oA BIRARL Sy

Unification of
Rectilinear Steiner Tree Construction
for SoC and Nanometer Technologies

= Y §7

Ry TR E L

PoE oA R4 L A E 20

oSl BRGNP E b R 72 2

Unification of Rectilinear Steiner Tree Construction
for SOC and Nanometer Technologies

VRN S £ Student: Yen-Ting Yu
hERE TR £ Advisor: Dr. Iris Hui-Ru Jiang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering

June 2009
Hsinchu, Taiwan, Republic of China

PEAR 4L AERT

L*ﬁ]ﬂ?g"ﬁ
stk Bl g b
B - B R .
E‘I-ﬁ’?ﬂ’:‘ Po=F i 2 :“. ,-l“f_"‘-*l-m L %
R Ex /Jnf%;]’-kﬁ MRS e 4
T % ig_)’ , 44 2 m‘%ﬁ
Eéy PSR AR S g R N
PP o i
KEl'-—rﬁth’ | | %ﬁ'mﬁ‘ﬁlpkl o AR L0E e i s s,
K 2% 134 ‘Hﬁfidr‘] |
¢ 7 PR B TS
B FuE > 214 e e i
e [t é—.%i&?&ﬁ; /J~*ﬁ.EﬂL ’\,’afﬁ/ﬁ’%—;/évlll‘6¥
%S‘E%'F'B Pﬁ?ﬁ"*” ET’LE ﬁ.}. ?ﬁhﬁfié éﬁ_‘pg i 'F ¢
Kﬁx’l‘ e le=
L, s é—%iﬁxy
e
3 PR RS

B o
. X2 kv g 3%
B BT 3N R B R AT AR ¥
S8 BT 2
-~ l,i:l-_s]:]g-_l— » F 5z
LA ECT S - A,

UNIFICATION OF
RECTILINEAR STEINER TREE CONSTRUCTION
FOR SOC AND NANOMETER TECHNOLOGIES

Student: Yen-Ting Yu Advisor: Dr. Iris Hui-Ru Jiang

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

The rectilinear Steiner minimal tree (RSMT) problem is essential in physical
design. Moreover, the variant constraints for fabrication issues, including obstacle
avoidance, multiple routing layers, layer-specific routing directions, cannot be ignored
during RSMT construction for modern SoC and nanometer technologies. This thesis
unifies single- and multi-layer obstacle-avoiding RSMT construction first and then
extends it to consider preferred routing directions and to target timing-driven RSMT.
These extensions demonstrate that our algorithm can easily be adapted to
configurations. Experimental results show that our algorithm is promising and

outperforms the state-of-the-art works.

Acknowledgements

I would like to express my heartfelt gratitude to my advisor, Prof. Iris Hui-Ru
Jiang. I’ve learned several ways to cope with a tough research problem from her
guidance. She is the teacher who is willing to spend her precious time just to help you
preparing your oral examination. Meanwhile, | appreciate my lab members, especially
Wan-Yu Lee for her foods. Finally, I display my warmest appreciation to my parents

for their love and support.
Yen-Ting Yu
National Chiao Tung University

June 2009

ii

Table of Contents

ADSTFACT(CRINESE) ..ttt i
N 0] 1 - o SRS I
ACKNOWIBAGEIMENTS ... ii
LISt OF TADIES ... v
LEST OF FIQUIES ...ttt ettt vi
Chapter 1 INTRODUCTION ..ottt 1
Chapter 2 PROBLEM FORMULATION AND ALGORITHMcccooviiiiiiiieiieen, 8
A. Delaunay Triangulation of PINSccccoveeiiiieiiii e 10
B. Obstacle-Weighted MST 0N DTooiiiiiiiiiiiiie e 12
C. Rectilinearization and 3D U-Shaped Pattern Refinementcccccccevviennnene, 15
D. Time Complexity ANAIYSISc.coiiiiiiiiiieie s 19
Chapter 3 EXTENSIONS ...ttt 22
A, Preferred DIrECHIONSccuiiiiiiiieciie ettt 22
B. GloDal ROULINGvveiiiie ettt e e anree e 25
Chapter 4 EXPERIMENTAL RESULTSoiiiiiiiiiie e 26
AL SL-OARSMT Lottt 27
B, ML-OARSMT ..ttt bbbt 27
G OAPDST et 29
Chapter 5 CONCLUSIONoiiiiiiiieiiieee ettt nree s 35
REFERENCES. ...ttt sttt enre et e 36
APPENDIX ...ttt ettt 38
TIMING-DIrIVEN STEINEE TIEESeeiiiie et e ettt e e e e et e e e e saee e 38

iv

List of Tables

TABLE | THE COMPARISON BETWEEN RECENT WORKS ON RSMT 6

TABLE Il SL-OARSMT: THE COMPARISONS ON THE TOTAL WIRELENGTH
BETWEEN PREVIOUS WORK [6-10] AND OURS........ccooiiiiiiiiiiiie e 26

TABLE 111 ML-OARSMT: THE COMPARISONS ON THE NUMBER OF VIAS,
THE TOTAL COSTS, AND CPU TIMES BETWEEN [11] AND OURS UNDER Cy =

TABLE IV ML-OARSMT: THE COMPARISONS ON THE NUMBER OF VIAS,
THE TOTAL COSTS, AND CPU TIMES BETWEEN [11] AND OURS UNDER Cy =

TABLE V OAPDST: THE COMPARISONS ON THE NUMBER OF VIAS, THE
TOTAL COST, AND CPU TIMES BETWEEN [13] AND OURS UNDER Cy = 3, UC,
S L L= TSN L 31

TABLE VI OAPDST: THE COMPARISONS ON THE IMPACTS OF OUR
ALGORITHM ON THE TOTAL COST AND CPU TIMESUNDER Cy=3,UC,=1,1

List of Figures

Fig. 1. Given an instance with 4 pins and 5 obstacles, the possible options for the
connection graph can be (a) a complete graph, (b) an escape graph, (c) a spanning graph,
(d) a Delaunay triangulation with obstacles, or (e) a Delaunay triangulation without
(0] 0151 [0 1SRRI 3

Fig. 2. We unify rectilinear Steiner tree construction. Our method can handle different
configurations, e.g., obstacle avoidance, multiple routing layers, preferred direction,

AN TIMING=OFIVEN. L.ttt ettt ae e 7

Fig. 3. (a) An instance of ML-OARSMT given in [11], where C, = 3, each grid size is
20x20 (unit)®. (b) Steps 1 and 2 of our algorithm for ML-OARSMT. (c) The
corresponding 3D extended escape graph. (d) The resulting ML-OARSMT. 10

Fig. 4. (a)-(b) During DT construction, an illegal edge in is flipped into a legal one.
(c)-(d) The inserted pin may be located inside one triangle or on the boundary of two
triangles. (e) The pins and obstacles in the instance given in Fig. 3(a) are projected to
the pseudo plane. (f)-(I) Step-by-step DT construction for the instance given in Fig. 3(a).
The number attached beside each pin indicates its order to be included in DT. Please

note that the edges between pins and the initial large triangle are not shown.................. 12

Fig. 5. The obstacle penalty is counted for two pins located on the same layer. (a)
Z-shaped routing can avoid obstacle penalties. (b) The obstacle completely passes

through the bounding box, and its obstacle penalty is computed as the smaller detour. ..14

Fig. 6. All 3D U-shaped patterns are classified into (a) degenerated and (b) standard

Fig. 7. Several cases for 3D U-shaped pattern refinement. (s: Steiner-vertex) 15

Fig. 8. (a) The ML-OARSMT for Fig. 3(a) generated by [11] is of cost 326. It has a

degenerated pattern, marked by bold lines. (b) The refined tree has a complicated

standard pattern and an obstacle around. (c) The resulting tree is of cost 269................. 15

vi

Fig. 9. An instance of SL-OARSMT. (a) Step 1: Delaunay triangulation for pins on a
pseudo plane. (b) Step 2: The obstacle-weighted MST. (c)-(h) Step 3:Rectilinearization
and 3D U-shape refinement, where (c) is the escape graph, (d)-(g) are intermediate trees,
and (h) is the resulting SL-OARSMT . ..ot 17

