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中文摘要 
 
本論文理論地探討光激砷化鎵中之非熱平衡電子-電子碰撞及超快熱電子藉極性

縱光聲子釋能的現象，其中的方法包括使用非熱平衡格林函數所建立的全量子動

力理論及量子相位解調後的半古典波茲曼理論。庫倫碰撞率之奇異點在全量子動

力理論的消失有助於比較動態遮蔽強度在不同維度空間的表現。迥於以往的研究

結論，低維度空間的遮蔽強度應較高維度的空間強。該現象不僅在電子-電子碰

撞成立，電子-極光聲子作用亦有相同的表現。這原因與低維度的庫倫作用力較

強有關。此外，量子相位的存在也將使得電子分佈函數隨時間的演化具有記憶的

行為。本論文首度發現在量子動力區間內，電子分佈函數將會由於電子-電子碰

撞而有振盪的現象。該結果可成功地解釋過去超快同調光子解相時間隨電子濃度

關係在量子井及塊材所得不同實驗結果的矛盾。 

    雖然過去超快熱電子釋能的研究已漸趨飽和，但關於釋能現象在不同空間維

度的差異一直沒有一致的結論。本論文使用準二維的聲子模型精確地估計並比較

熱電子能量損耗率在量子井及塊材的差別，並發現當電子濃度高於一臨界值

2×1018cm-3時，塊材的熱電子釋能速率將明顯快於量子井。該維度的關係在電子

-電子碰撞亦有相同的結論，根據計算的結果，非熱平衡的電子在塊材比量子井

更快達到準熱平衡的狀態。這是由於電子在高維度的空間具有較多的碰撞路徑使

然。另外，過去的認知一向認為熱聲子效應是抑制熱電子釋能的主因。然而，本

研究發現量子井中高電子濃度下的動態遮蔽亦有相同抑制熱電子釋能的能力。電

漿子-聲子耦合的效應也在計算中考慮，並發現在面電荷密度 1011cm-2附近會明

顯加速熱電子釋能速率，該現象與電子-電漿子碰撞有關。電子-極光聲子作用隨

量子井結構改變的影響也將討論並與過去實驗的結果比較且有相當吻合的趨勢。 

 
李漢傑  指導教授：李建平博士 
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Abstract 

 

We theoretically studied the non-equilibrium carrier-carrier scattering in the quantum 

kinetic regime and the ultrafast hot-carrier relaxation through the Fröhlich interaction 

in photoexcited GaAs by solving the Generalized Kadanoff-Baym equation and the 

semi-classical Boltzmann equation, respectively. The singularity of scattering rate at 

the vanishing wave vector can be eliminated in the quantum kinetic theory. With the 

advantage, the difference of screening strength between a bulk and a quantum well 

can be compared. In contrast to the earlier understanding, the screening strength is 

shown to be stronger in a lower dimensional structure and this is an evidence for a 

stronger Coulomb interaction in a quantum well. The screening dependence is also 

held for the Fröhlich interaction. In the quantum kinetic regime, the Markovian 

approximation for the scattering process is no longer available due to the carrier’s 

quantum coherence. The resulting memory effect is firstly demonstrated to be impact 

on the carrier’s evolution. The carrier-carrier scattering leading to a burning hole on 

the carrier’s distribution is shown at the early stage and is suggested to oscillate as the 

time further evolves. The theoretical result can successfully explain an earlier 

contradiction from the distinct measured power laws of the density dependence of 

photon-echo dephasing time in two different sample’s dimensions.  

Among the plenty of investigation on the hot carrier relaxation, the discrepancy 

from the dimensionality is clarified. With the dielectric continuum model, the hot 

carrier’s energy-loss rate in a quasi-two dimensional structure was strictly calculated. 

Above the density of 2×1018cm-3, the hot carrier is shown to be significantly faster in 

a bulk than a 10nm-wide quantum well due to the higher density of states. The 



 x

dimensional dependence is also in consistent with the carrier-carrier scattering which 

shows a faster thermalization in a bulk. In addition, the dynamical screening in a 

quantum well on the shielding carrier-phonon interaction is demonstrated to be as 

important as the hot phonon effect when the carrier density is high. This rebuts the 

earlier argument where the dynamical screening can be neglected. The 

plasmon-phonon coupling was considered in the calculation and is shown to enhance 

the energy-loss rate around the density of 1011cm-2 due to the carrier-plasmon 

scattering. The structure effect on the Fröhlich interaction was also presented and 

compared to earlier experimental results where a very good agreement can be 

obtained. 

 
Han-Chieh Lee  Advisor：Dr. Chien-Ping Lee 
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Chapter 1 
 

Introduction 
 

Kinetic theory is of fundamental importance in many branches of physics such as in 

the condensed matter, nuclear, astronomy, etc., and is of strong dependence on the 

many subjects of applied mathematics such as the statistics, analysis, and geometry, 

etc. The goal of kinetic theory is to understand the dynamics of a many-particle 

system and to construct a bridge linking the macroscopic and microscopic variables in 

a substance. The preliminary step in the theory is to deal with the equilibrium 

statistical mechanics, where the notion of the ensemble is introduced. Ensemble is a 

very useful concept in statistical mechanics and it represents repeatedly mathematical 

experiments conducted on a system consisting of particles and fundamental 

interactions with the same conditions. The purpose of the experiments is to obtain a 

many-particle equilibrium distribution by averaging all undetermined factors such as 

the thermal fluctuation. Based on the Birkhoff-Khinchin ergodic theorem1, the 

distribution function will reach an asymptotic solution when the number of 

experiments is large enough. By the particle’s property, the solution for the 

distinguishable particle is the Maxwell-Boltzmann distribution and the solutions for 

the indistinguishable particle can be further classified into the Fermi-Dirac and 

Bose-Einstein distributions for Fermions and Bosons, respectively. When the given 

system is out of equilibrium, the existence of an asymptotic solution for the ensemble 

experiment is the most central problem in statistical mechanics. To hold the validity of 

the ergodic theorem, the time resolution in the non-equilibrium region must be long 
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enough so that there is an asymptotic solution however it is still in the interesting time 

scale. 

In the classical kinetic theory, the time evolution of a many-particle distribution 

function can be obtained by solving the Bogoliubov-Born-Kirkwood-Green-Yvon 

(BBKGY) equation2. The equation is based on the Liouville theorem where the 

density flux in a differential volume of the space-momentum coordinate is conserved 

for the distinguishable particles. The subsequent degree of approximations for the 

equation can be made to obtain a variety of the kinetic equations. Using one-particle 

distribution could be the most important approximation in the kinetic theory because 

it significantly reduces the huge calculations where the distribution functions of every 

particle in the given system should be considered. The approximation is valid for the 

dilute-enough particle density where the coupling among distinct particles disappears 

so that the many-particle distribution function can be simplified by the product of a 

one-particle distribution. The result is the well-known Boltzmann equation. When a 

perturbation is turned on, the non-equilibrium distribution will evolve due to a variety 

of scattering mechanisms in the given system. These scatterings cause the disturbed 

particles to lose their excess energies inputted by the external excitation or to 

exchange energies among themselves or with the surrounding until the equilibrium 

state is reached. Quasi-thermal equilibrium is an intermediate stage between the 

non-thermal and the equilibrium states where the distribution function can be 

approximately characterized by specific parameters and where further simplifications 

can be made for the Boltzmann equation. By comparing the mean-free path of 

scatterings to the length of local quasi-equilibrium, the Chapman-Enskog expansion 

and the Maxwell-Grad method3 can be used to derive the so-called Navier-stokes and 

the Burnett equations, where they have different levels to approximate the 

deviated-equilibrium distribution by using parameters such as temperatures, chemical 
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potentials, hydrodynamic velocities, etc. and their gradients. By solving the equations, 

the solutions can show the time evolution of the spatial non-uniformity for the 

deviated distribution, which is very useful to analyze various fluid motions such as the 

Laminar and turbulent flows.  

    In the quantum kinetic theory (QKT), the notion of the distribution function in 

the space-momentum phase space can be no longer available because the state vector 

for the description of a particle in the spatial coordinate has been generalized to the 

Hilbert space, where the uncertainty principle arises. The distinct statistical algorithm 

for identical particles from distinguishable particles causes that the accompanying 

kinetic equation must be reconstructed to satisfy the updated particle’s property. In the 

Schrödinger picture, the non-equilibrium Green function can be used to derive the 

so-called generalized Kadannoff-Baym equation4 and the Schwinger-Keldysh 

formulation5, that were built up in the early 1960s. In the Heisenburg picture, von 

Neumann and Dirac used the density matrix method to explore the quantum kinetic 

theory6 independently in the 1930s. The Master equation derived from the method is 

now frequently used in the quantum statistics of optics7. The intermediate stage 

between the classical and the quantum kinetic theory includes using the Wigner 

function and the semiclassical Boltzmann equation. The Wigner function proposed by 

Wigner in 1932 is a created function quantum analogical to the space-momentum 

phase space for the statistical requirements8. Although the functional concept is 

principally classical, the applications are still effective for partial situations of 

high-energy particles. Starting from the Klein-Gordon equation for spinless particles 

or the Dirac equation for spin particles9, the relativistic kinetic theory has been well 

constructed in the present day10. By using the technique of the quantum field theory11 

the weak and strong interactions12 are included in the kinetic equation where the 

applications have been widely used in the astronomical and nuclear circumstances 



 4

such as the neutrino13 and the pion particles14, respectively. Another simplified 

formalism before the QKT is to use the semiclassical Boltzmann equation. With the 

classical notion of the phase space, the distribution function in the space-momentum 

coordinate is still used while the inside collisional integrals are derived in quantum 

mechanics. A number of applications in condensed matters can be derived from the 

semi-classical method such as the Cooper pair dynamics in superconductors, the 

charge-density-wave dynamics in one-dimensional metal chains15, and the carrier 

dynamics in semiconductors16. During the last two decades, there is a new approach 

to the QKT due to the advantage of the rapid progress in the computing ability on the 

workstation and it is the so-called quantum Monte Carlo method. The Monte Carlo 

method is a mathematical game to simply determine the outcomes by using a 

random-number generator and was initially used to simulate the reaction and the 

trajectory of nuclear substances inside the reactor and to design the reactor structure 

where the wall can shield the outgoing radiations. The quantum Monte Carlo method 

is the improvement considering the statistical property of identical particles and can 

be appropriated to model the time evolution of the many-particle quantum states by 

using the simulation where fewer particles as compared to the actual numbers in the 

given system are performed.  

   The primary features in the QKT are due to the non-Markovian process and the 

energy (momentum) non-conservation. The Markovian process is a non-memorial 

scattering effect, where the earlier scattering information is not saved in the dynamical 

system so that the time evolution of a distribution function is as a scattering result 

with the instantaneous moment, and is often assumed in the classical kinetic theory. 

