
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

WiMAX 迴旋渦輪碼技術與

數位訊號處理器實現

 WiMAX Convolutional Turbo Code Technology

 and Digital Signal Processor Implementation

 研 究 生：曾劭學

指導教授：林大衛 博士

中 華 民 國 九 十 八 年 十 月

WiMAX 迴旋渦輪碼技術與

數位訊號處理器實現

WiMAX Convolutional Turbo Code Technology

and Digital Signal Processor Implementation

研究生:曾劭學 Student: Shao-Hsueh Tseng

指導教授:林大衛 博士 Advisor: Dr. David W. Lin

國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of Master
in

Electronics Engineering
October 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年十月

WiMAX 迴旋渦輪技術

與數位訊號處理器實現

研究生:曾劭學 指導教授:林大衛 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

 IEEE 802.16e 無線通訊標準中，於系統的傳送端訂定了前向誤差

更正編碼的機制，藉此降低通訊頻道中雜訊失真的影響。通道編碼為

本論文的重點。

 本篇論文在於研究 IEEE 802.16e OFDMA 所訂定的迴旋渦輪

碼（CTC）系統並實現在數位訊號處理器(DSP)。闡明迴旋渦輪碼的

雙二位元循環遞迴系統迴旋（duo-binary CRSC）編碼以及利用最大

對數事後機率(max-log-MAP)進行 BCJR (Bahl `Cock `Jelinek 和

Raviv 四位研究者做為命名)解碼演算法。我們利用 C 語言驗證系統

演算法上的正確性，以及補償 max-log-MAP 導致的效能損失，並在

加成性白色高斯通道下模擬了各種調變。

 接著在 TI C6416 DSP 平台，我們改變格子圖順序，以及利用 DSP

內建函式達到平行運算，並且有效改善解碼器的運算速度。原始解碼

器的部分僅可達到約每秒 800K 位元的處理速度，改善後解碼器的速

度增進約 2 倍，進而可以達到每秒 1500K 位元的處理速度。

WiMAX Convolutional Turbo Code Technology

and Digital Signal Processor Implementation

Student: Shao-Hsueh Tseng Advisor: Dr. David W. Lin

Department of Electronics Engineering

& Institute of Electronics

National Chiao Tung University

Abstract

In the IEEE 802.16e wireless communication standard, a forward error

correction (FEC) mechanism is presented are the transmitter side to
reduce the noisy channel effect. The focus is on the channel coding.

The focus of this thesis is the research of the convolutional turbo code
(CTC) defined in IEEE 802.16e OFDMA and implement on the C6416
DSP. We explain the duo-binary circular recursive systematic
convolutional encoding (duo-binary CRSC) and use BCJR decoding
algorithm by max-log-MAP. We employ the C program to insure the
correctness of our algorithm and compensate the performance loss by
max-log-MAP, furthermore, simulate the CTC for different modulations
in AWGN.

Then, we implement on TI C6416 DSP, changing trellis order and
using intrinsic function to achieve parallel operation. Therefore, we
improve decoder operation speed efficiently. For original decoder just can
achieved a processing rate of 800 Kbps . For improved decoder , which is
approximately 2 times speed up in decoding rate. Therefore, the decoder

can achieve a further data processing rate of 1500 Kbps.

誌謝

本篇論文的完成，首先要特別感謝我的指導教授林大衛博士，在我進入交大

電子所開始，不論是課業或是研究上的困難，老師總能細心的給予適時方向去解

決問題，使我學到了分析以及解決問題的能力。此外老師對於學生的認真以及親

切樂觀的態度更是深遠影響了我，使我在研究所的這幾年得到了學術以外更重要

的智慧。

此外，由衷的感謝通訊電子與訊號處理實驗室所有的成員，包含各位師長、

同學、學長姐以及學弟妹們。特別感謝吳俊榮學長、林鴻志學長、王海薇學姐和

盧世榮學弟對我在學術上的不吝指導與建議，謝謝你們幫我解決了許多通訊方面

的疑問。感謝 95 級佳楓學長的指導，96 級凱暐、志偉、豐進、清德、辰彥等實

驗室成員，以及陳紹基老師的學生嘉洵跟靖順，平日和我一起念書、討論、玩耍，

讓我的研究生涯擁有美好的回憶。期待各位夥伴們畢業後都有不錯的發展。

最後，必須感謝我的家人，我父母親給予我的支持，使我在外地讀書時能無

後顧之憂，感謝他們的支持，也謝謝所有幫助過我、陪我走過這段歲月的人

曾劭學

民國 98 年 11 月 於新竹

Contents

1 Introduction 1

1.1 Scope of the Work . 1

1.2 Organization of this Thesis . 2

2 Overview of CTC in IEEE 802.16e OFDMA 3

2.1 Convolution Turbo Code Specification [1] . 3

2.1.1 Randomizer [1] . 4

2.1.2 CTC Encoder In IEEE 802.16e OFDMA [1] 6

2.1.3 1/3 CTC Encoder [1] . 8

2.1.4 CTC Interleaver [1] . 10

2.1.5 CTC Tail-Biting [1], [4] . 11

2.1.6 Subpacket Generation (Channel Interleaver or Interleaver and Punc-

turing) [1] . 14

2.1.7 Modulation [1] . 19

2.1.8 Demodulation for Bit-Interleaved Coded Modulation [3] 19

2.2 Decoding of CTC . 23

i

2.2.1 The Turbo Decoding Algorithm [5] 23

2.2.2 Decoding Rule for CRSC Codes with Non-binary Trellis [8] 25

2.2.3 Simplified Max-Log-MAP Algorithm for Double-Binary CTC [8] . . . 28

3 DSP Implementation Environment 33

3.1 The DSP Board [12] . 33

3.2 The DSP Chip [12] . 34

3.2.1 Central Processing Unit [12] . 36

3.2.2 Memory [14] . 39

3.3 TI’s Code Development Environment [15] . 40

3.4 Code Development Flow [17] . 42

3.5 Code Optimization on TI DSP Platform . 42

3.5.1 Compiler Optimization Options [17] 44

3.5.2 Software Pipelining [18] . 46

3.5.3 Macros and Intrinsic Functions [17] 47

4 Fixed-Point Implementation of CTC Encoder and Decoder 48

4.1 Performance in AWGN Channel with Floating-Point Processing 48

4.2 Performance in AWGN Channel with Fixed-Point Processing 49

4.2.1 Scaling Method [22] . 53

4.2.2 Clipping Method [19], [20] . 60

5 Speeding Up of DSP Implementation 67

ii

5.1 Speed of DSP [17] . 67

5.2 Original State Order [22] . 71

5.3 Arrange State Order to Achieve Parallelism 73

5.4 Comparison of Speed . 78

5.4.1 Comparison of Original and Improved Codes in Additions, Multiplica-

tions and Intrinsic Functions . 78

5.4.2 Processing Rate of CTC Decoder . 86

6 Conclusion and Future Work 89

6.1 Conclusion . 89

6.2 Future Work . 90

Bibliography 91

iii

List of Figures

2.1 Use of CTC in transmitter and receiver of IEEE 802.16e OFDMA (from [1]). 4

2.2 PRBS for data randomization (from [1], Fig. 337). 6

2.3 Structure of CTC in transmitter ans decoding in receiver (based on [1]). . . . 7

2.4 CTC encoder (base on [1]). 9

2.5 CTC rate 1/3 encoder flow chart [22]. 9

2.6 CTC encoding slot concatenation for different rates [1]. 11

2.7 CTC channel coding per modulation (modified from [1]). 12

2.8 CTC interleaver in two steps (modified from [1]). 13

2.9 Block diagram of CTC channel interleaving scheme (from [1]). 17

2.10 QPSK, 16-QAM, and 64-QAM constellations (from [1]). 20

2.11 Metric partitions of the 16-QAM constellation (from [3]). 23

2.12 Block diagram of a turbo decoder (from [5]). 24

2.13 CTC trellis structure of duo-binary convolutional code with feedback encoder

(from [8]). 26

3.1 Sundance’s SMT395 module (from [11]). 34

3.2 Functional block and CPU (DSP core) diagram [13]. 38

iv

3.3 C64x cache memory architecture [14]. 40

3.4 Code development flow for C6000 [17]. 43

3.5 Software-pipelined loop [17]. 46

4.1 Performance of CTC at different ρ values under three modulations with 288

information bits. 50

4.2 Performance of CTC at different ρ values under three different modulations

with 432 information bits. 51

4.3 Performance of CTC at 288-bit and ρ = 0.75 with different modulations em-

ploying floating-point computation at 4 iterations. 52

4.4 Performance of CTC at 432-bit and ρ = 0.75 with different modulations em-

ploying floating-point computation at 4 iterations. 52

4.5 Hypothetical reference CTC decoder implementation with marking of fixed-

point data format at various place. 53

4.6 CTC fixed-point truncation parameters (modified from [22]). 54

4.7 Illustration of fixed-point data formats with the scaling method, where Q11.4

may be replaced by other setting (such as Q9.6 or Q14.1) depending on code

rate and operating condition. 55

4.8 CTC decoding at different bit numbers with different modulations. 56

4.9 Performance with scaling of various quantities in CTC decoding to avoid over-

flow at high SNR. 57

4.10 Performance of CTC with different scale factors under three modulations with

288 information bits. 58

v

4.11 Performance of CTC with different scale factors under three modulations with

432 information bits. 59

4.12 Fixed-point data format with the clipping method. 61

4.13 Performance of CTC at different clipping ranges under three modulations with

288 information bits. 63

4.14 Performance of CTC at different clipping ranges under three modulations with

432 information bits. 64

4.15 Performance of rate 1/2 CTC with 288 information bits with floating-point

decoding vs. fixed-point under clipping method. 65

4.16 Performance of rate 3/4 CTC with 432 information bits with floating-point

decoding vs. fixed-point under clipping method. 66

5.1 Graphical representation of the amem4() and the max2() intrinsics [17]. . . 69

5.2 Graphical representation of the dotp2() intrinsic [17]. 69

5.3 Graphical representation of packXX2() intrinsics[17]. 70

5.4 Overall encoder and decoder architecture. 71

5.5 Trellis diagram, every branch in the trellis connecting at time k− 1 to a state

at time k. 74

5.6 Arrangement of trellis order for forward and backward metrics. 75

5.7 Use of the packXX2() intrinsics for forward metric 75

5.8 Improved C code for the alpha() function. 78

5.9 Assembly code of the alpha() function (1/5). 79

5.10 Assembly code of the alpha() function (2/5). 80

vi

5.11 Assembly code of the alpha() function (3/5). 81

5.12 Assembly code of the alpha() function (4/5). 82

5.13 Assembly code of the alpha() function (5/5). 83

5.14 Software pipeline information of the alpha() function. 84

vii

List of Tables

2.1 CTC Channel Coding Schemes for Each Modulation Method 5

2.2 Circulation State Look-Up Table (SC1 and SC2) [1, Table 573] 14

2.3 Parameters for the Subblock Interleavers . 16

2.4 Bit Metric for Method-ML and Method-LLR 22

2.5 Amount of Additions, Multiplications and Max Operations for Soft-Output

Decoding of One Component Code Once, Where Number of Information Bits

= 480 . 32

3.1 Functional Units and Operations Performed [12] 37

4.1 Coding Gain Performance of Rate-1/2 CTC in AWGN at BER = 10−5 with

Floating-Point and Fixed-Point with Scaling Method Computation 60

4.2 Coding Gain Performance of Rate-3/4 CTC in AWGN at BER = 10−5 with

Floating-Point and Fixed-Point with Scaling Method Computation 60

4.3 Coding Gain at Rate 1/2 with 288 Information Bits CTC in AWGN at BER =

10−4 with Floating-Point Computation and Fixed-Point Computations with

Scaling Method and Clipping Method . 62

viii

4.4 Coding Gain at Rate 3/4 with 432 Information Bits CTC in AWGN at BER =

10−4 with Floating-Point Computation and Fixed-Point Computations with

Scaling Method and Clipping Method Computation 62

5.1 TMS320C64X Compiler Intrinsics [17]. 68

5.2 Overall Encoder and Decoder Block Cycles 72

5.3 Speed Up in Channel Interleaver . 72

5.4 Profile of Duo Binnary CRSC decoder with QPSK Modulation for 480 In-

formation Bits, Rate 1/2 Coding in One Iteration 73

5.5 Profile of Improve Duo Binnary CRSC Decoder with QPSK Modulation for

480 Information Bits, Rate 1/2 Coding in One Iteration 77

5.6 Speed Up in Decoding of One Data Block with QPSK Modulation for One

Iteration . 77

5.7 Numbers of Intrinsic calls and arithmetic operations in Original Code for CTC

Decdoding . 85

5.8 Numbers of Intrinsic Calls and Arithmetic Operation in Improved Code . . . 86

5.9 Information Data Processing Rate Calculated from CCS for Original Code for

480 Information Bits, Rate 1/2 Coding . 87

5.10 Information Data Processing Rate Calculated from CCS for Improved Code

for 480 Information Bits, Rate 1/2 Coding 87

5.11 Comparison of Decoder Speeds for Tail-Biting CC, CTC, and LDPC Calcu-

lated from CCS . 88

ix

Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission is a trend in the next generation of consumer electronics.

