff
= [[(W] Pa,)? = 2w Pay W/ Pa, + (W] Pa,, )?*]dx
=D D, WEw fp a;| Hy)p(a;| Hy)dx
=250 wwy [ plaslHy)p(a;| Ho)dx
+> Zj wi oy, [ pas| Ho)p(a;| Ho)dx.

(4.45)
The integration of two Gaussian mixture models is
C =[O aifi) (X2, Big5)dx
= sz Z]’ o fiBjg;dx (4.46)

= Zz Zj faifiﬁjgjdx>
where)_; a; fi and}_; 3;g; are Gaussian mixture models.

From the equation (4.46), the value pp(a;|H.,)p(a;|H,)dx is

S plailHa)p(a|Ha) - = [ (325 plailui, Hi)p(wil Hin)) (325 plaglug, Hy)p(us| H,))dx
= fzi:1 ijl plailui, Hp)p(ui| Hi)p(aslug, Hy)p(ui| Hy,)dx
=iy 2y S plaslui, Ho)p(ui| Ho)p(aglug, Ha)p(u| Hy)dx
= Y1 2o plwil Hy)p(us | H) [ plailui, Hop(aglug, Hy)dx.

(4.47)
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From the equation (4.47), we can have the valu¢ pfa;| H,,)p(a;| H,).
Like in chapter 3, let

Mammy; = [ plail Hy)p(a;|Hy)dx
MGMMZ‘lj(‘) = [ plas| Hy)p(a;|Ho)dx (4.48)
MGMM?JQ = fp(ai|H0)P(aj‘HO)dX-

Therefore, the equation (4.45) becomes to

T T _ 11 10
Dra(wi Pay . Wi Pay ) =22 > wwy;Manwg; — 22,05 wi,wi;Mammy;
00
+ Zz Zj wliwlleGMMi]’
— T 11 T 10 T 00
=W MGMM WwW; — 2Wl MGMM W, + W, MGMM W,

=w! Mamm'' — 2Mamm'? + Mavm™ ) wi.
(4.49)

The optimization problem is

MaXy, DLQ(WlTPaHl ; WlTPaHO) =wl Meann'' ~2Manmm' + Mavm™)w,
s.t. w, > 0,0=1,2,,N

wiw, = 1.
(4.50)

This problem can be solved by the active set method.

4.4 Simulation Result

In the following simulation results, they have 2 secondary users and 2 receiving antennas.
The SNR of the primary user is 5. For convenience, we set the transmitting probability
of all secondary users is 0.3 undég hypothesis. The MIMO channel and sensing noise
are all random. Here we still use Neyman-Pearson detection in the fusion center and the

false alarm probability is 0.4.

4.4.1 Optimal Power Allocation

Fig. 4.7(a) and Fig. 4.7(b) show the simulated GMM J-divergence and detection proba-

bility in the optimal power allocation and the equal power allocation. In Fig. 4.7(a), when
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the target SINR is high, the value of GMM J-divergence will be low. And in Fig. 4.7(b)
shows the detection probability in the optimal power allocation and the equal power al-
location. In Fig. 4.7(b), when the target SINR is low, the detection probability will be
high. And the detection probability of the optimal power allocation is much better than
the equal power allocation. Fig. 4.7(a) and Fig. 4.7(b) can prove the GMM J-divergence
can be viewed as a performance matric for optimizing the detection probability.

Fig. 4.8(a) and Fig. 4.8(b) show the simulated GMM L2 distance and detection proba-
bility in the optimal power allocation and the equal power allocation. In Fig. 4.8(a), when
the target SINR is high , the value of GMM L2 distance will be low. And the Fig. 4.8(b)
shows the detection probability of GMM L2 distance in optimal power allocation. In
Fig. 4.8(b), when the target SINR is low, the detection probability will be high. And the
detection probability of the optimal power allocation is much better than the equal power
allocation. Fig. 4.8(a) and Fig.«4.8(b) can prove the GMM L2 distance can be viewed as

a performance matric for maximizing the detection probability.

4.4.2 Optimal Linear Combination

Fig. 4.9(a) shows the optimal linear.combination by the use of GMM L2 distance. When
target SINR is high , the value of GMM L2 distance will be low. And Fig. 4.9(b) shows the
detection probability of GMM in the optimal linear combination and the equal weighting
combination. In Fig. 4.9(b), when the target SINR is low, the detection probability will be
high. And the detection probability in the optimal linear combination is better than in the
equal weighting combination. Comparing two figures can prove the GMM L2 distance

can be viewed as a performance matric in the optimal linear combination.

