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摘  要 

 

 

隨著製程技術進入了奈米的紀元，以往隨著製程縮小所得到的功率節省也因此慢下來；然而，

在現代的設計中，高時脈頻率和複雜的功能造成顯著的功率密度增加。多重供應電壓是一項可

以平衡功率和效能的既普遍又有效率的技術。考慮多重供應電壓的技術，我們把一個設計分割

成多個電壓島，每個電壓島分別在平面規劃上佔有它的區域並且工作在一個特定的電壓。 在

這篇論文中，我們把電壓島的產生跟平面規劃合併在一個有效率並且使用決定論演算法的平面

規劃器裡面。給予一組區塊和所對應的可工作的電壓，我們使用動態規劃去產生一組已經有電

壓指定並且功率消耗已經被降至最低的平面規劃。與前人的作品比較起來，實驗結果顯示我們

的演算法在執行時間和功率消耗上可以保證有絕對的勝出，尤其在比較龐大的設計上。    
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Abstract 

 

 

As technology advances into nanometer era, the power benefit from process scaling slows down; 

however, the high clock rate and the complex functionality of a modern design result in a significant 

growth in power density. Multiple supply voltage is a prevalent and effective technique to balance 

power and performance. Considering multiple supply voltage, a design is divided into voltage islands, 

where each island occupies a physical region of the floorplan and operates at a certain level of supply 

voltage. In this thesis, we combine voltage island creation with floorplanning based on an efficient 

and deterministic floorplanner. Given a set of blocks and the acceptable voltage levels for each block, 

we use dynamic programming to generate a floorplan with voltage assignment such that power 

consumption is minimized. Compared with prior work, experimental results show that our algorithm 

is promising in running time and power, especially for large design cases. 
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Chapter 1  

 

Introduction  

 

As the continuous scaling-down of CMOS technology, the circuit size is becoming larger. To 

cope with the increasing design complexity, hierarchical design and reuse IP (Intellectual Property) is 

widely used [1] [7]. And as the first stage of the physical design hierarchy, an efficient and effective 

floorplan would highly affect the overall chip performance. Meanwhile, how to efficient power 

dissipation has become one of the most important issues since the power density is also increasing as 

the circuit size is increasing. There are many techniques has been applied to reduce the power 

consumption of a VLSI design. Of all low power techniques, multiple supply voltage (MSV) is the 

most effective method. 

The idea of MSV is to provide the voltage level that is just enough for a block to work correctly. 

Not only dynamic power could be reduced by MSV since the consumption of dynamic power is 

proportional to the square of the supply voltage, but the consumption of static power could also be 

lower by MSV. In order to lower the usage of power network resources, we partition the chip into 

areas called “voltage islands.” Blocks in each voltage island are assigned to the same voltage level.  
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1.1 PREVIOUS WORK 

 

There are several previous papers addressing similar low power floorplanning using voltage 

islands problem. Ma and Young [2] proposed a floorplanning method for SOC designs that is tightly 

integrated with the island partitioning and voltage assignment steps. Annealing based floorplanner is 

applied in their approach. First, they recursively assign voltage level to the sub-trees under a root of 

an initial slicing tree which represents a slicing floorplan. For each sub-tree, they are given the 

number of voltage islands that is available. Then they would optimize the power cost under this 

sub-tree by using dynamic programming. After voltage assignment, they start to perturb the initial 

floorplan and see if they need to take more iteration. The voltage islands formed by their approach 

would only be in rectangular shape since a sub-tree could always be in rectangular shape.  

Lee et al. [4] generate a voltage island aware floorplan and the power is optimized under a timing 

constraint. There are three phases in this work. First, given a netlist without reconvergent fanouts, 

they handle voltage islands partitioning by dynamic programming which can guarantee an optimal 

solution for the voltage assignment in linear time. In the second phase, because level shifters are 

needed when a VDDL block drives a VDDH block, level shifters are introduced and treated as soft 

blocks during floorplanning. In the last phase, a power-network aware floorplanner would be 

conducted to pack the blocks such that the power-network resource will be minimized while the 

critical paths satisfy the timing constraint. The voltage assignment step and the floorplanning step are 

done separately in their algorithm flow.  

