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Abstract

Wireless body area network (WBAN) has been paid attention in health-care and
medical application field in recent years. Many of the channel models have been
proposed for this potential wireless network system. However, most of them are
built in physical layer, and they seldom analyze the body channel in dynamic
scenario.

In this thesis, we propose a MAC channel model for dynamic WBAN. We
perform the dynamic measurement of two vital behaviors, walking and sleeping.
Apart from considering the conventional statistics of received power amplitude, the
model also investigates the time-domain correlation of those two activities to
enhance the modeling accuracy in MAC. We propose the two-state model and
three-level model to characterize the two behaviors, respectively. With the
consideration of time-domain correlation in modeling, the proposed models can

achieve high accuracy with the measured data in MAC point of view.
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Chapter 1

Introduction

Wireless body area network (WBAN) has been paid attention in health-care and
medical field in recent years. One of the most promising applications is the wireless
patient monitoring. The prototypes of the health-care WBAN like HUMAN++ [1] and
WiBoC [2] have already been promoted. By wireless medical monitoring, medical
service will be ubiquitous, and patient is no longer constrained in his location and
activity. For instance, medical WBAN can continuously monitor the important vital
signals like ECG, blood pressure, temperature and SPO2 which can be reported to
remote medical unit for further diagnosis. In other words, WBAN could be
responsible for the “last meter” transmission .in the ubiquitous health care system.
Therefore, providing a high reliable WBAN System becomes a very important issue.
Channel modeling is seen as.the first step to_develop a communication system,
learning the knowledge of WBAN channel modelbecome quite important.

A number of channel models for WBAN have been proposed [3]-[9]. But most of
them build the channel model in physical layer, and they seldom analyze the body
channel in dynamic scenario. Nation ICT Australia (NICTA) has presented a dynamic
human on-body and on-body to off-body WBAN channel model [7]-[9], which
characterized the measured received signal amplitude with well-known statistical
model. However, it is lack of modeling accuracy as we consider the end to end
latency and queuing condition which is in MAC point of view. For this reason, in this
thesis, we proposed a Two-state walking channel model, which consider the time
domain correlation in channel model to improve the modeling accuracy in MAC layer.
Besides, we also proposed the Three-level sleeping channel model to model the

channel conditions of sleeping behavior. The simulation in NS3 demonstrate our two



types of channel model can better reflect the channel characteristic in MAC point of
view, as we compare the end to end delay difference and throughput results with
the measured data.

The rest of this thesis is organized as follows: In chapter 2, the overview of
Wireless Body Area Network. In chapter 3, the relative works of WBAN channel
model. Chapter 4 gives a description of the experimental setup of this thesis. In
chapter 5, the proposed dynamic WBAN channel model will be discussed detailed. In
chapter 6, the setting of simulation platform is addressed. In chapter 7 shows the
simulation result. Finally in chapter 8, the conclusion and future work will be

provided.



Chapter 2

Overview of Wireless Body Area Network

IEEE 802.15 working group established a study group in recent years, body area
network (SG-BAN), to develop guideline for using wireless technologies for medical
device communications in various healthcare services [10]. The main argument for
wireless is an enabled to provide people more comfortable and convenient use
environment, and supply better access and greater physical mobility. By wireless
medical monitoring, patient is no longer constrained in his movements. WBAN can
be used to offer the automatic medical service through monitoring of living body
signal. There is a wide range of potential applications and user scenarios in hospital,
home and gym. The typical appllcatlon scenarios of, WBAN system include the ward
monitoring in a hospital, the- home healthcare and emergency diagnosis for the
chronic, elder and child. Figure 2-1 sh_o_.ws‘ the automatic medical service and its
process. Necessary medical data is cellectea from the living body by wireless sensors
(wireless sensor nodes) and send to the nearAreceiver (central processing node), and
then the receiver upload this data to the hospital. A doctor or a nurse who accept
data can make a decision based on received patient's conditions.

‘ Temp:39° C(Warning) [momm |
/('g) Blood:120/80 mmHg - -
b4 :
\ -

—=7 Il 4

\J

Bluetooth or WLAN

Personal server (CPN)

Figure 2-1 Process of WBAN automatic medical service [12]



o
R "'"*\EP/ e |
L= s T £ - !

r ¥ s, I 1 D UL\ )
Je T “.u . WBAN SN @ -
v v v S R\
\\\ A l’ P, u f' J \#

WBAN=----" 77 s Sso V- A® WSN
. - .
j ¥777 WSN CPN S
n o SN, ---ECG
CPN | 4 : ’ .
\ et N )
=¥~ WBAN 1 W

(a) (b)
Figure 2-2 Wireless body area networks (WBAN)

(a) Topology of WBAN (b) Traffic load of WBAN

The architecture of WBAN consists of two.classes of devices: Central Processing
Node (CPN) and Wireless Sensor Néde (WSN), :as shown in Figure 2-2(a). [11]. The
WSNs continuously monitor the vital signals'and transmit them to the CPN, and then
the CPN pass them to the remote medical unit like hospital or clinic, etc. As shown in
Figure 2-2(b), WBAN is a simple star-topology; it could have many WSNs but only one
CPN. In the star topology, CPN plays the role of a master and WSNs are the slaves.
CPN has the central control of the join, leave of WSNs, and it also do the slot
assignment to avoid collision in data transmission. CPN will be embedded in personal
devices like mobile phone, notebook, PDA, etc. Due to the bandwidth limit of current
wireless network service, CPN can’t transmit the entire collected vital signals to the
remote medical unit. Therefore, the CPN should judge the data before transmit it.
Users can modify the CPN settings according to individual requirements or target
diseases. When CPN sense the received physiological signals as unusual, it will
simultaneously alert the user and deliver the anomalous signals to the remote

medical station to do the immediately diagnose. On the contrary, WSNs are passive



devices. WSNs are designed for retrieving specific vital signals like temperature,
blood pressure, ECG, etc and send to CPN based on pre-regulated transmission
policies. A user combines different WSNs for the monitoring of target symptom.

