WIMAX 3% g i 75 e
AR IEER R
WiIMAX Convolutional Turbo Code Technology

and Digital Signal Processor Implementation

RN AL

d AR R L

T
Y
pr

=

,L—L/\E—LE

WIMAX' 3% s $im #f H i

BB 2 BF IR

WIMAX Convolutional Turbo Code Technology
and Digital Signal Processor Implementation

PrAgsy Student: Shao-Hsueh Tseng

R E B L Advisor: Dr. David W. Lin
Bl Rdd ~ &
CR X BRI
FAd =
A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in
Electronics Engineering
October 2009
Hsinchu, Taiwan, Republic of China

PR R4 L AEL

WIMAX it %
BHEFAGLRIEZTTR
ZENERE o F IR G L

IEEE 802.166 & 42 if 2B ¥ 28 At chB ¥ 3827 27 b 2L

U b et] J50 8 DA P % 3 L B S

A w7 IEEE 802.16e OFDMA #7537 st %R #h
7 (CTC) ki ax F IR i 5Ued2 B (DSP) o P 1 % #h g <
- kL & s g (duo-binary CRSC) $# re 2 4% £
T 28 ¥ (max-log-MAP) i& = BCJR (Bahl "Cock ‘“Jelinek v
Raviv o 287 3 4 (A5 & L)fEm s 52 o A qlt C 335 W kit
B R et Ft > 2 4 max-log-MAP H g A o 3 A

e e & FELE THER AR

#F A TIC6416 DSP T o s\ imecsg 5 B8 /&> 12 % 4% DSP
REESNED T (FEY > F ooy R BaE N R - R4nfE

BN A TV E TN F) 800K A kB id B o s {8 fRAG B ehid

BRHEEH2E > &n ¥ EF|E §y 1500K = A a8 & B

WIMAX Convolutional Turbo Code Technology

and Digital Signal Processor Implementation

Student: Shao-Hsueh Tseng Advisor: Dr. David W. Lin

Department of Electronics Engineering
& Institute of Electronics

National Chiao Tung University

Abstract

In the IEEE 802.16e wireless communication standard, a forward error
correction (FEC) mechanism is presented are the transmitter side to
reduce the noisy channel effect. The focus is on the channel coding.

The focus of this thesis is the research of the convolutional turbo code
(CTC) defined in IEEE 802.16e OFDMA and implement on the C6416
DSP. We explain the duo-binary circular recursive systematic
convolutional encoding (duo-binary CRSC) and use BCJR decoding
algorithm by max-log-MAP. We employ the C program to insure the
correctness of our algorithm and compensate the performance loss by
max-log-MAP, furthermore, simulate the CTC for different modulations
in AWGN.

Then, we implement on Tl C6416 DSP, changing trellis order and
using intrinsic function to achieve parallel operation. Therefore, we
improve decoder operation speed efficiently. For original decoder just can
achieved a processing rate of 800 Kbps . For improved decoder , which is
approximately 2 times speed up in decoding rate. Therefore, the decoder

can achieve a further data processing rate of 1500 Kbps.

Ak A F AR PR A ady ER RS e L AN 2
RF R 2 AR E L T T AR s G S e 3 R

;JT_FFB,,EE, i® ;\;g;,l 3 A\’H” z ﬁéx’;‘i—ﬂa 5{‘5"5‘; 4 o {7}%5$++—}’\§ al mFM_EL xR

RBOER{AFRELAORA AT i S EED T Bt £ 8

b d RER BT S H AL AR R e |0 ¢ F R R
P FEEUEE SR PR #HL EFE - HEIFTE 25 K e
RE A LRI 7 2 B E SRR P T A R S G
FRE R RS MR dp ¥ 96 s B B REER
Bz AR A AT E LR R P fet - Ao £ F 355 3R E o

EA Y A

BPe R iR WEE YR E ELIRG R R E

Bfs s R FRBIANFA > ARBMET A Fr AR FIEL A

—\\

i% A A EE = p,j—rp,j—LrﬁﬁTnl,ﬁ;\.\}w;\. _@L’E;ﬁ&gﬁ‘)&

SO E 110 hETH

Contents

1 Introduction 1
1.1 Scope of the Work 1
1.2 Organization of this Thesis 2

2 Overview of CTC in IEEE 802.16e OFDMA 3
2.1 Convolution Turbo Code Specification [1J<¢.. 3

2.1.1 Randomizer [1] . . .2 .0 o o0 4

2.1.2 CTC Encoder In IEEE 802.16e OFDMA [1] 6

213 1/3CTCEncoder [1] 8

2.14 CTC Interleaver [1] 10

2.1.5 CTC Tail-Biting [1], [4] . . .+« o o o oo 11
2.1.6 Subpacket Generation (Channel Interleaver or Interleaver and Punc-

turing) [1] 14

2.1.7 Modulation [1] Lo 19

2.1.8 Demodulation for Bit-Interleaved Coded Modulation [3] 19

2.2 Decoding of CTC 23

2.2.1 The Turbo Decoding Algorithm [5]
2.2.2 Decoding Rule for CRSC Codes with Non-binary Trellis [8]

2.2.3 Simplified Max-Log-MAP Algorithm for Double-Binary CTC [8] . . .

3 DSP Implementation Environment
3.1 The DSP Board [12]
3.2 The DSP Chip [12] o
3.2.1 Central Processing Unit [12]
3.22 Memory [14]
3.3 TI's Code Development Environment [15]
3.4 Code Development Flow [17]
3.5 Code Optimization on TT DSP. Platform . .«
3.5.1 Compiler Optimization Options [17] .~.
3.5.2 Software Pipelining [18] "“aaii . L

3.5.3 Macros and Intrinsic Functions [17] L.

4 Fixed-Point Implementation of CTC Encoder and Decoder
4.1 Performance in AWGN Channel with Floating-Point Processing
4.2 Performance in AWGN Channel with Fixed-Point Processing
4.2.1 Scaling Method [22]

4.2.2 Clipping Method [19], [20]

5 Speeding Up of DSP Implementation

i

28

33

33

34

36

39

40

42

42

44

46

47

48

48

49

53

60

67

5.1 Speed of DSP [17] 67

5.2 Original State Order [22] 71
5.3 Arrange State Order to Achieve Parallelism 73
5.4 Comparison of Speed 78

5.4.1 Comparison of Original and Improved Codes in Additions, Multiplica-

tions and Intrinsic Functions 78

5.4.2 Processing Rate of CTC Decoder 86

6 Conclusion and Future Work 89
6.1 Conclusion 89
6.2 Future Work 90
Bibliography 91

il

List of Figures

2.1 Use of CTC in transmitter and receiver of IEEE 802.16e OFDMA (from [1]). 4

2.2 PRBS for data randomization (from [1], Fig. 337). 6
2.3 Structure of CTC in transmitter ans decoding in receiver (based on [1]).. . . 7
24 CTCencoder (baseon [1]).. 9
2.5 CTC rate 1/3 encoder flow chart [22]. 9
2.6 CTC encoding slot concatenation fordifferent rates [1]. 11
2.7 CTC channel coding per modulation (modified from [1]). 12
2.8 CTC interleaver in two steps (modified-from [1]). 13
2.9 Block diagram of CTC channel interleaving scheme (from [1]). 17
2.10 QPSK, 16-QAM, and 64-QAM constellations (from [1]). 20
2.11 Metric partitions of the 16-QAM constellation (from [3]). 23
2.12 Block diagram of a turbo decoder (from [5]). 24

2.13 CTC trellis structure of duo-binary convolutional code with feedback encoder

(from [8]). 26
3.1 Sundance’s SMT395 module (from [11]). 34
3.2 Functional block and CPU (DSP core) diagram [13].. 38

v

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

C64x cache memory architecture [14]. L.
Code development flow for C6000 [17].

Software-pipelined loop [17]. Lo L

Performance of CTC at different p values under three modulations with 288

information bits. L.

Performance of CTC at different p values under three different modulations

with 432 information bits.

Performance of CTC at 288-bit and p = 0.75 with different modulations em-

ploying floating-point computation at 4 iterations.

Performance of CTC at 432-bit and p = 0.75 with different modulations em-

ploying floating-point computation,at 4 iterations.

Hypothetical reference CTC decoder: implementation with marking of fixed-

point data format at various place.” +
CTC fixed-point truncation parameters (modified from [22]).

[lustration of fixed-point data formats with the scaling method, where Q11.4
may be replaced by other setting (such as Q9.6 or Q14.1) depending on code

rate and operating condition.o L
CTC decoding at different bit numbers with different modulations.

Performance with scaling of various quantities in CTC decoding to avoid over-

flow at high SNR.

Performance of CTC with different scale factors under three modulations with

288 information bits.

4.11 Performance of CTC with different scale factors under three modulations with

432 information bits.o
4.12 Fixed-point data format with the clipping method.

4.13 Performance of CTC at different clipping ranges under three modulations with

288 information bits.

4.14 Performance of CTC at different clipping ranges under three modulations with

432 information bits.

4.15 Performance of rate 1/2 CTC with 288 information bits with floating-point

decoding vs. fixed-point under clipping method.

4.16 Performance of rate 3/4 CTC with 432 information bits with floating-point

decoding vs. fixed-point under clipping method.

5.1 Graphical representation of the _amem4() and the -maz2() intrinsics [17]. . .
5.2 Graphical representation of the _dotp2() intrinsic [17].
5.3 Graphical representation of _packX'X2() intrinsics[17].
5.4 Overall encoder and decoder architecture.

5.5 Trellis diagram, every branch in the trellis connecting at time k — 1 to a state

5.6 Arrangement of trellis order for forward and backward metrics.
5.7 Use of the packX X2() intrinsics for forward metric
5.8 Improved C code for the alpha() function.
5.9 Assembly code of the alpha() function (1/5).

5.10 Assembly code of the alpha() function (2/5).

vi

65

66

5.11 Assembly code of the alpha() function (3/5). 81

5.12 Assembly code of the alpha() function (4/5). 82
5.13 Assembly code of the alpha() function (5/5). 83
5.14 Software pipeline information of the alpha() function. 84

vil

List of Tables

2.1

2.2

2.3

2.4

2.5

3.1

4.1

4.2

4.3

CTC Channel Coding Schemes for Each Modulation Method
Circulation State Look-Up Table (S¢q and Sco) [1, Table 573]
Parameters for the Subblock Interleavers
Bit Metric for Method-ML and Method-LLR

Amount of Additions, Multiplications and Max Operations for Soft-Output

Decoding of One Component Code Once, Where Number of Information Bits

Functional Units and Operations Performed [12]

Coding Gain Performance of Rate-1/2 CTC in AWGN at BER = 1075 with

Floating-Point and Fixed-Point with Scaling Method Computation.

Coding Gain Performance of Rate-3/4 CTC in AWGN at BER = 1075 with

Floating-Point and Fixed-Point with Scaling Method Computation.

Coding Gain at Rate 1/2 with 288 Information Bits CTC in AWGN at BER =
10~* with Floating-Point Computation and Fixed-Point Computations with
Scaling Method and Clipping Method

viil

4.4

5.1

5.2

5.3

5.4

5.9

5.6

5.7

5.8

5.9

5.10

5.11

Coding Gain at Rate 3/4 with 432 Information Bits CTC in AWGN at BER =

10~* with Floating-Point Computation and Fixed-Point Computations with

Scaling Method and Clipping Method Computation 62
TMS320C64X Compiler Intrinsics [17]. 68
Overall Encoder and Decoder Block Cycles 72
Speed Up in Channel Interleaver 72

Profile of Duo_Binnary-C'RSC _decoder with QPSK Modulation for 480 In-

formation Bits, Rate 1/2 Coding in One Iteration 73

Profile of Improve Duo_Binnary C' RSC' _Decoder with QPSK Modulation for

480 Information Bits, Rate 1/2 Coding in One Iteration 77

Speed Up in Decoding of One Data: Block with QPSK Modulation for One

Tteration ST e . 77

Numbers of Intrinsic calls and arithmetic operations in Original Code for CTC

Decdoding e 85
Numbers of Intrinsic Calls and Arithmetic Operation in Improved Code . . . 86

Information Data Processing Rate Calculated from CCS for Original Code for
480 Information Bits, Rate 1/2 Coding 87

Information Data Processing Rate Calculated from CCS for Improved Code

for 480 Information Bits, Rate 1/2 Coding 87

Comparison of Decoder Speeds for Tail-Biting CC, CTC, and LDPC Calcu-
lated from CCS 88

X

Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission is a trend in the next generation of consumer electronics.
Due to this demand high data transmission rate and mobility are needed. The OFDM
modulation technique for wireless communication has been a main stream in recent years.
IEEE has completed several standards, including the IEEE 802.11 series for LANs (local
area networks) and IEEE 802.16 series for MANs (metropolitan area networks), based on
OFDM technique. Our study is based on the IEEE 802.16 standard [1] which specifies the

air interface of mobile broadband wireless multiple access systems providing multiple access.

In wireless communication, the transmitted signals are easily interfered and distorted by
variance things sources such as the crowd traffic, bad weather, the obstacle of buildings,
etc. Digital wireless transmission with multimedia contents such as audio and video is a
trend. These services often exhibit high data rates and require high quality reproduction.
To improve the robustness of the wireless communication against the noisy channel condition,
the FEC (forward-error-correcting coding) mechanism is a must in almost every commercial

communication standard, including the IEEE 802.16.

CTC (convolutional turbo codes) comprise the mandatory channel coding schemes in

Mobile WiMAX. In addition, the puncture and M-ary modulation are used after encoder.
A number of studies have been conducted using BCJR algorithm [6] as the turbo decoding.
There have been numerous studies in the literature dealing with different decoding algo-
rithm. However we need to reduce the complexity for actual digital signal processor (DSP)
implementation. For convolutional turbo codes, we arrange trellis order to achieved parallel

operation.

In this thesis, we focuss on the study of the simulation and the DSP implementation of
the CTC in the IEEE 802.16 standard, We first study the encoding and decoding techniques.
Then we perform computer simulation to investigate the coding performance. Finally, we

optimize CTC on the DSP with fixed-point computation.

1.2 Organization of this Thesis

This thesis is organized as follows:

Chapter 2 introduces the CTC (convolutional turbo codes) of IEEE 802.16e specifica-

tions.

Chapter 3 describes the DSP implementation environment.

Chapter 4 discusses simulation and DSP implementation of the CTC.

Chapter 5 discusses the optimization of CTC decoder on DSP.

Chapter 6 contain the conclusion and future work.

Chapter 2

Overview of CTC in IEEE 802.16e¢
OFDMA

The convolutional turbo code (CTC) is one mandatory channel coding scheme in Mobile
WIMAX. In this chapter, We introduce the encoding and the decoding methods for the CTC
in IEEE 802.16e OFDMA.

2.1 Convolution Turbo Code Specification [1]

The mandatory channel coding scheme used in IEEE 802.16e OFDMA is as shown
in Fig. 2.1. The input data stream is processed by the randomizer to clean up the bit
correlation, and then each data block is encoded by the convolutional turbo encoder. The
block-by-block coding makes the convolutional turbo code effectively a block code. However,
we do not implement the repetition block, which can be used to further increase the signal-to-
noise-ratio (SNR) margin over the modulation and FEC mechanisms, for the channel coding
procedures in IEEE 802.16e. Repetition block can be applied only to QPSK modulation.

Reader interested in the repetition block can refer to relevant material in [1].

To make the system more flexibly adaptable to the channel condition, 32 coding-modulation

schemes are defined in IEEE 802.16e, as shown in Table 2.1. The different coding rates are

—>| Randomizer ,F%Ecé?égggr Repetition

W

h' 4

Modulation

S CTC-Based =
FEC Décoder De-Repetition

g

<—De-randomizer De-modulation [&—

Figure 2.1: Use of CTC in transmitter and receiver of IEEE 802.16e OFDMA (from [1]).

made by puncturing of the native convolutional turbo code. The puncturing mechanism in
convolutional turbo coding can provide variable code rates through one convolutional turbo

encoder.

2.1.1 Randomizer [1]

The randomizer is a pseudo random binary. sequence (PRBS) generator defined by the
polynomial 1 + X' 4+ X5 as depicted:in Fig. 2:2. Data randomization is performed on all
data transmitted on the downlink (DL) and uplink (UL), except the frame control header
(FCH). The randomization is initialized on.each FEC block.

If the amount of data to transmit does not fit exactly the amount of data allocated,
padding of OxFF (“1” only) shall be added to the end of the transmission block, up to the
amount of data allocated. Here, the amount of data allocated means the amount of data that
corresponds to the amount of slots | Ns/R|, where Ny is the number of the slots allocated

for the data burst and R is the repetition factor used.

Each data byte to be transmitted shall enter sequentially into the randomizer, MSB first,
to make the “0” and “1” bits in the input data streams well-distributed and hence improve

the coding performance. The randomization is applied only to information bits. Preambles

Table 2.1: CTC Channel Coding Schemes for Each Modulation Method

Uncoded Number of
Modulation Block Size | Overall Code %(.)dedeiOCk Used
(bytes) Rate ize (bytes) Sub-channels
QPSK 6 1/2 12 1
QPSK 12 1/2 24 2
QPSK ik 1/2 36 3
QPSK 24 1/2 48 4
QPSK 30 1/2 60 5
QPSK 36 12 7 6
QPSK 48 1/2 96 8
QPSK 54 1/2 108 9
QPSK 60 1/2 120 10
QPSK 9 3/4 12 1
QPSK 18 3/4 24 2
QPSK 27 3/4 36 3
QPSK 36 34 18 1
QPSK 45 3/4 60 5
QPSK 54 374 72 6
16QAM 12 172 21 1
16QAM 24 1/2 48 2
16QAM 36 1/2 7 3
16QAM 48 1/2 96 4
16QAM 60 1/2 120 5
16QAM 18 3/4 24 1
16QAM 36 3/4 18 >
16QAM 54 3/4 7 3
64QAM 18 1/2 36 1
64QAM 36 1/2 72 2
64QAM 54 1/2 108 3
61QAM 21 2/3 36 1
64QAM 13 273 P 7
64QAM 27 3/4 36 1
64QAM 54 3/4 72 2
64QAM 30 5/6 36 1
64QAM 60 5/6 72 2

Isb msh

6 |7 Ig |9 |10‘11|13|13}l4

]
— (|
S\ e

15

BB

5

—
‘l\; _data out

data in !l

— 7

Figure 2.2: PRBS for data randomization (from [1], Fig. 337).

are not randomized. In both UL and DL, the randomizer is initialized with the vector

(LSB)011011100010101 (MSB).