Ma and Young [5] proved that the voltage assignment problem could be solved optimally under 

timing constraint by their approach. They solve this problem by presenting a general formulation as a 

set of linear inequalities to represent the timing requirements. Then they transform this problem into a 

convex cost network flow problem, and they solve it optimally by a cost-scaling algorithm in 

polynomial time. This is still a work using floorplanner based on simulate annealing.  
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One of the recent works by Mak and Chen [6] has also formulated this problem on SOC designs. 

Given a floorplanning input, the voltage assignment and island partitioning problem is formulated as 

a 0-1 integer linear program. In their approach, they take advantage of the voltage island technique to 

reduce the power consumption while carefully taking the level shifter overhead and power network 

complexity into account. Although a fragmentation cost (number of adjacent cores operating at 

different voltages) is used to model the power network complexity, this cost is not related to the 

number of islands directly.  

 

1.2 OUR CO�TRIBUTIO�S 

 

How to generate a floorplan efficiently is a very important issue since floorplanning is the 

beginning of modern physical design flow. An efficient floorplanning would extend the space for 

doing the rest steps in physical design flow such as placement, routing, and manufacturing. Simulated 

annealing has been the most popular method of exploring good solutions on the floorplanning 

problem. However, one common drawback of most annealing based floorplanners is that the 

execution speed would become quite slow when the size of circuits grows large. Furthermore, it is 

always a difficult topic for the annealing based floorplanners to handle circuits with soft modules, 

because they need to search an extremely large solution space, which takes a long time to cool down 

and reach the target temperature. 

Our method could bottom up generate a great number of possible layouts of the input block set, 

and the voltage assignment of each block is also done. Then we could pick one solution that is most 

fit into our requirements. The requirement includes area, wire length, and by our method, power cost. 

No more iteration needs to be taken since all the conditions are already acceptable. In our approach, 

the voltage assignment step and the floorplanning step are done simultaneously.  
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In this thesis, we handle the low power floorplan by using MSV technique and slicing tree 

representation. The experimental result shows that our method would efficiently generate a floorplan 

with voltage islands. Meanwhile, the cost which includes power, area, and wire length is acceptable. 

Moreover, if we want to change the specific weight of the cost, which means if we want to change the 

weight of area, power, wire length, or even to minimize any one of them, we do not need to take any 

other iteration, we could just pick a solution that is most fit into this new cost from the solution space. 

The back-tracing step is the step which after we select a solution and then we trace back from the root 

of this slicing tree to find its corresponding voltage assignment. And the back-tracing step would not 

take extra effort to map to the assigned voltage level since our method could generate the 

corresponding voltage assignment of this floorplan by dynamic programming in a table which could 

directly map to its structure without searching. Experimental results based on the GSRC benchmark 

with voltage information that is randomly generated. 

The remainder of this thesis is organized as follows. In Chapter 2 we briefly review slicing tree 

representation. Also, we would describe the meaning of a shape curve of a slicing tree, definition of 

voltage islands, and give the problem formulation. In Chapter 3, we discuss our methodology for 

dealing with voltage assignment based on a deterministic floorplanner. Our experimental results are 

presented in Chapter 4. Finally we give the conclusion of this thesis and future work in Chapter 5. 
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Chapter 2  

 

Preliminaries  

 

2.1 REVIEW OF THE SLICI�G TREE REPRESE�TATIO� 

 

  A slicing floorplan [3] could be represented by a binary tree. And this binary tree which is called 

slicing tree is a binary tree with two circuits at the two leaves and cut types at the internal nodes. The 

cut types include horizontal cut (H cut) and vertical cut (V cut). The H cut divides the floorplan 

horizontally, and the left child represents the bottom sub-floorplan while the right child represents the 

top one. Similarly, the V cut divides the floorplan vertically, and the left child represents the left 

sub-floorplan while the right child represents the right one. There is an example of a slicing tree and 

the corresponding slicing floorplan in Fig. 2.1.  

 

 

 

Fig. 2.1 an example of a slicing tree and the corresponding slicing floorplan 



6 

 

 

2.2 THE SHAPE CURVE OF A SLICI�G TREE 

 

 The idea of a shape curve is first introduced in [10] to record the possible layouts of a circuit so 

that we could find an optimal floorplan among all slicing structures consistent with a given plane 

point placement by some shape curve operations and constraints.  

