
國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

具差動功率攻擊防禦之先進加密標準核心

設計與安全性分析

Design and security analysis of DPA resistant AES cryptographic engine

研 究 生：劉柏均

指導教授：李鎮宜 教授

張錫嘉 教授

中 華 民 國一○○ 年 十二 月

具差動功率攻擊防禦之先進加密標準核心

設計與安全性分析

Design and security analysis of DPA resistant AES cryptographic engine

研 究 生：劉柏均 Student：Po-Chun Liu

指導教授：李鎮宜 Advisor：Chen-Yi Lee

張錫嘉 Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering and

Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electronics Engineering

December 2011

Hsinchu, Taiwan, Republic of China

中華民國一○○年十二月

i

具差動功率攻擊防禦之先進加密標準核心

設計與安全性分析

學生：劉柏均 指導教授：李鎮宜 教授

張錫嘉 教授

國立交通大學

電子工程學系

電子研究所

摘要

先進加密標準(AES)目前已是最為廣泛使用的對稱性加密演算法，其最主要的原因

在於高安全性、高效能及以實現低複雜度。舉凡無線通訊系統、資料儲存系統、智慧型

晶片卡以及銀行系統等等都大量地採用 AES 為加密標準。現有文獻已有不少 AES 硬體

實作的探討、但是這些文獻往往未將低成本同時具備高效能的設計技巧考量進去。因此

在本論文我們先探討在不同需求的應用上(包含超高速應用以及超低成本應用)的架構設

計。綜合以上設計概念，我們提出了一個高效益的 AES 硬體架構。而此硬體架構可以

支援標準所訂的三種金鑰長度以及加/解密能力。整體的架構主要是由一高度化簡之即時

金鑰產開元件以及一高度整合之加/解密資料處理元件所組成。即時金鑰產開元件共用了

不同金鑰長度所需要的硬體資源來大幅降低成本；而整合資料處理元件則是共用了加密

與解密所需要的資料。在透過矽晶片實作以及量測後，同時透過矽晶片之實作與量測，

驗證所提之方法之分析與效益。

然而，AES 演算法的硬體實作存在著一個相當大的安全性風險：差動功率攻擊。此

種攻擊法可以很有效率地破解出 AES 晶片運算時所使用之金鑰。在本論文中，我們也

進一步探討防禦此種攻擊法的方法。透過一基於數位振盪器以及亂數產生品的防禦電路，

我們提出了一低成本且高效能的 AES 晶片來抵抗差動功率攻擊。相較於現有之文獻，

ii

我們所提出來的方法無論是在額外成本支出或是效能降低比例都能大幅的改善。而透過

矽晶片的實作與量測，我們所提出的抗差動功率攻擊的 AES 晶片可以達到最快 255MHz

的操作頻率，而在此操作頻率下的效能為 2.97Gb/s。同時防禦電路所需要的額外成本支

出僅為原本 AES 電路的 6.2%。在安全度分析下，measurement to disclosure (MTD)可以

從數千大幅增加至 10
7，至少增加了三個數量級以上的安全度。

iii

Design and security analysis of DPA resistant AES

cryptographic engine

Student: Po-Chun Liu Advisors: Dr. Chen-Yi Lee

Dr. Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

The AES algorithm approved in 2001 has become the most popular symmetric-key

encryption algorithm because of its high security, high performance, and low complexity. The

AES algorithm is widely adopted in numerous applications such as wireless communications,

storage devices, smart cards, or banking systems. Several implementations have been

published but few of them considered the hardware cost and the throughput as a whole. In this

dissertation, we first investigate architectures for high throughput and low cost applications.

At last a cost efficient AES architecture, which is capable of both encryption and decryption

with three different key lengths, is presented for high speed mobile applications. The overall

hardware cost is optimized by a very compact on-the-fly key expansion unit and a highly

integrated encryption/decryption data-path. The compact on-the-fly key expansion unit is

achieved by sharing key scheduling processes of different key lengths. The integrated

data-path shares hardware resources used in encryption and decryption. After manufactured in

90nm CMOS technology, the area of the chip is 15,577 equivalent gates with throughput up to

1.69 Gb/s operating at 131.8 MHz.

However, the hardware implementation of the AES algorithm is still vulnerable to

side-channel attacks. The differential power analysis (DPA) attack is an efficient and low cost

iv

method to disclose the secret key of the AES chip. In this dissertation, a low cost AES crypto

core with resistance to the DPA attack is presented by exploiting a DPA countermeasure

circuit based on digital ring oscillators and an on-chip random number generator (RNG). Two

architectures with pseudo random and digital random number generator are presented.

Compared with previous works that counteract the DPA attack by using data masking circuits

or equalizing the power consumption, our proposed DPA countermeasure circuit can

significantly reduce the area overhead without throughput degradation. The DPA resistant

AES engines are fabricated in UMC 90 nm CMOS technology. For the pseudo random based

architecture, the AES chip can achieve 2.76 Gb/s throughput at operating frequency of 237

MHz. The area overhead is minimized to 10.2%. For the digital random based architecture,

the AES chip can achieve 2.97 Gb/s throughput at operating frequency of 255 MHz. The area

overhead is slightly improved from 10.2% to 6.2% by resource sharing between the DPA

countermeasure circuit and the random number generator. The digital random based

architecture further resolves the “reset” problem, which may induce a security issue for the

PRNG based architecture. The measurement to disclosure (MTD) of both AES engines is

increased from several thousands to more than 10
7
 measurements, indicating the security level

is enhanced by at least three orders of magnitude.

v

誌 謝

 從開始寫下誌謝的這一刻起，正式宣告了我即將脫離了學生的生活。四年多

前不知從那裡冒出來的念頭，沒有選擇跟大部分的同學一樣去就業，而是報考了

博士班入學的考試。這四年來的學習路程是跟以往大大不同的，在博士班的生活

裡，我必須自己發掘有研究價值的題目，而不是像從前一樣只要等著老師或學長

丟題目來完成就好了，也因此在博士班的求學過程中也曾經遇到了瓶頸而一度想

放棄。在這裡我必須要好好感謝我的指導老師李鎮宜教授以及張錫嘉教授，在我

一度迷失方向的時候指引我並提供了豐富的資源。另外我也要感謝我的口試委員

吳誠文教授、吳安宇教授、謝明得教授、魏慶隆教授、周世傑教授、陳榮傑教授、

郭峻因教授以及賴伯承教授在百忙之中抽空參與我的口試，並且提供給學生諸多

寶貴的意見，讓學生獲益良多。

 再來我也要感謝交通大學 SI2 實驗室跟我一起打拼的伙伴們，讓我在這一段

的求學生涯裡能過得相當精采。尤其我要特別感謝建青學長，當初沒有他的帶領

我也不會進到 SI2 進行密碼學相關的研究，而在研究過程中多次跟學長討論也學

習到很多知識以及研究方法。再來我要感謝 STAR group 的成員：大嘴、Q 毛、

廷聿、耀琳、勇志、小約、靜瑜、星萍以及期赫，有你們的付出才有我們共享的

研究成果。其他我也要感謝這一路來陪伴我的阿龍、義閔、小肥、佳龍、欣儒、

許智翔、小朱哥、長宏還有其他同學們，因為有你們所以我的生活更豐富。最後

還要謝謝美麗的子菁以及伶霞助理，幫我處理了很多行政上的問題。

 當然，最後不免俗的要謝謝我的父母，他們提供了我最佳的避風港，在我有

任何困難的時候都能尋求他們的幫助；而我兩位姐姐也在生活上提供了我許多的

幫忙。另外，我還要感謝我女朋友這十年來的陪伴與鼓勵，讓我最終能完成這本

博士論文。

Contents

1 Introduction 1
1.1 Overview of Cryptographic Systems . 1
1.2 Motivation . 3
1.3 Dissertation Organization . 4

2 Fundamentals of the AES algorithm 6
2.1 The AES algorithm . 6

2.1.1 Mathematical Preliminaries . 7
2.1.2 SubBytes and Inv-SubBytes . 11
2.1.3 ShiftRows and Inv-ShiftRows . 14
2.1.4 MixColumns and Inv-MixColumns 14
2.1.5 AddRoundKeys . 16
2.1.6 Key Expansion . 16

2.2 Modes of operations for Block Ciphers . 18
2.2.1 Cipher Block Chaining (CBC) Mode 19
2.2.2 Cipher Feedback (CFB) Mode . 20
2.2.3 Output Feedback (OFB) Mode . 21
2.2.4 Counter (CTR) Mode . 23
2.2.5 Counter with CBC-MAC (CCM) Mode 24

2.3 Applications of the AES algorithm . 26
2.3.1 Wireless Communications . 26
2.3.2 Network Protocols . 27
2.3.3 Tamper Resistant Applications . 27

3 Design of AES Crypto Engines 29
3.1 Previous Works on the AES algorithm . 29

3.1.1 SubBytes Transformation . 30
3.1.2 MixColumns Transformation . 37

3.2 High Throughput AES Engine for 100 Gigabit Ethernet 39
3.2.1 Data-path Unit . 39
3.2.2 Key Expansion Unit . 42
3.2.3 Implementation Results . 44

