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摘要 

相較於使用快取記憶體的多核心架構，分散式暫存記憶體多核心平台可以達到功率效率

的特性，適用於可攜式電子產品等嵌入式系統中。但是要利用分散式暫存記憶體多核心

平台去加速運算，軟體程式的撰寫卻非常困難，不但花費時間而且容易出錯。分散式暫

存記憶體多核心平台為程式撰寫帶來許多挑戰，包含核心間同步、工作負載平衡，甚至

包括資料的讀取上都考驗程式設計者。在這篇論文中，我們針對多媒體多解析的應用去

做分析和探討，希望可以在分散式暫存記憶體多核心平台有效率地去利用硬體資源。多

解析處理應用常見於多媒體應用中，像是影像處理、訊號處理及智慧型多媒體處理。它

會針對於不同解析度進行反覆的運算處理、蘊含豐富的資料區域性，需要頻繁的資料傳

輸去完成運算。在分散式暫存記憶體多核心平台實現此種應用時，常因為資料傳輸的問

題，導致效能上無法達到線性的加速。因此本論文提出一個基於『資料區域性』為主軸

的切割方式，透過妥善利用不同解析度間之資料區域性及有效率的暫存記憶體使用來減

少不必要的資料讀取；藉此方式達到降低核心間資料網絡的負擔，也避免發生記憶體資

源的競爭。本研究以物體辨識當作一個例子，利用 Cell 多核心處理器做為我們的實驗平

台；所提出的方法可以減少 95%的資料傳輸且達到 35.1%的效能提升，並且在六顆處理

器的平行處理下，相較於 CellCV 版本在一顆處理器上的處理時間，可以達到 5.6 的增

益。
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ABSTRACT 

Compared to cache-based multicore architecture, distributed scratchpad memory multicore 

architecture is more power efficient, which makes it suitable for embedded system. However, 

software programming for distributed scratchpad memory multicore is rather complicated and 

time-consuming. It brings new challenges including synchronization, workload balancing and 

even memory transfer. In this thesis, we focus on parallelization of multi-resolution 

applications on distributed scratchpad memory architecture. Multi-resolution application is 

used in variety domains like video compression, signal processing and intelligent multimedia. 

It contains multi-level data locality, repeated computations are performed on different 

resolutions. Abundant data transfers are demanded to complete the operation. Therefore, the 

memory transfer issue usually prevents multi-resolution application from getting linear 

acceleration on multicore. We propose a data-oriented task partition to achieve balanced 

workload and low-data-transfer by take advantage of inter-resolution locality. On Sony 

Playstation3, a typical distributed scratchpad memory multicore with 6 cores, object detection 

is parallelized using proposed data-oriented task partition. According to the experimental 

results, we obtain 5.6 times speedup from running on single core. 95% data transfer can be 

reduced and up to 35.1% performance improvement is obtained.       
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 1  INTRODUCTION 

Multimedia applications have become an important workload of computing system for 

consume electronic. And multi-resolution is one special case in multimedia application. 

Because of computation complexity and application requirement, single core is out of power 

to reach the performance constraint and additionally accompanying with dramatic 

increasing of power consumption, memory latency and circuit complexity. Most new 

processors architectures are branching into more cores rather than better cores. Multicore 

architectures have become the mainstream rather than the exception in computing landscape. 

The problem is how to exploit the parallelism and make full utilization of all cores to reach 

the expected performance gain with efficiency. 
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1.1 Distributed Scratchpad Memory Multicore 

Distributed scratchpad memory multicore architecture becomes popular for 

parallel-accelerated computation. The architecture can be described as follows in Figure 1-1. 

Figure 1-1 is one typical example of distributed scratchpad memory, Cell processor. There are 

several cores in the system and each core is embedded with software-controlled local store 

memory. Direct memory access (DMA) usually participates memory transfer. Direct memory 

access (DMA) is a feature of modern computers and microprocessors that allows certain 

hardware subsystems within the computer to access system memory for reading and/or 

writing independently of the central processing unit. DMA is used for transferring data 

between the local memory and the main memory. And it is used to anticipate overlapping 

computation and communication for alleviating memory transfer overhead. 

 

Figure 1-1 One example of distributed scratchpad memory architecture 

 

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Central_processing_unit
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By [1], the hardware of scratchpad memory is shown like Figure 1-2. The scratchpad is a 

memory array with the decoding and the column circuit logic. The assumption here is that the 

scratchpad memory occupies one distinct part of the memory address space with the rest of 

the space occupied by main memory. Thus, we need not check for the availability of the 

data/instruction in the scratchpad. It reduces the comparator and the signal miss/hit 

acknowledging circuitry. 

 

Figure 1-2 Scratchpad memory array 

 

Figure 1-3 Scratchpad memory organization 
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The 6 transistor static RAM construct a memory cell as shown in Figure 1-2 (c). The cell 

has one R/W port. Each cell has two bit-lines, bit and bit bar, and one word-line. The 

complete scratchpad memory is as shown in Figure 1-3. Comparing with cache memory, 

scratchpad memory has less hardware circuit. In Figure 1-4, cache memory has additional 

circuit of tag array and comparator circuit check for the availability of the data/instruction in 

the cache. From this paper, average reduction was 40% in time, power consumption and area. 

While application is considered, distributed scratchpad memory can support huge computing 

power but low power consumption.  

 

Figure 1-4 Cache memory organization 

Therefore, scratchpad memory organization is suitable for current embedded processors 

particularly in the area of multimedia applications and graphic controllers 

1.2 Multimedia applications 

In recent year, multimedia applications become an important workload of computing 
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system for consumer electronic. For example, audio standards are AAC, MP3, Dolby Digital 

(AC3), etc. And multimedia standards are M-JPEG, MPEG-1, 2, and 4, H.263, H.264, etc. 

Even 3-D graphic processing is more and more popular in the future entertainment. There are 

some data characteristics in multimedia application. (1) High computation complexity, it 

requires tens to hundreds of billions computation per second for modern multimedia 

applications. (2) Streaming process, application can be simply decomposed into stream and 

kernel. Continuously ordered set of data and the FIFO-communicated processes are expressed 

as the operations applied on stream processing. Lets take JEPG encode for a example in 

Figure 1-5. It can decomposes into four computation kernel as color space transform (CST), 

discrete cosine transform (DCT), quantization (Q) and variable length coding (VLC). (3) 

Predictable data movement, continuous input data imports into computing system and export 

after go through a cascade of computing kernel. Whereas the process behavior is regular like 

DCT starting after CST is finished, memory transfer can be pre-loaded for computing kernel. 

Because of above data characteristic, distributed scratchpad memory multicore is appropriate 

for multimedia application to elaborate high performance and power efficient via application 

considered. 

 

Figure 1-5 Example – JPEG encoder 

1.3 Porting multimedia applications on DSM multicore 

Although multicore can support huge computing power, it is difficult for software 
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programmer to parallelize multimedia applications on multicore efficiently. There are several 

factors we have to consider. The superior performance can only be obtained through a careful 

co-design and optimization crossing four critical design issue, including choosing appropriate 

parallelism level, balancing workload, reducing synchronization overhead and memory and 

interconnect bandwidth. In multicore programming, the programmer is now responsible to 

generate concurrent tasks, to arrange explicit non-uniform memory access, and carefully to 

consider synchronizations between cores for maintaining correct program behavior. The 

hardware-dependent factors as well as the application-specific characteristic make multicore 

programming difficult, time-consuming, and error-prone indeed. General speaking, there are 

four iterative steps in developing multicore programming: partitioning (to yield a fine-grained 

decomposition of an application), communication (to be performed in one task will require 

dependent data associated with another task), agglomeration (to identify a grouping of tasks 

that will complete the work efficiently), and allocation (to allocate appropriate workload on 

each core individually). Data partition and function partition are two general approaches used 

to partition the application. Data partition scheme exploits data-level parallelism (DLP) to 

create concurrent tasks. To achieve DLP, the original data stream will be well partitioned into 

disjoint or parallel segments. Data partition method usually pursues extra data parallelism 

through raising data segment’s granularity. Consequently, larger buffer or local memory will 

be necessary to hold temporary data. If the local memory for each core is not large enough, 

the performance could be degraded significantly due to inefficient data movements. Function 

partition decomposes the application into tasks (or processes) according to its functionality. 