 

 

 

  

Fig. 2.2 The shape curve of a slicing tree 

 

In Fig. 2.2 (a), there are three blocks in the input block set. The shape curve in Fig. 2.2 (b) is 

formed by all the possible layouts of the input block set. Each point in this shape curve could map to 

the corresponding slicing tree structure which represents a slicing floorplan. An operator ‘⊕’ [9] is 

introduced here to replace H or V in a slicing tree in this thesis. And the idea of using ‘⊕’ [9] to 

replace H or V in a slicing tree is to defer the decision of ‘H’ or ‘V’ of a slicing tree rather than only 

generalize the orientation for each module as in [11]. So when we use this operator in a slicing tree, 

there are many possible layouts under this operator since we have not decided what kind of cut this 

tree has. We keep these layouts in a shape curve. The three steps to actualize the combination of two 

shape curves are fusing with the operator ‘⊕’. The three steps to combine two child curves A and B 

(a) The input block set  (b) The possible layouts of (a) are kept in a shape curve              
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into curve C are as follows. 

1. Addition: First, adding two curves A and B horizontally to get curve Ch, on which each point 

maps to a horizontal combination of two subfloorplan layouts from A and B. 

2. Flipping: Next, flipping curve Ch symmetrically based on the W = H line to derive curve Cv. The 

purpose of this step is to generate the curve that contains the corresponding vertical combination 

cases from the two subfloorplan layouts. 

3. Merging: finally, merging Ch and Cv into the parent curve C. In here, for a given height, the 

point with a smaller width out of Ch and Cv will be reserved while others would be pruned. 

 

2.3 DEFI�E THE �UMBER OF VOLTAGE ISLA�DS 

 

In this section, we would explain how we define the number of voltage islands. In Fig. 2.3, the 

blocks in the same color could be assigned to the same voltage level, and obviously there are two 

rectangular shape voltage islands in this circuit. The corresponding working level of this two voltage 

islands is 1.1V and 1.2V. Furthermore, not only rectangular shape could form voltage islands, but 

there are also some other shape could form voltage islands.  

 

 

Fig. 2.3 Voltage islands in a rectangular shape 

 

 In Fig. 2.4, it could still be counted as two voltage islands since the blocks in the same color could 

be assigned to the same voltage level, and these blocks are stick together in this figure.  
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Fig. 2.4 Voltage islands in an arbitrary shape 

 

 An extreme case would happen in our approach. In Fig. 2.5, block C is in the middle of a voltage 

island which is formed by five blocks A, B, D, E, and F. There would be a serious problem. That is, if 

we merge these five blocks into one voltage island, then this voltage island’s supply voltage would be 

one I/O pad, however, block C is assign to another voltage level, how do block C connect to its I/O 

pad since it is isolated.  

 

 

Fig. 2.5 An extreme case of voltage assignment 

 

 Here we take advantage of the slicing tree representation. The left side of Fig. 2.6 is showing that 

a slicing tree of block A and B. The middle of Fig. 2.6 is showing the corresponding floorplan. The 

right side of Fig. 2.6 is showing that the physical layout of block A and B is actually not perfectly 

match. Therefore, block C in Fig. 2.5 could physically find a way out and connect to its supply pad. 

There is no need to assign other common voltage level between block C and surrounding blocks in 

order to connect to the I/O pad. In the case of Fig. 2.5, we could still count it as two voltage islands. 
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Fig. 2.6 An example of physical layout of a slicing tree 

 

2.4 PROBLEM FORMULATIO� 

 

 Given a set of n soft blocks with area A1, A2 … An, and the corresponding aspect ratio bounds [li, 

Ui] for i = 1…n. Each block i is associated with a Cost Table Ti that records the legal voltage levels 

for the block and the corresponding average power consumption values. The legal voltage levels of a 

block are characterized by designer. As long as the rules of timing constraint could be satisfied after 

simulations, designers could regard this voltage as a legal one. The power consumption 

corresponding to each legal voltage can then be estimated. In this work, we compute the power cost 

of a block i operated at voltage v as v
2
Ai. Also, we are given a set of m nets {N1, N2, …, Nm}, and the 

connections of these nets are among blocks. Given a cost function ψ= λAA + λwW + λpP where A is 

the area of the floorplan, W is the total wire length estimated by the half perimeter bounding box 

method and P is the total power cost. Our goal is to generate a floorplan F that the cost ψ is 

minimized. Or we could just select a local minimized solution (for example, while focus on area 

minimization, then λw and λp could be tuned to zero) in the solution space which is built by us in a 

bottom up process.  
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Chapter 3  

 

Methodology  

 

3.1 OVERVIEW : 

 

There are three main steps in our methodology. They are as follows. 