Due to this demand high data transmission rate and mobility are needed. The OFDM

modulation technique for wireless communication has been a main stream in recent years.

IEEE has completed several standards, including the IEEE 802.11 series for LANs (local

area networks) and IEEE 802.16 series for MANs (metropolitan area networks), based on

OFDM technique. Our study is based on the IEEE 802.16 standard [1] which specifies the

air interface of mobile broadband wireless multiple access systems providing multiple access.

In wireless communication, the transmitted signals are easily interfered and distorted by

variance things sources such as the crowd traffic, bad weather, the obstacle of buildings,

etc. Digital wireless transmission with multimedia contents such as audio and video is a

trend. These services often exhibit high data rates and require high quality reproduction.

To improve the robustness of the wireless communication against the noisy channel condition,

the FEC (forward-error-correcting coding) mechanism is a must in almost every commercial

communication standard, including the IEEE 802.16.

CTC (convolutional turbo codes) comprise the mandatory channel coding schemes in

1

Mobile WiMAX. In addition, the puncture and M -ary modulation are used after encoder.

A number of studies have been conducted using BCJR algorithm [6] as the turbo decoding.

There have been numerous studies in the literature dealing with different decoding algo-

rithm. However we need to reduce the complexity for actual digital signal processor (DSP)

implementation. For convolutional turbo codes, we arrange trellis order to achieved parallel

operation.

In this thesis, we focuss on the study of the simulation and the DSP implementation of

the CTC in the IEEE 802.16 standard, We first study the encoding and decoding techniques.

Then we perform computer simulation to investigate the coding performance. Finally, we

optimize CTC on the DSP with fixed-point computation.

1.2 Organization of this Thesis

This thesis is organized as follows.

• Chapter 2 introduces the CTC (convolutional turbo codes) of IEEE 802.16e specifica-

tions.

• Chapter 3 describes the DSP implementation environment.

• Chapter 4 discusses simulation and DSP implementation of the CTC.

• Chapter 5 discusses the optimization of CTC decoder on DSP.

• Chapter 6 contain the conclusion and future work.

2

Chapter 2

Overview of CTC in IEEE 802.16e
OFDMA

The convolutional turbo code (CTC) is one mandatory channel coding scheme in Mobile

WIMAX. In this chapter, We introduce the encoding and the decoding methods for the CTC

in IEEE 802.16e OFDMA.

2.1 Convolution Turbo Code Specification [1]

The mandatory channel coding scheme used in IEEE 802.16e OFDMA is as shown

in Fig. 2.1. The input data stream is processed by the randomizer to clean up the bit

correlation, and then each data block is encoded by the convolutional turbo encoder. The

block-by-block coding makes the convolutional turbo code effectively a block code. However,

we do not implement the repetition block, which can be used to further increase the signal-to-

noise-ratio (SNR) margin over the modulation and FEC mechanisms, for the channel coding

procedures in IEEE 802.16e. Repetition block can be applied only to QPSK modulation.

Reader interested in the repetition block can refer to relevant material in [1].

To make the system more flexibly adaptable to the channel condition, 32 coding-modulation

schemes are defined in IEEE 802.16e, as shown in Table 2.1. The different coding rates are

3

Figure 2.1: Use of CTC in transmitter and receiver of IEEE 802.16e OFDMA (from [1]).

made by puncturing of the native convolutional turbo code. The puncturing mechanism in

convolutional turbo coding can provide variable code rates through one convolutional turbo

encoder.

2.1.1 Randomizer [1]

The randomizer is a pseudo random binary sequence (PRBS) generator defined by the

polynomial 1 + X14 + X15, as depicted in Fig. 2.2. Data randomization is performed on all

data transmitted on the downlink (DL) and uplink (UL), except the frame control header

(FCH). The randomization is initialized on each FEC block.

If the amount of data to transmit does not fit exactly the amount of data allocated,

padding of 0xFF (“1” only) shall be added to the end of the transmission block, up to the

amount of data allocated. Here, the amount of data allocated means the amount of data that

corresponds to the amount of slots bNs/Rc, where Ns is the number of the slots allocated

for the data burst and R is the repetition factor used.

Each data byte to be transmitted shall enter sequentially into the randomizer, MSB first,

to make the “0” and “1” bits in the input data streams well-distributed and hence improve

the coding performance. The randomization is applied only to information bits. Preambles

4

Table 2.1: CTC Channel Coding Schemes for Each Modulation Method

Modulation

Uncoded
Block Size

(bytes)

Overall Code
Rate

Coded Block
Size (bytes)

Number of
Used

Sub-channels

QPSK 6 1/2 12 1
QPSK 12 1/2 24 2
QPSK 18 1/2 36 3
QPSK 24 1/2 48 4
QPSK 30 1/2 60 5
QPSK 36 1/2 72 6
QPSK 48 1/2 96 8
QPSK 54 1/2 108 9
QPSK 60 1/2 120 10
QPSK 9 3/4 12 1
QPSK 18 3/4 24 2
QPSK 27 3/4 36 3
QPSK 36 3/4 48 4
QPSK 45 3/4 60 5
QPSK 54 3/4 72 6
16QAM 12 1/2 24 1
16QAM 24 1/2 48 2
16QAM 36 1/2 72 3
16QAM 48 1/2 96 4
16QAM 60 1/2 120 5
16QAM 18 3/4 24 1
16QAM 36 3/4 48 2
16QAM 54 3/4 72 3
64QAM 18 1/2 36 1
64QAM 36 1/2 72 2
64QAM 54 1/2 108 3
64QAM 24 2/3 36 1
64QAM 48 2/3 72 2
64QAM 27 3/4 36 1
64QAM 54 3/4 72 2
64QAM 30 5/6 36 1
64QAM 60 5/6 72 2

5

Figure 2.2: PRBS for data randomization (from [1], Fig. 337).

are not randomized. In both UL and DL, the randomizer is initialized with the vector

(LSB) 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 (MSB).

We do not implement the hybrid automatic repeat request (HARQ) mechanism. In

HARQ the randomizer can be initialized with different vector, so the detail are given in [1]

for HARQ required, which can refer to [1] in detail.

2.1.2 CTC Encoder In IEEE 802.16e OFDMA [1]

The convolutional turbo code (CTC) defined in IEEE 802.16e OFDMA is shown in

Fig. 2.3. The input data are first encoded by the CTC encoder. Then, they are interleaved

by the interleaving block and followed by puncturing. Note that the interleaving and the

puncturing are also called subpacket generation. CTC is not only defined in IEEE 802.16e

OFDMA but also in IEEE 802.16e OFDM. They are differentiated by their puncturing

mechanism and subpacket generation.

Turbo code was first proposed for error correction coding in 1993, which has provided

for very long codewords with only modest decoding complexity.

In later years, researchers have shown that non-binary circular turbo codes can offer

many advantages in comparison to the classical single binary turbo codes. Hence they

have been used as one of FEC options in some recent satellite and mobile communication

6

Figure 2.3: Structure of CTC in transmitter ans decoding in receiver (based on [1]).

standards, including DVB-RCS (Digital Video Broadcasting—Return Channel via Satellite)

and WiMAX (IEEE 802.16e).

IEEE 802.16e employs the double-binary code, whose advantages over a binary code

include [10]:

• Better convergence.

• Larger minimum distance.

• Less sensitivity to puncturing patterns.

• Reduced latency.

– As data are processed using symbols of 2 bits and ignoring the side effects, latency

is divided by 2, from both coding and decoding viewpoints.

7

– The trellis contains half as many states as a binary code of identical constraint

length and the decoding hardware can be clocked at half the rate as a binary code

[9, Chapter 12].

• Robustness of the decoder.

• Better performance for max-log-MAP algorithm: The duo-binary code can be decoded

with max-log-MAP algorithm, which loses only about 0.1–0.2 dB relative to the optimal

log-MAP algorithm. This is in contrast to binary codes, which lose about 0.3–0.4 dB

when decoded with the max-log-MAP algorithm [9, Chapter 12].

A more detailed understanding of this relationship can be gained form [10].

2.1.3 1/3 CTC Encoder [1]

The CTC encoder, including its constituent encoder, is shown in Figure 2.4. It uses

a double binary circular recursive systematic convolutional (CRSC) code. The bits of the

data to be encoded are alternately fed to A and B, starting with the MSB of the first byte

being fed to A. The encoder is fed by blocks of k bits or N couples (k = 2 × N bits). For

all the frame sizes, k is a multiple of 8 and N is a multiple of 4. Further, N is limited to

8 ≤ N/4 ≤ 1024.

The polynomials defining the connections are described in octal and symbol notations as

follows:

• For the feedback branch: 0xB, equivalently 1 + D + D3.

• For the Y parity bit: 0xD, equivalently 1 + D2 + D3.

• For the W parity bit: 0x9, equivalently 1 + D3.

8

Figure 2.4: CTC encoder (base on [1]).

Figure 2.5: CTC rate 1/3 encoder flow chart [22].

9

First, the encoder (after initialization by the circulation state SC1) is fed the sequence in the

natural order (position 1) with the incremental address i = 0, . . . , N − 1, which is called C1

encoding. Second, the encoder (after initialization by the circulation state SC2) is fed the

sequence in the natural order (position 2) with the incremental address j = 0, . . . , N − 1,

which is called C2 encoding. The order in which the encoded bits are fed into the subpacket

generation block is A, B, Y1, Y2, W1, W2 =

A0, A1, ..., AN−1, B0, B1, ..., BN−1,

Y1,0, Y1,1, ..., Y1,N−1, Y2,0, Y2,1, ..., Y2,N−1,

W1,0,W1,1, ..., W1,N−1,W2,0,W2,1, ...,W2,N−1.

We can represent the above rule with the flow chart shown as Fig. 2.5. Note that “CSLT”

stand for circulation state look-up table, as shown in Table 2.2.

The encoding block size shall depend on the number of slots allocated and the modulation

specified for the current transmission. Concatenation of a number of slots can be performed

in order to make larger blocks of coding where it is possible, with the limitation of not

exceeding the largest supported block size for the applied modulation and coding.

There are 32 different block sizes as shown in Fig. 2.6. The concatenation rule shall not

be used when using (incremental redundancy) IR HARQ.

2.1.4 CTC Interleaver [1]

The interleaver requires the parameters P0, P1, P2, and P3 shown in Fig. 2.7, which gives

the block sizes, code rates, channel efficiency, and code parameters for different modulation

and coding schemes.

The two-step interleaver can be performed as shown in Fig. 2.8, where two possible errors

in the standard is indicated.

10

Figure 2.6: CTC encoding slot concatenation for different rates [1].

2.1.5 CTC Tail-Biting [1], [4]

For recursive encoders, tail-biting is not as easy as it is for non-recursive encoders. To

ensure that the starting state is the same as the ending state, which is called circulation

state, for recursive encoders an initial encoding of the whole sequence has to be performed

[4].

The initial encoding is started in the all-zero state and depending on the information

sequence it ends up in a special state, Send. Based on this ending state, the circulation state

can be computed using linear algebra methods based on the state space description of the

encoder. In order to eliminate this linear algebra computation, the IEEE 802.16 provides a

so-called circulation state look-up table, where the correspondence between the final state

Send of the initial encoding process and the circulation state as a function of the information

sequence length is listed in Table 2.2.

Afterwards, the real encoding can be started, whereby the encoder state is initialized

now with the circulation state. Hence, a tail-biting encoder needs two complete encoding

processes, which adds complexity to the encoder. Complexity is also added to the decoder

11

Figure 2.7: CTC channel coding per modulation (modified from [1]).

12

Figure 2.8: CTC interleaver in two steps (modified from [1]).

of the constituent code. The complexity added to the decoder compared to the case where

the starting and ending state is known to the decoder is in the additional wrap-around for

the forward and backward recursion of the MAP decoder. Since the wrap-around length can

be kept small, the additional complexity is quite small [4].

Determination of CTC Circulation States [1]

The state of the encoder is denoted S (0 ≤ S ≤ 7) with S = 4S1 + 2S2 + S3, as shown

in Fig. 2.4. The circulation states SC1 and SC2 are determined by the following operations:

• Initialize the encoder with state 0.

• Encode the sequence in the natural order for the determination of SC1 or in the in-

terleaved order for determination of SC2. Let the final state in each case be denoted

S0N−1.

13

Table 2.2: Circulation State Look-Up Table (SC1 and SC2) [1, Table 573]

Nmod7 S0N−1

0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5
2 0 3 7 4 5 6 2 1
3 0 5 3 6 2 7 1 4
4 0 4 1 5 6 2 7 3
5 0 2 5 7 1 3 4 6
6 0 7 6 1 3 4 5 2

• According to the length N of the sequence, use Table 2.2 to find SC1 and SC2.

