FH LN aeRY I T L2 SRS iR
FTARIL G * B i 1

Optimizing Multi-Resolution-Applications on
Distributed Scratchpad Memory Multicore Architecture

A AR

bR PR R

TR FERRANERCE) X i A AR A X | E A £ L

Optimizing Multi-Resolution Applications on Distributed

Scratchpad Memory Multicore Architecture

g4 o R
R RlAR gL

Student: Li-Yuan Kan
Advisor: Dr. Chih-Wei Liu

Bz 2+ 7
RALARE & REF L T
FR 2=
A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In partial Fulfillment of the Requirements for the Degree of
Master of Science
in
Electronics Engineering
August 2011

Hsinchu, Taiwan, Republic of China

_‘;: o

AR

=

,'. o Z 12 S T - 4 F 4
iRt s eI L2 5 Bk G iR
AL fl B i 1
D H Ak hERE AR EL
K= i <=8
TEIEEE AL
iF &
AR R PP ts AR 0 SR TR AN AT e R S e T ST B Fon
m*}}b} ,lﬁ’# %«—,%,\a;é‘%i?% AL S L APAS FERR ARERCY) X i B ¥
o3 i R AR R B AR AE R R AT R R A 2 R S D o AN
X U'F‘éﬁﬁﬂf'»l PR ARNETF RFI PR TR R R LT PTG 2
S s Pl ?K%’ ﬁ&ﬁiq R H o izhw> ¥ o APEH M TR 2
AT KT ARG R S P T Lo 2 (I AT R S
FRAT IR F LY S ¢ ORI s MBS T E A S AT o T
géruff*z Pt REFF BB L RIL - B2 R DT R R F RN
oy 2 o p it el i e T 0 F
A2 %ﬂ iy b B E PR o FIP AH T D - BAY TR
e B2 N FEL LI 7 R R 2
RengE L o AFTY LR
e TR e

P
B P L A
27 fen

RF - B 0)

_/ E
, “filg N
PR RBMEE G oF i e AR kR
PR S 4 L’I’JF ‘} Fgﬁx %ﬁﬂ.b’% '\.,imjl!{é ‘L‘(‘%T‘\)F'& 7 1_154@@@@& :117&
Fo F8 L 1| #
7 R T LRSS 9500 7}~—‘—l§ﬁ%]_‘z'
BT (7 EJ2T 0 4pdt CellCV R & &

= 2 ik
. ,
o WEAF A ERHT
Cell w2 Bias NP ag kT
3 35.1%¢3 J:sbﬁ—‘l v TP A B AR
AT E b ke £3

o

Optimizing Multi-Resolution Application on
Distributed Scratchpad Memory Multicore
Architecture

Student: Li-Yuan Kan Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

Compared to cache-based multicore architecture, distributed scratchpad memory multicore
architecture is more power efficient, which makes it suitable for embedded system. However,
software programming for distributed scratchpad memory multicore is rather complicated and
time-consuming. It brings new-challenges including synchronization, workload balancing and
even memory transfer. In this thesis, we focus on parallelization of multi-resolution
applications on distributed scratchpad memaory architecture. Multi-resolution application is
used in variety domains like video compression, signal processing and intelligent multimedia.
It contains multi-level data locality, repeated computations are performed on different
resolutions. Abundant data transfers are demanded to complete the operation. Therefore, the
memory transfer issue usually prevents multi-resolution application from getting linear
acceleration on multicore. We propose a data-oriented task partition to achieve balanced
workload and low-data-transfer by take advantage of inter-resolution locality. On Sony
Playstation3, a typical distributed scratchpad memory multicore with 6 cores, object detection
is parallelized using proposed data-oriented task partition. According to the experimental
results, we obtain 5.6 times speedup from running on single core. 95% data transfer can be
reduced and up to 35.1% performance improvement is obtained.

R TR TR PSS EERE CEET SE RNy E F
PR BGF R oo

RMHFIRRER FARL LB 2 B RALEE B I FIRAL XF R
b oo RIS PR A T FOBR MRABRIRE B ORER S BTN AT LY o s
WY TR T“_{'}‘j\mﬁﬂ’“‘/‘a, %%m&ﬂ, ;L ﬁv‘am iéum%fu'? °

PURHL AREG F LA
BHART B 0 BT R T

b

}i\:‘:‘]"ﬁ%i?{ F\FE-?&?%]PEQ“Tﬁ.‘]’ﬁi‘\]xﬁf'l\gﬂ\gé%\?; \—%@\Pﬁvan\
FW& 5% Hank - B £ P arT g 2 2 RY AR A R BRSSP
\PP?‘\ 'Z‘f% ’Lﬁ’lg\/»,,. —?l— ;%’E \,u/F ris}—g ‘Eﬁ:l—gﬂ:l’éﬁa.,.&§lrﬁt_lﬂ$m_ky
l}fo

3
‘

3

ﬂ"&“ﬁi’ﬂ

@ﬁ”%%%@’éié—wmizi ’ﬁﬂ%ﬁaéﬁ&i’ﬂjx{m%ﬁ,ﬁ
AP otk e e ko B AW

BB AP % ¥ R PRenEC SN eniB o o 0 T SR T ik g o

Boid o RHARIE SRA o § AAb v tde s o dr iR - dpd o B EHR P - gt 4
AP L IR 5P s B

%4

AR B e B L AR R g AT I o

R
FE ATH

2 po
201

CONTENTS

1 INTRODUCTION ..ttt ittt sttt b et e bbb bt e e e et Rt e b e e b b e as e b e s e Rt e bbb ekt e bt e e e nn e b sb e b e s 1
1.1 Distributed Scratchpad Memory MUITICOTE............coviiiiiiiiieieir e 2
1.2 MURIMEIA APPHCALIONSe.veiiititeiiet ittt bbbttt 4
1.3 Porting multimedia applications 0n DSM MUIICOIE. ..ot 5
1.4 Multi-resolution apPPlICALIONScoviiiiiiiiriei ettt er e 11
1.5 Problem formulation and CONTIDULIONSccociiiiiiiieii e 11
1.6 TRESIS OFGANIZALIONe.viviitieeiiite ettt bbb bbbt b btk s bt et e b et e nbe e b nnes 12

2 MULTI-RESOLUTION APPLICATIONS ...ututitettttetesestatesestesesestesessssesessssasessssesessssesessssesessasesessssesessssesessasesessns 14
2.1 Object deteCtion algOTTTNM ..ot 15
2.2 Implementation 0N DSM MUILICOTE........cuiiiiiiiiieiriee bbb 21
2.3 CellCV SIMUIALION FESUILSviveeesss 80 0 H ikttt bbb 22
2.4 Task Reorder and ROW-Based SPIILINGo i iadioniiiinieieeest e 25
2.5 ODSEIVALION ..ot o ekt ab e e f ettt bbbttt bbbttt 28

3 DATA-ORIENTED TASK PARTITEON wuvuuriuresn aveessassasresiis ratetannnsstssiibesenrensessesseassessessesseneaseseseesssnsennessessesseens 29
3.1 Data-oriented task PArtitiON.i. i o iueuss ettt ceiianenteeereene bt hinme ettt ettt bbbt bene b s 30
3.2 Tile-Dased SCANNMING ...l i i S TR e s e ettt ekttt ettt b bbbttt 30
3.3 Difficulty and OVErNEad. ... i e bbbt 32
3.4 3-Step OPtiIMIZAtION FIOW e i i et ettt ettt ettt e bbbt e bbb bbbt be e ebe s 34
3.5 DESIGN FESUILS ...ttt bbbt bbbt bbbt 39

4 EXPERIMENT RESULTS ..uctitetitteteteseseteststsestetesesesesesesesesessesasesesesesesessssssssasasasesesasesesessnsssnsesasesesesesenssnsnsnens 41
A1 CeIFATCRITECIUE ...ttt bbb bbbt bbbt bbbt be e 42
4.2 Parameters SEttings and FESUILS ..o 51

I Ofe] N o] IV L] [0] L TS ST TP TSP TSR PPT PP PP 58

REFERENCESuuttttteuetesesssssssssssessessnes 60

LIST OF FIGURES

FIGURE 1-1 ONE EXAMPLE OF DISTRIBUTED SCRATCHPAD MEMORY ARCHITECTUREccoiiuiiiiiieiieesireesneesseesnee e 2
FIGURE 1-2 SCRATCHPAD MEMORY ARRAYeitttiitttiitueaitseastaeaisseessseesssesssseesssesssssesssesssssesssessseessessseesssessnssssnsessnes 3
FIGURE 1-3 SCRATCHPAD MEMORY ORGANIZATIONuvtiitvtiitrtesteeesireastseessseesssesssseesssesssssesssessssessssesssssssssessssesssessnes 3
FIGURE 1-4 CACHE MEMORY ORGANIZATIONuvtitvtiitueatreesieeesseeessseessseessssessseessssesssssssssesssesssssssssessssesssesssssssssessnes 4
FIGURE 1-5 EXAMPLE — JPEG ENCODERvviiitteitieiiteeeiteeesiseestteestsaessseessseesssesssseesssessssaesssessssessssessssessssesssessnsessnns 5
FIGURE 1-6 DEVELOPED DUAL-CORE SIMULATION PLATFORM ON COWAREcooiiiiiiieiie ettt 7