 

(1) Partitioning :  

 

We cannot take the price to explore the whole slicing layout of all blocks since the price 

would be too expensive. Therefore, we divide the original input block set into several small sets 

by hMetis [8], the state-of-the-art hypergraph partitioner. In this step, we not only initially 

minimize the interconnections among blocks, but by treating voltage level as a cut parameter, we 

could also initially divide the originally input block set into voltage island with higher 

probability.The limitation of block number to each sub-circuit in this step is set to ten by default. 

For each sub-circuit, we will use enumerative packing to generate all the possible tree structures 

and layouts. While packing, we also modify the generalized operator of a slicing tree. 
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(2) Combining and swapping : 

   

In this step, a modified generalized operator is introduced. Enumerative packing (EP) [9] is 

applied to find all possible combinations of blocks within a sub-circuit we get from last step. While 

packing, we use modified generalized operator to combine two shape curves and their 

corresponding power information. The origin idea of this operator is to defer the decision on a 

slicing tree structure, and use shape curve to represent the possible layouts under this operator. But 

the function of this operator cannot just combine the shape curve, which represents the possible 

layouts of a sub-circuit, it also has to generate the power information of this sub-circuit since we 

want to solve low power problem. 

Here we use dynamic programming to grab the power information we need. Each modified 

generalized operator would record all the possible voltage level combinations (or the voltage level 

combinations sifted by a cost function) of the left child and the right child of this operator. Under 

this operator, we are also able to search whether there are islands could be merged if they are 

assigned the same working level.  

The total framework of step is first to get all tree structures by EP and their corresponding 

available working levels. After obtaining the shape curves and the power information of all 

sub-circuits, we apply enumerative packing on high level to obtain the final shape curve. The 

whole framework is built in a bottom-up process. 

 

 

(3) Back-tracing : 

   

Now, we already have the shape curve and the corresponding power information. We could 

select a point that is fitting into our limitation from the final shape curve. This point we select 

from the final shape curve represents the floorplan of whole input block set. We can start the 
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back-tracing process from this point which is the root of the final slicing tree. Whichever point 

pick from the final shape curve, the orientation of each block and the voltage assignment of each 

block are already be decided. 

 

 

  From the overview of the total methodology, we know that first we partition our circuit into many 

sub-circuits in step one. Second, in step two we generate a huge collection of possible layouts which 

is kept in a shape curve and their corresponding power information which is explored by dynamic 

programming. Finally we choose a point which is sifted by a cost function from the final shape curve 

in step three. We are going to discuss the detail of each part in our methodology in the following 

sections.  

 

3.2 MORE CO�DITIO�S O� PARTITIO�I�G :  

 

   Originally we only use hMetis to partition the input circuit into sub-circuits by min-cut. Here we 

not only take a net between two blocks as a cut if two blocks connected by a net are belong to 

different partitions, but voltage levels also must be treated as the connections among blocks.  

   How to decide the weight of each connection is a very important issue. Here we first transform a 

voltage level (Vk) as a net, and then we find the blocks which could be assigned to this level. Second, 

the sum of the square of a voltage level Vk multiplied by the area Ai (i� = 1, 2, … , n�) of each block 

which is connected to this level would be treated as a parameter λ (see Eq. 1) while we want to 

calculate the weight of the net transformed by this voltage level. The parameter λ�and λ
′
� is 

calculated as follows: 
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λ� = (∑ A	
 
�


	
� )  × V�
�         (1) 

λ
 
� =  (∑ A	
 

�


	
� ) × V�
� −  λ�     (2) 

 

   In Eq. 2, we define λ
′
 to be the power saving of a net formed by Vk where Vc is the chip level 

voltage. We take λ
′
 multiplied a constant to be the weight of this net, and the meaning of this weight 

is trying to seprate blocks which could be assigned to this level into the same partition as possible. 