Fig. 10. (a) An instance of OAPDST, where C, = 3, each grid size is 20x20 (unit)?, UC;
=1 for all layers. (b)(c) The corresponding DT, obstacle-weighted MST, and 3D
extended escape graph. (d) The resulting OAPDST without refinement. (e) The

resulting OAPDST With refinemMENt.ocviiiiiiiiiie e 21
Fig. 11. (a) Our ML-OARSMT. (b) OAPDST in [13]. (c) The refined tree of (b)........... 23
Fig. 12. Degenerated cases for 3D U-shaped pattern refinement in OAPDST.. 24
Fig. 13. (a) The SL-OARSMT of sl-rc6. (b) The SL-OARSMT of sl-rc9.............c.cc....... 32

Fig. 14. The ML-OARSMT of ml-ind2 under C, = 3. (a) The DT without illegal edges.
(b) The MST. (c)-(g) Layers 2-6, respectively. (h) All pin-vertices are projected onto a

pseudo plane, without showing the 0bStacles.ccceiviieiiie e 33

Fig. 15. The OAPDST of ml-ind2 under C, = 3. (a) The DT with illegal edges. (b) The
MST. (c)-(g) Layers 2-6, respectively. The odd (even) layers allow vertical (horizontal)
edges. Some line segments are at obstacle boundaries; they are feasible according to the
problem formulation. (h) All pin-vertices are projected onto a pseudo plane, without

SNOWING the ODSTACIES. ... e 34

Fig. 16. The timing driven OAPDST of ml-ind2 under C, = 5. DT is the same as Fig. 15
(@). (@) The SPT. (b)-(f) Layers 2-6, respectively. The even (odd) layers allow vertical
(horizontal) edges. Some line segments are at obstacle boundaries; they are feasible
according to the problem formulation. (g) All pin-vertices are projected onto a pseudo

plane, without showing the 0bStaCIES.cccvviiiiiiii e 39

vii

Chapter 1
INTRODUCTION

Rectilinear Steiner minimal tree (RSMT) construction has been extensively
studied and considered as a fundamental problem in physical design. An RSMT is a
tree of rectilinear edges connecting a given set of points possibly through some extra
(i.e., Steiner) points with minimum total wire length; it is frequently performed for
interconnect estimation during floor planning, placement, and routing stages. To make
the estimation practical, we shall consider the fabrication issues for modern SoC and
nanometer process technologies. Advanced nanometer technology offers an
abundance of routing layers, e.g., 1l layers‘in. 65 nm [1], and normally assigns a
preferred routing direction to each layer; on the.other hand, a large-scale SoC design
often contains a tremendous number of obstacles. If-timing is the main concern, the
objective could be changed to minimize the path-length from a designated source
point to the rest.

However, even the simplest case, the RSMT problem without considering obstacle
avoidance (OA), multiple layers (ML), preferred direction (PD) constraints, has been
proven to be NP-complete [2]. Due to the high complexity and frequent usage, it is
desired to construct an RSMT with these constraints of good quality in reasonable
runtime.

A 2:1 performance bound of minimum spanning tree (MST) to RSMT for general
graphs can be applied to these variations. Thus, existing approaches for RSMT
typically contain three steps:

1) Connection graph generation (CG): Step 1 generates a connection graph to

connect all pins. (Obstacle boundaries can also be included.) This graph contains
1

geometrical proximity information among pins (and obstacle boundaries, or not). It
can be a complete graph, a spanning graph, an escape graph [3], or a Delaunay
triangulation (DT) [4]. Fig. 1 illustrates these possibilities for a planar instance with 4
pins and 5 obstacles. Fig. 1(a) shows the corresponding complete graph where
vertices represent pins and each edge reflects the wirelength between the related two
pins with obstacle consideration. Fig. 1(b) shows the corresponding escape graph
where lines are stretched horizontally and vertically along pins and the corners of
obstacles, and the intersection of any two lines contributes a vertex. Fig. 1(c) shows
the corresponding spanning graph where vertices represent pins and the corners of
obstacles, and two vertices are connected if there is no other vertex inside or on the
boundary of the bounding box of the two vertices, and there is no obstacle inside the
bounding box of the two vertices [9], [11]. Fig. 1(d) shows the corresponding DT
where vertices represent pins and the corners of obstacles, and the circumcircle of
each triangle does not contain any. other vertex. In addition, the corners of obstacles
may be not included in DT to reduce the complexity of the connection graph, as
shown in Fig. 1(e).

2) spanning tree construction (ST): Step 2 constructs a minimum spanning tree
(MST) over all pins based on the connection graph. If the connection graph includes
the corners of obstacles, the MST is obstacle-avoiding (all tree edges bypass
obstacles). Otherwise, it is obstacle-weighted (tree edges may run through obstacles,
but the impacts of obstacles are considered into edge weights), or mixed (tree edges
are obstacle-weighted first and then obstacle-avoiding). If the goal is to construct a
timing-driven RSMT, the spanning tree can be the shortest path tree (SPT) on the

connection graph instead and is built up by Dijkstra’s shortest path algorithm.

~ | N
Pt ® /.K\ '

] \
[] . \, III @ ——
~L _I R \\
(b) (c)
1
#'II / I|
L |I
o 5 I|I
~ |
(e)
® pin obstacle | edge

Fig. 1. Given an instance with:4 pins and.5 obstacles, the possible options for the
connection graph can be (a) a-complete graph, (b) an escape graph, (c) a spanning

graph, (d) a Delaunay triangulation with obstacles, or (e) a Delaunay triangulation
without obstacles.

3) Rectilinearization and refinement (RR): Step 3 transforms the spanning tree
into a rectilinear Steiner tree and refines the total cost. If the spanning tree is
obstacle-weighted, the edges intersecting obstacles are fixed during rectilinearization.
The total cost includes wirelength and vias. Planar U-shaped pattern refinement is
usually applied. In addition, if the connection graph is a Hanan grid or an escape
graph, some works merge steps 2 and 3 into one.

As listed in TABLE |, we compare the configurations provided and the techniques
used in each step for the state-of-the-art works and ours.

Recently, most of research endeavors have focused on single-layer
obstacle-avoiding RSMT (SL-OARSMT) [6], [7], [8], [9], [10]. Among them, [9]

3

produced the best results; the breakthrough done in [9] was to include more “essential
edges” into their spanning graph. The essential edge introduced by [9] can directly
connect two pins without obstacles inside their bounding box and then lead to more
desirable solutions. [11] then extended [9] to construct a 3D spanning graph and
solved the multi-layer variation; so far, it has been the first one and only one work
handling multi-layer obstacle-avoiding RSMT (ML-OARSMT). [11] projected
vertices between layers and within layers to link the spanning graphs for adjacent
layers together. The projection reflects the usage of vias. Even so, it seems somewhat
indirect to include the information of preferred directions into their 3D spanning
graph.

[12] first included preferred directions into RSMT but ignored obstacles. [13] first
attempted to combine all of these issues into RSMT. construction and formulated the
obstacle-avoiding preferred direction Steiner tree problem (OAPDST). In addition,
[13] directly constructed a rectilinearMST-over' a 3D improved escape graph.
However, the MST was not further refined,"so the solution quality may be limited.
Each work listed here focused on only one specific configuration and cannot easily be
adapted to other configurations.

As shown in Fig. 2, in this thesis, we generalize an approximation algorithm
which is a preliminary version announced in [14], [15] to unify the tree construction.
Steps 1 and 2 construct an obstacle-weighted MST/SPT on the DT of pins only. Step
3 rectilinearizes each tree edge on a 3D extended escape graph and then refines it.

Our innovative features include:

1) We develop a unified approach to Steiner tree construction for variant

configurations.

2) The conventional construction-by-correction approach cannot extract the global
4

geometrical information among pins and obstacles in the connection graph. We
overcome the drawback by introducing potentially essential edges during DT
construction and adequately associating the impacts of obstacles into edge weights.

3) We construct the DT and the obstacle-weighted MST/SPT in an efficient way
since the total edge weight of the tree is not required to be exact, just expected to be
correlated to the final tree. It can effectively guide step 3 how to connect pairs of pins.

4) We generalize 3D U-shaped pattern refinement. Experimental results show that
our algorithm outperforms the state-of-the-art works for SL-OARSMT,
ML-OARSMT and OAPDST and can extend to handle timing-driven RSMT.

Moreover, our results reveal the following findings: The guidance of the
obstacle-weighted MST leads to smaller!total .costs and shorter runtimes, and novel
3D U-shaped refinement works, well not only on our algorithm but also for previous
work.

The rest of the thesis is organized “as-follows. Chapter 2 presents problem
formulations about ML-OARSMT and how ‘our algorithm works. The extensions of
ML-OARSMT are presented in Chapter 3. Experimental results are presented in
Chapter 4. Conclusions are drawn in Chapter 5. And finally, APPENDIX shows an

application of our procedure.