FIGURE 1-7 OPTIMIZATION FLOW FOR EFFICIENTLY PARALLELIZING MULTIMEDIA APPLICATIONS ON MULTICORE.... 9

FIGURE 2-1 HARR-LIKE BASED OBJECT DETECTION ... u0iiutiitteiteeteestesseesteessesssessseessesssesssesssessesssesssesssessessesssesssesnes 16
FIGURE 2-2 CASCADE CLASSIFIER ...eutviiteeiteeeteeateeatesasseastseasssassesasssssssesasssassssassssessssssssssssssasssessssesssseesssessseens 16
FIGURE 2-3 INTEGRAL IMAGEctttitttiitte ittt ateeasteeasteesteeastaeasseasteeasseeassesassssaseeasseeaseeesssaeaseeessseeasaeessseessneessseens 18
FIGURE 2-4 SCALING WINDOW DETECTION.ccutttitteiteeeteeesieeassseasseeassseessasassssassesassssessssessssssssssssssssssssssssssesssseens 19
FIGURE 2-5 DATA FLOW OF FEATURE MATCHING 1.0t 2 i i i i eveeveesvesteesteesteesreesteetesssesssesssessesssesssesssessssssesssesssesnnes 21
FIGURE 2-6 RESOLUTION-BASED TASK PARTITIONceiuves i nsetaaeeetreessaeessssassesassssessssssssesssssesssessssssssseesssessneens 21
FIGURE 2-7 DYNAMIC TASK SCHEDULING MECHANISM — CENTRALIZED TASK QUEUEcovieitieieereiiestee e sre e 22
FIGURE 2-8 SPEEDUP CURVE @ 2~6 SPE ..eiiuviiiiiriisesiiseesarsciinnsiersesssssoiihessessisssassessssssessssssssssssessssssssessssessssssssseens 23
FIGURE 2-9 WORKLOAD DISTRIBUTION ON 6-SPE @ 1.1 SCALING FACTOR AND 640%480 IMAGEc.ccoveeverneenne. 24
FIGURE 2-10 WORKLOAD COMPARISON (NORMALIZED TO:SINGLE CORE).......ccvveteerieienientestesteseeseeseesseseeseessesseasens 24
FIGURE 2-11 TASK SEQUENCE USING 5-SPEUN CELLCV ... i ittt see e snve e 25
FIGURE 2-12 TASK ALLOCATION USING 5-SPE INCELLECV i i ettt snve e 26
FIGURE 2-13 INTERLEAVED TASK REORDER.......ceeiitttiteeetteasteeassseasseeassseassasassssassesassssessssasssesssesessssssssssssessssessseens 26
FIGURE 2-14 TASK ALLOCATION USING 6-SPE IN CELLCVooiiiiiiiiie ettt stee et stee e tte e sae e snva e nnne e 27
FIGURE 2-15 ROW-BASED TASK SPLITTINGeiitteitteiteeetteastesastteasseeassssassasassssassesassssessesesssssssssessssssesssssessssessseens 27
FIGURE 2-16 TASK ALLOCATION USING ROW-BASED TASK SPLITTINGvveiveiiueeiteereereetreeteesteesreesreevesrnesseessesssesnnas 27
FIGURE 3-1 DATA-ORIENTED TASK PARTITION DIFFERS FROM RESOLUTION-BASED PARTITIONcoceeviiieineeirennne. 30
FIGURE 3-2 TILE-BASED SCANNINGccitttitteaiteeateeasteeeseeassesassssassesasssaasssasssassesassssessesesssesssesessssessseesssessssesssseens 31
FIGURE 3-3 BOUNDARY ISSUE IN X-DIRECTION AND Y-DIRECTIONccuvteitieetiresteeestreesieeessneessesessseessneessseesnesssneens 33
FIGURE 3-4 PLATFORM-DEPENDENT OPTIMIZATION FLOWcvietietiiiteeiteeiteesteesteesteastesssesssesseessesssesssessnessesssesssessnes 34
FIGURE 3-5 APPLICATION-SPECIFIC ANALYSIS OF CLASSIFIERvccvtiteitieireeiteeiteereesresssesseesseesseessesssesssessnsssesssesnes 35
FIGURE 3-6 HARDWARE-DEPENDENT ANALYSIS OF CLASSIFIERiiitveiitteeitieeitteesteeestreesteeessseesseeessseessnesssssssssesssneens 36
FIGURE 3-7 TILE-SHAPE ANALYSIS ...ttt iteeitteaiteeeiteeasteesteeasteeasssassssasssaasesassssassssassssesssssssssessesasssesssseesssessssessneens 37
FIGURE 3-8 GRANULARITY ANALY SIS ..iitttttteateeiueeasteesseeastesassseassesassssassesassesassssassssesssssssessssssssessssesssessssesssseens 38
FIGURE 3-9 ACCESS COUNT COMPARISON00iitteiteeateeeteeasteeassseassesassseassasassssassesessssessssessssesssssssesssssssssessssessseens 39
FIGURE 3-10 TRANSFER SIZE COMPARISONccvtiiiteiteeeteeaiteeaisseasseeassseassesassssassesassssessssssssssssessssssssssesssessssessseens 39
FIGURE 4-1 BLOCK DIAGRAM OF CELL BROADBAND ENGINE........c.cciuiiiiitiiiteeite et etre et steesteecte e e seesreesve e 42

FIGURE 4-2 PPE BLOCK DIAGRAM.....cciiiiiicttttiit ettt eeetete et e e s s ettt et e e e s aea bttt e s e e e ssssabbaetseessessabbaatseeessssabbbeeeseessssasbreees 43

FIGURE 4-3 PPE FUNCTIONAL UNITS ..ottt ettt ettt e e e st ettt et s e s e s e esbbb b e s s s e e s s ssabbbaaseessssabbbaaeeaessssasbbanns 43

FIGURE 4-4 SPE BLOCK DIAGRAM......cttitiitiitiiiiitieieet ettt r bbb bbbt e e nn e r e nr e nn e ene s 45
FIGURE 4-5 SPE FUNCTIONAL UNITS ..ottt s ne st sne s sn e snenn e ene s 46
FIGURE 4-6 ELEMENT INTERCONNECT BUS (EIB)ooiiiiiiiiiiiic e 48
FIGURE 4-7 WG A SET ...ttt sttt bbb e bt b E bbb n Rt s bbbt bt e e e s b nn b re e 51
FIGURE 4-8 SCALED TEST SET .vtttiutettesitesttarestestesseeseesesssssestesbesseassessesseabesbeshesbeess e e e st b sb s b e s ae e st e e e b e b nn e nbeabe s 52

FIGURE 4-9 IMPROVEMENT COMPARING WITH CELLCV ..ottt ettt st a e baas 57

LIST OF TABLES

TABLE 2-1 PERFORMANCE OF ROW-BASED SPLITTINGecivteiteeittieireessteesueessteessessssessssessssessssesssssssssessssessnsessnns 20
TABLE 2-2 PERFORMANCE OF ROW-BASED SPLITTINGeeitvtiiteeitttesreessttesteessseessessssessssessssessssesssssssssesssessnsessnns 28
TABLE 3-1 STATIC ANALYSIS OF TILE-BASED SCANNINGceitteittteireestttesueessteessessssessssesssseesssessssessssessssessnsessnns 32
TABLE 3-2 WORKLOAD BALANCE COMPARISONcutitiuteeittiesreessttesssesssseesssessssessssessssesssssssssessssessssessssesssessnsessnns 40
TABLE 4-1 PERFORMANCE COMPARISON @ VG A SET ..uviiiitieiiee it ettt e sttt ste st este e s be e snte e stveesnressbessntessbessnresanes 52
TABLE 4-2 ACCELERATION OF CELLCV @ VG A SET .. utiiitieciee ittt ctte e sttt e st e ste e ste e sbe e sate e sabeesnbessbessnbessbessnresanns 53
TABLE 4-3 ACCELERATION OF ROW-BASED SPLITTING @ VGASET ..viiivieiiee ittt sttt ste s ste et sveesnre s 54
TABLE 4-4 ACCELERATION OF DATA-ORIENTED TASK PARTITION @ VGASET.....ciiiiiieiteecte ettt sreesre e 54
TABLE 4-5 PERFORMANCE IN FRAME RATE @ VG A SET . ueiiviiiiiieitte it eteeste e rteete st e steeste e sbessveenresnvestaesbeestaesteesnens 54
TABLE 4-6 PERFORMANCE COMPARISON (@ SCALED TEST SET..icuviitiiitieiteeiteeiteesesseesteessesssesssesssesssessssssesssesssesssens 55
TABLE 4-7 ACCELERATION OF CELLCV @ SCALED TEST SET uviitiitiiitieiteeiteeiteesesteesteesressresssesssesssessesssesssesssesnens 55
TABLE 4-8 PERFORMANCE OF ROW-BASED SPLITTING @ SCALED TEST SET ..uvteveiieiiieireeireenreenresnressnesreesreessesnens 56
TABLE 4-9 PERFORMANCE OF DATA-ORIENTED TASK PARTITION @ SCALED TEST SET ...veivvieieereerieireesreesreesreenens 56

TABLE 4-10 PERFORMANCE IN FRAME RATE @ SCALED TEST SET tiituieitieiteeiteereseesteesteesseesreessesssesseessesssesssesssens 56

1 INTRODUCTION

Multimedia applications have become an important workload of computing system for
consume electronic. And multi-resolution is-one_special case in multimedia application.
Because of computation complexity-and application requirement, single core is out of power
to reach the performance constraint and additionally accompanying with dramatic
increasing of power consumption, memory latency and circuit complexity. Most new
processors architectures are branching into more cores rather than better cores. Multicore
architectures have become the mainstream rather than the exception in computing landscape.
The problem is how to exploit the parallelism and make full utilization of all cores to reach

the expected performance gain with efficiency.

1.1 Distributed Scratchpad Memory Multicore

Distributed scratchpad memory multicore architecture becomes popular for
parallel-accelerated computation. The architecture can be described as follows in Figure 1-1.
Figure 1-1 is one typical example of distributed scratchpad memory, Cell processor. There are
several cores in the system and each core is embedded with software-controlled local store
memory. Direct memory access (DMA) usually participates memory transfer. Direct memory
access (DMA) is a feature of modern computers and microprocessors that allows certain
hardware subsystems within the computer to access system memory for reading and/or
writing independently of the central processing unit. DMA is used for transferring data
between the local memory and the main_memory. And it is used to anticipate overlapping

computation and communication for alleviating memory transfer overhead.

SPE
SPU [sPU PU SPU lsPu [sED SPU SPU
L sxu_JiI[sxu Jii[sxu JjI[sxu JII[sxu Jjji[sxu]j|[sxu]j|fl sxu |
T T T
* v v v v Al * ‘
LS LS LS LS LS LS LS LS
16Bicycle v v v v v v v \4
EIB (up to 96B/cycle)
h ¥
16B/cycle 16Blcvcl 16Bicycle
PPE ! e F (2x)
L J

PPU MiC BIC

irexul 1 T

Dual FlexlO™
XDR™

64-bit Power Architecture with VMX

Figure 1-1 One example of distributed scratchpad memory architecture

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Central_processing_unit

By [1], the hardware of scratchpad memory is shown like Figure 1-2. The scratchpad is a
memory array with the decoding and the column circuit logic. The assumption here is that the
scratchpad memory occupies one distinct part of the memory address space with the rest of
the space occupied by main memory. Thus, we need not check for the availability of the
data/instruction in the scratchpad. It reduces the comparator and the signal miss/hit

acknowledging circuitry.

Word| select
Vgid Vdd
b— 4L
(a) Memory array | L
bit hit_har
Word Select
bit bit_bar
®) Memory Cell (c) Six Transistor Static RAM

Figure 1-2 Scratchpad memory array

Decoder
Unit Memory Array

o

Column Circuitry
(Sense amplifiers, column
mux, output drivers, pre—
charge logic)

Scratch Pad Memory Columns

Figure 1-3 Scratchpad memory organization

The 6 transistor static RAM construct a memory cell as shown in Figure 1-2 (c). The cell
has one R/W port. Each cell has two bit-lines, bit and bit bar, and one word-line. The
complete scratchpad memory is as shown in Figure 1-3. Comparing with cache memory,
scratchpad memory has less hardware circuit. In Figure 1-4, cache memory has additional
circuit of tag array and comparator circuit check for the availability of the data/instruction in
the cache. From this paper, average reduction was 40% in time, power consumption and area.

While application is considered, distributed scratchpad memory can support huge computing

power but low power consumption.

] Input
¥
Word lines i —
> 3 .
£ g
Bit lines ¥ E
o
: .
Column muxes
Sense Amps
Comparators
r lbux Drivers Output Drbver
Output Driver | | E |
ta Output

Valis Gutpul?