 

3.3 MODIFIED THE GE�ERALIZED COMBI�E OPERATOR : 

 

   In this section, we modify the origin idea of the generalized combine operator to handle the power 

cost problem. The generalized combine operator ‘⊕’ is originally to defer the decision of ‘H’ or ‘V’ 

of a slicing tree. It only keeps some layouts of a sub-circuit in a shape curve efficiently. Now, we use 

dynamic programming to generate and record the possible power combinations of the two children 

under ‘⊕’.  

 

 

A. The specifics of the modified ‘⊕⊕⊕⊕’ : 

 

There are two main parts of this new operator. The first part is to deal with the shape curve of the 

two sub-circuits. In the mean while, the second part that combines the power information of the two 

sub-circuits is also take place. Under the operator ‘⊕’, the “left-right” or the “top-bottom” order have 

no difference since the shape curve would keep these possible solutions. Furthermore, the possible 

voltage assignment combinations are kept in the “Level Table”. Fig. 3.1 gives an example of the two 

main parts of ‘⊕’. In Fig. 3.1 (a), ‘⊕’ generates the shape curve of sub-circuit A and sub-circuit B. In 
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the mean time, we collect the available voltage level information of each sub-circuit and ‘⊕’ would 

generate the possible level combinations of these two sub-circuits and keep the information in the 

level table by dynamic programming. 

 

          

(a) Shape curve part of ‘⊕’              (b) Available level of each block 

Fig. 3.1 An example to illustrate ‘⊕’ 

 

The Level Table is a table to record the possible power combinations, and the order to fill this 

table is completely the same to the “Structure Table”. We use Structure Table to record the possible 

tree structure under an operator ‘⊕’. Also, we will have to record the cost information to pick a 

minimum cost solution in the back-tracing step.  

 

B. The process of combining : 

 

An example of this process would be shown in Fig. 3.2 and Fig. 3.3. In Fig. 3.2, there is a block 

set {A, B, C, D} includes four blocks. Each block has its own possible working levels. Now, we are 

going to generate the possible slicing tree structures of this block set. In Fig. 3.3 (a), we first record 

the shape curve of each block. If the input block is hard block, the number of point which is kept in 

the shape curve in the first floor of the Structure Table is two. At the same time, a Level Table is 

generated in Fig. 3.3 (b). The size of this table is just equal to its corresponding Structure Table. In 

the first floor of Level table, we record the corresponding possible level combinations in the same 

location as where the structure is in the Structure Table so that we could directly map to the 
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corresponding voltage assignment without searching when back-tracing step.  

 

 

Fig. 3.2 Input information of an example 

 

The second floor of the Structure Table is to record the combinations of any two blocks. 

Meanwhile, the possible working level combinations are also recorded in the second floor of the 

Level Table. Deduced by analogy, we could complete every floor by a bottom-up process. It is 

deserve to be mentioned that in Fig. 3.3 (a) we use dynamic programming to generate the shape curve, 

so when we build up the larger subset of modules we could just reuse the previously generated shape 

curves without redundant computations. And on the top floor are the final shape curve and the 

corresponding voltage assignment to this input block set {A, B, C, D}.  

ABCD 

ABC ABD ACD BCD 

AB AC AD BC BD CD 

A B C D 

(a) Structure Table            (b) The Corresponding Level Table to (a) 

Fig. 3.3 The Structure Table and the Level Table of Fig. 3.1 
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φ =  λ�n +  λ�p      (3) 

 

The Level Table would record the corresponding voltage assignment of the sub-circuit. However, if 

we want to generate the whole voltage assignment possibilities, the memory cost would be 

unacceptable. Here we introduce a cost function (Eq. 3) to sift the voltage assignment combinations 

with good solution quality, where n represents the number of voltage islands and p is the power cost. 

And then we keep these sifted solutions in a Cost Table. We sift the voltage level combinations in Fig 

3.3 (b) by Eq. 3 and the sifted solutions are shown in Fig. 3.4 (a). Solutions that satisfy the inequality 

φ − ϵ ≤  φ ≤  φ + ϵ would be kept, and others would be pruned, where ϵ is a constant.  