2.1.6 Subpacket Generation (Channel Interleaver or Interleaver
and Puncturing) [1]

The proposed FEC structure in IEEE 802.16e OFDMA punctures the mother codeword

to generate a subpacket with various coding rates. The framework consists of the following:

• bit separation,

• subblock interleaving,

• bit grouping, and

• bit selection.

The subpacket is also used in HARQ packet transmission. Figure 2.3 shows the block

diagram of subpacket generation. A rate-1/3 CTC encoded codeword goes through inter-

leaving and puncturing. Figure 2.9 shows the block diagram of the interleaving block. The

puncturing is performed to select a consecutive interleaved bit sequence that starts at some

point in the whole codeword.

14

For the first transmission, the subpacket is generated to select the consecutive interleaved

bit sequence that starts from the first bit of the systematic part of the mother codeword. The

length of the subpacket is chosen according to the needed coding rate reflecting the channel

condition. The first subpacket can also be used as a codeword with the needed coding rate

for a burst where HARQ is not applied.

Bit Separation

All of the encoded bits can be demultiplexed into six subblocks denoted A, B, Y 1, Y 2,

W1, and W2. The encoder output bits are sequentially distributed into the six subblocks

with the first N bits going to the A subblock, the second N to the B subblock, the third N

to the Y 1 subblock, the fourth N to the Y 2 subblock, the fifth N to the W1 subblock, and

the sixth N to the W2 subblock.

Subblock Interleaving

The six subblocks can be interleaved separately. The interleaving is performed in unit

of bits. The sequence of interleaver output bits for each subblock can be generated by the

procedure described below. The entire subblock of bits to be interleaved is written into an

array at addresses from 0 to the number of the bits minus one (N − 1), and the interleaved

bits are read out in a permuted order with the ith bit being read from the address ADi

(i = 0, . . . , N − 1), as follows:

1. Determine the subblock interleaver parameters, m and J . Table 2.3 gives these pa-

rameters.

2. Initialize i and k to 0.

15

Table 2.3: Parameters for the Subblock Interleavers

Subblock interleaver
Block size
(bits) NEP N m J

48 24 3 3
72 36 4 3
96 48 4 3
144 72 5 3
192 96 5 3
216 108 5 4
240 120 6 2
288 144 6 3
360 180 6 3
384 192 6 3
432 216 6 4
480 240 7 2

3. Form a tentative output address Tk according to

Tk = 2m(k mod J) + BROm(bk/Jc) (2.1)

where BROm(y) indicates the bit-reversed m-bit value of y (e.g. BRO3(6) = 3).

4. If Tk is less than N , ADi = Tk and increment i and k by 1. Otherwise, discard Tk and

increment k only.

5. Repeat steps 3 and 4 until all N interleaver output addresses are obtained.

Bit Grouping

The channel interleaver output sequence consists of the interleaved A and B subblock

sequences, followed by a bit-by-bit multiplexed sequence of the interleaved Y 1 and Y 2 sub-

block sequences, followed by a bit-by-bit multiplexed sequence of the interleaved W1 and

W2 subblock sequences.

16

Figure 2.9: Block diagram of CTC channel interleaving scheme (from [1]).

The bit-by-bit multiplexed sequence of interleaved Y 1 and Y 2 subblock sequences con-

sists of the first output bit from the Y 1 subblock interleaver, the first output bit from the

Y 2 subblock interleaver, the second output bit from the Y 1 subblock interleaver, the second

output bit from the Y 2 subblock interleaver, etc. The bit-by-bit multiplexed sequence of

interleaved W1 and W2 subblock sequences consists of the first output bit from the W1 sub-

block interleaver, the first output bit from the W2 subblock interleaver, the second output

bit from the W1 subblock interleaver, the second output bit from the W2 subblock inter-

leaver, etc. Figure 2.9 shows the interleaving scheme. The order of bit grouping sequence is

as follows:

A′
0,A

′
1,...,A

′
N−1,B

′
0,B

′
1,...,B

′
N−1,

Y ′
1,0,Y

′
2,0,Y

′
1,1,Y

′
2,1,Y

′
1,2,Y

′
2,2,...,Y

′
1,N−1,Y

′
2,N−1,

W ′
1,0,W

′
2,0,W

′
1,1,W

′
2,1,W

′
1,2,W

′
2,2,...,W

′
1,N−1,W

′
2,N−1.

17

Bit Selection

Lastly, bit selection is performed to generate the subpacket. The puncturing block is

referred to as bit selection in the viewpoint of subpacket generation. The mother code is

transmitted with one of the subpackets. The bits in a subpacket are formed by selecting

specific sequences of bits from the interleaved CTC encoder output sequence. The resulting

subpacket sequence is a binary sequence of bits for the modulator. The parameters for bit

selection are listed below:

• k: the subpacket index when IR HARQ is enabled.

– When IR HARQ is not used, k=0 (for the first transmission and increases by one

for the next subpacket).

– When there is more than one FEC block in a burst, the subpacket index for each

FEC block shall be the same.

• NEP : the number of bits in the encoder packet (before encoding).

• NSCHk: the number of concatenated slots for the subpacket, as defined in [1, Table

569] for the non-HARQ and Chase HARQ CTC schemes.

• mk: the modulation order for the kth subpacket (mk=2 for QPSK, 4 for 16-QAM, and

6 for 64QAM).

• SPIDk: the subpacket ID for the kth subpacket (for the first subpacket, SPIDk=0=0).

Also, let the scrambled and selected bits be numbered from zero with the 0th bit being

the first bit in the sequence. Then, the index of the ith bit for the kth subpacket shall be

Sk,i = (Fk + i)mod(3 ·NEP) (2.2)

18

where i = 0, . . . , Lk−1, Lk = 48 ·NSCHk ·mk, and Fk = (SPIDk ·Lk)mod(3·NEP). The NEP ,

NSCHk, mk , and SPID values are determined by the base station (BS) and can be inferred

by the subscriber station (SS) through the allocation size in the DL-MAP and UL-MAP.

The above bit selection makes the following possible.

• The first transmission includes the systematic part of the mother code. Thus it can

be used as the codeword for a burst where the HARQ is not applied or when Chase

HARQ is applied.

• The location of the subpacket can be determined by the SPID without the knowledge

of previous subpacket. This is a very important property for IR HARQ retransmission.

Note that the optional IR HARQ is not considered in our research, so we bypass a detailed

introduction of the IR HARQ mechanism.

2.1.7 Modulation [1]

After bit interleaving, the data bits are entered serially to the constellation map-

per. Gray-mapped QPSK and 16-QAM are supported, whereas the support of 64-QAM

is optional. The constellations as shown in Fig. 2.10 shall be normalized by multiplying

the constellation points with the indicated factor c to achieve equal average power. The

constellation-mapped data shall be subsequently modulated onto the allocated data carriers.

2.1.8 Demodulation for Bit-Interleaved Coded Modulation [3]

Let a[i] = aI [i] + jaQ[i] denote the QAM symbol transmitted via the ith sub-carrier of

OFDMA symbol and {bI,1, · · · , bI,k, · · · , bI,t, bQ,1, · · · , bQ,k, · · · , bQ,t} be the corresponding bit

sequence. Assuming that the ISI (inter–OFDMA symbol interference) and ICI (inter–carrier

interference) are completely eliminated, we can write the received signal of the sub-carrier

19

Figure 2.10: QPSK, 16-QAM, and 64-QAM constellations (from [1]).

as

r[i] = Gch[i] · a[i] + w[i], (2.3)

where Gch[i] is the complex channel frequency response at the ith sub-carrier and w[i] is

the complex additive white Gaussian noise (AWGN) with variance σ2 = N0. If the channel

estimate is error free, the output of the one-tap equalizer is given by

y[i] = a[i] + w[i]/Gch[i] = a[i] + w′[i], (2.4)

where w′[i] is still complex AWGN noise with variance σ′2(i) = σ2/|Gch[i]|2.

According to the MAPSE (maximum a posterior sequence estimation) criterion, the

following maximization should be performed to estimate the encoded bit sequence b:

b̂ = arg max
b

P [b|r], (2.5)

where r is the received sequence of QAM signals. Assume that the transmitted symbols

are equally distributed. Then the MAPSE criterion can be replaced by the ML (maximum

20

likelihood) criterion as:

b̂ = arg max
b

P [r|b]. (2.6)

We further assume that Gch[i] is known to the receiver and that the transmitted bits are

independent and identically distributed (i.i.d.).

For each in-phase or quadrature bit (i.e., bI,k or bQ,k), two metrics can be derived cor-

responding to the two possible values 0 and 1, respectively. For bit bI,k, first the QAM

constellation is split into two partitions of complex symbols, namely S
(0)
I,k comprising the

symbols with a “0” in position (I, k) and S
(1)
I,k, which is complementary. Then the two

metrics are obtained by

m′
c(bI,k) =

∑

α∈S
(c)
I,k

log p(r[i]|a[i] = α) ≈ max
α∈S

(c)
I,k

log p(r[i]|a[i] = α), c = 0, 1. (2.7)

Since the conditional pdf of r[i] is complex Gaussian as

p(r[i]|a[i] = α) =
1√
2πσ

exp{−1

2

|r[i]−Gch[i]α|2
σ2

} (2.8)

and r[i] = Gch[i] · y[i], the metrics defined in (2.32) are equivalent to

mc(bI,k) = |Gch[i]|2 · min
α∈S

(c)
I,k

|y[i]− α|2. (2.9)

Finally, these metrics are de-interleaved, i.e., each couple (m0,m1) is assigned to the bit

position in the decoded sequence according to the de-interleaver map, and fed to the Viterbi

decoder which selects the binary sequence with the smallest cumulative sum of metrics. We

name this method Method-ML in the following discussion.

From the concept of log-likelihood ratio (LLR), a method named Method-LLR is proposed

in [3] to reduce the complexity of Method-ML. It defines LLR(bI,k) as

LLR(bI,k) , |Gch[i]|2
4

{ min
α∈S

(0)
I,k

|y[i]− α|2 − min
α∈S

(1)
I,k

|y[i]− α|2}

, (m0(bI,k)−m1(bI,k))/4

, |Gch[i]|2 ·DI,k. (2.10)

21

Table 2.4: Bit Metric for Method-ML and Method-LLR

Method-ML Method-LLR
Bit metric (decided “0”) m0 [1

4
(m0 −m1) + 1)]2

Bit metric (decided “1”) m1 [1
4
(m0 −m1)− 1)]2

The quadrature part is similarly defined. The metrics sent to the Viterbi decoder in the

two methods are defined in Table 2.4. Note that the difference between the bit metrics for

the decided “0” and “1” is the same for the two methods, namely ±(m0 −m1). Thus the

decoded bit sequence will be the same for the two methods.

In Method-LLR, only (m0−m1)/4 is sent to the de-interleaver while in Method-ML, both

m0 and m1 are sent. Besides, we can reduce (m0 −m1)/4 = |Gch[i]|2 ·DI,k to a simple form

constituting of yI [i] itself because Gray coding is used in the constellation map of M -ary

QAM modulation in IEEE 802.16e.

Figure 2.11 shows the partitions of (S
(0)
I,k, S

(1)
I,k) for the generic bit bI,k in the case of 16-

QAM. As a consequence,

DI,k =
1

4
{ min

α∈S
(0)
I,k

|y[i]− α|2 − min
α∈S

(1)
I,k

|y[i]− α|2}

can be simplified as follows.

DI,1 =




−yI [i], |yI(i)| ≤ 2
−2(yI [i]− 1), yI(i) > 2
−2(yI [i] + 1), yI(i) < 2





∼= −yI [i], (2.11)

DI,2 = |yI [i]| − 2. (2.12)

The same observation holds for QPSK and 64-QAM constellations. For QPSK, DI = −yI [i].

22

S
I,1
0S

I,1
1 S 1 S 1

I,2
S 0

I,2I,2

x x

−1 1 3−3 (10) (01)(00)
I

−1 1 3−3(11) (10) (01)(00)(11)

BI,1 BI,2

Q Q

I

Figure 2.11: Metric partitions of the 16-QAM constellation (from [3]).

For 64-QAM,

DI,1 =





−yI [i], |yI [i]| ≤ 2
−2(yI [i]− 1), 2 < yI [i] ≤ 4
−3(yI [i]− 2), 4 < yI [i] ≤ 6
−4(yI [i]− 3), yI [i] > 6
−2(yI [i] + 1), −4 ≤ yI [i] < −2
−3(yI [i] + 2), −6 ≤ yI [i] < −4
−4(yI [i] + 3), yI [i] < −6





∼= −yI [i], (2.13)

DI,2 =





2(|yI [i]| − 3), |yI [i]| ≤ 2
−4 + |yI [i]|, 2 < |yI [i]| ≤ 6
2(|yI [i]| − 5), |yI [i]| > 6





∼= −4 + |yI [i]|, (2.14)

DI,3 =

{ −|yI [i]|+ 2, |yI [i]| ≤ 4
|yI [i]| − 6, |yI [i]| > 4

}
= ||yI [i]| − 4| − 2. (2.15)

2.2 Decoding of CTC

2.2.1 The Turbo Decoding Algorithm [5]

A key in turbo codes is the iterative decoding algorithm. In iterative decoding, the

decoders for the constituent encoders take turns operating on the received data.