Figure 1-4 Cache memory organization

Therefore, scratchpad memory organization is suitable for current embedded processors

particularly in the area of multimedia applications and graphic controllers

1.2 Multimedia applications

In recent year, multimedia applications become an important workload of computing

system for consumer electronic. For example, audio standards are AAC, MP3, Dolby Digital
(AC3), etc. And multimedia standards are M-JPEG, MPEG-1, 2, and 4, H.263, H.264, etc.
Even 3-D graphic processing is more and more popular in the future entertainment. There are
some data characteristics in multimedia application. (1) High computation complexity, it
requires tens to hundreds of billions computation per second for modern multimedia
applications. (2) Streaming process, application can be simply decomposed into stream and
kernel. Continuously ordered set of data and the FIFO-communicated processes are expressed
as the operations applied on stream processing. Lets take JEPG encode for a example in
Figure 1-5. It can decomposes into four computation kernel as color space transform (CST),
discrete cosine transform (DCT), quantization (Q) and variable length coding (VLC). (3)
Predictable data movement, continuous input data imports into computing system and export
after go through a cascade of computing kernel. Whereas the process behavior is regular like
DCT starting after CST is finished, memory transfer can be pre-loaded for computing kernel.
Because of above data characteristic; distributed scratchpad memory multicore is appropriate
for multimedia application to elaborate high performance and power efficient via application

considered.

Figure 1-5 Example — JPEG encoder

1.3 Porting multimedia applications on DSM multicore

Although multicore can support huge computing power, it is difficult for software

programmer to parallelize multimedia applications on multicore efficiently. There are several
factors we have to consider. The superior performance can only be obtained through a careful
co-design and optimization crossing four critical design issue, including choosing appropriate
parallelism level, balancing workload, reducing synchronization overhead and memory and
interconnect bandwidth. In multicore programming, the programmer is now responsible to
generate concurrent tasks, to arrange explicit non-uniform memory access, and carefully to
consider synchronizations between cores for maintaining correct program behavior. The
hardware-dependent factors as well as the application-specific characteristic make multicore
programming difficult, time-consuming, and error-prone indeed. General speaking, there are
four iterative steps in developing multicore programming: partitioning (to yield a fine-grained
decomposition of an application), communication.(to be performed in one task will require
dependent data associated with another task), agglomeration (to identify a grouping of tasks
that will complete the work efficiently), and allocation (to allocate appropriate workload on
each core individually). Data partition and function partition are two general approaches used
to partition the application. Data partition scheme exploits data-level parallelism (DLP) to
create concurrent tasks. To achieve DLP, the original data stream will be well partitioned into
disjoint or parallel segments. Data partition method usually pursues extra data parallelism
through raising data segment’s granularity. Consequently, larger buffer or local memory will
be necessary to hold temporary data. If the local memory for each core is not large enough,
the performance could be degraded significantly due to inefficient data movements. Function
partition decomposes the application into tasks (or processes) according to its functionality.
The processor core now is in charge of one or several tasks. With step-by-step processing, the
program could be executed and completed in a software pipeline manner. However, this may
introduce IPC overhead between cores. The IPC overhead will always be the most significant

concern regarding the multicore performance.

Let’s take a JPEG encode again on the developed dual core platform, as shown in Figure
1-6, to illustrate the latency within acceleration and to look into influences of IPC overhead.
Figure 1-6 demonstrates a dual-core platform developed by CoWare, a SystemC-based
electronic system level (ESL) tool which can rapidly create and validate SoCs in an early
stage. It consists of two ARM926 processors connected by AMBA AHB, where one is
considered as the MPU and the other acts as the DSP. Two ARM926s can access not only their
own local memory but also the shared memory. In addition, the mailbox is applied and
connected to the vector interrupt controller (VIC) to interrupt the corresponding processor.

With mailboxes, ARM926s can be synchronized with each other.

MPU DSP
(ARM926) (ARM926)

0x4000_0000

VIC

|
MPU2DSP

Ox4300_0000

0x0000_0000 DSPMJ 0x0000_0000

Ox4200_0000
0x0400_0000 0x0400_0000

0x4000_0000

VIC

0x1000_0000

Figure 1-6 Developed dual-core simulation platform on CoWare

Suppose that, for a realistic case, the operation frequency of the MPU is configured as
250 MHz, while the operation frequency of the DSP is 500MHz. then, the total latency for
accomplishing the application on the dual-core platform will include the following four parts:
(i) data movement to/from DSP; (ii) task management and memory management; (iii)

mailbox handshaking and the response of the real-time kernel; (iv) task computation. To

encode a 256x256 JPEG image, the measured latency for the part-(i), (ii), (iii), and (iv),
respectively, on CoWare is: 7963us, 1,430us, 31,242us, and 17,981us. Nevertheless, we do
spend much time on IPC overhead in function partition scheme and it certainly degrades the
system performance. We now consider the general case that the application may consist of the
sequential part and parallel part. For achieving better performance, one may allocate the

parallel tasks to the other (N-1)-core for data acceleration. Then, we have

T., (T,.. (1)) .
>> tmax {7+ T (OD+T () +T, ()¢ (
N 1</<N 1 L N J

1)
—+T + IPC

critical overhead

Q

Where Ti(¢), Tii(¢), and T;(«) denotes the latency of the part-(i), (ii), and (iii), respectively,
for the ¢ -th core and Tpara(£) is the workload allocated to the ¢ -th core. Ns denotes
speedup factor of each core. Among them, the maximum computation time for Tpara(¢) is
denoted Teriticar. And for simplicity, we use IPCgerread 10 denote the inter-core communication
overhead and time for necessary data movements. IPCoyernead IS the hardware-dependent
parameter, while Tcriticar and Tseq are related to application’s characteristics as well as the
degree of the workload balancing. If well workload balancing, we approach the best
performance that Teriticar = (Tiot - Tseq) / Ns(N - 1). However, workload balancing and IPC
overhead are important issues regarding multicore performance. Unfortunately, these primary
factors are usually at odds with each other and must be traded off. Therefore, based on the
streaming multimedia programming model, we propose an efficient design flow of

parallelizing streaming multimedia applications on multicore architecture.

v

Function-pipelined

¢ start D partition
v v
DLP data partition C Allocation)
v

(Allocation)

eet performance
Constraint?

Load balancing?

task slicing and re-order

v

(Allocation)

Load balancing?

A

Performance saturated?

task slicing and re-order
v
(Allocation) DLP-enhanced function
P partition
v 1
end
C) (Allocation)
v
(end)

Figure 1-7 Optimization flow for efficiently parallelizing multimedia applications on Multicore

The proposed design flow is shown in Figure 1-7. Various hardware-dependent factors
and application-specific characteristics are involved in the design flow such that the designer
can save several time-consuming iterations of partition and allocation steps. The algorithm
starts from a streaming dataflow process network. To avoid frequent data movements and
possibility unnecessary IPC overhead, the DLP data partition is prior and the data segment’s
granularity is better as large as possible under system performance and local memory

constraints. Raising data segment’s granularity will help data-level parallelism. However, it

will suffer from larger buffer or local memory. If the local memory of each core is not large
enough, the performance could be degraded significantly due to inefficient data movements.
After processes allocation, the algorithm checks whether it meets the performance constraints
of the application. If yes, several hardware porting techniques to hide IPC overhead as well as
data movements then fully utilize the hardware resources of the multicore are applied to
achieve the best performance. The techniques include the workload balancing, multiple
buffering and efficient local memory configurations. If the process allocation cannot attain
workload balancing, especially the case that the consumption time of the critical process is
more than twice as larger as that of other essential processes, the workload balancing
techniques are considered. We apply evenly slicing the critical process, scrambling the
processes and process reallocation to achieve workload balancing. As a result, the workload
balancing DLP streaming data partition.on multicore architecture is guaranteed. On the other
hand, if the current data partition scheme cannot meet the performance constraint, the
multi-stage (or software pipelined) function partition scheme is applied. We first decompose
the application into processesby. applying function partition. After investigating the
characteristics of each process, the adequate process allocation, which will be discussed later,
could be achieved. Similarly, we now check the degree of workload balancing after process
allocation. If not, the technique of evenly slicing the critical process is applied. Then, reorder
and re-allocate the processes are performed. It is sometimes happened that the number of
essential processes, says K, is less than the number of available cores, says N, the multicore
performance will be limited or saturated, since the gain in multicore performance will not be
linearly proportional to N. To achieve the best performance, we consider the DLP enhanced
parallel function partition scheme. By applying L-parallel, LK>N, unfolding of the
workload-balancing function-partition process network, we may have enough essential

processes to allocate for achieving the best performance.

10

1.4 Multi-resolution applications

Multi-resolution applications are special but pervasive uses in variety domain. It is
applied in future multimedia applications, image processing and intelligent computer vision.
For example, it can be used in image compression, such as JPEG 2000. JPEG 2000 is an
image compression standard and coding system. It was created by Joint Photographic Experts
Group committee in 2000 with the intention of superseding their original discrete cosine
transfer-based JPEG standard (created in 1992) with a newly designed, wavelet-based method.
One of design procedure is multiple resolution representation. And it also can be used in
image pyramid process which is heavily used in a wide variety of vision applications. It
develops filter-based representation to decompose images into multiple scales, to extract
features/structures of interest, and to attenuate noise.-Moreover, it also can be used in image
detection which is our topic in this research. It is using multiple scales of search window to

complete detect.

There are some application-specific characteristics of multi-resolution applications. (1)
Repeated signal processing performs on different granularity. It performs identical operations
on different resolution at same input data. Because of this reason, it has (2) multi-level data
locality. Data use across resolutions is relativity. Furthermore, to process different granularity
on one input data, it requires huge amount of data transfer to complete the operation.

Therefore, multi-resolution applications are (3) communication-intensive process.

1.5 Problem formulation and contributions

Most manners of efficient parallelizing multimedia applications on distributed scratchpad
memory multicore are focusing on intra-resolution process. In most of multimedia

applications, a set of input data stream is accomplished by multiple computing kernels in

11

single granularity operation. Therefore, optimization flow for parallelizing on multicore is
one-dimension exploration. However, for multi-resolution applications, it would introduce
redundant memory transfer to interfere performance to linear speedup. Computing time is
accelerated linearly by using multicore. Data transfer becomes the critical issue in
communication-intensive process as multi-resolution applications. Hence, not only intra

resolution optimization but inter-resolution data characteristic should be considered.

In this thesis, we propose a data-oriented task partition to take advantage of
multi-resolution characteristics. We aim to reduce unnecessary memory transfer. Therefore,
we can relieve loading of interconnect network and even avoid memory contention.
Additionally, we propose a platform-dependent optimization flow for multi-resolution
applications. By going through this optimization flow, we can guarantee balanced workload
and low-data-transfer parallelization-for multi-resolution applications. Experiment is set on
PlayStation3 to evaluate performance. Cell is one typical distributed scratchpad memory
multicore. By data-oriented task partition, we can accelerate 5.6 times of execution time on
6-core compared to CellCV version on.1-core. Data transfer is reduced 95% compared to

CellCV.