In addition to the applications of WABN, “Changing fast” is another key
characteristic of WBAN. The channel conditions between CPN and WSNs change just
because the human take walk in the park, swing his arms, or even turn their body when
they are sleeping. The simple motions we do everyday can sometimes heavily alter the
link quality of WBAN. It’s serious as we focus on the health-care application of WBAN.
Therefore, getting the knowledge of channel characteristic of some vital behaviors like
walking and sleeping become quite important, because it can help us to have the

strategy to conquer those problems and to design a high reliable WBAN system.



Chapter 3

Relative works

As mentioned before, many of Wireless Body area channel models have been
presented. Most of them focus on static channel characteristics. However, in this
chapter, we introduce some researches about dynamic WBAN channel model which
measure the body channel in motion. Firstly, we describe the on-body WBAN
channel model which is relative to our walking channel model [7]-[8]. Secondly, we
describe the on-body to off-body channel model, which is correlative to proposed
on-body to off-body sleeping channel model [9]. Both of them are presented by

Nation ICT Australia (NICTA).

3.1 On-body channel model

A statistical characterizations of..on-body WBAN channel model has been
presented by [7]-[8]. In this work, some well-known statistical models are used to
characterize on-body channel with different Tx-Rx pair locations such as “right wrist
to right hip”, "left wrist to right hip”, etc for subject’s standing, walking and running.

The following are the statistic models they try to fit dynamic WBAN channel and

its probability density function, respectively:

® Normal is well known for their maximum entropy characteristics. Channels

which have no significant structure are well modeled by these distributions.

_ _ 2
f(xlp, 0) = ——=-exp {("—“)} (1)
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® Lognormal distribution arises from a law-of-large numbers approach to
multiplicative effects, and is commonly used to model shadowing in terms of

the average power received.

1@ - >
fxlp o) = X(j\/ﬁeXp{ o= } (2)

where In(.) represents the natural logarithm.

® Gamma distribution is used in model mobile fading channels.

x2~1 exp {f} (3)

f(xla,b) = 5

bar(a)

where [(.) denotes the Gamma function:
® Weibull has been used for.multipathimodeling’and is generally found to model

small-scale fading and multipath inter-arrival processes well.

—ba " *xP=Texp {— ;C—b}, x>0 (4)

0 , else

f(xla,b) = f(x) =

In this research it concludes that the characteristic of dynamic on-body channel
with different Tx-Rx locations can be well described by statistic models. In some
cases like “right wrist to right hip” walking scenario the Gamma and Weibull
distributions provide good fit to the normalized amplitude distribution according to
their maximum-likelihood (ML) estimates. However in general the Lognormal
distribution provides best fit to the received signal statistics, particularly with the
subject moving while either running or walking. However, according to this

conclusion, we analyze the delay difference and throughput in NS3. The simulation



results show that pure statistical walking model is scanty in modeling accuracy. For
this reason, in this thesis, we are going to present a two-state model which reflects
the regularity and repeatability of walking behavior for human body to improve the

shortage of existent models.

3.2 On-body to off-body channel model

The On-body to off-body channel characterization is present by NICTA [9]. In
This work, it presents a number of channel measurements conducted with a
transmitting antenna located on the body of a test subject and another receiving
antenna located or the body some distanceraway. The transmitting antenna is worn
on either the chest or the right wrist with measurements taken while the test
subject: .

1. perform two different éctions (standingstill or walking on the spot).

2. facein four different directions(Q’, 90°, 180" and 270°) with 0" representing
the subject facing the receive antenna and 90°representing the subject facing 90
to the right of the receive antenna.

3. standeither 1, 2, 3 or 4 meters away from the receive antenna.

In this study of transmission on the human body to off the body in an indoor

environment, it concludes:

1).  Movement of the human body is the dominant fading effect which cause
the time-selective fading. However, as human body standing still there is
clearly observable frequency-selective fading which is caused by multipath
effect in the indoor environment.

2).  The path loss transmitting from on the body to off the body is generally less



than the path loss around the human body documented in [8] even in the
smaller on-body transmitter and off receiver distance.

3).  The Lognormal distribution is the best matching model to data sets of
normalized received power for on-body to off-body communications while
the subject is in motion.

4).  Normal distribution provides the best fit in some cases of the human
standing still with on-body to off-body measurement.

From this research, we can get the information of the statistical characteristic of
on-body to on off-body measurement with different directions and distant. It’s useful
as we consider the sleeping behavior which people often turn their body to different
directions in one night. However, it’s not enough as we try to build a practical
sleeping channel model which still needs to consider the time domain correlation in
sleeping model. For this reason, in.chapter 5 we will present the three-level sleeping

model which considers the time domain‘Correlation in model.