We do not implement the hybrid automatic repeat request (HARQ) mechanism. In
HARQ the randomizer can be initialized with different vector, so the detail are given in [1]

for HARQ required, which can refer to [1] in detail.

2.1.2 CTC Encoder In IEEE. 802.16e OFDMA [1]

The convolutional turbo code (CTC).defined in IEEE 802.16e OFDMA is shown in
Fig. 2.3. The input data are first encoded by the CTC encoder. Then, they are interleaved
by the interleaving block and followed by puncturing. Note that the interleaving and the
puncturing are also called subpacket generation. CTC is not only defined in IEEE 802.16e
OFDMA but also in IEEE 802.16e OFDM. They are differentiated by their puncturing

mechanism and subpacket generation.

Turbo code was first proposed for error correction coding in 1993, which has provided

for very long codewords with only modest decoding complexity.

In later years, researchers have shown that non-binary circular turbo codes can offer
many advantages in comparison to the classical single binary turbo codes. Hence they

have been used as one of FEC options in some recent satellite and mobile communication

6

Nep

|

1/3CTCencoder

3xN

ep

W

Interleaver

h
Puncturing block
(bit selection)

l

Figure 2.3: Structure of CTC in transmitter ans decoding in receiver (based on [1]).

standards, including DVB-RCS (Digital Video Broadcasting—Return Channel via Satellite)
and WiMAX (IEEE 802.16e).

IEEE 802.16e employs the double-binary code, whose advantages over a binary code
include [10]:

Better convergence.

e Larger minimum distance.

Less sensitivity to puncturing patterns.

Reduced latency.

— As data are processed using symbols of 2 bits and ignoring the side effects, latency

is divided by 2, from both coding and decoding viewpoints.

— The trellis contains half as many states as a binary code of identical constraint
length and the decoding hardware can be clocked at half the rate as a binary code

[9, Chapter 12].
e Robustness of the decoder.

e Better performance for max-log-MAP algorithm: The duo-binary code can be decoded
with max-log-MAP algorithm, which loses only about 0.1-0.2 dB relative to the optimal
log-MAP algorithm. This is in contrast to binary codes, which lose about 0.3-0.4 dB

when decoded with the max-log-MAP algorithm [9, Chapter 12].
A more detailed understanding of this relationship can be gained form [10].

2.1.3 1/3 CTC Encoder [1]

The CTC encoder, including its constituent encoder, is shown in Figure 2.4. It uses
a double binary circular recursive systematic convolutional (CRSC) code. The bits of the
data to be encoded are alternately fed to A and B; starting with the MSB of the first byte
being fed to A. The encoder is fed by blocks of k bits or N couples (kK =2 x N bits). For
all the frame sizes, k is a multiple of 8 and N is a multiple of 4. Further, N is limited to

8 < N/4 < 1024.

The polynomials defining the connections are described in octal and symbol notations as

follows:

e For the feedback branch: 0xB, equivalently 1 + D + D3.
e For the Y parity bit: 0xD, equivalently 1 + D? + D3,

e For the W parity bit: 0x9, equivalently 1 + D3.

T o S i R e SR

o cie = >0
Interleaver| .

eEEEEEEEEEEEEEEEEEEREE,

—

°| Constituent
Encoder

O LTI LTI LTI e
5,

.

=<
=3

&1 + 52 A+) —] 83 |

-

,

Figure 2.4: CTC encoder (base on [1]).

Message data bits)
k=2xN)

Alternately fed
A:0.24...N-2
B:1.3.5,..N-1

tepl: Switch alternate couples C O‘B StitneneRiicoder1
tep2: P(j) Fuctions Stepl: SO —>RSC —> SO
: J L, Step2: SOyy== CSLT == S¢y
¢ Constituent Encoder 2 Step3: S¢; =>RSC =>Y.W
‘Stepl: SO =>RSC => S0y
‘Step2: SOy == CSLT == Scy
Step3: S¢; ==RSC ==Y W

[S CTC Interleaver (Inrernai)
S

Encoder output bits
A, B, Y1, W1, Y2, W2

NI EEEEEEENIEEEEEEENEEEEEEEENEEEEEEEENEEEEEIEEEEEEEIIEEEEEEEIEEEEEERE

Figure 2.5: CTC rate 1/3 encoder flow chart [22].

First, the encoder (after initialization by the circulation state Scy) is fed the sequence in the
natural order (position 1) with the incremental address ¢ = 0,..., N — 1, which is called C}
encoding. Second, the encoder (after initialization by the circulation state S¢o) is fed the
sequence in the natural order (position 2) with the incremental address j = 0,..., N — 1,
which is called C5 encoding. The order in which the encoded bits are fed into the subpacket
generation block is A, B, Y1, Yo, Wy, Wy =

A07A17 "‘JAN—17 B07 Bl7 (RS BN—17
}/1,07 1/1,17) 1/vl,Nfla }/2,07 }/2,17 (RS }/Q,Nfla
WLQ, WLl? ceey Wl,N—la WQVO, WQJ, ceey W27N_1.

We can represent the above rule with the flow chart shown as Fig. 2.5. Note that “CSLT”

stand for circulation state look-up table, as shown in Table 2.2.

The encoding block size shall depend-on the number of slots allocated and the modulation
specified for the current transmission. :Concatenation of a number of slots can be performed
in order to make larger blocks of coding where it‘is possible, with the limitation of not

exceeding the largest supported block size for the applied modulation and coding.

There are 32 different block sizes as shown in Fig. 2.6. The concatenation rule shall not

be used when using (incremental redundancy) IR HARQ.

2.1.4 CTC Interleaver [1]

The interleaver requires the parameters Fy, Py, P», and P3 shown in Fig. 2.7, which gives
the block sizes, code rates, channel efficiency, and code parameters for different modulation

and coding schemes.

The two-step interleaver can be performed as shown in Fig. 2.8, where two possible errors

in the standard is indicated.

10

Modulation and rate J
QPSK-1/2 10
QPSK-3/4 g
16-QAM-1/2 5
16-QAM-3/4 3
64-QAM-1/2 3
64-QAM-2/3 2
64-0AM-3/4 2
64-QAM-5/6 2

Figure 2.6: CTC encoding slot concatenation for different rates [1].

2.1.5 CTC Tail-Biting [1], [4]

For recursive encoders, tail-biting is not as easy as it is for non-recursive encoders. To
ensure that the starting state is the same as. the ending state, which is called circulation

state, for recursive encoders an initial-encoding of the whole sequence has to be performed

14].

The initial encoding is started in the all-zero state and depending on the information
sequence it ends up in a special state, S.,4. Based on this ending state, the circulation state
can be computed using linear algebra methods based on the state space description of the
encoder. In order to eliminate this linear algebra computation, the IEEE 802.16 provides a
so-called circulation state look-up table, where the correspondence between the final state
Sena of the initial encoding process and the circulation state as a function of the information

sequence length is listed in Table 2.2.

Afterwards, the real encoding can be started, whereby the encoder state is initialized
now with the circulation state. Hence, a tail-biting encoder needs two complete encoding

processes, which adds complexity to the encoder. Complexity is also added to the decoder

11

Data Encoded datn coa
ATocdulatiomn Block size Llock size 1-;": o~ F o Py F o
(3 Tres) (v Ces) h“-c
QP SED = 1= 1/ > = [=) =) =)
—
QPSK 12 = 1/2 48 13 24 o =4
QPSEL 138 36 172 72 11 =] =]
QPSK 24 48 1/2 @s 7 4as 24 7z
OPSED 30 S0 1/2 120 13 SO o SO
QPSS 36 72 1/2 143 17 7 72 2
OPSE ag =¥ 1/2 192> 11 o as 144
OPSED sa 108 172 Z1e 13 108 o 10S
QPSS S0 120 1/2 240 13 120 SO 180
g PSS = IE 3/ 365 11 18 L] 18
QPSK 18 23 3/ 7= 11 = o L
QPSS 27 3s 3/3 10 11 S sa =
QPSK 36 48 3/ 144 17 74 72 2
QPSS a5 &0 3/ 180 11 Q0 o @0
QPSS 54 72 3/ z16 13 108 =) 108
18- AN 12 >a - as 13 za o >a
16-0A M 24 as 1/2 96 7 a8 24 72
1S AN 38 72 1/2 144 17 74 72 2
16-QA M a8 L1 1/2 192 11 265 4as 144
1S AN S0 120 1/2 240 13 120 SO 180
— =2 33 rird =3 (%]
1S AN 38 ag 3/a 144 17 74 72 2
16-QA M 53 72 3/ z16 13 108 o 108
N—
G4 .A M 18 36 1/2 72 11 [5] [
GH- DA 36 72 1/2 143 17 7 72 2
S 3ADNL 54 105 1/2 16 13 1Lo8 =) 10
EENSYS.E >4 36 >/3 =¥ 7 ag za 72
Sa_o At e 72 >3 15> 11 o am 13
- — — -
S3-(AN >7 365 EYE 108 11 sa ses e
S DA 54 72 3/a z168 13 1o8 o 102
3 - A & & & [=]
RRRRRREERRE
| G4 DA | &0 | 72 s/6 | 13 | 120 | S0 | 180 |

Figure 2.7: CTC channel coding per modulation (modified from [1]).

12

Step 1: Switch alternate couples
Let the sequence g = [(4g. Bp). (4y. By) . (42, By). (A3, B3). ... (Ap_y. Byoy)] be the input to
first encoding Cy.
fori = 0..N-1
if (i mod 2), let (4, B;) — (B;.4;) (i.e.. switch the couple)
This step gives a sequence iy = { y (B A7), (Ao, By), (Bgy A3z)s oo
(Ba1- Ayep)] = [(0). 1y (1), 114(2), ul(% el (N=1)].
Step 2: P(j)
The function P(j) provides the address of the couple of the sequence i that shall be mapped
onto the address j of the interleaved sequence (i.e.. t5(]) = 1y (P())).
for j=0..N-1
switch (j mod 4);
case 0: P(j) = (Py-j+1) mod V
case I: P(j) = (Py-j+1+N/2+P)) mod N
case 2: P(j) = (Py-j+1+P;) mod N
case 3. P(j) = (Py-j+1+4N/2+Py) modV

This ste /és a sequence u i PO) uy(P(1)), Hl(P (2)). 1 (P(3)). ..y (P(N-1))]

:[0y (.‘I‘n(B‘p{“) (‘i_p{:') BP((4‘9(1\! 1): B_p{\r 1})] Se(]uellce
---"Hn is the inpuf to the :.egoncl encodmo C;

Reverse error ?

Figure 2.8: CTC interleaver in two steps (modified from [1]).

of the constituent code. The complexity added to the decoder compared to the case where
the starting and ending state is known to.the decoder is in the additional wrap-around for
the forward and backward recursion of the' MAP-decoder. Since the wrap-around length can

be kept small, the additional complexity is quite small [4].
Determination of CTC Circulation States [1]

The state of the encoder is denoted S (0 < .S < 7) with S = 45; + 255 + S3, as shown

in Fig. 2.4. The circulation states S¢; and Sego are determined by the following operations:

e Initialize the encoder with state 0.

e Encode the sequence in the natural order for the determination of S¢; or in the in-
terleaved order for determination of Sco. Let the final state in each case be denoted

SOn_1.

13

Table 2.2: Circulation State Look-Up Table (S¢q and Seo) [1, Table 573]

Nmod7 SOn_1

O T | W N~

(vl Hen) Hew) Neol Nevl Hevl | Raw]
| N~ O W O~
OO | W | =N
=W N | O~ Ot
[GAIRTSNEEN | R B IRV Ne)
N O W |0

e According to the length N of the sequence, use Table 2.2 to find S¢y and Seo.

2.1.6 Subpacket Generation (Channel Interleaver or Interleaver
and Puncturing) [1]

The proposed FEC structure in IEEE 802.16e OFDMA punctures the mother codeword

to generate a subpacket with various coding rates. The framework consists of the following:

e bit separation,
e subblock interleaving,
e bit grouping, and

e bit selection.

The subpacket is also used in HARQ packet transmission. Figure 2.3 shows the block
diagram of subpacket generation. A rate-1/3 CTC encoded codeword goes through inter-
leaving and puncturing. Figure 2.9 shows the block diagram of the interleaving block. The
puncturing is performed to select a consecutive interleaved bit sequence that starts at some

point in the whole codeword.

14

For the first transmission, the subpacket is generated to select the consecutive interleaved
bit sequence that starts from the first bit of the systematic part of the mother codeword. The
length of the subpacket is chosen according to the needed coding rate reflecting the channel
condition. The first subpacket can also be used as a codeword with the needed coding rate

for a burst where HARQ is not applied.

Bit Separation

All of the encoded bits can be demultiplexed into six subblocks denoted A, B, Y1, Y2,
W1, and W2. The encoder output bits are sequentially distributed into the six subblocks
with the first NV bits going to the A subblock, the second N to the B subblock, the third N
to the Y'1 subblock, the fourth N to the Y2 subblock, the fifth N to the W1 subblock, and
the sixth N to the W2 subblock.

Subblock Interleaving

The six subblocks can be interleaved separately. The interleaving is performed in unit
of bits. The sequence of interleaver output bits for each subblock can be generated by the
procedure described below. The entire subblock of bits to be interleaved is written into an
array at addresses from 0 to the number of the bits minus one (N — 1), and the interleaved
bits are read out in a permuted order with the ith bit being read from the address AD;
(t=0,...,N—1), as follows:

1. Determine the subblock interleaver parameters, m and J. Table 2.3 gives these pa-

rameters.

2. Initialize 7 and k to 0.

15

Table 2.3: Parameters for the Subblock Interleavers

Subblock interleaver

Block size

(bitS) NE‘P N m J
48 24 3 3
72 36 4 3
96 48 4 3
144 72 5) 3
192 96 5) 3
216 108) 4
240 120 6 2
288 144 6 3
360 180 6 3
384 192 6 3
432 216 6 4
480 240 7 2

3. Form a tentative output address T according to
Ty = 2"(kmod J)4+ BRO,,(|k/J]) (2.1)
where BRO,,(y) indicates the bit-reversed m-bit value of y (e.g. BRO3(6) = 3).

4. If Ty is less than N, AD; = T}, and increment i and k by 1. Otherwise, discard T}, and

increment k only.

5. Repeat steps 3 and 4 until all NV interleaver output addresses are obtained.

Bit Grouping

The channel interleaver output sequence consists of the interleaved A and B subblock
sequences, followed by a bit-by-bit multiplexed sequence of the interleaved Y1 and Y2 sub-
block sequences, followed by a bit-by-bit multiplexed sequence of the interleaved W1 and

W2 subblock sequences.

16

A subblock B subblock Ty subbleck | | Yy subblock | | Wy subblock | | W subblack

¥ ¥ A 3 ¥

stbblock stibblack sublilock subblock subblock subblock
mierleavar wiferleaver interleaver mierleaver imterleaver nferleaver

---------- ‘

Figure 2.9: Block diagram of CTC channel interleaving scheme (from [1]).

The bit-by-bit multiplexed sequence of interleaved Y1 and Y2 subblock sequences con-
sists of the first output bit from the ¥'1 subblock;interleaver, the first output bit from the
Y 2 subblock interleaver, the second output bit from the Y1 subblock interleaver, the second
output bit from the Y2 subblock interleaver, etc. The bit-by-bit multiplexed sequence of
interleaved W1 and W2 subblock sequences consists of the first output bit from the W1 sub-
block interleaver, the first output bit from the W2 subblock interleaver, the second output
bit from the W1 subblock interleaver, the second output bit from the W2 subblock inter-
leaver, etc. Figure 2.9 shows the interleaving scheme. The order of bit grouping sequence is

as follows:

I I I I ! i
AO7A17"'7AN717BO7B].7“'7BN71’
! ! l l i ! ! !
}/1,07}/2,07}/1,17Y72,17}/1,27}3,27'"’le,N—l’YvZ,N—l’

l / ! ! i / / !
1,007 207V 1,107 210V 1,257V 229 VPV I N=1" V2 N—1-

17

Bit Selection

Lastly, bit selection is performed to generate the subpacket. The puncturing block is
referred to as bit selection in the viewpoint of subpacket generation. The mother code is
transmitted with one of the subpackets. The bits in a subpacket are formed by selecting
specific sequences of bits from the interleaved CTC encoder output sequence. The resulting
subpacket sequence is a binary sequence of bits for the modulator. The parameters for bit

selection are listed below:

e k: the subpacket index when IR HARQ is enabled.
— When IR HARQ is not used, k=0 (for the first transmission and increases by one
for the next subpacket).

— When there is more than one FECiblock in a burst, the subpacket index for each
FEC block shall be the same.

Ngp: the number of bits in the encoder packet (before encoding).

Nscpg: the number of concatenated slots for the subpacket, as defined in [1, Table

569] for the non-HARQ and Chase HARQ CTC schemes.

my: the modulation order for the kth subpacket (m;=2 for QPSK, 4 for 16-QAM, and
6 for 64QAM).

SPIDy: the subpacket ID for the kth subpacket (for the first subpacket, SPIDjy_y=0).

Also, let the scrambled and selected bits be numbered from zero with the Oth bit being

the first bit in the sequence. Then, the index of the ith bit for the kth subpacket shall be

Sk,i = (Fk + Z)mod(?) . NEP) (2.2)

18

where 1 = 0, c. ,Lk—l, Lk = 48-N50Hk~mk, and Fk = (SPIDkLk)mOd(?)NEP) The NE‘P;
Nscuk, mg , and SPID values are determined by the base station (BS) and can be inferred
by the subscriber station (SS) through the allocation size in the DL-MAP and UL-MAP.