3.3 Low Cost AES Engine for Smart Cards or RFIDs 46
3.3.1 Data-path Unit . 47
3.3.2 Key Expansion Unit . 51
3.3.3 Implementation Results . 52

3.4 Median Throughput AES Engine for WLAN 53
3.4.1 Data-path Unit . 54

vi

3.4.2 Key Expansion Unit . 56
3.4.3 Implementation Results . 59

3.5 Summary . 61

4 Power Analysis Attacks 63
4.1 Simple Power Analysis . 64

4.1.1 General Description . 64
4.1.2 SPA on Asymmetric Ciphers . 65
4.1.3 SPA on Symmetric Ciphers . 66

4.2 Differential Power Analysis . 66
4.2.1 DPA Attack Flow . 67
4.2.2 Power Models . 68
4.2.3 Statistical Analysis . 69

4.3 Security Evaluation . 71
4.3.1 Measurement Environment . 71
4.3.2 Power Models . 73
4.3.3 DPA Results . 74
4.3.4 Accessing the Number of Needed Power Traces 78

5 Design of DPA Resistant AES Engines 81
5.1 Previous Works on DPA Countermeasure 81

5.1.1 Power Masking Methods . 82
5.1.2 Power Hiding Methods . 85

5.2 Pseudo Random Based DPA Countermeasure Circuit 88
5.2.1 Ring Oscillator Based DPA Countermeasure Circuit 88
5.2.2 Dynamic Pseudo Random Number Generator 92
5.2.3 Security Evaluation on SubBytes 93

5.3 True Random Like Based DPA Countermeasure Circuit 95
5.3.1 Security Issue on PRNG . 96
5.3.2 DPA Countermeasure with True Random Like Sequence 98

6 Implementation Results and Comparison 103
6.1 Chip Implementation Results . 103

6.1.1 Pseudo Random Based Architecture 103
6.1.2 True Random Like Based Architecture 106

6.2 Security Analysis Results . 107
6.2.1 Pseudo Random Based Architecture 107
6.2.2 True Random Like Based Architecture 109

6.3 Comparison . 111

7 Conclusion and Future Works 114
7.1 Conclusion . 114
7.2 Future Works . 116

Bibliography 118

vii

List of Tables

2.1 The number of rounds required for different key sizes 7

3.1 Comparison between AES engines over 10 Gb/s 46
3.2 Comparison between low cost AES engines 53
3.3 Comparison between median throughput AES engines 60
3.4 Design summary on different AES architectures 62

4.1 Quantiles z1−α of the normal distribution for different 1 − α. 79
4.2 The estimated number of traces for different ρck,ct. 79

6.1 Chip summary of pseudo random based architecture 104
6.2 Chip summary of true random like based architecture 106
6.3 Comparison for hardware cost . 111
6.4 Comparison for throughput . 112
6.5 Comparison for power . 112
6.6 Comparison for figure of merit . 113

viii

List of Figures

1.1 The illustration of the general cryptographic system. 2

2.1 The data block arrangement. 7
2.2 The data flow of the AES algorithm. (a) Encryption. (b) Decryption. 8
2.3 The table for the SubBytes transformation. 12
2.4 The table for the Inv-SubBytes transformation. 13
2.5 The Inv-/SubBytes transformation on the AES data block. 14
2.6 The ShiftRows transformation on the AES data block. 14
2.7 The Inv-ShiftRows transformation on the AES data block. 15
2.8 The Inv-/MixColumns transformation on the AES data block. 16
2.9 The AddRoundKeys transformation on the AES data block. 16
2.10 The encryption of the ECB mode. 18
2.11 The data flow of the CBC mode. (a) Encryption. (b) Decryption. 19
2.12 The data flow of the CFB mode. (a) Encryption. (b) Decryption. 21
2.13 The data flow of the OFB mode. (a) Encryption. (b) Decryption. 22
2.14 The data flow of the CTR mode. (a) Encryption. (b) Decryption. 23
2.15 The data flow of the CCM mode. (a) Encryption. (b) Decryption. 25

3.1 Polynomial basis inverter (a) Over GF (28). (b) Over GF (24). 32
3.2 Normal basis inverter in GF (28). 34
3.3 Normal basis multiplier in GF (24). 34
3.4 Inv-/SubBytes sharing structure. 36
3.5 Implementation results of different SubBytes architecture. 41
3.6 Data path for 10 Gb/s throughput. 41
3.7 Data path for 50 Gb/s throughput. 42
3.8 The off-line key expansion unit. 43
3.9 Implementation results for 10 Gb/s throughput. 44
3.10 Implementation results for 50 Gb/s throughput. 45
3.11 8-bit data-path for low cost AES engine. 47
3.12 The low cost SubBytes transformation. 48
3.13 The processing order of data bytes after ShiftRows transformation. 48
3.14 The operation of the ShiftRows transformation for the 8-bit data-path. . . . 49
3.15 The operation of the MixColumns transformation for the 8-bit data-path. . . 50
3.16 The 8-bit key expansion unit. 52
3.17 Implementation results of low cost AES engine. 52
3.18 Block diagram of the median throughput AES architecture 54
3.19 Architecture of integrated data process unit 55
3.20 The data flow of encryption and decryption process. 55
3.21 On-the-fly key expansion unit for median throughput 57

ix

3.22 Implementation results of median throughput AES engine. 59
3.23 Die micrograph for median throughput AES engine 59
3.24 Shmoo plot for median throughput AES engine 60
3.25 Summary of area throughput trade-offs of AES engines. 61

4.1 The power trace of a straightforward RSA implementation. 65
4.2 The power trace of an AES implementation. 66
4.3 The flow of the DPA attack. 67
4.4 The block diagram of the measurement environment. 72
4.5 The test chip measurement and analysis environment setup. 73
4.6 The last round model for power simulation. 74
4.7 The design and estimation flow for the AES engine. 75
4.8 The DPA results based on difference-of-means. 76
4.9 The DPA results based on correlation coefficient. 77
4.10 The DPA attack results on real AES chip. 78

5.1 The concept of the masking methods in algorithm level. 83
5.2 The modification of non-linear parts in AES algorithm. 83
5.3 The modified SubBytes by Akkar and Giraud. 83
5.4 The masked-AND logic. 85
5.5 The wave dynamic differential logic. 86
5.6 The differential routing technique. 86
5.7 The switching capacitors. 87
5.8 Block diagram of the pseudo random based DPA-resistant AES chip. 88
5.9 Detailed structure of the DPA countermeasure sub-circuit. 89
5.10 The power traces of ring oscillators with different inversion stages. 90
5.11 The power distribution of AES engines. 91
5.12 The block diagram of the on-chip dynamic PRNG. 93
5.13 DPA results for LUT based SubBytes. 94
5.14 DPA results for composite field based SubBytes. 94
5.15 Block diagram of true random like based DPA-resistant AES engine. 95
5.16 Power distributions of the unprotected AES engine. 97
5.17 Power distributions of the pseudo random based architecture. 97
5.18 Power distributions of DPA-resistant AES engine with reset. 98
5.19 (a) Fibonacci ring oscillator (b) Galois ring oscillator. 99
5.20 DPA countermeasure circuit with true random like sequence. 99
5.21 The randomness analysis of random sequence. 100
5.22 Power distributions of true random like based architecture. 101

6.1 Power breakdown of the test chip. 105
6.2 The die micrograph of pseudo random based test chip. 105
6.3 The die micrograph of true random like based test chip. 107
6.4 Power traces of the test chip for one encryption operation. 108
6.5 DPA results for pseudo random based test chip. 108
6.6 Power traces of the test chip for one encryption operation. 109
6.7 DPA results for true random like based test chip. 110

x

Chapter 1

Introduction

Cryptographic algorithms are used to provide authentication, confidentiality, or data integrity

in several applications such as communication systems, storage systems, or banking systems.

Authentication provides the assurance that data is originated from a particular party; confi-

dentiality ensures that data is readable by authorized parties; and data integrity makes sure

that received data is not tampered by unauthorized parties.

1.1 Overview of Cryptographic Systems

A general cryptographic system is shown in Fig. 1.1. The user data (plain-text) is encrypted

by a series of transformations or mathematical operations with an (unique) encryption key

Ek. The encrypted data (cipher-text) is then unreadable by unauthorized third parties. Only

authorized parties, who possess the corresponding decryption key Dk, can recover the user

data by a series of inverse transformations or mathematical operations. Note that the security

of a cryptographic system is based on the secret key but not encryption/decryption algo-

rithms. That is, the cipher-text is still unreadable if the encryption algorithm but not the se-

cret key is recognized by third parties. Depending on the property of encryption/decryption

secret keys, cryptographic systems can be categorized into two types: symmetric-key and

asymmetric-key cryptographic algorithms.