Chapter 4

Measurement Setup

In this chapter, we introduce the experimental setup in this thesis. Wireless
on-body and on-body to off-body channel measurements are made using cc2500 RF
transceiver from Texas Instrument as shown in figure 4-1 and tape to the body of a
165 cm / 63 kg male test subject in both outdoor (walking in the campus) and indoor

(sleeping) environment, respectively.

Pushbutton 2% LEDs

et O g

i |
hip Antenna —
o ,
MSP430F2274 : .
18 Accessible Pins
.”7&:, ; 1896 '.,
(a).Transmitter 2 (b).Receiver

Figure 4-1 CC2500 RF Transbéiver from Texas Instrument

Channel measurements are performed by transmitting test signals centered in
regions around the 2400 MHz ISM bands. The test signals are continuously
transmitted from one antenna while the subject is in two different scenarios: 1)
walking in the campus; 2) sleeping on the bed. The signal is received at the other
antenna and saved to SD card. Duo to the limit of the transmission device, the
minimum sampling duration is 27ms, and it is also the sampling rate (37Hz) we set in
the walking experiment. Besides, as shown in figure 4-2, for the purpose to simulate
the real WBAN sensor transmission interval, we set one second break between each

continuous 20 packets transmission cycle for the transmitter. By the 20 transmitted

10



packets in each cycle, we can calculate the average received RSSI value and success

rate in each acquisition cycle.

-_—

40ms

-
Continuously Tx 20packets
540ms

Figure 4-2 Timeline of the data acquisition cycle at the receiver in sleeping scenario

The transmission Power is set to 0dbm and -12dbm in walking and sleeping
measurement, respectively. For those two experimental scenarios, the transmitting

and receiving antennas were placed on different locations. Figure 4-3,4-4 illustrate

the locations of both the Trahsmltter anq recelver in walking and sleep

es \'.'

3

measurement, respectively. In walkmg‘e pehn";ielnt'- _transmitter is placed on right

.'.
- 1A

wrist, and the receiver is on tht hiﬁ) On the other hand in the sleeping scenario,

. ->s—_

I~ o

the transmitter and receiver is separafe“d SO‘m from each other, Tx placed on chest
of the body with Rx placed on the table lhear the bed. The total experimental
duration is 180 seconds and 4.8 hours for the walking and sleeping RSSI

measurement respectively.

Q0 :Tx
C:Rx

Back of the body

Figure 4-3 Antenna locations on test subject
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Figure 4-4 Layout of the indoor condition
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Chapter 5
Proposed dynamic WBAN channel model

Just as mentioned before, channel model is seen as the first step to develop a
reliable WBAN system. Therefore, in this chapter, we will propose a two-state WABN
walking channel in section 5.2 and a three-level sleeping channel model in section
5.3, and the RSSI measurement results will also be shown in each section respectively.
And in chapter 6 and 7 will introduce the simulation setup and show the simulation

results.

5.1 Goals

Our goal is to propose a dyhamic channel model which is in MAC point of view.
As we said before, channel- modeling is. seen as “the first step to develop a
communication system. Howéver, mostof the proposed WBAN channel models
focus on building the channel model in physical layer, and they seldom analyze the
body channel in dynamic scenario. Although the researches of NICTA give us some
knowledge of dynamic channel model, it still can’t reflect the queue conditions in
MAC which need to consider the time domain correlation. For this reason, we have
to build a channel model which includes the time correlation to improve the scarcity
of NICTA’s model. Besides, sleep is a vital behavior of each person, it almost occupies
a third of time. However, there is no channel model designed for this important
scenario. So, in this chapter, we are going to characterize this important behavior.
And for the purpose to simplify the construction of our model, we analyse the RSSI
value instead of SNR. Both of the two proposed models must truly reflect the

gueuing state to achieve the requirement of modeling accuracy in MAC.
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5.2 Two-State WBAN walking channel model

Following show the RSSI measurement results of test subject walking in the
campus. The Transmitter and Receiver were taped to the right wrist and right hip of

the test subject, respectively.

5.2.1 RSSI measurement results - Walking

Figure 5-1 shows the total 180 seconds RSSI measurement result of test subject
free walking in the campus of NCTU. As mentioned in chapter 3, the NICTA has done
the same measurement of walking channel measurement. In that research, it
concludes that the well-known statistical models like Normal, Lognormal, Gamma
and Weibull, etc can be properly. used to model the normalized received signal
amplitude of dynamic WBAN channel. Among that, it shows the Gamma model is the

best fit to the right wrist to right hip walking channel.

RSSI(dbm)

L L ! L L L | L
20 40 80 80 100 120 140 180 180

time(s)

Figure 5-1 Tx: Right wrist / Rx: Right Hip, Walking, 180 seconds RSSI measurement

The figure 5-2 shows our measurement result is equal to the conclusion of NICTA,

which Gamma is the best fit. The received power (mw) of Gamma walking model can

14



be obtain from (3) with a and b is equal to 2.7600 and 6.2606e-007, respectively.

In order to compare between the four models we mentioned in before, in this
thesis we use the Akaike information criterion (AIC) [13], as chosen in [14] for
wideband characterization, to choose the best fitting model for our channel model.

