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Abstract

We theoretically studied the non-equilibrium carrier-carrier scattering in the quantum
kinetic regime and the ultrafast hot-carrier relaxation through the Fréhlich interaction
in photoexcited GaAs by solving the Generalized Kadanoff-Baym equation and the
semi-classical Boltzmann equation, respectively. The singularity of scattering rate at
the vanishing wave vector can be eliminated in the quantum Kinetic theory. With the
advantage, the difference of screening strength between a bulk and a quantum well
can be compared. In contrast to the earlier understanding, the screening strength is
shown to be stronger in a lower dimensional structure and this is an evidence for a
stronger Coulomb interaction in a quantum well. The screening dependence is also
held for the Frohlich interaction. In the quantum Kkinetic regime, the Markovian
approximation for the scattering process is no longer available due to the carrier’s
quantum coherence. The resulting memory effect is firstly demonstrated to be impact
on the carrier’s evolution. The carrier-carrier scattering leading to a burning hole on
the carrier’s distribution is shown at the early stage and is suggested to oscillate as the
time further evolves. The theoretical result can successfully explain an earlier
contradiction from the distinct measured power laws of the density dependence of
photon-echo dephasing time in two different sample’s dimensions.

Among the plenty of investigation on the hot carrier relaxation, the discrepancy
from the dimensionality is clarified. With the dielectric continuum model, the hot
carrier’s energy-loss rate in a quasi-two dimensional structure was strictly calculated.
Above the density of 2x10*%cm™, the hot carrier is shown to be significantly faster in

a bulk than a 10nm-wide quantum well due to the higher density of states. The



dimensional dependence is also in consistent with the carrier-carrier scattering which
shows a faster thermalization in a bulk. In addition, the dynamical screening in a
quantum well on the shielding carrier-phonon interaction is demonstrated to be as
important as the hot phonon effect when the carrier density is high. This rebuts the
earlier argument where the dynamical screening can be neglected. The
plasmon-phonon coupling was considered in the calculation and is shown to enhance
the energy-loss rate around the density of 10™cm™ due to the carrier-plasmon
scattering. The structure effect on the Frohlich interaction was also presented and
compared to earlier experimental results where a very good agreement can be

obtained.

Han-Chieh Lee Advisor Dr. Chien-Ping Lee
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Chapter 1

Introduction

Kinetic theory is of fundamental importance in many branches of physics such as in
the condensed matter, nuclear, astronomy, etc., and is of strong dependence on the
many subjects of applied mathematics such as the statistics, analysis, and geometry,
etc. The goal of kinetic theory is to understand the dynamics of a many-particle
system and to construct a bridge linking the macroscopic and microscopic variables in
a substance. The preliminary step in the theory is to deal with the equilibrium
statistical mechanics, where the notion of the ensemble is introduced. Ensemble is a
very useful concept in statistical mechanics and it represents repeatedly mathematical
experiments conducted on a system consisting of particles and fundamental
interactions with the same conditions. The purpose of the experiments is to obtain a
many-particle equilibrium distribution by averaging all undetermined factors such as
the thermal fluctuation. Based on the Birkhoff-Khinchin ergodic theorem', the
distribution function will reach an asymptotic solution when the number of
experiments is large enough. By the particle’s property, the solution for the
distinguishable particle is the Maxwell-Boltzmann distribution and the solutions for
the indistinguishable particle can be further classified into the Fermi-Dirac and
Bose-Einstein distributions for Fermions and Bosons, respectively. When the given
system is out of equilibrium, the existence of an asymptotic solution for the ensemble
experiment is the most central problem in statistical mechanics. To hold the validity of

the ergodic theorem, the time resolution in the non-equilibrium region must be long



enough so that there is an asymptotic solution however it is still in the interesting time
scale.

In the classical kinetic theory, the time evolution of a many-particle distribution
function can be obtained by solving the Bogoliubov-Born-Kirkwood-Green-Yvon
(BBKGY) equation®. The equation is based on the Liouville theorem where the
density flux in a differential volume of the space-momentum coordinate is conserved
for the distinguishable particles. The subsequent degree of approximations for the
equation can be made to obtain a variety of the kinetic equations. Using one-particle
distribution could be the most important approximation in the kinetic theory because
it significantly reduces the huge calculations where the distribution functions of every
particle in the given system should be considered. The approximation is valid for the
dilute-enough particle density where the coupling among distinct particles disappears
so that the many-particle distribution function can be simplified by the product of a
one-particle distribution. The result is the well-known Boltzmann equation. When a
perturbation is turned on, the non-equilibrium distribution will evolve due to a variety
of scattering mechanisms in the given system. These scatterings cause the disturbed
particles to lose their excess energies inputted by the external excitation or to
exchange energies among themselves or with the surrounding until the equilibrium
state is reached. Quasi-thermal equilibrium is an intermediate stage between the
non-thermal and the equilibrium states where the distribution function can be
approximately characterized by specific parameters and where further simplifications
can be made for the Boltzmann equation. By comparing the mean-free path of
scatterings to the length of local quasi-equilibrium, the Chapman-Enskog expansion
and the Maxwell-Grad method”® can be used to derive the so-called Navier-stokes and
the Burnett equations, where they have different levels to approximate the

deviated-equilibrium distribution by using parameters such as temperatures, chemical
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potentials, hydrodynamic velocities, etc. and their gradients. By solving the equations,
the solutions can show the time evolution of the spatial non-uniformity for the
deviated distribution, which is very useful to analyze various fluid motions such as the
Laminar and turbulent flows.

In the quantum kinetic theory (QKT), the notion of the distribution function in
the space-momentum phase space can be no longer available because the state vector
for the description of a particle in the spatial coordinate has been generalized to the
Hilbert space, where the uncertainty principle arises. The distinct statistical algorithm
for identical particles from distinguishable particles causes that the accompanying
kinetic equation must be reconstructed to satisfy the updated particle’s property. In the
Schrédinger picture, the non-equilibrium Green function can be used to derive the
so-called generalized Kadannoff-Baym equation® and the Schwinger-Keldysh
formulation’, that were built up in the early 1960s. In the Heisenburg picture, von
Neumann and Dirac used the density matrix method to explore the quantum kinetic
theory® independently in the 1930s. The Master equation derived from the method is
now frequently used in the quantum statistics of optics’. The intermediate stage
between the classical and the quantum kinetic theory includes using the Wigner
function and the semiclassical Boltzmann equation. The Wigner function proposed by
Wigner in 1932 is a created function quantum analogical to the space-momentum
phase space for the statistical requirements®. Although the functional concept is
principally classical, the applications are still effective for partial situations of
high-energy particles. Starting from the Klein-Gordon equation for spinless particles
or the Dirac equation for spin particles’, the relativistic kinetic theory has been well
constructed in the present day'’. By using the technique of the quantum field theory"'
the weak and strong interactions'” are included in the kinetic equation where the

applications have been widely used in the astronomical and nuclear circumstances
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such as the neutrino” and the pion particles'®, respectively. Another simplified
formalism before the QKT is to use the semiclassical Boltzmann equation. With the
classical notion of the phase space, the distribution function in the space-momentum
coordinate is still used while the inside collisional integrals are derived in quantum
mechanics. A number of applications in condensed matters can be derived from the
semi-classical method such as the Cooper pair dynamics in superconductors, the
charge-density-wave dynamics in one-dimensional metal chains'’, and the carrier
dynamics in semiconductors'®. During the last two decades, there is a new approach
to the QKT due to the advantage of the rapid progress in the computing ability on the
workstation and it is the so-called quantum Monte Carlo method. The Monte Carlo
method is a mathematical game to simply determine the outcomes by using a
random-number generator and was initially used to simulate the reaction and the
trajectory of nuclear substances inside the reactor and to design the reactor structure
where the wall can shield the outgoing radiations. The quantum Monte Carlo method
is the improvement considering the statistical property of identical particles and can
be appropriated to model the time evolution of the many-particle quantum states by
using the simulation where fewer particles as compared to the actual numbers in the
given system are performed.

The primary features in the QKT are due to the non-Markovian process and the
energy (momentum) non-conservation. The Markovian process is a non-memorial
scattering effect, where the earlier scattering information is not saved in the dynamical
system so that the time evolution of a distribution function is as a scattering result
with the instantaneous moment, and is often assumed in the classical kinetic theory.
However, the assumption of the Markovian process is not held longer in the QKT
because the evolution of the quantum state is a continuous process from the

perturbation is turned on to the quantum coherence is broken. An atom oscillates
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between the two states where a coherent and resonant light source is incident, the
Rabi oscillation, is a clear example'’. Another feature, the energy (momentum)
non-conservation, is as a result of the uncertainty principle. This is not surprised
because at the time (space) scale where the energy (momentum) uncertainty is
comparable to the exchanged energy (wave vector) in a scattering process, the energy
(momentum) distribution, not due to the ensemble average, covers a wide range and
the conservation becomes meaningless in the ultrashort scale. Unless the time (length)
evolves long enough, the conservation rule may recover. The Fermi golden rule is an
example, where the energy conserve as the time goes to the infinity.

The quantum kinetic effects in semiconductors have attracted a lot of attention
because of the fundamental interest and device applications (in the near future). In
semiconductors, the time and length scales where the kinetic effects mentioned above
arises are in the femtosecond and the nanometer, respectively, and the ranges are also
called the quantum kinetic regime. With the advantage in semiconductor
manufacturing technology, the semiconductor sample can be prepared with a very
high quality, which makes the possible measurement of quantum kinetic effects,
because the external dephasing scatterings from the lattice imperfection or the
impurity can be significantly avoided. By using the ultrafast spectroscopy'®, a
non-equilibrium carrier’s distribution in semiconductors can be generated by
illuminating a femtosecond laser pulse with a photon energy higher than the bandgap
and the following carrier’s time evolution can be measured by using the pump-probe

or the four-wave-mixing techniques. Several reports have demonstrated the memory

19,20 21,22

effect and the energy non-conserving event on the carrier-phonon interaction
in the recent years. The validity of the quantum kinetic theory has also been examined.
On the other hand, for device applications, the current models in semiconductor

devices such as the current-voltage characteristic still stand at the level of
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semi-classical Boltzmann theory. However, as the integrated-circuit technology
evolves rapidly, the next generation of electronic devices with dimensions in the
nano-meter scale would require the use of the QKT because the wave interference in
the spatial scale becomes increasingly important.

In the thesis, the quantum kinetic carrier-carrier scattering in photoexcited GaAs
is studied. The non-equilibrium Green function was used to derive the quantum
kinetic equation. By solving the equation, the carrier’s evolution was obtained and
was found the memory effect. Another interesting fact in the QKT is the absent
singularity of scattering rate at the vanishing wave vector™. With the advantage, the
screening strength in different sample’s dimensions was studied. In contrast to earlier
understanding®, a stronger screening in a quantum well than a bulk is demonstrated.
The result is also in good agreement with the carrier-polar-optical phonon scattering,
which has a similar dimensional dependence of the interaction Hamiltonian. Hot
carrier relaxation through the several phonon types simply governed by the
semiclassical Boltzmann equation was presented. The discrepancies including the
dynamical screening, the dimensionality, and the well-width dependence from earlier

226 can be clarified. Re-normailzed phonon propagator due to the

experiments
plasmon coupling was also considered and is shown to have an important effect on the
hot carrier’s energy-loss rate around intermediate carrier densities. The outline of the
thesis is as follows. In chapter 2 we present the non-equilibrium carrier-carrier
scattering in the quantum kinetic regime. In chapter 3 the hot carrier relaxation and
the relevant derivation including the net phonon generation rate, the hot phonon effect,
etc. is discussed. The plasmon-phonon coupling is in Chapter 4. In chapter 5 we
discussed the structure effect on the Frohlich interaction, where the fundamental of

phonon types in a double heterostructure and material parameters used in the thesis

are also shown. In chapter 6 we give a conclusion and a direction of the work.
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Chapter 2
Non-equilibrium Carrier-Carrier

Scattering

2.1 Introduction

2.1.1 Dynamical Screening and Dimensionality

Dynamical screening is of fundamental interest in semiconductors and is also an
important effect on the carrier-carrier and the carrier-phonon interactions. Since the
ultrafast four-wave-mixing (FWM) experiment' was introduced, the dependence of
dynamical screening on the sample’s dimension has been further investigated. In the
earlier report™, the photon-echo dephasing time at different excited carrier densities

(n) had been measured and the dependence was found to be governed by the power

1

law ofn P, where D represents the dimension, shown in Fig. 2.1 and 2.2. The reason
for the photon-echo dephasing was attributed to the carrier-carrier scattering (CCS),
which leads the non-equilibrium carrier distribution spreading out so that the
photon-echo’s coherence is broken. In their assumption, the shielding potential in the
CCS had built up at the measured time interval and thus the power law is as a result of
screened scattering rate. If the shielding potential was not developed, the dephasing

process would become more quickly due to a faster CCS, and the power law would

also change, in principal, to satisfy the dependence ofn™" for both sample’s structures.