Symmetric-key cryptographic algorithms use the same secret key to encrypt and decrypt

1

��������	�

��	���� �

��������	�

��	���� �

����
������

�� ��
��
�� �

 ������
��	�

� 	�

����
������

�� ��
��
�� �

 ������
��	�

� 	�

�������� !"��
��#�$��%& �$�'�
(�)* ($+� �* �� ,
�- "��

. ����/��0 � ���� ��/��0 � . ����/��0 �

�1 �1

Figure 1.1: The illustration of the general cryptographic system.

user data. Authorized parties must possess the same secret key to exchange private infor-

mation. Symmetric-key algorithms can be further categorized into stream ciphers [1–7] and

block ciphers [8–13] by the encryption/decryption flow. Stream ciphers use the secret key

as a ”seed” to generate one unique key stream and cipher-texts are generated by bit-wise

XOR the key stream and plain-texts. To decrypt cipher-texts, the same secret key is used to

generate the same key stream and the user data can be recovered by bit-wise XOR operation.

Unlike stream ciphers, block ciphers incorporate the secret key into plain-texts through a se-

ries of transformations and permutations for several iterations. To decrypt cipher-texts, these

transformations and permutations are processed in the reverse order to recover plain-texts.

The most attractive feature of symmetric-key cryptographic algorithms is low complexity

and high performance. However, the most critical problem is that both parties should pos-

sess the same secret key. If the secret key is intercepted or stolen by third parties, adversaries

can use the secret key to recover the encrypted data.

The Diffie-Hellman key exchange is the earliest method to exchange secret key between

two parties [14]. A random shared secret key after the key exchange protocol thus can be

used for the subsequent symmetric-key cipher. However, the shared secret key is randomly

generated and can not be determined by any one of the two parties. Asymmetric-key cryp-

tographic algorithms such as the RSA [15] and elliptic curve cryptography (ECC) [16, 17]

can encrypt the data without key exchange protocol. Instead of using the same key for en-

2

cryption and decryption, asymmetric-key algorithms use a public-key for encryption (Ek)

and a private-key for decryption (Dk). The public-key and private-key are related by com-

plicated mathematical arithmetic such that the private-key can not be easily derived from the

public-key. The public-key is known to any parties and the private-key is only possessed by a

specific user. Therefore, others who do not have the private-key can not decrypt cipher-texts.

In most cryptographic systems, symmetric-key algorithms are usually used for data en-

cryption and asymmetric-key algorithms are used for key exchange or digital signature. For

most communication or storage systems, secret keys for symmetric-key algorithms are in-

frequently changed and asymmetric-key algorithms are less frequently used than symmetric-

key algorithms. Therefore, more discussions and analysis are addressed on symmetric-key

algorithms in this dissertation.

The Advanced Encryption Standard (AES) [8], one of block ciphers approved by the Na-

tional Institute of Standards and Technology (NIST) in 2001, has become the most widely

used symmetric-key algorithm due to its low complexity and high performance. However, se-

curity weakness of silicon based crypto engine implementation is first investigated by Kocher

et al. [18, 19]. Instead of using traditional cryptanalysis methods, Kocher uses the leakage

information such as operation timing or power consumption to disclose secret keys of cryp-

tographic devices. With such kind of timing analysis or power analysis, secret keys can

be easily disclosed in a few days with little cost. Both AES architecture design and power

analysis resistant techniques will be covered in this dissertation.

1.2 Motivation

To date, several AES hardware implementations have been proposed to provide high through-

put [20–33] or low cost [34–39] solutions for different applications. The most common

methods for high throughput AES are loop unrolling and pipelining. The pipelining tech-

nique can increase the maximum operating frequency and the loop unrolling technique can

increase the level of parallelism. For AES designs that can achieve throughput over Gb/s

3

usually require more than 50,000 equivalent gates (2-input NANDs). On the other hand, low

cost AES designs can be achieved by reducing the width of data-path from 128-bit to 32-bit

or even 8-bit. However, throughput for such AES designs can only achieve several hundred

Mb/s. Since the AES algorithm is more commonly adopted than other block ciphers, we

would like to investigate the implementation of the AES algorithm for different applications.

Architectures for ultra high throughput and ultra low cost AES cores are the very first step

in this research. The most important goal is to design an area efficient AES cryptographic

core that can be used not only for high throughput applications but also for area limited

applications.

Furthermore, since cryptographic algorithms are used in security related applications,

secret key attack methods must be considered carefully. Different power analysis attack

methods are investigated because the power information can be easily obtained by existing

equipments. For the simple power analysis (SPA) [19], attackers observe a single power

trace of cryptographic devices to disclose secret keys. However, since the SPA utilizes key

dependent characteristics of the power trace to disclose secret keys, this kind of attack is

more suitable to attack asymmetric cryptographic algorithms. For symmetric cryptographic

algorithms, the operation flow is independent of the key value; therefore, a stronger analysis

method must be used to disclose secret keys. The differential power analysis (DPA) [19]

attack uses the statistical analysis between the measured power consumption and the pre-

dicted power consumption to disclose secret keys. It has been shown in several literatures

that the secret key of an AES cryptographic chip can be disclosed within 10,000 measure-

ments [40–42]. Therefore, how to protect an AES engine from power analysis attacks will

also be discussed in this dissertation.

1.3 Dissertation Organization

To have an overall inspection on the research topic, an overview of cryptographic systems

and motivations are introduced in the first chapter. In chapter 2, fundamentals of the AES al-

4

gorithm are introduced, including specifications of the AES algorithms and operation modes

for different applications. Since the AES algorithm is widely adopted, applications for the

AES algorithm are also introduced in this chapter. The design and implementation of the

AES algorithm is given in chapter 3. Previous works on the AES algorithm are first in-

troduced and three different architectures for different design considerations are proposed.

The motivation of this chapter is to give a thorough analysis on the architecture design of

AES for different applications. Currently most publications focus only on a specific archi-

tecture for a specific application. We want to establish an implementation methodology for

the AES for different applications with different considerations. As a result, implementa-

tion considerations for high throughput, median throughput and low cost are discussed with

a corresponding architecture design. At last, a brief summary on architectures of the AES

algorithm is given at the end of this chapter.

Chapter 4 illustrates common power analysis attacks for cryptographic systems, espe-

cially for symmetric-key cryptographic algorithms. Details of the SPA and DPA and attack

results on an AES engine are presented in chapter 3 to demonstrate the efficiency of such

power analysis attacks. Chapter 5 shows the design and DPA resistant methods for the AES

cryptographic engine. Previous works on DPA countermeasure methods are first introduced

and disadvantages of these works are discussed. The existing countermeasure methods usu-

ally result in huge area overhead and throughput degradation and we present architectures

that optimize in terms of area overhead and throughput degradation while still increasing the

security ability. Details of proposed architectures for DPA countermeasure are illustrated. A

brief summary on these methods is give at the end of this chapter.

Chip implementation results of the AES cryptographic engine and the DPA countermea-

sure methods are given in chapter 6. In addition to physical implementation results, the DPA

attack environment and real chip attack results are also given in this chapter to show the DPA

resistant capability of proposed architectures. At last, chapter 7 briefly concludes this work

and gives some potential research directions on the security analysis of AES cryptographic

engines.

5

Chapter 2

Fundamentals of the AES algorithm

To be capable of protecting the top secret information for the twentieth century, the National

Institute of Standard and Technology (NIST) worked on developing a new encryption stan-

dard. In 1997 they asked for candidates for the new algorithm. Five of them are adopted

after two selection meetings, including the Rijndael, MARS, RC6, Serpent, and Twofish.

The NIST officially announced that the Rijndael algorithm [43] is selected as the AES algo-

rithm in 2000 and published the standard as FIPS PUB 197 [8] on November 26, 2001.

2.1 The AES algorithm

The AES algorithm is a symmetric-key block cipher that can encrypt data into an unintelli-

gible form called cipher-text, and decrypt the cipher-text back into the original form called

plain-text. The AES algorithm processes data blocks of 128 bits with three different key

lengths, 128, 192, and 256 bits to provide different levels of security. A 128-bit data block

in the AES algorithm is arranged as a 4-by-4 array called state illustrated in Fig. 2.1. In

addition, the AES algorithm is also a kind of iterative cipher, which means that data blocks

are repeatedly processed by the same function for several times. The number of rounds to be

performed is dependent on the key size as listed in Table 2.1.

Round function of the AES algorithm is composed of four different transformations: 1)

SubBytes, 2) ShiftRows, 3) MixColumns, and 4) AddRoundKeys. The data flow for the

6

�� �� �� �� ��� ���

��

��

��

��

��

��

��

�	

�

��

���

���

���

���

���

���

Figure 2.1: The data block arrangement.

Table 2.1: The number of rounds required for different key sizes
Key size (bits) Block size (bits) Number of rounds

AES-128 128 128 10
AES-192 192 128 12
AES-256 256 128 14

encryption process is shown in Fig. 2.2(a). The secret key is added into the data block in

the initial round, and then the data block is applied to the round function for Nr rounds

depending on the key size. Note that the MixColumns is skipped in the final round. The

decryption flow is exactly in the reverse order of the encryption flow as shown in Fig. 2.2(b).