The second order AIC (AlCc) is given by:

2K(K +1) (5)
n—K-1)

AIC, = —2log.(I(f|data)) + 2K +
where log. (I(8|data)) is the value of the maximized log likelihood over the
unknown parameters (08), given the data and the model, K is the number of
parameters estimated in the model and n is the sample size. This equation is
straightforward to compute since the 1og likelihood is readily available from the ML
estimates. Intuitively, the first terrﬁ indicates that better models have a lower
because the log-likelihood reflects the overall fit of the model to the data. The
second part of the equation ‘penalizes additional parameters ensuring we select

models that best fits the data with the least number of parameters.

=i : : :
—L Right Wrist to Right Hip | _|
— Gamma
sl -
5| -
> L~ T
f=) <} T—
L~
g = y ~—
2;( ‘ ‘ \‘\ _
| T -
ol . ‘ ‘ ‘ Tt
0.5 1.5 =2 2.5 3 3.5 <l 4.5 5

. x 10°°
Receive Power(mw)

Figure 5-2 Gamma distribution. Best fit for Tx: Right wrist / Rx: Right Hip, Walking
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5.2.2 Construct the WABN Walking channel model

As shown in Figure 5-3, because of the regular movement of walking activity,
the periodic RSSI variation can be simplified as two sates, upper-state and
lower-state. In Figure 5-4 the power spectrum density of received power amplitude
of walking motion shows there exist the dominate frequency in lower frequency part.
It is because the walking channel condition changes along with the repetitive and
regular movement of test subject like swing of arms and body movement during
walking. It also means that if we apply this time domain correlation in our model, we
can efficiently improve the modeling accuracy in MAC layer, which needs to put the
gueuing state into consideration. Therefore, the two-state walking channel model is
presented in Figure 5-5. Our two-state walking-model can be seen as two parts: 1)
duration of each Upper-Lower beriod; 2) RSSI value of upper and lower-state. Due to
the repetitive and regular characteristi;pf the RSSSI value, in our two-state model,
we classify the RSSI into two states which reblace the upper-state RSSI value and

lower-state RSSI value respectively, and each of them holds a short duration.

~Cl A A |

_sel A 1 l‘l .,‘J ] l i ‘ ll i l 1 I\ il J | ! |
é - ’ | , lu'l 1 1 ’ \ ’ | I [ | | ‘ ’T“ | A ! 1‘ | J | ‘ | | [
~ _so | Iy | |

o 0oL WL L ! . | ! l
§ . ! Y | W 7] [I '|I 2NN H'I

time(s)

Figure 5-3  Part of the walking experiment result (60s to 80s)

16



o

—— e
1 -\—f-'_n\_'_-\rn.-‘_'_‘_—v—'-—_r"‘—\_—"—u_m

Power Spectrum Magnitude(dB)

1 L L i L i I L
o o oz o3 0.4 o LeXe] .7 o8 o i

frequency

Figure 5-4 The power spectrum density of Walking Received power amplitude

RSSI(dbm)

RSS[LowerState
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1

3

Tperiodl Tperiodz

Figure 5-5 The proposed two-state walking model

5.2.2.1 Analysis of the parameters in Two-state walking model

In following article of this section, we will give a detailed introduction of our
two-state walking model. In the analyses below, AIC is still the criterion we used to
compare the four distribution models (Normal, Lognormal, Gamma and Weibull). All
of the parameters we use to build our model are traced from the measured data

that is the same as Figure 5-1. In our model, there are three important elements that

we need to determine:
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1.

Density

Density

x 10
T T T T T T T T
sl —— Upper State | _|
— Lognormal

RSSIUpperState ’ RSSILowerState

In Our analysis of RSSlypperstate » RSSlpowerstate » firstly, we should transfer

the RSSI which is in dBm to power(mw) to take the value within the range of

each distribution (Lognormal, Gamma and Weibull). The Figure 5-6 shows the
distribution of upper and lower state power value (mw). According to the AlCc,

the lognormal model provides the best fit to those two states.

[ ]

o L L L L L
0.5 1 1.5 2 2.5 3 3.5 4 4.5

Receive Power(mw)

(a) Upper-state

x 10°
T T T T T T
3 —— Lower state |
— Lognormal
2.5 —
=20 -
P \
1.5 —
1= -
- g \\ﬁ‘\—“‘——ﬁ\'ﬁ
o :1/ , | o
a =) 8 10 12 14 16

Receive Power(mw)
(b) Lower-state

Figure 5-6 Distribution of the Upper-state and Lower-state power(mw)
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2. Tperiodn
The Tperioq is Used to decide the duration of the whole walking procedure.
Where

T,

period, — TUn + TLn ,NEN (6)

Andthe Ty ,T; ~ replaced the duration each Upper-state and Lower-state.
In the Figure 5-7, it shows the Lognormal model is the best fit to the T,erioq

according to the AlCc.

=]
T
|

=0}
T

Density
B
I
|

aed.d — ] — 1 V) e

0.9 1 1.1 1.2 1.3 1.4 1.6 1.6

Tperiod

Figure 5-7 Distribution'ofithe Tpe0q (second)

3. TrationHLn

The Teationn 1, iS the ratio of the duration of Upper-state and Lower-state.

where
Ty
. = n
TratwnH Ly /TLn ,NEN (7)
by Tperioa, and Tyationr, above, we canobtainTy T
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where

T (8)

TL — 'period n/
" (1 + TratioUL n)!