The processor core now is in charge of one or several tasks. With step-by-step processing, the 

program could be executed and completed in a software pipeline manner. However, this may 

introduce IPC overhead between cores. The IPC overhead will always be the most significant 

concern regarding the multicore performance. 
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Let’s take a JPEG encode again on the developed dual core platform, as shown in Figure 

1-6, to illustrate the latency within acceleration and to look into influences of IPC overhead. 

Figure 1-6 demonstrates a dual-core platform developed by CoWare, a SystemC-based 

electronic system level (ESL) tool which can rapidly create and validate SoCs in an early 

stage. It consists of two ARM926 processors connected by AMBA AHB, where one is 

considered as the MPU and the other acts as the DSP. Two ARM926s can access not only their 

own local memory but also the shared memory. In addition, the mailbox is applied and 

connected to the vector interrupt controller (VIC) to interrupt the corresponding processor. 

With mailboxes, ARM926s can be synchronized with each other.  

 

Figure 1-6 Developed dual-core simulation platform on CoWare 

Suppose that, for a realistic case, the operation frequency of the MPU is configured as 

250 MHz, while the operation frequency of the DSP is 500MHz. then, the total latency for 

accomplishing the application on the dual-core platform will include the following four parts: 

(i) data movement to/from DSP; (ii) task management and memory management; (iii) 

mailbox handshaking and the response of the real-time kernel; (iv) task computation. To 
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encode a 256×256 JPEG image, the measured latency for the part-(i), (ii), (iii), and (iv), 

respectively, on CoWare is: 7963μs, 1,430μs, 31,242μs, and 17,981μs. Nevertheless, we do 

spend much time on IPC overhead in function partition scheme and it certainly degrades the 

system performance. We now consider the general case that the application may consist of the 

sequential part and parallel part. For achieving better performance, one may allocate the 

parallel tasks to the other (N-1)-core for data acceleration. Then, we have 
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Where Ti(  ), Tii(  ), and Tiii(  ) denotes the latency of the part-(i), (ii), and (iii), respectively, 

for the  -th core and Tpara(  ) is the workload allocated to the  -th core.  Ns denotes 

speedup factor of each core. Among them, the maximum computation time for Tpara(  ) is 

denoted Tcritical. And for simplicity, we use IPCoverhead to denote the inter-core communication 

overhead and time for necessary data movements. IPCoverhead is the hardware-dependent 

parameter, while Tcritical and Tseq are related to application’s characteristics as well as the 

degree of the workload balancing. If well workload balancing, we approach the best 

performance that Tcritical = (Ttot - Tseq) / Ns(N - 1). However, workload balancing and IPC 

overhead are important issues regarding multicore performance. Unfortunately, these primary 

factors are usually at odds with each other and must be traded off. Therefore, based on the 

streaming multimedia programming model, we propose an efficient design flow of 

parallelizing streaming multimedia applications on multicore architecture.  
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Figure 1-7 Optimization flow for efficiently parallelizing multimedia applications on Multicore 

The proposed design flow is shown in Figure 1-7. Various hardware-dependent factors 

and application-specific characteristics are involved in the design flow such that the designer 

can save several time-consuming iterations of partition and allocation steps. The algorithm 

starts from a streaming dataflow process network. To avoid frequent data movements and 

possibility unnecessary IPC overhead, the DLP data partition is prior and the data segment’s 

granularity is better as large as possible under system performance and local memory 

constraints. Raising data segment’s granularity will help data-level parallelism. However, it 
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will suffer from larger buffer or local memory. If the local memory of each core is not large 

enough, the performance could be degraded significantly due to inefficient data movements. 

After processes allocation, the algorithm checks whether it meets the performance constraints 

of the application. If yes, several hardware porting techniques to hide IPC overhead as well as 

data movements then fully utilize the hardware resources of the multicore are applied to 

achieve the best performance. The techniques include the workload balancing, multiple 

buffering and efficient local memory configurations. If the process allocation cannot attain 

workload balancing, especially the case that the consumption time of the critical process is 

more than twice as larger as that of other essential processes, the workload balancing 

techniques are considered. We apply evenly slicing the critical process, scrambling the 

processes and process reallocation to achieve workload balancing. As a result, the workload 

balancing DLP streaming data partition on multicore architecture is guaranteed. On the other 

hand, if the current data partition scheme cannot meet the performance constraint, the 

multi-stage (or software pipelined) function partition scheme is applied. We first decompose 

the application into processes by applying function partition. After investigating the 

characteristics of each process, the adequate process allocation, which will be discussed later, 

could be achieved. Similarly, we now check the degree of workload balancing after process 

allocation. If not, the technique of evenly slicing the critical process is applied. Then, reorder 

and re-allocate the processes are performed. It is sometimes happened that the number of 

essential processes, says K, is less than the number of available cores, says N, the multicore 

performance will be limited or saturated, since the gain in multicore performance will not be 

linearly proportional to N. To achieve the best performance, we consider the DLP enhanced 

parallel function partition scheme. By applying L-parallel, LK>N, unfolding of the 

workload-balancing function-partition process network, we may have enough essential 

processes to allocate for achieving the best performance.          
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1.4 Multi-resolution applications 

Multi-resolution applications are special but pervasive uses in variety domain. It is 

applied in future multimedia applications, image processing and intelligent computer vision. 

For example, it can be used in image compression, such as JPEG 2000. JPEG 2000 is an 

image compression standard and coding system. It was created by Joint Photographic Experts 

Group committee in 2000 with the intention of superseding their original discrete cosine 

transfer-based JPEG standard (created in 1992) with a newly designed, wavelet-based method. 

One of design procedure is multiple resolution representation. And it also can be used in 

image pyramid process which is heavily used in a wide variety of vision applications. It 

develops filter-based representation to decompose images into multiple scales, to extract 

features/structures of interest, and to attenuate noise. Moreover, it also can be used in image 

detection which is our topic in this research. It is using multiple scales of search window to 

complete detect. 

There are some application-specific characteristics of multi-resolution applications. (1) 

Repeated signal processing performs on different granularity. It performs identical operations 

on different resolution at same input data. Because of this reason, it has (2) multi-level data 

locality. Data use across resolutions is relativity. Furthermore, to process different granularity 

on one input data, it requires huge amount of data transfer to complete the operation. 

Therefore, multi-resolution applications are (3) communication-intensive process. 

1.5 Problem formulation and contributions 

Most manners of efficient parallelizing multimedia applications on distributed scratchpad 

memory multicore are focusing on intra-resolution process. In most of multimedia 

applications, a set of input data stream is accomplished by multiple computing kernels in 
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single granularity operation. Therefore, optimization flow for parallelizing on multicore is 

one-dimension exploration. However, for multi-resolution applications, it would introduce 

redundant memory transfer to interfere performance to linear speedup. Computing time is 

accelerated linearly by using multicore. Data transfer becomes the critical issue in 

communication-intensive process as multi-resolution applications. Hence, not only intra 

resolution optimization but inter-resolution data characteristic should be considered. 

In this thesis, we propose a data-oriented task partition to take advantage of 

multi-resolution characteristics. We aim to reduce unnecessary memory transfer. Therefore, 

we can relieve loading of interconnect network and even avoid memory contention. 