4.4.3 Comparison

Fig. 4.10 shows that the detection probability of the censoring scheme is better than the
non-censoring scheme in the optimal power allocation. But the GMM L2 method is a lit-
tle better than the GMM J-divergence method. In Fig. 4.12(a), the interference of primary

users by the use of the censoring method is lower than by the use of non-censoring. From
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Fig. 4.10 and Fig. 4.12(a), we can know that the censoring scheme has lower interference
and higher detection probability. In Fig. 4.10, the detection probability of L2 distance is
greater than the detection probability of GMM j-divergence. But in Fig. 4.12(a), the inter-
ference of GMM L2 distance is little higher than the interference of GMM J-divergence.
Therefore, GMM L2 distance has the better detection probability and produces the lower
interference in the optimal power allocation. The GMM L2 distance method is better than
the GMM J-divergence method.

Fig. 4.11 shows that the detection probability of the censoring scheme is also bet-
ter than the non-censoring scheme in the optimal linear combination. Like in the optimal
power allocation scheme, the secondary users only transmit the informative data to the fu-
sion center. And as we mentioned before, the censoring scheme will keep silent when the
signal is not informative enough. Therefore,; the received interference of the primary users
in the censoring scheme will be little lower than the interference in the non-censoring
scheme. Fig. 4.12(b) shows this result.

In [19], it uses the distributed detection in the MIMO channel in the optimal power
allocation and it's also a censoring scheme. In this.system, every user makes his own
decision and transmits this decision to the fusion center. In this paper, the secondary user
transmits "1” when this user decides that it's undér and keeps silent when this user
decides that it's undeH,. We let the transmitting probability of the proposed scheme
is equal to the transmitting probability of the distributed detection and have the same
constraint. And in [19], it approximates the GMM into the Gaussian distribution in the
distributed detection.

In Fig. 4.13, it shows the comparison between the distributed detection and the our
proposed censoring scheme. In this figure, the proposed scheme is better than the dis-
tributed scheme. In the distributed detection, it quantizes the observation and lose the

information. Therefore, the detection probability of the proposed scheme will be better.
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4.5 Summary

In this chapter, we use the censoring scheme to reduce the average interference of the
primary users. The censoring scheme is that every secondary user transmits the obser-
vation with enough information to the fusion center or keeps silent. The distribution of
transmitting signal is the truncated Gaussian. Because the convolution of the truncated
Gaussian distribution and a Gaussian distribution doesn’t have the closed-form expres-
sion, we use the Gaussian distribution to approximate it. We use the GMM J-divergence
and the L2 distance as the performance metrics in the optimal linear combination. In
the optimal linear combination, we still use the L2 distance. In simulation results of the
optimal power allocation and the optimal linear combination, the detection probability of
the censoring scheme is better than the detection probability of the non-censoring scheme

and the interference of primary users is also lower than non-censoring scheme.
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Chapter 5

Conclusion and Future Work

In this thesis, we discuss two different schemes, the optimal power allocation and the op-
timal linear combination, by the use of the cooperative spectrum sensing in the cognitive
radio network. In part 1, we adopt the centralized detection in the fusion center. We focus
on maximizing the detection-probability and satisfying the target SINR of primary users.
Because the LLR doesn’t have a closed-form expression of the detection probability, we
use distance measures to agptimize the detection probability. In this thesis, we use two
distance measures, J-divergence-and L2 distance; to maximize the detection probability.
In simulation results, we can know that the detection probability of the optimal power
allocation is better than the equal power allocation and the detection probability of the
optimal linear combination is better than the equal weighting combination. In part 2,
we propose another method, the censoring method, to reduce the average interference of
primary users but has better detection probability than non-censoring scheme.

In this thesis, we assume that the channel and the power of primary users are known.
But in practical system, they may not be known by the fusion center or secondary users.
We could estimate these parameters and observe the affect of the system performance.
And in censoring scheme, we don't discuss the affect of transmitting threshglds,
secondary users. Obviously, the thresholds will affect the detection probability in cen-
soring scheme. We can try to find the relation between the thresholds and the detection

probability.
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