By comparing the two kinds of power law, the dynamical screening was found to be
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Figure 2.1: Time-resolved four-wave mixing results from Bigot’s experiment in GaAs
quantum wells. (a) Extraction of photon-echo dephasing time. (b) Density dependence
of photon-echo dephasing time. Solid line: the fitting curve for the measured result.
Dash line: the curve of unscreened carrier-carrier scattering rate. (quoted from Phys.
Rev. Lett. 67, 636 (1991))
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Figure 2.2: Time-resolved four-wave mixing results from Becker’s experiment in bulk
GaAs. (a) Extraction of photon-echo dephasing time. (b) Density dependence of
photon-echo dephasing time. Solid line: the fitting curve for the measured result.
(quoted from the Phys. Rev. Lett. 61, 1647 (1988))

11



1

"to nP in a two

weaker in a quantum well because the variation from n~
dimension (2D) is smaller.

The screening dependence was, in general, accepted for more than one decade
until a conflicting result was demonstrated experimentally and theoretically*. Under
the same experiment of ultrafast FWM in GaAs, the photon-echo dephasing times at

different excited carrier densities were re-measured; however, the significant power

1
law n P cannot be repeated. Unexpectedly, the dephasing time as a function of the

1
carrier density was satisfied the n 3 dependence for both a quantum well and a bulk.

For a further examination, the time evolution of optical polarization field coupled to
the CCS at different carrier densities was calculated with using the quantum kinetic
theory. By extracting the dephasing time from the polarization field, the function of
dephasing time on the carrier density can be obtained and also shows the dependence”,
shown in Fig. 2.3. Thus, from the result one cannot determine which structure the
carrier has a stronger or weaker screening strength in. In addition, according to the
estimation of screening buildup’, for a low carrier density the shielding potential has
been not completely developed at the measured time interval. Thus, the conventional
method is also weak in the comparison of screening strength between the two
sample’s structures.

Recently, the screening dependence for the Frohlich interaction® was discovered.
Although the scattering mechanism between the Frohlich and the carrier-carrier
interactions is different, the result is still meaningful because their unscreened
Coulomb interactions in the Fourier space (oc 1/qL* in 2D and oc1/q°L’ in 3D) are
very similar, where q and L denotes the exchanged wave vector and the sample’s
length, respectively. Nevertheless, for the Frohlich interaction, the dynamical

screening was shown to be stronger in a quantum well than a bulk. This is opposite to
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the earlier understanding but is in agreement with the electrodynamics. In a lower
dimension the electric flux has a stronger confinement so that has a stronger electric
flux density than that in a higher dimension. Because the screening is a many-particle
effect to shield an external charge source, it acts as a sub-Coulomb interaction and
would also follow the dependence. The static screening (abbreviated as s.s.) is a
verification. As the exchanged wave vector large enough (q >> x,,,%;, ), where «
denotes the screening wave vector, the screened Coulomb interaction in the two

distinct dimensions can be written as a series.

2 2
v 2P _ € ~ € 1— Kyp ‘e
() (q+x,,)L%, quaw( g 7 (2.1a)
e’ e’ K
Vo (@) = - (532)2 4 (2.1b)

(P +x3)l%,  q’Le,

where ¢, denotes a high-frequency dielectric constant. In the series the next leading
term ,,/q and (x,,/q)° stands for the screening factor. Although x,, and

K;, have different values, the 3D screening factor is generally smaller due to the
square power. This dependence is also held for the opposite limit (q << &, ,K;p ).
Dynamical screening is more complex because it is a time-dependent interaction,
and should be studied with using the non-equilibrium carrier’s evolution. The carrier’s
evolution can be obtained by solving the kinetic equation. In the semiclassical
Boltzmann equation, there is a singular point at the vanishing exchanged wave vector
where the unscreened scattering rate is divergent. One must consider the screening
effect to eliminate the singularity so that the scattering rate becomes finite. However,
the divergence can be avoided in the quantum kinetic theory’ (QKT) because the state
vector in Hilbert space leading to the energy uncertainty can smooth it. This is an

advantage because one can obtain two kinds of non-equilibrium carrier’s evolution
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(screened and unscreened) and then compare the difference to show the screening
strength. In the report, the non-equilibrium Green function was used to derive the
quantum kinetic equation and the solution therein also verifies the screening

dependence as the Frohlich interaction as we mentioned above.

2.1.2 Memory Effect

The carrier’s quantum coherence not only smoothes the singularity but also
relaxes the conservation of energy (or momentum) and the Markovian approximation
for a scattering event. In the last decade, the energy non-conservation has been
demonstrated in semiconductors experimentally and theoretically® but the
non-Markovian effect is still not well understood'’. The Markovian approximation is
valid for the carrier’s scattering is instantaneous and independent on the past carrier’s
distribution. This is no longer held for the carrier’s quantum kinetics because the
evolution of quantum state is a continuous process with respect to the time from the
excitation turned on to the coherence broken down. In this thesis, we discover that the
relaxed Markovian approximation would cause an impact effect on the carrier’s
evolution. Since the non-equilibrium carrier is generated, the carrier begins to scatter
with each other and spreads out. As the time evolves, the past carrier’s distribution
would increase the scattering rate and causes a burning hole in the carrier’s evolution.

Earlier, Knox experimentally found a very rapid thermalization (less than 10f5s)
of non-equilibrium carrier among a cold electron’s background in a quantum well'',
shown in Fig. 2.4. The carrier’s evolution has a strong dependence on the cold
electron and the specific dimension. However, up to now, the physical mechanism is
still not understood. Kane theoretically obtained the carrier’s evolution'? by solving
the Boltzmann equation but cannot repeat the result. We go further to the problem

within the quantum kinetic regime. With the absent singularity, the effect of 2D cold
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Figure 2.4: Time-resolved differential transmission spectra from Knox’s experiments in
GaAs quantum wells. (a) Undoped sample at excitation density of 5x10'" cm™. (b)
2 excited with density of 3x10' cm™
2, excited with density of 3x10"
cm™. The excitation energy had about 20meV above edge of ground subband. (quoted
from Phys. Rev. Lett. 61, 1290 (1988))

Sample with n-modulation doping of 3x10"" cm’

(c) Sample with n-modulation doping of 3x10"" cm™
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electron on the non-equilibrium carrier’s evolution can be divided into that on the
unscreened carrier’s evolution and the screening strength. By the benefit, one can
demonstrate the difference of screening strength caused by the non-equilibrium and
the cold carriers. The Knox’s result'' is in a very short time scale so that the memory
effect is important. The memory effect leading to a faster carrier’s evolution is similar
to the result''. Nevertheless, the 2D cold electron is not shown to cause a significant
difference and the carrier is also not shown to reach the thermalization in a less than

10fs time scale.

2.2 Quantum Kinetic Equation

In this section, we introduce the derivation and approximations of scattering term. By
using the close-time-path non-equilibrium Green function, the Dyson equation can be
extended to the generalized Kadanoff-Baym equation'’ (GKBE). The GKBE was
chosen as the quantum kinetic equation in the investigation. A non-equilibrium
carrier’s distribution is generated on the band structures and the carrier’s evolution via
the electron-electron interaction can be obtained by solving the equation. Because the
femtosecond scale is concerned, the carrier-phonon and other scatterings were omitted.
The electron-hole interaction was also not considered because their different Bloch
functions lead a lower scattering rate than that of electron-electron interaction.
Generalized Kadanoff-Baym Ansatz'* (GKBA) was used to simplify the memorial
integral of scattering term and the random phase approximation'> (RPA) was to the
screening behavior. The scattering terms were strictly derived in the distinct
dimensions and the 2D formulations (including the scattering term and RPA dielectric
function) are firstly demonstrated in the thesis. The carrier’s distribution can be in
terms of equal-time lesser Green function (f, (t) = -G, (t,t)). In the GKBE, the

scattering term of k-state particle can be written as'®
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where G (t,t )and X;7(t,t') denote a greater (lesser) two-time Green function
and a Coulomb scattering self energy. By using the analytic continuation'’, the

Coulomb scattering self energy in the RPA can be rearranged as'®

t t

2;(<) (t,t') = ZhZZG;(jq) (tat')J-dtl J-dtZVsr,q (t,tl)(vsr,q (t'5t2)) G;fq) (tlatz)Gj>)(t2,tl)
a.k o o

(2.3)

where V( (t,t;) represents a retarded shielding potential. Before the screening

builds up, the shielding potential is given by V d(t—t,), where V, denotes the

Coulomb interaction in Fourier space. The shielding potential almost takes a plasma
forming time to build up’. In the calculation, the screening was assumed to be built up
instantaneously because it can significant shorten the simulating time but not changes

the dependence of screening strength on the sample’s dimension. The retarded
shielding potential'® was modeled by V,0(t—t,)/&ppa (0, ®) , where &g, (0, 0)
denotes the RPA dielectric function.

Substitute the Coulomb scattering self energy into the eq.(2.2), after an algebraic

arrangement by using the GKBA, the scattering term can be written as'®

ﬁfk t 4 I | | A | _;(t—
% = _h_zqzk:[o 'V, (OV,q (t)cos| (1= t)]e
X {fk () (O =g (O =g (O] =[1=F, (O = (O], (t')fk-+q (t')}

(2.4)
where A denotes the non-conserving energy and I' denotes the dephasing factor.

Change the notation of k, k', k-g, and k' +q by Ky, Ko, ks, and Ky, respectively, and
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derive the scattering terms in distinct dimensions that with screening can be shown as
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where the parabolic band is used. The unscreened scattering term is the formulation
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(q+k,)*. The form factor in 2D term is set to be unity".
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The RPA dielectric functions in distinct dimensions can be expressed as (2.5b)
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where ® denotes the oscillating frequency of dynamical screening and is equal to

21,2 21,2 2 2 2
ki —&—A. E, and B are g and ik
2m, 2m 2m

c ¢ ¢ mC

, respectively.

2.3 Results and Discussion

In the investigation, the parameters of GaAs were taken from the Adachi’s report™
and the structure of a quantum well was chosen as a 10-nm well width (L ) and 0.3
Al fractions. The initial carrier’s distribution was the Gaussian function with a center
of 25meV above the ground state and a full width half maximum (FWHM) of 15meV
around the center. Before the carrier exchanges the energy with phonons, the lattice
temperature of 15K was used. 0.8 Rydberg energy’ was used for the dephasing factor.
Partial scattering terms were integrated by using the Gaussian quadratures®'. The
calculation was performed on the momentum space but the result will change to the

electron’s energy in the plots.