Additionally, we propose a platform-dependent optimization flow for multi-resolution 

applications. By going through this optimization flow, we can guarantee balanced workload 

and low-data-transfer parallelization for multi-resolution applications. Experiment is set on 

PlayStation3 to evaluate performance. Cell is one typical distributed scratchpad memory 

multicore. By data-oriented task partition, we can accelerate 5.6 times of execution time on 

6-core compared to CellCV version on 1-core. Data transfer is reduced 95% compared to 

CellCV. 

1.6 Thesis organization 

This thesis focuses on data-oriented task partition and optimization flow. This thesis is 

organized as follows. 

Chapter 2 introduces algorithm of Viola and Jones object detection and resolution-based 

task partition on distributed scratchpad memory multicore. And then, we will mention about 

the proposed task splitting to generate extra tasks to overcome load imbalance.. 

Summarize the problems of resolution-based task partition and drawbacks of buffer 



 

13 
 

handle in CellCV. Chapter 3 introduces the proposed optimizations. We will detailed illustrate 

the optimization principle and some temporary problems we would meet. And finally, we can 

fix these problems and got better performance. 

Chapter 4 shows the experiment results by using our proposed task partition. Finally, 

chapter 5 concludes this thesis and points out the direction of future research. 
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 2  MULTI-RESOLUTION APPLICATIONS 

In this chapter, we take Adaboost-based object detection as one case study. It is one of 

multi-resolution application. Firstly, we review Adaboost-based object detection, including 

detecting theorem and fast algorithm. And then, we mention features of object detection 

which lead to some implement mechanisms in distributed scratchpad memory multicore 

system. According CellCV simulation results, there are some problems we have to solve: load 

balance and data transfer issue. Proposed row-based splitting aims to overcome load balance 

issues. Although the performance is got improved by row-based splitting, but the memory 

access issue is not be considered. Data transfer’s waiting time is still increasing and 

occupying a great amount of execution time.      
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2.1 Object detection algorithm 

Object detection based on image processing has become an active research area in 

computer vision field in recent years. For the evolving embedded applications rely on object 

recognition system such as automotive applications, surveillance, and intelligent robots, 

reliable object detection has major influence on the performance and usability the above 

systems. Viola and Jones have proposed a adaboost-based procedure that reduces the 

processing time substantially while achieving almost the same accuracy as compared to other 

methods (i.e. skin color, neural network, example-based, …etc.). This section is composed by 

four topics as introduced as follows,   

 Haar-feature 

Adaboost-based object detection classifies images based on value of simple feature. There are 

many motivations for using feature rather than pixel directly. The most common reason is that 

features can act to encode ad-hoc domain knowledge that is difficult to learn using a finite 

quantity of training data. For this system there is also the second critical motivation for 

features: the feature-based system operates much faster than a pixel-based system. The simple 

feature are used reminiscent of Haar basis functions which have been used by Papergeorgiou 

et al. More specifically, they use two kinds of features. The value of the two-rectangle feature 

is the difference between the sum of pixels within two rectangular regions. The regions have 

the same size and shape and are horizontally and vertically adjacent (see figure 2-1). A 

three-rectangle feature computes the sum within two outside rectangles subtracted from the 

sum in a center rectangle. 
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Figure 2-1 Harr-like based object detection 

 Cascade classifier 
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Figure 2-2 Cascade classifier 

Haar-like features used are simply masks constituted by two to three rectangles. When utilized 

in object detection, pixels masked by white and black are summed up respectively. The 
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difference of summed up value are examined by a predefined threshold. A weak classifier is 

set if the summed up value exceed threshold. Weak classifiers produced by features are 

weighted averaged to produce strong classifier, which indicate whether the examined area is 

an object or non-object. Various strong classifiers are cascaded together as a degenerate 

decision tree. While maintaining classifiers cascaded in a proper order, detection rate can be 

raised without sacrificing detection time. In our research, we use the default file of 

adaboost-trained classifier which has 2135 features and 22 stages, as shown in figure 2-2. 

 Integral image 

Rectangle features can be computed very rapidly using an intermediate representation for the 

image which we call the integral image. The integral image at location x, y contains the sum 

of the pixels above and to the left of x, y, inclusive: 





yyxx

yxiyxii
','

)','(),( , (2-1) 

where ii(x, y) is the integral image and i(x, y) is the original image. Using the following pair 

of recurrences: 

s(x, y) = s(x, y-1) + i(x, y) (2-2) 

ii(x, y) = ii(x-1, y) + s(x, y) (2-3) 

(where s(x, y) is the cumulative row sum, s(x, -1) = 0 an ii(-1, y) = 0) the integral image can 

be computed in one pass over the original image. 
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Figure 2-3 Integral image 

Each rectangle’s sum can be computed in four references of integral image (see figure 2-3). If 

we want to calculate the accumulated pixel of area D, we can just obtain by simple 

computation of (p1-p2-p3+p4). For one example, if we want to calculate an area of m×n 

pixels. We can reduce the complexity from m×n additions to 3 additions. This method can 

highly reduce computation complexity. Unfortunately, it is implying the problem with 

frequently memory accessing for the scatter data. 

 Scaling window scanning 

OpenCV is a library originally proposed by Intel in 2002. It targets for computer vision 

applications on programmable platform. As OpenCV library gets more and more popular and 

is broadly used in various applications, it has been implemented on many platforms, including 

those with multicore architectures. CellCV is right the parallized implementation of OpenCV 

on Cell Broadband Engine. . 

There are two detection approaches for adaboost-based detection. One is scaling window and 

the other is scaling image. In this thesis, we choose scaling window for detection mode. 

Because of our simulation platform is cell processor, we reference CellCV’s implementation.  

The detecting mechanism is using a scaling window to scan the whole image from low 
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resolution to high resolution. And it stops scaling till the window size out of one of image 

length (see figure 2-4). 

 

Figure 2-4 Scaling window detection 

From above description of adaboost-based object detection, we can fine out some 

characteristics in this application. The task workload is highly depending on input data owing 

to early termination of cascade classifier. Therefore, no static scheduling can guarantee load 

balance. Dynamic dispatcher is required. The multi-resolution process is one special 

characteristic in object detection. It contains repeated signal processing on same input data 

with different granularity.  

 Workload analysis 

Object detection is made easy by OpenCV APIs.  To verify performance of object 

detection in OpenCV, the latest OpenCV library is built on a 2.5GHz Xeon workstation with 

8GB main memory running Linux. Face detection on different sizes using different scaling 

factors is evaluated. Table 2-1 summarizes the profiling using single thread. According to the 

result, object matching is the hot spot of object detection which occupy more than 95% 
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execution time in all cases. The overall detection time is dependent on image size and scaling 

factor. The detector can process QVGA image in realtime regardless of scaling factor. 

However, ability to process QVGA in realtime already becomes insufficient for today’s 

applications. As it has been reported that scaling factor = 1.2 has the best detection rate, we 

will focus on object matching for VGA image using scaling factor 1.2 hereafter 

Table 2-1  Performance of row-based splitting 

1.1 0.76 5.13 322.21 0.21 328.31 98%

1.2 0.83 5.17 166.48 0.10 172.59 96%

1.3 0.81 5.10 123.97 0.06 129.94 95%

1.1 0.51 0.79 65.36 0.03 66.68 98%

1.2 0.51 0.80 30.83 0.03 32.17 96%

1.3 0.58 0.93 26.50 0.02 28.03 95%
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 Detection kernel - object matching 

According to Table 2-1, we take object matching as computation kernel on DSPs. The 

whole operation can be divided into summed feature calculation, feature-threshold 

comparison and stage-threshold comparison. Figure 2-5 illustrates the detail of operations in 

feature calculation. The summed feature would be taken to multiply with a weight and then be 

summed into a value. Variance represents the pixel distribution for a specific search position 

and specific search window. It is taken to multiply with constant threshold to obtain 

feature-threshold. This value is taken to be compare with feature-sum and then decide the 

result is assign from value A and value B. Value A and value B are define while classifier 

training. Accumulate each result after going through every features, the final result is taken to 

compare with stage threshold. The result determines the following operation whether pass to 

next stage or not. 
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Figure 2-5 Data flow of feature matching 

2.2 Implementation on DSM multicore 
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Figure 2-6 Resolution-based task partition 
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Figure 2-7 Dynamic task scheduling mechanism – centralized task queue 

Resolution-based task partition for object detection is taking a fixed window size as a 

single task, as shown in Figure 2-8. It generates a few number of tasks related to application’s 

parameter as scaling factor, image size and initial window size. Tasks are generated and 

enqueued to centralized input queue which is allocate in main memory. In Figure 2-9, all 

cores are pending on one input queue, and acquires new task after finishing previous task. As 

same as input task queue, each core puts the result into centralized output queue. After parallel 

procedure, serial part of application is continuously collecting results from main memory to 

perform complete application. 