Each decoder produces an estimate of the probabilities of the transmitted symbols; there-

fore, the decoders are soft output decoders. Probabilities of the symbols from one decoder,

known as extrinsic probabilities, are interleaved and passed to the other decoder, where

23

Figure 2.12: Block diagram of a turbo decoder (from [5]).

they are used as prior probabilities for the other decoder. The decoder thus passes proba-

bilities back and forth between the decoders, with each decoder combining the evidence it

receives from the incoming prior probabilities with the parity information provided by the

code. After some number of iterations, hopefully the decoder converges to an estimate of

the transmitted codeword. Since the output of one decoder is fed to the input of the next

decoder, the decoding algorithm is called a turbo decoder, for it is reminiscent of turbo

charging an automobile engine using engine-heated air at the air intake. Thus it is not really

the code which is “turbo,” but rather the decoding algorithm which is “turbo.” The general

operation of the turbo decoding algorithm is shown in Fig. 2.12.

The MAP Decoding Algorithm [5], [7]

One maximum a posteriori (MAP) decoding algorithm particularly suitable for estimat-

ing bit and/or state probabilities for a finite-state Markov system is the BCJR algorithm,

named after Bahl, Cock, Jelinek, and Raviv who originally proposed it in 1974 [6]. While

this algorithm has been known for some time, it was not extensively used for the decoding of

convolutional codes because of the availability of a lower complexity Viterbi algorithm (for

maximum-likelihood decoding of convolutional codes).

In many respects, the BCJR algorithm is similar to the Viterbi algorithm. However,

24

the conventional Viterbi algorithm computes hard decisions by outputting a single overall

decision of the entire sequence of bits (or codeword) at the end, without providing the

reliability of the decoder decisions on individual bits. Furthermore, the branch metric is based

upon log likelihood values; no prior information is incorporated into the decoding process.

The BCJR algorithm, on the other hand, computes soft outputs in the form of posterior

probabilities for each message bit. While the Viterbi algorithm produces the maximum

likelihood message sequence (or codeword), the BCJR algorithm produces the a posteriori

most likely sequence of message bits, where the sequence of bits may not correspond to a

continuous path through the trellis. The BCJR algorithm is a soft-input soft-output decoder

that can be used directly in turbo decoding whereas the conventional Viterbi algorithm

cannot without some modification to yield the required soft output. The BCJR algorithm

for MAP decoding of convolutional codes consists of the following steps:

• Compute branch metric γ.

• Compute forward state metric α.

• Compute backward state metric β.

• Compute extrinsic log likelihood ratio Le.

A more detailed understanding can be gained from [5].

2.2.2 Decoding Rule for CRSC Codes with Non-binary Trellis [8]

The trellis of a double-binary feedback convolutional encoder has the structure shown

in Fig. 2.13. The goal of the MAP algorithm is to provide us with

Li(dk) = ln
Pr[dk = i|Observation]

Pr[dk = 0|Observation]

= ln

∑(Sk−1,Sk)
dk=i p(Sk−1, Sk, {yk})∑(Sk−1,Sk)
dk=0 p(Sk−1, Sk, {yk})

, i = 1, 2, 3, (2.16)

25

Figure 2.13: CTC trellis structure of duo-binary convolutional code with feedback encoder
(from [8]).

where yk is the received sample at time k. The index pair (Sk−1, Sk) determines the infor-

mation symbol (bit couple) dk and the coded symbol xk from time k − 1 to time k where

dk is in GF(22) with elements {0,1,2,3}. The sum of the joint probabilities p(Sk−1, Sk, {yk})
in the numerator or in the denominator of (2.16) is taken over all path labeled with dk = i,

i = 0, 1, 2, 3, where we have used decimal notation for dk instead of binary for convenience.

With a memoryless transmission channel, the joint probability p(Sk−1, Sk, {yk}) can be writ-

ten as the product of three independent probabilities

p(Sk−1, Sk, {yk}) = p(Sk−1, yj<k) · p(Sk, yk|Sk−1) · p(yj>k, Sk)

, αk−1(Sk−1) · γk(Sk−1, Sk) · βk(Sk) (2.17)

where yj<k denotes the sequence of received symbols yj from the beginning of the trellis up

to time k − 1 and yj>k is the corresponding sequence from time k + 1 up to the end of the

26

trellis. The forward recursion of the MAP algorithm yields

αk(Sk) =
∑
Sk−1

αk−1(Sk−1) · γk(Sk−1, Sk). (2.18)

The backward recursion yields

βk−1(Sk−1) =
∑
Sk

γk(Sk−1, Sk) · βk(Sk). (2.19)

When a transition between Sk−1 and Sk exists, the branch transition probability is given by

γk(Sk−1, Sk) = p(Sk, yk|Sk−1)

= p(Sk|Sk−1) · p(yk|Sk−1, Sk)

= P (dk) · p(yk|dk). (2.20)

Let the natural logarithm of the branch transition probability metric be

Γk(Sk−1, Sk) = ln γk(Sk−1, Sk) (2.21)

and the natural logarithms of αk(Sk) and βk(Sk) be

Ak(Sk) = ln αk(Sk)

= ln
∑
Sk−1

eAk−1(Sk−1)+Γk(Sk−1,Sk), (2.22)

Bk−1(Sk−1) = ln βk−1(Sk−1)

= ln
∑
Sk

eΓk(Sk−1,Sk)+Bk(Sk). (2.23)

Then the log-likelihood ratios (2.16) for i = 1, 2, 3 are given by

Li(dk) = ln

∑(Sk−1,Sk)
dk=i p(Sk−1, Sk, {yk})∑(Sk−1,Sk)
dk=0 p(Sk−1, Sk, {yk})

= ln

∑(Sk−1,Sk)
dk=i αk−1(Sk−1) · γi

k(Sk−1, Sk) · βk(Sk)∑(Sk−1,Sk)
dk=0 αk−1(Sk−1) · γ0

k(Sk−1, Sk) · βk(Sk)

= ln

∑(Sk−1,Sk)
dk=i eAk−1(Sk−1)+Γi

k(Sk−1,Sk)+Bk(Sk)

∑(Sk−1,Sk)
dk=0 eAk−1(Sk−1)+Γ0

k(Sk−1,Sk)+Bk(Sk)
. (2.24)

27

2.2.3 Simplified Max-Log-MAP Algorithm for Double-Binary CTC
[8]

Implementing (2.24) in hardware is difficult and complex. It is also relatively compli-

cated to implement it in DSP software. We consider the suboptimal max-log-MAP algorithm

for double binary convolutional turbo codes. First, from (2.20) and (2.21),

Γk(Sk−1, Sk) = ln γk(Sk−1, Sk)

= ln[p(yk|dk) · P (dk)]. (2.25)

The distribution of the received symbols is given by, for i = 0, 1, 2, 3,

p(yk|dk = i) = p(ys
k|xs

k(i)) · p(yp
k|xp

k(i, Sk−1, Sk))

=
1

π ·N0

e
−Es

N0
[(ys,I

k −xs,I
k (i))2+(ys,Q

k −xs,Q
k (i))2]

· 1

π ·N0

e
−Es

N0
[(yp,I

k −xp,I
k (i,Sk−1,Sk))2+(yp,Q

k −xp,Q
k (i,Sk−1,Sk))2]

= Ck · e0.5·Lc·[ys,I
k ·xs,I

k (i)+ys,Q
k ·xs,Q

k (i)+yp,I
k ·xp,I

k (i,Sk−1,Sk)+yp,Q
k ·xp,Q

k (i,Sk−1,Sk)]

where ys
k and yp

k represent the received systematic and parity symbols, respectively, ys,I
k , ys,Q

k ,

yp,I
k , and yp,Q

k represent the received bit values transmitted through the I and Q channels, re-

spectively, Lc = 4 · (fading factor) · (code rate) · Eb

N0
represent the channel reliability, and

Ck = (1
π·N0

)2e
−Es

N0
[(ys,I

k)2+(xs,I
k (i))2+(ys,Q

k)2+(xs,Q
k (i))2+(yp,I

k)2+(xp,I
k (i,Sk−1,Sk))2+(yp,Q

k)2+(xp,Q
k (i,Sk−1,Sk))2]

.

Hence,

Γk(Sk−1, Sk) = ln[p(yk|dk) · P (dk)]

= 0.5 · Lc · [ys,I
k · xs,I

k (i) + ys,Q
k · xs,Q

k (i) + yp,I
k · xp,I

k (i, Sk−1, Sk)

+yp,Q
k · xp,Q

k (i, Sk−1, Sk)] + ln P (dk) + K (2.26)

28

where the constant K includes the constants and common terms that are cancelled in com-

parisons at later stages. Note that

Ak(Sk) = ln
∑
Sk−1

eAk−1(Sk−1)+Γk(Sk−1,Sk)

≈ max
Sk−1

[Ak−1(Sk−1) + Γk(Sk−1, Sk)], (2.27)

Bk−1(Sk−1) = ln
∑
Sk

eΓk(Sk−1,Sk)+Bk(Sk)

≈ max
Sk

[Γk(Sk−1, Sk) + Bk(Sk)]. (2.28)

The above can be derived by considering the Jacobian logarithm [5], i.e.,

ln(eL1 + eL2) = max(L1, L2) + ln(1 + e−|L1−L2|). (2.29)

If the correction term (i.e., the second right-hand-side [RHS] term) is omitted and only the

max term is retained, we obtain the above max-function (max-log-MAP) approximation.

For iterative decoding of circular trellis, tail-biting gives

A0(S0) = AN(SN) ∀S0, (2.30)

BN(SN) = B0(S0) ∀SN . (2.31)

As a result, the log-likelihood ratios in (2.24) reduce to

Li(dk) ≈ max
(Sk−1,Sk)

[Ak−1(Sk−1) + Γi
k(Sk−1, Sk) + Bk(Sk)]

− max
(Sk−1,Sk)

[Ak−1(Sk−1) + Γ0
k(Sk−1, Sk) + Bk(Sk)]. (2.32)

We omit the detailed mathematical derivation for separating the log-likelihood ratios into

intrinsic (prior information), systematic and extrinsic information. The interested reader

may refer to [8]. It turns out that the extrinsic information can be expressed as

Le
i (d̂k) = Li(d̂k)− 0.5 · [ys,I

k · xs,I
k (i) + ys,Q

k · xs,Q
k (i)]

+0.5 · [ys,I
k · xs,I

k (0) + ys,Q
k · xs,Q

k (0)]− ln
P [dk = i]

P [dk = 0]
. (2.33)

29

The extrinsic information of the next decoder is computed from the prior information of

previous decoder as

La
i (dk) = ln

P [dk = i]

P [dk = 0]
(2.34)

where i = 0, 1, 2, 3. Since

P [dk = 01] = eLa
1(dk) · P [dk = 00],

P [dk = 10] = eLa
2(dk) · P [dk = 00],

P [dk = 11] = eLa
3(dk) · P [dk = 00],

and

P [dk = 00] + P [dk = 01] + P [dk = 10] + P [dk = 11] = 1, (2.35)

we have

P [dk = 00] =
1

1 + eLa
1(dk) + eLa

2(dk) + eLa
3(dk)

,

P [dk = 01] =
La

1(dk)

1 + eLa
1(dk) + eLa

2(dk) + eLa
3(dk)

,

P [dk = 10] =
La

2(dk)

1 + eLa
1(dk) + eLa

2(dk) + eLa
3(dk)

,

P [dk = 11] =
La

3(dk)

1 + eLa
1(dk) + eLa

2(dk) + eLa
3(dk)

. (2.36)

30

Using max-function approximation yields

ln P [dk = 00] = −max[0, La
1(dk), L

a
2(dk), L

a
3(dk)],

ln P [dk = 01] = La
1(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)],

ln P [dk = 10] = La
2(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)],

ln P [dk = 11] = La
3(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)]. (2.37)

Assuming equally likely symbols initially, we have

A0(S0) = 0 ∀S0, (2.38)

BN(SN) = 0 ∀SN , (2.39)

La
i (dk) = 0 ∀i, dk. (2.40)

After sufficient decoding iterations, the decisions are made according to

d̂k =





01, if L(d̂k) = La
1(dk) and La

1(dk) > 0,

10, if L(d̂k) = La
2(dk) and La

2(dk) > 0,

11, if L(d̂k) = La
3(dk) and La

3(dk) > 0,
00, else,

(2.41)

where L(d̂k) = max[La
1(dk), L

a
2(dk), L

a
3(dk)].

This above algorithm has been known as the max-log-MAP algorithm which only uses

the max functions to compute log-likelihood ratios. But coming with the approximation

to reducing log-likelihood ratios is some performance degradation. Table 2.5 shows the

complexity analysis. We will discuss later the simulation results and the speed of our DSP

implementation.