However, the assumption of the Markovian process is not held longer in the QKT 

because the evolution of the quantum state is a continuous process from the 

perturbation is turned on to the quantum coherence is broken. An atom oscillates 
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between the two states where a coherent and resonant light source is incident, the 

Rabi oscillation, is a clear example17. Another feature, the energy (momentum) 

non-conservation, is as a result of the uncertainty principle. This is not surprised 

because at the time (space) scale where the energy (momentum) uncertainty is 

comparable to the exchanged energy (wave vector) in a scattering process, the energy 

(momentum) distribution, not due to the ensemble average, covers a wide range and 

the conservation becomes meaningless in the ultrashort scale. Unless the time (length) 

evolves long enough, the conservation rule may recover. The Fermi golden rule is an 

example, where the energy conserve as the time goes to the infinity.  

The quantum kinetic effects in semiconductors have attracted a lot of attention 

because of the fundamental interest and device applications (in the near future). In 

semiconductors, the time and length scales where the kinetic effects mentioned above 

arises are in the femtosecond and the nanometer, respectively, and the ranges are also 

called the quantum kinetic regime. With the advantage in semiconductor 

manufacturing technology, the semiconductor sample can be prepared with a very 

high quality, which makes the possible measurement of quantum kinetic effects, 

because the external dephasing scatterings from the lattice imperfection or the 

impurity can be significantly avoided. By using the ultrafast spectroscopy18, a 

non-equilibrium carrier’s distribution in semiconductors can be generated by 

illuminating a femtosecond laser pulse with a photon energy higher than the bandgap 

and the following carrier’s time evolution can be measured by using the pump-probe 

or the four-wave-mixing techniques. Several reports have demonstrated the memory 

effect19,20 and the energy non-conserving event21,22 on the carrier-phonon interaction 

in the recent years. The validity of the quantum kinetic theory has also been examined. 

On the other hand, for device applications, the current models in semiconductor 

devices such as the current-voltage characteristic still stand at the level of 
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semi-classical Boltzmann theory. However, as the integrated-circuit technology 

evolves rapidly, the next generation of electronic devices with dimensions in the 

nano-meter scale would require the use of the QKT because the wave interference in 

the spatial scale becomes increasingly important. 

In the thesis, the quantum kinetic carrier-carrier scattering in photoexcited GaAs 

is studied. The non-equilibrium Green function was used to derive the quantum 

kinetic equation. By solving the equation, the carrier’s evolution was obtained and 

was found the memory effect. Another interesting fact in the QKT is the absent 

singularity of scattering rate at the vanishing wave vector23. With the advantage, the 

screening strength in different sample’s dimensions was studied. In contrast to earlier 

understanding24, a stronger screening in a quantum well than a bulk is demonstrated. 

The result is also in good agreement with the carrier-polar-optical phonon scattering, 

which has a similar dimensional dependence of the interaction Hamiltonian. Hot 

carrier relaxation through the several phonon types simply governed by the 

semiclassical Boltzmann equation was presented. The discrepancies including the 

dynamical screening, the dimensionality, and the well-width dependence from earlier 

experiments25,26 can be clarified. Re-normailzed phonon propagator due to the 

plasmon coupling was also considered and is shown to have an important effect on the 

hot carrier’s energy-loss rate around intermediate carrier densities. The outline of the 

thesis is as follows. In chapter 2 we present the non-equilibrium carrier-carrier 

scattering in the quantum kinetic regime. In chapter 3 the hot carrier relaxation and 

the relevant derivation including the net phonon generation rate, the hot phonon effect, 

etc. is discussed. The plasmon-phonon coupling is in Chapter 4. In chapter 5 we 

discussed the structure effect on the Fröhlich interaction, where the fundamental of 

phonon types in a double heterostructure and material parameters used in the thesis 

are also shown. In chapter 6 we give a conclusion and a direction of the work. 
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Chapter 2 
 

Non-equilibrium Carrier-Carrier 
 

Scattering 
 

2.1 Introduction 

2.1.1  Dynamical Screening and Dimensionality 

Dynamical screening is of fundamental interest in semiconductors and is also an 

important effect on the carrier-carrier and the carrier-phonon interactions. Since the 

ultrafast four-wave-mixing (FWM) experiment1 was introduced, the dependence of 

dynamical screening on the sample’s dimension has been further investigated. In the 

earlier report2,3, the photon-echo dephasing time at different excited carrier densities 

(n) had been measured and the dependence was found to be governed by the power 

law of D
1

n
−

, where D represents the dimension, shown in Fig. 2.1 and 2.2. The reason 

for the photon-echo dephasing was attributed to the carrier-carrier scattering (CCS), 

which leads the non-equilibrium carrier distribution spreading out so that the 

photon-echo’s coherence is broken. In their assumption, the shielding potential in the 

CCS had built up at the measured time interval and thus the power law is as a result of 

screened scattering rate. If the shielding potential was not developed, the dephasing 

process would become more quickly due to a faster CCS, and the power law would 

also change, in principal, to satisfy the dependence of 1n −  for both sample’s structures. 

By comparing the two kinds of power law, the dynamical screening was found to be  
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Figure 2.1: Time-resolved four-wave mixing results from Bigot’s experiment in GaAs
quantum wells. (a) Extraction of photon-echo dephasing time. (b) Density dependence
of photon-echo dephasing time. Solid line: the fitting curve for the measured result.
Dash line: the curve of unscreened carrier-carrier scattering rate. (quoted from Phys.
Rev. Lett. 67, 636 (1991))  

(a) 

(b) 
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Figure 2.2: Time-resolved four-wave mixing results from Becker’s experiment in bulk
GaAs. (a) Extraction of photon-echo dephasing time. (b) Density dependence of
photon-echo dephasing time. Solid line: the fitting curve for the measured result.
(quoted from the Phys. Rev. Lett. 61, 1647 (1988))  

(a) 

(b) 
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weaker in a quantum well because the variation from 1n −  to D
1

n
−

 in a two 

dimension (2D) is smaller.  

The screening dependence was, in general, accepted for more than one decade 

until a conflicting result was demonstrated experimentally and theoretically4. Under 

the same experiment of ultrafast FWM in GaAs, the photon-echo dephasing times at 

different excited carrier densities were re-measured; however, the significant power 

law D
1

n
−

 cannot be repeated. Unexpectedly, the dephasing time as a function of the 

carrier density was satisfied the 3
1

n
−

 dependence for both a quantum well and a bulk. 

For a further examination, the time evolution of optical polarization field coupled to 

the CCS at different carrier densities was calculated with using the quantum kinetic 

theory. By extracting the dephasing time from the polarization field, the function of 

dephasing time on the carrier density can be obtained and also shows the dependence4, 

shown in Fig. 2.3. Thus, from the result one cannot determine which structure the 

carrier has a stronger or weaker screening strength in. In addition, according to the 

estimation of screening buildup5, for a low carrier density the shielding potential has 

been not completely developed at the measured time interval. Thus, the conventional 

method is also weak in the comparison of screening strength between the two 

sample’s structures. 

Recently, the screening dependence for the Fröhlich interaction6 was discovered. 

Although the scattering mechanism between the Fröhlich and the carrier-carrier 

interactions is different, the result is still meaningful because their unscreened 

Coulomb interactions in the Fourier space ( 2qL/1∝  in 2D and 32Lq/1∝  in 3D) are 

very similar, where q and L denotes the exchanged wave vector and the sample’s 

length, respectively. Nevertheless, for the Fröhlich interaction, the dynamical 

screening was shown to be stronger in a quantum well than a bulk. This is opposite to  
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Figure 2.3: Density dependence of photon-echo dephasing time from Mieck’s results in
a quantum well and a bulk. E: experiment. T: theory. (quoted from Phys. Rev. B 62,
2686 (2000)) 
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the earlier understanding but is in agreement with the electrodynamics. In a lower 

dimension the electric flux has a stronger confinement so that has a stronger electric 

flux density than that in a higher dimension. Because the screening is a many-particle 

effect to shield an external charge source, it acts as a sub-Coulomb interaction and 

would also follow the dependence. The static screening (abbreviated as s.s.) is a 

verification. As the exchanged wave vector large enough ( D3D2 ,q κκ>> ), where κ  

denotes the screening wave vector, the screened Coulomb interaction in the two 

distinct dimensions can be written as a series. 

  

 

 

 

where ∞ε  denotes a high-frequency dielectric constant. In the series the next leading 

term q/D2κ   and 2
D3 )q/(κ  stands for the screening factor. Although D2κ  and 

D3κ  have different values, the 3D screening factor is generally smaller due to the 

square power. This dependence is also held for the opposite limit ( D3D2 ,q κκ<< ).  

Dynamical screening is more complex because it is a time-dependent interaction, 

and should be studied with using the non-equilibrium carrier’s evolution. The carrier’s 

evolution can be obtained by solving the kinetic equation. In the semiclassical 

Boltzmann equation, there is a singular point at the vanishing exchanged wave vector 

where the unscreened scattering rate is divergent. One must consider the screening 

effect to eliminate the singularity so that the scattering rate becomes finite. However, 

the divergence can be avoided in the quantum kinetic theory7 (QKT) because the state 

vector in Hilbert space leading to the energy uncertainty can smooth it. This is an 

advantage because one can obtain two kinds of non-equilibrium carrier’s evolution 

(2.1a)
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(screened and unscreened) and then compare the difference to show the screening 

strength. In the report, the non-equilibrium Green function was used to derive the 

quantum kinetic equation and the solution therein also verifies the screening 

dependence as the Fröhlich interaction as we mentioned above. 

 

2.1.2  Memory Effect  

    The carrier’s quantum coherence not only smoothes the singularity but also 

relaxes the conservation of energy (or momentum) and the Markovian approximation 

for a scattering event. In the last decade, the energy non-conservation has been 

demonstrated in semiconductors experimentally and theoretically8,9 but the 

non-Markovian effect is still not well understood10. The Markovian approximation is 

valid for the carrier’s scattering is instantaneous and independent on the past carrier’s 

distribution. This is no longer held for the carrier’s quantum kinetics because the 

evolution of quantum state is a continuous process with respect to the time from the 

excitation turned on to the coherence broken down. In this thesis, we discover that the 

relaxed Markovian approximation would cause an impact effect on the carrier’s 

evolution. Since the non-equilibrium carrier is generated, the carrier begins to scatter 

with each other and spreads out. As the time evolves, the past carrier’s distribution 

would increase the scattering rate and causes a burning hole in the carrier’s evolution. 

Earlier, Knox experimentally found a very rapid thermalization (less than 10fs) 

of non-equilibrium carrier among a cold electron’s background in a quantum well11, 

shown in Fig. 2.4. The carrier’s evolution has a strong dependence on the cold 

electron and the specific dimension. However, up to now, the physical mechanism is 

still not understood. Kane theoretically obtained the carrier’s evolution12 by solving 

the Boltzmann equation but cannot repeat the result. We go further to the problem 

within the quantum kinetic regime. With the absent singularity, the effect of 2D cold  
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Figure 2.4: Time-resolved differential transmission spectra from Knox’s experiments in
GaAs quantum wells. (a) Undoped sample at excitation density of 5×1011 cm-2. (b)
Sample with n-modulation doping of 3×1011 cm-2 , excited with density of  3×1011 cm-2

(c) Sample with n-modulation doping of 3×1011 cm-2 , excited with density of  3×1011

cm-2. The excitation energy had about 20meV above edge of ground subband. (quoted
from Phys. Rev. Lett. 61, 1290 (1988)) 
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electron on the non-equilibrium carrier’s evolution can be divided into that on the 

unscreened carrier’s evolution and the screening strength. By the benefit, one can 

demonstrate the difference of screening strength caused by the non-equilibrium and 

the cold carriers. The Knox’s result11 is in a very short time scale so that the memory 

effect is important. The memory effect leading to a faster carrier’s evolution is similar 

to the result11. Nevertheless, the 2D cold electron is not shown to cause a significant 

difference and the carrier is also not shown to reach the thermalization in a less than 

10fs time scale. 