" LINSY UdAUp-Furun 10j 221 yied jsauoys [1Js,
“UAAUpP-BUUL (L,

“uondAIp pauajald (dd,

“AIUBPIOAR-D[IRISA() 1V O,

AR FWE TS SIRAR-IMNIN TN

TABLE |
THE COMPARISON BETWEEN RECENT WORKS ON RSMT

JuaAULRI (I <LdS/LSIN PAIYs1an-a[deisqO (N uonensuRL) ABUNE[A(] A A A T | SO
VN LSIN SUIPIOAB-3[IRISQO 79 IRIUI NI (A) ydeis adeasa parordun (¢ N A A TN l€1]
- - (N) pus ueueH gg N | A N | 1w | [Edd
- LSIN SUIpIOABR-3[IBISq() (A) ydesd Suruueds parorduwr (¢ N N A TN [11] ..M
_ LS BUIPIOAB-2[IEISA0) (A) ydeis Suiuueds asmdg N N A 1s lo1] m
- LSIA BUIpPIOAE-3]2R1SG(0) (&) ydess Suruueds pasordug N N A 18 l6] A.W
- LSIN SUIPIOAB-2[IBISQ0 29 PAIYD [2M-I[IBIS0O PAXT]A (N) ydeis ajapdo) N N A 15 (2] _
EETEGIN LSIN SUIPIOAB-2[JB1Sq(0) (A) yders suiuuedg N [N[A [as | L
- LSIN SUIPIOAB-2[0BISG0 (A) uopensueL) Apuneaq N | N A [1s] 9]
W g dog 1S iz daig (papn[aul sa[ae)sqo) H 1| dag AL | @ad | ;vo | TN
2INMpasoig UOTBINGLJUO)

OA ML

. # of layers
T N

(T Step 1: CG \

-
i

i
Delaunay triangulation of pins ':
v <
1

1

1

1

1

1

1

Preferred
directions

Step 2: ST

‘ L _ Routing
Obstacle-weighted MST / SPT on DT

Ccosts

v
Step 3: RR
3D U-shaped pattern refinement
S v s o e / 4
ML-OARSMT || OAPDST

2 v
Timing-driven
ML-OARSMT

Timing-driven
OAPDST PD

Fig. 2. We unify rectilinear Steiner tree construction. Our method can handle different

configurations, e.g., obstacle avoidance, multiple routing layers, preferred direction,
and timing-driven.

Chapter 2
PROBLEM FORMULATION AND ALGORITHM

We adopt the formulation of the multi-layer obstacle-avoiding rectilinear Steiner

minimal tree (ML-OARSMT) problem in [11].

Problem: Multi-Layer Obstacle-Avoiding Rectilinear Steiner Minimal Tree
(ML-OARSMT): Given the equivalent wirelength cost C, of a via, the number N, of
layers, a set P = {p1, p2, ..., Pm} Of pins, a set O = {04, 02, ..., Ok} Of obstacles,
construct a multi-layer rectilinear Steiner tree to connect all pins in P by only
rectilinear edges, such that no tree edge or via intersects any obstacle in O and the

total cost of the tree is minimized.

An obstacle is a rectangle .on a layer, indicated by its four corner-vertices. A
pin-vertex pi is a vertex (Xi, Vi, Zj) on layer z, while a via (x;, y; z;) on layer z; is an
edge between (x;, y;, zj) and (x;, Y, Z+1). Notwo obstacles can overlap with each other,
but two obstacles can be point-touched ‘or'line-touched. Since an arbitrary rectilinear
obstacle can be partitioned into a set of rectangles, without loss of generality, assume
all obstacles are rectangular. All vertices of pins and vias must not locate inside any
obstacle, but they can be at the corner or on obstacle boundaries. In addition, the
single-layer obstacle-avoiding rectilinear Steiner minimal tree (SL-OARSMT)
problem is a special case of ML-OARSMT as N, = 1.

As outlined in Fig. 2, our algorithm is based on the construction-by-correction
approach. Here, we use the example given in [11], depicted in Fig. 3(a), to
demonstrate our algorithm. Assume C, = 3, and each grid size is 20x20 (unit
wirelength) 2.

1) Step 1: All pins (actually only pins) are projected onto a pseudo plane, and their
8

DT is then constructed. During DT construction, some “illegal” edges (indicated by
dotted lines) that may be essential are added. (The essential edges can lead to
more desirable solutions [11].) (see Fig. 3(b) and Fig. 4(e)-(l))

2) Step 2: An obstacle-weighted minimum spanning tree is grown up over the DT.
We bias the edge weights in DT to consider obstacle penalties. (see Fig. 3(b))

3) Step 3: Each tree edge is rectilinearized on a 3D extended escape graph (see Fig.
3(c)), and is then processed by novel 3D U-shaped pattern refinement. Our
ML-OARSMT for this instance is of cost 195 (=9x20+5x3). (see Fig. 3(d))

In addition, the ML-OARSMT generated by [11], as shown in Fig. 7(a), is of cost
326 (=16%20+2x3). It can be improved by our refinement method; as shown in Fig.
7(c), the refined tree is of cost 269 (=18%20+3x3). We detail each step and analyze

the time complexity as follows.

e T 7/ @ pin-vertex O intermediate-vertex

aver RV ol i s .
Layer 3--7,'---/ LA - | obstacle ® Siciner-vertex
o LAllgy - & ! . 1 - .
;,7";1 9 ; | via i forbidden-edge
(T S A - |
A" 1 illegal-edge @ forbidden-vertex
a- i
i
i

I, P -~
P (R — s s s
Layer3 e 7
___7’J____/ T
1 LI
- . |
"l
. o
A s
AR

L

1
1
1
1
1
1
i
1
1
! #
1
1
1
1
i
1
1
1
1
1

+ » # e

AR A e TV R
Layer / VL

- s i B

r & ¢
| T S A A T -
#

- d r ,
S B

(d) cost = 9x20+5x3 = 195

Fig. 3. (a) An instance of ML-OARSMT given in [11], where C, = 3, each grid size is
20x20 (unit)®. (b) Steps 1 and 2 of our algorithm for ML-OARSMT. (c) The
corresponding 3D extended escape graph. (d) The resulting ML-OARSMT.

A. Delaunay Triangulation of Pins

Initially, all pins are projected onto a pseudo plane, i.e., each pin-vertex is
indicated by its x- and y-coordinates. If two pin-vertices are projected to the same
location, they are connected by an edge. Conceptually, this pseudo plane abstracts the
geometrical proximity among pins, as well as views single-layer and multi-layer trees

as one.
10

For a given set P of vertices in a plane, a Delaunay triangulation DT(P) is a
triangulation such that the circumcircle of each triangle does not contain any other
vertex of P. A DT(P) maximizes the minimum angle of all the angles of the triangles
in it, thus avoiding sliver triangles, i.e., a DT(P) tends to connect neighboring
vertices.

As depicted in Fig. 4(a), during DT construction, sometimes two triangles
possibly violate the definition of DT, i.e., the circumcircle of one triangle contains
another vertex. The common edge of these two triangles is an illegal edge, and it is
then flipped to a legal edge [4], as shown in Fig. 4(b).

Assume Xmax and Ymax are the maximum x- and y-coordinates of the given set of
vertices. DT construction begins with a:large:triangle with three vertices located at (0,
3Ymax), (3Xmax, 0), and (-3Xmax, -3Ymax) ON the pseudo plane. Then, one pin at a time is
inserted. If it is located inside some triangle; it splits this triangle into three. (see Fig.
4(c)) Otherwise, it is on the common-edge oftwo triangles, it then splits these into
four. (see Fig. 4(d)) The dotted lines in"Fig.4(c)(d) are introduced by the inserted pin.
If illegal edges are generated, they are then flipped into legal ones until no illegal edge
remains. This process repeats until all pins are inserted. Finally, the initial large
triangle and its induced edges are removed.