2.3.1 2D versus 3D Dynamical Screening

Fig. 2.5(a) and 2.5(b) show the 2D and 3D GKBE solutions at the carrier density
of 8x10'°cm™ and 8x10'°cm™, respectively. Distinct colors represent different delayed
times. Solid and dash curves denote the screened and unscreened results, respectively.
At the beginning, a non-thermal carrier’s distribution is generated and carriers start to
scatter with each other. The unscreened carrier’s evolution is faster than the screened
one. Their difference is enlarged as the time evolves and is more considerable in a
quantum well. Thus, the screening dependence is verified and can be understood in a
simple picture. In a 2D structure, due to a stronger confinement, the electric field is
larger than that in a 3D structure and the stronger dynamical screening is as a result of

larger difference between the unscreened and screened electric fields. The screening
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Figure 2.5: GKBE solutions for the screened and the unscreened (bare) non-equilibrium
CCS. (a) in a 10nm-width GaAa/Al;3Gag7As quantum well at the non-equilibrium
density of 8x10'° cm™. (b) in bulk GaAs at the non-equilibrium denisty of 8x10'® cm™
The initial distribution was modeled by the Gaussian function with the center of 25meV

above the ground state and the FWHM of 15meV around the center. Inset figures show
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strength is shown in the inset figure where a larger magnitude around the center of
non-equilibrium carrier’s distribution in 2D than 3D structures is demonstrated.
Although the (unscreened and screened) electric field is weaker in a bulk than a
quantum well (respectively), the carrier in a higher dimension has a larger density of
states so that the scattering rate becomes larger and the carrier has a faster evolution.
The dependence is in good agreement with the experiment where the photon-echo
dephasing time is shorter in a bulk™. In addition, the distinct density of states causes
an increased and a flat scattering rate with an increased carrier’s energy in a bulk and
a quantum well respectively so that the former has a quick scattering to the lower

energy state while the later has a uniformly spreading distribution along the energy.

2.3.2 Quantum Coherence on Carrier’s Evolution

Because the carrier’s quantum coherence breaks the Markovian approximation,
the past carrier’s distribution is taken into account the scattering so that the carrier’s
evolution has the memory effect. The scattering rate is enhanced at the early stage. As
the time evolves, the enhancement becomes energy dependent so that a burning hole
is demonstrated on the carrier’s distribution. The memory effect can give a reasonable
explanation for the contradiction of power laws of photon-echo dephasing time*™”. Fig.
2.6(a) and 2.6(b) show the 2D and 3D screened GKBE solutions at 90fs and 60fs for
the density from 10'’cm™ to 10"'ecm™ and 10'°cm™ to 10"cm™, respectively. Inset

. D At
figure shows the Boltzmann solution. The average relaxation time is defined by ,

k;

where Af, is the difference of occupations at 25meV in a time interval At.

Changing n,, to n,, /L, the relaxation time is shown in Fig. 2.7. The density
dependence in distinct regimes is quite different. In the Boltzman regime, it is slightly

stronger in a quantum well than a bulk and is in consistent with the experimental
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1
power law ofn P . The power law also can be obtained by using the estimation of

average interparticle distance® and a strict derivation in the Boltzmann theory**. Thus,
the earlier experimental result™ should be valid and was measured from a dephasing
non-equilibrium carrier. In the quantum regime, the dependence in the two sample’s
structures becomes almost indistinguishable and is in surprisingly good agreement
with the report®. Although the semiconductor Bloch equation was used there®, the two
theoretical approaches give the same dependence. Thus, the experiment result* should
be measured from a coherent non-equilibrium carrier and the memory effect is the

reason for the change of power law from the Boltzmann to the quantum regimes.

2.3.3 Scattering among Dense Fermi Sea

Fig. 2.8(a) shows the 2D GKBE solution at the density of 8x10'° cm™, where 55

is partitioned to the non-equilibrium carrier and 45 is to a 100K electron’s
background. Fig. 2.8(b) shows the Boltzmann solution. In the absent screening, the
carrier’s evolution is shown to evolve as normal as that with the non-equilibrium
carrier alone. The non-equilibrium carrier has a weak interaction with the cold
electron because their exchanged wave vector is large. Thus, the non-equilibrium
carrier has a very slow scattering to the cold electron and most scattering among the
non-equilibrium carrier is due to itself. Comparing the Fig. 2.8(a) and 2.5(a), the
screening strength caused by the 2D cold electron is shown to have a very small
difference from that caused by the non-equilibrium carrier although their dielectric
functions are a little different. Thus, the effect of 2D cold electron can be rule out
from the possibility of Knox’s result. The memory effect leads the carrier with a faster
scattering rate and a shorter thermalization time as compared to the Boltzmann
solution. Nevertheless, the thermalization is not shown to become so rapid in a less

than 10fs time scale. In addition, this is independent of the 2D cold electron. Thus, the
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memory effect also can be ruled out. In the earlier experiment'', the 2D cold carrier is
generated from the modulation dopants in the barrier, where Si and Be were used as
the n-type and p-type dopants. The ionized impurities would build an electric field so
that increases the scattering rate. Because the Si has electrons in orbit (Z=14) three
times more than the Be (Z=4), the building electric field of Si enhances the scattering
more considerably. After ruling out all possibilities, the rapid thermailzation in the
presence of 2D cold electron should be due to the electric field induced from barrier’s

modulation dopants.

2.4 Summary

Although the dynamical screening on the CCS is a complex Coulomb interaction, the
dimensional dependence can be understood in a simple picture and the picture is also
valid on the Frohlich interaction and the static-screened interaction. The memory
effect is as a result of quantum coherence and would cause a burning hole on the
carrier’s distribution at the early stage. As the time further goes, the two hills aside the
burning hole is expected to continue to evolve to two burning holes and three hills due
to the memory effect and go on until the carrier dephases or thermalizes. The
non-equilibrium carrier’s evolution is normal in the presence of 2D cold electron and

the Knox’s result should be due to the effect of wafer’s preparation.
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Chapter 3

Hot Carrier Relaxation

3.1 Introduction

Although hot carrier relaxations in a bulk GaAs and quantum wells have been studied

1 and theoretically*?™* for more than one decade, the dependence of

experimentally
the dynamical screening in hot carrier relaxations on the sample’s dimensionality is
still not well understood. The screening behavior caught less attention on hot carrier
relaxations in GaAs probably attributes that the hot phonon effect was primarily
considered to be responsible for the great drop of energy-loss rates via Frohlich

interaction®>

, and hot carrier relaxations seem not to depend on the dimensionality
experimentally*>°. However, the deduction could not hold on the overall carrier
densities. Because more recent experimental results indicated that there is a clear
difference in energy-loss rates between a bulk GaAs and quantum wells when the
carrier density is above a certain critical value”®®, shown in Fig. 3.1 and 3.2. Though
the critical carrier densities determined in those experiments are not consistent, the
results imply that the dimensionality and the dynamical screening may have a
significant effect on hot carrier relaxations in a bulk GaAs and quantum wells.

To theoretically study the difference of hot carrier relaxations between the two
different dimensional systems, it is important to consider the optical phonon modes in
a quantum well. Many improved models were developed to give a better description

for atomic vibrations and the interaction Hamiltonians with electrons in the quasi

two-dimensional structure®2®. In our calculations, we use the dielectric continuum
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Figure 3.1: Time-resolved luminescence spectra at room temperature from Pelouch’s
results. (i) for 400nm bulk GaAs. (ii) for multiple quantum well. square: 10*cm™;
circle: 5x10™cm®; triangles: 2x10*cm™ (quoted from Phys. Rev. B 45, 1450 (1992))
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mode|15-l7,20

(DCM) because the model has provided a good agreement with many
earlier experimental results® . Although the interaction Hamiltonians of phonon
modes in a quantum well are strongly dependent on the well width, many
experimental results*>° demonstrated the less well-width dependence of hot carrier
relaxations except few report shown the contrary results****. This discrepancy also
stimulates us to study the structural dependence of energy-loss rates in a quantum
well.

In the thesis, the significance of the dimensionality and the dynamical screening
on hot carrier relaxations in a bulk GaAs and quantum wells is investigated. The
distinct dimensionality and the dynamical screening indeed cause that hot carriers in
quantum wells relax significantly slower than that in a bulk GaAs above the critical
carrier density of 2x10*%cm™. We attribute this to the smaller density of state in
quantum wells and the strong 2D dynamical screening. The dynamical screening in
quantum wells appears to be much stronger than that in the bulk and considerable as
compared to the hot phonon effect. The critical carrier density determined in our
studied is in very good agreement with the earlier experiments of Pelouch and

co-researchers’. We also found that the average energy-loss rate in quantum wells

depends on the well width more appreciably when Al compositions are high.

3.2 Semiclassical Boltzmann Equation

The average energy-loss rate (AELR) is calculated in order to compare the difference
of hot carrier relaxations between the two different dimensional systems. In this
section, we describe the derivations of the AELR in a bulk GaAs and a quantum well
where the net phonon generation rate, and the treatments of hot phonon effect and the
dynamical screening are included. The dynamical screening is dealt with the RPA®.

Exact dimensional treatments are handled on the AELR’s derivations and the
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dynamical screenings. In our calculations, the electron-phonon scattering is through
Frohlich interaction and only intrasubband scattering is considered in the calculation
of the AELR in quantum wells. The hole-phonon interaction is neglected. The
plasmon-phonon coupling (PPC) is not considered here because the significant

enhancement of energy-loss rates®”

induced by the PPC does not appear above the
critical carrier density of 2x10™%cm’®.

The AELR is determined by the net phonon generation rate and the phonon energy.
The net phonon generation rate represents the subtracting difference between

phonon’s generation rates and absorption rates. In a bulk GaAs, the 3D net phonon

generation rate is given by*°

ONg _ mekg TV 2 _ T _ ho, (3.1)
o UL Nq]ﬂf@ f(a+kBTc>}dz;

where ¢ and , denote phonon’s wave vector and phonon’s energy, respectively.
f(C) is the electron’s distribution. With the thermalized assumption for carriers,
Fermi-Dirac distribution is used where T is the carrier temperature. N, represents
phonon population. kg and V have their usual meanings. The quantity N, (T;) can
be written as*®

Nq(TC):— (3.2)

ex )1
p(kBTc)

¢, a dimensionless quantity, represents the normalized energy (energy divided by

thermal energy kgT.). C., IS the minimum normalized energy required for an

min

electron to kick out a phonon of wave vector. It is given by®

m, |h2q2
2n°q°kg T, | 2m,

Cmin = (33)

— hc)q
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‘Mq‘z, Frohlich interaction strength, is given by*®

M,

2
‘2 _ € hO)q (i_i) (34)
2VQ® ‘e, &g

where ¢, and gg are high frequency and static dielectric constants.

In a quantum well, based on the DCM***"%, the confined (C), the symmetric
plus interface (S+), symmetric minus (S-) interface and the half-space (HS) phonon
modes are considered in our calculations. Anti-symmetric interface modes are
excluded due to the selection rule for the intra-subband scattering. The dispersion
relations for the S+ and the S- interface modes are shown in the sec. 5.2*°. The noun
“half-space” in double heterojunctions originates from the report of Mori and Ando®

where the same name as the case of a single heterojunction is used. The 2D net

phonon generation rate can be written as

ONESH 2md kT A 2
q en "B C C,S+,HS C,S+,HS C,S£,HS
I ‘M( )‘ [Né” )(TC)_N( )]

= qy Ay

ot nh'q,

00 (C,S£,HS)
O (0 I (S IS | T Y
Je kgT,

Crmin B'C

where g, and o{**"® denote the in-plane phonon wave vector and the phonon

energies of various modes. m,, is the n" layer effective electron’s mass while 1

represents GaAs and 2 represents AlGaAs layers. A denotes the area. C, is the
. e [2
normalized ground state energy to the thermal energy. ‘ng’sf'*‘s)‘ represents the

electron-phonon interaction strength of various modes shown in Table I. The used

Hamiltonians are taken from the report of Mori and Ando®.