2.3 CellCV simulation results  

In CellCV, it develops an optimization for implementing object detection on Cell. For 

search window smaller than 88×84, it allocates a small window buffer to faster access. 

Because of accessed data in small window is more gather, CellCV loads a block of data from 

main memory into small window buffer. It can avoid frequent memory access to main 
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memory by this optimization. But for search window bigger than 88×84, it accesses feature 

value while detecting. It is because the required data in bigger window is out of small window 

buffer. And it implies concurrent memory access with parallel processing in multicore by 

frequently data transfer. 
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Figure 2-8 Speedup curve @ 2~6 SPE 

On Sony PlayStation3, a typical distributed scratchpad memory multicore with 6 cores, 

we take VGA size (640×480) image to evaluate the performance. The parameter settings in 

algorithm as follows: scaling factor is 1.1 and initial scaling window is 30×30. We can find 

out in Figure 2-7, performance is become saturated with increasing core number. The speedup 

factor is interfered to linear grow up. It only obtains 4.16 times speedup using 6 cores. It is 

under our expectation. 

By further analysis, parallel object detection of CellCV suffers from load balance and 

memory transfer issue. Figure 2-8 illustrates task distribution of object detection on 6 cores. 

Execution time of each task is further categorized into computing and waiting. Computing 
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stands for time calculating feature sums while waiting indicates time waiting memory transfer 

operations to ship required data in. As in the distribution, total execution time is dominated by 

a single core while devotes itself to detection of smallest object. For other cores, about 20% 

execution time is wasted idling. In addition, about 30% time is spent waiting memory transfer 

operations. These effects prevent us from getting linear speedup.  
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Figure 2-9 Workload distribution on 6-SPE @ 1.1 scaling factor and 640×480 image                                                                                                                                     
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Figure 2-10 Workload comparison (normalized to single core) 

Figure 2-9 shows the workload comparison, normalized in single core. While more cores 
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are deployed, the total workload is gradually increasing. The extra overhead comes from data 

transfer waiting. It achieves 1.35 times of workload using 6 cores. And this result implies the 

problem of memory transfer is a critical issue in future multicore platform. 

2.4 Task Reorder and Row-Based Splitting 

Task reorder and row-based splitting is proposed to overcome the workload balance 

problem. This paper further analyzes the task workload in CellCV implementation. As in 

Figure 2-10, CellCV diverse into two different implementation styles, one for search window 

smaller than 88×84, and the other services for larger search window. Take object detection for 

VGA image in scaling factor 1.2 using 5 SPEs as an example. Each bar represents a task. The 

height of bars indicates the actual execution time of each task on SPE. Time wasted in 

memory contention is marked using light color. Red bar stands for small window task while 

blue one suggest large window task. In Figure 2-14, it is obvious that the detector suffers from 

poor load balancing. SPE1 who is in charge of task4 and task5 become bottleneck. If the task 

with heavy workload, task5, can be issued earlier, a free SPE can be allocated to take care of 

it. 

 

Figure 2-11 Task sequence using 5-SPE in CellCV 
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Figure 2-12 Task allocation using 5-SPE in CellCV 

 

 

Figure 2-13 Interleaved task reorder 

Proposed interleaved task reorder can re-schedule the task sequence in non-increasing 

workload order to achieve load balance, as shown in Figure 2-13. Somehow, if there are 

extremely heavy tasks dominating the whole execution, reorder is helpless. Figure 2-16 is an 

example of object detection by 6 cores. Memory contention problem become more critical 

using 6 SPE, which increase execution time of task5 and make it the dominating task. 

Proposed row-based splitting generates additional task partition by further partition tasks. 

Each task now is in charge of object detection of specific size on several rows, as illustrated in 

Figure 2-17. Compared to task reordering, row-based splitting can efficiently obtain load 

balance. Table 2-1 lists the performance comparison of CellCV and row-based splitting as 

scaling factor being 1.1, 1.2 and 1.3. .  
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Figure 2-14 task allocation using 6-SPE in CellCV 

 

 

Figure 2-15 Row-based task splitting 

 

Figure 2-16 Task allocation using row-based task splitting 
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Table 2-2  Performance of row-based splitting 

Improvement Performance (fps)

1.1 3.8 7% 4.1

1.2 7.6 10% 8.5

1.3 8.2 13% 9.5

640×480

CellCV (fps)
Row-based splittingScale

factor
image size

 

2.5 Observation 

Memory transfer issue is neglected by above parallelization. Memory transfer time is 

becoming the critical part in execution time as shown in Figure 2-18. Light color, which 

denotes memory contention time, occupies a great amount of ratio in execution time. In 

communication-intensive process as multi-resolution applications, data transfer and memory 

contention really degrade the system performance. Moreover, memory contention would more 

and more serious by all processors sharing a memory resource. As core number increasing, 

memory contention becomes critical problem in multicore. For distributed scratchpad memory 

multicore, software programming in data transfer requires addition effort to avoid 

unnecessary memory transfer. Efficient data use in local buffer is important to reduce 

redundant memory access. Therefore, we propose a new task partition to take care of memory 

transfer as described in follow chapter.  
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 3  DATA-ORIENTED TASK PARTITION 

In this chapter, we propose a data-oriented task partition to take advantage of 

multi-resolution application’s characteristic. We use tile-based scanning to consider not only 

inter-resolution data locality but also intra-resolution data use efficiency. Furthermore, we can 

elaborate superior performance by a platform-dependent optimization flow. According to 

these methods, we can construct balanced workload and low-data-transfer task partition for 

multi-resolution applications.  
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3.1 Data-oriented task partition 

Object detection is one of multi-resolution application. It performs detection on different 

resolutions based on one input data. It contains multi-level data locality among resolutions. 

Therefore, we propose a new task partition to maintain data locality across resolutions and 

avoid unnecessary memory access comparing with resolution-based task partition. 

Data-oriented task partition takes ―data use‖ for one criterion. Once a portion of data is 

brought into scratchpad memory, we will try to make best use of the data. As shown in Figure 

3-1, we substitute the resolution-based task partition to the data-oriented task partition. 

Differing from resolution-based task partition, we further take care of data use in 

multi-dimension. We aims to reduce unnecessary data transfer to optimize for 

communicate-intensive application. By reducing unnecessary memory transfer, we can 

prevent the memory contention happening and improve the performance to linear 

acceleration.   
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Figure 3-1 Data-oriented task partition differs from resolution-based partition 

3.2 Tile-based Scanning 

Management of memory transfer is important for distributed scratchpad memory 

multicore. So, we care about data use in local store buffer. In one specific resolution, we 
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propose a tile-based scanning to reduce the unnecessary memory access for intra-resolution 

procedure. The input image is cut into tiles which is a basic task partition unit. But the tile’s 

size is restricted by small window buffer size. In small window optimization, the largest size 

for small window buffer is (small_window_width × feature_sizemax). In CellCV, the small 

window buffer is 176×84. But in low resolution, feature size is far shortened from 84. There is 

some reserved memory space for storing integral image which is idle in low resolution case. It 

is kind of waste in resource. Therefore, under the small window buffer constraint, we can load 

multiple row data block into scratchpad memory for computing multiple row process at the 

same time. By this way, we can reduce redundant memory access. As illustrate in Figure 3-2, 

we use 176×84 size of buffer to be a tile. Tile-based scanning becomes a basis in this 

optimization.  