1.6 Thesis organization

This thesis focuses on data-oriented task partition and optimization flow. This thesis is

organized as follows.

Chapter 2 introduces algorithm of Viola and Jones object detection and resolution-based
task partition on distributed scratchpad memory multicore. And then, we will mention about

the proposed task splitting to generate extra tasks to overcome load imbalance..

Summarize the problems of resolution-based task partition and drawbacks of buffer

12

handle in CellCV. Chapter 3 introduces the proposed optimizations. We will detailed illustrate
the optimization principle and some temporary problems we would meet. And finally, we can

fix these problems and got better performance.

Chapter 4 shows the experiment results by using our proposed task partition. Finally,

chapter 5 concludes this thesis and points out the direction of future research.

13

2 MULTI-RESOLUTION APPLICATIONS

In this chapter, we take Adaboost-based object detection as one case study. It is one of
multi-resolution application. Firstly, we review Adaboost-based object detection, including
detecting theorem and fast algorithm. And then, we mention features of object detection
which lead to some implement mechanisms in distributed scratchpad memory multicore
system. According CellCV simulation results, there are some problems we have to solve: load
balance and data transfer issue. Proposed row-based splitting aims to overcome load balance
issues. Although the performance is got improved by row-based splitting, but the memory
access issue is not be considered. Data transfer’s waiting time is still increasing and

occupying a great amount of execution time.

14

2.1 Object detection algorithm

Object detection based on image processing has become an active research area in
computer vision field in recent years. For the evolving embedded applications rely on object
recognition system such as automotive applications, surveillance, and intelligent robots,
reliable object detection has major influence on the performance and usability the above
systems. Viola and Jones have proposed a adaboost-based procedure that reduces the
processing time substantially while achieving almost the same accuracy as compared to other
methods (i.e. skin color, neural network, example-based, ...etc.). This section is composed by

four topics as introduced as follows,
" Haar-feature

Adaboost-based object detection classifies images based-on value of simple feature. There are
many motivations for using feature rather than pixel directly. The most common reason is that
features can act to encode ad-hoc domain knowledge that is difficult to learn using a finite
quantity of training data. For this system_there is also the second critical motivation for
features: the feature-based system operates much faster than a pixel-based system. The simple
feature are used reminiscent of Haar basis functions which have been used by Papergeorgiou
et al. More specifically, they use two kinds of features. The value of the two-rectangle feature
is the difference between the sum of pixels within two rectangular regions. The regions have
the same size and shape and are horizontally and vertically adjacent (see figure 2-1). A
three-rectangle feature computes the sum within two outside rectangles subtracted from the

sum in a center rectangle.

15

Figure 2-1 Harr-like based object detection

n Cascade classifier

Stage 1 Stage 21

featurey m featurey
Stage 0

Candidate featurey

feature, Feature,.; Featuren.,
Pass Pass
— : Pass
4 4
Fail Fail Fail

Figure 2-2 Cascade classifier

Haar-like features used are simply masks constituted by two to three rectangles. When utilized

in object detection, pixels masked by white and black are summed up respectively. The

16

difference of summed up value are examined by a predefined threshold. A weak classifier is
set if the summed up value exceed threshold. Weak classifiers produced by features are
weighted averaged to produce strong classifier, which indicate whether the examined area is
an object or non-object. Various strong classifiers are cascaded together as a degenerate
decision tree. While maintaining classifiers cascaded in a proper order, detection rate can be
raised without sacrificing detection time. In our research, we use the default file of

adaboost-trained classifier which has 2135 features and 22 stages, as shown in figure 2-2.
= Integral image

Rectangle features can be computed very rapidly using an intermediate representation for the
image which we call the integral image. The integral image at location X, y contains the sum

of the pixels above and to the left:of X, y, inclusive:

i(x,y)= Y i(x4hy'), (2-1)

X'SX,y'sy

where ii(X, y) is the integral image.and-i(x,.y).isthe original image. Using the following pair

of recurrences:

s(x, y) =s(x, y-1) +i(x, y) (2-2)

(X, y) =ii(x-1, y) +s(x, y) (2-3)

(where s(x, y) is the cumulative row sum, s(x, -1) = 0 an ii(-1, y) = 0) the integral image can

be computed in one pass over the original image.

17

Figure 2-3 Integral image

Each rectangle’s sum can be computed in four references of integral image (see figure 2-3). If
we want to calculate the accumulated pixel ‘of area D, we can just obtain by simple
computation of (pl-p2-p3+p4). For.one example, if we want to calculate an area of mxn
pixels. We can reduce the complexity from mxn additions to 3 additions. This method can
highly reduce computation complexity. “Unfortunately, it is implying the problem with

frequently memory accessing forthe scatter data.
s Scaling window scanning

OpenCV is a library originally proposed by Intel in 2002. It targets for computer vision
applications on programmable platform. As OpenCV library gets more and more popular and
is broadly used in various applications, it has been implemented on many platforms, including
those with multicore architectures. CellCV is right the parallized implementation of OpenCV

on Cell Broadband Engine. .

There are two detection approaches for adaboost-based detection. One is scaling window and
the other is scaling image. In this thesis, we choose scaling window for detection mode.
Because of our simulation platform is cell processor, we reference CellCV’s implementation.

The detecting mechanism is using a scaling window to scan the whole image from low

18

resolution to high resolution. And it stops scaling till the window size out of one of image

length (see figure 2-4).

Figure 2-4 Scaling window detection

From above description of. adaboost-based “object detection, we can fine out some
characteristics in this application. The task'workload is highly depending on input data owing
to early termination of cascade classifier. Therefore, no static scheduling can guarantee load
balance. Dynamic dispatcher is required. The multi-resolution process is one special
characteristic in object detection. It contains repeated signal processing on same input data

with different granularity.

€ Workload analysis

Object detection is made easy by OpenCV APIs. To verify performance of object
detection in OpenCV, the latest OpenCV library is built on a 2.5GHz Xeon workstation with
8GB main memory running Linux. Face detection on different sizes using different scaling
factors is evaluated. Table 2-1 summarizes the profiling using single thread. According to the

result, object matching is the hot spot of object detection which occupy more than 95%

19

execution time in all cases. The overall detection time is dependent on image size and scaling
factor. The detector can process QVGA image in realtime regardless of scaling factor.
However, ability to process QVGA in realtime already becomes insufficient for today’s
applications. As it has been reported that scaling factor = 1.2 has the best detection rate, we

will focus on object matching for VGA image using scaling factor 1.2 hereafter

Table 2-1 Performance of row-based splitting

| | Execution time Object

mage scale ;) : .

sizi factor Ir?i[t?:lii?n Image Object | Neighbor Overall Matching /
Integral | Matching [Combining Overall

1.1 0.76 5.13 322.21 0.21 328.31 98%
640x480(1.2 0.83 5.17 166.48 0.10 172.59 96%
1.3 0.81 310 12397 0.06 129.94 95%
1.1 0.51 0.79 65.36 0.03 06.68 98%
320%x240 1.2 0.51 0.80 30.83 0.03 32.17 96%
1.3 0.58 0.93 26.50 0.02 28.03 95%

€ Detection kernel - object matching

According to Table 2-1, we take object matching as computation kernel on DSPs. The
whole operation can be divided into summed feature calculation, feature-threshold
comparison and stage-threshold comparison. Figure 2-5 illustrates the detail of operations in
feature calculation. The summed feature would be taken to multiply with a weight and then be
summed into a value. Variance represents the pixel distribution for a specific search position
and specific search window. It is taken to multiply with constant threshold to obtain
feature-threshold. This value is taken to be compare with feature-sum and then decide the
result is assign from value A and value B. Value A and value B are define while classifier
training. Accumulate each result after going through every features, the final result is taken to
compare with stage threshold. The result determines the following operation whether pass to

next stage or not.

20

sum_fea0 sum_feal sum_fea2

weight0 weightl weight2

[~ 7 stage_sum_fea

Figure 2-5 Data flow of feature matching

2.2 Implementation on. DSM multicore

window size= 32 window size= 35 window size= 37

\4

task sequence

Figure 2-6 Resolution-based task partition

21

Issue order

\4

Input Queue lo I I I3 Iy Is lg
|
\ 22 / v
SPE SPE | eeeeee-s SPE
Kernel() Kernel() Kernel()
I
y + A 4

Output Queue | Oo | O1 | O | Os | Oy | Os | Op | -

Figure 2-7 Dynamic task scheduling mechanism — centralized task queue

Resolution-based task partition_for_object detection is taking a fixed window size as a
single task, as shown in Figure 2-8. It generates a few number of tasks related to application’s
parameter as scaling factor, image /size and initial window size. Tasks are generated and
enqueued to centralized input queue which is allecate in main memory. In Figure 2-9, all
cores are pending on one input queue, and acquires new task after finishing previous task. As
same as input task queue, each core puts the result into centralized output queue. After parallel
procedure, serial part of application is continuously collecting results from main memory to

perform complete application.

2.3 CellCV simulation results

In CellCV, it develops an optimization for implementing object detection on Cell. For
search window smaller than 88x84, it allocates a small window buffer to faster access.
Because of accessed data in small window is more gather, CellCV loads a block of data from

main memory into small window buffer. It can avoid frequent memory access to main

22

memory by this optimization. But for search window bigger than 88x84, it accesses feature
value while detecting. It is because the required data in bigger window is out of small window
buffer. And it implies concurrent memory access with parallel processing in multicore by

frequently data transfer.

4.5

\ 4416
/nﬁ
39 /37

2 3
o)
g 2.71
& 25
2 & 101
15
]
2 3 4 5 6

core number

Figure 2-8 Speedup curve @ 2~6 SPE

On Sony PlayStation3, a typical distributed scratchpad memory multicore with 6 cores,
we take VGA size (640x480) image to evaluate the performance. The parameter settings in
algorithm as follows: scaling factor is 1.1 and initial scaling window is 30x30. We can find
out in Figure 2-7, performance is become saturated with increasing core number. The speedup
factor is interfered to linear grow up. It only obtains 4.16 times speedup using 6 cores. It is

under our expectation.

By further analysis, parallel object detection of CellCV suffers from load balance and
memory transfer issue. Figure 2-8 illustrates task distribution of object detection on 6 cores.

Execution time of each task is further categorized into computing and waiting. Computing

23

stands for time calculating feature sums while waiting indicates time waiting memory transfer
operations to ship required data in. As in the distribution, total execution time is dominated by
a single core while devotes itself to detection of smallest object. For other cores, about 20%
execution time is wasted idling. In addition, about 30% time is spent waiting memory transfer

operations. These effects prevent us from getting linear speedup.

|

' !

5 | | [Jl« >

idle |

4 | j

- I

o 3 | | [l :
(&) L

5 I

[I

1 [1 | [|

I |

0 I | [11l I

I I I

Exe. time on single core Memory contention time

Figure 2-9 Workload distribution.on 6-SPE @1.1 scaling factor and 640x480 image

1.4

1.2 —

workload (normalized to

0.8

1 2 3 4 5 6

core number

Figure 2-10 Workload comparison (normalized to single core)

Figure 2-9 shows the workload comparison, normalized in single core. While more cores

24

are deployed, the total workload is gradually increasing. The extra overhead comes from data
transfer waiting. It achieves 1.35 times of workload using 6 cores. And this result implies the

problem of memory transfer is a critical issue in future multicore platform.