(C,S%,HS) ;

The quantity of Ny v"is to be determined. When the hot phonon effect is

excluded, the phonon population satisfies the Bose-Einstein relation with a lattice

temperature T, . In general, the hot phonon effect plays an important role in hot
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TABLE I. The electron-optical-phonon interaction strengths in a quantum well structure

Optical-phonon mode Interaction strength
Symmetric *
2 S+
. a .2 € ho;, . . 1 . vl ~n |2
interface modes ‘Mi; _ a [hll(wf,;)tanh(zq,,LW) + hzl(wz;)] 1‘6&

4Aqe,

1 : the well region
where n= . :
2 . barrier regions
»  e%ho 1 2
Confined mode®” ol = QN( Gt
‘ q”‘ €1 851 q; +(pr/L,)? ‘ C‘
oerh HS
Half-space mode™>* My ‘ —I& L —)——— G| da,
I 2rA e, ¢ q//+qz

®Gl, is <@, |bs, |@, >, where @, is the electron’s ground state and ¢, is potential

for interface modes, and the factors G”,G,are the overlap integral for the p™ confined

mode and the half-space mode respectively. Their expressions and h,( ) are shown in the
sec. 5.2,

bswn ,Eg, are n™ layer high frequency and static dielectric constants.

qu is the phonon wave vector paralleled to the crystal’s growth direction.
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carrier relaxations. The phonon dynamics can be governed by the phonon Boltzmann
equation. At the steady state, the phonon’s population can be given by the following

equation with using eq.(3.1) for bulk (eq.(3.5) for quantum wells)®.

(C,S+,HS) (C,S+,HS) (C,S+,HS)
8NQ(CI//) _ NQ(CI//) NQ(CI//) (TL) (3.6)
ot T

ph

where 1, is the phonon life time.

The dynamical screening on hot carrier relaxations is handled with the

electronic dielectric function. Based on the RPA, the dielectric function is given by

F(E(k + )~ F(E(K)) 37)

142V,
a0 0) =L VG ) ) —E() 41y

2 2

where 'V, is © ———in3Dand 5
£,q°L 2e,q,L

from 0.2 to 0.3 times of the plasma frequency*’.

in 2D. The damping coefficienty ranges

According to the result from the derivation of Haug and Koch** with the RPA,

. . . 2
the effective screened electron-phonon interaction strength ‘Mgﬁ can be expressed as

2

M

q

| Ma (3.8)
Egpa (0, ©)

The 3D and 2D zero-temperature dielectric functions are, respectively, given by*

(J)q-i-i'y q
2 i —a f

8RPA(q(D) 1+3n¢2e 1+£ 1—( ® Y q )2 In qvp_ 2k
ooq EF 2q qQve 2kF (Dq-Hy i_

qve 2k

i
~11-( %t _ 4 2 [in—9ve__ 2Ke (3.9a)

L ave 2k | 0gtlY g

v, 2k,
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2 (C,S£,HS) | 2
n,,e Kk ® 1y q
2D (C.S£,HS)y _ 2D F q I \2
SRPA(q//'wq,, )—1+—{1_ {( - + ) -1

2¢,.q,E; q, Q,Ve ZkF
(o (CSEHS) iy q 12
_ ( dy _ /! )2 _1 39b
[ Ve 2K (3.90)

where E., k.and v represent Fermi energy, Fermi wave vector and Fermi
velocity, respectively.

Finally, the 3D and 2D AELRSs can be obtained as the definition shown below

1 oN
AELR),, =—— ho, —3
( Yo nSDV%: 9 ot (3.10a)
(C,S+,HS)
(AELR),, = 1 > Zhw(c’Si’HS)aNq”— (3.10b)
2D ay ot '

2D C,S+,HSq,4q,

where ¢, is defined in the caption of Table I.

3.3 Results and Discussion

The material’s parameters and the used assumptions are referred®*®. Our
calculations of the reduced dimensionality on hot carrier relaxations are performed on
a bulk GaAs and a 10nm-width single GaAs/Aly3Gag7As quantum well where the
band-offset ratio of AE.:AE, = 65 : 35 is used*’. The average phonon energy is
approximated in AlGaAs layers to simplify the two-mode behaviors of the GaAs-like
and the AlAs-like phonons®. The material’s parameters are quoted from Adachi’s
report®. The electron’s distribution function is assumed to satisfy with Fermi-Dirac
relation. We use 300K as the electron’s temperature except the section reported the
structural dependence in quantum wells, where 600K is taken. An initial lattice
temperature is chosen to be 15K. We quote 7ps to be the phonon life times in both
bulk GaAs and quantum wells*®. Only first-order mode® of confined phonons is

considered in our calculation because of the very less contribution to the AELR from
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higher-order modes. In general, the AELRs in quantum wells are summed over S+

interface and the confined modes.

3.3.1 Reduced Dimensionality

In Fig. 3.3 we show the dependence of the AELR on the carrier density in bulk
GaAs and a quantum well where the sheet carrier densities are transferred byn,, /L, .
Three sets of curves are shown in the figure representing three different conditions: (1)
in the absence of the hot phonon effect and the dynamical screening (denoted by None
in the plot), (2) in the presence of the hot phonon effect alone (denoted by HP), and (3)
in the presence of both the hot phonon effect and the dynamical screening (denoted by
HP+DS). For the first case, the AELRs in the bulk are shown to be higher than that in
a quantum well. Above the carrier density of 10'%cm™, the AELR in a quantum well
drops much faster than that in a bulk. Because the energy-loss rate in materials is
equal to the product of the AELR and the carrier density, this implies that there is a
considerable difference in the energy-loss rate between bulk GaAs and a quantum
well as the carrier density is increased. In the absence of hot phonon effect and the
dynamical screening, the rapid deviation of the AELRs between the 2D and the 3D
structures is only attributed to the difference in density of states. Due to the smaller
density of state, hot carriers in quantum wells are shown to relax considerably slower
than that in the bulk above the critical carrier density. When the hot phonon effect is
considered, although the AELRs greatly reduce in both sample’s structures, the rapid
deviation of the AELR between bulk GaAs and a quantum well still appears while the

critical carrier density is shifted to the higher one (toward 2x10'%cm™).

In Fig. 3.4 we show the difference ‘AELRSH?, —AELRﬁ"'E‘ on the left axis and the

~ |AELR? — AELRZ] _
ratio 5 on the right, where the lower and upper symbols of the
AELR},
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Figure 3.3: Average energy-loss rate with distinct conditions in a bulk GaAs and a 10nm
GaAs/Aly24Gag76As quantum well. The symbols “None”, “HP”, and “HP+DS”,
respectively, denote the AELRs in the absence of the hot phonon effect and the
dynamical screening, in the presence of the hot phonon effect, and in the presence of the
hot phonon effect and the dynamical screening. The confined and the St interface
modes were considered in the AELR of a quantum well. The carrier temperature of
300K and the initial lattice temperature of 15K were used.
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AELR represent the considered effect and dimensions, respectively. Below the carrier
density of 10*%cm™, slightly higher 2D AELRs are demonstrated and this is because
the hot phonon effect in quantum wells is weaker than that in the bulk. But, above the
carrier density, the effect of the smaller density of state in quantum wells overcomes
the hot phonon effect so that 2D AELRs recover to be lower than the 3D case, and the
threshold curve clearly shows the significance effect of the distinct density of state on

hot carrier relaxations between a bulk GaAs to quantum wells.

3.3.2 Dynamical screening versus Hot Phonon Effect

In our investigation, the 2D dynamical screening is also found to be an important
role on hot carrier relaxations at a high carrier density. Due to the great difference of
the dynamical screening between the two different dimensions, the calculated results
with the HP+DS in Fig. 3.3 shows the more rapid deviation of AELRs between the
two sample’s structures. In order to compare the screening strength between a bulk
GaAs and quantum wells, we plot Fig. 3.5 where the right and left axes, respectively,
show reduction factors due to the dynamical screening and the hot phonon effect. The
symbols were mentioned earlier. The dynamical screening in quantum wells is shown
to be much stronger than that in the bulk and more quickly increased when the carrier
density is above 10 cm™. The quicker increase for the 2D dynamical screening is the
consequence of the chemical potential in quantum wells, which is raised faster than
that in the bulk as the carrier density is increased. The 2D dynamical screening is also
shown to be as important as the hot phonon effect at a high carrier density. To our best

knowledge, the earlier investigations®*>

usually omit the effect of the dynamical
screening on hot carrier relaxations. In a short summary, because of the fewer density
of state and the strong 2D dynamical screening, hot carriers in quantum wells relax

significantly slower than that in the bulk at a carrier density above the critical value of
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2x10% cm™. The threshold behavior and the critical carrier density are in very good
agreement with the earlier experimental results of Leo®, Pelouch’, and their

co-researchers.

3.3.3  Well-Width Dependence

Next, we interpret the calculated results for the well-width dependence of hot
carrier relaxations in quantum wells. The sheet density of 5x10*'cm™ is fixed for all
calculated results with different structural parameters. Firstly, we show the
dependence of the AELR on the well width for various phonon modes in Fig. 3.6(a),
where the S+, the S-, the confined, and the half-space modes are considered. The
AELRs for the confined mode always increases until to the well width of 10nm. This
is the consequence of the electrons better confined in the wider well and the decreased
phonon wave vector parallel to the crystal’s growth direction. For the S+ interface
modes, because the electron’s spatial distribution departs from the double interfaces
and the decreased Hamiltonian, the AELRs are shown to quickly decrease with the
increased well widths. The S- interface and the half-space modes are less noticeable
because of the flatter dependence and much smaller AELR as compared to the other
modes. In Fig. 3.6(b), we show the AELRs as functions of the well width and the Al
composition by summing over all phonon modes. The opposite dependence on the
well width between the confined and the S+ interface modes compensates with each
other and brings the protruding well-width dependence for various Al compositions.
The protruding behavior was also ever found in the earlier experiment of Ryan and
Tatham®. As the Al composition is increased, the well-width dependence of the
AELR becomes more appreciable and the maximum AELR moves toward the shorter
well width. The reason is the increasingly stronger effect of the S+ interface phonon

mode on the hot carrier relaxations with the increased Al composition. The slightly
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quantum well. (a) for the confined, St interface, and the half-space modes at x=0.3. (b)
for the total AELR at x=0.3, 0.5, 0.7, and 1. The inset figure shows the spectrum of the
net phonon generation rates in a quantum well with L,, of 10nm and x=0.3. The hot
phonon effect is included in the AELR. The carrier temperature of 600K, the initial
lattice temperature of 15K, and the carrier density of 5x10* cm™ were used.
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roughness in AELR’s curves is the consequence of the numerical inaccuracy from the
2D net phonon generation rate where the finite spike at a given in-plane phonon wave

vector is shown in the inset of Fig. 3.6(b).

3.4 Summary

We clarify the discrepancies of the earlier experimental results on hot carrier
relaxations in bulk GaAs and quantum wells. In contrast to the results in a bulk GaAs,
both the dimensionality and the dynamical screening have a significant effect on hot
carrier relaxations in quantum wells. The smaller density of state in quantum wells
and the strong 2D dynamical screening cause hot carriers in quantum wells to relax
significantly slower than that in a bulk GaAs when the carrier density is above 2x10"
cm?®. The influence of the 2D dynamical screening on hot carrier relaxations is
considerable and is as important as the hot phonon effect when the carrier density is
high. As the Al composition is increased, the AELR in quantum wells has a more

appreciable dependence on the well width.
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Chapter 4

Plasmon-Phonon Coupling

4.1 Introduction

Electronic collective oscillations in multiple quantum wells have been shown to be
naturally different from that in the absence of heterointerfaces both theoretically* ™
and experimentally**#. The broken spatial symmetry has caused several fundamental
kinds of plasmons in multiple quantum wells. There can be categorized into
intrasubband, intersubband, intrawell and interwell types when the quantum
confinement and the Coulomb coupling between different layers are considered,
respectively. Theoretically, the electronic collective oscillations were solved which is
modeled by a large number electron in multiple quantum wells and based on the
density matrix method with the self-consistent field approximation (SCF)?%. The
dispersion relations indicate that in the case of weak Coulomb coupling between
adjacent quantum wells, the collective oscillation behaves like that of an ideal
two-dimensional gas. At the long wavelength limit, the plasmon energy is
proportional to the root of the in-plane wave vector, which was firstly proposed by F.
Stern'. On the contrary, when the Coulomb coupling is strong, this would result in the
optical and acoustic plasmon modes at the long wavelength limit, which are very
similar to the lattice vibration in polar semiconductors. Intersubband plasmon’s types
are the interesting case caused by the quantum effect on the collective electronic

oscillation. Many improved theories are developed®**?*3. The resonant screening™

(depolarization shift), excitonic shifts® (final-state correction), and vertex correction

50



due to many-body effects® are taken into the consideration to obtain more accurate
dispersions of intersubband plasmons. While numerous electronic collective
oscillations in quantum wells are theoretically studied, there also have very good
agreement with experimental results***. Because of high-quality samples grown by
using molecular beam expitaxy, various types of plasmons in modulation-doped
GaAs/AlGaAs quantum wells are experimentally observed. The earlier reports of
intrasubband and intersubband plasmons consisted of a layered electron gas can be
found in Ref. [14-16]. By using the electronic Raman scattering, intrawell and
interwell plasmons in multiple quantum wells are also systematically studied. Their
dispersions are determined clearly and the experimental results are reported in Ref.
[17,18].