Ty, = Tperiod n TLn ,n €N (9)

n

As shown in Figure 5-8, according to the AlCc, the Lognormal model is also the

best fit to the Tationn L, -

y
=
2 8 ol i
(<3} r
a ;

;

0.5 . 1 1.5
T ratioHL

Figure 5-8 Distribution of the T, tionHL

The three elements above help us to decide the RSSI value of upper and lower state

and the duration of each Upper-Lower period that we just mentioned before.

5.2.2.2 Conclusion of building a Two-state Walking Model

In this section, we give some functions that can help us to obtain 1) duration of

each upper-lower period; and 2) RSSI value of upper and lower state; to build the
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two-state model as shown in Figure 5-5.
1). Duration of each Upper-Lower period
As mentioned before, Lognormal distribution is the best fit to both Tperi0q

and T..i0uL , SO We can obtain:

Therioa,, = lognormal ('utperiod 'Ot period ), neNnN (10)
Tratiout n o lognormal(utmt ioUL” OtratioUL )’ nenN (11)
And we can derive Ty and T; from (8), (9).
2). RSSI value of Upper and Lower state
As mentioned before, the distribution of received power (mw) in both
upper state and lower state is Lognormal, so we can obtain:
POWQT'Un = lognormal(ﬂPowerU 1 9PowerlU )' nenN (12)
POW@T‘L" = lognormal(ﬂPowerL » Opowerl, )r neN (13)
where the Powery and Power; are in mw, so the RSSI value can be
obtained in (14).
RSSI = 10log(Powery), teT
RSSI(t) = { Upper g v Un nen (14)
RSSIypper = 10 log(Power), teT,,

The Table 5-1 lists all the u and o above. The function of lognormal distribution is (2)
in chapter 2. for x>0, where u and o are the mean and standard deviation of the
variable's natural logarithm (by definition, the variable's logarithm is normally

distributed).
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Table 5-1 Parameter of Two-state walking model

Lognormal
Data
M o
Tperiod (s) 0.064 0.063
TratioHL 0.415 0.212
PowerU (mW) -13.013 0.363
PowerL (mW) -14.136 0.259
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5.3 Three-level WBAN Sleeping channel model

In this section, we give an introduction of how to build a WBAN sleeping model.
The RSSI measurement of sleeping scenario is shown in Figure 5-9. In Figure 5-9, the
red line represents the RSSI value we measured during the test subject is sleeping,
and the black denotes the mean of RSSI in each short state. As we can see, the RSSI
value performs like the stair that is composed of many short states, and each state of
the stair holds a period of time. This is because when people is sleeping, it can be
seen as a static scenario, the evidently change of RSSI caused by test subject turning
his body, and the small variation is due to frequency-selective fading as subject is
static (because there is not time-selective fading due to movement) [9]. This is the
main idea in our sleeping model. Figure 5-10-shows the concept of the sleeping
model. The conceptual sIeepiﬁg model is ‘consisted of two part of parameter: 1)

duration of each state; 2) RSSlvalue of each state.

-60 T T - T T

-83 H -

RSSI(dBm)

-64

-85

-66

1 ! ! 1 ! ! 1 1
2000 4000 6000 8000 10000 12000 14000 16000

Time (s)

Figure 5-9 On-body(chest) to Off-body, Sleeping, 4.8Hours RSSI measurement
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Figure 5-10 Concept of Sleeping channel model

The duration of each state is represented by T, in Figure 16. And the formula of

RSSI value is shown in (15).
RSSI(t) = Normal( 0, Gstatenz) +Hotatey, SEET, ,n€EN (15)

where p and o _are the mean and standard deviation of each state. And

state ,

T, is the duration of each state.
Tossing of the human body during sleeping causing time-selective fading is the

dominant fading effect and is represented by pu And the 0Og,e IS cause by

state °
multi-path frequency-selective fading in indoor environment in the case of the
subject is static. From (15), it is seen as if we obtain the knowledge of w...,
Ostate @nd the duration T of each state we can build the dynamic sleeping channel

model. For this reason, in the following article of this section, we will focus on how to

formulate those parameters.
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5.3.1 construct a Three-Level Sleeping model

As mentioned before, the sleeping channel model is consisted of 1) duration of
each state T,; 2) RSSI value of each state. In this section we will give a detailed

introduction of those three elements.

5.3.1.1 Duration of each state T,

The duration of each state is characterized by exponential distribution according
to AlCc and is shown in figure 5-11. And in figure 5-12 the power spectrum density of
the duration T, also shows there is no dominated frequency which means it is

almost i.i.d. So, the T, can be derived from (16).

_ C =1 (16)
T,, = Exponential (utpen.o 7 ), ne N
where the Exponential(.) represent the exponential distribution
>x 10°° ‘ i i ‘ .
= T duration
— Exponential
>~
E = Mu=118.827s
g o
=2 T\\’\
~
o ‘ ‘ T,.,_,|_7_T_7_'_7+ — L 1
[ ] =200 400 sS00 8200 1000

Duration(second)

Figure 5-11 Distribution of the duration T,

Power Spectrum Magnitude(dB)

frequency

Figure 5-12  Power spectrum density of the duration T,
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5.3.1.2 Mean and standard deviation of each state

As we can see from the Figure 5-9, the RSSI of the conceptual sleeping model
consisted of many states, and the mean and standard deviation of each state is
different to each other. So, how do we simplify this circumstance to build our
dynamic sleeping model?