The above bit selection makes the following possible.

e The first transmission includes the systematic part of the mother code. Thus it can
be used as the codeword for a burst where the HARQ is not applied or when Chase
HARQ is applied.

e The location of the subpacket can be determined by the SPID without the knowledge

of previous subpacket. This is a very important property for IR HARQ retransmission.

Note that the optional IR HARQ is not considered in our research, so we bypass a detailed

introduction of the IR HARQ mechanism.

2.1.7 Modulation [1]

After bit interleaving, the data bits are-entered serially to the constellation map-
per. Gray-mapped QPSK and 16-QAM are supported, whereas the support of 64-QAM
is optional. The constellations as shown in Fig. 2.10 shall be normalized by multiplying
the constellation points with the indicated factor ¢ to achieve equal average power. The

constellation-mapped data shall be subsequently modulated onto the allocated data carriers.

2.1.8 Demodulation for Bit-Interleaved Coded Modulation [3]

Let ali] = ar[i] + jag[i] denote the QAM symbol transmitted via the ith sub-carrier of
OFDMA symbol and {br1,- -+ ,brg, -+ ,brt,001, -+ ,bgx, -+ ,bg+} be the corresponding bit
sequence. Assuming that the ISI (inter-OFDMA symbol interference) and ICI (inter—carrier

interference) are completely eliminated, we can write the received signal of the sub-carrier

19

baby by Q . 1/J33

011 = . . « T e . . .

010 - . . o 5+ & . . .

000 - . N . . .

1 0 b] 001 & " & l+ = . - -

4 . . . X 1 I
- k) 5 -3 L 3 3 ¥

blbo ? ¢c=1/J10 101 : - nl_l-- fs : - ™
01 = 3+ e @

100 . - -3 - - . -
00 = &] - -

i‘-, -;1]I i =1 110 = . - -5+ s - . -
10 = . -

111 . - - - . . -

11 - .51+ = - 111 110 100 101 i 001 000 010 011 bsb.;bz
L

1110 00 01 bsb,

Figure 2.10: QPSK, 16-QAM, and 64-QAM constellations (from [1]).

as

rli] =Gali] + ali] +wli], (2.3)

where G4[i] is the complex channel frequency response at the ith sub-carrier and w[i] is
the complex additive white Gaussian noise (AWGN) with variance o2 = Nj. If the channel

estimate is error free, the output of the one-tap equalizer is given by
yli] = ali] + wlil/Genli] = ali] + w'[i], (2.4)

where w'[i] is still complex AWGN noise with variance 0/?(i) = 02/|Gu[i]]?.

According to the MAPSE (maximum a posterior sequence estimation) criterion, the

following maximization should be performed to estimate the encoded bit sequence b:

~

b= aurgm][fme[b|r]7 (2.5)

where r is the received sequence of QAM signals. Assume that the transmitted symbols

are equally distributed. Then the MAPSE criterion can be replaced by the ML (maximum

20

likelihood) criterion as:

~

b = arg max Pir|b]. (2.6)
We further assume that G.[i] is known to the receiver and that the transmitted bits are

independent and identically distributed (i.i.d.).

For each in-phase or quadrature bit (i.e., by or bgy), two metrics can be derived cor-
responding to the two possible values 0 and 1, respectively. For bit by, first the QAM
constellation is split into two partitions of complex symbols, namely S}?,g comprising the
symbols with a “0” in position (/,k) and Sg,z, which is complementary. Then the two

metrics are obtained by

mi(bre) = > logp(r(illali] = a) = max logp(r(illali] = @), =01 (27)
aesy”
aest) oLk

Since the conditional pdf of r[i] is complex Gaussian as

q -
p(T[ZH(I[Z] _ a) _ \/;T_aexp _% |T[Z] OC_T;Ch[Z]a| } (28)

and r[i] = Geli] - y[i], the metrics defined in(2.32) are equivalent to
me(br 1) = |Geanli}fz+min |y[i] — o). (2.9)

ozESE?,)C

Finally, these metrics are de-interleaved, i.e., each couple (mg, m;) is assigned to the bit
position in the decoded sequence according to the de-interleaver map, and fed to the Viterbi
decoder which selects the binary sequence with the smallest cumulative sum of metrics. We

name this method Method-ML in the following discussion.

From the concept of log-likelihood ratio (LLR), a method named Method-LLR is proposed
in [3] to reduce the complexity of Method-ML. It defines LLR (b) as

a |Gali]]?, . : 9 - , >
LLR(bry) = { min |yli] — «|° — min |y[i] — a|"}
aes) aes)
= (mo(brx) —ma(brr))/4
£ |Guli]|? - Dy (2.10)

21

Table 2.4: Bit Metric for Method-ML and Method-LLR

Method-ML Method-LLR
Bit metric (decided “0”) mo [(mg —mq) + 1)
Bit metric (decided “17) my [z(mg —my) — 1)]2

P | s |

The quadrature part is similarly defined. The metrics sent to the Viterbi decoder in the
two methods are defined in Table 2.4. Note that the difference between the bit metrics for
the decided “0” and “1” is the same for the two methods, namely £(my — m;). Thus the
decoded bit sequence will be the same for the two methods.

In Method-LLR, only (mg—mj)/4 is sent to the de-interleaver while in Method-ML, both

mo and m; are sent. Besides, we can reduce (mg —my)/4 = |Guli]|* - Dr to a simple form
constituting of y;[i] itself because Gray coding is used in the constellation map of M-ary

QAM modulation in IEEE 802.16e.

Figure 2.11 shows the partitions of (S}E),z, S}l,z) for-the generic bit by, in the case of 16-

QAM. As a consequence,

1) .) .
Dy = Z_L{ min |y[i] — a|2 — IIllIl) lyli] — a|2}

aeS}?lz ocESgk

can be simplified as follows.

—yiil, lyr(i)] < 2
Dry = 4 —2(yrli] = 1), wr(i) >2 = —y,li, (2.11)
—2(y[i] + 1), (i) <2

Dry = |yili]| = 2. (2.12)

The same observation holds for QPSK and 64-QAM constellations. For QPSK, D; = —y;li].

22

° e . . . (] .
ey Iy

i I + J J } il }
—5(11) 7‘1(10) ‘1(00) 3 (01, —5(11) —‘1(10 ’1(00) 3 (01,
[] [] [} [L] L] [] [}
1 0 1 0 1
S|,1 Sl‘l S|,2 SI.Z SI.2

Bi1 Bi2

Figure 2.11: Metric partitions of the 16-QAM constellation (from [3]).

For 64-QAM,
[—yii], lyrli]| <2)
—2(yr[i] = 1), 2<ylif <4
=3(yrli] —2), 4<y[i] <6
Dry = —4(yrli] = 3), wili] > 6 = —y[d],
=2(ys[i] + 1), A ysli] < -2
=3(yr[i] +2)y —6.< yrli] < —4
—4(yr[i] + 3), yalil < =6)
2(lys[e]] = 3), Juelill < 2
Dy = =4+ [ys[i] [2 < yrli] < 6 = —4 + |yrli]],
2(lyr[d]] = 5), yrlily="6
il + 2, yrli]] <4 T
Drs = {ryffz'n—&] >4} = llorldlf =41 =2

2.2 Decoding of CTC

2.2.1 The Turbo Decoding Algorithm [5]

(2.13)

(2.14)

(2.15)

A key in turbo codes is the iterative decoding algorithm. In iterative decoding, the

decoders for the constituent encoders take turns operating on the received data.

Each decoder produces an estimate of the probabilities of the transmitted symbols; there-

fore, the decoders are soft output decoders. Probabilities of the symbols from one decoder,

known as extrinsic probabilities, are interleaved and passed to the other decoder, where

23

“Priors" Deinteﬂ?aver Extrinsic

L =
© o “Priors"
r Decoder Extrinsic Interll_?aver
) I Decoder

u Deinterleaver i
r©® Interleaver 1
mn

r®

Figure 2.12: Block diagram of a turbo decoder (from [5]).

they are used as prior probabilities for the other decoder. The decoder thus passes proba-
bilities back and forth between the decoders, with each decoder combining the evidence it
receives from the incoming prior probabilities with the parity information provided by the
code. After some number of iterations, hopefully the decoder converges to an estimate of
the transmitted codeword. Since the output of one decoder is fed to the input of the next
decoder, the decoding algorithm is called a turbo decoder, for it is reminiscent of turbo
charging an automobile engine using engine-heated air-at the air intake. Thus it is not really
the code which is “turbo,” but rather the decoding algorithm which is “turbo.” The general

operation of the turbo decoding algorithm is shown in Fig. 2.12.
The MAP Decoding Algorithm [5], [7]

One maximum a posteriori (MAP) decoding algorithm particularly suitable for estimat-
ing bit and/or state probabilities for a finite-state Markov system is the BCJR algorithm,
named after Bahl, Cock, Jelinek, and Raviv who originally proposed it in 1974 [6]. While
this algorithm has been known for some time, it was not extensively used for the decoding of
convolutional codes because of the availability of a lower complexity Viterbi algorithm (for

maximum-likelihood decoding of convolutional codes).

In many respects, the BCJR algorithm is similar to the Viterbi algorithm. However,

24

the conventional Viterbi algorithm computes hard decisions by outputting a single overall
decision of the entire sequence of bits (or codeword) at the end, without providing the
reliability of the decoder decisions on individual bits. Furthermore, the branch metric is based
upon log likelihood values; no prior information is incorporated into the decoding process.
The BCJR algorithm, on the other hand, computes soft outputs in the form of posterior
probabilities for each message bit. While the Viterbi algorithm produces the maximum
likelihood message sequence (or codeword), the BCJR algorithm produces the a posteriori
most likely sequence of message bits, where the sequence of bits may not correspond to a
continuous path through the trellis. The BCJR algorithm is a soft-input soft-output decoder
that can be used directly in turbo decoding whereas the conventional Viterbi algorithm
cannot without some modification to yield the required soft output. The BCJR algorithm

for MAP decoding of convolutional codes consists of the following steps:
e Compute branch metric ~.
e Compute forward state metric o
e Compute backward state metric .
e Compute extrinsic log likelihood ratio L.

A more detailed understanding can be gained from [5].

2.2.2 Decoding Rule for CRSC Codes with Non-binary Trellis [8]

The trellis of a double-binary feedback convolutional encoder has the structure shown

in Fig. 2.13. The goal of the MAP algorithm is to provide us with

P,[dy, = i|Observation]
P,[d), = 0|Observation]

In Zéi';-l’sk) P(Sk=1, Sk, {ux})
Zéik:_OhSk) p(Sk—h Sk‘7 {yk}) ,

25

Lidy) = In

i=1,2,3, (2.16)

States 5, S S States Sy
with forward with backward
probabilities o (Sy.;) probabilities f, (S,)

Figure 2.13: CTC trellis structure of duo-binary convolutional code with feedback encoder
(from [8]).

where gy, is the received sample at time k> The index pair (Sk_1,Sk) determines the infor-
mation symbol (bit couple) dj and the coded symbol x; from time k£ — 1 to time k& where
dy, is in GF(2?) with elements {0,1,2,3}.\ The sum-of the joint probabilities p(Sy_1, Sk, {yr})
in the numerator or in the denominator of (2:16)is taken over all path labeled with dy = 1,
1=0,1,2,3, where we have used decimal notation for d instead of binary for convenience.
With a memoryless transmission channel, the joint probability p(Sk_1, Sk, {yx}) can be writ-

ten as the product of three independent probabilities

P(Sk=1, 5% {ye}) = p(Sk-1,Yj<k) - P(Sk, Ur|Sk-1) - P(Yj>k, Sk)

2 ap_1(Sk-1) - 6 (Sk-1, Sk) - B(Sk) (2.17)

where y; denotes the sequence of received symbols y; from the beginning of the trellis up

to time £ — 1 and y;~, is the corresponding sequence from time & + 1 up to the end of the

26

trellis. The forward recursion of the MAP algorithm yields
CL’]g(Sk) = Z Oékfl(Skfl) . ’yk(Skfl, Sk) (218)
Sk—1
The backward recursion yields

Bro1(Skc1) = > W Sk—1, Sk) - Be(S)- (2.19)

Sk

When a transition between S;_; and Sy exists, the branch transition probability is given by
Ve(Sk-1,5k) = P(Sk, Y| Sk-1)
= p(SklSk-1) - P(Yr|Sk-1, Sk)

= P(dk) - p(yldk)- (2.20)
Let the natural logarithm of the branch transition probability metric be
Le(Sk-1,5) =..Inv(Sk-1,Sk) (2.21)
and the natural logarithms of ay(Sy) and Bx(Sk) be

Ak<Sk) = 1Il Oék(Sk)

— In Z eAk—l(Sk—l)‘f'Fk(Sk—lek)’ (2‘22)
Sk_1

kal(Skfl) = In 51@71(51%1)
— In Z el k(Sk—1,5k)+Br(Sk) (2.23)
Sk

Then the log-likelihood ratios (2.16) for i = 1,2, 3 are given by

L s PSS ()
Zdik o1) (Skfla Sk, {yk})
Zdik zl St) Oékfl(skfﬁ 'PY]Z;(Skfb Sk) 'ﬁk(sk)

(Se—1,5k)
dek o1 2 Oék71(5k71) 'VQ(SkflaSk) : ﬁk(Sk)
(Sk—1,5k) Ak—l(Sk71)+r};(sk—17Sk)+Bk(Sk)
= Zd’“ = . (2.24)

ZdSk 01 k) eAk—1(Sk-1)+T (Sk—1,5)+ B (Sk)
k

Li(dy) =

27

2.2.3 Simplified Max-Log-MAP Algorithm for Double-Binary CTC
8]

Implementing (2.24) in hardware is difficult and complex. It is also relatively compli-
cated to implement it in DSP software. We consider the suboptimal max-log-MAP algorithm

for double binary convolutional turbo codes. First, from (2.20) and (2.21),

Ie(Sk-1,5%) = Inye(Sk—1, Sk)

= Infp(yx|d) - P(dr)]. (2.25)

The distribution of the received symbols is given by, for : = 0,1, 2, 3,

p(yklde = i) = p(yplo3 (7)) - p(yplzy (@, Sk—1, Sk))

_ b B - 0P+ 0 -0
7T'N0
1 o Tl = BTS2+ O o @ (6, Sk-1,5K))7]
- N()

— O - 05 Lol ORGP D%y o] (51 Sk) P o 90,8k 1,80)]

where y; and y}, represent the received systematic and parity symbols, respectively, yZ’I, yZ’Q,
yl,;’l, and yz’Q represent the received bit values transmitted through the I and QQ channels, re-

spectively, L. = 4 - (fading factor) - (code rate) - £ represent the channel reliability, and

No
B

Gy = (=) o Rl @+ 9P+ Y @) R @R Sk 1,80) () 9P+ P (5k-1,80))°]

Hence,

Lr(Sk-1,5) = In[p(yx|dy) - P(dy)]
= 05 Le- [y -y’ (6) + @ 2y @) + oyt 2 (6, Seers i)

+yP9 P9, Sy, Sp)] + In P(dy) + K (2.26)

28

where the constant K includes the constants and common terms that are cancelled in com-
parisons at later stages. Note that

Ak(sk) = lnzeAk’_l(Sk_l)—"_Fk(Sk—laSk)
Sk—1

~ glaX[Ak—l(Sk—l) + Fk(Sk_l, Sk)], (2.27)
k-1

By 1(Sk-1) = IHZQFk(Sk—LSk)-‘t‘Bk(Sk)
Sk

k
The above can be derived by considering the Jacobian logarithm [5], i.e.,
In(e’ 4 e = max(Ly, Ly) 4+ In(1 + e~ 2712l (2.29)

If the correction term (i.e., the second right-hand-side [RHS]| term) is omitted and only the
max term is retained, we obtain the above max-function (max-log-MAP) approximation.

For iterative decoding of circular trellig; tail-biting gives

Ao(So)\ = AnlSn)= VSo, (2.30)

Bn(Sy) ="Bs(Sy) VSy. (2.31)
As a result, the log-likelihood ratios in (2.24) reduce to

Lz(dk) ~ (Sir_lzli)gk)[Ak_l(Sk_l) + F2<Sk—la Sk> —|- Bk(Sk)]
— (Sma)é)[Ak_l(Sk_l) + Fg(Sk_l, Sk) —|— Bk(Sk)] (232)

We omit the detailed mathematical derivation for separating the log-likelihood ratios into
intrinsic (prior information), systematic and extrinsic information. The interested reader
may refer to [8]. It turns out that the extrinsic information can be expressed as

7 7 7I 7I y ’ ’ y
Li(dy) = Li(d) = 0.5 [y 2 (i) + @ - oy (D)

P[d;, = i]

+0.5- [yp” - 23 (0) + 5y @ - 29 (0)] = In Plds = 0]

(2.33)

29

The extrinsic information of the next decoder is computed from the prior information of

previous decoder as

P[dk = Z]
Li(d,) = 1
) = s —y
where 1 = 0,1, 2, 3. Since
Pld, =01] = M@ Pla, = 00],

Pld, =10] = @) Pla, = 00],

Pldy =11] = €U . Pld;, = 00],
and
Pld, = 00] + Pld, = 01] 4:Pldiis= 10] + Pld, = 11] = 1,
we have
Pld 00] = !
[dy = 00] = 1+ eLi(dr) 4 oL§(drn) 4 oLg(di)’
B L3 (dy)
Pld,, =01] = 1+ eLi(de) 4 oL8(d) 4 oL§(dr)’
B L5 (di)
Pldy = 10] = 1+ eLildr) 4 eLs(dr) 1 oL§(dr)’
L5(d
P[dk—ll] _ 3(k)

1 -+ eLiz(dk) + eL(QL(dk) + eLg(dk) '

30

(2.34)

(2.35)

(2.36)

Using max-function approximation yields

In Pld), = 00]
In P[d;, = 01]
In P[d;, = 10]
In Pld; = 11]

= —max[0, L{(dg), L5(dy), L5 (dy)],
= L{(dy) — max[0, LS (dy), L§(dy.), L5(dy)],
= L3(dy) — max|0, L (dg), L3 (dg), L5 (dy)],

= Lg(dy) — max[0, Li(dy), L5(dk), L (dy)]-

Assuming equally likely symbols initially, we have

Ap(Sy) = 0 VS,
Bn(Sy) = 0 VSy,

L(dy)” = 0 i, dy.