Because the electron gas is immersed in a crystal structure, the interaction
between plasmons and phonons via the macroscopic electric field could arise, which
is so-called the plasmon-phonon coupling (PPC). When double heterojunctions are
further considered, the PPC behavior is more complex and the mathematical treatment
becomes more difficult than the bulk case either from electrodynamics or many-body
technique. However, if one uses the given phonon and plasmon modes in the presence

of double heterojunctions®**°

to probe the problem, the mathematical treatment could
be greatly simplified and the physical meaning is also clearer. For instance, the
intersubband plasmon between adjacent energy levels would not couple to interface
phonon modes because of their perpendicular polarization. The previous one polarizes
parallel to the crystal growth direction while another parallel to its propagation
direction along heterointerfaces. In addition, the relevant derivations for the PPC can
also follow the developed method in the bulk case as long as replacing objects by that

in quantum wells. Wendler and Pechstedt® attempted to obtain the PPC dispersions

from the total dielectric function that is accounted by the electron-electron,
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electron-interface phonon, and electron-confined phonon interaction terms with using
Dyson equation and the RPA. The results are dramatic different from the those in bulk.
Coupling between plasmon, confined, and interface phonons causes their dispersions
deviate from that the uncoupled ones. Setting the real part of the total dielectric
function to be zero, coupled dispersion branches are obtained and shown to deviate
from the uncoupled modes.

In our investigation, another possible coupling of plasmons and phonons in the
presence of double interfaces is proposed. Differing from the mechanism of Wendler
and Pechstedt”®, we assume that intrasubband plasmons individually interact with
interface and confined modes; that is, the quasi-2D PPC results in the
plasmon-interface phonon and the plasmon-confined phonon coupled modes. Each
coupled mode splits into the plasmon-like and the phonon-like modes. The
dispersions are obtained by using the renormalized phonon propagators, corrected by
taking the effect of free electron gas. Following the PPC treatment proposed by Sarma

and co-researchers®>2*

, the net plasmon-phonon generation rates are calculated and
used to obtain AELR by summing over all coupled modes. Plasmon-like modes are
found to be considerable for hot carrier relaxations around the sheet carrier density of
10™ cm, where the enhanced AELR are shown as compared to the uncoupled case.

We also found that an increase in carrier temperature reduces the AELR enhancement

but does not influence the considerable sheet carrier density.

4.2 Re-normailzed Phonon Propagator

In this section, the coupled dispersion relations and the net plasmon-phonon
generation rates are shown. Our calculation is performed on a 10nm single

GaAs/Alg24Gag7sAs quantum well. Based on the DCM* the S+, the S-, and the C
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phonon types are considered in a quantum well. The electrons in the quantum well are

simplified by ideal 2D electron gas and the plasma dispersion is given by

) 1/2
® :[nZDe q//J (4.1)

"\ 2m.e,

With the PPC effect, six coupling branches are considered. They are two of the
plasmon- S+ (PS+), two of the plasmon- S- (PS-), and two of the plasmon-confined
(PC) coupled modes. The renormalized phonon propagator due to the correction of
free electron gas is given by

20,
D(q”’m) = , 5 2 (42)
0 ~ 0 —20,M,| T, (q,.0) /&, 0)

where « denotes the modified energy while o, represents uncoupled phonon
energies where the index i denotes the S+, the S-, and the C phonon modes. M’

denote the electron-phonon interaction strengths and the expressions are reported in
the Ref.[22]. The polarizability function I1,(q,,®) and the dielectric function

e(q,,®) in the renormalized phonon propagator were adapted from the work of

23,24

Sarma“~“", who assume the plasmon-pole approximation for the dielectric function

and the unknown coefficient was determined by using the Kramers-Kronig relation.

23,24

The expression can be found in the report and not shown here. As a result, the

coupled dispersion relations and the interaction strengths for the coupled modes are

given by**?
1 M2 1/2
_ L) 2, ~2 2 ~2v2 2 M,
4y = 5 o; +o, * (o; oop) +8m,0, th” (4.3
2 =2
M2, =2 [0l =5} M? (4.4)

i(x) ~ 2
Oj(1) Djgyy ~ Dy
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where w,,, represents the upper (+) and the lower (-) energies with the PPC effect.

So does the coupled interaction strength M? i) -

2 N,50; (4.5)
M|, (0,0 =0)|

Then, the 2D net plasmon-phonon generation rate in GaAs region is given by

oN, . ,/2m§1kBTCA O
= g, MioNe o) - N.(+)]C£n\/—[f(€+§) FC+C,+ ”)]dc

B

(4.6)
where N, (T.) and N,., are, respectively, Bose-Einstein number® at Tc and

nonequilibrium phonon number. £ . is the minimum normalized energy required

min

for an electron to kick out a plasmon-phonon modes of wave vector q,. It is given

by

mel |h2q/2/
q,,kBT ‘Zm

len - hmi(i) (47)

The net generation rate in AlGaAs region is treated as the uncoupled case
because the electrons are generated in the well region. Hot phonon effect and the
dynamical screening are also taken into the consideration. The determination of
nonequilibrium occupation can be obtained by solving the steady-state phonon
Boltzmann equation. The dynamical screening with the RPA is considered. Finally,

the AELR can be obtained by the definition shown below.

AELR =

Z he i)

(4.8)
NpA g, ) a

4.3 Results and Discussion

4.3.1 Dispersion Relation
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In Fig. 4.1(a) and 4.1(b) we show the coupled plasmon-phonon energies as a function
of the in-plane wave vector on the two sheet carrier densities of 10** and 10* cm™
with a carrier temperature of 300K and an initial lattice temperature of 15K. The PS+,
the PS-, and the PC coupled modes are shown in the plots, where L+ and L- represent
the upper and lower branches for each couple mode, respectively. As energies of L+
branches approach to that of L- branches, the two vibration modes are perturbed with
each other so that the energies of the two branches are shown to deviate, which
splitting arises. When the in-plane wave vectors are smaller than the coupled places,
L+ and L- branches behave as the phonon-like and the plasmon-like modes,
respectively. On the opposite case, the behaviors of the two branches exchange with
each other. As the sheet carrier densities increase, the crossing in-plane wave vectors
are shown to move toward lower. When the crossing wave vector leaves the range of
the plasmon-phonon coupled modes generated by hot carriers, PPC is expected not to
influence significantly hot carrier relaxations as compared to the uncoupled case. In
the sheet density of 10" cm™, we show the enlarged plot of lower branches in the
inset. The figure indicates that the PS+ mode becomes to the lowest one among three
coupled modes. The little amount of the energy difference will be shown to have a

significant effect on the net plasmon-like generation rates.

4.3.2 Average Energy-Loss Rate

In Fig. 4.2(a) and 4.2(b) we show the net plasmon-phonon generation rates as a
function of the in-plane wave vector on the two sheet carrier densities same as
mentioned above. The quantity of the L+ branch of PS+ mode is plotted on the right
axis while others are plotted on the left. The generation rates are shown to have
different behavior between the two sheet densities. In the sheet density of 10** cm™,

because the crossing in-plane wave vector is larger than the range of the
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Figure 4.1: Dispersion curves of plasmon-phonon coupled mode in a 10nm
GaAs/Al 2,Ga 76As quantum well. (a) the carrier density of 10*'cm™. The inset shows the
enlarged plot. (b) the carrier density of 10%%cm™. L+ and L- denote the upper and lower
modes, respectively. A carrier temperature of 300K and an initial lattice temperature of
15K are used.
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Figure 4.2: Net plasmon-phonon generation rate in a 10nm GaAs/Al 24Ga 76As quantum
well. (a) the carrier density of 10'cm™. (b) the carrier density of 10*%cm™. L+ and L-
denote the upper and lower modes, respectively. A carrier temperature of 300K and an
initial lattice temperature of 15K are used.
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plasmon-phonon coupled modes that could be generated by hot carriers, the L+ and
L- branches correspond to the phonon-like and the plasmon-like modes, respectively.
A very larger generation rate of the PS+ plasmon-like mode than others is found and
this can be categorized into two reasons. The first one is that L- branches become
important relaxation channels for hot carriers at the sheet density shown in the eq.
(4.4). Another is that more PS+ plasmon-like mode than others can be excited due to

the lowest energy among the two other plasmon-like branches shown in the inset of

Fig. 4.1(a). Because of Bose-Einstein relation N;,, (T ), the little energy difference

between them causes the significant effect. The considerable net generation rate also
leads enhanced AELR as compared to the case without the PPC effect. The spike in

the curves is the consequence of the net plasmon-phonon generation rate with an ideal
2D treatment, where the inside function is proportional to 1/\/2 shown in €q.(4.6).

It is finite and does not give much AELR due to the very narrow width.

In the sheet density of 10' cm™, the crossing in-plane wave vector is around 1.2
x10® m™, which is on the intermediate range of the in-plane wave vector of
plasmon-phonon coupled modes that can be generated by hot carriers. So, the
plasmon-like and the phonon-like modes do not entirely correspond to L- and L+
branches. Plasmon-like (phonon-like) modes distribute on the L- (L+) branches below
the crossing in-plane wave vector and the L+ (L-) branches above the crossing wave
vector. A rapid drop in the net plasmon-like generation rate as compared to the sheet
density of 10" cm™ is found. This is the consequence of the crossing in-plane wave
vector moving toward smaller than the case of sheet density of 10** cm™. Because of a
quick rise of L- branches, based on Bose-Einstein relation, excitations of plasmon-like
modes are shown to decrease rapidly. Another plasmon-like modes on the L+

branches above the crossing in-plane wave vector are also shown to have small the net
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plasmon-like generation rates. Thus, it is expected that, as the sheet densities increase
above 10" cm™, plasmon-like modes gradually become a minor relaxation channel
for hot carriers. Around the in-plane wave vector of 10°m™, the L+ branch of the PS-
mode is shown to have a slightly larger net plasmon-phonon generation rate than L+
branches of PS+ and PC modes. This is different from the case of the sheet density of
10 cm™.

In Fig. 4.3 we show the dependence of the AELR summed over all
plasmon-phonon modes and the AELR with different conditions on the sheet carrier
density. The different conditions include the bare electron-phonon interaction, HP, DS,
HD and static screening (SS), where the notations are same as the chap. 3. The PPC is
shown to enhance the AELR and this is the consequence of the contribution of
plasmon-like modes to the AELR. Around the sheet density of 10**cm™, plasmon-like
modes are found to be massively generated by hot carriers and significantly influence
the AELR. Below the sheet density of 10*'cm™, the crossing in-plane wave vector is
gradually larger and departs from the range of wave vector that hot carriers can
generate so the contribution to the AELR from the plasmon-like modes becomes
smaller. When the sheet density increases above of 10''cm™, as mentioned earlier, the
rapid increase in the plasmon-like energy causes the mode to be more difficultly
excited by hot carriers so the contribution also becomes smaller. In these sheet
densities, hot phonon effect is shown to decrease the AELR more strongly than
dynamical screening, for which there found increasingly shielding strength at high

sheet densities. Static screening is shown to overestimate the shielding strength.