All transformations except AddRoundKeys are in the inverse form with prefix Inv-. Details

of mathematical preliminaries and these transformations are given in following subsections.

Furthermore, round keys for every different round are derived from the secret key with the

key expansion algorithm. The key expansion algorithm is also illustrated at the end of this

section.

2.1.1 Mathematical Preliminaries

Fundamental operation of the AES algorithm is arithmetics in finite field GF (28) with ir-

reducible polynomial of degree 8. For the AES algorithm, the irreducible polynomial is

defined as

m(x) = x8 + x4 + x3 + x + 1, (2.1)

or 011b in hexadecimal notation. The data block can be divided into 16 bytes and each

byte can be represented as an element in this field. Therefore, all arithmetic operations such

7

����������	

���	��

��������

���������

����������	

���� �

���	��

��������

����������	

����������

�����������

 ����������

(a)

���� �

����	
�����

����������	��

�����
�����

����	
�����

��������	�
���

����������	��

�����
�����

����	
�����

���������

 �!������

"��!���	
��

(b)

Figure 2.2: The data flow of the AES algorithm. (a) Encryption. (b) Decryption.

as addition and multiplication are performed under field GF (28). The basic mathematical

arithmetics for the AES algorithm are introduced as follows.

Additions

The addition of two elements in finite field can be achieved by adding coefficients of terms

with the same degree. The addition is performed under GF (2), that is, the addition is a

simple XOR operation so that 1 + 1 = 0 + 0 = 0, 1 + 0 = 0 + 1 = 1. Since the addition

is modulo 2 operation, the subtraction is identical to the addition operation because (−1) =

1 (mod 2).

Alternatively, elements in GF (28) can be represented in the binary form {a7a6a5a4a3a2a1a0}

and {b7b6b5b4b3b2b1b0}. The addition of these two bytes can be done by bit-wise XOR oper-

ation, that is ci = ai ⊕ bi, i = 0 − 7.

8

Multiplications

The multiplication of two elements can be done by multiplication of polynomials modulo the

irreducible polynomial m(x). Since the degree of m(x) is 8, the modulo operation makes

sure that the resulting product of two polynomials has degree less than 8 and can be repre-

sented by one byte. Instead of using long division algorithm, the modulo reduction can be

facilitated by the finite field theorem. All the elements must satisfy the equation m(x) = 0,

in other words, x8 = x4 + x3 + x + 1. In this way, the resulting terms with degree lager

than 8 can be decomposed into x8xd and represented as (x4 + x3 + x + 1)xd. The modulo

reduction then can be simplified to a series of decomposition and addition.

The multiplicative inverse of a non-zero element b(x) in GF (28) can be computed by the

extended Euclidean algorithm [44]. The polynomial a(x) and c(x) are computed such that

b(x)a(x) + m(x)c(x) = 1. (2.2)

As a result, a(x)b(x) ≡ 1 mod m(x), that is,

b−1(x) = a(x) mod m(x). (2.3)

The commutative property, the associative property, and the distributive property are also

held in the specified field. That is, following equations must be held in this field:

a(x) × b(x) = b(x) × a(x)

(a(x) × b(x)) × c(x) = a(x) × (b(x) × c(x))

a(x) × (b(x) + c(x)) = a(x) × b(x) + a(x) × c(x)

(2.4)

In GF (28), the multiplication by x can be simplified into a conditional addition operation.

The multiplication of polynomial b(x) by x results in

b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x. (2.5)

9

As mentioned earlier, the term x8 is equivalent to x4 + x3 + x + 1. If the coefficient b7 = 0,

then the result is already in the reduced form. If b7 = 1, the reduced form can be obtained

by adding x4 + x3 + x + 1. Therefore, the multiplication by x can be implemented by a left

shifter and a conditional addition of {00011011}. For the AES standard, the multiplication

by x is denoted as xtime(). Multiplication by higher power of x then can be implemented by

recursive property using the xtime() operation.

Polynomials with Coefficients in GF (28)

This subsection illustrates arithmetics in composite field GF ((28)4). In this field, the four-

term polynomial can be defined as:

A(x) = A3x
3 + A2x

2 + A1x + A0, (2.6)

where coefficients Ai, i = 0 − 3 are elements in GF (28). The addition in composite field

GF ((28)4) are done by adding coefficients of terms with the same degree. The addition of

two four-term polynomials A(x) and B(x) can be expressed as the following equation:

A(x) + B(x) = (A3 + B3)x
3 + (A2 + B2)x

2 + (A1 + B1)x + (A0 + B0). (2.7)

Additions of Ai and Bi are defined in field GF (28) and can be performed by bit-wise XOR

operation.

The multiplication in the field GF ((28)4) can be achieved by two steps: the polynomial

multiplication and polynomial reduction. In the first steps, the production of two polynomial

A(x) and B(x) is expanded first as follows:

C(x) = C6x
6 + C5x

5 + C4x
4 + C3x

3 + C2x
2 + C1x + C0. (2.8)

Note that the maximum degree of resulting C(x) is 6 because the maximum degree of both

A(x) and B(x) is 3. To reduce C(x) back to field GF ((28)4), polynomial x4 + 1 is used in

10

the AES algorithm. Therefore, the C(x) can be reduced as follows:

C(x) = C ′

3x
3 + C ′

2x
2 + C ′

1x + C ′

0 (2.9)

with
C ′

0 = A0B0 + A3B1 + A2B2 + A4B3

C ′

1 = A1B0 + A0B1 + A3B2 + A2B3

C ′

2 = A2B0 + A1B1 + A0B2 + A3B3

C ′

3 = A3B0 + A2B1 + A1B2 + A0B3

(2.10)

The multiplication in field GF ((28)4) can be written in the matrix form as:

C ′

0

C ′

1

C ′

2

C ′

3

=

A0 A3 A2 A1

A1 A0 A3 A2

A2 A1 A0 A3

A3 A2 A1 A0

B0

B1

B2

B3

(2.11)

2.1.2 SubBytes and Inv-SubBytes

The SubBytes transformation (also called the S-box) is the only non-linear transformation

in the AES algorithm and each byte of the data block is substituted independently. The

transformation can be divided into two steps:

1. Find the multiplicative inverse of the data byte over field GF (28). The multiplicative

inverse of element {00} is mapped to itself.

2. Apply the following affine transformation to each bit over GF (2):

b′i = bi ⊕ bi+4mod8 ⊕ bi+5mod8 ⊕ bi+6mod8 ⊕ bi+7mod8 ⊕ ci, (2.12)

where bi and ci is the ith bit of the data byte and a constant vector {01100011}. The

11

Figure 2.3: The table for the SubBytes transformation.

affine transformation can be expressed in the matrix form as:

b′0

b′1

b′2

b′3

b′4

b′5

b′6

b′7

=

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

b0

b1

b2

b3

b4

b5

b6

b7

+

1

1

0

0

0

1

1

0

(2.13)

Since the finite field and the affine transformation for the AES algorithm is pre-defined,

the SubBytes transformation can be represented as a look up table shown in Fig. 2.3 [8]. The

input data byte is represented as {xy} in hexadecimal format, values of x and y are used as

indexes for the row and column, respectively, to look up the output data byte. For example,

if the data byte is {24}, then the cross value of the third row and the fifth column {36} is

then the substituted value.

12

Figure 2.4: The table for the Inv-SubBytes transformation.

The Inv-SubBytes transformation used in the decryption is inverse of the SubBytes trans-

formation and can also be divided into two steps:

1. Apply the inverse affine transformation in the matrix form as:

b′0

b′1

b′2

b′3

b′4

b′5

b′6

b′7

=

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

−1

b0 + 1

b1 + 1

b2

b3

b4

b5 + 1

b6 + 1

b7

(2.14)

2. Find the multiplicative inverse of {b′0b′1b′2b′3b′4b′5b′6b′7} over GF (28).

The Inv-SubBytes transformation can also be represented as a look up table shown in

Fig. 2.4 [8].

13

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����

�����

�����

�����

�����

�����

�����

���	 ���	�

�
��

Figure 2.5: The Inv-/SubBytes transformation on the AES data block.

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Figure 2.6: The ShiftRows transformation on the AES data block.

The data block of the AES algorithm can be divided into 16 bytes and substituted by 16

tables as shown in Fig. 2.5.

2.1.3 ShiftRows and Inv-ShiftRows

The ShiftRows transformation is a kind of permutation operation that cyclically shifts rows

of the state with different number of bytes. The first row is not shifted while the other rows

are cyclically shifted left by 1, 2, and 3 bytes, respectively. Fig. 2.6 shows how the state is

shifted for the transformation.

The Inv-ShiftRows transformation used in decryption is the inverse operation of the

ShiftRows. Instead of cyclically shifted left, the rows are now cyclically shifted right as

shown in Fig. 2.7.