31

Table 2.5: Amount of Additions, Multiplications and Max Operations for Soft-Output De-
coding of One Component Code Once, Where Number of Information Bits = 480

max’s additions multiplications

branch metric 2880 31680 30720
forward metric 7440 7680 0

backward metric 7440 7680 0
LLR 6720 16080 0

extrinsic 0 3600 0

32

Chapter 3

DSP Implementation Environment

In this chapter, our discussion will concentrate on the DSP system development en-

vironment, DSP chip and its features because our implementation is software-based on the

DSP. The software development tool, Code Composer Studio (CCS), is also introduced.

3.1 The DSP Board [12]

The DSP card used in our implementation is Sundance’s SMT395 as shown in Fig. 3.1

[11]. It houses a 1 GHz 64-bit TMS320C6416T DSP of TI . The SMT395 is supported by TI’s

Code Composer Studio and the 3L Diamond to enable multi-DSP systems with minimum

development efforts by the programmers.

Features of the SMT395 board include:

• 1 GHz TMS320C6416T fixed-point DSP processor with L1 and L2 cache that has 8000

MIPS peak DSP performance.

• Xlilinx Virtex II Pro FPGA XC2VP30-6 in FF896 package.

• 256 Mbytes of SDRAM at 133MHz.

• Eight 2 Gbit/sec Rocket serial links (RSL) for inter module communication.

33

Figure 3.1: Sundance’s SMT395 module (from [11]).

• Two Sundance High-speed Bus (50,100 or 200 MHz) ports at 32 bits width.

• 8-Mbyte flash ROM for configuration and booting.

3.2 The DSP Chip [12]

The TMS320C64x DSP is a fixed-point DSP in the TMS320C64x series of the TMS320C6000

DSP platform family. The TMS320C64x device use the very-long-instruction-word (VLIW)

architecture developed by TI. The C6416 device has two high-performance embedded copro-

cessors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that

can significantly speed up channel-decoding operations on chip. However the TCP is de-

signed appropriately for the 3GPP standard and its parameter setting cannot be used to the

CTC in 802.16e. Therefore, we cannot employ the TCP in our implementation.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units.

Features of C6000 devices include:

• The eight functional units include two multipliers and six arithmetic units:

34

– Execute up to eight instructions per cycle.

– Allow designers to develop highly effective RSIC-like code for fast development

time.

• Instruction packing:

– Gives code size equivalence for eight instructions executed serially or in parallel.

– Reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

• Efficient code execution on independent functional units:

– Efficient C compiler on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

• 8/16/35/64-bit data support, providing efficient memory support for a variety of ap-

plication.

• 40-bit arithmetic options add extra precision for applications requiring it.

• Saturation and normalization provide support for key arithmetic operations.

• Field manipulation and instruction extract, set, clear, and counting support common

operation found in control and data manipulation application.

• 32× 32-bit integer multiply with 32- or 64-bit result.

The C64x additional features include:

35

• Each multiplier can perform two 16x16 bits or four 8x8 bits multiplies every clock

cycle.

• Quad 8-bit and dual 16-bit instructions set extensions with data flow support.

• Special communication-specific instruction have been added to address common oper-

ations inerror-correcting codes.

• Bit count and rotate hardware extends support for bit-level algorithms.

In the following subsections, two major parts of TMS320C64x DSP are introduced re-

spectively. They are the central processing unit and memory .

3.2.1 Central Processing Unit [12]

The C64x DSP core contains 64 32-bit general purpose registers, program fetch unit,

instruction decode unit, two data paths each with four function units, control register, control

logic, test unit, emulation logic and interrupt logic. The program fetch, instruction fetch

and instruction decode units can arrange eight 32-bit instructions to the eight function units

every CPU clock cycle. The processing of instructions occurs in each of the two data paths

(A and B) shown in Fig. 3.2, each of which contains four functional units and one register

file. The four functional units are: one unit for multiplier operations (.M), one for arithmetic

and logic operation (L.), one for branch, byte shifts, and arithmetic operation (.S), and one

for linear and circular address calculation to load and store with external memory operations

(.D). The details of the function units are described in Table 3.1.

Each register file consists of 32 × 32-bit registers. Each function unit in the two sets of

four functional units reads and writes directly within its own data path. That is, functional

units .L1, .S1, .M1 and .D1 can only write to register file A. The same holds for register

file B. However, two cross-paths (1X and 2X) allow functional units from one data path to

36

Table 3.1: Functional Units and Operations Performed [12]

Function
Unit

Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bit
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit and Quad 8-bit arithmetic operations
Dual 16-bit and Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
constant generation
Register transfers to /from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit and Quad 8-bit compare operations
Dual 16-bit and Quad 8aturated arithmetic operations

.M unit (.M1, .M2) 16× 16 multiply
16× 32 multiply operations
Dual 16× 16 and Quad 8× 8 multiply operations
Dual 16× 16 multiply with add/substract operations
Quad 8× 8 multiply with add operations
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations
Rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and store with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Loads and stores doubles words with 5-bit constant
Loads and store non-aligned word and double words
5-bit constant generation
32-bit logical operations

37

Figure 3.2: Functional block and CPU (DSP core) diagram [13].

access a 32-operand the opposite-side register file. The cross path 1X allows data path A to

read its source from register file B. The cross path 2X allows data path B to read its source

from register file A. In the C64x, CPU pipelines data-cross-path accesses over multiple clock

cycles. This allows the same register to be used as a data-cross-path operand by multiply

functional units in the same execute packet.

38

3.2.2 Memory [14]

Internal Memory

The C64x DSP chip has a 32-bit, byte-addressable address space. Internal (on-chip)

memory is organized in separate data and program spaces. When off-chip memory is used,

these spaces are unified on most devices to a single memory space via the external memory

interface (EMIF). The C64x has two 64-bit internal ports to access internal data memory

and a single internal port to access internal program memory, with an instruction-fetch width

of 256 bits.

Memory Options

The C64x DSP Chip also provides a variety of memory options:

• Program cache.

• 2-level caches.

• 32-bit external memory interface supports SDRAM, SBRAM, SRAM,

and other asynchronous memories for a broad range of external memory requirements and

maximum system performance.

Cache Memory

The C64x memory architecture consist of a two-level internal cache-based memory ar-

chitecture plus external memory. Level cache is split into program (L1P) and data (L1D)

caches. The C64x memory architecture is shown in Fig. 3.3. On C64x devices, each L1 cache

is 16KB. All caches and data paths are automatically managed by cache controller. Level 1

cache is accessed by the CPU without stalls. Level 2 cache is configurable and can be split

39

Figure 3.3: C64x cache memory architecture [14].

into L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory

locations. On a C6416 DSP, the size of L2 cache is 1 MB, and the external memory can be

several Mbytes large. More detailed introduction to the cache system can be found in [14].

3.3 TI’s Code Development Environment [15]

TI provides a useful GUI development interface to DSP users for developing and de-

bugging their projects: Code Composer Studio (CCS). The CCS development tools are

a key element of the DSP software and development tools from Texas Instruments. The

fully integrated development environment include real-time analysis capabilities, easy to use

debugger, C/C++ compiler, assembler, linker, editor, visual project manager, simulators,

XDS560 and XDS510 emulation drivers, and DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

• Simulators for full device, CPU only and CPU plus memory for optimal performance.

40

• Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.

• Source code debugger common interface for both simulator and emulator targets;

– C/C++/assembly language support.

– Simple breakpoint.

– Advanced watch window.

– Symbol browser.

• DSP/BIOS host tooling support (configure, real-time analysis and debugger).

• Data transfer for real time data exchange between host and target.

• Profiler to understand code performance.

CCS also delivers foundation software consisting of:

• DSP/BIOS kernel for the TMS320C6000 DSPs:

– Pre-emptive multi-threading.

– Inter-thread communication.

– Interrupt handling.

• TMS320 DSP Algorithm Standard to enable software reuse.

• Chip Support Library (CSL) simplify device configuration. CSL provides C-program

functions to configure and control on-chip peripherals.

41

• DSP library for optimum DSP functionality. The library includes many C-callable,

assembly-optimized, general-purpose signal-processing and image/video processing rou-

tines. These routines are typically used in computationally intensive real-time appli-

cations where optimal execution speed is critical.

3.4 Code Development Flow [17]

The recommended code development flow involves utilizing the C6000 code generation

tools to aid in optimization rather than forcing the programmer to code by hand in assembly.

Hence the programmer may let the compiler do all the laborious work of instruction selection,

parallelizing, pipelining, and register allocation. This simplifies the maintenance of the code,

as everything resides in a C framework that is simple to maintain, support, and upgrade.

Fig. 3.4 illustrates the three phases in the code development flow. Because phase 3 is usually

too detailed and time consuming, most of the time we will not go into phase 3 to write linear

assembly code unless the software pipelining efficiency is too bad or the resource allocation

is too unbalanced.

3.5 Code Optimization on TI DSP Platform

In this section, we describe several methods that can accelerate our code and reduce

the execution time on the C64x DSP. First, we introduce two techniques that can be used

to analyze the performance of specific code regions:

• Use the clock() and printf() functions in C/C++ to time and display the performance

of specific code regions. Use the stand-alone simulator (load6x) to run the code for

this purpose.

• Use the profile mode of the stand-alone simulator. This can be done by compiling the

42

Figure 3.4: Code development flow for C6000 [17].

43

code with the -mg option and executing load6x with the -g option. Then enable the

clock and use profile points and the RUN command in the Code Composer debugger

to track the number of CPU clock cycles consumed by a particular section of code.

Use “View Statistics” to view the number of cycles consumed.

Usually, we use the second technique above to analyze the C code performance. The

feedback of the optimization result can be obtained with the -mw option. It shows some

important results of the assembly optimizer for each code section. We take these results into

consideration in improving the computational speed of certain loops in our program.

3.5.1 Compiler Optimization Options [17]

In this subsection, we introduce the compiler options that control the operation of the

compiler. The CCS compiler offers high-level language support by transforming C/C++

code into more efficient assembly language source code. The compiler options can be used

to optimize the code size or the executing performance.

The major compiler options we use are -o3, -k, -pm -op2, -mh<n>, -mw, and -mi.

• -on: The “n” denotes the level of optimization (0, 1, 2, and 3), which controls the type

and degree of optimization.

– -o3: highest level optimization, whose main features are:

∗ Performs software pipelining.

∗ Performs loop optimizations, and loop unrolling.

∗ Removes all functions that are never called.

∗ Reorders function declarations so that the attributes of called functions are

known when the caller is optimized.

44

∗ Propagates arguments into function bodies when all calls pass the same value

in the same argument position.

∗ Identifies file-level variable characteristics.

• -k: Keep the assembly file to analyze the compiler feedback.

• -pm -op2: In the CCS compiler option, -pm and -op2 are combined into one option.

– -pm: Gives the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

– -op2: Specifies that the module contains no functions or variables that are called

or modified from outside the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

• -mh<n>: Allows speculative execution. The appropriate amount of padding, n, must

be available in data memory to insure correct execution. This is normally not a problem

but must be adhered to.

• -mw: Produce additional compiler feedback. This option has no performance or code

size impact.

• -mi: Describes the interrupt threshold to the compiler. If the compiler knows that no

interrupts will occur in the code, it can avoid enabling and disabling interrupts before

and after software-pipelined loops for improvement in code size and performance. In

addition, there is potential for performance improvement where interrupt registers may

be utilized in high register pressure loops.

45

Figure 3.5: Software-pipelined loop [17].

3.5.2 Software Pipelining [18]

Software pipelining is a technique used to schedule instructions from a loop so that

multiple iterations of the loop execute in parallel. This is the most important feature we

rely on to speed up our system. The compiler always attempts to software-pipeline. Fig. 3.5

illustrates a software pipelined loop. The stages of the loop are represented by A, B, C, D,

and E. In this figure, a maximum of five iterations of the loop can execute at one time. The

shaded area represents the loop kernel. In the loop kernel, all five stages execute in parallel.

The area above the kernel is known as the pipelined loop prolog, and the area below the

kernel the pipelined loop epilog.

But under the conditions listed below, the compiler will not do software pipelining [17]:

• If a register value lives too long, the code is not software-pipelined.

• If a loop has complex condition code within the body that requires more than five

46

condition registers, the loop is not software pipelined.

• A software-pipelined loop cannot contain function calls, including code that calls the

run-time support routines.

• In a sequence of nested loops, the innermost loop is the only one that can be software-

pipelined.

• If a loop contains conditional break, it is not software-pipelined.

Usually, we should maximize the number of loops that satisfy the requirements of software

pipelining. Software pipelining is a very important technique for optimization. But how can

we get the software pipeline information? The information is located in the .asm file that

the compiler generates with the -mw options. In order to view software pipeline information,

we must also enable the -k option which can retain the .asm output from the compiler.

3.5.3 Macros and Intrinsic Functions [17]

Because software-pipeline cannot contain function calls, it takes more clock cycles to

complete function calls. Changing function to macros under some conditions is a good way

to optimize. In addition, replacing functions with macros can cut down the code for initial

function definition and reduce the number of branches. But macros are expanded each time

they are called. Hence, they will increase the code size.