 

2.2  Quantum Kinetic Equation 

In this section, we introduce the derivation and approximations of scattering term. By 

using the close-time-path non-equilibrium Green function, the Dyson equation can be 

extended to the generalized Kadanoff-Baym equation13 (GKBE). The GKBE was 

chosen as the quantum kinetic equation in the investigation. A non-equilibrium 

carrier’s distribution is generated on the band structures and the carrier’s evolution via 

the electron-electron interaction can be obtained by solving the equation. Because the 

femtosecond scale is concerned, the carrier-phonon and other scatterings were omitted. 

The electron-hole interaction was also not considered because their different Bloch 

functions lead a lower scattering rate than that of electron-electron interaction. 

Generalized Kadanoff-Baym Ansatz14 (GKBA) was used to simplify the memorial 

integral of scattering term and the random phase approximation15 (RPA) was to the 

screening behavior. The scattering terms were strictly derived in the distinct 

dimensions and the 2D formulations (including the scattering term and RPA dielectric 

function) are firstly demonstrated in the thesis. The carrier’s distribution can be in 

terms of equal-time lesser Green function ( ),()( kk ttGitf <−= h ). In the GKBE, the 

scattering term of k-state particle can be written as16  
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where ),( '
k ttG )(<> and )t,t( ')(<>Σk  denote a greater (lesser) two-time Green function 

and a Coulomb scattering self energy. By using the analytic continuation17, the 

Coulomb scattering self energy in the RPA can be rearranged as16 

 

where )t,t(V 1
r
,s q  represents a retarded shielding potential. Before the screening 

builds up, the shielding potential is given by )tt(V 1−δq , where qV  denotes the 

Coulomb interaction in Fourier space. The shielding potential almost takes a plasma 

forming time to build up5. In the calculation, the screening was assumed to be built up 

instantaneously because it can significant shorten the simulating time but not changes 

the dependence of screening strength on the sample’s dimension. The retarded 

shielding potential18 was modeled by ),(/)tt(V RPA1 ωε−δ qq , where ),(RPA ωε q  

denotes the RPA dielectric function.  

    Substitute the Coulomb scattering self energy into the eq.(2.2), after an algebraic 

arrangement by using the GKBA, the scattering term can be written as16 

 

where ∆  denotes the non-conserving energy and Γ denotes the dephasing factor. 
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derive the scattering terms in distinct dimensions that with screening can be shown as 

 

where the parabolic band is used. The unscreened scattering term is the formulation 

without the 
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The RPA dielectric functions in distinct dimensions can be expressed as  
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where ω  denotes the oscillating frequency of dynamical screening and is equal to 
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2.3   Results and Discussion 

In the investigation, the parameters of GaAs were taken from the Adachi’s report20 

and the structure of a quantum well was chosen as a 10-nm well width ( wL ) and 0.3 

Al fractions. The initial carrier’s distribution was the Gaussian function with a center 

of 25meV above the ground state and a full width half maximum (FWHM) of 15meV 

around the center. Before the carrier exchanges the energy with phonons, the lattice 

temperature of 15K was used. 0.8 Rydberg energy5 was used for the dephasing factor. 

Partial scattering terms were integrated by using the Gaussian quadratures21. The 

calculation was performed on the momentum space but the result will change to the 

electron’s energy in the plots.  

 

2.3.1  2D versus 3D Dynamical Screening 

    Fig. 2.5(a) and 2.5(b) show the 2D and 3D GKBE solutions at the carrier density 

of 8×1010cm-2 and 8×1016cm-3, respectively. Distinct colors represent different delayed 

times. Solid and dash curves denote the screened and unscreened results, respectively. 

At the beginning, a non-thermal carrier’s distribution is generated and carriers start to 

scatter with each other. The unscreened carrier’s evolution is faster than the screened 

one. Their difference is enlarged as the time evolves and is more considerable in a 

quantum well. Thus, the screening dependence is verified and can be understood in a 

simple picture. In a 2D structure, due to a stronger confinement, the electric field is 

larger than that in a 3D structure and the stronger dynamical screening is as a result of 

larger difference between the unscreened and screened electric fields. The screening  
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Figure 2.5: GKBE solutions for the screened and the unscreened (bare) non-equilibrium
CCS. (a) in a 10nm-width GaAa/Al0.3Ga0.7As quantum well at the non-equilibrium
density of 8×1010 cm-2. (b) in bulk GaAs at the non-equilibrium denisty of 8×1016 cm-3.
The initial distribution was modeled by the Gaussian function with the center of 25meV
above the ground state and the FWHM of 15meV around the center. Inset figures show
the transient screening strength at the minimum wave vector qmin of CCS.  

(b) 
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strength is shown in the inset figure where a larger magnitude around the center of 

non-equilibrium carrier’s distribution in 2D than 3D structures is demonstrated. 

Although the (unscreened and screened) electric field is weaker in a bulk than a 

quantum well (respectively), the carrier in a higher dimension has a larger density of 

states so that the scattering rate becomes larger and the carrier has a faster evolution. 

The dependence is in good agreement with the experiment where the photon-echo 

dephasing time is shorter in a bulk2,3. In addition, the distinct density of states causes 

an increased and a flat scattering rate with an increased carrier’s energy in a bulk and 

a quantum well respectively so that the former has a quick scattering to the lower 

energy state while the later has a uniformly spreading distribution along the energy.  

 

2.3.2  Quantum Coherence on Carrier’s Evolution 

    Because the carrier’s quantum coherence breaks the Markovian approximation, 

the past carrier’s distribution is taken into account the scattering so that the carrier’s 

evolution has the memory effect. The scattering rate is enhanced at the early stage. As 

the time evolves, the enhancement becomes energy dependent so that a burning hole 

is demonstrated on the carrier’s distribution. The memory effect can give a reasonable 

explanation for the contradiction of power laws of photon-echo dephasing time2-4. Fig. 

2.6(a) and 2.6(b) show the 2D and 3D screened GKBE solutions at 90fs and 60fs for 

the density from 1010cm-2 to 1011cm-2 and 1016cm-3 to 1017cm-3, respectively. Inset 

figure shows the Boltzmann solution. The average relaxation time is defined by 
1kf

t
∆
∆ , 

where 
1kf∆  is the difference of occupations at 25meV in a time interval t∆ . 

Changing D2n  to wD2 L/n , the relaxation time is shown in Fig. 2.7. The density 

dependence in distinct regimes is quite different. In the Boltzman regime, it is slightly 

stronger in a quantum well than a bulk and is in consistent with the experimental 
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Figure 2.6: GKBE solutions for the screened CCS at distinct non-equilibrium densities.
(a) in a 10nm-width GaAa/Al0.3Ga0.7As quantum well at the delayed time of 90fs. (b) in
bulk GaAs at the delayed time of 60fs. Inset figures show the Boltzmann solutions. The
center and the FWHM of initial Gaussian distribution are 25meV and 15meV,
respectively.  
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power law of D
1

n
−

. The power law also can be obtained by using the estimation of 

average interparticle distance2,3 and a strict derivation in the Boltzmann theory22. Thus, 

the earlier experimental result2,3 should be valid and was measured from a dephasing 

non-equilibrium carrier. In the quantum regime, the dependence in the two sample’s 

structures becomes almost indistinguishable and is in surprisingly good agreement 

with the report4. Although the semiconductor Bloch equation was used there4, the two 

theoretical approaches give the same dependence. Thus, the experiment result4 should 

be measured from a coherent non-equilibrium carrier and the memory effect is the 

reason for the change of power law from the Boltzmann to the quantum regimes.  

 

2.3.3  Scattering among Dense Fermi Sea 

Fig. 2.8(a) shows the 2D GKBE solution at the density of 8×1010 cm-2, where 55

％ is partitioned to the non-equilibrium carrier and 45％ is to a 100K electron’s 

background. Fig. 2.8(b) shows the Boltzmann solution. In the absent screening, the 

carrier’s evolution is shown to evolve as normal as that with the non-equilibrium 

carrier alone. The non-equilibrium carrier has a weak interaction with the cold 

electron because their exchanged wave vector is large. Thus, the non-equilibrium 

carrier has a very slow scattering to the cold electron and most scattering among the 

non-equilibrium carrier is due to itself. Comparing the Fig. 2.8(a) and 2.5(a), the 

screening strength caused by the 2D cold electron is shown to have a very small 

difference from that caused by the non-equilibrium carrier although their dielectric 

functions are a little different. Thus, the effect of 2D cold electron can be rule out 

from the possibility of Knox’s result. The memory effect leads the carrier with a faster 

scattering rate and a shorter thermalization time as compared to the Boltzmann 

solution. Nevertheless, the thermalization is not shown to become so rapid in a less 

than 10fs time scale. In addition, this is independent of the 2D cold electron. Thus, the  
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Figure 2.8: Time evolution of non-equilibrium carrier among a 100K electron’s
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memory effect also can be ruled out. In the earlier experiment11, the 2D cold carrier is 

generated from the modulation dopants in the barrier, where Si and Be were used as 

the n-type and p-type dopants. The ionized impurities would build an electric field so 

that increases the scattering rate. Because the Si has electrons in orbit (Z=14) three 

times more than the Be (Z=4), the building electric field of Si enhances the scattering 

more considerably. After ruling out all possibilities, the rapid thermailzation in the 

presence of 2D cold electron should be due to the electric field induced from barrier’s 

modulation dopants. 

 

2.4  Summary   

Although the dynamical screening on the CCS is a complex Coulomb interaction, the 

dimensional dependence can be understood in a simple picture and the picture is also 

valid on the Fröhlich interaction and the static-screened interaction. The memory 

effect is as a result of quantum coherence and would cause a burning hole on the 

carrier’s distribution at the early stage. As the time further goes, the two hills aside the 

burning hole is expected to continue to evolve to two burning holes and three hills due 

to the memory effect and go on until the carrier dephases or thermalizes. The 

non-equilibrium carrier’s evolution is normal in the presence of 2D cold electron and 

the Knox’s result should be due to the effect of wafer’s preparation.  
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Chapter 3 
 

Hot Carrier Relaxation 
 

3.1  Introduction  

Although hot carrier relaxations in a bulk GaAs and quantum wells have been studied 

experimentally1-11 and theoretically12-14 for more than one decade, the dependence of 

the dynamical screening in hot carrier relaxations on the sample’s dimensionality is 

still not well understood. The screening behavior caught less attention on hot carrier 

relaxations in GaAs probably attributes that the hot phonon effect was primarily 

considered to be responsible for the great drop of energy-loss rates via Fröhlich 

interaction2,5,11, and hot carrier relaxations seem not to depend on the dimensionality 

experimentally4,5,6. However, the deduction could not hold on the overall carrier 

densities. Because more recent experimental results indicated that there is a clear 

difference in energy-loss rates between a bulk GaAs and quantum wells when the 

carrier density is above a certain critical value7,8,9, shown in Fig. 3.1 and 3.2. Though 

the critical carrier densities determined in those experiments are not consistent, the 

results imply that the dimensionality and the dynamical screening may have a 

significant effect on hot carrier relaxations in a bulk GaAs and quantum wells.  