Markov Chain can be use to resolve this multi-state condition. Firstly, we set the
threshold of RSSI to classify the multi-state RSSI to fewer states. So, we need to know
how many states can sufficiently reflect the channel condition in MAC. We have
learned about that the MAC does the retransmission for the error packets. For this
reason, we assume that the success rate of definite RSSI value higher than 50% can
get the correct transmission during the retransmission procedure before the next
data comes from the upper layer. Equally, the packet which success rate of definite
RSSI is less than 50% will only have 50% to r_each the highest throughput after
retransmission. Besides, the packet which RSSI is'too low to have only 0% success
rate will no chance to get any correct transmission.

From the discussion above, we know that three-level model is enough for
sleeping channel model in MAC. So, we simplify the RSSI value to three levels, high,

medium and low-level, as shown Figure 5-13. The pu in Figure 5-13 is

new —state

different to W we just mentioned in Figure 5-10, and it denotes the new mean of

state
each state in created three-level sleeping model. Figure 5-14 shows the measured
RSSI to success rate plot of our 4.8hours sleeping scenario experiment. From this
figure, we can obtain the high-threshold RSSI value, which success rate is equal to
50%. But, due to the scatter characteristic in our measured result which means one

RSSI value would probably maps to more than one success rate, the RSSI of success

rate equal to 50% is more than one value. Therefore, the high-threshold is calculated

26



as the mean of those RSSI values which success rate is equal to 50%. And we

obtained the RSSI of high-threshold is equal to -63.785dbm.

A
RSSI(dBm)
Unew-sta1e4 O new-states
$O’ new-state1 ngh-LeveI
l,lnew-s
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\

Figure 5-13 Proposed Three-level sleeping channel model
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Figure 5-14 RSSI(dbm)-PSR(%), 4.8hours Sleeping measurement

The low-threshold of our three-level sleeping model is set to the RSSI which success
rate is equal to 0%, -65.5dbm, the lowest received power of our device in this
experiment. We use the high-threshold and low-threshold to classify the raw data.
(1). Mstate , € High-level: Mstate , = RSSIhigh —threshold
(2). Mstate , € Medium-level: RSSIigw —threshold < Hstate , = RSSIyigh —threshold

(3). ustaten € Low-level: ustaten < RSSljow —threshold
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where RSSlyigh —threshold  indicate the RSSI value of high-threshold.
We can also obtain the transition probability of Markov chain:
H-H H-M H-L

M—-H M-M M-L
L-H L-M L-L

0.2500 0.3750 0.3750
0.4000 0.6000 0

[0.9254 0.0448 0.0299 (17)

where M- H denotes the transition probability of medium-level to high-level.
As mentioned before, the RSSI of the conceptual sleeping model is consisted of
many states, and the mean and standard deviation of each state is different to each

other. After we classify the different p to three levels, we can afresh calculate

state

the W .. _cae Of €achstate.The w . ... forhigh-level is obtained from (18).
Mnew —state, = Normal(w,,0,?) ,n € N (18)
Where y, and o, arethe mean and standard deviation of every p__ .. inthe

high-level. And the standard deviation of high-level,, 0new—state, » Can be generated
by the average of all the Osate which Wseate -Were in the high-level.
Onew —state, = Mean( Ogeate, ) Hotate, € high —level, n=1,23,.. (19)
where mean(.) denotes the average operation.
And following the same method we mentioned above, we can also obtain the

Hnew —state, @NA Onew —state, fOr the medium-level and lower-level.

5.3.2 Conclusion of building a Three-Level Sleeping model

In this section, we review the flow of generating a three-level sleeping channel
model. As mentioned before, the RSSI value of sleeping scenario can be seen as a
stair that consisted of many states. There are two parts of parameters we have to
obtain 1) duration of each state T; and 2) RSSI value of each state; to build the

three-level model.
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1). Duration of each state T:
As mentioned before, Exponential distribution is the best fit to the state period T,
so we can obtain T,, from (16).
2). RSSl value of each state
After we obtain the period T, the flow of obtaining the RSSI value is :
(a). Determine the level of next state according to current state with the
transition probability in (17)
(b). Obtainthe ppeyw —state, aNd Opew —state , from (18),(19) according to the
level we determined in (a).
(c). Startto generate the RSSI value

RSSI(t) = Normal( 0, Onew —statey 2) 1 Hnew —state, t € Tn (20)

The Table 5-2 lists all the parameters we use in chapter 5.3.

Table 5-2  Parameters of Three-level sleeping model

parameter Value

T,, (exponential distribution) Kt period 118.83(s)

w,/o,  (high-level) -62.90/0.65(dBm)

Hnew —state , (NOrmal distribution) w,/o, (high-level) -64.24/0.29 (dBm)

w,/o,  (low-level) -65.5/0 (dBm)
( high-level) 0.11 (dBm)
Onew —state , ( high-level) 0.36 (dBm)
(low-level) 0 (dBm)
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Chapter 6

Simulation Setup

In this Chapter, the setup of NS3 simulation will be presented. Firstly, we show
the pass loss data we obtain from chapter 5. Secondly, we give an introduction of the

environment setup in NS3.

6.1 Path Loss data

In this section, the path loss value is obtained by (21).