The TI C6000 compiler provides many special functions that map C codes directly to in-

lined C64x instructions, which increases C code efficiency. These special functions are called

intrinsic functions. If some instructions have equivalent intrinsic functions, we can replace

them by intrinsic functions and the execution time can be decreased. We will introduce how

to use the intrinsic functions in chapter 4.

47

Chapter 4

Fixed-Point Implementation of CTC
Encoder and Decoder

In this chapter, we present some simulation results for the CTC in IEEE 802.16e. They

include both floating-point and fixed-point results and DSP implementation results.

4.1 Performance in AWGN Channel with Floating-Point

Processing

In this section, we consider the performance of CTC with floating-point processing. In

particular, we discuss two important parameters : the iteration number and the compensa-

tion factor for max-log-MAP operation. The iteration number of the turbo decoding affects

the decoding accuracy and complexity. A large iteration number usually leads to better

performance, but the complexity and latency also increase. From [22], we can conclude that

reasonable results are obtained with 4 to 8 iterations. To limit the decoding complexity and

maintain a reasonable performance, therefore, we choose 4 to be the iteration number in sim-

ulation and in DSP implementation. From [8], we can find the performance with log-MAP,

but we don’t compare in our simulation results.

Now consider the compensation factor for max-log-MAP. Although max-log-MAP algo-

48

rithm can reduce the implementation complexity, it results in performance loss since the

approximated maximum function usually overestimates the messages. In order to compen-

sate the performance loss, one way is to use a scaling factor ρ to scale down the extrinsic

value [21] :

ln
P [dk = i]

P [dk = 0]
= ρ× Le

i (d̂k). (4.1)

In Figs. 4.1 and 4.2 we compare the performance at ρ = 0.5, 0.75 and 1 for code rate 1/2

with 288 information bits and code rate 3/4 with 432 information bits under three different

modulation types with max-log-MAP decoding. We can see that the bit error rates (BER)

are almost the same for ρ = 0.5 and ρ = 1, and ρ = 0.75 apparently performs better than the

other choices. Applying the simple scaling to the extrinsic information improves the BER

performance by 0.1 to 0.2 dB.

Figs. 4.3 and 4.4 compare the performance under the three modulations at ρ = 0.75 with

code rates 1/2 and 3/4. The coding gains under QPSK, 16QAM, and 64QAM at BER =

10−5 for code rate 1/2 are 7.05, 8.35 and 9.19 dB, respectively, and that for code rate 3/4

are 5.59, 6.38 and 6.92 dB, respectively.

4.2 Performance in AWGN Channel with Fixed-Point

Processing

In algorithm development, it is often convenient to employ floating-point computation

to acquire better accuracy. However, for the sake of power consumption, execution speed,

and hardware costs, practical implementations usually adopt fixed-point computations. The

DSP chip used in our work, TI’s TMS320C6416 is also of the fixed-point category and

supports 8, 16, 32-bit data precisions, providing efficient memory support for a variety of

applications. In our simulations, 32-bit operations should be over the requirement, and 8-bit

operations do not give enough precision. Therefore, we choose 16-bit operations, which are

49

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with QPSK modulation

rho=0.5
rho=0.75
rho=1
uncoded QPSK

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with 16QAM modulation

rho=0.5
rho=0.75
rho=1
uncoded 16QAM

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation

rho=0.5
rho=0.75
rho=1
uncoded 64QAM

Figure 4.1: Performance of CTC at different ρ values under three modulations with 288
information bits.

50

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with QPSK modulation

rho=0.5
rho=0.75
rho=1
uncoded QPSK

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with 16QAM modulation

rho=0.5
rho=0.75
rho=1
uncoded 16QAM

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation

rho=0.5
rho=0.75
rho=1
uncoded 64QAM

Figure 4.2: Performance of CTC at different ρ values under three different modulations with
432 information bits.

51

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point with Diferent Modulation, Rate 1/2, 288bit 10000times 4iteration

Float QPSK
Float 16QAM
Float 64QAM
Uncoded QPSK
Uncoded 16QAM
Uncoded 64QAM

Figure 4.3: Performance of CTC at 288-bit and ρ = 0.75 with different modulations employ-
ing floating-point computation at 4 iterations.

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point with Diferent Modulation, Rate 3/4, 432bit 10000times 4iteration

Float QPSK
Float 16QAM
Float 64QAM
Uncoded QPSK
Uncoded 16QAM
Uncoded 64QAM

Figure 4.4: Performance of CTC at 432-bit and ρ = 0.75 with different modulations employ-
ing floating-point computation at 4 iterations.

also the most efficient word length for the DSP.

In Fig. 4.5 we show the fixed-point data formats in our reference CTC decoder “imple-

mentation”. This design serves to illustrate the program structure but does not represent the

true implementation. The hypothetical reference decoder input data format is Q4.11, which

52

Figure 4.5: Hypothetical reference CTC decoder implementation with marking of fixed-point
data format at various place.

means a 16-bit fixed-point number with one sign bit, 4 integer bits, and 11 fractional bits at

right side of the dot. The alpha, beta and gamma data use the Q8.7 format. In designing our

actual implementation, we first convert floating-point values to fixed-point by multiplying

the original floating-point values by 1024. That means the decoder input data format is

Q5.10. We find that the alpha, beta and gamma values have overflow errors. Therefore, we

consider two methods, the scaling method and the clipping method to simulate result with

fixed-point processing. We introduce them below.

4.2.1 Scaling Method [22]

As mentioned, we convert floating-point input values to fixed-point values by multiplying

the original floating-point values by 1024 and truncating the result to 16 bits. We change

the numbers of bits in the decoder input, extrinsic and gamma. The aim of scaling of the

extrinsic and gamma is to try to avoid the overflows at high SNR.

In Figs. 4.6 and 4.7, we give the scaling parameters, which consist of “Scal,” “Scal E,”

53

Figure 4.6: CTC fixed-point truncation parameters (modified from [22]).

and “Scal g,” standing for scale values for the decoder input, the extrinsic and the gamma,

respectively. We also show how these parameters are used in the functions of our C program

developed previously [22]. Note that in [22], it is no subpacket generation.

In Fig. 4.8, we compare the performance when the number of fractional bits in the

decoder is between 0 to 9 (S15.0 to S6.9) for max-log-MAP decoding at rate-1/3 with 480

information bits and under three different modulations. “Scal E” and “Scal g” are hold at

1 and 0, respectively. When we use S12.3 to S6.9, the BER curves are almost the same for

QPSK, 16QAM and 64QAM. The BER curve for QPSK is in our acceptable limit when we

use S12.3. But for 16QAM and 64QAM, S11.4 is the limit that we can accept. We can see

that S10.5 to S6.9 cause overflows at high SNR. Hence, we try different values of “Scal E”

and “Scal g” to control the overflows.

In Fig. 4.9, we show the performance with different values of “Scal E” and “Scal g.” We

54

Figure 4.7: Illustration of fixed-point data formats with the scaling method, where Q11.4
may be replaced by other setting (such as Q9.6 or Q14.1) depending on code rate and
operating condition.

see that the overflow at high SNR disappears, but the performance is degraded at low SNR.

Fortunately, no overflow occurs at high SNR for QPSK with S12.3, for 16QAM with S11.4,

and for 64QAM with S11.4.

In Figs. 4.10 and 4.11, we show the performance for code rate = 1/2, 288 information

bits and code rate = 3/4, 432 information bits under three modulations. We only compare

the performance when the number of fractional bits in decoder is 1 and 4 (i.e., S14.1 and

S11.4) for max-log-MAP decoding. In these figures, Scal E = 1 and Scal g = 0. We can see

that S11.4 has better performance than S14.1, but has overflows at high SNR. Therefore,

we use S14.1 in our implementation. The coding gains of QPSK, 16QAM, and 64QAM at

BER=10−5 for code rate 1/2 are 6.51, 7.29, and 8.59 dB, respectively, and that for code rate

3/4 are 5.41, 5.89, and 6.62 dB, respectively.

Tables 4.1 and 4.2 show the coding gains obtained with floating-point computation and

that with fixed-point for scaling method computation. We can see that the differences in

55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CTC Fixed−Point Compare R=1/3 480bit 1000 times 4 Iteration with QPSK Modulation

Eb/No (dB)

B
E

R

Uncoded QPSK
S15.0 S10E1g0
S14.1 S9E1g0
S12.3 S7E1g0
S11.4 S6E1g0
S9.6 S4E1g0
S6.9 S1E1g0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CTC Fixed−Point Compare R=1/3 480bit 1000 times 4 Iteration with 16QAM Modulation

Eb/No (dB)

B
E

R

Uncoded 16QAM
S14.1 S9E1g0
S12.3 S7E1g0
S11.4 S6E1g0
S10.5 S5E1g0
S8.7 S3E1g0
S6.9 S1E1g0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CTC Fixed−Point Compare R=1/3 480bit 1000 times 4 Iteration with 64QAM Modulation

Eb/No (dB)

B
E

R

Uncoded 64QAM
S14.1 S9E1g0
S12.3 S7E1g0
S11.4 S6E1g0
S10.5 S5E1g0
S8.7 S3E1g0
S6.9 S1E1g0

Figure 4.8: CTC decoding at different bit numbers with different modulations.

56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CTC Fixed−Point Compare Modify R=1/3 480bit 1000 times 4 Iteration with QPSK Modulation

Eb/No (dB)

B
E

R

Uncoded QPSK
S15.0 S10E0g0
S14.1 S9E1g0
S13.2 S8E0g0
S12.3 S7E1g0
S11.4 S6E2g0
S9.6 S4E4g1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CTC Fixed−Point Compare Modify R=1/3 480bit 1000 times 4 Iteration with 16QAM Modulation

Eb/No (dB)

B
E

R

Uncoded 16QAM
S14.1 S9E1g0
S12.3 S7E1g0
S11.4 S6E1g0
S10.5 S5E2g0
S8.7 S3E1g2
S6.9 S1E2g4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CTC Fixed−Point Compare Modify R=1/3 480bit 1000 times 4 Iteration with 64QAM Modulation

Eb/No (dB)

B
E

R

Uncoded 64QAM
S14.1 S9E1g0
S12.3 S7E1g0
S11.4 S6E1g0
S10.5 S5E2g0
S8.7 S3E2g1
S6.9 S1E2g4

Figure 4.9: Performance with scaling of various quantities in CTC decoding to avoid overflow
at high SNR.

57

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC fixed−point compare R=1/2 288bit 10000times 4iteration with QPSK modulation

S11.4
S14.1
uncoded QPSK

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC fixd−point compare R=1/2 288bit 10000times 4iteration with 16QAM modulation

S11.4
S14.1
uncoded 16QAM

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC fixd−point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation

S11.4
S14.1
uncoded 64QAM

Figure 4.10: Performance of CTC with different scale factors under three modulations with
288 information bits.

58

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC fixed−point compare R=3/4 432bit 10000times 4iteration with QPSK modulation

S11.4
S14.1
uncoded QPSK

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC fixd−point compare R=3/4 432bit 10000times 4iteration with 16QAM modulation

S11.4
S14.1
uncoded 16QAM

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC fixd−point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation

S11.4
S14.1
uncoded 64QAM

Figure 4.11: Performance of CTC with different scale factors under three modulations with
432 information bits.

59

Table 4.1: Coding Gain Performance of Rate-1/2 CTC in AWGN at BER = 10−5 with
Floating-Point and Fixed-Point with Scaling Method Computation

Modulation
Floating-Point

Coding Gain (dB)
Fixed-Point Coding

Gain (dB)

QPSK 7.05 6.51
16QAM 8.35 7.29
64QAM 9.19 8.59

Table 4.2: Coding Gain Performance of Rate-3/4 CTC in AWGN at BER = 10−5 with
Floating-Point and Fixed-Point with Scaling Method Computation

Modulation
Floating-Point

Coding Gain (dB)
Fixed-Point Coding

Gain (dB)

QPSK 5.59 5.41
16QAM 6.38 5.89
64QAM 6.92 6.62

coding gains between floating-point and fixed-point computations are 0.5 to 1 dB.

4.2.2 Clipping Method [19], [20]

In this method, we also convert floating-point input values to fixed-point values by

multiplying the original floating-point value by a factor and clipping the result to 16 bits.

From Fig. 4.5 we can see the integer part is 8-bit at least. For this reason, we let the decoder

input data format be Q8.7 to avoid overflow for alpha, beta and gamma computations. The

input multiplication factor is thus 128. Besides, we clip the decoder input and the extrinsic

to avoid overflow at high SNR. The data format used is shown in Fig. 4.12.

In Figs. 4.13 and 4.14, we compare the performance when the decoder input ranges are -

60

Figure 4.12: Fixed-point data format with the clipping method.