To theoretically study the difference of hot carrier relaxations between the two 

different dimensional systems, it is important to consider the optical phonon modes in 

a quantum well. Many improved models were developed to give a better description 

for atomic vibrations and the interaction Hamiltonians with electrons in the quasi 

two-dimensional structure15-26. In our calculations, we use the dielectric continuum  
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Figure 3.1: Time-resolved luminescence spectra at room temperature from Pelouch’s
results. (i) for 400nm bulk GaAs. (ii) for multiple quantum well. square: 1019cm-3;
circle: 5×1018cm-3; triangles: 2×1018cm-3 (quoted from Phys. Rev. B 45, 1450 (1992)) 

(i) 

(ii) 
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Figure 3.2: Comparison of carrier temperature versus initial carrier density between
different sample’s structures. (quoted from Phys. Rev. B 45, 1450 (1992)) 
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model15-17,20 (DCM) because the model has provided a good agreement with many 

earlier experimental results27-33. Although the interaction Hamiltonians of phonon 

modes in a quantum well are strongly dependent on the well width, many 

experimental results4,5,6 demonstrated the less well-width dependence of hot carrier 

relaxations except few report shown the contrary results34,35. This discrepancy also 

stimulates us to study the structural dependence of energy-loss rates in a quantum 

well.  

In the thesis, the significance of the dimensionality and the dynamical screening 

on hot carrier relaxations in a bulk GaAs and quantum wells is investigated. The 

distinct dimensionality and the dynamical screening indeed cause that hot carriers in 

quantum wells relax significantly slower than that in a bulk GaAs above the critical 

carrier density of 2×1018cm-3. We attribute this to the smaller density of state in 

quantum wells and the strong 2D dynamical screening. The dynamical screening in 

quantum wells appears to be much stronger than that in the bulk and considerable as 

compared to the hot phonon effect. The critical carrier density determined in our 

studied is in very good agreement with the earlier experiments of Pelouch and 

co-researchers7. We also found that the average energy-loss rate in quantum wells 

depends on the well width more appreciably when Al compositions are high. 

 

3.2  Semiclassical Boltzmann Equation 

The average energy-loss rate (AELR) is calculated in order to compare the difference 

of hot carrier relaxations between the two different dimensional systems. In this 

section, we describe the derivations of the AELR in a bulk GaAs and a quantum well 

where the net phonon generation rate, and the treatments of hot phonon effect and the 

dynamical screening are included. The dynamical screening is dealt with the RPA36. 

Exact dimensional treatments are handled on the AELR’s derivations and the 



 34

dynamical screenings. In our calculations, the electron-phonon scattering is through 

Fröhlich interaction and only intrasubband scattering is considered in the calculation 

of the AELR in quantum wells. The hole-phonon interaction is neglected. The 

plasmon-phonon coupling (PPC) is not considered here because the significant 

enhancement of energy-loss rates37,38  induced by the PPC does not appear above the 

critical carrier density of 2×1018cm-3.  

 The AELR is determined by the net phonon generation rate and the phonon energy. 

The net phonon generation rate represents the subtracting difference between 

phonon’s generation rates and absorption rates. In a bulk GaAs, the 3D net phonon 

generation rate is given by39 

  

 

where q and qω  denote phonon’s wave vector and phonon’s energy, respectively. 

)(f ζ  is the electron’s distribution. With the thermalized assumption for carriers, 

Fermi-Dirac distribution is used where CT  is the carrier temperature. qN  represents 

phonon population. Bk  and V have their usual meanings. The quantity )T(N Cq  can 

be written as39 

 

 

ζ , a dimensionless quantity, represents the normalized energy (energy divided by 

thermal energy CBTk ). minζ  is the minimum normalized energy required for an 

electron to kick out a phonon of wave vector. It is given by39 
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2
Mq , Fröhlich interaction strength, is given by39 
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where Sand εε∞  are high frequency and static dielectric constants. 

    In a quantum well, based on the DCM15-17,20, the confined (C), the symmetric 

plus interface (S+), symmetric minus (S-) interface and the half-space (HS) phonon 

modes are considered in our calculations. Anti-symmetric interface modes are 

excluded due to the selection rule for the intra-subband scattering. The dispersion 

relations for the S+ and the S- interface modes are shown in the sec. 5.240. The noun 

“half-space” in double heterojunctions originates from the report of Mori and Ando20 

where the same name as the case of a single heterojunction is used. The 2D net 

phonon generation rate can be written as 

 

 

 

where //q  and )HS,S,C(
//

±ωq  denote the in-plane phonon wave vector and the phonon 

energies of various modes. enm  is the nth layer effective electron’s mass while 1 

represents GaAs and 2 represents AlGaAs layers. A denotes the area. 1ζ  is the 

normalized ground state energy to the thermal energy. 
2)HS,S,C(
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M ±

q represents the 

electron-phonon interaction strength of various modes shown in Table I. The used 

Hamiltonians are taken from the report of Mori and Ando20.  

    The quantity of )HS,S,C(
)( //

N ±
qq is to be determined. When the hot phonon effect is 

excluded, the phonon population satisfies the Bose-Einstein relation with a lattice 

temperature LT . In general, the hot phonon effect plays an important role in hot  
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TABLE I. The electron-optical-phonon interaction strengths in a quantum well structure 
 

Optical-phonon mode                     Interaction strength 
 

Symmetric ±                                        
interface modesa      

 
 
                                                                                     
            
 

Confined modea,b              
                                                           
 
 
 

Half-space modea,b,c 
 
 
 
 
 

a n
SG ±  is >ϕφϕ< ± 1S1 || , where 1ϕ  is the electron’s ground state and ±φS  is potential 

for interface modes, and the factors HS
p
C G,G are the overlap integral for the pth confined 

mode and the half-space mode respectively. Their expressions and hn(．) are shown in the 
sec. 5.2. 

b
Snn ,εε∞ are nth layer high frequency and static dielectric constants. 

c
zq  is the phonon wave vector paralleled to the crystal’s growth direction. 
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carrier relaxations. The phonon dynamics can be governed by the phonon Boltzmann 

equation. At the steady state, the phonon’s population can be given by the following 

equation with using eq.(3.1) for bulk (eq.(3.5) for quantum wells)39.  

     

 

where phτ  is the phonon life time. 

     The dynamical screening on hot carrier relaxations is handled with the 

electronic dielectric function. Based on the RPA, the dielectric function is given by36 
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 in 2D. The damping coefficient γ  ranges 

from 0.2 to 0.3 times of the plasma frequency41.  

    According to the result from the derivation of Haug and Koch42 with the RPA, 

the effective screened electron-phonon interaction strength 
2effMq can be expressed as 
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The 3D and 2D zero-temperature dielectric functions are, respectively, given by43 
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where FE , Fk and Fv  represent Fermi energy, Fermi wave vector and Fermi 

velocity, respectively.       

     Finally, the 3D and 2D AELRs can be obtained as the definition shown below  
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where zq  is defined in the caption of Table I. 

 

3.3 Results and Discussion 

The material’s parameters and the used assumptions are referred40,44-46. Our 

calculations of the reduced dimensionality on hot carrier relaxations are performed on 

a bulk GaAs and a 10nm-width single GaAs/Al0.3Ga0.7As quantum well where the 

band-offset ratio of VC E:E ∆∆ = 65 : 35 is used44. The average phonon energy is 

approximated in AlGaAs layers to simplify the two-mode behaviors of the GaAs-like 

and the AlAs-like phonons40. The material’s parameters are quoted from Adachi’s 

report45. The electron’s distribution function is assumed to satisfy with Fermi-Dirac 

relation. We use 300K as the electron’s temperature except the section reported the 

structural dependence in quantum wells, where 600K is taken. An initial lattice 

temperature is chosen to be 15K. We quote 7ps to be the phonon life times in both 

bulk GaAs and quantum wells46. Only first-order mode20 of confined phonons is 

considered in our calculation because of the very less contribution to the AELR from 
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higher-order modes. In general, the AELRs in quantum wells are summed over S± 

interface and the confined modes. 

 

3.3.1  Reduced Dimensionality 

    In Fig. 3.3 we show the dependence of the AELR on the carrier density in bulk 

GaAs and a quantum well where the sheet carrier densities are transferred by wD2 L/n . 

Three sets of curves are shown in the figure representing three different conditions: (1) 

in the absence of the hot phonon effect and the dynamical screening (denoted by None 

in the plot), (2) in the presence of the hot phonon effect alone (denoted by HP), and (3) 

in the presence of both the hot phonon effect and the dynamical screening (denoted by 

HP+DS). For the first case, the AELRs in the bulk are shown to be higher than that in 

a quantum well. Above the carrier density of 1018cm-3, the AELR in a quantum well 

drops much faster than that in a bulk. Because the energy-loss rate in materials is 

equal to the product of the AELR and the carrier density, this implies that there is a 

considerable difference in the energy-loss rate between bulk GaAs and a quantum 

well as the carrier density is increased. In the absence of hot phonon effect and the 

dynamical screening, the rapid deviation of the AELRs between the 2D and the 3D 

structures is only attributed to the difference in density of states. Due to the smaller 

density of state, hot carriers in quantum wells are shown to relax considerably slower 

than that in the bulk above the critical carrier density. When the hot phonon effect is 

considered, although the AELRs greatly reduce in both sample’s structures, the rapid 

deviation of the AELR between bulk GaAs and a quantum well still appears while the 

critical carrier density is shifted to the higher one (toward 2×1018cm-3).  

In Fig. 3.4 we show the difference D2
HP

D3
HP AELRAELR −  on the left axis and the 

ratio D2
HP

D2
HP

D3
HP

AELR

AELRAELR −
 on the right, where the lower and upper symbols of the 



 40

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1E17 1E18 1E19

1

10

100

 3D None
 2D None
 3D HP 
 2D HP 
 3D HP+DS
 2D HP+DS

A
ve

ra
ge

 e
ne

rg
y 

lo
ss

 ra
te

s 
A

E
LR

 (m
eV

/p
s)

Carrier density n3D (cm-3)

 

 

Figure 3.3: Average energy-loss rate with distinct conditions in a bulk GaAs and a 10nm
GaAs/Al0.24Ga0.76As quantum well. The symbols “None”, “HP”, and “HP+DS”,
respectively, denote the AELRs in the absence of the hot phonon effect and the
dynamical screening, in the presence of the hot phonon effect, and in the presence of the
hot phonon effect and the dynamical screening. The confined and the S± interface
modes were considered in the AELR of a quantum well. The carrier temperature of
300K and the initial lattice temperature of 15K were used. 
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Figure 3.4: Illustration of reduced dimensionality on hot carrier relaxation. The left axis
shows the absolute difference of the AELR with the hot phonon effect between a bulk
GaAs and a 10nm GaAs/Al0.24Ga0.76As quantum well while the right axis shows the

percentage change of D2
HP

D3
HP AELRAELR −  per D2

HPAELR . The AELR of the quantum

well was obtained by summing the confined and the S± interface modes. The carrier
temperature of 300K and the initial lattice temperature of 15K were used.  
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AELR represent the considered effect and dimensions, respectively. Below the carrier 

density of 1018cm-3, slightly higher 2D AELRs are demonstrated and this is because 

the hot phonon effect in quantum wells is weaker than that in the bulk. But, above the 

carrier density, the effect of the smaller density of state in quantum wells overcomes 

the hot phonon effect so that 2D AELRs recover to be lower than the 3D case, and the 

threshold curve clearly shows the significance effect of the distinct density of state on 

hot carrier relaxations between a bulk GaAs to quantum wells.  