2.4 Task Reorder and Row-Based Splitting

Task reorder and row-based splitting is proposed to overcome the workload balance
problem. This paper further analyzes the task workload in CellCV implementation. As in
Figure 2-10, CellCV diverse into two different implementation styles, one for search window
smaller than 88x84, and the other services for larger search window. Take object detection for
VGA image in scaling factor 1.2 using 5 SPEs as an example. Each bar represents a task. The
height of bars indicates the actual execution time of each task on SPE. Time wasted in
memory contention is marked using light color. Red bar stands for small window task while
blue one suggest large window task. In Figure 2-14, it'is obvious that the detector suffers from
poor load balancing. SPE1 who'is in charge of task4.and task5 become bottleneck. If the task
with heavy workload, task5, can be issued earlier, a free SPE can be allocated to take care of

it.
81412

65600 g5156

53700
49388

35510 35504
20133 21223
12484

7722
5370

2284 1228
[I -
0 1 2 3 4 5 3 7 8 9 10 1 12 13 14

Figure 2-11 Task sequence using 5-SPE in CellCV

25

|||||

SPEO

SPE1

SPE2

SPE3

SPE4

32355110 6 53790 89300 87%

4 20133 5 81412 101545 100%

2 49388 7 35504 el 90262 88%

0 65600 9 12484 10 il 4 89090 87%

1 65156 8212238 87985 86%

Detecting 640x 480 Image using 5 SPU, Total 15 Tasks, Lasting 101639 us

Figure 2-12 Task allocation using 5-SPE in CellCV

SPEO ‘ 0 88281 H 89596 96%
SPE1 ‘2 51534 ‘6 19675 ‘9 21212 ‘ 92421 99%
SPE2 ‘4 3.110 ‘5 44815 ‘11 || 89612 96%
SPE3 ‘ 1 62260 ‘7 30327 ‘ 92587 100%
SPE4 ‘3 64569 ‘e 12870 [10 ‘12‘ 89711 96%

aan1s
38110
30027
- naz
D lrm |:|
4 5 6 7 8 9

soss
wane
e
e,
2 e
+

10 11 12 13 1

Detecting 640x 480 Image using 5 SPU, Total 15 Tasks, Lasting

Figure 2-13-Interleaved task reorder

92658 us

Proposed interleaved task reorder can re-schedule the task sequence in non-increasing

workload order to achieve load balance, as shown in Figure 2-13. Somehow, if there are

extremely heavy tasks dominating the whole execution, reorder is helpless. Figure 2-16 is an

example of object detection by 6 cores. Memory contention problem become more critical

using 6 SPE, which increase execution time of task5 and make it the dominating task.

Proposed row-based splitting generates additional task partition by further partition tasks.

Each task now is in charge of object detection of specific size on several rows, as illustrated in

Figure 2-17. Compared to task reordering, row-based splitting can efficiently obtain load

balance. Table 2-1 lists the performance comparison of CellCV and row-based splitting as

scaling factor being 1.1, 1.2 and 1.3. .

26

SPEO

SPE1

SPE2.

SPE3

SPE4

SPES

SPEO

SPE1

SPE?2

SPE3

SPE4

SPES

1 67009

0 64271

2 46718

4 23311

3832167

Detecting 640x 480 Image using 6 SPU, Total 15 Tasks, Lasting

Figure 2-14 task allocation using 6-SPE in CellCV

95172 us

0 21246

1 18238

2 17486

8 11616[12 16295

SEIS (IS

6817178 s R1is5 81

4 15857

7 16957

5 22399

Detecting

640x 480 Image using 6 SPU, Total 30 Tasks, Lasting

84475

82130

82857

82084

83239

85454

85527 us

967%

967%

967%

97%

100%

Figure 2-16 Task allocation using row-based task splitting

27

76478

76999

76325

81148

75562

80%

80%

85%

95083 100%

Table 2-2 Performance of row-based splitting

image size Scale CellCV (fps) Row-based splitting
factor Improvement | Performance (fps)

1.1 3.8 7% 4.1

640x480 1.2 7.6 10% 8.5

1.3 8.2 13% 9.5

2.5 Observation

Memory transfer issue is neglected by above parallelization. Memory transfer time is
becoming the critical part in execution time as shown in Figure 2-18. Light color, which
denotes memory contention time, occupies a great amount of ratio in execution time. In
communication-intensive process as multi-resolution. applications, data transfer and memory
contention really degrade the system performance. Moreover, memory contention would more
and more serious by all processors sharing a memory resource. As core number increasing,
memory contention becomes critical problem in-multicore. For distributed scratchpad memory
multicore, software programming in-.data -transfer requires addition effort to avoid
unnecessary memory transfer. Efficient data use in local buffer is important to reduce
redundant memory access. Therefore, we propose a new task partition to take care of memory

transfer as described in follow chapter.

28

3 DATA-ORIENTED TASK PARTITION

In this chapter, we propose a data-oriented task partition to take advantage of
multi-resolution application’s characteristic. WWe use tile-based scanning to consider not only
inter-resolution data locality but alsointra-resolution data use efficiency. Furthermore, we can
elaborate superior performance by ‘a platform-dependent optimization flow. According to
these methods, we can construct balanced workload and low-data-transfer task partition for

multi-resolution applications.

29

3.1 Data-oriented task partition

Obiject detection is one of multi-resolution application. It performs detection on different
resolutions based on one input data. It contains multi-level data locality among resolutions.
Therefore, we propose a new task partition to maintain data locality across resolutions and
avoid unnecessary memory access comparing with resolution-based task partition.
Data-oriented task partition takes “data use” for one criterion. Once a portion of data is
brought into scratchpad memory, we will try to make best use of the data. As shown in Figure
3-1, we substitute the resolution-based task partition to the data-oriented task partition.
Differing from resolution-based task partition, we further take care of data use in
multi-dimension. We aims to reduce _unnecessary data transfer to optimize for
communicate-intensive application. By reducing- unnecessary memory transfer, we can
prevent the memory contention happening and improve the performance to linear

acceleration.

res2 OO res 2
////
A : —

res 1 2% . resl
wieaon| L TLp —> LA,

indow ' |

h Z) H

Figure 3-1 Data-oriented task partition differs from resolution-based partition

res 0

3.2 Tile-based Scanning

Management of memory transfer is important for distributed scratchpad memory

multicore. So, we care about data use in local store buffer. In one specific resolution, we

30

propose a tile-based scanning to reduce the unnecessary memory access for intra-resolution
procedure. The input image is cut into tiles which is a basic task partition unit. But the tile’s
size is restricted by small window buffer size. In small window optimization, the largest size
for small window buffer is (small_window_width x feature Sizemax). In CellCV, the small
window buffer is 176x84. But in low resolution, feature size is far shortened from 84. There is
some reserved memory space for storing integral image which is idle in low resolution case. It
Is kind of waste in resource. Therefore, under the small window buffer constraint, we can load
multiple row data block into scratchpad memory for computing multiple row process at the
same time. By this way, we can reduce redundant memory access. As illustrate in Figure 3-2,
we use 176x84 size of buffer to be a tile. Tile-based scanning becomes a basis in this

optimization.

Figure 3-2 Tile-based scanning

We can use a simple memory access model to analysis before simulation. The function f
means the data transfer size. This function is related to window size (s), image width (W),
image height (H), tile width (w) and tile height (h). So the data transfer for on specific

resolution in CellCV can be modeled as follow,

31

f(s, W, H w, h) =buffer siz exitr x xitry (
=(wW x (s +2) x (W(W?2) x(H -s)(sl20))
—A0xW x(5+2) x(H -9)s)

And the data transfer for specific resolution in tile-based scanning can be modeled as

follow,

f(s, W, H, w, h) = buffer siz exitr x xitry (
= (w x h) x (W/(w/2)) x (H/h)
=2xW xH _)

By this data transfer model, we can reduce data transfer size about 7 times of reduction
for one specific resolution in Table 3-1. Using this optimization can more reduce data transfer

size for intra-resolution operation.

Table 3-1" Static analysis of tile-based scanning

W=640 H=480 w=176 h=84

S Analytical data trgnsfer size (KB) Reduction
cellcv tile-based

32 35,840 4,800 7.47

35 38,938 4,800 8.11

Applied in data-oriented task partition, computation referencing the same tile would be
collected in the same task. We use the data as could as possible in the tile. By this way, we

take advantage of all available data locality.

3.3 Difficulty and Overhead

To maintain the identical function behavior, it would introduce memory access overhead

for X-direction and Y-direction. Moreover, it has another constraint for tile shifting in

32

X-direction. The memory transfer has to be alignment access. So the tile’s shift has to map to
multiple of 16-byte to prevent bus error. And it equals to 4-pixel. Consequently, the

X-direction incurs more serious boundary issue.

tile

15 image
Y /x’-direction

tile

y-direction

~

image

tile

image

Figure 3-3 Boundary issue in X-direction and Y-direction

In Figure 3-3, it illustrates the boundary problem of tile-based scanning. In left graph,
computation, across resolutions, belong to this tile would be executed while this tile of data is brought
in local memory. But there exists some computation’s data which portion of data is within in tile and
rest is out of tile. This incurs both in X-direction and Y-direction. In X-direction, shown in right-up
graph, there is an overlap data range between current tile and previous tile. Overlap data is extra

memory transfer to maintain same behavior.

33

3.4 3-Step Optimization Flow

By using data-oriented task partition can improve performance via concerning memory
access issue. Furthermore, we can find out there are some parameters would effect the
performance enhancement. The small window implementation highly depends on tile size.
The peak performance is related to the number of resolution using small window
implementation. Therefore, we propose a platform-dependent optimization flow to elaborate
the superior performance. This flow can enhance the data-oriented task partition by three
steps as follow. Firstly, we would consider the data allocation in local store. By a simple
experiment, we can re-arrangement the data structure stored in local store. Then we can
discuss the tile-shape affecting to the performance. Following, we would explore the relativity

between task granularity and performance. The entire flow is illustrated in Figure.

< start)
4

(Data allocation >
\ 4
(Tile-shape exploration >

\ 4
(Granularity exploration>
\ 4

e

Figure 3-4 platform-dependent optimization flow

34

€ Data allocation

This step is to discuss the data allocation in local store. In object detection, the main data
structures are kernel program, classifier and integral image (for small window buffer). In
CellCV implementation, it considers the frontal stages of classifiers are often used for
detection. To be convenient for execution and avoid frequent memory access, it loads
frontal-stage classifiers into local store buffer. Rest-stage classifiers is used ping-pong buffer
to load while detecting. And it allocates 176x84-pixel of size as small window buffer for
storing integral image. And the small window buffer’s size could affect the performance by

influence the number of resolution using small window optimization.