 

Figure 3-2 Tile-based scanning 

We can use a simple memory access model to analysis before simulation. The function f 

means the data transfer size. This function is related to window size (s), image width (W), 

image height (H), tile width (w) and tile height (h). So the data transfer for on specific 

resolution in CellCV can be modeled as follow, 
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And the data transfer for specific resolution in tile-based scanning can be modeled as 

follow, 
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By this data transfer model, we can reduce data transfer size about 7 times of reduction 

for one specific resolution in Table 3-1. Using this optimization can more reduce data transfer 

size for intra-resolution operation. 

Table 3-1  Static analysis of tile-based scanning 

W=640 H=480 w=176 h=84

cellcv tile-based

32 35,840             4,800              7.47

35 38,938             4,800              8.11

Analytical data transfer size (KB)
s Reduction

 

Applied in data-oriented task partition, computation referencing the same tile would be 

collected in the same task. We use the data as could as possible in the tile. By this way, we 

take advantage of all available data locality.  

3.3 Difficulty and Overhead 

To maintain the identical function behavior, it would introduce memory access overhead 

for X-direction and Y-direction. Moreover, it has another constraint for tile shifting in 



 

33 
 

X-direction. The memory transfer has to be alignment access. So the tile’s shift has to map to 

multiple of 16-byte to prevent bus error. And it equals to 4-pixel. Consequently, the 

X-direction incurs more serious boundary issue. 

image

tile

image

tile

image

tile

x-direction

y-direction

 

Figure 3-3 Boundary issue in X-direction and Y-direction 

In Figure 3-3, it illustrates the boundary problem of tile-based scanning. In left graph, 

computation, across resolutions, belong to this tile would be executed while this tile of data is brought 

in local memory. But there exists some computation’s data which portion of data is within in tile and 

rest is out of tile. This incurs both in X-direction and Y-direction. In X-direction, shown in right-up 

graph, there is an overlap data range between current tile and previous tile. Overlap data is extra 

memory transfer to maintain same behavior.  
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3.4 3-Step Optimization Flow 

By using data-oriented task partition can improve performance via concerning memory 

access issue. Furthermore, we can find out there are some parameters would effect the 

performance enhancement. The small window implementation highly depends on tile size. 

The peak performance is related to the number of resolution using small window 

implementation. Therefore, we propose a platform-dependent optimization flow to elaborate 

the superior performance. This flow can enhance the data-oriented task partition by three 

steps as follow. Firstly, we would consider the data allocation in local store. By a simple 

experiment, we can re-arrangement the data structure stored in local store. Then we can 

discuss the tile-shape affecting to the performance. Following, we would explore the relativity 

between task granularity and performance. The entire flow is illustrated in Figure.   

Data allocation

Tile-shape exploration

Granularity exploration

start

end
 

Figure 3-4 platform-dependent optimization flow 
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 Data allocation 

This step is to discuss the data allocation in local store. In object detection, the main data 

structures are kernel program, classifier and integral image (for small window buffer). In 

CellCV implementation, it considers the frontal stages of classifiers are often used for 

detection. To be convenient for execution and avoid frequent memory access, it loads 

frontal-stage classifiers into local store buffer. Rest-stage classifiers is used ping-pong buffer 

to load while detecting. And it allocates 176×84-pixel of size as small window buffer for 

storing integral image. And the small window buffer’s size could affect the performance by 

influence the number of resolution using small window optimization.  

Except kernel program, our expectation is extending small window buffer to support 

more resolutions for small window optimization. Therefore, we can use a simple 

application-level analysis to be guideline for tradeoff between classifier and integral image. 
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Figure 3-5 Application-specific analysis of classifier 

Figure 3-5 is a curve of rejection distribution for detecting candidate. Horizontal -axis 

means stage-id. And vertical-axis means number of candidates. For first dot illustrate about 
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70,000 candidates are rejected at first stage, and so on. According to this result, 60 percent of 

candidates are rejected at second stage and 90 percent of candidates are rejected at fifth stage. 

It reminds us that the utility of classifier is focusing on frontal five stages. We can shorten the 

size of resident classifier and expand the small window buffer under the memory size 

constraint. But we can not sure about five stages of classifier as resident classifier can gain the 

best performance in Cell processor. So we also use simulation-based analysis to find the 

solution. In Figure3-6, X-axis represents the number of features storing as resident classifier. 

Y-axis represents the execution time in mini-second. Therefore, we can find out the peak 

performance happening at seven-stage. And the small window buffer can extend to 192×96 

pixels as tile size. 
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Figure 3-6 Hardware-dependent analysis of classifier 

 Tile-shape exploration 

After previous analysis, we can confirm the data allocation is the best. And the small 

window size is also decided. How to use this small window buffer efficiently is a critical issue. 

Hence, this step we want to discuss the tile-shape affecting to performance. Different shape 

can introduce distinct level of boundary problem not only in X-axis but also Y-axis. 
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Additionally, it can affect number of resolution implemented in small window optimization. 

Like slender tile would restrict the resolution implemented in small window mode by shorter 

side. Consequently, we want to analyze this issue. As shown in Figure 3-7, X-axis represents 

the tile’s width from short to long and the tile’s length vice versa. We can get the optimal 

point at w=h (square). This result is as our expectation because of more resolutions using 

small window buffer in square. But a fixed size of small window buffer can not map to square 

perfectly all the time. Therefore, this exploration can choose the tile shape to appropriate 

using small window buffer. The case-(w>h) is better than case-(w<h). It is because of window 

shifting in X-direction must to be mapped to multiple of 16-byte (alignment access). And 

case-(w<h) would introduce more times of tile’s movement in X-direction. It would cause 

more redundant memory access.  
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Figure 3-7 Tile-shape analysis 

 Granularity exploration 

Different level of task granularity leads to two issues. Less task number would pose the 

disadvantage of imbalance workload. Numerous tasks would increase software overhead of 
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grabbing tasks from centralized queue. Therefore, this step wants to analyze the relativity 

between different level of granularity and performance. In this experiment, we discuss the 

case of uniform task. We can merge multiple tasks into a packed task to shorten the task 

instance. In the reality case of this experiment, the task partition in regular implementation is 

referencing to resolution-based task partition while the task number in small window 

implementation is controllable after adjusting tile size. However, this configuration would 

introduce workload imbalance because of inappropriate task sequence. The former tasks 

which come from small window implementation are finer than latter tasks which come from 

regular implementation. Therefore, we finer partition the tasks in regular implementation as 

position level. And we use task merging into uniform tasks to analysis task granularity 

influencing performance. In Figure 3-8, it is a simulation-based analysis to find the optimal 

solution. The horizontal axis denotes the task granularity in binary logarithm. And the vertical 

axis denotes execution time. By this result, we can find out average 512 task instances 

perform superior performance with uniform task merging.    
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Figure 3-8 Granularity analysis 
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3.5 Design results 

3.5.1 Memory access 
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Figure 3-9 Access count comparison 
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Figure 3-10 Transfer size comparison 

Tile-based scanning and data-oriented task partition are proposed to reduce redundant 

memory access in CellCV. Therefore, we firstly compare memory access count and data 

transfer for each version as shown in Figure 3-9 and Figure 3-10. Row-based splitting is 
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proposed to optimize workload distributed on each core. Hence, it has the same quantity of 

memory access count/data transfer size as CellCV. And data-oriented task partition can reduce 

97% memory access count and 95% data transfer size comparing to CellCV. 