 

3.3.2  Dynamical screening versus Hot Phonon Effect 

In our investigation, the 2D dynamical screening is also found to be an important 

role on hot carrier relaxations at a high carrier density. Due to the great difference of 

the dynamical screening between the two different dimensions, the calculated results 

with the HP+DS in Fig. 3.3 shows the more rapid deviation of AELRs between the 

two sample’s structures. In order to compare the screening strength between a bulk 

GaAs and quantum wells, we plot Fig. 3.5 where the right and left axes, respectively, 

show reduction factors due to the dynamical screening and the hot phonon effect. The 

symbols were mentioned earlier. The dynamical screening in quantum wells is shown 

to be much stronger than that in the bulk and more quickly increased when the carrier 

density is above 1018 cm-3. The quicker increase for the 2D dynamical screening is the 

consequence of the chemical potential in quantum wells, which is raised faster than 

that in the bulk as the carrier density is increased. The 2D dynamical screening is also 

shown to be as important as the hot phonon effect at a high carrier density. To our best 

knowledge, the earlier investigations2,4,5 usually omit the effect of the dynamical 

screening on hot carrier relaxations. In a short summary, because of the fewer density 

of state and the strong 2D dynamical screening, hot carriers in quantum wells relax 

significantly slower than that in the bulk at a carrier density above the critical value of 
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Figure 3.5: Comparison of dynamical screening and hot phonon effect on average
energy-loss rate between a bulk GaAs and a 10nm GaAs/Al0.24Ga0.76As quantum well.
The left axis shows the hot phonon effect while the right axis shows the dynamical
screening. The AELR of a quantum well was obtained by summing the confined and the
S± interface modes. The carrier temperature of 300K and the initial lattice temperature
of 15K were used. 
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2×1018 cm-3. The threshold behavior and the critical carrier density are in very good 

agreement with the earlier experimental results of Leo5, Pelouch7, and their 

co-researchers.  

 

3.3.3  Well-Width Dependence 

    Next, we interpret the calculated results for the well-width dependence of hot 

carrier relaxations in quantum wells. The sheet density of 5×1011cm-2 is fixed for all 

calculated results with different structural parameters. Firstly, we show the 

dependence of the AELR on the well width for various phonon modes in Fig. 3.6(a), 

where the S+, the S-, the confined, and the half-space modes are considered. The 

AELRs for the confined mode always increases until to the well width of 10nm. This 

is the consequence of the electrons better confined in the wider well and the decreased 

phonon wave vector parallel to the crystal’s growth direction. For the S+ interface 

modes, because the electron’s spatial distribution departs from the double interfaces 

and the decreased Hamiltonian, the AELRs are shown to quickly decrease with the 

increased well widths. The S- interface and the half-space modes are less noticeable 

because of the flatter dependence and much smaller AELR as compared to the other 

modes. In Fig. 3.6(b), we show the AELRs as functions of the well width and the Al 

composition by summing over all phonon modes. The opposite dependence on the 

well width between the confined and the S+ interface modes compensates with each 

other and brings the protruding well-width dependence for various Al compositions. 

The protruding behavior was also ever found in the earlier experiment of Ryan and 

Tatham35. As the Al composition is increased, the well-width dependence of the 

AELR becomes more appreciable and the maximum AELR moves toward the shorter 

well width. The reason is the increasingly stronger effect of the S+ interface phonon 

mode on the hot carrier relaxations with the increased Al composition. The slightly 
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Figure 3.6: Well-width dependence of average energy-loss rate in a GaAs/AlxGa1-xAs
quantum well. (a) for the confined, S± interface, and the half-space modes at x=0.3. (b)
for the total AELR at x=0.3, 0.5, 0.7, and 1. The inset figure shows the spectrum of the
net phonon generation rates in a quantum well with Lw of 10nm and x=0.3. The hot
phonon effect is included in the AELR. The carrier temperature of 600K, the initial
lattice temperature of 15K, and the carrier density of 5×1011 cm-2 were used.  
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roughness in AELR’s curves is the consequence of the numerical inaccuracy from the 

2D net phonon generation rate where the finite spike at a given in-plane phonon wave 

vector is shown in the inset of Fig. 3.6(b). 

 

3.4  Summary 

We clarify the discrepancies of the earlier experimental results on hot carrier 

relaxations in bulk GaAs and quantum wells. In contrast to the results in a bulk GaAs, 

both the dimensionality and the dynamical screening have a significant effect on hot 

carrier relaxations in quantum wells. The smaller density of state in quantum wells 

and the strong 2D dynamical screening cause hot carriers in quantum wells to relax 

significantly slower than that in a bulk GaAs when the carrier density is above 2×1018 

cm-3. The influence of the 2D dynamical screening on hot carrier relaxations is 

considerable and is as important as the hot phonon effect when the carrier density is 

high. As the Al composition is increased, the AELR in quantum wells has a more 

appreciable dependence on the well width.  
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Chapter 4 
 

Plasmon-Phonon Coupling 
 

4.1  Introduction 

Electronic collective oscillations in multiple quantum wells have been shown to be 

naturally different from that in the absence of heterointerfaces both theoretically1-13 

and experimentally14-21. The broken spatial symmetry has caused several fundamental 

kinds of plasmons in multiple quantum wells. There can be categorized into 

intrasubband, intersubband, intrawell and interwell types when the quantum 

confinement and the Coulomb coupling between different layers are considered, 

respectively. Theoretically, the electronic collective oscillations were solved which is 

modeled by a large number electron in multiple quantum wells and based on the 

density matrix method with the self-consistent field approximation (SCF)2,3. The 

dispersion relations indicate that in the case of weak Coulomb coupling between 

adjacent quantum wells, the collective oscillation behaves like that of an ideal 

two-dimensional gas. At the long wavelength limit, the plasmon energy is 

proportional to the root of the in-plane wave vector, which was firstly proposed by F. 

Stern1. On the contrary, when the Coulomb coupling is strong, this would result in the 

optical and acoustic plasmon modes at the long wavelength limit, which are very 

similar to the lattice vibration in polar semiconductors. Intersubband plasmon’s types 

are the interesting case caused by the quantum effect on the collective electronic 

oscillation. Many improved theories are developed8-10,12,13. The resonant screening10 

(depolarization shift), excitonic shifts3 (final-state correction), and vertex correction 
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due to many-body effects9 are taken into the consideration to obtain more accurate 

dispersions of intersubband plasmons. While numerous electronic collective 

oscillations in quantum wells are theoretically studied, there also have very good 

agreement with experimental results14-21. Because of high-quality samples grown by 

using molecular beam expitaxy, various types of plasmons in modulation-doped 

GaAs/AlGaAs quantum wells are experimentally observed. The earlier reports of 

intrasubband and intersubband plasmons consisted of a layered electron gas can be 

found in Ref. [14-16]. By using the electronic Raman scattering, intrawell and 

interwell plasmons in multiple quantum wells are also systematically studied. Their 

dispersions are determined clearly and the experimental results are reported in Ref. 

[17,18]. 

Because the electron gas is immersed in a crystal structure, the interaction 

between plasmons and phonons via the macroscopic electric field could arise, which 

is so-called the plasmon-phonon coupling (PPC). When double heterojunctions are 

further considered, the PPC behavior is more complex and the mathematical treatment 

becomes more difficult than the bulk case either from electrodynamics or many-body 

technique. However, if one uses the given phonon and plasmon modes in the presence 

of double heterojunctions22-30 to probe the problem, the mathematical treatment could 

be greatly simplified and the physical meaning is also clearer. For instance, the 

intersubband plasmon between adjacent energy levels would not couple to interface 

phonon modes because of their perpendicular polarization. The previous one polarizes 

parallel to the crystal growth direction while another parallel to its propagation 

direction along heterointerfaces. In addition, the relevant derivations for the PPC can 

also follow the developed method in the bulk case as long as replacing objects by that 

in quantum wells. Wendler and Pechstedt26 attempted to obtain the PPC dispersions 

from the total dielectric function that is accounted by the electron-electron, 
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electron-interface phonon, and electron-confined phonon interaction terms with using 

Dyson equation and the RPA. The results are dramatic different from the those in bulk. 

Coupling between plasmon, confined, and interface phonons causes their dispersions 

deviate from that the uncoupled ones. Setting the real part of the total dielectric 

function to be zero, coupled dispersion branches are obtained and shown to deviate 

from the uncoupled modes.  

In our investigation, another possible coupling of plasmons and phonons in the 

presence of double interfaces is proposed. Differing from the mechanism of Wendler 

and Pechstedt26, we assume that intrasubband plasmons individually interact with 

interface and confined modes; that is, the quasi-2D PPC results in the 

plasmon-interface phonon and the plasmon-confined phonon coupled modes. Each 

coupled mode splits into the plasmon-like and the phonon-like modes. The 

dispersions are obtained by using the renormalized phonon propagators, corrected by 

taking the effect of free electron gas. Following the PPC treatment proposed by Sarma 

and co-researchers22-24, the net plasmon-phonon generation rates are calculated and 

used to obtain AELR by summing over all coupled modes. Plasmon-like modes are 

found to be considerable for hot carrier relaxations around the sheet carrier density of 

1011 cm-2, where the enhanced AELR are shown as compared to the uncoupled case. 

We also found that an increase in carrier temperature reduces the AELR enhancement 

but does not influence the considerable sheet carrier density. 

  

4.2  Re-normailzed Phonon Propagator 

In this section, the coupled dispersion relations and the net plasmon-phonon 

generation rates are shown. Our calculation is performed on a 10nm single 

GaAs/Al0.24Ga0.76As quantum well. Based on the DCM31-33, the S+, the S-, and the C 
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phonon types are considered in a quantum well. The electrons in the quantum well are 

simplified by ideal 2D electron gas and the plasma dispersion is given by10 
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With the PPC effect, six coupling branches are considered. They are two of the 

plasmon- S+ (PS+), two of the plasmon- S- (PS-), and two of the plasmon-confined 

(PC) coupled modes. The renormalized phonon propagator due to the correction of 

free electron gas is given by34 
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where ω   denotes  the modified energy while iω  represents uncoupled phonon 

energies where the index i denotes the S+, the S-, and the C phonon modes. 2
iM  

denote the electron-phonon interaction strengths and the expressions are reported in 

the Ref.[22]. The polarizability function ),( //0 ωΠ q  and the dielectric function 

),( // ωε q  in the renormalized phonon propagator were adapted from the work of 

Sarma23,24, who assume the plasmon-pole approximation for the dielectric function 

and the unknown coefficient was determined by using the Kramers-Kronig relation. 