Except kernel program, our expectation is extending small window buffer to support
more resolutions for small window optimization: Therefore, we can use a simple

application-level analysis to be guideline for tradeoff between classifier and integral image.

100,000
80,000
B
= 60,000
:_5 9
fen
5
= 40,000
FH=
20,000
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Stage

Figure 3-5 Application-specific analysis of classifier

Figure 3-5 is a curve of rejection distribution for detecting candidate. Horizontal -axis

means stage-id. And vertical-axis means number of candidates. For first dot illustrate about

35

70,000 candidates are rejected at first stage, and so on. According to this result, 60 percent of
candidates are rejected at second stage and 90 percent of candidates are rejected at fifth stage.
It reminds us that the utility of classifier is focusing on frontal five stages. We can shorten the
size of resident classifier and expand the small window buffer under the memory size
constraint. But we can not sure about five stages of classifier as resident classifier can gain the
best performance in Cell processor. So we also use simulation-based analysis to find the
solution. In Figure3-6, X-axis represents the number of features storing as resident classifier.
Y-axis represents the execution time in mini-second. Therefore, we can find out the peak
performance happening at seven-stage. And the small window buffer can extend to 192x96

pixels as tile size.

600
580 N
560 \Q\

540

520 \\

500

480 . /o
460 N

240 /0\0/

\’/
420

400

Exe. time (ms)

35 85 135 185 235 285 335 385
of stage

Figure 3-6 Hardware-dependent analysis of classifier

€ Tile-shape exploration

After previous analysis, we can confirm the data allocation is the best. And the small
window size is also decided. How to use this small window buffer efficiently is a critical issue.
Hence, this step we want to discuss the tile-shape affecting to performance. Different shape

can introduce distinct level of boundary problem not only in X-axis but also Y-axis.

36

Additionally, it can affect number of resolution implemented in small window optimization.
Like slender tile would restrict the resolution implemented in small window mode by shorter
side. Consequently, we want to analyze this issue. As shown in Figure 3-7, X-axis represents
the tile’s width from short to long and the tile’s length vice versa. We can get the optimal
point at w=h (square). This result is as our expectation because of more resolutions using
small window buffer in square. But a fixed size of small window buffer can not map to square
perfectly all the time. Therefore, this exploration can choose the tile shape to appropriate
using small window buffer. The case-(w>h) is better than case-(w<h). It is because of window
shifting in X-direction must to be mapped to multiple of 16-byte (alignment access). And
case-(w<h) would introduce more times of tile’s movement in X-direction. It would cause

more redundant memory access.

460

N\

230 \ e
_/

NI

400

Exe. time (ms)

80 100 120 140 160 180 200
Tile width (pixel)

Figure 3-7 Tile-shape analysis

€ Granularity exploration

Different level of task granularity leads to two issues. Less task number would pose the

disadvantage of imbalance workload. Numerous tasks would increase software overhead of

37

grabbing tasks from centralized queue. Therefore, this step wants to analyze the relativity
between different level of granularity and performance. In this experiment, we discuss the
case of uniform task. We can merge multiple tasks into a packed task to shorten the task
instance. In the reality case of this experiment, the task partition in regular implementation is
referencing to resolution-based task partition while the task number in small window
implementation is controllable after adjusting tile size. However, this configuration would
introduce workload imbalance because of inappropriate task sequence. The former tasks
which come from small window implementation are finer than latter tasks which come from
regular implementation. Therefore, we finer partition the tasks in regular implementation as
position level. And we use task merging into uniform tasks to analysis task granularity
influencing performance. In Figure 3-8, it is a simulation-based analysis to find the optimal
solution. The horizontal axis denotes the task granularity in binary logarithm. And the vertical
axis denotes execution time. By this result, we can find out average 512 task instances

perform superior performance with uniform task merging.

445
440 4

430
425
/
420
‘\$\‘\‘\ /

Exe. time(ms)

415
- \‘\ //
405
400 o
305
4 5 6 7 8 9 10 11 12 13

task granularity (log2(task_num))

Figure 3-8 Granularity analysis

38

3.5 Design results

3.5.1 Memory access

14000
12075 12075
12000
§§ 10000
o
o
2]
§ 8000
(o}
<
3 6000
=
£ 4000
2000
378
0 L L | — |
cellev row-based data-oriented
splitting task partition

Figure:3-9-Access count comparison

450000 7 TA115.625 4T4T15.625
400000
350000
g% 300000
(]
N
Z 250000
—
<
£ 200000
g
= 150000
S
100000
50000 18007625
0 : :
cellcv row-based data-oriented task
splitting partition

Figure 3-10 Transfer size comparison

Tile-based scanning and data-oriented task partition are proposed to reduce redundant
memory access in CellCV. Therefore, we firstly compare memory access count and data

transfer for each version as shown in Figure 3-9 and Figure 3-10. Row-based splitting is

39

proposed to optimize workload distributed on each core. Hence, it has the same quantity of
memory access count/data transfer size as CellCV. And data-oriented task partition can reduce

97% memory access count and 95% data transfer size comparing to CellICV.

3.5.2 Workload balance

This thesis concerns about the memory access issue which is rarely to discuss for
multicore platform. Data-oriented task partition not only reduces memory access but also
takes care of workload balance. In Table 3-2, we list the workload distribution of each version.
We define the idle time represented by (the longest idle time within 6 SPEs / finish time). We
choose the worst case to evaluate workload distribution with each implementation. In CellCV,
the task is partitioned in high« level “which ' generates less task instance. It takes
resolution-based task partition.. Only 29 tasks are. parallelized on 6 SPEs. It would cause
serious workload imbalance.-Row-based splitting can shorten the idle time from 10.01% to
3.22% by creating extra task-instance. And by our optimization flow, data-oriented task

partition can shorten to 2.15%.

Table 3-2 Workload balance comparison

Version cellcv__ | row-based splitting| data-oriented partition
Task Number 29 34 512
idle 10.01 3.22 2.15

(idle % = the longest idle time within 6 SPEs / finish time)

40

4 EXPERIMENT RESULTS

In this thesis, we use a ‘Cell processor to simulate the entire experiment. It is one of
typical distributed scratchpad memory ‘multicore. "And we take adaboost-based object
detection as one case study. Proposed data-oriented task partition not only can reduce memory
access but also attain workload balance.- The experiment results would be compared to

CellCV and row-based task splitting in execution time, acceleration and frame-rate.

41

4.1 Cell Architecture

Figure 4-1 shows a high level block diagram of the CBE processor hardware. The CBE
processor is a multicore processor with 9 processor elements in total and a shared coherent
memory on-a-chip. The functionality of processors can be categorized into two kinds. One is
the PowerPC Processor Element (PPE) and the other is the Synergistic Processor Element
(SPE). There are one PPE and eight identical SPEs. All processor elements are connected to
each other and to the on-chip memory and 1/O controllers by the memory-coherent element

interconnect bus (EIB).

UnitlD—J SPE1 SPE3 SPES SPE7

PPE B 11y |1OIF_1 [¢>FlexlO

1

1

1

1
BEI

rTIIIIIzICoIcCiIo . EIB

IOIF_0 [+ FlexIO

SPEQ SPE2 SPE4 SPE6

n

DDR2 !

RAM
BEI Cell Broadband Engine Interface PPE PowerPC Processor Element
DR e Accets ooy SO Moroce or oot e

V ! SPE Synergistic Processor Element

EIB Elerment Interconnect Bus 2D XI0 to DDR2 logic
FlexlO Rambus FlexlO Bus XIO Rambus XDR /O (XIO) Cell
I0IF 10 Interface
MIC Memery Interface Controller

Figure 4-1 Block Diagram of Cell Broadband Engine

€ PowerPC Processor Elements

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC
processor that conforms to the PowerPC Architecture, with the vector/SIMD multimedia
extensions. The PPE consists of two main units, the PowerPC processor unit (PPU) and the

PowerPC processor storage subsystem (PPSS) as shown in Figure 4-2.

42

PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

L1 Instruction L1 Data
Cache Cache

PowerPC Processor
Storage Subsystemn (PPSS)

L2 Cache

Figure 4-2 PPE Block Diagram

The PPU performs instruction execution. It has a level-1 (L1) instruction cache and data
cache and six execution units. It can load 32 bytes and store 16 bytes independently and
memory-coherently, per processor. cycle. The PPSS handles memory requests from the PPU
and external requests to the PPE from SPES or 1/O devices. It has a unified level-2 (L2)
instruction and data cache. The PPU and the PPSS and-their functional units are shown as

Figure 4-3.

PPE

PowerPC Processing Unit (PPU}

Instruction Linit {IL) Fixed-Point Unit {FXU) Vector and Scalar Unit (VSU)
o n) .
| Branch Unit (BRU) | Loac/Store Unit (LSU) FPU+ VXU Register
Files
‘ Level-1 (L1} Instruction Cache Level-1 (L1) Data Cache Memory Management Unit
A (MMU)
-

32-byte loads
16-byte stores

PowerPC Processor Storage Subsystem (PPSS)

Level-2 (L2) Unified Cache

16-byte loads and stores

Element Interconnect Bus (EIE)

FPU Floating-Point Unit
WXL Vector Media Extension Unit

Figure 4-3 PPE Functional Units

43

PPU could further divided into the following functional units.

e Instruction Unit (1U)

The IU contains a 2-way set-associative and reload-on-error 32KB L1 instruction cache.
The cache-line size is 128 bytes. The U performs the instruction-fetch, decode, dispatch,

issue, and completion portions of execution.

e Branch Unit (BRU)

The BRU performs the branch functionality.

e Fixed-Point Unit (FXU)

The FXU performs fixed-point operations, including add, multiply, divide, compare, shift,

rotate, and logical instructions.

e Load and Store Unit (LSU)

The LSU contains a 4-way set-associative and write-through L1 data cache with 32 KB.
The cache-line size is 128 bytes. The LSU performs all data accesses, including load and store

instructions.

e \ector/Scalar Unit (VSU)

The VSU contains a floating-point unit (FPU) and a 128-bit vector/SIMD multimedia
extension unit (VXU), which together execute floating-point and vector/SIMD multimedia

extension instructions.

e Memory Management Unit (MMU)

The MMU contains a 64-entry segment look-aside buffer (SLB) and 1024-entry, unified,
parity protected translation look-aside buffer (TLB). The MMU manages address translation

for all memory accesses.

44

The PPSS handles all memory accesses by the PPU and memory-coherence operations
from the element interconnect bus (EIB). The PPSS has a unified, 512-KB, 8-way
set-associative, write-back L2 cache with error-correction code (ECC). The cache-line size for
the L2 is 128 bytes as the same as L1 cache-line size. The PPSS performs data-prefetch for
the PPU and bus arbitration and pacing onto the EIB. There are MMU, L1 instruction cache,
and L1 data cache of PPU getting data from PPSS by a shared 32-byte load port. There are
MMU and L1 data cache of PPU putting data to PPSS by a shared 16-byte store port. The
interface between the PPSS and EIB supports 16-byte load and 16-byte store buses. One
storage access occurs at a time, and all accesses appear to occur in program order. The

interface supports resource allocation management.