Normal DT construction discards these illegal edges; however, we preserve these
illegal edges since they contain much more global information than legal ones and
may lead to better solutions. Fig. 3(b) gives the corresponding DT of the instance in
Fig. 3(a), where illegal edges are indicated by dotted lines, and legal edges are
indicated by solid lines. Fig. 4(e)-(I) detail the DT construction step-by-step, where
three illegal edges (indicated by dotted lines) are flipped in Fig. 4(h)(i), Fig. 4(j)(k),

and Fig. 4(k)()).
11

e NG T dllegal edge 7 sy inserted pin
l’ \‘ k ."
/ I
{ / : .y @ :
i | | ! | ;
i 4 / 5
“\ P ," z/’ N i
%, ‘S(\ legal edge . [

P - circumecircle

(a) (b) (¢) (d)

Fig. 4. (a)-(b) During DT const.r'uibtidﬁ,' an i;I'Ié‘gal'_e'dge in is flipped into a legal one.
(c)-(d) The inserted pin may be located inside-ohé triangle or on the boundary of two
triangles. (e) The pins and obstacles in the instance given in Fig. 3(a) are projected to
the pseudo plane. (f)-(I) Step-by-step DT construction for the instance given in Fig.
3(a). The number attached beside each pin indicates its order to be included in DT.

Please note that the edges between pins and the initial large triangle are not shown.
B. Obstacle-Weighted MST on DT

As shown in Fig. 3(b), after the DT is constructed for the projected pins on a
pseudo plane, the obstacle-weighted minimum spanning tree is constructed based on
Kruskal’s algorithm [5]. (Another option is Prim’s algorithm [5].)

The conventional construction-by-correction approach does not include the

geometrical information of obstacles in the connection graph. To overcome this

12

drawback, we encode the obstacle penalties to edge weights of DT(P). Because DT(P)
contains potentially essential edges and its edge weights include the obstacle
information, DT(P) possesses the global geometrical information among pins and
obstacles.

On the other hand, the MST is used to guide step 3 how to connect pins. The edge
weight is not required to be exact, just expected to be correlated to the cost of the final
RSMT. Hence, we use a simple and fast, yet effective, formula to estimate the impact
of obstacles. The obstacle penalty op(pi, p;) between two pins p; and p;j located on the
same layer is simplified from [8], where only the obstacles completely passing
through the bounding box between p;, p; horizontally or vertically are counted. Fig. 5
shows two examples for obstacle penalty ‘computation. The pair of pins in Fig. 5(a)
has no obstacles completely passing:through their bounding box. If Z-shaped routing
is applied, there is no routing overhead. Hence, their obstacle penalty equals zero. On
contrast, in Fig. 5(b), one obstacle crosses over the bounding box of the given pair of
pins. The detour incurs either 2l; or 217 penalty, so their obstacle penalty can be the
smaller one.

In addition, we introduce a parameter o to further reflect the congestion of
obstacles; in our experiments, o is computed by the density of obstacles. When two
pins are located at the same layer with nonzero obstacle penalty or at different layers,
the parameter o is used to magnify their distance. The edge weight w(pi, p;) is

computed as follows.

13

Pj é; Pj

Pi Pi]

op(pipy) =0 op(p;, p) = min(21},21;)
(a) (b)
Fig. 5. The obstacle penalty is counted for two pins located on the same layer. (a)
Z-shaped routing can avoid obstacle penalties. (b) The obstacle completely passes

through the bounding box, and its obstacle penalty is computed as the smaller detour.

]

(a) degenerated (b) standard
Fig. 6. All 3D U-shaped patterns-are classified into' (a) degenerated and (b) standard

ones.

As pi, pj are on different layers, zi#z,
W(pi, Py) = o (IX-Xi[+y;-yil+Cv-[z;-zil).
As pi, pj are on the same layer, zi=z;,
I op(pi, i) = 0, w(pi, P)=Ixi-Xil+Hy;-Yil;

otherwise, wW(pi, ;) = a- (X-Xi[+y;-yil+op(pi, Py)).

Although we estimate the obstacle penalties in a simple way, our results reveal

that steps 1 and 2 are necessary, and they can give a good guidance for step 3.

14

(a) degenerated: [+ L

E> '
1
]
]
H
|
I
-------- ,__a_-.__-- g
. R
e td uJ rd
. .
’ S5 +
.

1
I
I
1
T
1
I
2 s Iy
i g P
P ’ #
’ s -

(c) standard: L + 2L (d) standard: 2L + 2L

Yo
1
1

Fig. 7. Several cases for 3D U-shaped pattern refinement. (s: Steiner-vertex)

49 28 B
o L0 VTR
a R ==

(a) cost= 326 (b) cost = 306 (c) cost =269

Fig. 8. (a) The ML-OARSMT for Fig. 3(a) generated by [11] is of cost 326. It has a
degenerated pattern, marked by bold lines. (b) The refined tree has a complicated

standard pattern and an obstacle around. (c) The resulting tree is of cost 269.

C. Rectilinearization and 3D U-Shaped Pattern Refinement

Based on the guidance of the obstacle-weighted MST, each MST edge is

rectilinearized and then refined if a 3D U-shaped pattern is found. Rectilinearization

15

and 3D U-shaped pattern refinement are compounded into one operation and are
iteratively applied edge-by-edge. By doing so, the refinement done for early edges can
benefit consequent edges, thus our refinement does not always hurt runtimes. In
addition, the MST edges are processed in a random order.

Rectilinearization is performed on a 3D extended escape graph based on
Dijkstra’s shortest path algorithm [5]. We extend the planar escape graph [3] to a 3D
one as follows. A 3D extended escape graph is constructed by stretching lines from all
pin-vertices and the corner-vertices of all obstacles along x-, y-, and z-axes, where the
line segments intersecting or passing through obstacles are prohibited to be used. Fig.
3(c) shows the 3D extended graph for the instance in Fig. 3(a). To make the
implementation flexible, we adequately:associate forbidden flags to the vertices inside
obstacles and at obstacle boundaries.

By extending the proof done in[3], we can prove by induction that at least one
optimal solution of ML-OARSMT ‘is-embedded in the 3D extended escape graph.
This fact holds even if the via cost and the number of layers vary. Hence, the 3D
extended escape graph does not keep our solution away from optimality. On the other
hand, the proof of the 2:1 performance bound of MST to SMT for general graphs can
be applied here [5].

When a tree edge is rectilinearized and connected to the partially constructed
rectilinear Steiner tree, a U-shaped pattern may be formed. We generalize U-shaped
pattern refinement from 2D to 3D cases. Here, we only consider the U-shaped
patterns that can potentially be optimized. We have the following theorem for

U-shaped patterns without obstacles inside or around.

16

®
A, I
&
) e
R, === — I
L
I T
\ i
mw
“Wazill™ m
wrzam —— -1
(a) (b) (c)
—

Standard

Steiner
point

Degenerated Steiner point

(d) ()

() (h)
Fig. 9. An instance of SL-OARSMT. (a) Step 1: Delaunay triangulation for pins on a
pseudo plane. (b) Step 2: The obstacle-weighted MST. (c)-(h) Step
3:Rectilinearization and 3D U-shape refinement, where (c) is the escape graph, (d)-(g)
are intermediate trees, and (h) is the resulting SL-OARSMT.
Theorem: A 3D U-shaped pattern is formed by at least three vertices (pin-vertices

and/or Steiner-vertices). It can be either degenerated if the middle vertex is located at

one turning corner of the U or standard if the middle vertex is located within the

17

middle segment of the U.

Proof Sketch: If there is no obstacle inside or around a U-shaped pattern, a 2-vertex
U-shape never occurs because rectilinearization is performed based on Dijkstra’s
shortest path algorithm. If there are obstacles inside, the 2-vertex U-shaped pattern
results from detours. Thus, a U-shaped pattern has at least three vertices.

A U-shaped pattern with 4 or more vertices can be decomposed into several
smaller ones. For a 3-vertex U-shaped pattern, only the location of the middle vertex
may vary. Moreover, the middle vertex cannot be located within one of two I-shaped
segments of the U. In this case, this 3-vertex U-shaped pattern is composed of one
I-shaped segment plus a 2-vertex U-shaped pattern. As mentioned above, a 2-vertex
U-shaped pattern never occurs. Hence,sthe middle vertex can be located either at one

turning corner of the U or within‘the middle segment of the U.

1) Degenerated U-shape: The middle“vertex is located in one turning corner of U.
(see Fig. 6(a)) This type can be identified by one I-shaped segment plus one or more
L-shaped segments. The refinement can be applied only when three vertices are
located in the same plane, i.e., they have the same x-, y-, or z-coordinate. The
L-shaped segments of the U can then be rerouted for cost reduction.

2) Standard U-shape: The middle vertex is located within the middle segment of
the U. (see Fig. 6(b)) This type can be identified by several L-shaped segments plus
several L-shaped segments. The L-shaped segments of a standard one can be
ripped-up and then rerouted from these vertices to their Steiner-vertex. (The optimal
location of the Steiner-vertex is at the median of the coordinates of these three
vertices.)