The expression can be found in the report23,24  and not shown here. As a result, the 

coupled dispersion relations and the interaction strengths for the coupled modes are 

given by23,24 
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where )(i ±ω  represents the upper (+) and the lower (-) energies with the PPC effect. 

So does the coupled interaction strength 2
)(iM ± .  

 

 

Then, the 2D net plasmon-phonon generation rate in GaAs region is given by 

 

where )T(N C)(i ±  and )(iN ±  are, respectively, Bose-Einstein number35 at TC and 

nonequilibrium phonon number. minζ  is the minimum normalized energy required 

for an electron to kick out a plasmon-phonon modes of wave vector //q . It is given 

by 

 

 

The net generation rate in AlGaAs region is treated as the uncoupled case 

because the electrons are generated in the well region. Hot phonon effect and the 

dynamical screening are also taken into the consideration. The determination of 

nonequilibrium occupation can be obtained by solving the steady-state phonon 

Boltzmann equation. The dynamical screening with the RPA is considered. Finally, 

the AELR can be obtained by the definition shown below. 
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In Fig. 4.1(a) and 4.1(b) we show the coupled plasmon-phonon energies as a function 

of the in-plane wave vector on the two sheet carrier densities of 1011 and 1012 cm-2 

with a carrier temperature of 300K and an initial lattice temperature of 15K. The PS+, 

the PS-, and the PC coupled modes are shown in the plots, where L+ and L- represent 

the upper and lower branches for each couple mode, respectively. As energies of L+ 

branches approach to that of L- branches, the two vibration modes are perturbed with 

each other so that the energies of the two branches are shown to deviate, which 

splitting arises. When the in-plane wave vectors are smaller than the coupled places, 

L+ and L- branches behave as the phonon-like and the plasmon-like modes, 

respectively. On the opposite case, the behaviors of the two branches exchange with 

each other. As the sheet carrier densities increase, the crossing in-plane wave vectors 

are shown to move toward lower. When the crossing wave vector leaves the range of 

the plasmon-phonon coupled modes generated by hot carriers, PPC is expected not to 

influence significantly hot carrier relaxations as compared to the uncoupled case. In 

the sheet density of 1011 cm-2, we show the enlarged plot of lower branches in the 

inset. The figure indicates that the PS+ mode becomes to the lowest one among three 

coupled modes. The little amount of the energy difference will be shown to have a 

significant effect on the net plasmon-like generation rates.  

 

4.3.2 Average Energy-Loss Rate 

In Fig. 4.2(a) and 4.2(b) we show the net plasmon-phonon generation rates as a 

function of the in-plane wave vector on the two sheet carrier densities same as 

mentioned above. The quantity of the L+ branch of PS+ mode is plotted on the right 

axis while others are plotted on the left. The generation rates are shown to have 

different behavior between the two sheet densities. In the sheet density of 1011 cm-2, 

because the crossing in-plane wave vector is larger than the range of the  
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Figure 4.1: Dispersion curves of plasmon-phonon coupled mode in a 10nm
GaAs/Al.24Ga.76As quantum well. (a) the carrier density of 1011cm-2. The inset shows the
enlarged plot. (b) the carrier density of 1012cm-2. L+ and L- denote the upper and lower
modes, respectively. A carrier temperature of 300K and an initial lattice temperature of
15K are used.  
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Figure 4.2: Net plasmon-phonon generation rate in a 10nm GaAs/Al.24Ga.76As quantum
well. (a) the carrier density of 1011cm-2. (b) the carrier density of 1012cm-2. L+ and L-
denote the upper and lower modes, respectively. A carrier temperature of 300K and an
initial lattice temperature of 15K are used.  

(a) 

(b) 



 58

plasmon-phonon coupled modes that could be generated by hot carriers, the L+ and 

L- branches correspond to the phonon-like and the plasmon-like modes, respectively. 

A very larger generation rate of the PS+ plasmon-like mode than others is found and 

this can be categorized into two reasons. The first one is that L- branches become 

important relaxation channels for hot carriers at the sheet density shown in the eq. 

(4.4). Another is that more PS+ plasmon-like mode than others can be excited due to 

the lowest energy among the two other plasmon-like branches shown in the inset of 

Fig. 4.1(a). Because of Bose-Einstein relation )T(N C)(i ± , the little energy difference 

between them causes the significant effect. The considerable net generation rate also 

leads enhanced AELR as compared to the case without the PPC effect. The spike in 

the curves is the consequence of the net plasmon-phonon generation rate with an ideal 

2D treatment, where the inside function is proportional to ζ/1  shown in eq.(4.6). 

It is finite and does not give much AELR due to the very narrow width.  

In the sheet density of 1012 cm-2, the crossing in-plane wave vector is around 1.2

×108 m-1, which is on the intermediate range of the in-plane wave vector of 

plasmon-phonon coupled modes that can be generated by hot carriers. So, the 

plasmon-like and the phonon-like modes do not entirely correspond to L- and L+ 

branches. Plasmon-like (phonon-like) modes distribute on the L- (L+) branches below 

the crossing in-plane wave vector and the L+ (L-) branches above the crossing wave 

vector. A rapid drop in the net plasmon-like generation rate as compared to the sheet 

density of 1011 cm-2 is found. This is the consequence of the crossing in-plane wave 

vector moving toward smaller than the case of sheet density of 1011 cm-2. Because of a 

quick rise of L- branches, based on Bose-Einstein relation, excitations of plasmon-like 

modes are shown to decrease rapidly. Another plasmon-like modes on the L+ 

branches above the crossing in-plane wave vector are also shown to have small the net 
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plasmon-like generation rates. Thus, it is expected that, as the sheet densities increase 

above 1012 cm-2, plasmon-like modes gradually become a minor relaxation channel 

for hot carriers. Around the in-plane wave vector of 108m-1, the L+ branch of the PS- 

mode is shown to have a slightly larger net plasmon-phonon generation rate than L+ 

branches of PS+ and PC modes. This is different from the case of the sheet density of 

1011 cm-2.  

In Fig. 4.3 we show the dependence of the AELR summed over all 

plasmon-phonon modes and the AELR with different conditions on the sheet carrier 

density. The different conditions include the bare electron-phonon interaction, HP, DS, 

HD and static screening (SS), where the notations are same as the chap. 3. The PPC is 

shown to enhance the AELR and this is the consequence of the contribution of 

plasmon-like modes to the AELR. Around the sheet density of 1011cm-2, plasmon-like 

modes are found to be massively generated by hot carriers and significantly influence 

the AELR. Below the sheet density of 1011cm-2, the crossing in-plane wave vector is 

gradually larger and departs from the range of wave vector that hot carriers can 

generate so the contribution to the AELR from the plasmon-like modes becomes 

smaller. When the sheet density increases above of 1011cm-2, as mentioned earlier, the 

rapid increase in the plasmon-like energy causes the mode to be more difficultly 

excited by hot carriers so the contribution also becomes smaller. In these sheet 

densities, hot phonon effect is shown to decrease the AELR more strongly than 

dynamical screening, for which there found increasingly shielding strength at high 

sheet densities. Static screening is shown to overestimate the shielding strength.  

 

4.3.3  Carrier Temperature Effect 

The effect of the carrier temperature on the PPC is studied. We show the AELR 

as a function of sheet densities on the two temperatures of 100K and 500K in Fig. 4.4.  
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Figure 4.3: Illustration of plasmon-phonon coupling on average energy-loss rate in a
10nm GaAs/Al.24Ga.76As quantum well. Bare: the AELR without any effects, DS: with
the dynamical screening, HP: with the hot phonon effect, PPC: with the
plasmon-phonon coupling (including HP and DS), HD: with HP and DS, SS: with the
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The PPC effect on hot carrier relaxations at the carrier temperature of 100K is found 

to enhance the AELR more strongly than that at 500K. In the inset of Fig. 4.4 we 

show the deviation ratio ((AELRPPC-AELRHD)/AELRHD) as a function of sheet 

densities on the different carrier temperatures. It is found that the carrier temperature 

does not significantly influence the sheet densities where the maximum deviation 

ratio is shown. As the carrier temperature increases, the enhancement on the AELR by 

the PPC effect becomes smaller. This is the consequence of hot phonon effect. It more 

greatly drops the net plasmon-phonon generation rate at higher carrier temperature so 

that the enhancement of ALER by the PPC effect is shown to gradually disappear.  

 

4.4  Summary 

Using renormalized phonon propagators, six plasmon-phonon coupled branches in a 

quantum well are obtained and used to study the influence of the PPC on hot carrier 

relaxations. When hot carriers can relax their excess energies via the plasmon-like 

modes, the considerable enhancement of the AELR by the PPC is found. The effect is 

significant when the sheet carrier densities are around 1011 cm-2 and the carrier 

temperatures are low. At higher sheet densities, the effect gradually evanesces 

because hot carriers are more difficult to excite the plasmon-like modes due to the 

increased energies. The enhancement of the AELR also strongly depends on hot 

phonon effect. Thus, at the carrier temperature as low as possible but higher than36 

40K, decreasing nonequilibrium phonons would lead more noticeable effect of the 

PPC on hot carrier relaxations around the sheet carrier densities of 1011 cm-2.   
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Chapter 5 
 

Structure Effect on Fröhlich 
 

Interaction 
 

5.1  Introduction 

Electron polar-optical-phonon interaction in III-V semiconductor quantum wells plays 

an important role for hot carrier relaxations, which influence the high-speed responses 

of many quantum devices. In the past, electron-phonon scattering rates in a quantum 

well were typically calculated using the bulk phonon model or the bulk-like phonon 

model1-3. In the bulk-like phonon model, the optical phonon modes are assumed to be 

the same as those in the bulk material while the electron wave functions incorporate 

quantum confinement. More recently, the DCM4-7 and Huang-Zhu model8 (HZM) 

were developed for dielectric slab problems and were more accurate than the bulk and 

the bulk-like phonon models. The fundamental types of phonon modes4,7,8 and the 

electron-phonon Hamiltonian5,6,8 in heterostructures have become an interesting 

subject. Experimentally, Ploog et al.9,10 discovered the evidence of the confined LO, 

TO phonons and interface phonons in GaAs/AlAs superlattices using Raman 

scattering. An order of magnitude reduction in the intersubband scattering rates in 

GaAs/AlxGa1-xAs quantum wells was reported by Schlapp et al. using an infrared 

bleaching technique11. The reduced scattering rates were explained successfully by 

Sarma et al. using the DCM12.  

In the last decade, techniques involving ultrafast spectroscopy became very 
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powerful tools in studying carrier dynamics in semiconductors. Ploog et al.13-15 used 

time-resolved photoluminescence to study the hot carrier relaxation in a quasi-two 

dimensional system. Their experimental results were analyzed with the AELR16 and 

indicated that the width of a quantum well had little effect on the hot carrier relaxation. 

However, the AELR in their analysis was calculated using the bulk phonon model. 