€ Synergistic Processor.Elements

The eight Synergistic Processor Elements (SPES)-execute a new single instruction,
multiple data (SIMD) instruction, set—the Synergistic Processor Unit Instruction Set
Architecture. Each SPE is a . 128-bit_ RISC . processor specialized for data-rich,
compute-intensive SIMD and scalar applications. It consists of two main units, the synergistic

processor unit (SPU) and the memory flow controller (MFC), as shown in Figure 4-4.

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPL)

Local Store (LS)

Memory Flow Controller (MFC)

DMA Controller

Figure 4-4 SPE Block Diagram

45

The LS is a 256 KB, error-correcting code (ECC)-protected, single-ported, noncaching
memory. It stores all instructions and data used by the SPU. It supports one access per cycle
from either SPE software or DMA transfers. SPU instruction prefetches are 128 bytes per
cycle. SPU data access bandwidth is 16 bytes per cycle, quadword aligned. DMA-access
bandwidth is 128 bytes per cycle. DMA transfers perform a read-modify-write of LS for

writes less than a quadword.

Each SPU has its own MFC. The MFC serves as the SPU’s interface, by means of the
element interconnect bus (EIB), to main-storage and other processor elements and system
devices. The MFC’s primary role is to interface its LS-storage domain with the mainstorage
domain. It does this by means of a DMA controller that moves instructions and data between
its LS and main storage. The MFC-also-supports storage protection on the main-storage side
of its DMA transfers, synchronization-between main storage and the LS, and communication
functions (such as mailbox and signal-notification messaging) with the PPE and other SPEs

and devices.

Unit
(SFX)

Unit
(SFF)

Even Pipeline

Figure 4-5 SPE Functional Units

46

Local
Storage
(LS}

Synergistic Execution Unit (SXU)
- - " 7" -"-""""7"7>""7/"7>"/-"/"¥"/=/"”/\»"/"/"”/-/"~"=7/—"/""/"”~= |
| Odd Pipeline |
| |
1 |
I SPU Odd SPU Load SPU SPU Channel |
| Fixed-Point and Store Control anc DMA |
! Unit Unit Unit Unit !
: (SFS) (5LS) (SCM) (85C) :
| |
I I I
| |
| | SPU
| | Register File
| ! Unit
: : {SRF)
| |
| |
! SPU Even SPU |
| Fixed-Point Floating-Point I
| |
| 1
| |
| |
| |
|

Figure 4-5 shows the SPE functional units. The SPU issues two instructions to its two
execution pipelines respectively. The pipelines are referred to as even (pipeline 0) and odd
(pipeline 1). Whether an instruction goes to the odd or even pipeline depends on the

instruction type. The functional units in SPU are described as follows.

e SPU Odd Fixed-Point Unit (SFS)

The SFS executes byte shift, rotate mask, and shuffle operations on quadwords.

e SPU Load and Store Unit (SLS)

The SLS executes load and store instructions and hint for branch instructions. It also

handles DMA requests to the LS.

e SPU Control Unit (SCN)

The SCN fetches and issues instructions to the two pipelines. It performs control

functions such as branch instructions; arbitration of access to the LS and register file, etc.

e SPU Channel and DMA Unit'(SSC)

The SSC manages communication, data transfer, and control into and out of the SPU.

e SPU Even Fixed-Point Unit (SFX)

The SFX executes arithmetic instructions, logical instructions, word SIMD shifts and
rotations, floating-point comparisons, and floating-point reciprocal and reciprocal square-root

estimations

e SPU Floating-Point Unit (SFP)

The SFP executes single-precision and double-precision floating point instructions,
16-bit integer multiplies and conversions, and byte operations. The 32-bit multiplies are

implemented in software using 16-bit multiplies.

47

€ Element Interconnect Bus

Figure 4-6 shows the element interconnect bus (EIB), which is the communication path
for data commands and data among the PPE, SPEs, main system memory, and external 1/O.
The EIB data network consists of four 16-byte-wide data rings: two running clockwise and
the other two counterclockwise. Each ring allows up to three concurrent data transfers, as long

as their paths don’t overlap.

EPE SPE1 SPE3 SPES SPE7 10IF1

Y
Y

i
Y

A
A

-
md - -t - -
//‘ L e - - o

Data network Data bus arbiter

- -
s | o

//'/
Yiy
<

- -
MIC SPEO SPE2 SPE4 SPE6 BIF
IOIFO

BIF Broadband interface
IOIF I/O interface

Figure 4-6 Element Interconnect Bus (EIB)

To initiate a data transfer, bus elements must request data bus access. The EIB data bus
arbiter processes these requests and decides which ring should handle each request. The
arbiter always selects one of the two rings that travel in the direction of the shortest transfer,
thus ensuring that the data won’t need to travel more than halfway around the ring to its

destination. The arbiter also schedules the transfer to ensure that it won’t interfere with other

48

in-flight transactions. To minimize stall on reads, the arbiter gives priority to requests coming
from the memory controller. It treats all others equally in round-robin fashion. Thus, certain

communication patterns will be more efficient than others.

The EIB operates at half the processor-clock speed. Each EIB unit can simultaneously
send and receive 16 bytes of data every bus cycle. The EIB’s maximum data bandwidth is
limited by the rate at which addresses are snooped across all units in the system, which is one
address per bus cycle. Each snooped address request can potentially transfer up to 128 bytes,
so in a 3.2GHz Cell processor, the theoretical peak data bandwidth on the EIB is 128 bytes

x1.6 GHz = 204.8 Ghytes/s.

However, the actual data bandwidth achieved on the EIB depends on several factors: the
destination and source’s relative:locations, the chance of a new transfer’s interfering with
transfers in progress, the number of Cell chips in the system, whether data transfers are
to/from memory or between ‘local stores in the SPES, and the data arbiter’s efficiency. EIB

bandwidth would be reduced in‘some non-ideal cases:

€ Inter Processor Communication

Cell Broadband Engine (CBE) has many attributes of a shared-memory system. The
PowerPC Processor Element (PPE) and all Synergistic Processor Elements (SPEs) have
coherent access to main storage. But the CBE processor is not a traditional shared-memory
processor. SPE only can execute programs and directly access data from and to its own local
store (LS). Because of lacking directly accessing to shared memory, SPE must using three
primary communication mechanisms to communicate with other elements on EIB: DMA
transfers, mailbox messages, and signal notification. All these three communication
mechanisms are controlled by SPE’s memory flow controller (MFC). The communication

mechanisms are summarized as follow:

49

e DMA transfers

Used to move data and instructions between main storage and a local store(LS). An MFC
supports naturally aligned DMA transfer sizes of 1, 2, 4, 8, and 16bytes and multiple of 16
bytes. For naturally aligned 1, 2, 4, and 8-byte transfers, the source and destination addresses
must have the same 4 least significant bits (LSB). A single DMA command could transfer up
to 16 KB between an LS and shared memory storage. The throughput of a DMA transfer
when the source and destination addresses are 128-byte aligned is double as compared to that
of a mis-aligned transfer within a cache line. It’s because that the mis-aligned transfer is a
partial cache-line transfer, and actually there may be two bus requests for this transfer. Peak
performance is achieved when the size of the transfer is a multiple of 128 bytes and both the
effective address (EA) and the local store address (LSA) of the DMA transfer are 128-byte
aligned. SPEs rely on asynchronous-DMA transfers to hide memory latency and transfer

overhead by moving data in parallel' with synergistic processor unit (SPU) computation.

A MFC has only 16 entries in MFC SPU command queue. A DMA list is sequence of
eight-byte list elements, stored in an SPE’s LS, each of which describes a DMA transfer and
only occupy one of the SPU command queue. DMA list commands can be initiated only by
SPU programs, not by other devices. A DMA list command can specify up to 2048 DMA
transfers, each up to 16 KB in length. Thus, a DMA list command can transfer up to 32 MB,
which is 128 times the size of the 256 KB LS, more than enough to accommodate future
increases in the size of LS. The space required for the maximum-size DMA list is 16 KB.
DMA list commands are used to move data between a contiguous area in an SPE’s LS and

possibly noncontiguous area in the effective address space.

e Mailboxes

Used for control communication between an SPE and the PPE or other devices.

50

Supporting the sending and buffering of 32-bit messages. Each SPE can access three mailbox
channels, each of which is connected to a mailbox register in the SPU’s MFC. Two one-entry
mailbox channels: the SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt
Mailbox, which are provided for sending messages from the SPE to the PPE or other device.
One four-entry mailbox channel: the SPU Read Inbound Mailbox, which is provided for

sending messages from the PPE, or other SPEs or devices.
e Signal notification

Used for control communication from the PPE or other devices. SPE signal-notification
channels are connected to inbound registers (into the SPE). The PPE, other SPEs, and other
devices use the signal notification registers.to send information, such as a buffer-completion
synchronization flag, to an SPE,/An"SPE has two 32-bit signal-notification registers, each of

which has a corresponding MMIO register that can be written with signal-notification data.

4.2 Parameters settings and results

Figure 4-7 VGA set

51

960x720

- o 640x480 52
)
”

Figure 4-8 Scaled test set

Algorithm parameters in adaboost-based object detection are as follows. The entire
experiment is using scale-window implementation. We take 1.1, 1.2, and 1.3 for scaling factor
to observe performance. And ‘initial window size is 30%¥30. Throughout the experiment, two
sets of test image are used. Four 640x480 image is collected as VGA set to verify detection
performance on VGA images. Besides; a single-image is resized into 960x720, 640x480, and
320x240 to form the scaled test set. The test set’s content includes different number, size and

color tones of background to evaluate the experiment, as shown in Figure 4-6.

€ VGA set (image size = 640x480)

Table 4-1 Performance comparison @ VGA set

Scale Improvement (V.S. CellCV) Improvement (V.S. row-based splitting)

factor 3-core | 4-core 5-core | 6-core | 3-core | 4-core | 5-core | 6-core
1.1 12.3% | 15.0% | 21.2% | 22.8% 8.3% 13.1% | 17.2% | 15.6%
1.2 16.9% | 26.1% | 23.9% | 20.2% | 15.9% | 15.8% | 12.6% | 10.0%
1.3 13.9% | 11.0% | 23.5% | 35.1% 4.7% 7.7% 18.4% | 22.2%

In Table 4-1, it shows the performance comparison with the CellCV and row-based

splitting. We can fine out that the data-oriented task partition can obtain more improvement in

52

scale factor = 1.3 with increasing core number. In case of scale factor = 1.3, low ratio of
execution time is spent on computing, and high ratio of time is wasted in waiting memory
transfer operation. While more cores are deployed, these effects prevent us from getting linear
speedup. Proposed data-oriented task partition can reduce unnecessary memory transfer and
avoid memory contention. Therefore, we can eliminate the weight of data transfer in whole
execution time. And we can improve up to 35.1% comparing with CellCV. As shown in Table
4-2, Table 4-3 and Table 4-4, they represent performance acceleration with two to six cores in
CellCV, row-based splitting and data-oriented task partition. In Table 4-2, the performance is
performed with high speedup in scale factor = 1.1. It is what | mentioned before. In case of
scale factor = 1.1, the workload balance problem is light by sufficient task instance in
resolution-based task partition. Additionally, the time waiting in data transfer is relativity low

with a great amount of computation by.lots of detection candidates.