4.3.3 Carrier Temperature Effect
The effect of the carrier temperature on the PPC is studied. We show the AELR

as a function of sheet densities on the two temperatures of 100K and 500K in Fig. 4.4.
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figure shows the deviation ratio caused by the PPC.
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The PPC effect on hot carrier relaxations at the carrier temperature of 100K is found
to enhance the AELR more strongly than that at 500K. In the inset of Fig. 4.4 we
show the deviation ratio ((AELRppc-AELRup)/AELRyp) as a function of sheet
densities on the different carrier temperatures. It is found that the carrier temperature
does not significantly influence the sheet densities where the maximum deviation
ratio is shown. As the carrier temperature increases, the enhancement on the AELR by
the PPC effect becomes smaller. This is the consequence of hot phonon effect. It more
greatly drops the net plasmon-phonon generation rate at higher carrier temperature so

that the enhancement of ALER by the PPC effect is shown to gradually disappear.

4.4 Summary

Using renormalized phonon propagators, six plasmon-phonon coupled branches in a
quantum well are obtained and used to study the influence of the PPC on hot carrier
relaxations. When hot carriers can relax their excess energies via the plasmon-like
modes, the considerable enhancement of the AELR by the PPC is found. The effect is
significant when the sheet carrier densities are around 10™ cm™ and the carrier
temperatures are low. At higher sheet densities, the effect gradually evanesces
because hot carriers are more difficult to excite the plasmon-like modes due to the
increased energies. The enhancement of the AELR also strongly depends on hot
phonon effect. Thus, at the carrier temperature as low as possible but higher than®
40K, decreasing nonequilibrium phonons would lead more noticeable effect of the

PPC on hot carrier relaxations around the sheet carrier densities of 10** cm™.
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Chapter 5
Structure Effect on Frdhlich

Interaction

5.1 Introduction

Electron polar-optical-phonon interaction in 111-V semiconductor quantum wells plays
an important role for hot carrier relaxations, which influence the high-speed responses
of many quantum devices. In the past, electron-phonon scattering rates in a quantum
well were typically calculated using the bulk phonon model or the bulk-like phonon
model™. In the bulk-like phonon model, the optical phonon modes are assumed to be
the same as those in the bulk material while the electron wave functions incorporate
quantum confinement. More recently, the DCM*’ and Huang-Zhu model® (HZM)
were developed for dielectric slab problems and were more accurate than the bulk and
the bulk-like phonon models. The fundamental types of phonon modes*”® and the

electron-phonon Hamiltonian®®®

in heterostructures have become an interesting
subject. Experimentally, Ploog et al.>*° discovered the evidence of the confined LO,
TO phonons and interface phonons in GaAs/AlAs superlattices using Raman
scattering. An order of magnitude reduction in the intersubband scattering rates in
GaAs/AlGa; xAs quantum wells was reported by Schlapp et al. using an infrared
bleaching technique®. The reduced scattering rates were explained successfully by

Sarma et al. using the DCM*?,

In the last decade, techniques involving ultrafast spectroscopy became very
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1.1 ysed

powerful tools in studying carrier dynamics in semiconductors. Ploog et a
time-resolved photoluminescence to study the hot carrier relaxation in a quasi-two
dimensional system. Their experimental results were analyzed with the AELR* and
indicated that the width of a quantum well had little effect on the hot carrier relaxation.
However, the AELR in their analysis was calculated using the bulk phonon model.

More recently, a better method using the hot-electron neutral-acceptor
luminescence’, shown in Fig. 5.1, was developed to study the carrier relaxation
mechanisms. It gives a better spectral resolution at lower carrier excitation densities
than those of the ultrafast spectroscopy technique. This method has been used'®? to
determine the effective phonon energy in GaAs/AlyGaixAs quantum wells with
various structure parameters. The effective phonon energy can be estimated in our
calculations and be compared with experimental measurements.

The purpose of the report is to calculate the electron-phonon scattering rates in
GaAs/AlGa; xAs quantum wells with various structure parameters based on the DCM
model. Especially, we focus on the dependence of the electron-optical phonon
interaction on the Al composition in the barrier, which is the subject that is still

lacking in earlier reports. The calculated results are compared with earlier

experimental results®.

5.2 Dielectric Continuum Model

5.2.1 Phonon energy in GaAs/Al,Ga;.,As quantum wells

Based on DCM, there are six types of optical-phonon modes® in a dielectric slab.
However, due to selection rules for the intra-subband scattering, only the confined LO
mode, the half-space LO mode, and the symmetric interface modes were taken into
consideration in our calculations. The confined phonons propagate in the well, and the

component of the phonon wave vector along the layer growth direction (z direction)
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Figure 5.1: Schematic diagram of hot photoluminescence at energy hv, through
electron-neutral acceptor (marked by A) recombination. Incident photons with hv,,

excite electrons, and subsequent scattering processes are illustrated including
electron-electron, electron-phonon, electron-plasmon scatterings. (quoted from Ref.[21])
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g; is quantized. The half-space phonons, whose z component of the phonon wave
vector is not restricted, propagate in the barrier. Symmetric interface phonons
propagate along the interface, and the in-plane atomic displacement is symmetric with
respect to the center of the well. Symmetric interface mode can be further divided into
the S+ and the S- branches. These two phonon branches also have different dispersion

characteristics, which is given by the solution of

8|att.l (O)Si) tanh(q Vi L/ 2) + 8Iatt.2 (O)Si) = 0 (5.1)

where the lattice dielectric function is given by

05~ <O oy > (5.2)

2 2
Og, = < Wyop >

8Iatt.n ((DSi) = 8oon

where the optical phonon energy in the AlGa;xAs layer has two modes: the

GaAs-like mode and the AlAs-like mode. <o g0y > represents the LO (TO)

energy in the GaAs layer. <m g0, > represents the LO (TO) energy in the

AlGa;xAs layer, and is taken as the average of those of the AlAs-like mode

®fosroz (X) and the GaAs-like mode  © G0z (X)

AIA GaA
< Ooyro2) = X(DLOZS(TOZ) (X)+(1- X)O‘)LOZS(TOZ) (X) (5:3)

The material parameters used in the dissertation are listed in Table 11%. Fig. 5.2
shows an example of the interface phonon dispersion in a 50nm-width
GaAs/Alp3Gag7As quantum well. At the long wave length limit, the S+ and the S-
interface modes go to the LO phonon energy in AlGaAs barrier and TO energy in
GaAs well, respectively, while the antisymmetric plus (A+) and the antisymmetric
minus (A-) interface modes go to the LO phonon energy in GaAs well and TO energy

in AlGaAs barrier. At the short wave length limit, the S+ and the A+ modes go to the
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TABLE Il. Material parameters for GaAs, AlAs and Al,Ga;xAs used in the dissertation

Parameter GaAs AlAs Al Gay.xAs
LO-phonon energy 7w, , (MeV)

GaAs-type 36.25 36.25-6.55x+1.79x°

AlAs type 50.09 44.63+8.78x-3.32%°
TO-phonon energy 7m;, (mMeV)

GaAs-type 33.29 33.29-0.64x-1.16x*

AlAl type 44.88 44.63+0.05x-0.30%?
Relative dielectric constant

Static «g 13.18 10.06 13.18-3.12x

High frequency «_ 10.89 8.16 10.89-2.73x
Band-gap energy Eg(15K) (eV) 1.519 3.13 1.519+1.611x
Electron’s effective mass m,(mg)®  0.067 0.15 0.067+0.083x

%mg denotes the free electron mass.
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Figure 5.2: Dispersion curves of symmetric and anti-symmetric interface phonon modes
in a 50nm GaAs/Aly3Gag 7As quantum well.
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same phonon energy while the S- and the A- go to the same energy. The
long-wave-length phonons play a more important role on the scattering with electrons
because the Frohlich interaction inversely proportional to the phonon’s wave vector,
which favors the small-angle scattering. The anti-symmetric interface phonons
become important on the interaction with electrons when the electron has

intersubband scatterings.

5.2.2 Electron-Phonon Scattering Rates

With the average phonon energy in AlyGai;xAs alloy shown in eq.(5.3),
intrasubband electron-optical-phonon scattering rates in the lowest subband can be
calculated using the Fermi’s golden rule. The scattering rates are obtained by
integrating over all possible states using the two-dimensional density of state function
with states restricted by energy and momentum conservations. Scattering rates of the

interface modes, W, , the confined mode, Wc, and the half-space mode, Wys, are

respectively written as

e2 q//maxw 2
W, =———— > <m,, *2IN, (0, ) +1]< Lo >
. 4n80h3k§j J o Na, @)+ 1< 01 16s. |0, >

x{[hl‘l(ms+)tanh(%q,,L)+h51(®s+)]} dq”} (5.4)

m,e’o
W, = lzh kc (;ﬂ——)[Nq,, (O)C)+1]Z—

2 -1 q//mawa -1 q//mian
; tan " (———) —-tan " (——
><{|< or | 0c | @; > [tan™( o ) ( o )]} (5.5)

m,e’o, , 1 1
= ( __)[Nq,, (0ys) +1]

HS —
2n’h’k e, &g,
00

l - max - min
XJ-q_|< O¢ | dus [ >|2[tan 1(q/(;—)—tan 1(q”—)]dqZ (5.6)

0 -z z z

N, (@s.), Ny (oc), and N, (o) are phonon occupation numbers of the interface
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modes, the confined mode, and the half-space mode respectively. ¢, and ¢, are the
electron’s wave functions of the initial and the final states in the quantum well.
ds., dc,and ¢, , given in Table 11, are the potential functions of the interface, the

confined, and the half-space modes respectively. The function, hn(®g, ), is expressed

as
1 1 <o > W3, — < Orgy >
h, (0, 5.) = (== ST 2y (5.7)
Kon  Kon Og, SOy > —<Oroy >
The minimum and maximum in-plane phonon wave vector can be expressed as
/2
Ayimin = k[:l-_(tho/Ek)}1 (5.8a)

Ajimax = k[l"' (thO / Ek)]ll2 (5.8b)

In order to clearly explain the dependence of scattering rates on the structure

parameters for the interface modes, we introduce the H factor, defined as

H =[h;* (05, ) tanh(q, L, ) + 0, )T 59

It appears in the eq. (5.4) for the interface modes. In addition, we call the overlap
integral, (o |¢|o,), for the electric potential G factors for the phonon modes. For

S+ and S- modes, the G factors in the well and the barrier are respectively

2/cosh(;q,,LW)
J2mE J2mE
h [L+cos(———% L, )]+L, + h sin(——= L
\/zmez (AEC - Eel) h \/2melEe1 h
VzmelEel LW)
h

1
a, Smh(E q,L,)cos(

w
Gsr =

w)

| Lsinnq, L, )+

2 8m,E,
q, q/2/+ hlz 1
A2m_E J2m E
27; el cosh(;q,,LW)sin(el “L,)
+
2 8melEel (510)
a, 5
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4

Ge, = X
> +\/8me2(AEC _Eel)
h

q,

2m E
2h

VJ2m E
- VRS L L, +

[1+ cos(

h
\/2me2 (AEC _Eel) h \/ZmelEel

cos®( L,)

sin(

5.11
Y 2melEe1 ( )
L)
h

The G factor for the pi, confined mode and the half-space mode are respectively

8mE 8m, E
sin[(P™ - el El)Liw] sin[(P™ + el el)LJ]
p I‘W 1 Lw h 2 Lw h 2 . (5 123.)
Gl =—"+= + ,p:odd :
To2) pn 8MuE. P 8MaEq
L, n L, n
GP =0, p:even (5.12b)
_ q, y
" 8m2(AEc_Ee1) 2
h? ’
J2m E
4eos® (YR L)

2h

J2m E
- VIR L, ¢

[1+ cos(
\/2me2 (AEC - Eel)

(5.13)

v 2rnelEel L )
h w

h .
sin(
\ 2rnelEel
where Eg; is the electron’s ground-state energy, and AE. is the barrier height of the
quantum well. The G factor for the intersubband scattering is in Appendix C.
We used the DCM instead of the HZM® for the boundaries’ treatment. It is
because the scattering rate calculated by HZM gives an unreasonably large scattering

rate even with very narrow well width due to the slow convergence of the higher

order’s modes. The RPA was used for the dynamical screening®®?*.
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TABLE IlIl.  The potential in a quantum well for various phonon modes

Optical-phonon mode Potential for three distinct regions
LW LW LW LW
z<——% -z z>—2
2 2 2 2
ay (2+=) “q (-t
Symmetric interface ¢, e 2 cosh(q,z)/cosh(g,L,/2) e ' 2

Ly I
Anti-symmetric interface ¢,, - = sinh(q,z)/sinh(q,L,, /2) e "2
Confined ¢, cos(?), n: odd
sin(ﬂ) , Nh:even
LW
: 1 . 1
Half-Space ¢, S|n[qz(z+§LW)] sm[qz(z—ELW)]
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5.3 Intrasubband Scattering

In our calculations, band-offset ratio AE, : AE, in GaAs/AlyGa;.xAs quantum wells
was chosen to be 65:35. The electrons were given an excess energy of 50meV so that
the intersubband transition can be neglected. The sheet-charge density was chosen to
be 5x10"%cm.