More recently, a better method using the hot-electron neutral-acceptor 

luminescence17, shown in Fig. 5.1, was developed to study the carrier relaxation 

mechanisms. It gives a better spectral resolution at lower carrier excitation densities 

than those of the ultrafast spectroscopy technique. This method has been used18-20 to 

determine the effective phonon energy in GaAs/AlxGa1-xAs quantum wells with 

various structure parameters. The effective phonon energy can be estimated in our 

calculations and be compared with experimental measurements. 

The purpose of the report is to calculate the electron-phonon scattering rates in 

GaAs/AlxGa1-xAs quantum wells with various structure parameters based on the DCM 

model. Especially, we focus on the dependence of the electron-optical phonon 

interaction on the Al composition in the barrier, which is the subject that is still 

lacking in earlier reports. The calculated results are compared with earlier 

experimental results20.  

 

5.2  Dielectric Continuum Model 

5.2.1  Phonon energy in GaAs/AlxGa1-xAs quantum wells  

Based on DCM, there are six types of optical-phonon modes6 in a dielectric slab. 

However, due to selection rules for the intra-subband scattering, only the confined LO 

mode, the half-space LO mode, and the symmetric interface modes were taken into 

consideration in our calculations. The confined phonons propagate in the well, and the 

component of the phonon wave vector along the layer growth direction (z direction)  
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Figure 5.1: Schematic diagram of hot photoluminescence at energy PLhν  through
electron-neutral acceptor (marked by A) recombination. Incident photons with exhν
excite electrons, and subsequent scattering processes are illustrated including
electron-electron, electron-phonon, electron-plasmon scatterings. (quoted from Ref.[21])
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qz is quantized. The half-space phonons, whose z component of the phonon wave 

vector is not restricted, propagate in the barrier. Symmetric interface phonons 

propagate along the interface, and the in-plane atomic displacement is symmetric with 

respect to the center of the well. Symmetric interface mode can be further divided into 

the S+ and the S- branches. These two phonon branches also have different dispersion 

characteristics, which is given by the solution of  

 

 

where the lattice dielectric function is given by  

 

 

where the optical phonon energy in the AlxGa1-xAs layer has two modes: the 

GaAs-like mode and the AlAs-like mode. >ω< )1TO(1LO  represents the LO (TO) 

energy in the GaAs layer. >ω< )2TO(2LO  represents the LO (TO) energy in the 

AlxGa1-xAs layer, and is taken as the average of those of the AlAs-like mode 

)x(AlAs
)2TO(2LOω  and the GaAs-like mode )x(GaAs

)2TO(2LOω  

 

 

The material parameters used in the dissertation are listed in Table II22. Fig. 5.2 

shows an example of the interface phonon dispersion in a 50nm-width 

GaAs/Al0.3Ga0.7As quantum well. At the long wave length limit, the S+ and the S- 

interface modes go to the LO phonon energy in AlGaAs barrier and TO energy in 

GaAs well, respectively, while the antisymmetric plus (A+) and the antisymmetric 

minus (A-) interface modes go to the LO phonon energy in GaAs well and TO energy 

in AlGaAs barrier. At the short wave length limit, the S+ and the A+ modes go to the  
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TABLE II. Material parameters for GaAs, AlAs and AlxGa1-xAs used in the dissertation 
 

Parameter                   GaAs        AlAs         AlxGa1-xAs   

LO-phonon energy LOωh (meV) 

GaAs-type                    36.25                 36.25-6.55x+1.79x2   

AlAs type                                50.09      44.63+8.78x-3.32x2  

TO-phonon energy TOωh  (meV)           

GaAs-type                    33.29                 33.29-0.64x-1.16x2   

AlAl type                                44.88      44.63+0.05x-0.30x2  

Relative dielectric constant 

Static Sκ                      13.18       10.06        13.18-3.12x 

High frequency ∞κ              10.89        8.16          10.89-2.73x 

Band-gap energy )K15(Eg
Γ (eV)      1.519        3.13        1.519+1.611x    

Electron’s effective mass em (m0)a    0.067        0.15        0.067+0.083x     

 
a m0 denotes the free electron mass. 
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Figure 5.2: Dispersion curves of symmetric and anti-symmetric interface phonon modes
in a 50nm GaAs/Al0.3Ga0.7As quantum well. 
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same phonon energy while the S- and the A- go to the same energy. The 

long-wave-length phonons play a more important role on the scattering with electrons 

because the Fröhlich interaction inversely proportional to the phonon’s wave vector, 

which favors the small-angle scattering. The anti-symmetric interface phonons 

become important on the interaction with electrons when the electron has 

intersubband scatterings. 

    

5.2.2  Electron-Phonon Scattering Rates  

    With the average phonon energy in AlxGa1-xAs alloy shown in eq.(5.3), 

intrasubband electron-optical-phonon scattering rates in the lowest subband can be 

calculated using the Fermi’s golden rule. The scattering rates are obtained by 

integrating over all possible states using the two-dimensional density of state function 

with states restricted by energy and momentum conservations. Scattering rates of the 

interface modes, ±SW , the confined mode, WC, and the half-space mode, WHS, are 

respectively written as  
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modes, the confined mode, and the half-space mode respectively. iϕ  and fϕ  are the 

electron’s wave functions of the initial and the final states in the quantum well. 

  and , , HSCS φφφ ± , given in Table III, are the potential functions of the interface, the 

confined, and the half-space modes respectively. The function, hn( ±ωS ), is expressed 

as 

 

 

The minimum and maximum in-plane phonon wave vector can be expressed as 
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The G factor for the pth confined mode and the half-space mode are respectively 

 

 

 

 

 

where Ee1 is the electron’s ground-state energy, and CE∆  is the barrier height of the 

quantum well. The G factor for the intersubband scattering is in Appendix C. 

We used the DCM instead of the HZM8 for the boundaries’ treatment. It is 

because the scattering rate calculated by HZM gives an unreasonably large scattering 

rate even with very narrow well width due to the slow convergence of the higher 

order’s modes. The RPA was used for the dynamical screening23,24. 
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TABLE III.   The potential in a quantum well for various phonon modes 

 
Optical-phonon mode                 Potential for three distinct regions 
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5.3  Intrasubband Scattering 

In our calculations, band-offset ratio vc E:E ∆∆  in GaAs/AlxGa1-xAs quantum wells 

was chosen to be 65:35. The electrons were given an excess energy of 50meV so that 

the intersubband transition can be neglected. The sheet-charge density was chosen to 

be 5x1010cm-2. 

In Fig. 5.3 we show the dependence of the phonon energy of the S+ mode and 

the S- mode on the Al composition in the barrier at the minimum min//q and the 

maximum max//q  in-plane phonon wave vectors with a well width of 5nm. For the S+ 

mode, the phonon energy increases quickly with the Al composition for both min//q  

and max//q . It approaches the LO phonon energy in the barrier layer when //q  

approaches zero. The increase of the calculated S+ mode energy with Al composition 

at min//q  agrees with the increased LO phonon energy in AlxGa1-xAs layer as Al 

composition is increased. For the S- mode, the phonon energy has a weak dependence 

on the Al composition. It approaches the TO phonon energy of the well when //q  

approaches zero. The weak dependence on the Al composition is easily understood 

because there is no Al in the well. 

    In Fig. 5.4 we show the calculated dependence of electron-optical phonon 

scattering rates on the Al composition for various types of phonon modes in a 5nm 

wide GaAs/AlxGa1-xAs quantum well with a lattice temperature of 15K. For the S+ 

mode, the scattering rate increases from 4.1ps-1 to 6.9ps-1 as the Al composition, x, is 

increased from 0.2 to 1. In order to interpret the results, we show in Fig. 5.5 (a) the 

dependence of the H factor and the G factor on //q . As we can see, both the H factor 

and the G factor increase with the Al composition at small //q . Since the S+ mode 

favors the small-angle scattering, this dependence follows the behavior of the H and 

the G factors at small //q . For the S- mode, the scattering rate increases from 0.32ps-1 

to 1.1ps-1 as the Al composition is increased from 0.2 to 1. The strong dependence on  
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Figure 5.3: Dependence of phonon energy of S+ and S- interface modes on the Al
composition at min//q and max//q . 
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the Al composition is mostly due to the H factor. In Fig. 5.5(b) we show the 

dependence of the H factor on //q . As //q  decreases toward zero, ωS- approaches the 

TO phonon energy in the well. This leads to the decrease of the H factor. Because of 

this, the small-angle scattering for the S- mode is not as important as that for other 

phonon modes. In Fig. 5.4 we have also found that the screening effect for the S+ 

mode and the S- mode is not significant. 

Comparing to the S+ and the S- modes, the scattering rate of the confined 

phonon mode does not show strong dependence with the Al composition in the range 

that we have investigated. It is because that the G factor in the expression of the 

scattering rate equation for the confined phonon mode is less sensitive to the Al 

composition. The screening effect for the confined mode is stronger than that of the 

S+ and the S- interface modes. 

For the 5nm well the electron wave function does not penetrate deep into the 

barriers. Therefore, the half-space mode’s contribution to the scattering rate is 

insignificant in comparing to the other three types of phonon modes and is not 

considered here. 

    The calculated results were compared with the experimental results20 performed 

by hot-electron neutral-acceptor luminescence for GaAs/AlxGa1-xAs quantum wells 

with various Al compositions. The calculated effective phonon energy (ωeff) is given 

by the following equation. 

 

 

In Fig. 5.6 we show the dependence of the effective phonon energy on the Al 

composition of both the experimental result20 and our calculations. There are two 

calculated curves in the figure. The solid line represents the results without screening  

(5.14)
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Figure 5.6: Comparison of experimental and calculated results for the dependence of the
effective phonon energy on the Al composition. The well width is 5nm, the lattice
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and the dash one with screening. Since the S+ mode plays the dominant role in the 

calculated scattering rate among all phonon modes, the calculated effective phonon 

energy basically follows the behavior of the S+ mode. The tendency of the 

calculations is in good agreement with the experiments. 

The minor difference between the measured result and the calculated result on 

the effective phonon energy is attributed to the assumptions that we made in the 

calculations of the average phonon energy in AlxGa1-xAs alloy, which probably 

simplified the complexity of the phonon spectrum in the ternary compound. 

    In Fig. 5.7 we show the dependence of scattering rates on the well width for 

various types of phonon modes with an Al composition x=0.3 in the barriers. Other 

parameters are kept the same as in previous calculations. For the S+ mode, the 

scattering rate decreases considerably from 5.3ps-1 to 1.4ps-1 as the well width is 

increased from 4nm to 12nm. We attribute this to the decrease of the H factor and the 

G factor as the well width is increased. When the wells move toward wider wells, the 

electron wave functions centered at the middle of the well do not spread deep into the 

interfaces as in the narrower wells. The interface is the place where the strongest 

electron-phonon interaction took place. Thus, it leads to the decrease of the G factor. 

But, the tendency on the decrease of the G factor does not hold for extremely small 

//q . As the well gets narrower, the increasing of the G factor has been canceled out by 

the decreasing of the H Factor and results in the weak dependence for well width 

narrower than 4nm. This behavior was not found in the earlier calculated results25 

where the assumption of an infinite quantum well was made. 

For the S- mode, due to the small H factor, the scattering rate is much smaller 

than the rate of the S+ mode. In addition, the increased H factor with the well width 

compensates the decreased G factor each other. This results in a weak dependence of 

scattering rates on the well width. 