More complicated cases can be decomposed into smaller ones. Fig. 7 lists several

18

examples for 3D U-shaped pattern refinement. Please note that our classification is
complete. Fig. 8 shows the instance in Fig. 3(a) can be further improved by fixing one
degenerated pattern plus one standard U-shaped one. The cost is reduced from 326 to
269. In addition, for this case, our algorithm can generate the tree in Fig. 3(d) of cost
195, even without refinement.

For easier visualization, Fig. 9 demonstrates a planar example with 12 pins and 8
obstacles; as mentioned in Section 1I, SL-OARSMT is a special case of
ML-OARSMT. Fig. 9(a) depicts the corresponding DT, where illegal edges are also
included. Then, based on the edge weight defined in Section I11.B, Fig. 9(b) shows the
corresponding MST. Fig. 9(c) shows the corresponding escape graph. Based on the
MST in Fig. 9(b), rectilinearization .and refinement starts from an edge randomly
selected, say the edge at the up-left corner in this case. As shown in Fig. 9(d), after an
edge is rectilinearized, a standard U-shaped pattern is found and refined. Fig. 9(e)
shows a degenerated U-shaped- pattern. It“can be seen that if there are obstacles
around a U-shaped pattern, e.g., Fig."9(d)(g), the Steiner-vertex might have to be
shifted accordingly; even so, we still can improve the total cost. (see Fig. 9(e)(h)) If

the refined pattern has worse cost, the original one retains.

D. Time Complexity Analysis

Let n=m+4k for an instance with m pins and k obstacles. Step 1 takes O(mlgm)
time for DT construction [4]; step 2 takes O(m(lgm)?) time for Kruskal’s algorithm;
step 3 takes O(n®) time for the 3D extended escape graph construction, Dijkstra’s
algorithm, 3D U-shaped pattern refinement. As mentioned in Section Il1.B, steps 1
and 2 can effectively guide step 3, and they have low time complexities, so they are

worthwhile. Although 3D U-shaped pattern refinement in step 3 has a high time

19

complexity, it can be expected to produce good solutions.
Compared with [11], steps 1 and 2 of our algorithm have relatively low time
complexities, and step 3 has the same order complexity. Since the time complexities

are the same, it would be a good decision to take time on sophisticated refinement.

20

LY 1 H
IR I NG
) -
o=
2
S, I_Har —
e LN 2
T A N NS
ORI
< ”f X TN
5 N 5N T
> _ >
] 3
— I
-
DL
T =
o]
[P)]
D595
L
EE9 3
5 = 2 a2
T 2 o o 88 —_
82 E233 =
= .= '5 &
£ Z2=232%%
& 38 »nfE E
e —00 -

=227

) cost = 10x20+9x3

(

Fig. 10. () An instance of OAPDST, where C, = 3, each grid size is 20x20 (unit)?,

233

(d) cost = 10x20+11x3

1 for all layers. (b)(c) The corresponding DT, obstacle-weighted MST, and 3D

UCi =

extended escape graph. (d) The resulting OAPDST without refinement. (e) The

resulting OAPDST with refinement.

21

Chapter 3
EXTENSIONS

A. Preferred Directions

In this section, we shall demonstrate the flexibility of our algorithm. As shown in
Fig. 2, our algorithm for ML-OARSMT can easily be extended to consider preferred
directions. We adopt the formulation of the obstacle-avoiding preferred direction

Steiner tree (OAPDST) problem in [13].

Problem: Obstacle-Avoiding Preferred Direction Steiner Tree (OAPDST): Given
the equivalent wirelength cost C, of a via, the number N; of layers, a set P = {ps,
P2, ..., Pm} Of pins, a set O = {01, 02, «1.5'0¢¥ of obstacles, the layer-specific routing
cost UC;, 1=i=N, the PD constraints, construct a Steiner tree to connect all pins in
P, such that no tree edge or via intersects any obstacle in O and the total cost of the

tree is minimized.

The definitions and restrictions of an‘obstacle, a pin-vertex, a via are the same as
those in Section I1. Here, a routing layer | has a specific routing cost UC;, the unit cost
of wires in layer i. Without loss of generality, assume the PD constraints as follows:
the odd (even) layers only allow vertical (horizontal) edges [12, 13].

To adapt our algorithm for ML-OARSMT to OAPDST, we apply simple and
effective modifications to the DT, the 3D extended escape graph, and 3D U-shaped
pattern refinement.

1) The DT: For each edge, the part of edge weight contributed by the Manhattan
distance is multiplied by UC;, and o is changed to be a function of obstacles and UC;.
For the edge between p; and p; (located at layers z; and z;), the UC; for vertical

(horizontal) segments is the minimum value among vertical (horizontal) layers from
22

layer min(z;, zj)-1 to layer max(zi, z;)+1.

(c) cost =261

13]. (c) The refined tree of (b).

(b) cost = 281

(a) cost =218
Fig. 11. (2) Our ML-OARSMT. (b)'OAPDST

23

(c) degenerated case 3: 1 + 2L

Fig. 12. Degenerated cases for 3D U-shaped pattern refinement in OAPDST.

2) The 3D extended escape graph: The horizontal (vertical) edges on odd (even)
layers are removed. (They are forbidden.) The edge cost on layer i is magnified by
UGCi, 1=i=N..

3) 3D U-shaped pattern refinement: Considering the PD constraints, a
Steiner-vertex can only connect vias either with vertical edges or with horizontal
edges. For a given U-shaped pattern formed by three vertices, the median of their
coordinates may not be valid for a Steiner-vertex. However, the median point still can

be a reference point to reroute the L-shaped segments on the pattern, so the strategy is

24

the same as that in ML-OARSMT.

Fig. 11(a) shows the instance given in [13]; assume C, = 3, each grid size is 20x20
(unit wirelength)?, UC; =1 for all layers. Fig. 11(b)(c) show the corresponding DT, the
obstacle-weighted MST, and the 3D extended escape graph. Fig, 10(d)(e) depicts the
resulting OAPDST without refinement (cost = 233 (=10x20+11x3)), with refinement
(cost = 227 (=10x20+9x3)), respectively. Fig. 12(a) shows the corresponding
ML-OARSMT generated by our algorithm, cost = 218 (=10x20+6x3); it can be
viewed as the lower bound of the cost of OAPDST. Fig. 11(b) shows the OAPDST
given in [13], cost = 281 (=13x20+7x3), where a standard pattern is highlighted by
bold lines. After refining this pattern, we can obtain a better tree in Fig. 11(c), cost =

261 (=12x20+7x3). Fig. 12 lists degenerated:cases for refinement in OAPDST.

B. Global Routing

To include our Steiner tree construction to-global routing, we shall consider the
capacity of each edge on the global routing graph.-Without loss of generality, assume
the net ordering is given. It can be seen that on the 3D escape graph, if the capacity of
some edge is full, then this edge can be set as forbidden; otherwise, this edge can still
be used. After the RSMT is constructed, the capacity of the corresponding routed
edges reduces. Moreover, considering the grids on upper metal layers are larger than
lower ones, we may slightly shift the lines of the3D escape graph to align their nearest

grids.

25

Chapter 4

EXPERIMENTAL RESULTS

We implemented our algorithm in C++ language and executed the program on a

PC with an Intel Pentium4 3.0 GHz CPU and 1 GB memory under Windows XP OS.

Our results show our algorithm outperforms state-of-the-art works on SL-OARSMT,

ML-OARSMT, and OAPDST. Meanwhile, our runtimes are also stable, not

increasing much from SL-OARSMT to ML-OARSMT and OAPDST. In addition, the

comparison between DT without and with obstacles is provided. Furthermore, the

results of timing-driven RSMT are also provided.