In Fig. 5.3 we show the dependence of the phonon energy of the S+ mode and
the S- mode on the Al composition in the barrier at the minimum q,,;,and the
maximum q,..., in-plane phonon wave vectors with a well width of 5nm. For the S+
mode, the phonon energy increases quickly with the Al composition for both q,;,
and Q. - It approaches the LO phonon energy in the barrier layer when q,
approaches zero. The increase of the calculated S+ mode energy with Al composition
at q,,,, agrees with the increased LO phonon energy in Al,GaixAs layer as Al
composition is increased. For the S- mode, the phonon energy has a weak dependence
on the Al composition. It approaches the TO phonon energy of the well when q,
approaches zero. The weak dependence on the Al composition is easily understood
because there is no Al in the well.

In Fig. 5.4 we show the calculated dependence of electron-optical phonon
scattering rates on the Al composition for various types of phonon modes in a 5nm
wide GaAs/AlGai.xAs quantum well with a lattice temperature of 15K. For the S+
mode, the scattering rate increases from 4.1ps™ to 6.9ps™ as the Al composition, X, is
increased from 0.2 to 1. In order to interpret the results, we show in Fig. 5.5 (a) the
dependence of the H factor and the G factor on q,. As we can see, both the H factor
and the G factor increase with the Al composition at small q,. Since the S+ mode
favors the small-angle scattering, this dependence follows the behavior of the H and

the G factors at small q,. For the S- mode, the scattering rate increases from 0.32ps™

to 1.1ps ™ as the Al composition is increased from 0.2 to 1. The strong dependence on
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Figure 5.3: Dependence of phonon energy of S+ and S- interface modes on the Al
composition at g, and . -
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Figure 5.4: Dependence of electron- phonon scattering rate of S+ mode, confined mode,
and S- mode on the Al composition. The well width is 5nm, the lattice temperature is
15K, and the amount of the excess kinetic energy of the electron is 50meV.
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the Al composition is mostly due to the H factor. In Fig. 5.5(b) we show the

dependence of the H factoron q,.As q, decreases toward zero, ws. approaches the

TO phonon energy in the well. This leads to the decrease of the H factor. Because of
this, the small-angle scattering for the S- mode is not as important as that for other
phonon modes. In Fig. 5.4 we have also found that the screening effect for the S+
mode and the S- mode is not significant.

Comparing to the S+ and the S- modes, the scattering rate of the confined
phonon mode does not show strong dependence with the Al composition in the range
that we have investigated. It is because that the G factor in the expression of the
scattering rate equation for the confined phonon mode is less sensitive to the Al
composition. The screening effect for the confined mode is stronger than that of the
S+ and the S- interface modes.

For the 5nm well the electron wave function does not penetrate deep into the
barriers. Therefore, the half-space mode’s contribution to the scattering rate is
insignificant in comparing to the other three types of phonon modes and is not
considered here.

The calculated results were compared with the experimental results?® performed
by hot-electron neutral-acceptor luminescence for GaAs/AlGa;xAs quantum wells
with various Al compositions. The calculated effective phonon energy (wef) IS given

by the following equation.

o, = Wi, o0, + W5 05 +W 0, (5.14)
W, + W, + W,

In Fig. 5.6 we show the dependence of the effective phonon energy on the Al
composition of both the experimental result?® and our calculations. There are two

calculated curves in the figure. The solid line represents the results without screening
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Figure 5.6: Comparison of experimental and calculated results for the dependence of the
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temperature is 15K, and the amount of the excess kinetic energy of the electron is
180meV.
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and the dash one with screening. Since the S+ mode plays the dominant role in the
calculated scattering rate among all phonon modes, the calculated effective phonon
energy basically follows the behavior of the S+ mode. The tendency of the
calculations is in good agreement with the experiments.

The minor difference between the measured result and the calculated result on
the effective phonon energy is attributed to the assumptions that we made in the
calculations of the average phonon energy in AlGa;xAs alloy, which probably
simplified the complexity of the phonon spectrum in the ternary compound.

In Fig. 5.7 we show the dependence of scattering rates on the well width for
various types of phonon modes with an Al composition x=0.3 in the barriers. Other
parameters are kept the same as in previous calculations. For the S+ mode, the
scattering rate decreases considerably from 5.3ps™ to 1.4ps™ as the well width is
increased from 4nm to 12nm. We attribute this to the decrease of the H factor and the
G factor as the well width is increased. When the wells move toward wider wells, the
electron wave functions centered at the middle of the well do not spread deep into the
interfaces as in the narrower wells. The interface is the place where the strongest
electron-phonon interaction took place. Thus, it leads to the decrease of the G factor.
But, the tendency on the decrease of the G factor does not hold for extremely small
q, - As the well gets narrower, the increasing of the G factor has been canceled out by
the decreasing of the H Factor and results in the weak dependence for well width
narrower than 4nm. This behavior was not found in the earlier calculated results®
where the assumption of an infinite quantum well was made.

For the S- mode, due to the small H factor, the scattering rate is much smaller
than the rate of the S+ mode. In addition, the increased H factor with the well width
compensates the decreased G factor each other. This results in a weak dependence of

scattering rates on the well width.
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Figure 5.7: Dependence of electron-optical phonon scattering rate of S+ mode, confined
mode, S- mode, half-space mode, and the total rate contributed by all types of phonon
modes on the well width. The Al composition is 0.3, the lattice temperature is 15K, and
the amount of the excess kinetic energy of the electron is 50meV.
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The scattering rate of the confined mode increases from 0.27 ps™to 2.2 ps™ while
the rate of the half-space mode decreases sharply from 0.13 ps™ to 0.12 ns™ as the
well width is increased from 2nm to 12nm. The increase of the scattering rate of the
confined mode is due to the increased G factor as the well width is increased. On the
contrary, the G factor decreases for the half-space mode.

There is a crossover point of the scattering rate for the confined mode and the S+
mode at a well width of 10nm and an Al composition of 0.3. So the confined mode is
the major relaxation channel for hot electrons in wide quantum wells and the S+ mode
is responsible for the narrow wells. Although the total scattering rate only varies
slightly with the well width, there still can be a strong dependence of the average
electron’s energy-loss rate on the well width when the phonon energy of the

corresponding modes is considered.

5.4 Intersubband Scattering

Intersubband scattering rate has the better estimation than intrasubband case via Fermi
golden rule where the energy-conserved rule is more available in intersubband than
intrasubband transition due to one order lower magnitude of scattering rates.

For a two-state quantum well, the increasing intersubband scattering rate with
well widths for interface modes is found, shown in Fig. 5.8(a), while the dependence
IS opposite to the intrasubband case because the moving lower in-plane wave vector
due to closing adjacent states gives stronger increased dependence than the decreased
Hamiltonian when the well width is increased. The effect of the movement in in-plane
phonon wave vector when the well structure is adjusted also leads the different
dependence of the Al composition in intersubband transition, shown in Fig. 5.8(b),
from the intrasubband case.

For a three-state quantum well, the electron at the highest state shows the faster
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scattering to the ground state than to the first excited state for the confined mode,
shown in Fig. 5.9. The result rebuts the sequential state-by-state scattering and implies
that the dynamics analysis should be replaced by the time evolution of the electron

distribution, which is obtained by solving Boltzmann equation.
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Chapter 6
Conclusion and Direction

The non-equilibrium carrier-carrier scattering and the hot carrier relaxation in GaAs
were theoretically studied by using the Generalized Kadanoff-Baym equation and the
semi-classical Boltzmann equation, respectively. The dimensional effect and the
dynamical screening on the two fundamental interactions were clarified. In contrast to
earlier investigations, the dynamical screening is shown to be stronger in a quantum
well than a bulk for both the carrier-carrier and the carrier-phonon interactions. The
electric flux in a lower dimension has a stronger confinement so that has a stronger
electric field. The stronger dynamical screening in a lower dimension is as a result of
larger difference between the unscreened and the screened electric fields. Although
the carrier in a bulk has a weaker Coulomb interaction, a higher dimension leading to
more scattering channels overcomes the effect and gives rise to a rapider
thermalization of non-equilibrium carriers and a faster relaxation of hot carriers in a
bulk. In the quantum Kkinetic regime, the memory effect on the carrier-carrier
scattering is firstly demonstrated to have a burning hole on the carrier’s distribution,
which is the early stage of oscillation. As the time further goes, the one burning hole
and two hills around the hole will continue to evolve to two burning holes and three
hills. The process will go on until the carrier dephases or thermailzes.

The next step is to extend the quantum kinetic theory to the curved space time
where the semi-classical Boltzmann equation has been established'. The current

quantum Kinetic theory has already been developed for relativistic particles by using
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the Wigner function; however, it has not been reached to the generalized coordinate
yet’. Starting from the quantum field theory in the curved space time®, the
non-equilibrium Green function will be used to derive the relativistic quantum kinetic
equation with the Robertson-Walker and the Schwarzchild metrics. The
non-equilibrium Green function is chosen rather than the Wigner function to explore
the guantum Kinetic theory because the quantum statistical method in the Wigner
function is principally semiclassical, which is not valid for carrier kinetics on the
ultrashort-time and ultrasmall-space scales and the important information in the
quantum Kinetic regime such as the memory effect and the energy non-conservation is
lost.

By constructing the theoretical framework, the evolution of the universe at the
different stages will be studied. First of all, the singular point of the infinite curvature
space time at the moment of the big bang could be eliminated by using the quantum
statistical method. Second, the kinetics of the rapid expanding universe where the
SU(5) and subsequent symmetries break will be paid the attention to study the
emitting and the cooling dynamics of the kinds of particles during different periods of
the separating fundamental interactions, where the quantum Kkinetic effects of
non-Markovian process and non-conserving events will be addressed. As the time
evolves, the coherent behavior of the dynamical state evanesces due to abundant
collisions among these non-equilibrium particles, and the carrier kinetics can be
simplified to govern by the semi-classical Boltzmann equation. When the
hydrodynamic regime is entered, the subsequent degree of approximations on the
kinetic equation can be made to study the large-scale fluid dynamics such as the
formation of galaxies clusters and the mechanics in the blackhole where the Hawking
radiation will be considered. The simplified kinetic equation can be obtained by using

the Chapman-Enskog expansion and the Maxwell-Grad method to derive the
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Navier-stokes, and Burnett equations where the deviated distribution function from
the equilibrium is in terms of hydrodynamic velocity, temperature, particle density,
etc., and their gradients. Eventually, the validity or the precise valid range of the
Birkhoff-Khinchin ergodic theorem, where there exists an asymptotic distribution
function when the ensemble numbers are large enough, will be examined or probed,
respectively, by using the theoretical investigation on the varieties of astronomy

objects and the observational Cosmological results.
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APPENDIX A
Calculating Interband Coulomb

Quantum Kinetics

At the initial stage of non-equilibrium carrier excited by the ultrafast pulse laser,
before the screening developed, the interband Coulomb quantum kinetics can be

modeled by the simplified GKBE as follows"

P P P
P _Po| Py (A.1la)
8t at ‘ coh. Lcatt.
ik, _ afj,k1| n afj,k1| (A.1b)

ot ot

coh. scatt.

where P, and f;, denotes the polarization field and the carrier’s distribution at the

electron and the hole bands (j=¢, h).