After sufficient decoding iterations, the decisions are made according to

dAk _ 10,

else,

where L(dy) = max[L%(dy,), L3(dy), Le(dy)].

(2.37)

(2.38)
(2.39)

(2.40)

(2.41)

This above algorithm has been known as the max-log-MAP algorithm which only uses

the max functions to compute log-likelihood ratios. But coming with the approximation

to reducing log-likelihood ratios is some performance degradation.

Table 2.5 shows the

complexity analysis. We will discuss later the simulation results and the speed of our DSP

implementation.

31

Table 2.5: Amount of Additions, Multiplications and Max Operations for Soft-Output De-
coding of One Component Code Once, Where Number of Information Bits = 480

max’s additions multiplications
branch metric 2880 31680 30720
forward metric 7440 7680 0
backward metric 7440 7680 0
LLR 6720 16080 0
extrinsic 0 3600 0

32

Chapter 3

DSP Implementation Environment

In this chapter, our discussion will concentrate on the DSP system development en-
vironment, DSP chip and its features because our implementation is software-based on the

DSP. The software development tool, Code Composer Studio (CCS), is also introduced.

3.1 The DSP Board [12]

The DSP card used in our implementation-is-Sundance’s SMT395 as shown in Fig. 3.1
[11]. Tt houses a 1 GHz 64-bit TMS320C6416T DSP of TI . The SMT395 is supported by T1’s
Code Composer Studio and the 3L Diamond to enable multi-DSP systems with minimum

development efforts by the programmers.

Features of the SMT395 board include:

1 GHz TMS320C6416T fixed-point DSP processor with L1 and L2 cache that has 8000

MIPS peak DSP performance.

Xlilinx Virtex IT Pro FPGA XC2VP30-6 in FF896 package.

256 Mbytes of SDRAM at 133MHz.

Eight 2 Gbit/sec Rocket serial links (RSL) for inter module communication.

33

—— TOP TIM CONNECTOR

= = Tl
—=|__ FPGA
n‘ AN
Interfaces for
Communication || 4
respurces
E R

o |
| I ERTERNAL [i——14
..... 1 ~| MEMORY K——3

......................

SRS

St

~ BOTTOM TIM CONNECTOR

Figure 3.1: Sundance’s SMT395 module (from [11]).
e Two Sundance High-speed Bus (50,100 or 200 MHz) ports at 32 bits width.

e 8-Mbyte flash ROM for configuration and.booting.

3.2 The DSP Chip [12]

The TMS320C64x DSP is a fixed-point DSP in the TMS320C64x series of the TMS320C6000
DSP platform family. The TMS320C64x device use the very-long-instruction-word (VLIW)
architecture developed by TI. The C6416 device has two high-performance embedded copro-
cessors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that
can significantly speed up channel-decoding operations on chip. However the TCP is de-
signed appropriately for the 3GPP standard and its parameter setting cannot be used to the

CTC in 802.16e. Therefore, we cannot employ the TCP in our implementation.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units.

Features of C6000 devices include:

e The eight functional units include two multipliers and six arithmetic units:

34

— Execute up to eight instructions per cycle.

— Allow designers to develop highly effective RSIC-like code for fast development

time.

Instruction packing:

— Gives code size equivalence for eight instructions executed serially or in parallel.

— Reduces code size, program fetches, and power consumption.
Conditional execution of all instructions:

— Reduces costly branching.

— Increases parallelism for higher sustained performance.
Efficient code execution on independent functional units:

— Efficient C compiler on DSP benchmark suite.

— Assembly optimizer for fast development and improved parallelization.

8/16/35/64-bit data support, providing efficient memory support for a variety of ap-

plication.
40-bit arithmetic options add extra precision for applications requiring it.
Saturation and normalization provide support for key arithmetic operations.

Field manipulation and instruction extract, set, clear, and counting support common

operation found in control and data manipulation application.

32 x 32-bit integer multiply with 32- or 64-bit result.

The C64x additional features include:

35

Each multiplier can perform two 16x16 bits or four 8x8 bits multiplies every clock

cycle.

Quad 8-bit and dual 16-bit instructions set extensions with data flow support.

Special communication-specific instruction have been added to address common oper-

ations inerror-correcting codes.

Bit count and rotate hardware extends support for bit-level algorithms.

In the following subsections, two major parts of TMS320C64x DSP are introduced re-

spectively. They are the central processing unit and memory .

3.2.1 Central Processing Unit [12]

The C64x DSP core contains 64 32-bit'general purpose registers, program fetch unit,
instruction decode unit, two data paths-each with four function units, control register, control
logic, test unit, emulation logic and interrupt logic, “The program fetch, instruction fetch
and instruction decode units can arrange eight-32-bit instructions to the eight function units
every CPU clock cycle. The processing of instructions occurs in each of the two data paths
(A and B) shown in Fig. 3.2, each of which contains four functional units and one register
file. The four functional units are: one unit for multiplier operations (.M), one for arithmetic
and logic operation (L.), one for branch, byte shifts, and arithmetic operation (.S), and one
for linear and circular address calculation to load and store with external memory operations

(.D). The details of the function units are described in Table 3.1.

Each register file consists of 32 x 32-bit registers. Each function unit in the two sets of
four functional units reads and writes directly within its own data path. That is, functional
units .L1, .S1, .M1 and .D1 can only write to register file A. The same holds for register

file B. However, two cross-paths (1X and 2X) allow functional units from one data path to

36

Table 3.1:

Functional Units and Operations Performed [12]

Function
Unit

Operations

L unit (.L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bit
Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit and Quad 8-bit arithmetic operations
Dual 16-bit and Quad 8-bit min/max operations

.S unit (.S1, .S2)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

32-bit logical operations

Branches

constant generation

Register transfers to /from control register file (.S2 only)
Byte shifts

Data packing /unpacking

Dual 16-bit-and Quad 8-bit compare operations

Dual 16-bit and Quad Saturated arithmetic operations

M unit (.M1, .M2)

16 x 16 multiply

16 x 32 multiply operations

Dual 16 x 16 and Quad 8 x 8 multiply operations
Dual 16 x 16 multiply with add/substract operations
Quad 8 x 8 multiply with add operations

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and store with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Loads and stores doubles words with 5-bit constant

Loads and store non-aligned word and double words

5-bit constant generation

32-bit logical operations

37

Cadx Digital Signal Processer

veet
L1P Cache
EEE Dbac happod
ANpE b
== O ‘
ZBT SRAM 1 CHdx DS Core
ot o
Registers
Instruction Dispatch
e Advanced Instruction Packs{
Cantrol

HOMTLASH Instruction Decode Logic
e

Test
& Register Fils B Regigter Fike
[am-ae || [BAN-B16 | || advanced
[- McBBFZ s | ATE-A0 1 B15-80 ||| in.circunt
= E

______ & I.u |.a1 | .u1|.cni i.ml.ual.a&l .u[Internupt

R
UptodooMbps | T | I E"mw mﬁm
Master ATMC or : i 1024K :
£
i . ,LJ {B4-channel) Bytes
Framing Chips: . McBEPY]
H.100, MVIF, |
SCSA.TILE _!

ACAT Devices, i + LD Cathe
gl:!ﬂoﬂmo. 2-Way Set-Associative
el MCBSFOD e 16K Bytes Total

L.
6 GRIC(a0] B,
arIofs:Sp ‘i
3z |
Her =
|
= |
| Bool Configuration
=1, i ||
T i {7, w6 x12. Lagic
and x20)
Interrupt
Selectar [T

Figure 3.2: Functional block and CPU (DSP core) diagram [13].

access a 32-operand the opposite-side register file. The cross path 1X allows data path A to
read its source from register file B. The cross path 2X allows data path B to read its source
from register file A. In the C64x, CPU pipelines data-cross-path accesses over multiple clock
cycles. This allows the same register to be used as a data-cross-path operand by multiply

functional units in the same execute packet.

38

3.2.2 Memory [14]

Internal Memory

The C64x DSP chip has a 32-bit, byte-addressable address space. Internal (on-chip)
memory is organized in separate data and program spaces. When off-chip memory is used,
these spaces are unified on most devices to a single memory space via the external memory
interface (EMIF). The C64x has two 64-bit internal ports to access internal data memory
and a single internal port to access internal program memory, with an instruction-fetch width

of 256 bits.
Memory Options

The C64x DSP Chip also provides a variety of memory options:

e Program cache.
e 2-level caches.

e 32-bit external memory interface supports SDRAM, SBRAM, SRAM,

and other asynchronous memories for a broad range of external memory requirements and

maximum system performance.
Cache Memory

The C64x memory architecture consist of a two-level internal cache-based memory ar-
chitecture plus external memory. Level cache is split into program (L1P) and data (L1D)
caches. The C64x memory architecture is shown in Fig. 3.3. On C64x devices, each L1 cache
is 16KB. All caches and data paths are automatically managed by cache controller. Level 1

cache is accessed by the CPU without stalls. Level 2 cache is configurable and can be split

39

CJ Addressable memory

1 Cache memany

== Data path managed
by cache controfier

Figure 3.3: C64x cache memory architecture [14].

into L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory
locations. On a C6416 DSP, the size of L2 cacheis'l MB, and the external memory can be

several Mbytes large. More detailed introduction to the cache system can be found in [14].

3.3 TI’s Code Development Environment [15]

TI provides a useful GUI development interface to DSP users for developing and de-
bugging their projects: Code Composer Studio (CCS). The CCS development tools are
a key element of the DSP software and development tools from Texas Instruments. The
fully integrated development environment include real-time analysis capabilities, easy to use

debugger, C/C++ compiler, assembler, linker, editor, visual project manager, simulators,

CE4% CPU
256 bit 1 264 bit
LiP L1P wirite
16K ytes| | 16K bytes buer
L1 cache
256 bit 256 bit

| t2seam | | L2cache |

On-chip L2 memory

64 bit

External memory

XDS560 and XDS510 emulation drivers, and DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

e Simulators for full device, CPU only and CPU plus memory for optimal performance.

40

e Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.
e Source code debugger common interface for both simulator and emulator targets;

— C/C++/assembly language support.
— Simple breakpoint.
— Advanced watch window.

— Symbol browser.
e DSP/BIOS host tooling support (configure, real-time analysis and debugger).
e Data transfer for real time data exchange between host and target.

e Profiler to understand code performance.

CCS also delivers foundation software consisting of:

e DSP/BIOS kernel for the TMS320C6000-DSPs:

— Pre-emptive multi-threading.
— Inter-thread communication.

— Interrupt handling.
e TMS320 DSP Algorithm Standard to enable software reuse.

e Chip Support Library (CSL) simplify device configuration. CSL provides C-program

functions to configure and control on-chip peripherals.

41

e DSP library for optimum DSP functionality. The library includes many C-callable,
assembly-optimized, general-purpose signal-processing and image/video processing rou-
tines. These routines are typically used in computationally intensive real-time appli-

cations where optimal execution speed is critical.

3.4 Code Development Flow [17]

The recommended code development flow involves utilizing the C6000 code generation
tools to aid in optimization rather than forcing the programmer to code by hand in assembly.
Hence the programmer may let the compiler do all the laborious work of instruction selection,
parallelizing, pipelining, and register allocation. This simplifies the maintenance of the code,
as everything resides in a C framework that is simple to maintain, support, and upgrade.
Fig. 3.4 illustrates the three phases in the code development flow. Because phase 3 is usually
too detailed and time consuming, most of the time we will not go into phase 3 to write linear
assembly code unless the software pipelining efficiency is too bad or the resource allocation

is too unbalanced.

3.5 Code Optimization on TI DSP Platform

In this section, we describe several methods that can accelerate our code and reduce
the execution time on the C64x DSP. First, we introduce two techniques that can be used

to analyze the performance of specific code regions:

e Use the clock() and printf() functions in C/C++ to time and display the performance
of specific code regions. Use the stand-alone simulator (load6x) to run the code for
this purpose.

e Use the profile mode of the stand-alone simulator. This can be done by compiling the

42

Phase 1:

Develop C Code

Phase 2:
Refine C Code

Phase 3:
Write Linear
Assembly

Write C code

X

Compila

*
Profile

Yoz

Mo

Complata

)

Hefine C code

X

Compila

¥

Profile

Complete

)

Write linear assembly

X
Assembly optimiza
X
I Frofile
No
Efficient?
Yes

(Complete)

Figure 3.4: Code development flow for C6000 [17].

43

code with the -mg option and executing load6x with the -g option. Then enable the
clock and use profile points and the RUN command in the Code Composer debugger
to track the number of CPU clock cycles consumed by a particular section of code.

Use “View Statistics” to view the number of cycles consumed.

Usually, we use the second technique above to analyze the C code performance. The
feedback of the optimization result can be obtained with the -mw option. It shows some
important results of the assembly optimizer for each code section. We take these results into

consideration in improving the computational speed of certain loops in our program.

3.5.1 Compiler Optimization Options [17]

In this subsection, we introduce the compiler options that control the operation of the
compiler. The CCS compiler offers high-level'language support by transforming C/C++
code into more efficient assembly language source code. The compiler options can be used

to optimize the code size or the executing,performance.

The major compiler options we use are =03, -k, -pm -op2, -mh<n>, -mw, and -mi.

e -on: The “n” denotes the level of optimization (0, 1, 2, and 3), which controls the type

and degree of optimization.

— -03: highest level optimization, whose main features are:

x Performs software pipelining.
x Performs loop optimizations, and loop unrolling.
*x Removes all functions that are never called.

* Reorders function declarations so that the attributes of called functions are

known when the caller is optimized.

44

x Propagates arguments into function bodies when all calls pass the same value

in the same argument position.

x Identifies file-level variable characteristics.
e -k: Keep the assembly file to analyze the compiler feedback.
e -pm -op2: In the CCS compiler option, -pm and -op2 are combined into one option.

— -pm: Gives the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

— -op2: Specifies that the module contains no functions or variables that are called
or modified from outside the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

e -mh<n>: Allows speculative execution. The.appropriate amount of padding, n, must
be available in data memory to insure correct execution. This is normally not a problem

but must be adhered to.

e -mw: Produce additional compiler feedback. This option has no performance or code

size impact.

e -mi: Describes the interrupt threshold to the compiler. If the compiler knows that no
interrupts will occur in the code, it can avoid enabling and disabling interrupts before
and after software-pipelined loops for improvement in code size and performance. In
addition, there is potential for performance improvement where interrupt registers may

be utilized in high register pressure loops.

45

Al

B1 AZ
C1 B2 A3 Fipelined-loop prolog
D1 c2 B3 Ad
E1l D2 3 B4 AS Kemel
E2 03 4 B5
E3 D4 C5 Fipelined-loop epilog
E4 D5
ES

Figure 3.5: Software-pipelined loop [17].

3.5.2 Software Pipelining [18]

Software pipelining is a technique used to schedule instructions from a loop so that
multiple iterations of the loop execute in‘parallel. This is the most important feature we
rely on to speed up our system. The compiler always attempts to software-pipeline. Fig. 3.5
illustrates a software pipelined loop. The stages of the loop are represented by A, B, C, D,
and E. In this figure, a maximum of five iterations of the loop can execute at one time. The
shaded area represents the loop kernel. In the loop kernel, all five stages execute in parallel.
The area above the kernel is known as the pipelined loop prolog, and the area below the

kernel the pipelined loop epilog.
But under the conditions listed below, the compiler will not do software pipelining [17]:
o [f a register value lives too long, the code is not software-pipelined.

e If a loop has complex condition code within the body that requires more than five

46

condition registers, the loop is not software pipelined.

e A software-pipelined loop cannot contain function calls, including code that calls the

run-time support routines.

e In a sequence of nested loops, the innermost loop is the only one that can be software-

pipelined.

e If a loop contains conditional break, it is not software-pipelined.

Usually, we should maximize the number of loops that satisfy the requirements of software
pipelining. Software pipelining is a very important technique for optimization. But how can
we get the software pipeline information? The information is located in the .asm file that
the compiler generates with the -mw options. In order to view software pipeline information,

we must also enable the -k option which can retain the .asm output from the compiler.

3.5.3 Macros and Intrinsic Functions [17]

Because software-pipeline cannot contain function calls, it takes more clock cycles to
complete function calls. Changing function to macros under some conditions is a good way
to optimize. In addition, replacing functions with macros can cut down the code for initial
function definition and reduce the number of branches. But macros are expanded each time

they are called. Hence, they will increase the code size.

The TT C6000 compiler provides many special functions that map C codes directly to in-
lined C64x instructions, which increases C code efficiency. These special functions are called
intrinsic functions. If some instructions have equivalent intrinsic functions, we can replace
them by intrinsic functions and the execution time can be decreased. We will introduce how

to use the intrinsic functions in chapter 4.

47

Chapter 4

Fixed-Point Implementation of CTC
Encoder and Decoder

In this chapter, we present some simulation results for the CTC in IEEE 802.16e. They

include both floating-point and fixed-point results and DSP implementation results.

4.1 Performance in AWGN Channel with Floating-Point
Processing

In this section, we consider the performance of CTC with floating-point processing. In
particular, we discuss two important parameters : the iteration number and the compensa-
tion factor for max-log-MAP operation. The iteration number of the turbo decoding affects
the decoding accuracy and complexity. A large iteration number usually leads to better
performance, but the complexity and latency also increase. From [22], we can conclude that
reasonable results are obtained with 4 to 8 iterations. To limit the decoding complexity and
maintain a reasonable performance, therefore, we choose 4 to be the iteration number in sim-
ulation and in DSP implementation. From [8], we can find the performance with log-MAP,

but we don’t compare in our simulation results.