PathLoss(db) =RSSI ~TxPower (21)

The path loss of the raw data and proposed two-state walking channel model are
shown in Figure 6-1, and the+transmission power is 0dbm. The “Gamma Walking
model” in Figure 6-1 is the statistical Gamma model proposed by NICTA and is traced
from the measured data. And Figure 6-2 shows the path loss plot of measure data
and proposed three-level sleeping model with transmission power is set to -12dbm,

and the purple line indicates the ey —stqre, OF created model.
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Figure 6-1 Path loss of walking model
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Figure 6-2 Path loss of sleeping model

6.2 Environment Setting in NS3

The simulation of model accuracy is performed in the end-to-end transmission
in NS3. The Environment Setting in NS3 is shown in table 6-1. In our simulation, we

employ the User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) in
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transport layer. UDP assumes that error checking and correction is either not
necessary or performed in the application. In such case, there is no queuing process
in upper layer, and the simulation results can completely reflect the queuing state in
MAC layer. On the other hand, TCP provides reliable, ordered delivery of a stream of
bytes from a program on one computer to another program on another computer.
The simulation with TCP as the transport layer will further demonstrate the
correctness of our channel model in end-to-end reliable transmission. The accuracy is
evaluated with end-to-end delay difference and throughput. In this thesis, the delay

difference is defined as the difference of delay between the consecutive packets.

Table 6-1 Environment sétting in' NS3 simulation

Topology : point-to-point
Packet size 250bytes
Traffic loading Uplink 50kbps
PHY speed 6Mbps
Tx Power -10dbm
Access control CSMA/CA
Transport layer TCP, UDP
Evaluation end-to-end delay difference, throughput
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Chapter 7

Simulation Results

In this chapter, we show the simulation result for with measured data and our

channel model to see the modeling accuracy of the proposed dynamic channel

model — two-state walking model and three-level sleeping model. The UDP and TCP

are employed in transport layer. We will focus on two factors such as end-to-end

delay difference and throughput in end-to-end transmission, and we analyse the

statistical distribution of them to compare with the measured data. We use those

results to demonstrate the proposed dynamic channel model can truly reflect the

gueuing state in both MAC layer and end-to-end reliable transmission.

7.1 Simulation of two-state walking channel model

7.1.1 UDP Analysis

7.1.1.1 Throughput

Throughput (kbps)
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Figure 7-1 Throughput in UDP analysis - Walking model
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Figure 7-2  Distribution of throughput in UDP analysis - Walking model

Table 7-1 Statistic of throughputin UDP analysis - Walking model

Mean of throughput(kbps) *| o of throughput(kbps)
RawData 38.53 1891
TwoState 4411 11.66
Gamma Model 48.67 7.43
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7.1.1.2 Delay Difference

® Measured Data

=20

) o M\,,A.‘,,,W‘NVJM R 1M /M\ - MM \.“M
é ° _TZ\AC/)o-state n:::))del " = = - = ” h
g EM mewWWMWWM@WMWMhMMMM«HWMWW(W
§ ° :acr’nma moZZI " = = e = = e
aiprhef WW b Al »w MM e
- = = Txtlme(:)o
Figure 7-3 Delay (iiiffe}e.nce |n pDP analy§|s - Walking model
| e
H — TwoState
14r — Fit TwoState
190 | —Gamma Random | |
- **= Fit Gamma Rnd
2 1
é 0.8F
0.6-
0.4F
-15 -10 5 0 5 10 15

Delay difference(ms)

Figure 7-4 Distribution of delay difference in TCP analysis - Walking model
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Table 7-2 statistic and packet error rate of delay difference in UDP analysis - Walking

model

Mean of delay o of delay Packet error rate
difference(ms) | difference(ms)

RawData ~= 2.20 27%

Two-State ~= 3.34 19%
Gamma -0.002 3.28 0.9%
Model

7.1.1.3 Discussion of UDP analysis

Because of the error checking and correct_ion is not performed in UDP, MAC
layer is in charge of the whole .retransmission processes. It retransmits the error
packet until the next packet enters from upper layer. Therefore, the throughput of
UDP analysis would not exceed the maximum traffic loading, 50kbps.

The throughput result shows our model can truly reflect the channel condition
in MAC, high throughput in high-state, otherwise, low throughput in low-state.
Otherwise, the NICTA’s channel model can’t reply this condition, because it doesn’t
consider the time-domain correlation in model.

However, as shown in Table 7-2, UDP has incomplete delay information due to
packet dropping. The deviations of delay difference for those three path loss data are
very small. Thus, both two-state and gamma model cannot correctly reflect statistic

of delay difference.
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7.1.2 TCP Analysis

7.1.2.1 Throughput
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Figure 7-6  Distribution of throughput in TCP analysis - Walking model
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Table 7-3  Statistic of throughput in TCP analysis - Walking model

Mean of throughput (kbps) o of throughput(kbps)
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Figure 7-7 Delay difference in TCP analysis - Walking model
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Figure 7-8 Distribution of delay difference in TCP analysis - Walking model

Table 7-4  Statistic of delay difference in TCP analysis - Walking model

Mean of delay difference (ms) || o of delay difference (ms)

RawData 0.04 ‘ 83.64
TwoState -0.24 85.65
Gamma Rnd -0.002 21.73

7.1.2.3 Discussion of TCP Analysis

Due to the reliable transmission characteristic of TCP, it would persistently
retransmit those packets in queue. Thus, lead to the throughput as shown in Figure
7-5, which the low RSSI of measured data bring about packets start to queue and
cause low throughput, and high RSSI value leads to high success rate and high

throughput in the end-to-end transmission. And the delay difference as shown in
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Figure 7-7 also performs the same feature we just mentioned above. The low RSSI
causes bad transmission quality with high delay difference, and high RSSI leads to no
delay difference in end-to-end connections. By grasping this time-domain
characteristic in building a channel model, our two-state can well reflect this queuing
phenomenon. On the contrary, the Gamma model which doesn’t consider the

time-domain correlation shows poor modeling accuracy with measured data.