%}(0 - %[@ @—f,, (1) Fope ()-8, Py, (t)} (A.23)
wm _ % Imld, E, (0P, (0] (A.2b)
aztkl - —i;iz ) _Jt;dt'vj_kl_ka P ®)-P. )]

x {%;fj,kz ()L -F;,, (£)]-Re[P,, (t)P, (t')]} (A.32)
T - —hiz%idt‘vj_kl_ks [F,o () =F )]

x{ZZkaZ(t')[l—ijk‘l(t')]—Re[PKA(t')P;(t')]} (A.3b)

j=e.h k,
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where §, is equal to E,, +E,, +E,—h,. o, is the central frequency of

optical source. d, and E,(t) are the dipole moment and the excitation electric

field, and can be expressed as
d Eo () =A(0p,, (e/m,) (A.4)
where pey is the momentum matrix. The 2D and 3D matrices with TE polarization

transition from heavy hole to conduction bands can be written as respectively™,

V3 Eo +|Ep
2D _ N9 el h1
Por =1 Eq, +[En|+ %K% /2m, VMoE, /6 (A.52)

b2 = Jm;E, 76 (ASD)

where m, is (m;*+m;")™ and E, is equal to 25eV. A(t) is the magnetic vector

potential and can be written as™

4hcosh™2 E e [In2 ,,2tcosh™ 2 4In2
sec e

1 2
- JS—J oo 2 S [ seoh’ (LR Byenp(- 2 (o))

(A.6)

At) =

where an initial Gaussian distribution with the time dependence of

sech’(2tcosh™2/t,) is assumed. t, is the temporal pulse width. Epyse is the

energy per pulse. o is the standard deviation. o isequalto (E,, +E;, +E;)/7.

The scattering terms can be derived in distinct dimensions.
P “todq [P (1) P (1)]

ot 2D,scatt._ 282 4hk j I\/ E, —Ea kljksq \/ (kf+k§—q2]2

2k K,
j dA fiw, (AT, (0)]-Re[P (1)P, (t)]

Sl | 2m, 2O

. . (Ey, +E¢ _Ek3_Eel_A)_q2_k§

2

209k,
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8Pk ki+ks ‘ .
- . IdtIdE kLZ—?[Pkl(t)—Pks(t)]
xzj dE, Tdi[ka(t)[l .. ()] - Re[P, (t)P; ()] (A7h)
afi,kl _ e dq [fj,kl(t‘)_fj,k3(tl)]

t w
a 2D scatt. l 282 4h Ky J‘; EJ‘ V Eel kl.[ks ¢ \/1(k12 +k§ _qzjz

2k K,
J dA fi, (O, ()] -Re[P (1)P, (t)]

" Ze;1é[ \/ k, _E Amin 2m, 2

hz (Ek1 + Ek2 _Ek3 _Eel _A)_qz _kg
1-—
20k,

(A.83)

ki+k
6fjk1 11Kz

" = 4hk jdtjdE j

3D,scatt. [ky—ks|

3—?[f,—,k1 (t) ~F,, ()]

« Y[ e, IdA[f,k(t)[l f (O1=RelP (P, )] (Asb)

j=e.ho

mlﬂ

where K4 is equal to ki+ka-ks. The parabolic electronic band structure was used
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APPENDIX B
Calculating Building Up of

Screening

After the non-equilibrium carrier generated, the shielding potential gradually builds

up as the time evolves and it can be modeled by the GKBE where the RPA was used".

of 2 t ' r ' a ' ' ' : a '
ol =-S5 3 Jatler, (06 (1 Dl f (O, (0 [d Ve (4.
scatt. Kz K30 s

t, t
AV ()], (0 )8, (o - i, (I, () + [V (0 1)G (1.1

2

%G (L, - F, ()], (LI (F o @=F)]- [k, © ka k, ok, VI o (V)]
(B.1)
where the f <> (1-f) denotes the interchanging term. The retarded and advanced
Green function can be obtained by solving the Dyson equation. For a simplification
they are assumed
Gy (1, t,) = —i0(t, —t,)e ) (B.2a)
G (t,,t,) =i0(t, - t,)e " ) (B.2b)

where 6(-) denotes the step function.

By taking the eq. (B.2a) and (B.2b) into the eq. (B.1), after some algebraic

arrangement, the scattering term in distinct dimensions can be written as

™

:izT j cjdt[e(t )‘”‘“’{f (t)[L-f, (t)]jdt

0

of,
ot

x Vi (1, 1) Py (1) —[1= 1, (D)]F,, (t')tfdtzVJ,q (t,t,)Fp (L, tz)H (B.3)
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where o denotes the angle between k; and ks-kj.
o0 T 2
Fo(tit,) = I I—Zkzdkzj_zd\lf
0 0 T
ty
Idtle(tz -t) C()S(AEL<3,|<l (t—t)+AE Ky Ko (t, - tz))GZY(tl_tZ)fk4 (t)L- sz IV, (4 1)

t
+ fk4 (t,)[1- sz (tz)]j dt,6(t, —t,) cos(AE Ks Ky (t—t)+AE Ka Ky (t, - tz))e_zy(tl_tZ)Vsr,q (t,t,)
t

(B.4a)
. T t2
Fo(tity) = I L kzdkzj-_gd\lf
0 o™
t
Idtle(tz -t) C()S(AEL<3,|<l (t—t)+AE Kq ko (t, - tz))GZY(tl_tZ)sz (t)L- fk4 (t)IVL, (4 L)

t
+ sz (t,)[1- fk4 (tz)]j dt,6(t, —t,) cos(AE Ks Ky (t—t)+AE Kq Ky (t, - tz))e_zy(tl_tZ)Vsr,q (t,t,)
t

(B.4b)

where y denotes the angle between k; and ka.

of,.
ot

3D ,scatt.

sinc

o T t } t
- hiz j L3g2dg j do j d{e(t —t)e™ “”{ka (] (t')]j dt,
0 0 —0

—00

2
T

x Vi (U, 1) Py (8 1) —[L= T, (D)]IF (1) tjdtzVsr,q (t,t,)Fs (1, tz)H (B.5)

siny
7 dy
T

Fio (t.1,) = [ LCk3dk, [
0 0

t
jdtle(tz - tl) COS(AEK3,|<l (t -t ) +AE Ky,ky (tl - tz))ezy(tl_mfk4 (tl)[l_ sz (tl)]vsr,q (t, tl)

—00

t
+f,, (t)A-F, (tz)]j dt,8(t, —t,) cos(AE, , (t—t)+AE, , (t, —t,))e V] (t,1,)
t

(B.6a)

siny
7 dy

F3ID (tt,) = _[ Lakgdkz_[ n
0 0

t
[ 4,00t 1) cOS(AE, , (t—1) + AE, ,_(t ~t,)e " F, (t)L—f, (6)V/, (b1,

t
+f,, (t)A-F,, (tz)]j dt,8(t, —t,) cos(AE, , (t—t)+AE, , (t, —t,))e™" V] (t,t))
t

(B.6b)
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tl
Wwhere Vsr,q (tl’ tz) = Vq6(t1 - tz) - 2diIdt3ZGL4 (tl' tz)Gi2 (tZ’tl)[sz (tz) - fk4 (tz)].

t, ky
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APPENDIX C
G factor for Intersubband

Scattering

Under the conservation of energy and momentum, the allow range of in-plane phonon

wave vector for the electronic intersubband scattering can be obtained

q//max = k|;|'+\/1+ (AEe,mn _tho)/EkJ (Cla)
kit—./1 E._ —h /E ,AE h

Qirmin = [ \/ + (8 ~ P k] A < Ao (C.1b)
k[—1+\/1+ (AE, —tho)/Ek] AE, . > hoyg

where AE, .~ denotes the energy difference between m and n electron’s states.

By the definition,

k, =2m.E,, /% (C.2)

o =2m,(AE, —E,,) /% (C.3)
1/2

By| = : o

"7 @+ cos(k, L, ) o+ Ly, +sin(k, L, ) /K, (C.4)

A, =B, e"'2cos(k, L, /2) (C.5)

The G factor used in the dissertation can be shown
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B.C,
sinh(q, L, /2)
){q,, cosh(q,L,, /2)sin[(k, +k,)L,, /2] - (k, + ks)zsinh(q,,LW /2)cos[(k, +k,)L,, /2]
dy + (K, + k)
n q, COSh(q//Lw /2)Sin[(k2 — ka)l—w /2] — (kz — ks)Sinh(Q//Lw /2) COS[(kz — ka)l—w /2]
Ay + (k, —Ky)*

w
GAt(S—)Z) =

(C.6)
Gb ~ 2|A3||A2|e—(az+a3)LW/2

_ (C.7)
At(3-2) q, + o, + o

where the upper index w and b denote the well and barrier regions. Lower index A+

denotes the antisymmetric modes and (3 — 2) denotes the transition from third to
second subband.

Grleen) _ lBsCz sinf[(pr/L,, —k, —k;)L,, /2] N sinf(pre/L, —k, +k;)L,, /2]

CE»2) T

(pr/L, —k, —K,) (pr/L, —k, +K;)
Csinf(pr/L,, +k, ~ky)L, /2] sin[(pr/L,, +k, +k;)L, /2]
(pr/L, +k, —K,) (pr/L, +k, +K;)

(C.8)

where lower index C denotes the confined phonon modes and upper index denotes the
p™ modes. The G factor is zero for odd p™ modes
w BlCZ
GAir(Z—)l) =
sinh(q, L, /2)

y {q,, cosh(q,L,, /2)sin[(k, + k)L, /2] - (k, + k,)sinh(q,L,, /2)cos[(k, + k,)L,, /2]
Ay + (k, +k;)?

4y COSh(q//I—w /Z)Sin[(kz — kl)Lw /2] - (kz — kl)Sinh(q//Lw /2) COS[(kz _ kl)Lw /2]}
+ 2 2
qy + (kp —ky)

(C.9)
o ) 2|A2||A1|ef(a1+a2)LW/2

Ax(2-1) = q, + o, +a, (C.10)

(even) 1 sin[(pn/L,, — k2 — kl)L /2] sin[(pr/L, — k2 + kl)L /2]
Gg(z—u) =_Blcz - = + - -

2 (pn/L,, -k, —k;) (pn/L,, -k, +k;)
B sin[(pr/ L, + k2 — kl)LW /2] 3 sin[(pm/ L, + k2 + kl)LW /2] c11
(pn/L, +k, —kK,) (pmn/L, +k,+k,) (C.11)
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GW _ BlB3
S0 cosh(q, L, /2)
y {q,, sinh(q,L,, /2)cos[(k, + k;)L,, / 2]+ (k, + k;) cosh(q, L, /2)sin[(k, + k;)L,, /2]
Ay + (k; +k;)°
N q, sinn(q,L,, /2)cos[(k, —k;)L, /2] + (k, —k,)cosh(q,L,, /2)sin[(k, —k,)L,, /2]}
Ay + (K, —Ks)*

(C.12)
2|A ||A |e—(0tl+0t3)Lw/2
Gb+ _ 3l
S£(351) 4, + 0, +a, (C.13)
(odd) _ 1 sin[(pe/L,, —k, —k;)L,, /2] sin[(pn/L, +k, +Kk;)L, /2]
Gg(s—u) =- BB, v +
2 (pr/L,, -k, —k;) (pr/L,, +k; +k3)
B sin[(pr/L,, —k, +k,)L,, /2] N sinf(pe/L,, +k, —k;)L,, /2] (C.14)
(pn/L, -k, +kj;) (pn/L, +k, —k;)

where the G factor is zero for even modes.
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