Table-4-2 Acceleration of CellCV-@ VGA set

Scale Acceleration

factor |2-core|3-core|4-core|5-core|6-core
1.1 1.65°1243 |3.16 | 3.73 | 4.33
1.2 1.64 | 2.40 | 2.86 | 3.64 | 4.40
1.3 1.84 | 252 | 3.45 | 3.67 | 3.66

In Table 4-3, it shows the performance accelerated trend of row-based splitting. As the
image size increasing, the workload balance issue is more negligible by its sufficient task.
Therefore, the row-based splitting method is useful for small image size and high scale factor
which generates less task instances by resolution-based task partition. And in Table 4-3,

row-based splitting method can accelerate the speedup up to 4.4.

53

Table 4-3 Acceleration of row-based splitting @ VGA set

Scale Acceleration

factor |2-core|3-core|4-core|5-core|6-core
1.1 1.66 | 253 | 3.22 | 3.88 | 4.66
1.2 1.64 |2.42 | 3.18 [4.11 [4.90
1.3 1.84 |2.77 | 3.57 | 3.87 | 4.20

Table 4-4 Acceleration of data-oriented task partition @ VGA set

Scale Acceleration

factor |2-core|3-core|4-core|5-core|6-core
1.1 181 [2.77 | 3.72 | 4.73 | 5.60
1.2 1.88 12.88 |3.87 [4.79 [5.51
1.3 1.93 |1 2.93 |3.87 [4.80 | 5.63

Table 4-5 Performance in frame rate @ VGA set

Scale Performance (fps)

factor |1-core|2-core|3-core|4-core|5-core|6-core
1.1 0.9 16 |25 |33 |42 |50
1.2 20 (32 |50 |67 | 83 | 95
1.3 25 144 (66 |87 |10.8 |12.7

In Table 4-4, it illustrates the acceleration with data-oriented task partition for object
detection on cell processor. This manner can almost enhance the performance to linear
acceleration as we expect. In communication-intensive applications as multi-resolution
application, data transfer is especially important to be considered to obtain superior
performance. As above mention, data-oriented task partition can optimize at high scale factor
and small image size because it waste much of time in data transfer than computing. In Table
4-5, we show performance in frame rate (fps). Because the entire analysis and design flow for
multi-resolution application is focusing on general distributed scratchpad memory multicore
platform. We didn’t apply local optimization like intrinsic functions of Cell SDK to
optimization for Cell processor in this experiment results. Even for light weight multicore,

this design flow can support a design methodology for multi-resolution application. And in

54

Table 4-5, we can improve performance up to 12.7 fps in VGA size. Appling with local

optimization, we can obtain about 25 fps.

€ Scaled test set (scale factor = 1.2)

Table 4-6 shows the performance comparison with different image size. Similar to VGA
test set, proposed task-oriented task partition is much more useful for small image size
because of its high data transfer ratio. And we can improve up to 31.8% performance
comparing with CellCV. Table 4-7, Table4-8 and Table 4-9 represent acceleration of CellCV,
row-based splitting and data-oriented task partition. In CellCV, big size of test image obtains
much higher speedup comparing with the small image size because computing part is more
critical than communication part. <It can fully-utilize multicore platform to accelerate the
computing part. But it only can achieve 4.66 of speedup-at 6 cores. In row-based splitting, it
improves up to 4.91 of speedup in Table4-8. And this manner can perform better effect on
insufficient task number as small image size. By data-oriented task partition, the performance
can be achieved average 5.6 speedup-from CellCV on single core. Table 4-10 shows the
performance of scaled test set in frame rate. We can achieve 42.8 fps in 320x240. Appling

with local optimization, we can achieve about 83 fps.

Table 4-6 Performance comparison @ scaled test set

image Improvement (V.S. CellCV) Improvement (V.S. row-based splitting)
size 3-core | 4-core 5-core | 6-core | 3-core | 4-core | 5-core | 6-core
960x720] 9.8% 19.1% | 19.4% | 18.9% 7.8% 14.1% | 13.4% | 13.9%
640x480| 16.9% | 26.1% | 23.9% | 20.2% | 15.9% | 15.8% | 12.6% | 10.0%
320x240| 16.0% | 23.8% | 20.0% | 31.8% | 12.0% | 10.8% 8.0% 15.8%

Table 4-7 Acceleration of CellCV @ scaled test set

55

image Acceleration

size |2-core|3-core|4-core|5-core|6-core
960x720] 1.76 | 2.57 | 3.13 | 3.85 | 4.66
640><480| 1.64 |2.40 | 2.86 | 3.64 | 4.40
320><240| 1.72 12.41 | 3.01 | 3.83 | 3.82

Table 4-8 Performance of row-based splitting @ scaled test set

image Acceleration

size |2-core|3-core|4-core|5-core|6-core
960x720] 1.78 | 2.63 | 3.30 | 4.09 | 4.91
640x480| 1.64 | 2.42 | 3.18 [4.11 | 4.90
320x240| 1.78 | 2.63 | 3.30 | 4.09 | 4.91

Table 4-9 Performance of data-oriented task partition @ scaled test set

image Acceleration

size |2-core|3-core|4-core|5-core|6-core
960x720] 1.95 12.85 | 3.88 1 4.77 | 5.74
640><480| 1.88 |12.88 |.3.87 [4.79 | 5.51
320><240| 1.88 | 2.87 13.95 | 4.78 | 5.60

Table 4-10¢ Performance in frame rate @ scaled test set

image Performance (fps)
size |1-core|2-core|3-core|4-core|5-core|6-core
960x720] 0.6 1.1 16 | 22 | 2.7 | 3.3
640x480f 2.0 | 3.2 [50 | 6.7 | 83 | 95
320%x240] 85 |14.4 | 22.0 |30.2 | 36.6 |42.8

4.2.1 Overall performance enhancement comparison

We take value 1.1 for scaling factor and size 640x480 for test image in this series
simulation. In Figure 4-19, we can use data-oriented task partition to obtain 9% performance
improvement comparing with CellCV. It exploits all available data locality across resolutions.
And performance is improved going through platform-dependent optimization flow: data

allocation, tile-shape exploration and granularity exploration. In optimization flow, data

56

allocation step can improve 8% comparing with previous step. It is most important step in this
flow. Additionally, Tile-shape exploration and granularity exploration also can improve 4%

and 2% from previous step. So we can achieve 4.96fps from original 3.88fps.

4.2
4.96fps
41 + Granularity exploration 204
Tile-exploration 4%
4r .
Data-allocation 8%
fps3.9 | Data-oriented
3.88fps task partition %
p p
38 |
3.7
3.6
cellev proposed

Figure'4-9. Improvement comparing with CellCV

57

5 CONCLUSIONS

In this thesis, we propose a data-oriented task partition for multi-resolution applications.
Proposed partition considers multi-dimension data ‘locality across resolutions to reduce
redundant memory transfer. Instead of raster scanning, tile-based scanning is adopted. As a
result, most available data locality can be utilized. It can relieve loading of interconnect
network and avoid memory contention. Moreover, we also propose an optimization flow for
parallelizing multi-resolution application on distributed scratchpad memory multicore. The
optimization goes through data allocation, tile-shape exploration and granularity exploration

to obtain superior performance.

Taking Viola and Jones object detection as case study, which plays an important role in
intelligent multimedia processing. When implemented on PlayStation3, a typical distributed
scratchpad memory multicore. Following proposed optimization flow, we can reduce 95%

data transfer comparing to conventional CellCV implementation. Speedup factor can achieve

58

5.6 times of acceleration from CellCV version by using 6 cores. The execution time is

improved 25% using 6 cores compared to CellCV.

In the future, we would apply this method to another multi-resolution application.
Augmented reality is one popular application for smart phone. Augmented reality (AR) is a
term for a live direct or indirect view of a physical real-would environment whose elements
are augmented by virtual computer-generated imagery. In this application, object recognition

for real-world environment is a necessary procedure for following operation.

To further improve for object detection, we would try to develop a fast algorithm for
data-oriented task partition. According to inter-resolution consideration, it is possible
developing computation compression. We_expect this method can not only maintain the

accuracy but also reduce the computing.

59

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

R. Banakar etal. “Scratchpad memory: Design alternative for cache on-chip
memory in embedded systems,” in Proc. CODES, 2002

J. Kahle etal., “Introduction to the Cell multiprocessor,” 1BM J. RES. & DEV., vol.
49, no. 4/5, pp. 589-604, July 2005.

P. Viola and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple
Feature”, in Proc. CVPR, vol. 1, pp. 8-14, 2001

OpenCV Library. [Online]. Available: http://sourceforge.net/projects/opencvlibrary.
[Accessed: Apr. 16, 2009]

OpenCV on the Cell. [Online}. Available:
http://cell.fixstars.com/opencv/index.php/OpenCV_on_the_Cell. [Accessed: Apr. 16,
2009]

Shin-Kai Chen, Tay-Jyi Lin and Chih-Wei Liu, ' “Parallel object detection on
multicore platform,” ‘in Prac. SiPS, 2009

Cell Broadband Engine Programming Tutorial, IBM, Mar. 2007.
Cell Broadband Engine Programming Handbook, IBM, Apr. 2007.

U. Kapasi etal., “Programmable stream processors,” Computer, vol.36, no.8, pp.
54-62, Aug. 2003

J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach,
4™ Edition, calif.: Morgan Kaufmann Publishers, 2007

“Multicore processor,” http://en.wikipedia.org/wiki/multicore_processor.html. 2009

H. Sugano and R. Miyamoto, “A real-time object recognition system on Cell
Broadband Engine,” Advances in Image and Video Technology, D. Mery and L,
Rueda, efds., LNCS Series 4872, Berlin: Springer-Verlag, pp. 932-943, 2007

“CoWare Platform architecture,” Coware Inc.,
http://www.coware.com/products/platformarchitect.php. 2009

60

http://sourceforge.net/projects/opencvlibrary
http://cell.fixstars.com/opencv/index.php/OpenCV_on_the_Cell
http://en.wikipedia.org/wiki/multicore_processor.html
http://www.coware.com/products/platformarchitect.php.%202009

[14] M. Rabbani, R. Joshiet al., “An overview of JPEG2000 still image compression
standard”, Proc. IEEE Data Comp. Conf., Vol 17/1, 2002

[15] R. Gemello, F. Mana, D. Albesano, and R. De Mori, “ Multiple resolution analysis for
robust automatic speech reconition,” in Proc Computer Speech and Language, vol. 20,
no. 1, pp. 2-21, 200

61

% H R

HABR 1985 £ 2 7 1 p M A FEE-2007 ERFEAAE T I 1 RS L ELY
o F ARl A F TSy AL 02011 E A AR ET R ER
S AR - TR R RORAE E AR e Y- ¥ B LA S R | R L % LR

v FHRALHE