TABLE I
SL-OARSMT: THE COMPARISONS ON THE TOTAL WIRELENGTH
BETWEEN PREVIOUS WORK [6-10] AND OURS

Total wirelength Imp.(%) (X-G)/(X-Y lime (s)

Test e el e | | s | 1 | oy | owsstr |6 | 171 | 81| 191|110 Ours S 91 | Ours SL
cases Nref* | Full® Nref Mst® | Nref | Full

(Y) (A) (B) (C) (D) (E) (F) (G) (A B) ()] D] E) (F) (D) | (H) | (F) | (G)
skindl_ | 10/32 | 501 - 644 | 626 | 632 | 649 | 622 | 609 | - P4.48[13.60]17.56]27.03] 10.74 |<0.01|=0.01]=0.01]0.02
sl-indx 74625 493 1.731 | 1.640 | 1.674 | 1.897 | 1.640 | 1.616 9.2912.09{4.91 20.01] 2.09 0.28 1 0.03] 0.08 |0.09
sl-indy 115/1204] 630 - 3.011 | 2.872] 2,969 | 3.009 | 2.844 | 2.804 - |8.69[3.03]7.05]8.62] 1.81 0.76 1 0.08] 0.25]0.25
sl-rel 10/10 [17.890] 30.410 129,320 127,250 127.790 | 28,380 | 28,080 | 25.980 J35.38[29.22|13.57]18.28[22.88] 20.61 [<0.01]0.01 {0.02]0.03
sl-rc2 30/ 10 [19.470] 45,640 [43.400 |1 43,220142,240 [42,030 142,710 141,945 §14.12]6.08 [5.37]11.30 [0.38 | 3.29 [<0.01|<0.01]0.05]0.05
sl-re3 50/10 [19,380] 58,570 [57.020 | 56,5001 56,140 56,270 157,370 54.690 | 9.90 | 6.19 | 4.88 13.94 [4.28 | 7.05 [<0.01/<0.01]0.05|0.09
slrcd | 70/ 10 |19.850]63,340 [61,910 [61,090 | 60,800 | 59.730 | 63,280 | 61,190 | 7.24 | 3.09 [2.18 | 1.49 [-1.I5] 7.11_|[<0.01[<0.01]0.07 [0.13
slros | 100/ 10 |19.600] 83,150 | 78.240 | 76,870 76,760 | 76.330 | 77,340 75.300 |12.35 5.01 | 2.74 [2.55 | 1.82| 3.53_ || 0.01]0.02 [0.13 [0.20
sl-rc6 100/ 500{19,593]1149,750{ 86,770 | 84.327 | 84,197 | 87.588 | 83,080 | 80,947 §52.86]| 8.67 [5.22]5.03]9.77| 3.36 0.16] 0.05]9.03 2.34
skre7_|200/ 500]19.882|[T81,470[118.169[1 154611 14.173|1 15229113 657|1 12,241 |42.84] 6.03 | 3.37| 2.05 [6.09| 151 |[0.31]0.09 | 7.14 [15.64
sl-rc§ 200/ 800]19,803/1202,741[123,360(122,574]120.492|124.896|1 18.054]116.378§47.21| 6.74 | 6.03 | 4.09 | 8.11 1.71 0.4910.11 J15.3034.78
sl-rc9 200/1000]19,964(214,850[120,567[120,01 7)1 17.659}120.629|1 16,885]1 14,988)51.24| 5.55|5.03 | 2.73 |5.60| 1.96 0.6310.14 |19.1344.58
slrel0 |500/ 100]19.900{[198.010[174.420(172.490]1 71.520[169.129]1 72.940168.710]16.45] 3.70 [2.8 | 1.85 [0.28 | 2.76 [[0.32[0.17|3.28 [15.33
sl-rell 1000/100{19,984]250,570)242,840[238,377|237.794|235.704 1243 518]236.436] 6.07 | 2.81 [0.83 | 0.62 |-0.34] 3.11 1.36]0.38] 9.98 |3.70]

6
’:‘;\g(f;/; b1.57|5.16|2.85[2.77]457| 276
(Q‘&f}‘;{z”{” 26.55/9.04 503|525 [8.10| 5.05

'HPBB: The half-perimeter of the bounding box of all pin-vertices (which is a lower bound of total

wirelength), and “-” refers to “not available.”

Qurs_SL: Our algorithm for SL-OARSMT.

®Nref: All steps of our algorithm are applied, but 3D U-shaped pattern refinement is turned off.

26

*Full: All steps of our algorithm are applied.
*Mist: Step 1 (DT) and step 2 (MST) of our algorithm are applied.
®7Avg. (%): Average improvement is computed by averaging (X-G)/X, and (X-G)/(X-Y) for all cases,

X=AB,CD,E,F.

A. SL-OARSMT

For SL-OARSMT, totally 14 benchmark circuits were provided by [8]; the first 3
from industry, the rest from [6]. We compared our algorithm with those presented in
[6]1, [7], [8], [9], [10]. The results of [6] and [8] are quoted from their papers; those of
[7] are quoted from [8]; those of [9] and [10] were conducted on our platform using
their binary codes. (In addition, the parameter o was set to [0.50, 1.30] depending on
the congestion.) As listed in TABLE I, considering the differences from the
half-perimeter of the bounding box of all pins (which is a lower bound of the optimal
solution), our algorithm achieved average 5.03% up to 26.88% improvement on
wirelength over them. Moreover, we.had the best results for 12 out of 14 cases. Fig.
13 shows the resulting SL-OARSMTSs of sl-rc6 and sl-rc9. Without refinement, on
average, we still have a small win to [8] and [9] on total wirelength. Novel 3D
U-shaped pattern refinement worked well in planar cases and contributed 2.76%
reduction on wirelength. Because our method mainly focuses on multi-layer, the

overhead on runtimes for single-layer is reasonable.

B. ML-OARSMT

For ML-OARSMT, totally 10 test cases were provided by [11]. ml-ind4 and ml-ind5
simulate the environment for single-layer routing, where all pins and obstacles are
located in a layer, and the upper and lower adjacent layers are entirely occupied by

another two large obstacles. Fig. 14 displays the ML-OARSMT of ml-ind2 generated

27

by our algorithm as C, = 3.

We compared our algorithm with [11]. (In addition, the parameter _ was set to
[0.70, 1.15].) As listed in TABLE 111 (1V), as C, = 3 (5), the average improvements on
the number of vias and total costs are 7.69% (4.76%), 2.77% (2.74%), respectively.
Our algorithm has smaller total costs in 9 out of 10 cases. In addition, our algorithm
always generated a smaller total cost as C, = 3 than that as C, = 5 for each case; it can
be seen that our algorithm is indeed stable.

TABLE Il

ML-OARSMT: THE COMPARISONS ON THE NUMBER OF VIAS, THE TOTAL
COSTS, AND CPU TIMES BETWEEN [11] AND OURS UNDER Cy =3

Total cost (#via) Time (s)
Test m i) [11] [11] ref Ours ML® [L1]" | [11] ref Ours ML
cases Nref Full Nref | Full Mst
(A) (B) (C) (D) (A) (B) (C) (D) (E)

ml-ind1 50/6/5 55,537 (49) 55.537 (49) 55,323 (51) 53,915 (45) 0.07 0.03 0.03 0.05 | <001
ml-ind2 200/85/6 12,512 (224) 12,420 (224) 12,491 (232) 12,179 (210) 3.05 0.52 0.39 0.97 0.03
ml-ind3 250/13/10 10,973 (359) 10,695 (350) 10,996 (357) 10,677 (325) 3.32 2.09 2.19 5.50 0.06
ml-ind4 500/100/5 77,033 (0) 76,969 (0) 77,594 (0) 77,275 (0) 8.12 2.33 0.88 2.34 0.20
ml-ind5 1000/20/5 14,515,511 (0) 14,455,316 (0) 14,981,554 (0) 14,496,361 (0) | 45.63 18.16 12.06 | 82.88 048
ml-rtl 25/10/10 4,334 (76) 4,244 (69) 4,247 (68) 4,042 (67) 0.06 0.11 0.11 0.09 | <0.01
ml-ri2 100/20/10 9,434 (215) 9,222 (220) 9,485 (192) 9,234 (188) 0.88 1.22 0.97 1.78 0.02
ml-ri3 250/50/10 15,569 (450) 15,223 (502) 15,408 (465) 14,996 (456) 6.86 6.97 4.84 | 12.35 | 0.05
ml-rt4 500/50/10 22,034 (918) 21,548 (951) 21,782 (925) 21,151 (915) 17.52 26.63 10.78 1 50.25 | 0.16
ml-rt5 1000/100/5 27.890 (869) 27.252 (840) 27.632 (857) 27.028 (817) 55.01 32.63 11.00 | 75.33 | 0.53
lmp.(‘!"’n)‘ - - 1.48 (0.5) 0.10 (2.48) 2.77(7.69) - - - - -

The runtimes of [11] are quoted from the paper, generated by a 2.8GHz AMD-64 machine with 8GB
memory under Ubuntu 6.06 OS. They are listed for reference because the machine is different.

?[11]_ref: 3D U-shaped pattern refinement is directly applied to the resulting ML-OARSMT of [11].
The runtimes of [11]_ref only count for refinement and are measured on our platform.

*0urs_ML: Our algorithm for ML-OARSMT. 3Imp. (%): Average improvement is computed by

averaging (A-X)/A for all cases, X =B, C or D.