3.5.2 Workload balance 

This thesis concerns about the memory access issue which is rarely to discuss for 

multicore platform. Data-oriented task partition not only reduces memory access but also 

takes care of workload balance. In Table 3-2, we list the workload distribution of each version. 

We define the idle time represented by (the longest idle time within 6 SPEs / finish time). We 

choose the worst case to evaluate workload distribution with each implementation. In CellCV, 

the task is partitioned in high level which generates less task instance. It takes 

resolution-based task partition. Only 29 tasks are parallelized on 6 SPEs. It would cause 

serious workload imbalance. Row-based splitting can shorten the idle time from 10.01% to 

3.22% by creating extra task instance. And by our optimization flow, data-oriented task 

partition can shorten to 2.15%. 

Table 3-2  Workload balance comparison 

Version cellcv row-based splitting data-oriented partition

Task Number 29 34 512

idle 10.01 3.22 2.15  

(idle % = the longest idle time within 6 SPEs / finish time) 
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 4  EXPERIMENT RESULTS 

In this thesis, we use a Cell processor to simulate the entire experiment. It is one of 

typical distributed scratchpad memory multicore. And we take adaboost-based object 

detection as one case study. Proposed data-oriented task partition not only can reduce memory 

access but also attain workload balance. The experiment results would be compared to 

CellCV and row-based task splitting in execution time, acceleration and frame-rate. 
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4.1 Cell Architecture 

Figure 4-1 shows a high level block diagram of the CBE processor hardware. The CBE 

processor is a multicore processor with 9 processor elements in total and a shared coherent 

memory on-a-chip. The functionality of processors can be categorized into two kinds. One is 

the PowerPC Processor Element (PPE) and the other is the Synergistic Processor Element 

(SPE). There are one PPE and eight identical SPEs. All processor elements are connected to 

each other and to the on-chip memory and I/O controllers by the memory-coherent element 

interconnect bus (EIB).  

 

Figure 4-1 Block Diagram of Cell Broadband Engine 

 PowerPC Processor Elements 

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC 

processor that conforms to the PowerPC Architecture, with the vector/SIMD multimedia 

extensions. The PPE consists of two main units, the PowerPC processor unit (PPU) and the 

PowerPC processor storage subsystem (PPSS) as shown in Figure 4-2. 
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Figure 4-2 PPE Block Diagram 

The PPU performs instruction execution. It has a level-1 (L1) instruction cache and data 

cache and six execution units. It can load 32 bytes and store 16 bytes independently and 

memory-coherently, per processor cycle. The PPSS handles memory requests from the PPU 

and external requests to the PPE from SPEs or I/O devices. It has a unified level-2 (L2) 

instruction and data cache. The PPU and the PPSS and their functional units are shown as 

Figure 4-3. 

 

Figure 4-3 PPE Functional Units 
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PPU could further divided into the following functional units. 

 Instruction Unit (IU) 

The IU contains a 2-way set-associative and reload-on-error 32KB L1 instruction cache. 

The cache-line size is 128 bytes. The IU performs the instruction-fetch, decode, dispatch, 

issue, and completion portions of execution. 

 Branch Unit (BRU) 

The BRU performs the branch functionality. 

 Fixed-Point Unit (FXU) 

The FXU performs fixed-point operations, including add, multiply, divide, compare, shift, 

rotate, and logical instructions.  

 Load and Store Unit (LSU) 

The LSU contains a 4-way set-associative and write-through L1 data cache with 32 KB. 

The cache-line size is 128 bytes. The LSU performs all data accesses, including load and store 

instructions. 

 Vector/Scalar Unit (VSU) 

The VSU contains a floating-point unit (FPU) and a 128-bit vector/SIMD multimedia 

extension unit (VXU), which together execute floating-point and vector/SIMD multimedia 

extension instructions. 

 Memory Management Unit (MMU) 

The MMU contains a 64-entry segment look-aside buffer (SLB) and 1024-entry, unified, 

parity protected translation look-aside buffer (TLB). The MMU manages address translation 

for all memory accesses.  
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The PPSS handles all memory accesses by the PPU and memory-coherence operations 

from the element interconnect bus (EIB). The PPSS has a unified, 512-KB, 8-way 

set-associative, write-back L2 cache with error-correction code (ECC). The cache-line size for 

the L2 is 128 bytes as the same as L1 cache-line size. The PPSS performs data-prefetch for 

the PPU and bus arbitration and pacing onto the EIB. There are MMU, L1 instruction cache, 

and L1 data cache of PPU getting data from PPSS by a shared 32-byte load port. There are 

MMU and L1 data cache of PPU putting data to PPSS by a shared 16-byte store port. The 

interface between the PPSS and EIB supports 16-byte load and 16-byte store buses. One 

storage access occurs at a time, and all accesses appear to occur in program order. The 

interface supports resource allocation management. 

 Synergistic Processor Elements 

The eight Synergistic Processor Elements (SPEs) execute a new single instruction, 

multiple data (SIMD) instruction set—the Synergistic Processor Unit Instruction Set 

Architecture. Each SPE is a 128-bit RISC processor specialized for data-rich, 

compute-intensive SIMD and scalar applications. It consists of two main units, the synergistic 

processor unit (SPU) and the memory flow controller (MFC), as shown in Figure 4-4.  

 

Figure 4-4 SPE Block Diagram 
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The LS is a 256 KB, error-correcting code (ECC)-protected, single-ported, noncaching 

memory. It stores all instructions and data used by the SPU. It supports one access per cycle 

from either SPE software or DMA transfers. SPU instruction prefetches are 128 bytes per 

cycle. SPU data access bandwidth is 16 bytes per cycle, quadword aligned. DMA-access 

bandwidth is 128 bytes per cycle. DMA transfers perform a read-modify-write of LS for 

writes less than a quadword.  

Each SPU has its own MFC. The MFC serves as the SPU’s interface, by means of the 

element interconnect bus (EIB), to main-storage and other processor elements and system 

devices. The MFC’s primary role is to interface its LS-storage domain with the mainstorage 

domain. It does this by means of a DMA controller that moves instructions and data between 

its LS and main storage. The MFC also supports storage protection on the main-storage side 

of its DMA transfers, synchronization between main storage and the LS, and communication 

functions (such as mailbox and signal-notification messaging) with the PPE and other SPEs 

and devices.  

 

Figure 4-5 SPE Functional Units 
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Figure 4-5 shows the SPE functional units. The SPU issues two instructions to its two 

execution pipelines respectively. The pipelines are referred to as even (pipeline 0) and odd 

(pipeline 1). Whether an instruction goes to the odd or even pipeline depends on the 

instruction type. The functional units in SPU are described as follows. 

 SPU Odd Fixed-Point Unit (SFS) 

The SFS executes byte shift, rotate mask, and shuffle operations on quadwords. 

 SPU Load and Store Unit (SLS) 

The SLS executes load and store instructions and hint for branch instructions. It also 

handles DMA requests to the LS. 

 SPU Control Unit (SCN) 

The SCN fetches and issues instructions to the two pipelines. It performs control 

functions such as branch instructions, arbitration of access to the LS and register file, etc. 

 SPU Channel and DMA Unit (SSC) 

The SSC manages communication, data transfer, and control into and out of the SPU. 