2.1.4 MixColumns and Inv-MixColumns

The MixColumns transformation treats columns of the data array as four-term polynomials

s(x) in field GF ((28)4). These four-term polynomials are multiplied modulo x4 + 1 by

14

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Figure 2.7: The Inv-ShiftRows transformation on the AES data block.

a fixed polynomial a(x) = {03}x3 + {01}x2 + {01}x + {02} to obtain a new four-term

polynomial s′(x). Coefficients of s′(x) can be obtained by matrix operation:

s′0,i

s′1,i

s′2,i

s′3,i

=

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

s0,i

s1,i

s2,i

s3,i

(2.15)

where i is the column index.

The Inv-MixColumns is the inverse transformation of the MixColumns. Each column of

the data array is expressed as a four-term polynomial s(x). Then s(x) is multiplied modulo

x4 +1 by the inverse of a(x), which is given by a−1(x) = {0b}x3 +{0d}x2 +{09}x+{0e}.

The resulting coefficients of s′(x) = a−1(x)s(x) can be obtained by matrix operation similar

to MixColumns:

s′0,i

s′1,i

s′2,i

s′3,i

=

0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

s0,i

s1,i

s2,i

s3,i

(2.16)

The MixColumns and Inv-MixColumns transformation are applied to the data block as

shown in Fig. 2.8. Note that 4 independent MixColumns and Inv-MixColumns are used on

one 128-bit data block.

15

����

����

����

����

����

����

����

����

����

����

����

��������

����

����

���� �����

�����

�����

�����

�����

����

�����

�����

�����

�����

�����

����������

�����

�����

�����

�	
��

��������
�

Figure 2.8: The Inv-/MixColumns transformation on the AES data block.

����

����

����

����

����

����

����

����

����

����

����

��������

����

����

���� �����

�����

�����

�����

�����

����

�����

�����

�����

�����

�����

����������

�����

�����

���������

����

����

����

����

����

����

����

����

����

����

��������

����

����

����

Figure 2.9: The AddRoundKeys transformation on the AES data block.

2.1.5 AddRoundKeys

The AddRoundKeys transformation adds round keys into the data block by simple XOR

operation. The 128-bit round keys are derived from the secret key by the key expansion

algorithm illustrated later. The round key is arranged in the same order as the data block

as shown in Fig. 2.1. Then the AddRoundKeys transformation is accomplished by bit-wise

XOR of the data array and round key array as shown in Fig. 2.9. Since the inverse of XOR

operation is equivalent to itself, the inverse AddRoundKeys transformation is the same as the

AddRoundKeys; therefore, no Inv-AddRoundKeys transformation is specified.

2.1.6 Key Expansion

The key expansion algorithm uses the secret key to generate total Nb(Nr+1) words for Ad-

dRoundKeys transformation, where Nb = 4 for 128-bit data block. The pseudo code of key

expansion algorithm is shown as follows:

16

Input: byte key[4Nk], Nk
Output: word w[Nb(Nr+1)]
word temp;
i=0;
while i < Nk do

w[i] = word(key[4i], key[4i+1], key[4i+2], key[4i+3]);
i = i + 1;

end
while i < Nb(Nr+1) do

temp = w[i-1];
if i % Nk == 0 then

temp = SubWord(RotWord(temp)) XOR Rcon[i/Nk];
end
else if (Nk > 6) && (i % Nk == 4) then

temp = SubWord(temp);
end
w[i] = w[i-Nk] XOR temp;
i = i + 1;

end
Algorithm 1: Key Scheduling

Note that Nk = 4, 6, and 8 for key length 128, 192, and 256 bits, respectively. The

SubWord is a function that substitutes an input word into an output word by four independent

SubBytes transformations. The RotWord performs the cyclically shift left by one byte to

input words. The Rcon[i] is a constant word array containing [xi−1, {00}, {00}, {00}]. The

polynomial x can be represented in hexadecimal format as {02}.

At the beginning of the key expansion algorithm, the first Nk words are filled with the

input key. Then the subsequent words can be obtained by XOR the previous word w[i-1] and

Nk previous word w[i-Nk]. If the index i is a multiple of Nk, then the previous word w[i-

1] is first applied to the RotWord, SubWord and XORed with Rcon[i/Nk] before the XOR

operation with w[i-Nk].

If the key length is 256, or Nk = 8, the key expansion process is slightly different from

the other key lengths. If Nk = 8 and i-4 is a multiple of Nk, then the previous word w[i-1] is

applied to the SubWord first before the XOR operation with w[i-Nk].

17

�������� ��	�
���

Figure 2.10: The encryption of the ECB mode.

2.2 Modes of operations for Block Ciphers

Block ciphers such as the AES algorithm process on data blocks with fixed length at a time

using a single key. As a result, the message should be first partitioned into several data blocks

for processing. Except directly encrypting these data blocks, the NIST approved several

different modes of operation for confidentiality [45,46], authentication [47], or both [48,49].

The most intuitive mode of operation is the electronic codebook (ECB) mode. Data

blocks are processed separately by block ciphers with the same secret key. This mode is

similar to the assignment of code words in the codebook. Plain-texts and cipher-texts have

one-to-one mapping in the codebook with the same key under this mode. However, this

property is undesirable under some applications. For example, when the picture shown in

Fig. 2.10 1 is encrypted by the ECB mode, the resulting encrypted data can not perfectly

hide the information contained in the picture. Therefore, other modes of operation must be

used in such applications. In addition to the data confidentiality, the NIST also approves

modes for the authentication. All these modes will be briefly introduced in the following

subsections.
1Picture source: http://en.wikipedia.org/wiki/Block cipher modes of operation

18

��������	�
�

��������	�
�

�����
�����

������

�������
������ ��������	�
�

��������	�
�

�����
�����

������

��������	�
�

��������	�
�

�����
�����

������

(a)

���������	�
�

�������	�
�

����
������

�������

������
������

���������	�
�

�������	�
�

����
������

�������

���������	�
�

�������	�
�

����
������

�������

(b)

Figure 2.11: The data flow of the CBC mode. (a) Encryption. (b) Decryption.

2.2.1 Cipher Block Chaining (CBC) Mode

In the cipher block chaining mode, plain-text blocks are combined with previous cipher-text

blocks to form input blocks of the block cipher. For the first plain-text block, an initial vector

(IV) is required to form the first input data block. The IV does not have to be secret, but it

must be unpredictable as discussed in [45].

To encrypt data in the CBC mode, the first plain-text block is combined with the IV by

XOR operation. The combined data block is then encrypted by the block cipher with the

secret key to obtain the first cipher-text block. Then the cipher-text block is combined into

the next plain-text block by XOR operation to generate the second input block. The second

input block is encrypted by the block cipher with the same key to obtain the second cipher-

text block. Then following cipher-text blocks can be obtained in the same manner as shown

in Fig. 2.11(a).

Fig. 2.11(b) shows the decryption flow in the CBC mode. The first cipher-text block is

19

decrypted with the secret key. Then the first plain-text block is recovered by combining the

cipher output and the IV. For the subsequent blocks, the cipher-text blocks are decrypted and

combined with previous cipher-text blocks to obtain plain-text blocks.

For the encryption in CBC mode, cipher-text blocks depend on all the preceding cipher-

text blocks; therefore, the encryption process cannot be done in parallel. On the other hand,

since the decryption in CBC mode depends only on the current and previous cipher-text

blocks, the decryption can be performed in parallel.

2.2.2 Cipher Feedback (CFB) Mode

Block ciphers in cipher feedback mode work analogously to stream ciphers, the IV and the

secret key are used to generate a series of data blocks and these data blocks are XORed with

plain-text blocks to produce cipher-text blocks. Note that in CFB mode a parameter s is

defined for the length of one plain-text or cipher-text segment. For example, if s is defined

as 64, then each plain-text and cipher-text is of length 64 bits and the name of the mode is

called 64-bit CFB mode.

The encryption flow of the CFB mode is illustrated in Fig. 2.12(a). Instead of the first

plain-text block, the IV is encrypted by the block cipher to generate an output data block.

The most significant s bits are then used to XOR with the first plain-text block to produce the

first s-bit cipher-text block. The least significant (b-s) bits of the cipher input is concatenated

with the cipher-text block to generate subsequent input blocks.

Since block ciphers in the CFB mode are analogous to stream ciphers, the decryption flow

is identical to the encryption flow to generate the same ”key stream”. The IV is encrypted by

the block cipher to generate the first output data block. The first cipher-text block is XORed

with the most significant s bits to produce the first plain-text block. For following blocks,

the least significant (b-s) bits of the previous input block are concatenated with the previous

cipher-text block to generate the input block. The most significant s bits are XORed with the

cipher-text block to recover plain-text blocks. The decryption in CFB mode is illustrated in

Fig. 2.12(b).