28

TABLE IV
ML-OARSMT: THE COMPARISONS ON THE NUMBER OF VIAS, THE TOTAL
COSTS, AND CPU TIMES BETWEEN [11] AND OURS UNDER Cy =5

Total cost (#via) Time (s)
Test ik N [11] [11] ref Ours ML* (11" | (1] ref Ours_ ML

cases ' Nref Full Nref | Full Mst
(A) (B) (C) (D) (A) (B) (C) (D) (E)
ml-ind | 50/6/5 55,635 (49) 55,635 (49) 55,425 (51) 54,005 (45) 0.07 0.05 0.05 0.05 0.02
ml-ind2 200/85/6 12,899 (208) 12,862 (220) 12,927 (219) 12,599 (210) 3.01 0.42 038 | 094 | 0.05
ml-ind3 250/13/10 11,698 (343) 11,559 (334) 11,794 (328) 11,327 (325) 3.35 2.03 236 | 5.84 | 0.05
ml-ind4 500/100/5 77,033 (0) 76,969 (0) 77,594 (0) 77,275 (0) 8.21 2.34 091 | 253 | 0.19
ml-ind5 1000/20/5 14,515,511 (0) 14455316 (0) 14,981,554 (()‘) 14,496,361 (0) | 45.71 16.50 14.28 | 83.09 | 0.48
ml-rtl 25/10/10 4,486 (76) 4,377 (68) 4,392 (78) 4,176 (67) 0.06 0.09 0.09 | 0.17 | <0.01
ml-rt2 100/20/ 10 9,812 (200) 9,653 (210) 9,784 (189) 9,616 (191) 0.90 1.16 0.92 1.78 | 0.02
ml-rt3 250/50/10 16,384 (429) 15.861 (432) 16,240 (447) 15,858 (431) 6.84 6.95 438 | 13.16 | 0.05
ml-rt4 500/50/10 23,883 (879) 23,325 (893) 23,667 (883) 22,981 (848) 17.56 25.89 9.83 | 50.66 | 0.16
ml-rt5 1000/100/5 29,598 (814) 28,972 (801) 29470 (802) 28,626 (763) 56.45 33.94 10.83 | 76.33 | 0.50

Imp.(%)’* - - 1.37 (0.17) 0.00 (-0.66) 2.74 (4.76) - - -

“The runtimes of [11] are quoted from the paper, generated by a 2.8GHz AMD-64 machine with 8GB
memory under Ubuntu 6.06 OS. They are listed for reference because the machine is different.

?[11]_ref: 3D U-shaped pattern refinement is directly applied to the resulting ML-OARSMT of [11].
The runtimes of [11]_ref only count for refinement and are measured on our platform.

%0urs_ML: Our algorithm for ML-OARSMT. 3Imp. (%): Average improvement is computed by

averaging (A-X)/A for all cases, X =B, C or|D.

C. OAPDST

For OAPDST, totally 10 test cases are used. 7 cases are exactly the same as those
used in ML-OARSMT. We did not use ml-ind3 because it is invalid under the PD
constraints. pd-ind4, pd-ind5a, pd-ind5b were modified from ml-ind4 and ml-ind5.
For pd-ind4 and pd-ind5a, we inserted one empty layer right above the working layer.
For pd-ind5b, we further duplicated the obstacles in the working layer onto the
inserted layer. In addition, the routing cost UC; was set to 1 for all i. By doing so, we
can see how worse an OAPDST can be with respect to its ML-OARSMT counterpart.
(In addition, the parameter o was set to [0.70, 1.00].) Fig. 15 displays the OAPDST of
ml-ind2 generated by our algorithm as C, = 3.

We compared our algorithm with [13]; because we cannot obtain the test cases

29

and the program of [13], we implemented their algorithm and executed it on the same
machine described above.

As listed in TABLE V, as C, = 3, the average degradation of the total costs from
ML-OARSMT to OAPDST is 6.47%, but the average speedup of CPU times is
60.18%. The average improvement of the total costs over [13] is 3.20%, while the
CPU times are almost the same. Our algorithm has smaller total costs in 9 out of 10
cases.

TABLE VI compares the impacts of the obstacle-weighted MST and 3D U-shaped
pattern refinement of our algorithm. It can be seen that without the guidance from the
MST, on average, we may have an 8.76% degradation on the total costs, and the CPU
times surprisingly become much worse (38:88% slower). Hence, steps 1 and 2 are
necessary; actually, they are efficient and effective..On the other hand, although 3D
U-shaped pattern refinement dees not influence much on our results, it does improve
the total costs of [13] by 2.66% on-average. The' refined results of [13] are still
slightly worse than ours when refinement is turned off. Although not presented here,

we have similar results for C, =5, and UC;# 1.

30

TABLE V

OAPDST: THE COMPARISONS ON THE NUMBER OF VIAS, THE TOTAL

COST, AND CPU TIMES BETWEEN [13] AND OURS UNDER Cy =3, UC, =1,

1=1=N_
§ T'otal cost (fvia) I'ime (s)
l'est P - : -)
cases ml k!N Ours_ML Ours_PD [l.ﬂ Ours_ ML Ours_PD [1.3]
(A) B) (©) (A) (B) ©)
ml-ind1 50/6/5 53,915 (45) 64,401 (77) 66,033 (81) 0.05 0.03 0.02
ml-ind2 200/85/6 12,179 (210) 13,260 (364) 13,575 (363) 0.97 0.49 0.39
pd-ind4 500/ 100/ 6 60,298 (137) 62,459 (661) 61,624 (651) 5.63 1.58 1.28
pd-indSa 1000/20/6 14,381,940 (16) 14,717,269 (1.,623) 15,503,281 (1.592) 111.37 15.97 18.46
pd-ind5b 1000/40/6 14496361 (0) 14,768,268 (1.624) 15,873,298 (1,592) §2.88 16.11 18.91
ml-rt] 25/10/ 10 4.042 (67) 4,117 (82) 4,289 (83) 0.09 (.08 0.09
ml-rt2 100/20/10 9,234 (188) 9,528 (268) 9,803 (257) 1.78 0.94 0.97
ml-rt3 250/50/10 14,996 (456) 15,776 (619) 16,295 (619) 12.35 5.09 5.36
ml-rt4 500/50/10 21,151 (915) 22,366 (1,217) 23,222 (1,144 50.25 13.87 12.11
ml-rt3 1000 /100 /5 27.028 (817) 30,431 (1.462) 31,328 (1.457) 75.33 11.58 12.16
Imp. (%) - -6.47 - 3.20 60.18 - -0.50

'Ours_ML: Our algorithm is applied without the PD constraints; it can be viewed as the lower bound of
the total cost for OAPDST.
Ours_PD: All steps of our algorithm for OAPDST arerapplied. 3Imp. (%): Average improvement is
computed by averaging (X-B)/X for all cases, where X =.A, C.
TABLE VI

OAPDST: THE COMPARISONS ON THE IMPACTS OF OUR ALGORITHM ON
THE TOTAL COST AND CPU TIMESIUNDER Cy =3, UC; =1, 1=1=N_

Test Total c?st Time (s)
cas;:s m k!N Nmst' Nref* [13]_ref Nmst Nref [13]_ref
(D) (E) (F) (D) (E) (F)
ml-ind1 50/6/5 69,913 64,401 66,166 0.05 0.03 0.05
ml-ind2 200/85/6 14,448 13,275 13,227 0.75 041 1.17
pd-ind4 500100/ 6 67.348 63,120 58,820 1.94 1.48 12.41
pd-indSa 1000/20/6 16,663,711 14,721,978 14.976.592 32.00 21.36 128.56
pd-indSb 1000/40/ 6 16,667,652 14,773,077 15,274,934 31.28 17.63 101.88
ml-rtl 25/10/10 4,466 4,146 4,146 0.13 0.09 0.11
ml-rt2 100/20/10 10,502 9,594 9,599 1.72 0.97 1.02
ml-rt3 250/50/10 17,030 15,825 16,011 9.42 4.72 6.39
ml-rt4 500/50/10 24,149 22,458 22,495 24.47 11.16 21.89
ml-rt5 1000/ 100/ 5 33,546 30,467 30,622 16.69 11.70 95.61
Tmp. (%)° - 8.76 0.34 0.54 38.88 0.41 53.22

'Nmst: Only step 3 of our algorithm is applied, i.e., the tree is directly constructed from the 3D
extended escape graph.

“Nref: All steps of our algorithm are applied, but 3D U-shaped pattern refinement is turned off.