 SPU Even Fixed-Point Unit (SFX) 

The SFX executes arithmetic instructions, logical instructions, word SIMD shifts and 

rotations, floating-point comparisons, and floating-point reciprocal and reciprocal square-root 

estimations 

 SPU Floating-Point Unit (SFP) 

The SFP executes single-precision and double-precision floating point instructions, 

16-bit integer multiplies and conversions, and byte operations. The 32-bit multiplies are 

implemented in software using 16-bit multiplies. 
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 Element Interconnect Bus 

Figure 4-6 shows the element interconnect bus (EIB), which is the communication path 

for data commands and data among the PPE, SPEs, main system memory, and external I/O. 

The EIB data network consists of four 16-byte-wide data rings: two running clockwise and 

the other two counterclockwise. Each ring allows up to three concurrent data transfers, as long 

as their paths don’t overlap.  

 

Figure 4-6 Element Interconnect Bus (EIB) 

To initiate a data transfer, bus elements must request data bus access. The EIB data bus 

arbiter processes these requests and decides which ring should handle each request. The 

arbiter always selects one of the two rings that travel in the direction of the shortest transfer, 

thus ensuring that the data won’t need to travel more than halfway around the ring to its 

destination. The arbiter also schedules the transfer to ensure that it won’t interfere with other 
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in-flight transactions. To minimize stall on reads, the arbiter gives priority to requests coming 

from the memory controller. It treats all others equally in round-robin fashion. Thus, certain 

communication patterns will be more efficient than others. 

The EIB operates at half the processor-clock speed. Each EIB unit can simultaneously 

send and receive 16 bytes of data every bus cycle. The EIB’s maximum data bandwidth is 

limited by the rate at which addresses are snooped across all units in the system, which is one 

address per bus cycle. Each snooped address request can potentially transfer up to 128 bytes, 

so in a 3.2GHz Cell processor, the theoretical peak data bandwidth on the EIB is 128 bytes 

x1.6 GHz = 204.8 Gbytes/s. 

However, the actual data bandwidth achieved on the EIB depends on several factors: the 

destination and source’s relative locations, the chance of a new transfer’s interfering with 

transfers in progress, the number of Cell chips in the system, whether data transfers are 

to/from memory or between local stores in the SPEs, and the data arbiter’s efficiency. EIB 

bandwidth would be reduced in some non-ideal cases. 

 Inter Processor Communication 

Cell Broadband Engine (CBE) has many attributes of a shared-memory system. The 

PowerPC Processor Element (PPE) and all Synergistic Processor Elements (SPEs) have 

coherent access to main storage. But the CBE processor is not a traditional shared-memory 

processor. SPE only can execute programs and directly access data from and to its own local 

store (LS). Because of lacking directly accessing to shared memory, SPE must using three 

primary communication mechanisms to communicate with other elements on EIB: DMA 

transfers, mailbox messages, and signal notification. All these three communication 

mechanisms are controlled by SPE’s memory flow controller (MFC). The communication 

mechanisms are summarized as follow: 
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 DMA transfers 

Used to move data and instructions between main storage and a local store(LS). An MFC 

supports naturally aligned DMA transfer sizes of 1, 2, 4, 8, and 16bytes and multiple of 16 

bytes. For naturally aligned 1, 2, 4, and 8-byte transfers, the source and destination addresses 

must have the same 4 least significant bits (LSB). A single DMA command could transfer up 

to 16 KB between an LS and shared memory storage. The throughput of a DMA transfer 

when the source and destination addresses are 128-byte aligned is double as compared to that 

of a mis-aligned transfer within a cache line. It’s because that the mis-aligned transfer is a 

partial cache-line transfer, and actually there may be two bus requests for this transfer. Peak 

performance is achieved when the size of the transfer is a multiple of 128 bytes and both the 

effective address (EA) and the local store address (LSA) of the DMA transfer are 128-byte 

aligned. SPEs rely on asynchronous DMA transfers to hide memory latency and transfer 

overhead by moving data in parallel with synergistic processor unit (SPU) computation. 

A MFC has only 16 entries in MFC SPU command queue. A DMA list is sequence of 

eight-byte list elements, stored in an SPE’s LS, each of which describes a DMA transfer and 

only occupy one of the SPU command queue. DMA list commands can be initiated only by 

SPU programs, not by other devices. A DMA list command can specify up to 2048 DMA 

transfers, each up to 16 KB in length. Thus, a DMA list command can transfer up to 32 MB, 

which is 128 times the size of the 256 KB LS, more than enough to accommodate future 

increases in the size of LS. The space required for the maximum-size DMA list is 16 KB. 

DMA list commands are used to move data between a contiguous area in an SPE’s LS and 

possibly noncontiguous area in the effective address space. 

 Mailboxes 

Used for control communication between an SPE and the PPE or other devices. 
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Supporting the sending and buffering of 32-bit messages. Each SPE can access three mailbox 

channels, each of which is connected to a mailbox register in the SPU’s MFC. Two one-entry 

mailbox channels: the SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt 

Mailbox, which are provided for sending messages from the SPE to the PPE or other device. 

One four-entry mailbox channel: the SPU Read Inbound Mailbox, which is provided for 

sending messages from the PPE, or other SPEs or devices. 

 Signal notification 

Used for control communication from the PPE or other devices. SPE signal-notification 

channels are connected to inbound registers (into the SPE). The PPE, other SPEs, and other 

devices use the signal notification registers to send information, such as a buffer-completion 

synchronization flag, to an SPE. An SPE has two 32-bit signal-notification registers, each of 

which has a corresponding MMIO register that can be written with signal-notification data. 

4.2 Parameters settings and results 

 

Figure 4-7 VGA set 
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320x240
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Figure 4-8 Scaled test set 

Algorithm parameters in adaboost-based object detection are as follows. The entire 

experiment is using scale-window implementation. We take 1.1, 1.2, and 1.3 for scaling factor 

to observe performance. And initial window size is 30×30. Throughout the experiment, two 

sets of test image are used. Four 640x480 image is collected as VGA set to verify detection 

performance on VGA images. Besides, a single image is resized into 960x720, 640x480, and 

320x240 to form the scaled test set. The test set’s content includes different number, size and 

color tones of background to evaluate the experiment, as shown in Figure 4-6. 

 VGA set (image size = 640×480) 

Table 4-1  Performance comparison @ VGA set 

3-core 4-core 5-core 6-core 3-core 4-core 5-core 6-core

1.1 12.3% 15.0% 21.2% 22.8% 8.3% 13.1% 17.2% 15.6%

1.2 16.9% 26.1% 23.9% 20.2% 15.9% 15.8% 12.6% 10.0%

1.3 13.9% 11.0% 23.5% 35.1% 4.7% 7.7% 18.4% 22.2%

Scale

factor

Improvement (V.S. CellCV) Improvement (V.S. row-based splitting)

 

In Table 4-1, it shows the performance comparison with the CellCV and row-based 

splitting. We can fine out that the data-oriented task partition can obtain more improvement in 
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scale factor = 1.3 with increasing core number. In case of scale factor = 1.3, low ratio of 

execution time is spent on computing, and high ratio of time is wasted in waiting memory 

transfer operation. While more cores are deployed, these effects prevent us from getting linear 

speedup. Proposed data-oriented task partition can reduce unnecessary memory transfer and 

avoid memory contention. Therefore, we can eliminate the weight of data transfer in whole 

execution time. And we can improve up to 35.1% comparing with CellCV. As shown in Table 

4-2, Table 4-3 and Table 4-4, they represent performance acceleration with two to six cores in 

CellCV, row-based splitting and data-oriented task partition. In Table 4-2, the performance is 

performed with high speedup in scale factor = 1.1. It is what I mentioned before. In case of 

scale factor = 1.1, the workload balance problem is light by sufficient task instance in 

resolution-based task partition. Additionally, the time waiting in data transfer is relativity low 

with a great amount of computation by lots of detection candidates.  