 

C. Swapping details : 

 

As the process of combining is proceeding, we will have to check whether we swap the left child 

and the right child of a ‘⊕’ would physically merge a voltage island or not. If yes, then the swapping 

action must be taken. Because of the definition of the number of voltage islands we mentioned in 

section 2.3, the shape of a voltage island could be not just rectangular. As a result, the swapping step 

would merge voltage islands without considering whether this island is rectangular or not. We would 
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Fig. 3.4 The pruned Level Table and corresponding Cost Table 
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illustrate the swapping concept in Fig. 3.5.  

 

 

Fig. 3.5 An example to illustrate the swapping process 

 

 In Fig. 3.5, we assume that block A and D could be assigned to the same voltage level while block 

B and C could be assigned to the same voltage level but this level is different from block A and D. 

Now, as the layout shown in the left part of Fig. 3.5, we would count the number of voltage islands as 

three since block A and D is physically separated. But if we swap block A and B, we would be able to 

count the number of voltage islands as two. Here we would check the two children of a ‘⊕’ to see if 

there are any sub-tree under this ‘⊕’ could be merged with another sub-tree. If yes, then we would 

lock the ‘⊕’ of that sub-tree and record the power cost in the Cost Table after swapping. If a ‘⊕’ is 

locked, then we would physically swap this sub-tree in the back tracing step. 

 

3.4 HIGH LEVEL COMBI�I�G A�D BACK-TRACI�G 

 

 In order to avoid the possibility of the form of large dead space caused by the usage of Intellectual 

property (IP) which contains numbers of big macros, we pack the sub-circuits by high level EP. Treat 

every sub-circuit as a block in EP, we pack these sub-circuit, which we already have their shape 

curves, to generate the final shape curve.  

 During high level combining of two circuits, we still could swap the sub-trees of the two circuits 

to merge the voltage island if the voltage level is the same. First we check the Level Table of the left 

child and the right child of each circuit whether they could be assigned to the same voltage level. If 

yes, then we could merge these two voltage island into one. Else we map to the Structure Table and 
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trace back to check whether the sub-trees satisfy the merge conditions. If the merge conditions are 

satisfied and this sub-tree is not locked in the previous combining and swapping step, then we could 

lock this sub-tree and physically swap it in back tracing step.  

 Once the final shape curve has been generated, the voltage assignment to each circuit and the 

power cost to each voltage assignment are all available. Now we combine power, number of voltage 

islands, area, and wire length into our total cost, and then we pick the minimum cost one to be our 

final floorplan and the corresponding voltage assignment to each block.  

Here we give an example in Fig. 3.6 to illustrate how the back tracing step proceed. There are 

three tables in this figure, a Cost Table, a Level Table and a Structure Table. These three tables are 
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Fig. 3.6 An example of the back tracing step 
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from Fig. 3.3 and Fig. 3.4. First, we pick a minimum cost solution from the Cost Table. Then we find 

the corresponding voltage assignment in exactly the same location as in the Cost Table in the Level 

Table. Similarly, we could find the tree structure from a shape curve in the Structure Table. Finally, 

we could top down and recursively trace back to get the final floorplan and the voltage assignment to 

each block.  
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Chapter 4  

 

Experimental Results 

 

 We have done experiments on the GSRC soft blocks floorplanning benchmarks. Since no voltage 

information is provided in those benchmarks, we use the voltage information that is from Qiang Ma 

and Evangeline F.Y. Young’s previous work [2], which have randomly generated the voltage levels 

for each block from the set {1.0V, 1.1V, 1.2V, 1.3V, 1.5V} and 1.5V is assumed to be the chip-level 

voltage. Our algorithm is implemented in the C++ programming language and all experiments were 

performed on a Linux machine with Intel Core 2 Duo 2 GHz CPU and 2GB memory. The wire length 

is calculated by using half perimeter bounding box. We compare our algorithm with [2] and the 

number of voltage islands generated range is from zero to four.  