4–3.9921875 (Din4) and -8–7.9921875 (Din8), extrinsics information ranges are -8–7.9921875

(Ex8), -16–15.9921875 (Ex16), and -32–31.9921875 (Ex32) for max-log-MAP decoding at

rate 1/2 with 288 information bits and rate 3/4 with 432 information bits under different

modulations. If any of the ranges are exceeded, the corresponding value is clipped (i.e.,

saturated) to the boundary of the range. In Figs. 4.13 and 4.14, we have used Din4-Ex8,

Din4-Ex16, Din8-Ex16, and Din8-Ex32. The BER curves are almost the same for QPSK,

16QAM, and 64QAM. We can see that the performance of the clipping method for rate 1/2

with 288 information bits is better than that of the scaling method, and for rate 3/4 with

432 information bits the performance is close.

In Figs. 4.15 and 4.16, we show the performance of CTC decoding with fixed-point

computation under the clipping method vs. floating-point computation. The BER curves of

fixed-point results are close to that of floating-point. Tables 4.3 and 4.4 show the coding gains

with floating-point computation and fixed-point computations under the clipping method

(Din4-Ex16) and the scaling method (S14.1) at BER=10−4.

61

Table 4.3: Coding Gain at Rate 1/2 with 288 Information Bits CTC in AWGN at BER =
10−4 with Floating-Point Computation and Fixed-Point Computations with Scaling Method
and Clipping Method

Modulation
Floating-Point

Coding Gain (dB)
Fixed-Point (Scaling)

Coding Gain (dB)
Fixed-Point (clipping)

Coding Gain (dB)

QPSK 6.0299 5.4438 5.9302
16QAM 7.3522 6.7752 7.2955
64QAM 8.5274 7.800 8.1233

Table 4.4: Coding Gain at Rate 3/4 with 432 Information Bits CTC in AWGN at BER =
10−4 with Floating-Point Computation and Fixed-Point Computations with Scaling Method
and Clipping Method Computation

Modulation
Floating-Point

Coding Gain (dB)
Fixed-Point (Scaling)

Coding Gain (dB)

Fixed-Point
(Clipping) Coding

Gain (dB)

QPSK 4.9313 4.4888 4.7544
16QAM 5.4409 5.2105 5.3609
64QAM 6.0954 5.7722 6.0019

62

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with QPSK modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
S14.1
uncoded QPSK

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with 16QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
S14.1
Uncoded 16QAM

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
S14.1
Uncoded 64QAM

Figure 4.13: Performance of CTC at different clipping ranges under three modulations with
288 information bits.

63

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with QPSK modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
S14.1
Uncoded QPSK

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with 16QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
S14.1
Uncded 16QAM

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
S14.1
Uncoded 64QAM

Figure 4.14: Performance of CTC at different clipping ranges under three modulations with
432 information bits.

64

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with QPSK modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
float

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with 16QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
float

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=1/2 288bit 10000times 4iteration with 64QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
float

Figure 4.15: Performance of rate 1/2 CTC with 288 information bits with floating-point
decoding vs. fixed-point under clipping method.

65

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with QPSK modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
float

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with 16QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
float

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

CTC Floating−point compare R=3/4 432bit 10000times 4iteration with 64QAM modulation

Din4−Ex8
Din4−Ex16
Din8−Ex16
Din8−Ex32
float

Figure 4.16: Performance of rate 3/4 CTC with 432 information bits with floating-point
decoding vs. fixed-point under clipping method.

66

Chapter 5

Speeding Up of DSP Implementation

In this chapter, we consider how to speed up the DSP implementation of the CTC

decoder, especially ways of employing intrinsic functions to reduce cycle counts. In thus, we

change the ordering of alpha and beta to achieve parallelism. In the following we discuss how

to use the intrinsics and arrange the ordering of alpha and beta order. Then we compare

the parallelism of the fixed-point C programs with and without using the intrinsics.

5.1 Speed of DSP [17]

According to [17], we can realize substantial gains in the performance of the C code by

refining it in the following areas:

• Using intrinsics to replace complicated C/C++ code.

• Using word access to operate on 16-bit stored in the high and low parts of a 32-bit

register.

• Using double access to operate on 32-bit data stored in a 64-bit register pair.

In order to maximize data throughput on DSP, it is often desirable to use a single load or

store instruction to access multiple data values consecutively located in memory. All C6000

67

Table 5.1: TMS320C64X Compiler Intrinsics [17].

devices have instructions with corresponding intrinsics. That operate on 16-bit data stored

in the high and low parts of a 32-bit register. When operating on a stream of 16-bit data,

we can use word (32-bit) accesses to read two 16-bit at a time.

Table 5.1 displays some intrinsic functions used in our DSP implementation, which include

amem4(), dotp2(), max2(), packXX2() group, sadd2(), and rotl(). We show how to

use these intrinsic functions in the following:

• amem4(): Fig. 5.1 show that this intrinsic function tells the compiler that the following

access is a 4-byte (or word) aligned access address of an unsigned (or signed) int.

• dotp2(): Fig. 5.2 illustrates how the dotp2() intrinsic operates. We can see that two

32-bit registers, which are divided into two 16-bit register high parts (hi) and low parts

(lo), respectively. It multiplies corresponding parts in the two words separately and

then sum the two products together. Therefore, one dotp2() intrinsic function can

complete two multiplications and one addition.

68

Figure 5.1: Graphical representation of the amem4() and the max2() intrinsics [17].

Figure 5.2: Graphical representation of the dotp2() intrinsic [17].

• max2(): The max2() intrinsic function is compares two pairs of numbers and selects

the larger in each pair. For example, in Fig. 5.1, a[0] is compared with a[2] and a[1]

with a[3] at the same time.

• packXX2(): The packXX2() group of intrinsics works by extracting selected half-

69

Figure 5.3: Graphical representation of packXX2() intrinsics[17].

words from two 32-bit registers and returning the result packed into 32-bit word. This

is primarily useful for manipulating packed 16-bit data, although they may be used

for manipulating pairs of 8-bit quantities. Fig. 5.3 illustrates the four packXX2()

intrinsics, pack2(), packlh2(), packhl2(), and packh2(). (The l and the h in the

names refer to which half of each 32-bit input is being copied to the output.)

• sadd2(): The sadd2() intrinsic provides saturating pack and adds for corresponding

packed elements in two different words, producing two packed sums.

70

Figure 5.4: Overall encoder and decoder architecture.

• rotl(): The rotl() intrinsic function rotates the 32-bit value in src2 to the left by the

amount in src1.

5.2 Original State Order [22]

In Fig. 5.4, we show the overall encoder and decoder architecture. Note that Demul-

tiplexing is including de-channel interleaver and de-CTC interleaver. In Table 5.2, we show

the every block cycles with QPSK modulation for 480 information bits, rate 1/2 coding

in one iteration. We can see that block of Ch-Interleaver (channel interleaver), Demulti-

plexing and Decoder (Duo binary CRSC decoder) spend much more cycles than others.

For Ch-Interleaver and Demultiplexing, we compute interleave position in advance and then

build the table to stored. Table 5.3 shows the improvement in speed of Ch-Interleaver and

Demultiplexing.

71

Table 5.2: Overall Encoder and Decoder Block Cycles

Block Times Called CPU Cycles

1/3 Encoder 2 9906
Ch-Interleaver 1 54212

Puncturing 1 496
De-puncturing 1 563
Demultiplexing 1 46995

Decoder 2 122352
Interleaver 2 4598

De-Interleaver 1 2307

Table 5.3: Speed Up in Channel Interleaver

Block Times Called CPU Cycles
Reduction in

Complexity (%)

Ch-Interleaver (Original) 1 54212 N/A
Ch-Interleaver (Improved) 1 3239 99.39
Demultiplexing (Original) 1 46995 N/A
Demultiplexing (Improved) 1 6352 86.48

For Duo binary CRSC decoder, we can know the max-log-MAP decoding algorithm cost

the most execution time. In [22], the intrinsic functions max2() and sadd2() are used, but

the SIMD (single-instruction multiple-data) features of the DSP are not used. In Table 5.4,

we show the component functions in the Duo binary CRSC decoder function that performs

the max-log MAP decoding algorithm. They consist of gamma, alpha, beta, LLR and

extrinsics functions. We can see that the extrinsics function needs much fewer cycles then

the other function. Therefore, we do not discuss it in the next section.

72

Table 5.4: Profile of Duo Binnary CRSC decoder with QPSK Modulation for 480 Infor-
mation Bits, Rate 1/2 Coding in One Iteration

Function Times Called CPU Cycles Percentage (%)

gamma 1 17830 32.41
alpha 1 13028 23.68
beta 1 13225 24.04
LLR 1 8495 15.44

extrinsics 1 2433 4.42

5.3 Arrange State Order to Achieve Parallelism

In this section, we illustrate how to arrange the state order to parallelize decoder pro-

cessing. We try to access two 16-bit data values consecutively located in memory and then

do operation on two 32-bit words at a time. Note that we have three sets of parameters to

arrange, from the BCJR algorithm for MAP decoding, which consist of the following:

• The forward state metrics α.

• The backward state metrics β.

• The branch metrics γ.

In Fig. 5.5, we show the original state order, whose sequence is from state 0 to state

7, and every state is arranged based on input order 00, 01, 10, 11. When using intrinsics

to compute forward state metrics, we cannot use word (32-bit) accesses to read two 16-bit

quantities at a time. Therefore, we propose an other arrangement to achieve parallelism.

First, we observe that the state order of forward metrics have some properties, In Fig. 5.5

we can see that the sets (αk−1
0 , αk−1

1 , αk−1
6 , αk−1

7) and (αk−1
2 , αk−1

3 , αk−1
4 , αk−1

5) of forward

metrics at time k − 1 have the sets (αk
0, αk

3, αk
4, αk

7) and (αk
1, αk

2, αk
5, αk

6), respectively,

73

Figure 5.5: Trellis diagram, every branch in the trellis connecting at time k− 1 to a state at
time k.

as possible state at time k. Therefore, we allocate memory for them in the order of αk−1
0 ,

αk−1
2 , αk−1

1 , αk−1
3 , αk−1

7 , αk−1
5 , αk−1

6 , αk−1
4 , consecutively. In Fig. 5.6, we show the trellis with

rearranged state order for forward metrics. Note that, after computing the forward metrics,

the state order is changed to αk
0, αk

1, αk
3, αk

2, αk
7, αk

6, αk
4, αk

5, which is not the same as previous

time k − 1. In Fig. 5.7, we show how to use the intrinsics “ packXX2()” to put the states

at the correct positions.

Second, in Fig. 5.6, we also show the arrangement of state order for backward metrics.

Similarly, from Fig. 5.5 we can see that the sets (βk
0 , βk

3 , βk
4 , βk

7) and (βk
1 , βk

2 , βk
5 , βk

6) of

backward metrics at time k have the (βk−1
0 , βk−1

1 , βk−1
6 , βk−1

7) and (βk−1
2 , βk−1

3 , βk−1
4 , βk−1

5),

respectively, as possible state at time k − 1. Therefore, we allocate the state order as βk
0 ,

βk
1 , βk

3 , βk
2 , βk

7 βk
6 , βk

4 , βk
5 . After computation of backward metrics, the state order changes

to βk−1
0 , βk−1

2 , βk−1
1 , βk−1

3 , βk−1
7 , βk−1

5 , βk−1
6 , βk−1

4 . Similar to Fig. 5.7, we use the intrinsic

74

Figure 5.6: Arrangement of trellis order for forward and backward metrics.

Figure 5.7: Use of the packXX2() intrinsics for forward metric .

“ packXX2” to put the backward metrics at the correct positions. Third, for the branch

75

metric,

Γk(Sk−1, Sk) = ln[p(yk|dk) · P (dk)]

= 0.5 · Lc · [ys,I
k · xs,I

k (i) + ys,Q
k · xs,Q

k (i) + yp,I
k · xp,I

k (i, Sk−1, Sk)

+yp,Q
k · xp,Q

k (i, Sk−1, Sk)] + ln P (dk) + K, (5.1)

we can use one intrinsic dotp2 to compute ys,I
k · xs,I

k (i) + ys,Q
k · xs,Q

k (i), which computes the

branch metrics from the received systematic and parity bits. This needs to be done only for

the first iteration, but not for later iterations. In Fig. 5.8, we show the improved C code

of the alpha function for computing the forward metrics, and in Figs. 5.9 to 5.13, we show

the corresponding assembly code. The software pipeline information is shown in Fig. 5.14.

Table 5.5 shows the improvement in speed of gamma, alpha, beta, LLR and Gamma Table

functions with QPSK modulation for 480 information bits, 1/2 rate coding in one iteration.

They account for 84.9, 51.67, 52.38 and 8.56%, respectively, of the complexity of the improved

Duo binary CRSC Decoder. Due to the iteration is one, therefore, we can sum the cycles

of gamma and Gamma Table functions of the improved code to compare with the gamma

function of the original code. We see that there is 34.7% reduction in complexity. For the

LLR function we only improve 8.56% in speed, we conjecture that this has to do with the

amount of memory. The original code only uses three memory spaces (01, 10, 11) in every

time k. But the improved code uses four memory spaces (00, 01, 10, 11) in every time k to

accessed two 16-bit words at a time.