%[13]_ref: 3D U-shaped pattern refinement is applied to [13].

*Imp. (%): Average improvement is computed by averaging (X-B)/X for all cases, where B is Ours_PD

31

in TABLE IV, X=D, E, F.

32

(c) layer 2

(f) layer 5

(d) layer 3

- ._r%ﬁ

L
T H =
S T =
- ‘ | j
(g) layer 6 (h) pseudo plane

Fig. 14. The ML-OARSMT of ml-ind2 under C, = 3. (a) The DT without illegal edges.
(b) The MST. (c)-(g) Layers 2-6, respectively. (h) All pin-vertices are projected onto a
pseudo plane, without showing the obstacles.

33

(d) layer 3 (V)

(c) layer 2 (H)

(g) layer 6 (H)

(h) pseudo plane

(f) layer 5 (V)

Fig. 15. The OAPDST of ml-ind2 under C, = 3. (a) The DT with illegal edges. (b) The
MST. (c)-(g) Layers 2-6, respectively. The odd (even) layers allow vertical

(horizontal) edges. Some line segments are at obstacle boundaries; they are feasible

according to the problem formulation. (h) All pin-vertices are projected onto a pseudo

plane, without showing the obstacles.

34

Chapter 5
CONCLUSION

In this thesis, we solved ML-OARSMT and OAPDST by the same strategy. In
addition, we also showed our method can be extended to construct timing-driven
RSMTs. Previous work tackles one configuration at a time, while our algorithm can
easily handle various configurations. Experimental results showed that our algorithm
outperformed the state-of-the-art works. Future work includes the extensions to clock

trees and manufacturability-aware trees.

35

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

REFERENCES

The International Technology Roadmap for Semiconductors (ITRS), 2007.
Available: http://www.itrs.net/

M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree problem is
NP-complete,” SIAM J. Appl. Math., vol. 32, no. 4, pp. 826-834, 1977.

J. L. Ganley and J. P. Cohoon, “Routing a multi-terminal critical net: Steiner tree
construction in the presence of obstacles,” in Proc. IEEE Int. Symp. on Circuits
and Systems (ISCAS’94), vol. 1, May 1994, pp.113-116.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications, 3rd ed., Springer-Verlag, 2008.

T. H. Cormen, C. E. Leiserson, R: L. Rivest; and C. Stein, Introduction to
Algorithms, 2nd ed., MIT Press, 2001.

Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan, “An O(nlogn) algorithm
for obstacle-avoiding routing tree construction in the lambda geometry plane,” in
Proc. ACM Int. Symp. on Physical Design (ISPD’06), Apr. 2006, pp. 48-55.

Z. Shen, C. C. N. Chu, and Y.-M. Li, “Efficient rectilinear Steiner tree
construction with rectilinear blockages,” in Proc. IEEE Int. Conf. on Computer
Design (ICCD’05), Oct. 2005, pp. 38-44.

P.-C. Wu, J.-R. Gao, and T.-C. Wang, “A fast and stable algorithm for
obstacle-avoiding rectilinear Steiner minimal tree construction,” in Proc.
ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC’07), Jan.
2007, pp. 262-267.

C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang,

36

“Obstacle-avoiding rectilinear Steiner tree construction based on spanning
graphs,” IEEE Trans. Computer-Aided Design, vol. 27, no. 4, pp.643-653, Apr.
2008. Also see Proc. ACM Int. Symp. on Physical Design (ISPD’07),
pp.127-134.

[10] J. Long, H. Zhou, and S. O. Memik, “An O(nlogn) edge-based algorithm for
obstacle-avoiding rectilinear Steiner tree construction,” in Proc. ACM Int. Symp.
on Physical Design (ISPD’08), Apr. 2008, pp. 126-133

[11] C.-W. Lin, S.-L. Huang, K.-C. Hsu, M.-X. Lee, and Y.-W. Chang, “Multilayer
obstacle-avoiding rectilinear Steiner tree construction based on spanning graphs,”
IEEE Trans. Computer-Aided Design, vol. 27, no.11, pp. 2007-2016, Nov. 2008.
Also see Proc. IEEE/ACM Int. Conf.'on.Computer-aided Design (ICCAD’07),
pp.380-385.

[12] M. C. Yildiz and P. H. Madden, “Preferred direction Steiner trees,” IEEE Trans.
Computer-Aided Design, vol. 21, no. 11,pp. 1368-1372, Nov.2002.

[13] C.-H. Liu, Y.-H. Chou, S.-Y. Yuan,and'S.-Y. Kuo, “Efficient multilayer routing
based on obstacle-avoiding preferred direction Steiner tree,” in Proc. ACM Int.
Symp. on Physical Design (ISPD’08), Apr. 2008, pp.118-125.

[14] I. H.-R. Jiang, S.-W. Lin, and Y.-T. Yu, “Unification of obstacle-avoiding
rectilinear Steiner tree construction,” in Proc. IEEE Int. SOC Conf. (SOCC 08),
Sep. 2008.

[15] I. H.-R. Jiang and Y.-T. Yu, “Configurable rectilinear Steiner tree construction
for SoC and nano technologies,” in Proc. IEEE Int. Conf. on Computer Design

(ICCD '08), Oct. 2008, pp. 34-39.

37

APPENDIX

Timing-Driven Steiner Trees

In addition to preferred directions, our method can also be applied to other types
of Steiner trees. For example, a timing-driven RSMT targets to minimize the path
length between each pin to the designated source pin. It can be done by constructing a
shortest-path tree instead of MST at step 2. The shortest-path tree is constructed by
Dijkstra’s shortest path algorithm. Moreover, if step 3 still remains the same, we may
obtain a compromise between the path length and the total cost.

For timing-driven RSMT, the source pin is randomly assigned in our experiments.
TABLE VII lists the results for timing-driven RSMT. Fig. 16 displays the

timing-driven OAPDST of ml-ind2 generated by our algorithmas C, = 5.

TABLE VII

TIMING-DRIVEN RSMT

SL-OARSMI1 ML-OARSMT OAPDST
Total wirelength Total cost (#via) as C= 3 Total cost (#via as Cr=3

Test P - . 2 Test . - o Test L I .
cases Original liming-Driven cases Original l'iming-Driven cases Original l'iming-Driven
slrel 25980 25,520 ml-ind 1 54,005 (45) 57,588 (43) ml-indl 64,401 (77) 67,906 (86)
slre2 | 41945 43,850 ml-ind2 12,599 (210) 13,714 (206) ml-ind2 13,260 (364) 15,864 (358)
sl-re3 54,690 58,190 ml-ind3 11,327 (325) 12,570 (379) pd-ind4 62,459 (661) 90,118 (735)
sl-re4 61,190 66,330 ml-ind4 77,275 (1) 85,669 (0) pd-ind5a 14,717,269 (1,623) 16,341,548 (1,603)
sl-res 75,300 80,160 ml-ind5 14,496,361 (0) 16,323,737 (0) pd-indSb 14,768,268 (1,624) 16.524.615 (1.617)
sl-re6 80,947 85,004 ml-rtl 4,176 (67) 4,660 (66) ml-rtl 4,117 (82) 4,911 (87)
slre7 112,241 120,202 ml-rt2 9.616 (191) 10,711 (215) ml-rt2 9,528 (268) 11,102 (285)
sl-re | 116,378 124,111 ml-ri3 15,858 (431) 17,330 (464) ml-rt3 15,776 (619) 18,594 (652)
sl-re® | 114,988 127,085 ml-rt4 22,981 (848) 25,469 (961) ml-rt4 22,366(1.217) 28,189 (1,339)
skrel0 | 168,710 183,850 ml-rt5 28,626 (763) 32,185 (843) ml-rt5 30,431 (1.462) 37,237 (1473)

'Original: The results of our algorithms to minimize total cost are quoted from TABLE 11, 111, and V.

*Timing-Driven: To minimize the delay from source to each sink, the minimum spanning tree i

replaced with shortest path tree at step 2. The rest of our algorithm is unchanged.

38

(b) Layer 2 (V)

(d) Layer 4 (V) (f) Layer 6 (V)

SFAT

(g) Pseudo plane

Fig. 16. The timing driven OAPDST of ml-ind2 under C, = 5. DT is the same as Fig.
15 (a). (a) The SPT. (b)-(f) Layers 2-6, respectively. The even (odd) layers allow
vertical (horizontal) edges. Some line segments are at obstacle boundaries; they are
feasible according to the problem formulation. (g) All pin-vertices are projected onto

a pseudo plane, without showing the obstacles.

39