20

��������	�
�

�
���

���������	�
�

�
���

�����
������

�������

�������
������

���������	�
�

�
���

�����
������

�������

���������	�
�

�
���

�����
������

�������

��������	�
�

����

��������	�
�

����

�
���������� �
����������

(a)

���������	�
�

�
���

��������	�
�

�
���

�����
������

�������

�������
������

��������	�
�

�
���

�����
������

�������

��������	�
�

�
���

�����
������

�������

���������	�
�

����

���������	�
�

����

�
���������� �
����������

(b)

Figure 2.12: The data flow of the CFB mode. (a) Encryption. (b) Decryption.

Note that in the CFB mode, only the encryption operation of the block cipher is required

to accomplish the encryption and decryption flow. Furthermore, since input blocks to the

block cipher is dependent on previous cipher-text blocks, the encryption flow can not be

performed in parallel. However, the decryption can be done in parallel because the input

block only depends on the previous input block and the previous cipher-text block.

2.2.3 Output Feedback (OFB) Mode

Block ciphers in output feedback mode work also analogously to stream ciphers, the IV and

the secret key are used to generate a key stream for encryption and decryption. The output

data block from the block cipher is used as the input blocks for subsequent operations. To

produce cipher-text blocks, output blocks from the cipher is XORed with plain-text blocks,

and vice versa.

21

��������	�
�

��������	�
�

�����
�����

������

�������
������

��������	�
�

�����
�����

������

��������	�
�

�����
�����

������

��������	�
� ��������	�
�

(a)

���������	�
�

�������	�
�

����
������

�������

������
������

�������	�
�

����
������

�������

�������	�
�

����
������

�������

���������	�
� ���������	�
�

(b)

Figure 2.13: The data flow of the OFB mode. (a) Encryption. (b) Decryption.

The encryption flow is shown in Fig. 2.13(a). To encrypt messages in the OFB mode,

the IV is encrypted by the block cipher to generate an output data block. The output data

block is then XORed with the first plain-text block to produce the first cipher-text block. The

output data block is feedback to the block cipher to generate the next output data block for

next plain-text block. For the last block, if the plain-text block contains only u bits, which is

less than the block size, then only the most significant u bits are XORed with the plain-text

block and the remaining bits are discarded.

The decryption flow in the OFB mode is identical to the encryption flow as shown in

Fig. 2.13(b). The same IV is encrypted to generate the first output data block. The first

plain-text block can be recovered by XORing the output block of the cipher and the cipher-

text block. The output data block is used to generate the next output data block for following

cipher-text blocks. Note that the decryption in OFB uses only the encryption function of the

block cipher.

Since input blocks of the block cipher are dependent on all the previous output blocks,

22

��������	�
�

��������	�
�

�����
�����

������

�������
�

��������	�
�

�����
�����

������

��������	�
�

�����
�����

������

��������	�
� ��������	�
�

�������
� �������
�

(a)

���������	�
�

�������	�
�

����
������

�������

�������
�

������	�
�

����
������

�������

�������	�
�

����
������

�������

���������	�
� ���������	�
�

�������
� �������
�

(b)

Figure 2.14: The data flow of the CTR mode. (a) Encryption. (b) Decryption.

the encryption and decryption in OFB mode can not be performed in parallel.

2.2.4 Counter (CTR) Mode

In the counter mode, successive blocks, called counters, are applied to the block cipher

to generate a sequence of output blocks that are XORed with plain-text blocks to produce

cipher-text blocks, and vice versa. Successive input blocks must be different form each other

under the same secret key.

The encryption flow of the CTR mode is shown in Fig. 2.14(a). Each counter block is

applied to the block cipher to generate a sequence of output blocks. These output blocks

are then XORed with plain-text blocks to produce cipher-text blocks. For the last plain-text

block, if the length is u bits, which is less that the block size, then the most significant u

bits of the last output block is XORed with the plain-text block while the remaining bits are

discarded.

The decryption flow of the CTR mode is exactly the same as the encryption flow as shown

23

in Fig. 2.14(b). Cipher-text blocks are XORed with output blocks from the block cipher to

recover plain-text. For the last block, only the most significant u bits are used if the last

cipher-text block is of length u-bit.

In either encryption or decryption of the CTR mode, each output block only depends on

the specific counter block. As a result, both the encryption and decryption can be performed

in parallel for high throughput applications.

2.2.5 Counter with CBC-MAC (CCM) Mode

The CCM mode is used to provide confidentiality and authenticity of data by combining

techniques of CTR mode and CBC mode. The data that CCM protects consists of a message

P with bit length Plen and a associated data A. The confidentiality is provided for the message

P and the authenticity is provided for both message P and associated data A. In addition, a

nonce N is assigned to each data pair, P and A, to be protected.

The generation-encryption process is shown in Fig. 2.15(a). The input data to the generation-

encryption process are a valid nonce N, a message P with Plen bits, and an associated data

A. For the authenticity, (N, P, A) are used to generate a series of blocks Bi for CBC op-

eration. The generation of Bi is specified in NIST SP800-38C [48]. B0 is encrypted and

then the output block is XORed with B1 for cipher chaining. After all Bis are incorporated,

the most significant Tlen bits are saved as an internal variable. In addition, the nonce N is

used to generate a series of counter blocks Ctri. The first counter block Ctri is encrypted

and XORed with the former internal variable to produce a tag. For the confidentiality, the

following counter blocks are encrypted and concatenated as S with length equal to Plen, the

size of the message P. Then S and P are bit-wise XORed to produce the encrypted message.

At last, the encrypted message is concatenated with the tag to generate the output C.

The decryption-verification process is quite similar to the generation-encryption flow

as shown in Fig. 2.15(b). Before starting the decryption-verification process, the length of

the encrypted message Clen is checked. If the Clen is less or equal to Tlen, which means

received message C is invalid, the INVALID message is returned without further processing.

24

��������	
��

����	�

��

��������	
��

����	�

��

��������	
��

����	�

��

��������	
��

����	�

��

��

����

���� ���� ����

��������	
��

����	�

��

��������	
��

����	�

��������	
��

����	�

��������	
��

����	�

������������ ����

�

������������������

��

�

(a)

��������	
��

����	�

��

��������	
��

����	�

��

��������	
��

����	�

��

��������	
��

����	�

��

��

����

���� ���� ����

��������	
��

����	�

��

��������	
��

����	�

��������	
��

����	�

��������	
��

����	�

������������ ����

���������������

���������� ��������

�����������

�

!�"#��$

(b)

Figure 2.15: The data flow of the CCM mode. (a) Encryption. (b) Decryption.

On the other hand, if the nonce N is valid, N is used to generate a series of counter blocks

Ctri. These blocks are encrypted by the block cipher to produce output block Si. The

plain-text P can be recovered by XORing the concatenation of these blocks with the most

significant Clen-Tlen bits of the received message. For the authenticity, the (N, A, P) is used

to produce a series of blocks Bi. These blocks are used to generate an internal variable as

that performed in the generation-encryption flow. Then the internal variable is compared

with LSBT len(C)⊕MSBT len(S0). If these two variables are equivalent, then the decrypted

plain-text P is returned. Otherwise, the INVALID message is returned and the decrypted P

and tag should not be revealed.

25

2.3 Applications of the AES algorithm

The AES algorithm can be used in numerous applications that require data protection, espe-

cially in those that have high performance requirements. In this section, applications that use

the AES as the data encryption algorithm are briefly introduced.

2.3.1 Wireless Communications

The data security has become more and more important with the development and popular-

ization of wireless communication techniques such as Wireless LAN (WLAN, IEEE 802.11),

Person Area Networks (PANs, such as WPAN, ZigBee, and UltraWideband), and Wireless

Metropolitan Area Networks (WiMAX). Since data is transmitted over a public environ-

ment, any unauthorized party is able to eavesdrop the transmitted information. Therefore,

data encryption scheme must be defined in such applications to provide data security.

For WLAN, or IEEE 802.11, security requirements are entity authentication, authoriza-

tion, data confidentiality and data integrity. The first security solution for WLAN is wired

equivalent privacy (WEP). Several security flaws were discovered in WEP and then Wifi-

protected access (WPA) is adopted as the security solution. Finally, the IEEE 802.11i stan-

dard [50], also known as WPA2, is finalized in 2004 to resolve the security weakness of

WEP. IEEE 802.11i specifies two different security architectures, the temporal key integrity

protocol (TKIP) and the counter CCM mode protocol (CCMP). The CCMP uses the AES

algorithm in CTR mode to provide data confidentiality and in CBC-MAC mode to provide

data authentication. The CCMP can provide higher security than RC-4 based TKIP. More

details about the security architecture for WLAN can be found in IEEE 802.11i standard.

In addition to the WLAN security, several other applications adopt the AES in CCM

mode as the fundamental encryption algorithm. Wireless Person Area Network (WPAN,

or IEEE 802.15.3) requires the AES in CTR and CBC mode for data encryption and mes-

sage authentication. ZigBee (IEEE 802.15.4) is a low power wireless standard which uses

the AES CCM mode for encryption and authentication. Other wireless applications such as

26

WiMAX (IEEE 802.16e) and UltraWideband also adopt AES in CCM mode for data encryp-

tion and authentication.