Table 5.6 compares the original cycles to the improved cycles for the Duo Binary CRSC Deoder

function and the CTC Decoder function.

76

Table 5.5: Profile of Improve Duo Binnary CRSC Decoder with QPSK Modulation for 480
Information Bits, Rate 1/2 Coding in One Iteration

Function
Original
(Cycles)

Improved
(Cycles)

Reduction in
Complexity (%)

gamma 17830 2692 84.9
alpha 13028 6296 51.67
beta 13225 6297 52.38
LLR 8495 7767 8.56

Gamma Table N/A 8947 N/A

Table 5.6: Speed Up in Decoding of One Data Block with QPSK Modulation for One
Iteration

Function Times Called Cycles
Reduction in

Complexity (%)

Duo Binnary CRSC Decoder (Original) 2 122352 N/A
Duo Binnary CRSC Decoder (Improved) 2 60908 50.21

CTC Decoder (Original) 2 209900 N/A
CTC Decoder (Improved) 2 126918 39.53

77

Figure 5.8: Improved C code for the alpha() function.

5.4 Comparison of Speed

In this section we investigate the processing rates of the original code and the improved

code. Besides, we compare the numbers of additions, multiplications and the intrinsics

between the original code and the improved code.

5.4.1 Comparison of Original and Improved Codes in Additions,
Multiplications and Intrinsic Functions

We evaluate roughly the numbers of intrinsic functions for the CTC decoder in the

original code and the improved code. The equations for a priori probability computation in

78

Figure 5.9: Assembly code of the alpha() function (1/5).

79

Figure 5.10: Assembly code of the alpha() function (2/5).

80

Figure 5.11: Assembly code of the alpha() function (3/5).

81

Figure 5.12: Assembly code of the alpha() function (4/5).

82

Figure 5.13: Assembly code of the alpha() function (5/5).

CTC decoder are as follows :

ln P [dk = 00] = −max[0, La
1(dk), L

a
2(dk), L

a
3(dk)],

ln P [dk = 01] = La
1(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)],

ln P [dk = 10] = La
2(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)],

ln P [dk = 11] = La
3(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)]. (5.2)

We see that it requires 4 additions per trellis stage over 240 trellis stages for 480 information

bits, for a total of 4·240 = 960 additions. About three max2() function calls are needed per

trellis stage, for a total of 3·240 = 720 over 480 information bits. For the gamma function,

4 additions are needed per branch (see 5.1). With 8 states per trellis stage, 4 branches per

83

Figure 5.14: Software pipeline information of the alpha() function.

84

Table 5.7: Numbers of Intrinsic calls and arithmetic operations in Original Code for CTC
Decdoding

max2() sadd2() additions multiplications

branch metrics 720 0 31680 30720
forward metrics 7440 7680 1920 0

backward metrics 7440 7680 1920 0
LLR 6720 15360 720 0

state, and 240 trellis stages for 480 information bits, the total is 4·4·8·240 = 30720. The

total number of multiplications is similar : 4·4·8·240 = 30720. Note that we also use one

shift operation for multiplying with 0.5 in (5.1). For the forward metrics, there are 4 calls

to sadd2() × 8 states × 240 trellis stages, giving a total of 4·8·240 = 7680. The max2()

are called 3 times × 8 states × 240 trellis stages, for a total of 3·8·340 = 5760 times per

480 information bits. In addition, there are 8 subtractions and 7 max2() calls per trellis

stage for normalization. The backward metrics are the same with the forward metrics in

amount of computation. For the LLR values, there are 28 max2() calls per trellis stage and

2 sadd2() calls per branch × 4 branches × 8 states × 240 trellis stages, plus 3 subtractions

per trellis stage. For convenience, we summarize the above analysis in Table 5.7.

For the branch metric computation in the improved code, the additions needed in com-

puting the a priori probability are the same as the original, but the Gamma Table function

uses the dotp2() intrinsic to replace 2 multiplications and one addition. The total number of

dotp2() calls are 2 per branch × 4 branches × 8 states × 240 trellis stages, yielding 2·4·8·240

= 15360. The number of additions is 1·4·8·240 = 7680. For gamma function there is 1 ad-

dition × 4 branches × 8 states × 240 trellis stages, which total to 7680. For the forward

metrics, we use 12 max2() and 16 sadd2() intrinsics per trellis stage and 3 max2() and 4

sub2() calls to compute normalization. The backward metrics are the same as forward. The

85

Table 5.8: Numbers of Intrinsic Calls and Arithmetic Operation in Improved Code

max2() sadd2() dotp2() sub2() additions

branch metrics 720 0 15360 0 16320
forward metrics 3600 3840 0 960 0

backward metrics 3600 3840 0 960 0
LLR 2880 7680 0 0 720

LLR values uses 12 max2(), 32 sadd2() and 2 sub2() calls per trellis stage. In Table 5.8,

we show the resulting amount of computation for ease of comparison with that of the original

code.

5.4.2 Processing Rate of CTC Decoder

Overall, we can get the cycles of 480 information bits, rate 1/2 CTC decoder between

original code and improved code are 209900 cycles and 126918 cycles with QPSK modulation

in one iteration, respectively. For CCS operation speed is 109 cycles/second, so we can get

their decoding information processing rates which are 2286 Kbps and 3782 Kbps, respectively.

Note that the CTC decoder is not be included the external functions, like as, de-modulator

and de-puncturing.

In Tables 5.9 and 5.10, we show the processing rates of original code and improved

code for two iterations and four iterations. Obviously, the processing rate is decreased with

iteration count. But the amount of decrease of processing rate is different. For original

code, the processing rate from 2 iterations to 4 iterations is decreased about 44%, and for

the improved code is decreased about 41%. That means, for higher iteration counts the

processing rate of improved code is better and better than original code. The reason is that

we do not repeat the computation of the branch metrics from the received systematic and

86

Table 5.9: Information Data Processing Rate Calculated from CCS for Original Code for
480 Information Bits, Rate 1/2 Coding

Number of
Iterations

CTC Decoder
Cycles

Information
Data Rate

(Kbps)

2 336,568 1,426
4 592,273 810

Table 5.10: Information Data Processing Rate Calculated from CCS for Improved Code for
480 Information Bits, Rate 1/2 Coding

Number of
Iterations

CTC Decoder
Cycles

Information
Data Rate

(Kbps)

2 193,015 2487
4 324,278 1480

parity bits.

Finally, we compare the decoder processing rates of rate-1/2 tail-biting CC without using

the VCP, rate-1/2 tail-biting CC with the VCP, rate-1/2 CTC with 4 iterations of improved

code and rate-1/2 LDPC. Source of these implementation are described in [22], [23]. We get

the information data processing rates in decoding for tail-biting CC and LDPC codes from

[23] and tail-biting CC with the VCP from [22]. And we use CCS profiles to estimate the

decoding processing rate for CTC. The results are shown in Table 5.11

87

Table 5.11: Comparison of Decoder Speeds for Tail-Biting CC, CTC, and LDPC Calculated
from CCS

CC Information
Data Rate

Without Using
VCP for

Rate-1/2 QPSK
(Kbps) [23]

CC Information
Data Rate With

VCP for
Rate-1/2 QPSK

(Kbps) [22]

CTC
Information

Data Rate for
Rate-1/2 QPSK
with 4 Iterations

(Kbps)

LDPC
Information

Data Rate for
Rate-1/2 QPSK

(Kbps) [23]

832 8,938 1480 7.6

88

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we first present a part of FEC in IEEE 802.16e, which contain CTC

encoder, channel interleaver and bit selection. Second, we present the turbo decoding al-

gorithm BCJR with max-log-MAP, evaluating the performance of CTC and compared the

results with numerical results. Finally, we optimize CTC decoder on DSP implementation.

In performance simulation, in order to compensate the max-log-MAP performance loss,

we use a scaling factor to scale down the extrinsic message, and it improve performance about

0.1 to 0.2 dB. Then we focused on complexity-reducing max-log-MAP decoding algorithm.

We convert the floating-point input values to fixed-point, proposing scaling method and

clipping method. For scaling method we could use S14.1 and for clipping method using (Din4-

Ex16) to implement the decoder. In our last simulation, the clipping method is better than

scaling method about 0.5 dB under QPSK, 16QAM and 64QAM at rate-1/2, respectively.

On DSP implementation, we arrange state order to reduce decoder complexity, which contain

forward metrics, backward metrics and branch metrics. In order to achieve parallelism, we

using a lot intrinsic functions to access two 16-bit at a time, the 50.21% is reduction in

complexity. In conclusion, in our decoder with 4 iterations, we can approach data rate

89

about 1500 Kbps.

6.2 Future Work

There are several possible extension for our research:

• In CTC decoder, the LLR function is execute many cycles, the parallelism is failed, we

may rewrite our code to achieve software pipeline.

• The procedure of HARQ (Hybrid Automatic Repeat reQuest) is important implemen-

tation in FEC, it can correct appear frequently error to reduce re-transmit times.

• For HARQ, it will longer length for encoder, we can used sliding window to reduce

complexity.

90

Bibliography

[1] IEEE Std 802.16TM-2009 (Revision of IEEE Std 802.16-2004), IEEE Standard for Local

and Metropolitan Area Networks — Part 16: Air Interface for Broadband Wireless

Access Systems. New York: IEEE, May 2009.

[2] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol.

40, pp. 873–884, May 1992.

[3] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved

COFDM with application to HIPERLAN/2,” in IEEE Int. Conf. Commun. Conf. Rec.,

vol. 2, 2002, pp. 664–668.

[4] B. Baumgartner, M. Reinhardt, G. Richter, and M. Bossert, “Performance of forward

error correction for IEEE 802.16e,” 10th International OFDM Workshop, Hamburg,

Germany, Aug. 2005.

[5] Todd K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Wiley,

2005.

[6] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. Info. Theory, vol. 20, pp. 284–287, Mar.

1974.

91

[7] Texas Instruments, Implementing a MAP Decoder for cdma2000 Turbo Codes on a

TMS320C62x DSP Device. Lit. no. SPRA629, May 2000.

[8] M. R. Soleymani, Y. Gao, and Y. Vilaipornsawai, Turbo Coding for Satellite and Wire-

less Communications, Dordrechtthe, Netherlands: Kluwer Academic, 2002.

[9] M. C. Valenti, S. Cheng, and R. Iyer Seshadri, Turbo Code Applications: A Journey

from a Paper to Realization. Springer, 2005.

[10] C. Berrou, M. Jezequel, C. Douillard, and S.Kerouedan, “The advantages of non-binary

turbo codes,” Proc. IEEE Information Theory Workshop, Sep. 2001, pp. 61–63.

[11] Sundance, SMT6400 Help.chm.

[12] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Lit. no.

SPRU189, Oct. 2000.

[13] Texas Instruments, TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point

Digital Signal Processors. Lit. no. SPRS226A, Mar. 2004.

[14] Texas Instruments, TMS320C6000 DSP cache User’s Guide. Lit. no. SPRU656A, May

2003.

[15] Texas Instruments, Code Composer Studio User’s Guide. Lit. no. SPRU328B, Feb. 2000.

[16] Texas Instruments, TMS320C6000 Code Composer Studio Tutorial. Lit. no. SPRU301C,

Feb. 2000.

[17] Texas Instruments, TMS320C6000 Programmer’s Guide. Lit. no. SPRU198I, Mar. 2006.

[18] Texas Instruments, TMS320C6000 Optimizing Complier User Guide. Lit. no.

SPRU187K, Oct. 2002.

92

[19] Y. Wu, B. D. Woerner and T. K. Blankenship, “Data width requirements in SISO

decoding with modulo normalization,” IEEE Trans on Commun, vol. 49, pp. 1861–

1868, Nov. 2001.

[20] G. Jeong and D. Hsia, “Optimal quantization for soft-decision turbo decoder,” in Proc.

IEEE Vehicular Technology Conference, Amsterdam, The Netherlands, Sep. 1999.

[21] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,” Electronics Let-

ters, vol. 36, pp. 1937–1939, Nov. 2000.

[22] Jia-Fong Chen,“Study in WiMAX channel coding techniques and associated digital

signal processor implementation,”M.S. thesis, Dept. Electronics Engineering, National

Chiao Tung University, Hsinchu, Taiwan, R.O.C, June 2008.

[23] Po-Sheng Wu, “Research in and DSP implementation of channel coding techniques for

IEEE 802.16e OFDMA,” M.S. thesis, Dept. of Electronics Engineering., National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., June 2007.

93

作者簡歷

姓名：曾劭學 (Shao-Hsueh Tseng)

出生地：台北市

學歷：國立南港高中

中興大學電機工程系學士

 交通大學電子研究所碩士(2007.9~2009.11)

研究領域：通訊系統、通道編碼及數位訊號處理

論文題目：WiMAX 迴旋渦輪碼技術

 與數位訊號處理器實現

 (WiMAX Convolutional Turbo Code Technology and

 Digital Signal Processor Implementation)