Table 4-2  Acceleration of CellCV @ VGA set 

2-core 3-core 4-core 5-core 6-core

1.1 1.65 2.43 3.16 3.73 4.33

1.2 1.64 2.40 2.86 3.64 4.40

1.3 1.84 2.52 3.45 3.67 3.66

Scale

factor

Acceleration 

 

In Table 4-3, it shows the performance accelerated trend of row-based splitting. As the 

image size increasing, the workload balance issue is more negligible by its sufficient task. 

Therefore, the row-based splitting method is useful for small image size and high scale factor 

which generates less task instances by resolution-based task partition. And in Table 4-3, 

row-based splitting method can accelerate the speedup up to 4.4.   
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Table 4-3  Acceleration of row-based splitting @ VGA set 

2-core 3-core 4-core 5-core 6-core

1.1 1.66 2.53 3.22 3.88 4.66

1.2 1.64 2.42 3.18 4.11 4.90

1.3 1.84 2.77 3.57 3.87 4.20

Scale

factor

Acceleration 

 

Table 4-4  Acceleration of data-oriented task partition @ VGA set 

2-core 3-core 4-core 5-core 6-core

1.1 1.81 2.77 3.72 4.73 5.60

1.2 1.88 2.88 3.87 4.79 5.51

1.3 1.93 2.93 3.87 4.80 5.63

Scale

factor

Acceleration 

 

Table 4-5  Performance in frame rate @ VGA set 

1-core 2-core 3-core 4-core 5-core 6-core

1.1 0.9 1.6 2.5 3.3 4.2 5.0

1.2 2.0 3.2 5.0 6.7 8.3 9.5

1.3 2.5 4.4 6.6 8.7 10.8 12.7

Scale

factor

Performance (fps)

 

In Table 4-4, it illustrates the acceleration with data-oriented task partition for object 

detection on cell processor. This manner can almost enhance the performance to linear 

acceleration as we expect. In communication-intensive applications as multi-resolution 

application, data transfer is especially important to be considered to obtain superior 

performance. As above mention, data-oriented task partition can optimize at high scale factor 

and small image size because it waste much of time in data transfer than computing. In Table 

4-5, we show performance in frame rate (fps). Because the entire analysis and design flow for 

multi-resolution application is focusing on general distributed scratchpad memory multicore 

platform. We didn’t apply local optimization like intrinsic functions of Cell SDK to 

optimization for Cell processor in this experiment results. Even for light weight multicore, 

this design flow can support a design methodology for multi-resolution application. And in 
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Table 4-5, we can improve performance up to 12.7 fps in VGA size. Appling with local 

optimization, we can obtain about 25 fps. 

 Scaled test set (scale factor = 1.2) 

Table 4-6 shows the performance comparison with different image size. Similar to VGA 

test set, proposed task-oriented task partition is much more useful for small image size 

because of its high data transfer ratio. And we can improve up to 31.8% performance 

comparing with CellCV. Table 4-7, Table4-8 and Table 4-9 represent acceleration of CellCV, 

row-based splitting and data-oriented task partition. In CellCV, big size of test image obtains 

much higher speedup comparing with the small image size because computing part is more 

critical than communication part. It can fully utilize multicore platform to accelerate the 

computing part. But it only can achieve 4.66 of speedup at 6 cores. In row-based splitting, it 

improves up to 4.91 of speedup in Table4-8. And this manner can perform better effect on 

insufficient task number as small image size. By data-oriented task partition, the performance 

can be achieved average 5.6 speedup from CellCV on single core. Table 4-10 shows the 

performance of scaled test set in frame rate. We can achieve 42.8 fps in 320×240. Appling 

with local optimization, we can achieve about 83 fps.  

Table 4-6  Performance comparison @ scaled test set 

3-core 4-core 5-core 6-core 3-core 4-core 5-core 6-core

960×720 9.8% 19.1% 19.4% 18.9% 7.8% 14.1% 13.4% 13.9%

640×480 16.9% 26.1% 23.9% 20.2% 15.9% 15.8% 12.6% 10.0%

320×240 16.0% 23.8% 20.0% 31.8% 12.0% 10.8% 8.0% 15.8%

image

size

Improvement (V.S. CellCV) Improvement (V.S. row-based splitting)

 

Table 4-7  Acceleration of CellCV @ scaled test set 
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2-core 3-core 4-core 5-core 6-core

960×720 1.76 2.57 3.13 3.85 4.66

640×480 1.64 2.40 2.86 3.64 4.40

320×240 1.72 2.41 3.01 3.83 3.82

image

size

Acceleration 

 

Table 4-8  Performance of row-based splitting @ scaled test set 

2-core 3-core 4-core 5-core 6-core

960×720 1.78 2.63 3.30 4.09 4.91

640×480 1.64 2.42 3.18 4.11 4.90

320×240 1.78 2.63 3.30 4.09 4.91

image

size

Acceleration 

 

Table 4-9  Performance of data-oriented task partition @ scaled test set 

2-core 3-core 4-core 5-core 6-core

960×720 1.95 2.85 3.88 4.77 5.74

640×480 1.88 2.88 3.87 4.79 5.51

320×240 1.88 2.87 3.95 4.78 5.60

image

size

Acceleration 

 

Table 4-10  Performance in frame rate @ scaled test set 

1-core 2-core 3-core 4-core 5-core 6-core

960×720 0.6 1.1 1.6 2.2 2.7 3.3

640×480 2.0 3.2 5.0 6.7 8.3 9.5

320×240 8.5 14.4 22.0 30.2 36.6 42.8

image

size

Performance (fps)

 

4.2.1 Overall performance enhancement comparison  

We take value 1.1 for scaling factor and size 640×480 for test image in this series 

simulation. In Figure 4-19, we can use data-oriented task partition to obtain 9% performance 

improvement comparing with CellCV. It exploits all available data locality across resolutions. 

And performance is improved going through platform-dependent optimization flow: data 

allocation, tile-shape exploration and granularity exploration. In optimization flow, data 
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allocation step can improve 8% comparing with previous step. It is most important step in this 

flow. Additionally, Tile-shape exploration and granularity exploration also can improve 4% 

and 2% from previous step. So we can achieve 4.96fps from original 3.88fps. 

3.6
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3.8

3.9

4

4.1

4.2

cellcv proposed

fps Data-oriented 

task partition
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3.88fps
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Figure 4-9 Improvement comparing with CellCV 
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 5  CONCLUSIONS 

In this thesis, we propose a data-oriented task partition for multi-resolution applications. 

Proposed partition considers multi-dimension data locality across resolutions to reduce 

redundant memory transfer. Instead of raster scanning, tile-based scanning is adopted. As a 

result, most available data locality can be utilized. It can relieve loading of interconnect 

network and avoid memory contention. Moreover, we also propose an optimization flow for 

parallelizing multi-resolution application on distributed scratchpad memory multicore. The 

optimization goes through data allocation, tile-shape exploration and granularity exploration 

to obtain superior performance. 

Taking Viola and Jones object detection as case study, which plays an important role in 

intelligent multimedia processing. When implemented on PlayStation3, a typical distributed 

scratchpad memory multicore. Following proposed optimization flow, we can reduce 95% 

data transfer comparing to conventional CellCV implementation. Speedup factor can achieve 
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5.6 times of acceleration from CellCV version by using 6 cores. The execution time is 

improved 25% using 6 cores compared to CellCV.  

In the future, we would apply this method to another multi-resolution application. 

Augmented reality is one popular application for smart phone. Augmented reality (AR) is a 

term for a live direct or indirect view of a physical real-would environment whose elements 

are augmented by virtual computer-generated imagery. In this application, object recognition 

for real-world environment is a necessary procedure for following operation.  

To further improve for object detection, we would try to develop a fast algorithm for 

data-oriented task partition. According to inter-resolution consideration, it is possible 

developing computation compression. We expect this method can not only maintain the 

accuracy but also reduce the computing.  
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