In the benchmark of small size circuits such as n10, and n30 in Table 4.1 and Table 4.2, it is not 

obvious to see the difference between these two approaches in power, run time, and area. But the wire 

length is averaged about 16% losing to [2] in our approach. This is because the connections between 

blocks could initially been cut in the partitioning step in order to group blocks with the same working 

levels together. But the speed up here is averaged about 4.8.  
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Data # of islands Power Run time(s) HPWL Area 

N10 

 

Ours [2] Improve Ours [2] Speed up Ours [2] Improve Ours [2] Improve 

Vi = 0 498778 498778 0% 0.047 0.78 16.60 13074 13250 1.30% 223309 222555 0% 

Vi = 1 400655 393660 -1.70% 0.505 1.17 2.32 17858 13865 -28.70% 225009 223918 0% 

Vi = 2 359287 352637 -1.80% 0.505 1.41 2.79 15582 13147 -19% 224292 222530 -0.70% 

Vi = 3 301464 309498 2.60% 0.505 1.72 3.41 16742 13107 -27% 223617 224842 0.50% 

Vi = 4 285083 295682 3.60% 0.505 1.8 3.56 17707 13903 -27% 224928 222977 -0.80% 

Average Improvement 0.50% 

 

5.73 

 

-20% 

 

-0.40% 

Data # of islands Power Run time(s) HPWL Area 

N30 

 

Ours [2] Improve Ours [2] Speed up Ours [2] Improve Ours [2] Improve 

Vi = 0 469330 469330 0 1.17 7.64 6.53 37948 34090 -11% 214555 211720 -1% 

Vi = 1 346487 370179 6.40% 3.22 10.08 3.13 43080 35907 -19.90% 214067 215475 -0.38% 

Vi = 2 329564 338939 2.76% 3.648 11.17 3.06 38530 38371 -0.40% 217652 213974 -1.70% 

Vi = 3 303276 318792 4.86% 3.569 11.42 3.20 41750 37687 -10.80% 214508 217452 1.30% 

Vi = 4 247134 297259 16.80% 3.479 15.13 4.35 45139 36469 -23% 214420 210206 -2% 

Average Improvement 7.70% 

 

4.05 

 

-13% 

 

0% 

Data # of islands Power Run time(s) HPWL Area 

N50 

 

Ours [2] Improve Ours [2] Speed up Ours [2] Improve Ours [2] Improve 

Vi = 0 446802 446802 0 2.13 25.17 11.82 89432 79448 -12.50% 203803 200465 -1.60% 

Vi = 1 305227 310796 2% 7.54 25.82 3.42 98856 86723 -13% 204860 212706 3.70% 

Vi = 2 283445 292137 3% 7.54 28.42 3.77 95110 90074 -5.50% 208107 221209 5.90% 

Vi = 3 262264 279442 6% 7.61 26.4 3.47 98681 93934 -5% 204466 230740 11.30% 

Vi = 4 238193 245203 6% 7.813 35.08 4.49 97143 92425 -5% 204884 223999 8.50% 

Average Improvement 2.70% 

 

5.39 

 

-8.4% 

 

5.6% 

Table 4.1 Experimental result on GSRC benchmark n10 

Table 4.2 Experimental result on GSRC benchmark n30 

Table 4.3 Experimental result on GSRC benchmark n50 



22 

 

 

 

 

 

 

  

Data # of islands Power Run time(s) HPWL Area 

N100 

 

Ours [2] Improve Ours [2] Speed up Ours [2] Improve Ours [2] Improve 

Vi = 0 403877 403877 0 6.97 87.52 12.56 130030 144325 10% 185890 180674 -2.88% 

Vi = 1 338986 354566 4% 16.15 93.85 5.81 156137 133389 -17% 186833 187139 0% 

Vi = 2 284050 319961 11% 17.078 106.22 6.22 162128 133912 -21% 187039 187726 0% 

Vi = 3 267786 286636 7% 17.113 108.27 6.33 156222 141916 -10% 187079 189106 1% 

Vi = 4 259479 265173 2% 17.078 105.12 6.16 148151 140141 -5% 187212 190363 1.60% 

Average Improvement 6% 

 

7.41 

 

-9% 

 

0% 

Data # of islands Power Run time(s) HPWL Area 

N200 

 

Ours [2] Improve Ours [2] Speed up Ours [2] Improve Ours [2] Improve 

Vi = 0 395316 395316 0% 12.37 287.01 23.20 251832 293015 14% 176238 177028 0.40% 

Vi = 1 319205 323634 1.30% 24.711 304.72 12.33 311501 325514 4.30% 184348 180936 -1.80% 

Vi = 2 285591 302733 5.70% 24.04 425.23 17.69 327764 299397 -9.40% 184395 182840 0% 