Now consider the compensation factor for max-log-MAP. Although max-log-MAP algo-

48

rithm can reduce the implementation complexity, it results in performance loss since the
approximated maximum function usually overestimates the messages. In order to compen-

sate the performance loss, one way is to use a scaling factor p to scale down the extrinsic

value [21] :

% = px Li(dh). (4.1)

In

In Figs. 4.1 and 4.2 we compare the performance at p = 0.5,0.75 and 1 for code rate 1/2
with 288 information bits and code rate 3/4 with 432 information bits under three different
modulation types with max-log-MAP decoding. We can see that the bit error rates (BER)
are almost the same for p = 0.5 and p = 1, and p = 0.75 apparently performs better than the

other choices. Applying the simple scaling to the extrinsic information improves the BER

performance by 0.1 to 0.2 dB.

Figs. 4.3 and 4.4 compare the performance under the three modulations at p = 0.75 with
code rates 1/2 and 3/4. The coding gains-under QPSK, 16QAM, and 64QAM at BER =
1075 for code rate 1/2 are 7.05, 8.35 and 9.19 dB, respectively, and that for code rate 3/4

are 5.59, 6.38 and 6.92 dB, respectively.

4.2 Performance in AWGN Channel with Fixed-Point
Processing

In algorithm development, it is often convenient to employ floating-point computation
to acquire better accuracy. However, for the sake of power consumption, execution speed,
and hardware costs, practical implementations usually adopt fixed-point computations. The
DSP chip used in our work, TT's TMS320C6416 is also of the fixed-point category and
supports 8, 16, 32-bit data precisions, providing efficient memory support for a variety of
applications. In our simulations, 32-bit operations should be over the requirement, and 8-bit

operations do not give enough precision. Therefore, we choose 16-bit operations, which are

49

Figure 4.1: Performance
information bits.

CTC
10

BER
=
S

CTC Floating—point compare
10°

BER

10°

Eloating—point compare R=1/2 288bit
T

10000times 4iteration with QPSK modulation

T

i

—*—rho=0.5
—o— rho=0.75
—+—rho=1

©— uncoded QPSK 3

10
Es/No

15

20

R=1/2 288bit 10000times 4iteration with 16QAM modulation

T T

i i

—*—rho=0.5
—6&— rho=0.75
—+—rho=1

©— uncoded 16QAM B

A

0 5 10
Es/No

15

20

CTC Ii'loating—point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation

10

10

10

10°

10"

—*—rho=0.5
—o&— rho=0.75
—+—rho=1

&— uncoded 64QAM |]

20

20

of CTC at different p values under three modulations with 288

CTC
10

BER

10

CTC Floating—point comp:
10°

BER

Eloating—point compare R=3/4 432bit
T

10000times 4iteration with QPSK modulation

-7 i i

—*—rho=0.5
—&— rho=0.75
—+—rho=1

©— uncoded QPSK

10
Es/No

15

20

are R=3/4 432bit 10000times 4iteration with 1L6QAM modulation

T T

i i

—*—rho=0.5
—6— rho=0.75
—+—rho=1

©— uncoded 16QAM

10
Es/No

15

20

CTC Ii'loating—point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation

10

BER

10"

T T

—*—rho=0.5
—o&— rho=0.75
—+—rho=1

©— uncoded 64QAM

20

Figure 4.2: Performance of CTC at different p values under three different modulations with

432 information bits.

o1

0

CTC Floating—point with Diferent Modulation, Rate 1/2, 288bit 10000times 4iteration
10 T T

—*— Float QPSK
—6— Float 16QAM
—+— Float 64QAM
—+&— Uncoded QPSK
— — — Uncoded 16QAM
Uncoded 64QAM

15 20
Es/No

Figure 4.3: Performance of CTC at 288-bit and p = 0.75 with different modulations employ-
ing floating-point computation at 4 iterations.

10°

CTC Floating—point with Diferent Modulation, Rate 3/4, 432bit 10000times 4iteration
T T 3

T T T T

" ;]
—— Float QPSK
—&— Float 16QAM
—+— Float 64QAM ||
—=— Uncoded QPSK |3
— — — Uncoded 16QAM |{
Uncoded 64QAM ||

0 2 4 6 8 10 12 14 16 18 20

Figure 4.4: Performance of CTC at 432-bit and p = 0.75 with different modulations employ-
ing floating-point computation at 4 iterations.

also the most efficient word length for the DSP.

In Fig. 4.5 we show the fixed-point data formats in our reference CTC decoder “imple-
mentation”. This design serves to illustrate the program structure but does not represent the

true implementation. The hypothetical reference decoder input data format is Q4.11, which

52

_ Input(Y

Duo_Binary ————> decision
(Q4.11) - - (Q8.7)
- CRSC_Decoder -
extrinsic
max{a+y} max{ay+Bo+yol)
decoder input(Y) ‘;’ Alpha {QB_TT__'E (@8 ?)— > decision
— e Y*X+prior = .
@411) | Gamma L
' (e ‘.__, Beta max;"_ms;_éh L max{o++y}-
(Q8.7) R
extrinsic
(Q87) ‘

Figure 4.5: Hypothetical reference CTC decoder implementation with marking of fixed-point
data format at various place.

means a 16-bit fixed-point number with one sign bit, 4 integer bits, and 11 fractional bits at
right side of the dot. The alpha, beta and gamma data use the Q8.7 format. In designing our
actual implementation, we first convert floating-point: values to fixed-point by multiplying
the original floating-point values by 1024. That -means the decoder input data format is
Q5.10. We find that the alpha, beta and gamma values have overflow errors. Therefore, we
consider two methods, the scaling method and the clipping method to simulate result with

fixed-point processing. We introduce them below.

4.2.1 Scaling Method [22]

As mentioned, we convert floating-point input values to fixed-point values by multiplying
the original floating-point values by 1024 and truncating the result to 16 bits. We change
the numbers of bits in the decoder input, extrinsic and gamma. The aim of scaling of the

extrinsic and gamma is to try to avoid the overflows at high SNR.

In Figs. 4.6 and 4.7, we give the scaling parameters, which consist of “Scal,” “Scal_E,”

53

CTC Rate 1/3 CTCO_Fechec.c Fixed Point Scale { S 11.4)
Last Update: 20080520
Author : Uelang-Smith

Decoder input tpinfo_array+))

i iz Sca l+ChaRel iab)

190wl y e Scal+ChaReliab)
-(Scal+#ChaRel 1ab)
piza{Scal +#ChaRel 1abi;)

Extrinsics (MAP)

rlor [L] =={Scal_B);

N] = Scal _B):

1] 1=={Scal _E):

e D:gammal i *4*States) I=0CAL1 INOUMTIOY+B i)

SIRBER IS

{Scal_g)ibreal
gamma[i *4%Stated) =0 AL]*OUTTO)]]
Branch Moetric >{Scal_g)ibreal
(Gamma) ase 2:gommali*A*States) r--'-.i”":.:'lu '|.\.|'- ti
S Scal_g):br=al
sise Figamma[i *d"States) JsO0ALI JROUTTO] B J™RTLT]+¥
{Scal_g):breul

P1*T[3) deap[O[T

LHOUTEA L[3[i 10D

JHATTL 3) vetp[2000 00

1SUTES TPl 31T TH)

Figure 4.6: CTC fixed-point truncation parameters (modified from [22]).

and “Scal_g,” standing for scale values for the decoder input, the extrinsic and the gamma,

respectively. We also show how these parameters-are used in the functions of our C program

developed previously [22]. Note that in [22], it is no subpacket generation.

In Fig. 4.8, we compare the performance when the number of fractional bits in the
decoder is between 0 to 9 (S15.0 to S6.9) for max-log-MAP decoding at rate-1/3 with 480
information bits and under three different modulations. “Scal_E” and “Scal_g” are hold at
1 and 0, respectively. When we use S12.3 to S6.9, the BER curves are almost the same for
QPSK, 16QAM and 64QAM. The BER curve for QPSK is in our acceptable limit when we
use S12.3. But for 16QAM and 64QAM, S11.4 is the limit that we can accept. We can see

that S10.5 to S6.9 cause overflows at high SNR. Hence, we try different values of “Scal_E”

and “Scal_g” to control the overflows.

In Fig. 4.9, we show the performance with different values of “Scal E” and “Scal_g.” We

o4

Input(Y)
(@5.10)

_Input(Y)_shift s L e
Ged! (Q11.4) ' = ry_ i e
> CRSC_Decoder

extrinsic (Q11.4)

- QAL Alpha |_MaxoH Sl SRS SR
gdbcu_.»:nrsm_u_:!_-:\; VA +Dri0 (Q11.4) (Q11.4)
@114) | Gamma : Scal_g|- L
: N max{a+() L
—>] Beta i
(Q11.4) R
extrinsic
Scal e
(Q11.4) =

(Q11.4)

Note: All sacles indicate right shifts, assumed O here.

Figure 4.7: Illustration of fixed-point data formats with the scaling method, where Q11.4
may be replaced by other setting (such as Q9.6 or Q14.1) depending on code rate and
operating condition.

see that the overflow at high SNR disappears;.but the performance is degraded at low SNR.
Fortunately, no overflow occurs at high SNR for QPSK with S12.3, for 16QAM with S11.4,

and for 64QAM with S11.4.

In Figs. 4.10 and 4.11, we show the performance for code rate = 1/2, 288 information
bits and code rate = 3/4, 432 information bits under three modulations. We only compare
the performance when the number of fractional bits in decoder is 1 and 4 (i.e., S14.1 and
S11.4) for max-log-MAP decoding. In these figures, Scal E = 1 and Scal_ g = 0. We can see
that S11.4 has better performance than S14.1, but has overflows at high SNR. Therefore,
we use S14.1 in our implementation. The coding gains of QPSK, 16QAM, and 64QAM at
BER=10"° for code rate 1/2 are 6.51, 7.29, and 8.59 dB, respectively, and that for code rate

3/4 are 5.41, 5.89, and 6.62 dB, respectively.

Tables 4.1 and 4.2 show the coding gains obtained with floating-point computation and

that with fixed-point for scaling method computation. We can see that the differences in

95

CTC
0

Fixed—-Point Compare R=1/3 480bit 1000 times 4 Iteration with QPSK Modulation
10 T

T T T

107§

W 10]
10™ o ¢ -+ Uncoded QPSK

~ —5— 515.0 S10E1g0

o —%— S14.1 S9E1g0

107k I o —6&—S12.3 S7E1g0

| B —%— S11.4 SBE1QO

3 : i —+— 596 S4E1g0

107° L isL i | —9—S69 SIE1g0

0123456 7 8 9 1011 12 13 14 15 16 17 18 19 20
Eb/No (dB)

CTCOFixed—Point Compare R=1/3 480bit 1000 times 4 Iteration with 16QAM Modulation

10

BER

10°

10°

-6

10

CTCOFixed—Poim Compare R=1/3 480bit 1000 times 4 Iteration with 64QAM Modulation

10

BER

10

Figure 4.8: CTC decoding at different bit numbers with different modulations.

<& - Uncoded 16QAM
—*— S14.1 S9E1g0
—6— S12.3 S7E1g0
—=— S11.4 S6E1g0
—b— S10.5 S5E1g0
—+—S8.7 S3E1g0
—5—S6.9 SI1E1g0

01 2

9 10 11 12 13 14 15 16 17 18 19 20
Eb/No (dB)

107

i

¢ - Uncoded 64QAM
—*— S14.1 S9E1g0
—6— S12.3 S7E1g0
—=%— S11.4 S6E1g0
——H— S10.5 S5E1g0
—+—S8.7 S3E1g0
—B8—S56.9 S1E1g0

T =

EDb/No (dB)

26

T e
9 10 11 12 13 14 15 16 17 18 19 20

CTC Fiéed—Point Compare Modify R=1/3 480bit 1000 times 4 Iteration with QPSK Modulatiol

10 T T T T T T T T T e
: : : ¢ - Uncoded QPSK
—&— S15.0 S10E0gO
—*#— S14.1 S9E1g0
—~A— S13.2 S8E0g0
—&— S12.3 S7E1g0
—%— S11.4 S6E2g0
—+—S9.6 S4E4gl |3

BER
=
S

9 10 11 12 13 14 15 16 17 18 19 20
Eb/No (dB)

10° g

CTC Fixed-Point Compare Modify R=1/3 480bit 1000 times 4 Iteration with 16QAM Modulatic
e 3 A S A S B
: < - Uncoded 16QAM
—#— S14.1 S9E1g0
—6—S12.3 S7E1g0
—— S11.4 S6E1g0
—p— S10.5 S5E290
—+—S8.7 S3Elg2
—H8—S56.9 S1E2g4 |

BER

® : H 3
o

-6

AN T S S SN NS N S S S T S S SN SR SN RO S
012 3 45 6 7 8 9 10111213 14 1516 17 18 19 20
Eb/No (dB)

10

CTC FixoedfPoint Compare Modify R=1/3 480bit 1000 times 4 Iteration with 64QAM Modulatic
100 T T T T T T T T T

: : : & - Uncoded 64QAM
—#— S14.1 S9E1g0
—6—S12.3 S7E1g0
—=— S11.4 S6E1g0
—b— S10.5 S5E290
—+—S8.7 S3E2g1

—B8—S56.9 S1E2g4 5

&
©

0123456 7 8 9 101112 13 14 15 16 17 18 19 20
Eb/No (dB)

-6

10

Figure 4.9: Performance with scaling of various quantities in CTC decoding to avoid overflow
at high SNR.

27

Figure 4.10: Performance of CTC with different scale factors under three modulations with

288 information bits.

CDTC fixed—point compare R=1/2 288bit 10000times 4iteration with QPSK modulation
10 T T T

T T
—*—S11.4
—o—S14.1 i
—+— uncoded QPSK

T T T T

i
4 6 8 10 12 14 16 18 20

Es/No

(D:TC fixd—point compare R=1/2 288bit 10000times 4iteration with 16QAM modulation
10 i T

T T T T T
—*—S11.4
4 —6—s14.1
- —+— uncoded 16QAM
10 =
107°E .
[r
w107
o
10k
10°L =
10’6 i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20
Es/No
(D:TC fixd—point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation
10 T T T i T T T T T
—*—S11.4
[—&—S14.1
" —+— uncoded 64QAM
10 "k =
107°F .
[r
w107 3
)
107 .
10°F 4
\
, b Y
10’6 i i i i % i i i i
0 2 4 6 8 10 12 14 16 18 20
Es/No

o8

UCTC fixed—point compare R=3/4 432bit 10000times 4iteration with QPSK modulation
10 T T T T

T T T T T
: ' —+—S11.4
—&—S14.1
104 —— uncoded QPSK ||
107 El
1073 7%
o
w
o
10" El
10° El
10° El
10’7 i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20
Es/No
OCTC fixd—point compare R=3/4 432bit 10000times 4iteration with 16QAM modulation
10 T T T T T T T T T
H —*—S11.4
—c—S14.1
10” —+— uncoded 16QAM ||
107 E
10° E
@
i
)
10" E
10° E
10°E A E
107 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
Es/No

CTC fixd—point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation

10°

T

T
—*— S1.

14

—c—S14.1
—+— uncoded 64QAM ||

10

BER

Es/No

Figure 4.11: Performance of CTC with different scale factors under three modulations with
432 information bits.

29

Table 4.1: Coding Gain Performance of Rate-1/2 CTC in AWGN at BER = 107° with
Floating-Point and Fixed-Point with Scaling Method Computation

. Floating-Point Fixed-Point Coding
Modulation Coding Gain (dB) Gain (dB)
QPSK 7.05 6.51
16QAM 8.35 7.29
64QAM 9.19 8.59

Table 4.2: Coding Gain Performance of Rate-3/4 CTC in AWGN at BER = 107° with
Floating-Point and Fixed-Point with Scaling Method Computation

. Floating-Point Fixed-Point Coding
Modulation Coding Gain (dB) Gain (dB)
QPSK 5.59 5.41
16QAM 6.38 5.89
64QAM 6.92 6.62

coding gains between floating-point and fixed-point computations are 0.5 to 1 dB.

4.2.2 Clipping Method [19], [20]

In this method, we also convert floating-point input values to fixed-point values by
multiplying the original floating-point value by a factor and clipping the result to 16 bits.
From Fig. 4.5 we can see the integer part is 8-bit at least. For this reason, we let the decoder
input data format be Q8.7 to avoid overflow for alpha, beta and gamma computations. The
input multiplication factor is thus 128. Besides, we clip the decoder input and the extrinsic

to avoid overflow at high SNR. The data format used is shown in Fig. 4.12.

In Figs. 4.13 and 4.14, we compare the performance when the decoder input ranges are -

60

Input(Y) clip_(Y)

L

&

= i i — > decision
@sn | cliP @ep | PUeBmanv_ I oo -
> CRSC_Decoder .

‘ Clip_extrinsic (Q8.7)

- =] Apha | maxioi
aecoger inputi |
sl Y*X-+prior ‘ (@8.7)
@87 | Gamma L
i (Q8.7) ‘ maxja-+g} [LL
—>| Beta >
(Q8.7) R
extrinsic :
: 5| clip
(Q8.7)

Clip_extninsic (QB8.7)

Figure 4.12: Fixed-point data format with the clipping method.

4-3.9921875 (Din4) and -8-7.9921875 (Ding), extrinsics information ranges are -8-7.9921875
(Ex8), -16-15.9921875 (Ex16), and -32-31.9921875 (Ex32) for max-log-MAP decoding at
rate 1/2 with 288 information bits and rate 3/4 with 432 information bits under different
modulations. If any of the ranges are ‘exceeded; the corresponding value is clipped (i.e.,
saturated) to the boundary of the range. In Figs. 4.13 and 4.14, we have used Din4-Ex8,
Din4-Ex16, Din8-Ex16, and Din8-Ex32. The BER curves are almost the same for QPSK,
16QAM, and 64QAM. We can see that the performance of the clipping method for rate 1/2
with 288 information bits is better than that of the scaling method, and for rate 3/4 with

432 information bits the performance is close.