2.3.2 Network Protocols

In addition to wireless communications, security is also provided in several network commu-

nications such as the Ethernet, the Fibre Channel, or the Ethernet Passive Optical Network

(EPON). IEEE 802.1ae [51], also known as MACsec, specifies provision of connectionless

user data confidentiality, frame data integrity, and data origin authenticity by media access

independent protocols and entities that operate transparently to MAC clients. IEEE 802.1ae

adopts the AES in Galois/Counter mode (GCM) [49] with key length 128 and 256 bits for

data encryption. The GCM mode differs from the CCM mode in the authentication tag gen-

eration. The GCM mode defines a new scheme to produce the authentication tag instead of

using CBC-MAC.

For Fibre Channel applications such storage area networks (SAN), the security is also

specified in Fibre Channel - Security Protocol (FC-SP) [52]. FC-SP specifies protocols

to enhance the authentication of Fibre Channel devices, secure key exchange, and secure

communication between Fibre Channel devices. The AES CBC mode and GCM mode are

adopted in this standard for data encryption.

The Transport Layer Security (TLS) and Secure Socket Layer (SSL) are cryptographic

protocols to provide secure communication over the Internet. The AES algorithm is also

defined in TLS and SSL for data confidentiality.

2.3.3 Tamper Resistant Applications

For several applications, the content stored in the chip must be keep security and cannot be

accessed by unauthorized users. For example, a tamper resistant smart card can prevent the

attacker to retrieve or modify the private information such as the private key or the electronic

credit stored in the chip. Other applications such as digital rights management (DRM) or

27

storage devices also need the private data kept secret.

A smart card is a plastic card with an embedded chip, which contains memory or micro-

processor, to store and transact data. The cryptographic algorithm can be implemented in

software or hardware to provide secure transaction for banking systems or E-commercial

applications. The most common block cipher for the smart card today is the DES or triple-

DES; however, for stronger security, the AES is also provided in modern smart cards.

DRM is used by copyright holders, publishers to limit the usage of digital contents such

as films, televisions, musics, computer games, or E-books. Digital contents are encrypted by

ciphers such as the AES and then published. Only those who are authorized can access to the

digital contents in limited ways. For example, the contents can be accessed only in limited

periods or at limited places.

Modern storage devices such USB flash drives or portable external hard drives usually

include data encryption function to protect the personal data stored in these devices. Several

commercial products have adopted the AES algorithm for mass data encryption.

28

Chapter 3

Design of AES Crypto Engines

As mentioned in the last chapter, the AES algorithm can be adopted in several different

applications for data encryption. Therefore, implementations of the AES algorithm have

been well discussed in several literatures [20–39]. In this chapter, previous works on the

AES algorithm are briefly reviewed and then three different architectures are proposed for

different targeted applications. At first, an architecture for ultra high throughput applications

such as storage devices or 10G Ethernet is presented. The only design consideration is the

working frequency and the throughput. After that, an architecture optimized for ultra low

cost applications such as smart cards or RFIDs is presented in the following section. The

throughput in such applications is not a big issue, thus the hardware cost is optimized to be

minimum. At last, an efficient architecture is presented for applications that require both

high throughput and low cost. A brief summary of different architectures is given at the end

of this chapter to provide some inspections about the AES crypto engines.

3.1 Previous Works on the AES algorithm

The AES algorithm is composed of four different transformations and implementations of

these transformations are critical to the AES crypto engine. Therefore, several literatures

focus on the optimization of these transformations [20, 53–56]. The ShiftRows transfor-

mation re-orders data bytes of the data block and this transformation can be done by wire

29

connections. The AddRoundKeys transformation adds round keys into data blocks by simple

XOR operation. Therefore, optimizations of these two transformations are less addressed.

The SubBytes transformation is the only non-linear operation and is the most complicated

component in the AES algorithm. Several different implementations of the SubBytes have

been proposed [20,27,53–55]. The MixColumns transformation can be performed by matrix

operation and it can be reused in the Inv-MixColumns transformation by factoring [20]. Im-

plementations of SubBytes and MixColumns are briefly introduced in the following sections.

3.1.1 SubBytes Transformation

The SubBytes can be implemented in two types: combinational look up table (LUT) based

and composite field based. The LUT based method is usually adopted in high throughput

architectures because the SubBytes transformation is implemented in logic level and the

critical path can be optimized by truth table or Karnaugh-Map. The composite filed method

uses arithmetics in finite field to optimize the SubBytes in terms of hardware complexity.

A finite field arithmetic unit is used for SubBytes to reduce required hardware resources.

Therefore, the composite field based method is usually adopted for low cost architectures. In

this subsection, previous works on the composite field based SubBytes are illustrated.

As mentioned earlier, the SubBytes can be decomposed into multiplicative inversion

followed by affine transformation. The multiplicative inversion in GF (28) can be com-

puted by extended Euclidean algorithm. However, the calculation of inverse in GF (28)

is quite complicated while the calculation of inverse in GF (22) is relative easy, as sug-

gested by Rijmen [57]. Therefore, field elements can be transformed to composite field

GF ((24)2) [22, 31–33, 38, 53] or GF (((22)2)2) [20, 54] to reduce the hardware complexity.

An element G in GF (28) can be represented over GF (24) as G = γ1y + γ0 with ir-

reducible polynomial r(y) = y2 + τy + ν. Note that coefficients γ1 and γ0 are both 4-bit

elements in subfield GF (24). In this way, the pair [γ1, γ0] can be used to present the element

G in field GF ((24)2). The element can be represented using the polynomial basis [Y, 1] or

using the normal basis [Y 16, Y], where Y 16 and Y are roots of r(y). Note that in normal

30

basis, Y 16 and Y are both roots of r(y). As a result,

r(y) = y2 + τy + ν = (y + Y)(y + Y 16), (3.1)

which means τ = (Y + Y 16) is the trace and ν = (Y)(Y 16) is the norm of Y.

Similarly, coefficients in GF (24) can be represented over GF (22) as Γ1z + Γ0 with

irreducible polynomial r(z) = z2 + Tz + N , where Γ1 and Γ0 are both in subfield GF (22).

Again, the element can be represented using the polynomial basis [Z, 1] or using the normal

basis [Z4, Z]. Note that T = Z + Z4 is the trace and N = (Z)(Z4) is the norm of Z if they

are represented in normal basis.

At last, the element in GF (22) can be also represented over GF (2) as g1w + g0 with

irreducible polynomial r(w) = w2 + w + 1, where g1 and g0 are both in GF (2), or single

bits. The polynomial basis [W, 1] and the normal basis [W 2, W] can be used to represent

the pair [g1, g0]. The above decomposition can simplify the operation in GF (28) to GF (24),

which in turn can be simplified further over GF (22) and GF (2).

Polynomial Basis

The multiplication in GF (28) can be mapped to GF ((24)2) modulo r(y) as

(γ1y + γ0)(δ1y + δ0) = (γ1δ0 + γ0δ1 + γ1δ1τ)y + (γ0δ0 + γ1δ1ν). (3.2)

Thus, the multiplicative inverse can be computed by making the right hand side of equation

3.2 equal to 1. In this way, δ1y+δ0 is the multiplicative inverse of γ1y+γ0. The multiplicative

inverse can be found by solving following equations:

γ1δ0 + γ0δ1 + γ1δ1τ = 0

γ0δ0 + γ1δ1ν = 1.

(3.3)

31

� ��
�

�

�

��
��

�

�

�

�

(a)

� ��
�

��

�

��
�

�

�

�

�

��
�

��
�

��
�

�

�

(b)

Figure 3.1: Polynomial basis inverter (a) Over GF (28). (b) Over GF (24).

The multiplicative inverse is then given by

(γ1y + γ0)
−1 = (δ1y + δ0) = [θ−1γ1]y + [θ−1(γ0 + γ1τ)] (3.4)

where θ = γ2
1ν + γ1γ0τ + γ2

0 .

The multiplicative inverse in GF (28) is then decomposed into a series of multiplications,

additions, and a multiplicative inverse in GF (24). The equation 3.2 and 3.4 then can be

modified to decompose the operation in GF (24) into GF (22). Once the operation is reduced

over GF (22), the inverse operation is identical to the square operation because for Γ ∈

GF (22), Γ4 = Γ, and therefore Γ2 = Γ−1.

Fig. 3.1(a) shows the multiplicative inverter over the polynomial basis in GF ((24)2). The

inverter in field GF (24) can be implemented by a series of multiplication such that x−1 =

x14, by combinational LUT with 16 entries, or by further decomposition of the inverter over

GF (22). Fig. 3.1(b) shows different implementations of the inverter in GF (24).