Vi = 3 274482 290853 5.60% 24.508 441.16 18.00 314456 330801 4.90% 184189 186078 1% 

Vi = 4 260458 269593 3.30% 30.436 455.37 14.96 321492 327422 1.80% 184213 184680 0% 

Average Improvement 4% 

 

17.24 

 

3.9% 

 

0% 

Data # of islands Power Run time(s) HPWL Area 

N300 

 

Ours [2] Improve Ours [2] Speed up Ours [2] Improve Ours [2] Improve 

Vi = 0 612608 612608 0% 26.67 623.34 23.37 474291 506844 6.40% 284358 290003 1.94% 

Vi = 1 519318 546558 5% 46.348 688.76 14.86 527666 518432 -1.70% 285625 296435 3.60% 

Vi = 2 430085 455192 5.50% 46.426 791.2 17.04 556681 582631 4.40% 285553 297003 3.80% 

Vi = 3 416473 427239 2.50% 46.659 838.89 17.98 560348 570106 1.70% 285533 302007 5.40% 

Vi = 4 397910 403606 1.40% 46.568 902.38 19.38 573125 577876 0.80% 295131 290944 -1.40% 

Average Improvement 1% 

 

18.53 

 

2.3% 

 

2.7% 

Table 4.5 Experimental result on GSRC benchmark n200 

Table 4.6 Experimental result on GSRC benchmark n300 

Table 4.4 Experimental result on GSRC benchmark n100 



 

In Table 4.3 and Table 4.4, we see the difference of 

decreasing to about 8.5%. This is because as the circuit size growing larger,

be much more, and the net cuts cau

still take the net formed by voltage level into consideration. As a result, 

our approach could generate a floorplan with less wire length and better power saving in the larger 

circuit size test case. We would show the experimental r

modules in Table 4.5 and Table 4.6

  In Table 4.5 and Table 4.6, 

times longer than the run time of our approach. In the mean time, the power saving of our approach is 

mostly more than [2], and the wire length is 

that our method is more suit for larger scale designs.

 

Fig. 4.1 The 
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we see the difference of wire length between our approach and [2] is 

%. This is because as the circuit size growing larger, nets of this circuit would 

the net cuts caused by partitioning would fewer while in the partitioning step we 

ake the net formed by voltage level into consideration. As a result, we are able to anticipate that 

our approach could generate a floorplan with less wire length and better power saving in the larger 

We would show the experimental results on circuit with 200 modules and 300 

5 and Table 4.6.  

 the run time of annealing based floorplanner 

times longer than the run time of our approach. In the mean time, the power saving of our approach is 

mostly more than [2], and the wire length is averaged better than [2] as we expected. 

that our method is more suit for larger scale designs. 

Fig. 4.1 The Resultant Floorplan for n300 

wire length between our approach and [2] is 

nets of this circuit would 

sed by partitioning would fewer while in the partitioning step we 

we are able to anticipate that 

our approach could generate a floorplan with less wire length and better power saving in the larger 

esults on circuit with 200 modules and 300 

the run time of annealing based floorplanner is averaged about 18 

times longer than the run time of our approach. In the mean time, the power saving of our approach is 

than [2] as we expected. This proofed 
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Chapter 5  

 

Conclusion and Future Work 

 

 In this thesis, we have proposed a fast, high-quality and non-stochastic approach for the 

floorplanning problem with simultaneous voltage assignment and island partitioning. The three 

factors area, wire length and power consumption of the resultant floorplan are taken into 

consideration while picking the resultant floorplan. The experiment results have shown that we are 

able to achieve a great power saving for the testing data sets while the number of voltage islands is 

restricted. Also, as the complexity of circuit is increasing, our approach is still able to handle the low 

power floorplanning with voltage islands problem efficiently. The decrease of execution time is 

significant while we still could keep other factors under a reasonable loss or even better than a 

simulated annealing-based approach for the same problem.  

 In the future, we will further improve the algorithm quality by refining the pruning strategies. The 

partition strategies need more constraints to balance the weight between wire length and power cost. 

The voltage islands should be placed close to the power pins in order to minimize the power routing 

complexity and the IR drop. Therefore, we are also considering the relationship among blocks, nets, 

and I/O pads to handle the IR drop problem.  
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