In Figs. 4.15 and 4.16, we show the performance of CTC decoding with fixed-point
computation under the clipping method vs. floating-point computation. The BER curves of
fixed-point results are close to that of floating-point. Tables 4.3 and 4.4 show the coding gains
with floating-point computation and fixed-point computations under the clipping method

(Din4-Ex16) and the scaling method (S14.1) at BER=10"".

61

Table 4.3: Coding Gain at Rate 1/2 with 288 Information Bits CTC in AWGN at BER =
10~* with Floating-Point Computation and Fixed-Point Computations with Scaling Method
and Clipping Method

Modulati Floating-Point Fixed-Point (Scaling) | Fixed-Point (clipping)
odulation Coding Gain (dB) Coding Gain (dB) Coding Gain (dB)
QPSK 6.0299 5.4438 5.9302
16QAM 7.3522 6.7752 7.2955
64QAM 8.5274 7.800 8.1233

Table 4.4: Coding Gain at Rate 3/4 with 432 Information Bits CTC in AWGN at BER =
10~* with Floating-Point Computation and Fixed-Point Computations with Scaling Method

and Clipping Method Computation

Modulat Floating-Point Fixed-Point (Scaling) (Clilz)lgiendg_)P g(r)l;cﬁng
odulation . : . .
Coding Gain (dB) Coding Gain (dB) Gain (dB)
QPSK 4.9313 4.4888 4.7544
16QAM 5.4409 5.2105 5.3609
64QAM 6.0954 D.7722 6.0019

62

Figure 4.13: Performance of CTC at different clipping

288 information bits.

10

10

10

CTC Eloating—point compare R=1/2 288bit 10000times 4iteration with QPSK modulation
10

T T

i i

—%— Din4-Ex8
—6— Dind4-Ex16
—+— Din8-Ex16
—+=— Din8-Ex32
——S14.1

uncoded QPSK

5 10
Es/No

15

20

CTC FDIoating—point compare R=1/2 288bit 10000times 4iteration with 16QAM modulation

T T

i i

—*— Din4-Ex8
—6&— Din4-Ex16
—+— Din8-Ex16
—+=— Din8-Ex32
——S14.1

Uncoded 16QAM

5 10
Es/No

15

20

CTC FDIoating—point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation

T T

—*— Din4-Ex8
—6— Din4-Ex16
—+— Din8-Ex16
—+=— Din8-Ex32
——S14.1

Uncoded 64QAM

63

15

20

ranges under three modulations with

C'EC Floating—point
10 T

BER

-7

10

compare R=3/4 432bit 10000times 4iteration with QPSK modulation

T T

T
—%*— Din4-Ex8
—&— Din4-Ex16
—+— Din8-Ex16
—5— Din8-Ex32
—6—S14.1

Uncoded QPSK ||

i i i

i
6 8 10
Es/No

12

14 16 18

20

CTC Fuloating—point compare R=3/4 432bit 10000times 4iteration with 16QAM modulation

10

BER

T T

i

—*— Din4-Ex8
—&— Din4-Ex16
—+— Din8-Ex16
—&— Din8-Ex32
—<—S14.1

Uncded 16QAM

m

10
Es/No

15

20

CTC FUIoating—point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation

10

BER

-7

10

Figure 4.14: Performance of CTC at different clipping

432 information bits.

T T

—*— Din4-Ex8
—o— Din4-Ex16
—+— Din8-Ex16
—&— Din8-Ex32
—<0—S14.1

Uncoded 64QAM

L

64

15

20

ranges under three modulations with

CTC Eloating—point compare R=1/2 288bit 10000times 4iteration with QPSK modulation
10 T T T
: —*— Din4-Ex8
—&— Din4-Ex16
—+— Din8-Ex16| |
—&— Din8-Ex32
—— float

5 10 15 20
Es/No

CTC FDIoating—point compare R=1/2 288bit 10000times 4iteration with 16QAM modulation

10 T T T
: —*— Din4-Ex8
—&— Din4-Ex16
100 —+— Din8-Ex16| |
—&— Din8-Ex32
float
10" E
w 10 E
10 : J
10 “=, E
h
1076 1 1 1
0 5 10 15 20

Es/No

CTC FDIoating—point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation
10 T T T
: —*— Din4-Ex8
—&— Din4-Ex16
—+— Din8-Ex16| |
—&— Din8-Ex32
—— float

15 20

Figure 4.15: Performance of rate 1/2 CTC with 288 information bits with floating-point

decoding vs. fixed-point under clipping method.
65

CTC Eloating—point compare R=3/4 432bit 10000times 4iteration with QPSK modulation
10 T T T

—*— Din4-Ex8

—&— Din4-Ex16

—+— Din8-Ex16|{

—&— Din8-Ex32

—— float

BER

1077 1 1 1
0 5 10 15 20

Es/No

CTC FDIoating—point compare R=3/4 432bit 10000times 4iteration with 16QAM modulation
10 T T T
: —*— Din4-Ex8
—&— Din4-Ex16
—+— Din8-Ex16| |
—&— Din8-Ex32
—— float

10"

10"

10°

10"

10 15 20
Es/No

10

CTC FDIoating—point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation
10 T T T
: —*— Din4-Ex8
—&— Din4-Ex16
—+— Din8-Ex16| |
—&— Din8-Ex32
—— float

Figure 4.16: Performance of rate 3/4 CTC with 432 information bits with floating-point

decoding vs. fixed-point under clipping method.
66

Chapter 5

Speeding Up of DSP Implementation

In this chapter, we consider how to speed up the DSP implementation of the CTC
decoder, especially ways of employing intrinsic functions to reduce cycle counts. In thus, we
change the ordering of alpha and beta to achieve parallelism. In the following we discuss how
to use the intrinsics and arrange the ordering of alpha and beta order. Then we compare

the parallelism of the fixed-point C programs with and without using the intrinsics.

5.1 Speed of DSP [17]

According to [17], we can realize substantial gains in the performance of the C code by

refining it in the following areas:

e Using intrinsics to replace complicated C/C++ code.

e Using word access to operate on 16-bit stored in the high and low parts of a 32-bit

register.

e Using double access to operate on 32-bit data stored in a 64-bit register pair.

In order to maximize data throughput on DSP, it is often desirable to use a single load or

store instruction to access multiple data values consecutively located in memory. All C6000

67

Table 5.1: TMS320C64X Compiler Intrinsics [17].

Assembly
C/C++ Compiler Intrinsic Instruction Description
int _dotp2(int srel, int sre2): DOTPZ The product of the signed lower 16-bit values of
N . srcl and src2 s added to the product of the
duticls Idota2(intsrc] inted); LooTF2 signed upper 16-bit values of sre1 and src2.
The _lo and _hi intrinsics are needed to access
each half of the 64-bit integer result.
inl _max2 (int srcT, intsrcZ); MAX2 Places the larger/smaller of each pair of values
" . o i in the corresponding position in the retum value,
it min2untsxal pinhercll MINE, Walues can be 16-bit signed or 8-bit unsigned.
vint _maxud{uint sre, uint sre2); MAX4
uint _minud(uint src?, uint arcZ);
MINU4
int _pack2 {uint srel, uint sre2); PACK2 The lower/upper halfwerds of srel and src2 are
vint _packha (uint sro?, int sro2); PACKH2 placed in the return valus.
uint _packhd (uint sre, uint sre2); PACKH4 Packs allarnate byles inte return value. Gan
uint _packl4 (uint srel, uint sre2); PACKL4 pack high or low bytes.
uint _packhi2 {uint srel, uint sre2); PACKHL2 The upperiowar halfward of srel is placed in the
Y . o 3 upper halfword the retum value. The lower/upper
ulik_packih2 fuintgrels uintand); PRCILHR halfword of src2 is placed in the lowar halfword
the retum value.
uint _rotl {uint sref, uint sre2); ROTL Rotates src2 to the left by the amount in srcl
int _sadd2(int src?, int erc2); SADD2 Parforms saturated addition between pairs of

SADDUS2 16-bit values in srcl and src2. Values for srcl

int _saddus2(uint srcl, int src2); it B sinad e st

uint & _amemd(void *ptr); LDW Allows aligned loads and stores of 4 bytes 1o
STW mamoryT

devices have instructions with corresponding intrinsics. That operate on 16-bit data stored
in the high and low parts of a 32-bit register. When operating on a stream of 16-bit data,

we can use word (32-bit) accesses to read two 16-bit at a time.

Table 5.1 displays some intrinsic functions-used in our DSP implementation, which include
—amem4(), _dotp2(), -max2(), _packX X2() group, -sadd2(), and _rotl(). We show how to

use these intrinsic functions in the following:

e _amemd(): Fig. 5.1 show that this intrinsic function tells the compiler that the following

access is a 4-byte (or word) aligned access address of an unsigned (or signed) int.

e _dotp2(): Fig. 5.2 illustrates how the _dotp2() intrinsic operates. We can see that two
32-bit registers, which are divided into two 16-bit register high parts (hi) and low parts
(lo), respectively. It multiplies corresponding parts in the two words separately and
then sum the two products together. Therefore, one _dotp2() intrinsic function can

complete two multiplications and one addition.

68

—01 16 bits r—

| am | e | oas) [aa) | e | e | e | ao) |
rl= 64 bits =[‘
> A)
s v ,/LDDW
I aid) | a2 I | alt] [a0 ?jgz:erpanr
|4— 32 bits —J L— 32 bits. —'I
_hi() intrinsic // // // //Jo()mtnnsic
I af3] | a[2] I | a1] [af0] I
a_hi a_lo

Figure 5.1: Graphical representation of the _.amemd4() and the _max2() intrinsics [17].

— 16 bi it —
— 16bit —H¢— 16bit —

a a_hi a lo 32-bit register
b b_hi b lo 32-bit register
/
/ \
/
[
a_hi*b_hi alo*b lo

| | | |
W 32hit —™ W 32bit —™
™, g

. /
)

€ a hi*b hi+a lo*b lo ¢ =_dolp2b, a)

| I
o 2 bhit ——H

Figure 5.2: Graphical representation of the _dotp2() intrinsic [17].

o _max2(): The -max2() intrinsic function is compares two pairs of numbers and selects
the larger in each pair. For example, in Fig. 5.1, a[0] is compared with a[2] and a[l]

with a[3] at the same time.

o packXX2(): The _packX X2() group of intrinsics works by extracting selected half-

69

b_hi b lo a_hi alo
. ., P #
“ s -~
~ ™~ /j
N ~ o= _pack2{b, a)
b _lo a_le
c
b a
b_hi b lo a hi a_lo
o .,
- ™ g g
N o
- c=_packh2(b, a)
b_hi a_hi
e
b a
b hi b lo a_hi ale
T~ ~ . T B = > - -
~ B o c=_packhi2(b, a)
b_hi a_lo
[+
b 2
b_hi b_lo a_hi a_lo

c=_packlh2(b, a)

b lo a_hi

Figure 5.3: Graphical representation of _packX X2() intrinsics[17].

words from two 32-bit registers and returning the result packed into 32-bit word. This
is primarily useful for manipulating packed 16-bit data, although they may be used
for manipulating pairs of 8-bit quantities. Fig. 5.3 illustrates the four _packX X2()
intrinsics, _pack2(), _packlh2(), _packhl2(), and _packh2(). (The 1 and the h in the

names refer to which half of each 32-bit input is being copied to the output.)

_sadd2(): The _sadd2() intrinsic provides saturating pack and adds for corresponding

packed elements in two different words, producing two packed sums.

70

input

TS
— @

parity? “-_"“""-----...______parity2
Systematicpart
L(dy)= gt BB T S e
Le(d
P '_(K —>| Interleaver |-
L’ Le(d ‘
() De-Interleavef: ()

Figure 5.4: Overall encoder and decoder architecture.

o _rotl(): The _rotl() intrinsic function rotates the 32-bit value in src2 to the left by the

amount in srcl.

5.2 Original State Order [22]

In Fig. 5.4, we show the overall encoder and decoder architecture. Note that Demul-
tiplexing is including de-channel interleaver and de-CTC interleaver. In Table 5.2, we show
the every block cycles with QPSK modulation for 480 information bits, rate 1/2 coding
in one iteration. We can see that block of Ch-Interleaver (channel interleaver), Demulti-
plexing and Decoder (Duo_binary CRSC _decoder) spend much more cycles than others.
For Ch-Interleaver and Demultiplexing, we compute interleave position in advance and then
build the table to stored. Table 5.3 shows the improvement in speed of Ch-Interleaver and

Demultiplexing.

71

Table 5.2: Overall Encoder and Decoder Block Cycles

Block Times Called CPU Cycles
1/3 Encoder 2 9906
Ch-Interleaver 1 54212
Puncturing 1 496
De-puncturing 1 563
Demultiplexing 1 46995
Decoder 2 122352
Interleaver 2 4598
De-Interleaver 1 2307

Table 5.3: Speed Up in Channel Interleaver

Reduction in

Block Times Called CPU Cycles Complexity (%)
Ch-Interleaver (Original) 1 54212 N/A
Ch-Interleaver (Improved) 1 3239 99.39
Demultiplexing (Original) 1 46995 N/A
Demultiplexing (Improved) 1 6352 86.48

For Duo_binary_C' RSC _decoder, we can know the max-log-MAP decoding algorithm cost
the most execution time. In [22], the intrinsic functions maz2() and _sadd2() are used, but
the SIMD (single-instruction multiple-data) features of the DSP are not used. In Table 5.4,
we show the component functions in the Duo_binary_C RSC _decoder function that performs
the max-log MAP decoding algorithm. They consist of gamma, alpha, beta, LLR and
extrinsics functions. We can see that the extrinsics function needs much fewer cycles then

the other function. Therefore, we do not discuss it in the next section.

72

Table 5.4: Profile of Duo_Binnary C' RSC _decoder with QPSK Modulation for 480 Infor-
mation Bits, Rate 1/2 Coding in One Iteration

Function Times Called ~ CPU Cycles Percentage (%)

gamma 1 17830 32.41
alpha 1 13028 23.68
beta 1 13225 24.04
LLR 1 8495 15.44
extrinsics 1 2433 4.42

5.3 Arrange State Order to Achieve Parallelism

In this section, we illustrate how to arrange the state order to parallelize decoder pro-
cessing. We try to access two 16-bit data values consecutively located in memory and then
do operation on two 32-bit words at a time. Note that we have three sets of parameters to

arrange, from the BCJR algorithm for MAP: decoding, which consist of the following:

e The forward state metrics a.
e The backward state metrics .

e The branch metrics 7.

In Fig. 5.5, we show the original state order, whose sequence is from state 0 to state
7, and every state is arranged based on input order 00, 01, 10, 11. When using intrinsics
to compute forward state metrics, we cannot use word (32-bit) accesses to read two 16-bit
quantities at a time. Therefore, we propose an other arrangement to achieve parallelism.

First, we observe that the state order of forward metrics have some properties, In Fig. 5.5

k=1 k=1 k=1 k-1 k=1 k=1 k=1 k-1
we can see that the sets (g, of , ag , a7) and (a5, a3 -, ay -, az) of forward

metrics at time k — 1 have the sets (af, of, of, of) and (af, of, of, af), respectively,

73

Forward Sk-i Sk Backward
probability oy (515,83) (548,8;) probability By

a 080 0Bo B
oYy 0b1 0b1 B~
a7, ofo ofo B
oty o1+ o1+ B
ok, 160 160 By
oy 101 191 Bfs
o 110 150 B

Figure 5.5: Trellis diagram, every branch in the trellis connecting at time k£ — 1 to a state at
time k.

as possible state at time k. Therefore, we allocate memory for them in the order of 0/8_1,
0 o N VN o N a7, consecutively. In Fig. 5.6, we show the trellis with
rearranged state order for forward metrics. Note that, after computing the forward metrics,
the state order is changed to af, of, o, oh, ok ok, of af which is not the same as previous
time k£ — 1. In Fig. 5.7, we show how to use the intrinsics “_packX X2()” to put the states

at the correct positions.

Second, in Fig. 5.6, we also show the arrangement of state order for backward metrics.
Similarly, from Fig. 5.5 we can see that the sets (85, g5, 8%, BE) and (8F, 85, B, %) of
backward metrics at time k have the (35—t g1, 8=t g&=1y and (B51, g5, gt pEh,
respectively, as possible state at time k — 1. Therefore, we allocate the state order as 3%,

By, BE, By, BE Bk B BF. After computation of backward metrics, the state order changes

to 65’1, ﬁgfl, ﬁffl, ﬁéf’l, 617“’17 ﬁg’l, g’l, f’l. Similar to Fig. 5.7, we use the intrinsic

74

EX:00/00
Systematic part A, B/Parity part Y; W,

State Input A; B;=Systematic part State

., &,

(s15283) (s15283)
0 0
000 000
2 1
010 001
1 3
001 011
3 2
Ll 010
111 lil
5 6
101 110
6 4
110 100
4 s
100 101

Figure 5.6: Arrangement of trellis order for forward and backward metrics.

N N EEEE
L —vr— J L —v J
_packlh2() _packhl2() _packlh2() . —packhi2()

Figure 5.7: Use of the packX X2() intrinsics for forward metric .