 83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 4 6 8 10 12

0

1

2

3

4

5

6

7

 

 

 Total 
 WS+
 WC
 WS-
 WHS

S
ca

tte
rin

g 
ra

te
s 

W
 (p

s-1
)

Well width Lw (nm)

Figure 5.7: Dependence of electron-optical phonon scattering rate of S+ mode, confined
mode, S- mode, half-space mode, and the total rate contributed by all types of phonon
modes on the well width. The Al composition is 0.3, the lattice temperature is 15K, and
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The scattering rate of the confined mode increases from 0.27 ps-1 to 2.2 ps-1 while 

the rate of the half-space mode decreases sharply from 0.13 ps-1 to 0.12 ns-1 as the 

well width is increased from 2nm to 12nm. The increase of the scattering rate of the 

confined mode is due to the increased G factor as the well width is increased. On the 

contrary, the G factor decreases for the half-space mode.  

There is a crossover point of the scattering rate for the confined mode and the S+ 

mode at a well width of 10nm and an Al composition of 0.3. So the confined mode is 

the major relaxation channel for hot electrons in wide quantum wells and the S+ mode 

is responsible for the narrow wells. Although the total scattering rate only varies 

slightly with the well width, there still can be a strong dependence of the average 

electron’s energy-loss rate on the well width when the phonon energy of the 

corresponding modes is considered.  

 

5.4  Intersubband Scattering 

Intersubband scattering rate has the better estimation than intrasubband case via Fermi 

golden rule where the energy-conserved rule is more available in intersubband than 

intrasubband transition due to one order lower magnitude of scattering rates. 

For a two-state quantum well, the increasing intersubband scattering rate with 

well widths for interface modes is found, shown in Fig. 5.8(a), while the dependence 

is opposite to the intrasubband case because the moving lower in-plane wave vector 

due to closing adjacent states gives stronger increased dependence than the decreased 

Hamiltonian when the well width is increased. The effect of the movement in in-plane 

phonon wave vector when the well structure is adjusted also leads the different 

dependence of the Al composition in intersubband transition, shown in Fig. 5.8(b), 

from the intrasubband case. 

For a three-state quantum well, the electron at the highest state shows the faster  
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scattering to the ground state than to the first excited state for the confined mode, 

shown in Fig. 5.9. The result rebuts the sequential state-by-state scattering and implies 

that the dynamics analysis should be replaced by the time evolution of the electron 

distribution, which is obtained by solving Boltzmann equation. 
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Chapter 6  
 

Conclusion and Direction 
 

The non-equilibrium carrier-carrier scattering and the hot carrier relaxation in GaAs 

were theoretically studied by using the Generalized Kadanoff-Baym equation and the 

semi-classical Boltzmann equation, respectively. The dimensional effect and the 

dynamical screening on the two fundamental interactions were clarified. In contrast to 

earlier investigations, the dynamical screening is shown to be stronger in a quantum 

well than a bulk for both the carrier-carrier and the carrier-phonon interactions. The 

electric flux in a lower dimension has a stronger confinement so that has a stronger 

electric field. The stronger dynamical screening in a lower dimension is as a result of 

larger difference between the unscreened and the screened electric fields. Although 

the carrier in a bulk has a weaker Coulomb interaction, a higher dimension leading to 

more scattering channels overcomes the effect and gives rise to a rapider 

thermalization of non-equilibrium carriers and a faster relaxation of hot carriers in a 

bulk. In the quantum kinetic regime, the memory effect on the carrier-carrier 

scattering is firstly demonstrated to have a burning hole on the carrier’s distribution, 

which is the early stage of oscillation. As the time further goes, the one burning hole 

and two hills around the hole will continue to evolve to two burning holes and three 

hills. The process will go on until the carrier dephases or thermailzes.  

The next step is to extend the quantum kinetic theory to the curved space time 

where the semi-classical Boltzmann equation has been established1. The current 

quantum kinetic theory has already been developed for relativistic particles by using 
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the Wigner function; however, it has not been reached to the generalized coordinate 

yet2. Starting from the quantum field theory in the curved space time3, the 

non-equilibrium Green function will be used to derive the relativistic quantum kinetic 

equation with the Robertson-Walker and the Schwarzchild metrics. The 

non-equilibrium Green function is chosen rather than the Wigner function to explore 

the quantum kinetic theory because the quantum statistical method in the Wigner 

function is principally semiclassical, which is not valid for carrier kinetics on the 

ultrashort-time and ultrasmall-space scales and the important information in the 

quantum kinetic regime such as the memory effect and the energy non-conservation is 

lost.  

By constructing the theoretical framework, the evolution of the universe at the 

different stages will be studied. First of all, the singular point of the infinite curvature 

space time at the moment of the big bang could be eliminated by using the quantum 

statistical method. Second, the kinetics of the rapid expanding universe where the 

SU(5) and subsequent symmetries break will be paid the attention to study the 

emitting and the cooling dynamics of the kinds of particles during different periods of 

the separating fundamental interactions, where the quantum kinetic effects of 

non-Markovian process and non-conserving events will be addressed. As the time 

evolves, the coherent behavior of the dynamical state evanesces due to abundant 

collisions among these non-equilibrium particles, and the carrier kinetics can be 

simplified to govern by the semi-classical Boltzmann equation. When the 

hydrodynamic regime is entered, the subsequent degree of approximations on the 

kinetic equation can be made to study the large-scale fluid dynamics such as the 

formation of galaxies clusters and the mechanics in the blackhole where the Hawking 

radiation will be considered. The simplified kinetic equation can be obtained by using 

the Chapman-Enskog expansion and the Maxwell-Grad method to derive the 
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Navier-stokes, and Burnett equations where the deviated distribution function from 

the equilibrium is in terms of hydrodynamic velocity, temperature, particle density, 

etc., and their gradients. Eventually, the validity or the precise valid range of the 

Birkhoff-Khinchin ergodic theorem, where there exists an asymptotic distribution 

function when the ensemble numbers are large enough, will be examined or probed, 

respectively, by using the theoretical investigation on the varieties of astronomy 

objects and the observational Cosmological results. 
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APPENDIX A 
 

Calculating Interband Coulomb 
  

Quantum Kinetics 
 

At the initial stage of non-equilibrium carrier excited by the ultrafast pulse laser, 

before the screening developed, the interband Coulomb quantum kinetics can be 

modeled by the simplified GKBE as follows+ 

 

 

 

where 
1

Pk  and 
1,jf k  denotes the polarization field and the carrier’s distribution at the 

electron and the hole bands (j=e, h).   
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where 
1kδ  is equal to 0g,h,e EEE

11
ω−++ hkk . 0ω  is the central frequency of 

optical source. 
1kd  and )t(E0  are the dipole moment and the excitation electric 

field, and can be expressed as 

 

where pcv is the momentum matrix. The 2D and 3D matrices with TE polarization 

transition from heavy hole to conduction bands can be written as respectively++,   

 

 

6/Emp p0
D3

cv =  

where mr is 11
h

1
e )mm( −−− +  and Ep is equal to 25eV.  A(t) is the magnetic vector 

potential and can be written as+++  

  

where an initial Gaussian distribution with the time dependence of 

)/2cosht2(hsec 0
12 τ−  is assumed. 0τ  is the temporal pulse width. Epulse is the 

energy per pulse. σ  is the standard deviation. ω  is equal to h/)EEE( gk,hk,e 11
++ . 

The scattering terms can be derived in distinct dimensions. 
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where k4 is equal to k1+k2-k3. The parabolic electronic band structure was used 
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APPENDIX B 
 

Calculating Building Up of 
  

Screening 
 

After the non-equilibrium carrier generated, the shielding potential gradually builds 

up as the time evolves and it can be modeled by the GKBE where the RPA was used+. 

 

where the )f1(f −↔  denotes the interchanging term. The retarded and advanced 

Green function can be obtained by solving the Dyson equation. For a simplification 

they are assumed  

 

 

where )(⋅θ  denotes the step function.  

    By taking the eq. (B.2a) and (B.2b) into the eq. (B.1), after some algebraic 

arrangement, the scattering term in distinct dimensions can be written as 
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where σ  denotes the angle between k2 and k3-k1. 
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APPENDIX C 
 

G factor for Intersubband 
  

Scattering 
 

Under the conservation of energy and momentum, the allow range of in-plane phonon 

wave vector for the electronic intersubband scattering can be obtained 

 

 

 

 

 

where mn,eE∆  denotes the energy difference between m and n electron’s states. 
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The G factor used in the dissertation can be shown 
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where the upper index w and b denote the well and barrier regions. Lower index A± 
denotes the antisymmetric modes and (3→2) denotes the transition from third to 
second subband. 
 

 
 
where lower index C denotes the confined phonon modes and upper index denotes the 
pth modes. The G factor is zero for odd pth modes 

 
 
 

 
 
 
 
 

⎥
⎦

⎤
−+

−−−−
+

⎢
⎣

⎡
++

++−+
×

=→±

2
32

2
//

w32w//32w32w////

2
32

2
//

w32w//32w32w////

w//

23w
)23(A

)kk(q
]2/L)kkcos[()2/Lqsinh()kk(]2/L)kksin[()2/Lqcosh(q

)kk(q
]2/L)kkcos[()2/Lqsinh()kk(]2/L)kksin[()2/Lqcosh(q

)2/Lqsinh(
CBG

32//

2/L)(
23b

)23(A q
eAA2

G
w32

α+α+
=

α+α−

→±

⎥
⎦

⎤
−+

−−−−
+

⎢
⎣

⎡
++

++−+
×

=→±

2
12

2
//

w12w//12w12w////

2
12

2
//

w12w//12w12w////

w//

21w
)12(A

)kk(q
]2/L)kkcos[()2/Lqsinh()kk(]2/L)kksin[()2/Lqcosh(q

)kk(q
]2/L)kkcos[()2/Lqsinh()kk(]2/L)kksin[()2/Lqcosh(q

)2/Lqsinh(
CBG

21//

2/L)(
12b

)12(A q
eAA2

G
w21

α+α+
=

α+α−

→±

⎥
⎦

⎤
++π

++π
−

−+π
−+π

−

+−π
+−π

+⎢
⎣

⎡
−−π

−−π
=→

)kkL/p(
]2/L)kkL/psin[(

)kkL/p(
]2/L)kkL/psin[(

)kkL/p(
]2/L)kkL/psin[(

)kkL/p(
]2/L)kkL/psin[(CB

2
1G

12w

w12w

12w

w12w

12w

w12w

12w

w12w
21

)even(p
)12(C

⎥
⎦

⎤
++π

++π
−

−+π
−+π

−

+−π
+−π

+⎢
⎣

⎡
−−π

−−π
=→

)kkL/p(
]2/L)kkL/psin[(

)kkL/p(
]2/L)kkL/psin[(

)kkL/p(
]2/L)kkL/psin[(

)kkL/p(
]2/L)kkL/psin[(

CB
2
1G

32w

w32w

32w

w32w

32w

w32w

32w

w32w
23

)even(p
)23(C

(C.6) 

(C.7) 

(C.8) 

(C.9) 

(C.10)

(C.11)



 100

 
 
 
 

 

 
where the G factor is zero for even modes. 
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