7.2 Simulation of Three-level Sleeping channel model
7.2.1 UDP Analysis

7.2.1.1 Throughput
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Figure 7-9 Throughput in UDP analysis - Sleeping model
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Figure 7-10 Distribution of throughput in UDP analysis - Sleeping model

Table 7-5 Statistic of throughput in UDP.analysis - Sleeping model

Mean of throughput(kbps) o of throughput(kbps)
RawData 46.91 11.60
Three-Level 47.54 9.81
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7.2.1.2 Delay Difference
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Figure 7-11 Delay.difference.in UDP analysis - Sleeping model
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Figure 7-12 Distribution of delay difference in UDP analysis - Sleeping model
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Table 7-6 statistic and packet error rate of delay difference in UDP analysis - Sleeping

model

Mean of delay o of delay Packet error rate

difference(ms) difference(ms)

RawData ~=0 (-5.03e-12) 0.74 4.9%

Three-Level ~=0 (5.07e-12) 1.17 5.6%

7.2.1.3 Discussion of UDP analysis

As we mentioned in chapter 6, theiRSSl,of measured data can be classified to
three-level, 1) 100% probability to get.maximum throughput; 2) 50% probability to
reach the highest throughput; 3) no chancé to correctly transmit packet; after the
retransmission process in MAC. In Figure7-9;the throughput for measured data in
UDP analysis also supports this assumption:"The RSSI which is higher than the
RSSIhigh —threshold ~ €an get the maximum throughput, 50kbps. And The RSSI which is
higher than the RSSI,y, _threshoia @nd lower than the RSSlpigh —threshola  ONly has
50% to reach the highest throughput. Besides, the packet which the RSSI is too low to
successfully retransmit gets no throughput after retransmission in MAC. Our
three-level sleeping model which considers this feature in model can get the perfect
match to measured data in throughput. On the other hand, due to the incomplete
delay information of dropped packets, the deviations of delay difference for those
two path loss data are very small. Thus, our proposed model cannot wholly reflect

statistic of delay difference.
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7.2.2 TCP Analysis

7.2.2.1 Throughput
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Table 7-7  Statistic of throughput in TCP analysis - Sleeping model

Mean of throughput(kbps) o of throughput(kbps)

RawData 49.94 71.75

Three Level 49,99 61.94

7.2.2.2 Delay Difference
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Figure 7-15 Delay difference in TCP analysis - Sleeping model
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Figure 7-16  Distribution of delay difference in TCP analysis - Sleeping model

Table 7-8 Statistic of delay differénce in TCP analysis - Sleeping model

~Mean of throughput o of throughput
RawData 0.57 768.20
Three Level ~=0 (-8.27e-007) 625.22

7.2.2.3 Discussion of TCP analysis

As we mentioned before, TCP is a reliable transmission protocol, it would
persistently retransmit those packets in queue. If we consider the time-domain
correlation and three-level characteristic in model, we can get a better match to the
measured data. The statistics of throughput and delay difference are shown in Table
7-7 and 7-8, respectively. The statistics demonstrate our three-level sleeping model

has high modeling accuracy in TCP analysis.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we propose the two-state walking model and three-level sleeping
channel model for dynamic body channel measurements and the modeling accuracy
of those two models have been demonstrated in NS3 simulations. Using the concept
of time-domain correlation, our proposed models can truly reflect the queue state in
MAC. In walking channel analysis, we find the RSSI in walking can be properly
modeled by two-state walking model, which'is.corresponding to the walking process.
The duration of each walking period and the ratio of upper and lower state duration
can be modeled by lognormal distribution. And the received power amplitude of
upper and lower state can be well cha'racterized by lognormal distribution. On the
other hand, the three-level sleeping model has been proposed. After we discover the
“stair feature” of measured sleeping channel, we combine this feature with the
retransmission characteristic in MAC to classify the RSSI value to three levels. The
three-level model is composed of many short states, and the duration of each state
can be well characterized by exponential distribution. The correlation between
consecutive levels is modeled by Markov chain. The simulation of throughput and
delay difference evaluation in both UDP and TCP analysis demonstrate our proposed
two-state walking model can be a better fit as we compare with the existent walking
model proposed by NICTA. Besides, we have also proved our proposed three-level
sleeping model can well catch the channel characteristics of this vital behavior in

MAC as we consider both the time-domain and RSSI correlations in our design.
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8.2 Future Work

The proposed channel models will be more accurate than others in MAC point of
view. But it’s still not enough to model all the activities of everyday life. In the future,
we will try to model other scenarios, like driving, running, etc. Besides, reliability
issue is one of the most important considerations in health-care applications of
WBAN. And low power is another key design challenge of WBAN, which is essential
for long-duration measurement in many WBAN medical applications. We should
extend our channel model to accomplish both of the two important issues in the

future work.
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