“packX X?2” to put the backward metrics at the correct positions. Third, for the branch

75

metric,

Cr(Sk-1,5%) = In[p(yx|dy) - P(dy)]
= 05-Le- " - ad () + y29 - a390) + o2 227 (i, Sk_1, Si)

+yP9 P9, Sy, Sp)] + In P(dy) + K, (5.1)

we can use one intrinsic _dotp2 to compute " - 237 (i) + yP? - 279 (i), which computes the
branch metrics from the received systematic and parity bits. This needs to be done only for
the first iteration, but not for later iterations. In Fig. 5.8, we show the improved C code
of the alpha function for computing the forward metrics, and in Figs. 5.9 to 5.13, we show
the corresponding assembly code. The software pipeline information is shown in Fig. 5.14.
Table 5.5 shows the improvement in speed of gamma, alpha, beta, LLR and Gamma_Table
functions with QPSK modulation for 480 information bits, 1/2 rate coding in one iteration.
They account for 84.9, 51.67, 52.38 and 8:56%, respectively, of the complexity of the improved
Duo_binary-C'RSC _Decoder. Due to the iteration is one, therefore, we can sum the cycles
of gamma and Gamma_Table functions of the improved code to compare with the gamma
function of the original code. We see that there is 34.7% reduction in complexity. For the
LLR function we only improve 8.56% in speed, we conjecture that this has to do with the
amount of memory. The original code only uses three memory spaces (01, 10, 11) in every
time k. But the improved code uses four memory spaces (00, 01, 10, 11) in every time k to

accessed two 16-bit words at a time.

Table 5.6 compares the original cycles to the improved cycles for the Duo_Binary-C RSC_Deoder

function and the CTC _Decoder function.

76

Table 5.5: Profile of Improve Duo_Binnary-C RSC _Decoder with QPSK Modulation for 480
Information Bits, Rate 1/2 Coding in One Iteration

. Original Improved Reduction in
Function (Cycles) (Cycles) Complexity (%)
gamma 17830 2692 84.9
alpha 13028 6296 51.67
beta 13225 6297 52.38
LLR 8495 7767 8.56
Gamma_Table N/A 8947 N/A

Table 5.6: Speed Up in Decoding of One Data Block with QPSK Modulation for One
Iteration

Reduction in

Function Times Called Cycles Complexity (%)
Duo_Binnary_CRSC_Decoder (Original) 2 122352 N/A
Duo_Binnary_CRSC_Decoder (Improved) 2 60908 50.21

CTC_Decoder (Original) 2 209900 N/A
CTC_Decoder (Improved) 2 126918 39.53

7

void ALPHA(short #alphal,short #gammal,int length.int state)
{

short i,m.k,.0.u.8;

int temp_alpha[4]={0}:

int Mormal_alpha.rotl_alpha,.max_alpha;

for(i=0;1<Length;i++)
1

m=i <5
k={i+1)¢<3;
n=i€{3;

weol .m0 amemd (Salphal(k]) =_max?(_max2{_sadd2{ M!(&alphal[nj), _amemd (Sgamns 1 [m]
dZ(_amemd (Lalphal[Z+n]), _amemd(Sgammal[it+m]
._mzZ{_smlet_uu!(&alphal[i+n]), _amemd (Sgammal| 20+m]
coadd?(_ amemd (Ealphal[c+n]),_amemd(Sgammal]1d+m]
e i, s Ieo_amemd (Salphal[2+k])=_max?(max2(_sadd2(md(&alphal[n})} ._amemd (Sgamma [’ 4+m]
2({_amemd (Ealphal[Z+n]), _amemd(ESgammal]i0+m]
- mxzt _sadd?(_omem4(Ealphal[<+n]). _amemd{Egammal(4+m]
_cadd?(_amem4(falphal[c+n]), _amemd(Egammal[. +m
- _amemd (&alphal[4 +k])=_pn12|:_mnx2{ _sadd2?{_amemd4(falphal(n]) »_amem4 { Sgamma 1| G+m]
sadd2(amemd(Lalphal[i+n]), _amemd(Sgammal] c+m
_;nan{ _sadd?{_amemd(falphal[<+n] },_amemd(Sgammal(]’0+m
_sadd2(_amemd(Ealphal[c+n]), _amemd(Soammal[cem]

X

o

5

S
¥

wsif. 5 - _amemd (&alphal[d+k]) _mZ(_;nan{ _sadd?(_amemd(falphal(n]) I

__saddzt_m!(&ulphnl[_ﬂ]) . _amemd (Sdammal] 2em))

L max?(_cadd?(_ amemd(Lalphal[<+n]). amemd(Sgammal[l +m

. sadd2(amem4 (Ealphal[c+n]),_amemd (Sgammal] =0+m J)srms S5
temp_alpha[(]=_packhl?(_ amemd (Salphal[Z+k])._amemd(&alphal(k])):
temp_alpha(!l]=_packlh?(amem4(Salphal[Z+k])._amem4(Salphal(k])});
temp_alpha[®]= packhl?(amemd(Lalphal[o+k]), amemd(Ealphal[k+4])):
temp_alpha[3]=_packlh?|_ amem4(Salphal[d+k])._amem4(Ealphal[k+4]]));

Mormal_alpha=_max2({ max?(temp_alpha([0].temp_alpha[1]), max2(temp_alphal?].temp_alpha(i]}):
rotl_alpha= rotl (Normal_alpha.li):
|mnx_n1pha-_|mx2{Nnrmul_ulphu.rn‘tt_aipho};

For{u=d;uds ut+r)
{ s=udLl:

_amem4{&alphal(s+k])=_subZ({temp_alphafu]. (max_alphaji]:
}

}
|

Figure 5.8: Improved C code for the alpha() function.

5.4 Comparison of Speed

In this section we investigate the processing rates of the original code and the improved
code. Besides, we compare the numbers of additions, multiplications and the intrinsics

between the original code and the improved code.

5.4.1 Comparison of Original and Improved Codes in Additions,
Multiplications and Intrinsic Functions

We evaluate roughly the numbers of intrinsic functions for the CTC decoder in the

original code and the improved code. The equations for a priori probability computation in

78

vold ALPHA(short #alphal.short ®"gammal.int length.int state)

{
aooc4npo

Uooo4Lbo OYBFOOC2
00004004 OR100FDA

short i.m.k.n.u.s;

int temp_alpha[4]={0}:
QooCc4DDe DI1CESEZS8

oooo4Dnbe
000C4DED
OOD04DES
QO0C4DES
O0D04DEC
QO004DFD
0o0o4DF4

018001E8
040C0364
030C2364
oooozoo0q
02BDOOSA
04140304
03142304

ALPHA :

SUB.0Z
COR.L1

MVE.S1
MVEH .51
LbDw.DIT1
LODW.DIT1
HOP
ADD.LZ
STOW.DIT1
SI0W.D2T1

int Normal_alpha.rotl_alpha.maz_alpha:

for{i=0:i<Length:i++)

aooo40Fe
00004DFC
OODD4EQD
QOOU4ED4S
O0O0D4EDE
QOOU4EDC
UOOO4ELD
QOOO4E14
OODD4ELS
QOOUE1C
QOO04EZLD
QUO04EZ4
QOOO4E 4
QOOUsEZE
QOO04EZC
QOOU4E3D
QOOU4E 34
QOOU4EIS
OODD4E3C
QORU4E4D
UOOU4EA4
QURU4E4B
OODD4EAC
QORU4ESD
QOOO4ESH
QORU4ESS

OC8403E3
O%900FBA
O0o07EZB
0Z80A35H
0180A359
O0267C9F2
QOBUUIAS
O9BFO0S59
DC17EQSH
09000029
oooo2o40

[41823E7
£3202364
DB1863ES
DA1343E6
D219B82E6
U444 L1049
D31942E6
DD1CO3EY
OB1UBC 3N
Q2101FDB
DB18B3ES
O4DCEFC30
D31C02ET
Q3% 3IC33

B —
m_—_—

[1AD]
[1AD]
[I1A0]
[laD]
[1AQ]

[140]
[1A0]
[1A0]
[1AD]

MV .52
OR.L2

HVE .52
MVE.L2
MVE.L1
AND . D2
ML . 5s
suB.L1
SUB.L2
MVE.51
MVE.D1

LDDOW.DZT2
LiDw . DIT1
LDDOW.DZT2
LDOW . D2T2
LDw.DZT2
EXT.81
LDWw.DZI2
LIDw . Ifle
sADD 2 SIX
OR.LZX
LDOW.DZT1
sAalbz. 51K
LDwW.DZT2
SADDZ . 52X

SP.0x1B.5P
0.A%.A20

Ox£EEE9ub0,A3
Ox30000,.A3
#+A3[0x0].A9:A8
:*h3[ﬂx1],57:ﬂ5

8.5P.B5
Ad:AG.=+B5[0x0]
AT:AG.=+B5[0xl]

C5R.B25
0.B4.B19
U=x00EQ,BU
0.BS
t.A3
-2.B25,.B4
24,.C5R
AJ.B.Al19
B5.1.B24
Ux0000.A18
1A

*+B6[0x1].89:88
«4AB[0=1].47:46
»+B6[Dx3].B23:B22
«4+B6[0=2].B21:B20
=+B6[Dul]. B4
Al8,16.16.48

*+B6 [0xA].B6
«4B7[0=0].B27:B26
AS.B4.A22
0.A4.B18
*+B6[054].A17:A16
A7,B23,A89
«+B7[020].B6
BY,A7.B7

Figure 5.9: Assembly code of the alpha() function (1/5).

79

(O0004ESE
D0D4ESD
O00D4EG4
I0004E6S
(00004EGC
Q004ETE
0ODOD4ET4
QO004ET S
O0O04ETC
0004ESD
DDO04ES4
0004ESS
ooado4ESC
Q0004ESD
OoO04E94
Do004ESH
ooa04ESC
OOO004EAD
DOO04EAS
DOO04EAR
DOO04EAC
O0004EBD
DOO04ER4
DO004EBE
00ON4ERC
DO004ECH
O0O04EC4
OOO004ECH
00ON4ECC
OO004EDD
00ON4ED4
OO004EDS
Q0004EDC
OOOD4EED
O0O004EE4
OOOD4EEB
OOO04EEC
DOOD4EFD
O0O004EF 4
DOO04EES
O0O00Q4EEC
Q0DO4F00
O0004F04
ODDO4F 08
Qoo04FoC

02548030
D29322ET
02124C33
G1ADDC30
04424033
02109858
ORSBDC30
0B IF7C33
0214FC30
02D24C33
02106859
01CAIC31
03D4FA5A
03baDe31
04DBBASA
03448031
04980L33
03102R5A
0194BC31
02586859
029E1854
01D11A41
03A0YB58
030D01Aal
02209859
03948854
D3I1B0347
02253859
0Z21BE37B
025BE222
0210E859
O310AB5A
D20C0345
04104379
02204220
0BL408A1
OBADDABF1
02Z0A859
02200FDB
02140622
04989859
D23C43C6
09CDhoOs9
OCELZOSE
DB3C23C5

—— —
—— —

— e — — —
— i — e —

—
—

[LAD]

[1AD]

[1A0])

[FAD]

[1AD]

SADD2 51X
LDW.D2T2
SADD2,52
SADD2, 51X
SADD2 .82
MAX2 . L2%
SADD2 51
SADD2,82%
SADDZ , S1%
SADD2 52
MAX2 L1
SADD2,S1x%
MAXZ . L2
SADD2 51X
MAXZ . L2
SADD2,S1%
SADD2,52%
MAN2 . 1.2
SADD2,51¥
MAX2.L1
MAX2 L 2%
ADDAH.D1
MAXZ . L1¥
ADD .81
MAX2.L 1%
MAX 2. L7
STOW.D1T2
MAXZ L1

PACKLH2.L2
PACKHL2.82

MAMZ. L1
MAN2 L2
STOW.DIT1

PACKLHZ L1
PACFHLZ.S1

OR.S1
OR, D1
MAX2.L1
OR.L2
OR.S2
MAX2 L 1¥
STDW.D2T2
ADD.L1
ADD.L2.
STDW.D2T1

A5.B21.A4
“+He[0x9] .85
Bl8,.B4,.B4
Ab,BE.A3
Bl18,B16.B8
B4.A4,.B4
A6.BB.AZ1
B27.A7.B1b6
A7 ,.B5.A4
B18,B20,.BS
B3.A4. A4
Al6.B18,43
H? A21 .B7
Ab B22 AT
BS5,A22,B9
A5,B17 ,Ab
B&.AB.B%
B5.B7.B6
A5,B5.A3
A3.A6.AS
Bl16.A7.B5

AZ0,AB,A3

A3, BE AT
B.A3.AR

A4 ,B4 A5
BS,A5,B7
B7:BE,w+A6 [0x0]

AB.B9.A4

E7 .BE.EB4
B7.B&,BS
A7,A4,54
BS.B4,86
AS:A4,=+23(020)

A5.A4 AR

AS.A4.AS
O.AS.ALG
0.AB.AL17
A5.AB.A4
0.B4.85
0.B5.B4
A4,B56.A9
B5:B4.»+5P[0x2)
8.A19.019
1.B24.824

Al7:A1E,.=+5P[0x1]

Figure 5.10: Assembly code of the alpha() function (2/5).

80

0ODD4F 10
DODO4F 14
0O0D4F 1B
DODD4FIC
0O004FZ0
DODD4F 24
0OD04F 28
DO0D4F 20
0O004F 30
DODD4E 34
00004 38
DOD04F 30
OODD4F40
DOD04F44
OUDD4E48
DOD04FAC
00DD4FS0
DOD04ES4
0O004ESE
DO0D4ESE
00DD4FED
DODD4F 64
000D4E64
DODD4E RS
00004F BT
DOOD4E 70
00004E74
0OO0D4E7E
00D04F 70
DODD4EED
OO0D4EE4
DO0D4EES
OODD4FEC
DO0D4ESD
00004F 94
D0004F 98
0O004F&C
D0004EAD
0O004EA4
D00D4EAS
OOD04EAC
00004FE0
OO004FE4
DO0C4ERS
DO004FEC

03ABO7ED
2003ED5E
03628048
DZ4E1048
B3%02859
2FFFED92
02900099
D21CA461
DAS09R4 1
034CDAa42
02109098
D2000345
OZ19AZER
0Z9CH0%E
DB 18O3ET
02200364
OZ9962E6
COO3IEDSS
02490141
p2180347
O398FEC2

03202365
041823E6
OB1863ED
0A1843EE
D21932E6
031942E7
D1CA1048
04007441
OD1C03ET
UB10BC30
09101FDB
0B1883ES
O1DCEC30
031COZE?
D254BC31
039D3C32
02124C33
04200231
029922E6
UzZ109858
DASB0C31
04424032
DBL1F7C33

—r—| __ —r—|

ROTE (M1
SuUB.L2
EXT.S52
EXT. .51

MAXZ .11

B.52
SuB2.L1
sUBZ. 51
ADDAH . D1
ADDAH . D2
SUB2.L2X
STOW.D1T1
LDW.DZT2
SUBZ.LZX
LDIW.D2T2
LDDW.DI1T1
LOW.D2T2
SUB.L1
ADD,S1
STDW.D1T2
ADDAD.D2

% ALPHAS3GE:

LODW.D1T1
LDDW . D2T2
LODW.D2T2
LDDW .D2T2
LDW.D2ZT2
LDOW.DaT2
EXT .51
ADDAH.D1
LDDW.D2ZT2
SADDZ.51X
OR.LZ2X
LDDW.D2T1
SADD2,.81X
LiW. D212
SADD2.81X
SADD2.82X
SADD2 .52
SADDZ.81X
LOW.D2ZT2
MAXZ. L 2X
SADD2.81X
SADD2 .82
SADD2.82X

A9, 0x10.A7
BO.1.BO
B24,.21.156.B6
Al9. 1616 A4
A9_AT_ AT

L1493

AB.AT.AS

A-E i.h? ahq'

AZO.A4 .58
B19.86.B6
E4.A7.B4
AS:A4,=+A3[Dx0]
=406 [0xD] . B4
BS.A7.B5
“4+B6[0=0).B17:B16
=LA 0x0] A A4
»+BE[0xB],.B5
AD.1.AD
B.AlB.AlB
BS:B4,=+A6 [Dx0]
B6.0x7.B7

“+A8[0xl] .. AT:AG
“+BE6[0x1].B9:H8
w4+HE[0x3],B23:822
=+BE[0x2].,B21:B20
w4+Be[0xC].B4
»+BE[OxA].BE
Al8.16.16.43
AZ0.A3,89
«+B7[0=0).B27:826
0.2A4.B18
s+BE[Ox4]AL7ALG
A7 .B23.A3

=+B7 [0xD].B6
AS5.B21.a4

B9 AT .BY
B15.B4.B4
Ab.BB.AB
#+HE[0x9].E5
B4.A4.B4
Ab.BBAZ]
Bl8.Bl6.B8
B27.A7.B16

Figure 5.11: Assembly code of the alpha() function (3/5).

81

000C4FCO
Q0004FC4
000C4FCE
Qa0O4FCC
Q0004FEDIO
0a004FD4
0000D4FDE
0a0o4FDC
DO0004FED
OO004FES
Q000D4FES
OO004FEC
QO004FED
OO004FF 4
OO0D4FFB
OO004FFC
Qooos000
0a005004
0ooos00s
0a00500c
00005010
00005014
0ooos01e
oaoos01c
0ooos020
00005024
Qooos0zs
ooooeRzc
Qooos030
00005054
Qooos038
ooo0seaac
0ooos040
00005044
00005045
0o000504C
00005050
000050%4
00005058
0ooosensc
00005060
00005064
Qooos0es
gaoosnec

D21sFC30
02110859
D44A1C31
U3D4AFE5E
D2D24C32
ODE403A3
03Dabc 31
U4DEBELA
0344BC31
03102858
0498DC 32
03250941
029E1658
12990859
0=394BC 30
USADFE58
02909859
039480854
0218E37B
UZ98E223
03180347
02247858
029008A3
021408F3
0310AB5B
U210E858
023C43C7
02204399
OL20A421
02240344
08140641
UEBCOBF 1
020CABS5H
08302305
02189858
03220780
00000000
039Ca858
029Ce099
021CA460
02240345
029CE0 54
021C909%A
02180346

__-. __

[

___-. ___-. ___-.

__..

I
|

SADDZ. 51X
MAYZ.L1
SADDZ.S1X
MANZ . LZX
SADDZ.S2
MVZ.S2
SADDZ 51X
MAXZ.LZ%
SADDZ.51X
MAXZ.L2
SADDZ ;52X
ADD . D1
MAX2 .L2X
MAXZ.L1
SADDZ.51X
MAXZ L 13
MAXZ .L1X
MAXZ .LZ%
PACKLH2.L2
PACKHL2.52
STDW.D1T2
MAXZ . L1X
OR.S2
OR.D2
MAXZ.L2
MANZ . L1
STDW . D2T2
PACFHL2.L1
PACKLH2.51
STIW . D1T1
OR.S1
OR.D1
MAXZ.L1
STIMW . DZT1
MAXZ .L1X
ROTL M1
MOP
MAXZ.L1
§UB2.L1
SUBZ.S1
STDW.DIT1
SUBZ.LZX
SUB2 . L2
STIMW .DAT2

A7.BS.A4
ABLA4, A4
AlE,.B1B,AS
B7.,A21.B7
B18.B20.B5
B25.CSE
AG.B2Z.AT
B5,.A22.B9
AS,E17 .46
B9.B7.E6
E6.A6.B9
A9,028.A6
B16,.A7,.ES
AB,A6,A5
AS.B5.A7
A7.B8.A7
Ad,B4.AS
BS.A5,B7
B7.B6.B4
E7.B6,E5

E7 :B6,=+A6[0x0]
A3.B9.A4
D.B4,B5
0.B5.64
ES.B4.BE
A7.A4,A4
B5:B4,#+SP{0x2]
AS.A4,A5
A5,A4,A3
AS:Ad,*+AT[Dx0)
0.A5,A16

0,43 ,A17
A5,A3,.A4

A17:A16.*43P[0x1]

A4.Bb.A4
A4, 0x10,A7

Ad, AT AT
R3,47,A5
AS,A7.A4
A5 A4, »+AT[Dx0]
B5.A7.B5
B4,A7,B4
BS:B4, *+A6[0x0]

Figure 5.12: Assembly code of the alpha() function (4/5).

82

{

m=1<<5;
k=(1+1)<<3;
n=1{<3;

cwg T s i _amem4 (Galphallk]) =_max2{_maxZ(_saddZ{_amem4(Salphalln]
s_sadd2 (_amemd (Galphal[l+n]

maxd(_saddZ{_amem4{Salphal[4+n]
s_sadd2 (_amemd (Salphal[6+n]

ks Foso 0% _amem4 (Salphal[+k])~_max2({_maxi(saddZ(_amem4{Salphal[n]
s_saddZ (_amem4d (Galphal[Z+n] ']

~maxd(_saddZ(amemd (Salphal[4+n]). amemd(&gammal[4+m])
s_sadd2(_amemd (Salphal[t+n]) ._amemd (Egammal[22+m])})1))z

) ._amemd (Sgammal[m]
)
]
)
)
)
)
g S,s0 7% _amemd (Salphal[4+k])~_max2(_maxd(sadd2(_amem4{Salphal[n]) ._amemd (Sgammal[S4m])
)
)
)
)
)
)
il

_amemd (Sgammal [15+m]
_amemd (Sgamma l[25+m]

)

§)
_amemd (Egammal[i4+m])

]

)

.)
.)
. !
v 1) Yearmsed . gr i
-_amend (Sgamma L[Z4+m]])
+_amemd (Ggammal[10+m]))
:]I G L e T
J
c_saddZ (_amemd (Galphal[i+n])._amemd (Ggammal[26+m]))
. maxd(_sadd2(_amem4(Salphal[4+n])._amem4(Sgammal[20+m]))
- sadd2(_amem4d (Salphal[bt+n]
~egrd.sre%_amemd (Galphal[6+k]) ~_max2(_max(_saddZ(_amemd{Salphal[n]
- saddZ (_amemd (Salphal[i+n]
. max?(_sadd?(_amemd(Salphal[4+n]
~_sadd2(_amemd (Salphal[6+n]

)

camemd (Egamma l[G4m] })))rowsos s
._amemd (Sgammal[i6+m]))
o amemd (Egammal[Z+m] 1))
._amemd (Ggammal[i-+m]))
«amemd (Egamma Ll [30+m])})) #sobo s IR

temp_alpha[0]=_packhl2(_amem4(Salphal[Z?+k])._amem4 (Galphal[k])
temp_alpha[l])=_packlh2(amem4{Salphal[2+k])._amem4(&alphal(k])
temp_alpha[l]=_packhl2(_amem4{Salphal[c+k])._amemd (Galphal[k+d
temp_alpha[3]=_packlh2(_amem4(Salphal[t+k]) . _amem4 (Ealphal[k+d

1
)3
1)z
11):
Hormal_alpha=_max2(_max2(temp_alpha[0].temp_alpha[1])._max2(temp_alpha[Z].temp_alpha[3])):

Totl_alpha=_rotl{Normal_alpha.l6):
max_alpha=_maxZ(Normal_alpha.rotl_alpha):

for{u=0:u<d:u++)
g=uddil;
_amem4 (Salphal[s+k])=_subZ(temp_alpha[u].(max_alpha)):

Figure 5.13: Assembly code of the alpha() function (5/5).
CTC decoder are as follows :

In P[d, =00] = —max|[0, L(d), L5(dk), L5 (dy)],
In Pld, = 01] = L{(dy) — max[0, LY(dx), L3 (dx), Lg ()],
In Pldy = 10] = L5(dx) — max|0, LS (dx), L5 (dx), L5(dy)],

In Pldy = 11] = L§(dk) — max[0, LY(dk), L5(dy), L5(dk)]. (5.2)

We see that it requires 4 additions per trellis stage over 240 trellis stages for 480 information
bits, for a total of 4-240 = 960 additions. About three -max2() function calls are needed per
trellis stage, for a total of 3-240 = 720 over 480 information bits. For the gamma function,

4 additions are needed per branch (see 5.1). With 8 states per trellis stage, 4 branches per

83

SOFTWARE PIPELIHE IHFORMATIOHN

Loop source line : 1380
Loop opening brace source line @ 1381
Loop closing brace source line @ 1449
Known Hinimum Trip Count x Zu0
Known Haximum Trip Count : 240
Known Max Trip Count Factor : 2u0
Loop Carried Dependency Bound(™) : 19
Unpartitioned Resource Bound 1y
Partitioned Resource Bound(=) : 17

Resource Partition:

L units L) 7

»5 Units 10 im

-0 units 14 10

.M units 1 n

-# cross paths 12 13

.T address paths in 10

Long read paths [n

Long wite paths [n

Logical ops {.L5}) 2 {.L or .5 unit)
Addition ops (.LSD) 15 13 (.L or .5 or .0 unit)
Bound{.L .5 .L5) 1" L

Bound{.L .5 .D .L5 .LSD) 17w 14

Searching for software pipeline schedule at ...
ii = 19 pid not Find schedule
ii = 20 Did not Find schedule
21 Did not Find schedule
22 Did not Find schedule
23 Did not Find schedule
24 Did not Find schedule
2% Did not Find schedule
26 Schedule Found with 2 iterations in parallel

ke
[
i

[8
s
| O B B |

Epilog not removed

Collapsed epilog stages |

Collapsed prolog stages 1
- B

fl.l.l.lllllllll.lll.lll'lllllllllllllllllll

Hinimun required memory pad bytes

Hinimum safe trip count i |
o -
L1193 PIPED LOOF PROLODG
o o e L e e S S S S S LSS S S S S S SSS S S SS S S SS s s -
L1194 PIPED LOOF KERHEL

Figure 5.14: Software pipeline information of the alpha() function.

84

Table 5.7: Numbers of Intrinsic calls and arithmetic operations in Original Code for CTC
Decdoding

_maz2() _sadd2() additions multiplications
branch metrics 720 0 31680 30720
forward metrics 7440 7680 1920 0
backward metrics 7440 7680 1920 0
LLR 6720 15360 720 0

state, and 240 trellis stages for 480 information bits, the total is 4-4-8-240 = 30720. The
total number of multiplications is similar : 4-4-8-240 = 30720. Note that we also use one
shift operation for multiplying with 0.5 in (5.1). For the forward metrics, there are 4 calls
to _sadd2() x 8 states x 240 trellis stages, giving a total of 4-8:240 = 7680. The _max2()
are called 3 times x 8 states x 240 trellis stages, for a total of 3-8-340 = 5760 times per
480 information bits. In addition, there are 8 subtractions and 7 -maxz2() calls per trellis
stage for normalization. The backward ‘metrics are the same with the forward metrics in
amount of computation. For the LLR values, there are 28 -max2() calls per trellis stage and
2 _sadd2() calls per branch x 4 branches x 8 states x 240 trellis stages, plus 3 subtractions

per trellis stage. For convenience, we summarize the above analysis in Table 5.7.

For the branch metric computation in the improved code, the additions needed in com-
puting the a priori probability are the same as the original, but the Gamma_Table function
uses the _dotp2() intrinsic to replace 2 multiplications and one addition. The total number of
_dotp2() calls are 2 per branch x 4 branches x 8 states x 240 trellis stages, yielding 2-4-8-240
= 15360. The number of additions is 1-4-8-240 = 7680. For gamma function there is 1 ad-
dition x 4 branches x 8 states x 240 trellis stages, which total to 7680. For the forward
metrics, we use 12 _max2() and 16 _sadd2() intrinsics per trellis stage and 3 _maz2() and 4

_sub2() calls to compute normalization. The backward metrics are the same as forward. The

85

Table 5.8: Numbers of Intrinsic Calls and Arithmetic Operation in Improved Code

_maz2() _sadd2() _dotp2() _sub2() additions
branch metrics 720 0 15360 0 16320
forward metrics 3600 3840 0 960 0
backward metrics 3600 3840 0 960 0
LLR 2880 7680 0 0 720

LLR values uses 12 _maz2(), 32 _sadd2() and 2 _sub2() calls per trellis stage. In Table 5.8,
we show the resulting amount of computation for ease of comparison with that of the original

code.

5.4.2 Processing Rate of CTC Decoder

Overall, we can get the cycles of 480 information bits, rate 1/2 CTC decoder between
original code and improved code are 209900 cycles and 126918 cycles with QPSK modulation
in one iteration, respectively. For CCS operation speed is 10° cycles/second, so we can get
their decoding information processing rates which are 2286 Kbps and 3782 Kbps, respectively.
Note that the CTC decoder is not be included the external functions, like as, de-modulator

and de-puncturing.

In Tables 5.9 and 5.10, we show the processing rates of original code and improved
code for two iterations and four iterations. Obviously, the processing rate is decreased with
iteration count. But the amount of decrease of processing rate is different. For original
code, the processing rate from 2 iterations to 4 iterations is decreased about 44%, and for
the improved code is decreased about 41%. That means, for higher iteration counts the
processing rate of improved code is better and better than original code. The reason is that

we do not repeat the computation of the branch metrics from the received systematic and

86

Table 5.9: Information Data Processing Rate Calculated from CCS for Original Code for
480 Information Bits, Rate 1/2 Coding

Information
Number of | CTC_Decoder Data Rate
Iterations Cycles (Kbps)
D) 336,568 1,426
4 592,273 810

Table 5.10: Information Data Processing Rate Calculated from CCS for Improved Code for
480 Information Bits, Rate 1/2 Coding

Information
Number of | CTC_Decoder Data Rate
Iterations Cycles (Kbps)
B 193,015 2487
4 324,278 1480

parity bits.

Finally, we compare the decoder processing rates of rate-1/2 tail-biting CC without using
the VCP, rate-1/2 tail-biting CC with the VCP, rate-1/2 CTC with 4 iterations of improved
code and rate-1/2 LDPC. Source of these implementation are described in [22], [23]. We get
the information data processing rates in decoding for tail-biting CC and LDPC codes from
[23] and tail-biting CC with the VCP from [22]. And we use CCS profiles to estimate the

decoding processing rate for CTC. The results are shown in Table 5.11

87

Table 5.11: Comparison of Decoder Speeds for Tail-Biting CC, CTC, and LDPC Calculated
from CCS

CC Information CC Information CTC. LDPC

Data Rate 5 Information .

. . Data Rate With Information
Without Using Data Rate for

VCP for Data Rate for
VCP for Rate-1/2 QPSK
Rate-1/2 QPSK | : Rate-1/2 QPSK

Rate-1/2 QPSK (Kbps) 722] with 4 Iterations (Kbps) [23]

(Kbps) [23] P (Kbps) P

832 \ 8,938 \ 1480 7.6

88

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we first present a part of FEC in IEEE 802.16e, which contain CTC
encoder, channel interleaver and bit selection. Second, we present the turbo decoding al-
gorithm BCJR with max-log-MAP, evaluating the performance of CTC and compared the

results with numerical results. Finally, we optimize CTC decoder on DSP implementation.

In performance simulation, in order to.compensate the max-log-MAP performance loss,
we use a scaling factor to scale down the extrinsic message, and it improve performance about
0.1 to 0.2 dB. Then we focused on complexity-reducing max-log-MAP decoding algorithm.
We convert the floating-point input values to fixed-point, proposing scaling method and
clipping method. For scaling method we could use S14.1 and for clipping method using (Din4-
Ex16) to implement the decoder. In our last simulation, the clipping method is better than
scaling method about 0.5 dB under QPSK, 16QAM and 64QAM at rate-1/2, respectively.
On DSP implementation, we arrange state order to reduce decoder complexity, which contain
forward metrics, backward metrics and branch metrics. In order to achieve parallelism, we
using a lot intrinsic functions to access two 16-bit at a time, the 50.21% is reduction in

complexity. In conclusion, in our decoder with 4 iterations, we can approach data rate

89

about 1500 Kbps.

6.2 Future Work

There are several possible extension for our research:

e In CTC decoder, the LLR function is execute many cycles, the parallelism is failed, we

may rewrite our code to achieve software pipeline.

e The procedure of HARQ (Hybrid Automatic Repeat reQuest) is important implemen-

tation in FEC, it can correct appear frequently error to reduce re-transmit times.

e For HARQ), it will longer length for encoder, we can used sliding window to reduce

complexity.

90

Bibliography

1]

IEEE Std 802.16™-2009 (Revision of IEEE Std 802.16-2004), IEEE Standard for Local
and Metropolitan Area Networks — Part 16: Air Interface for Broadband Wireless

Access Systems. New York: IEEE, May 2009.

E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol.
40, pp. 873-884, May 1992.

F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved
COFDM with application to HIPERLAN /2" in [EEFE Int. Conf. Commun. Conf. Rec.,
vol. 2, 2002, pp. 664-668.

B. Baumgartner, M. Reinhardt, G. Richter, and M. Bossert, “Performance of forward
error correction for IEEE 802.16e,” 10th International OFDM Workshop, Hamburg,

Germany, Aug. 2005.

Todd K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Wiley,
2005.

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Info. Theory, vol. 20, pp. 284-287, Mar.
1974.

91

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

Texas Instruments, Implementing a MAP Decoder for cdma2000 Turbo Codes on a
TMS320C62x DSP Dewvice. Lit. no. SPRA629, May 2000.

M. R. Soleymani, Y. Gao, and Y. Vilaipornsawai, Turbo Coding for Satellite and Wire-

less Communications, Dordrechtthe, Netherlands: Kluwer Academic, 2002.

M. C. Valenti, S. Cheng, and R. Iyer Seshadri, Turbo Code Applications: A Journey

from a Paper to Realization. Springer, 2005.

C. Berrou, M. Jezequel, C. Douillard, and S.Kerouedan, “The advantages of non-binary
turbo codes,” Proc. IEEE Information Theory Workshop, Sep. 2001, pp. 61-63.

Sundance, SMT6400 Help.chm.

Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Lit. no.
SPRU189, Oct. 2000.

Texas Instruments, TMS320C6414T, TMS320C6415T, TMS320C6416T Fized-Point
Digital Signal Processors. Lit. no. SPRS226A, Mar. 2004.

Texas Instruments, TMS320C6000 DSP cache User’s Guide. Lit. no. SPRUG56A, May
2003.

Texas Instruments, Code Composer Studio User’s Guide. Lit. no. SPRU328B, Feb. 2000.

Texas Instruments, TMS320C6000 Code Composer Studio Tutorial. Lit. no. SPRU301C,
Feb. 2000.

Texas Instruments, TMS320C6000 Programmer’s Guide. Lit. no. SPRU198I, Mar. 2006.

Texas Instruments, TMS320C6000 Optimizing Complier User Guide. Lit. no.
SPRU187K, Oct. 2002.

92

[19]

[20]

[21]

[22]

[23]

Y. Wu, B. D. Woerner and T. K. Blankenship, “Data width requirements in SISO
decoding with modulo normalization,” IEEFE Trans on Commun, vol. 49, pp. 1861—

1868, Nov. 2001.

G. Jeong and D. Hsia, “Optimal quantization for soft-decision turbo decoder,” in Proc.

IEEE Vehicular Technology Conference, Amsterdam, The Netherlands, Sep. 1999.

J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,” FElectronics Let-
ters, vol. 36, pp. 1937-1939, Nov. 2000.

Jia-Fong Chen, “Study in WiMAX channel coding techniques and associated digital
signal processor implementation,” M.S. thesis, Dept. Electronics Engineering, National

Chiao Tung University, Hsinchu, Taiwan, R.O.C, June 2008.

Po-Sheng Wu, “Research in and DSP implementation of channel coding techniques for
IEEE 802.16e OFDMA,” M.S. thesis, Dept. of Electronics Engineering., National Chiao

Tung University, Hsinchu, Taiwan, R.O.C:; June 2007.

93

y o % B (Shao-Hsueh Tseng)
e B
I EEYLE
PELEIRIEAFL
EEUaE- i o ;{j SR 2 (2007.9~2009.11)

PR ARE D kA i A R R T
%2 LR 0 WIMAX G2 565 Wl i
BB AR B IR
(WiMAX Convelutional Turbo Code Technology and

Digital Signal Processor Implementation)