32

Normal Basis

The operation in normal basis [Y 16, Y], where Y 16 and Y are roots of r(y) = y2 + τy + ν,

uses properties τ = Y 16 + Y , ν = (Y 16)(Y), and 1 = τ−1(Y 16 + Y). The multiplication in

GF (28) then can be decomposed into GF ((24)2) modulo r(y) as:

(γ1Y
16 + γ0Y)(δ1Y

16 + δ0Y) = γ1δ1Y
32 + (γ1δ0 + γ0δ1)Y

17 + γ0δ0Y
2

= γ1δ1(τY 16 + ν) + (γ1δ0 + γ0δ1)ν + γ0δ0(τY + ν)

= γ1δ1τY 16 + γ0δ0τY + (γ1 + γ0)(δ1 + δ0)ντ−1(Y 16 + Y)

= (γ1δ1τ + θ)Y 16 + (γ0δ0τ + θ)Y

(3.5)

where θ = (γ1 + γ0)(δ1 + δ0)ντ−1. Again, the multiplicative inverse can be calculated by

making (γ1Y
16 + γ0Y)(δ)1Y

16 + δ0Y) = 1 = τ−1Y 16 + τ−1Y . Then the inverse can be

found by solving following equations:

[γ1δ1τ + (γ1 + γ0)(δ1 + δ0)ντ−1] = τ−1

[γ0δ0τ + (γ1 + γ0)(δ1 + δ0)ντ−1] = τ−1

(3.6)

The multiplicative inverse in normal basis is then given by

(γ1Y
16 + γ0Y)−1 = (δ1Y

16 + δ0Y) = [θ′−1γ0]Y
16 + [θ′−1γ1]Y, (3.7)

where θ′ = γ1γ0τ
2 + (γ2

1 + γ2
0)ν.

The multiplicative inverse in GF (28) can be decomposed into a series of multiplications,

additions, and a inverse in GF (24). Fig. 3.2 shows the inverter in GF (28) with normal

basis. The inverter consists of three multipliers, two adders, one inverter, and one squarer

multiplied by constant ν. The multiplication in GF (24) is analogous to that in GF (28) as

(Γ1Z
4 + Γ0Z)(∆1Z

4 + ∆0Z) = (Γ1∆1T + Θ)Z4 + (Γ0∆0T + Θ)Z (3.8)

33

� ��
�

�

�

��
��

�

�

�

�

Figure 3.2: Normal basis inverter in GF (28).

�

��

�

�

�

�

�

Figure 3.3: Normal basis multiplier in GF (24).

where Θ = (Γ1 + Γ0)(∆1 + ∆0)NT−1. The architecture of multiplier in GF (24) is shown

in Fig. 3.3. Note that multiplications and additions are performed over GF (22). The mul-

tiplication in GF (22) has the same structure, except that it lacks of scaling by norm, and in

GF (2) the multiplication is identical to AND operation.

In addition to multipliers and adders, another operation needed in GF (24) is the com-

bined operation of squaring followed by scaling ν as shown in Fig. 3.2. The combined

operation can be represented as:

(Γ1Z
4 + Γ0Z)2 × ν = [(Γ1 + Γ0)

2]Z4 + [(N × Γ0)
2]Z. (3.9)

The operation in GF (24) now can be performed with addition, multiplication, and squar-

ing in GF (22). Note that in GF (22) the inversion is the same as the squaring and can be

34

represented as:

(g1W
2 + g0W)−1 = (g1W

2 + g0W)2 = g2

1W
4 + g2

0W
2

= g2

1(W
2 + 1) + g2

0W2

= g2

1W
2 + g2

1(W
2 + W) + g2

0W
2

= g2

0W
2 + g2

1W

= g0W
2 + g1W,

(3.10)

indicating that the squaring or inversion in GF (22) is free by swapping the bit positions.

The remaining operation needed in GF (24) multiplier is multiplication in GF (22) and

then scaling by N = W 2. The combined operation can be represented as:

(g1W
2 + g0W)(d1W

2 + d0W) × N = g1d1W
6 + (g1d0 + g0d1)W

5 + g0d0W
4

= g1d1 + (g1d0 + g0d1)W
2 + g0d0W

= g1d1(W
2 + W) + (g1d0 + g0d1)W

2 + g0d0W

= (g1d1 + g1d0 + g0d1)W
2 + (g1d1 + g0d0)W

= [g0d0 + (g1 + g0)(d1 + d0)]W
2 + (g1d1 + g0d0)W

(3.11)

Inv-/SubBytes Sharing

For SubBytes and Inv-SubBytes transformations, the multiplicative inversion can be shared

to reduce hardware resources. Fig. 3.4 shows the data flow of forward SubBytes transforma-

tion. The input byte is applied to a field transformation matrix δ first and then the element

is applied to the multiplicative inversion over composite field GF ((24)2) or GF (((22)2)2).

Then the field element is mapped back to GF (28) by the inverse of field transformation ma-

trix δ−1. At last, the element is applied to the affine transformation to finish the SubBytes

transformation. Note that the inverse filed transformation matrix and the affine transforma-

tion can be combined to reduce the number of matrix operation. Fig. 3.4 also shows the flow

35

��������	
����	��
�

��
��
�
���������

�����

�����
�
�
�
����

������
�
�
�
�
�
�

����
��

�
������������	
��	���
��

��	
����	��

����
��

������	
���
������	���
��

��	
����	��

�
������������

��	
����	��

��

���	������� ��� �
���������� ���

Figure 3.4: Inv-/SubBytes sharing structure.

of the Inv-SubBytes transformation. The input data byte is first applied to a inverse affine

transformation and then the element is mapped in to composite field by δ. The final result

can be obtained by applying the inverse field transformation to the multiplicative inverse.

Note that the inverse affine transformation and the field transformation matrix can also be

combined to reduce the number of matrix operation. With this structure, the multiplicative

inversion can be shared in both encryption and decryption process.

The result from [54] shows that total 180 and 182 gates are required for the SubBytes

and Inv-SubBytes, respectively. The total number of gates for both encryption and decryption

would be 362 gates. By the hardware sharing of the multiplicative inverse unit, the combined

SubBytes/Inv-SubBytes only requires 234 gates.

36

3.1.2 MixColumns Transformation

The MixColumns transformation can be written as matrix operation as:

b0

b1

b2

b3

=

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

a0

a1

a2

a3

=

00 01 01 01

01 00 01 01

01 01 00 01

01 01 01 00

a0

a1

a2

a3

+

02 02 00 00

00 02 02 00

00 00 02 02

02 00 00 02

a0

a1

a2

a3

(3.12)

Common terms can be reduced by factoring to obtain equations for the MixColumns as

follows:

b0 = 02X0 + X1 + a3

b1 = 02X1 + X2 + a0

b2 = 02X2 + X3 + a1

b3 = 02X3 + X0 + a2

X0 = a0 + a1

X1 = a1 + a2

X2 = a2 + a3

X3 = a3 + a0

(3.13)

For the Inv-MixColumns transformation, the matrix operation can be decomposed into

37

three matrix operations as follows:

c0

c1

c2

c3

=

0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

a0

a1

a2

a3

=

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

a0

a1

a2

a3

+

08 08 08 08

08 08 08 08

08 08 08 08

08 08 08 08

a0

a1

a2

a3

+

04 00 04 00

00 04 00 04

04 00 04 00

00 04 00 04

a0

a1

a2

a3

(3.14)

As shown in equation 3.14, the Inv-MixColumns transformation consists of a forward Mix-

Columns transformation and two more matrix operations. Therefore, the Inv-MixColumns

and the MixColumns can be combined to reduce hardware resources. The result from [20]

shows that the MixColumns requires 152 XOR gate and the Inv-MixColumns requires 440

XOR gates, which results in 592 XOR gates for both encryption and decryption. If the Mix-

Columns and Inv-MixColumns are combined, only 195 XOR gates are required. However,

the path delay is increased from 5 XOR gates to 7 XOR gates due to the decomposition of

Inv-MixColumns transformation.

38

3.2 High Throughput AES Engine for 100 Gigabit Ether-

net

Nowadays, several applications require throughput over 5 Gb/s such as USB 3.0 or SATA3

or even 10 Gb/s such as 10 Gigabit Ethernet (10 GbE). Moreover, the 40 GbE and 100 GbE

were ratified in June 2010. The throughput requirement is further increased up to 100 Gb/s.

In order to meet the requirement of these applications, parallel processing is unavoidable.

Therefore, only AES in the ECB mode and the CTR mode can be used for high throughput

architecture. This is because that in other modes, each data block is dependent on previous

output blocks. As discussed in chapter 2, the AES in CTR mode can provide higher security

than that in ECB mode. Moreover, only the encryption function of the AES is required when

operating in the CTR mode. Therefore, the AES engine can be optimized in terms of the

critical path delay to increase the throughput if only the encryption function is needed.

In this section, a high throughput AES architecture which consists of a pipelined data-

path unit and an off-line key expansion unit is presented. The only design consideration for

this architecture is the throughput because the hardware cost is usually a less important issue

for high throughput applications. The data-path unit for the high throughput architecture will

be presented first and then the off-line key expansion unit is presented latter.

3.2.1 Data-path Unit

The throughput for the AES engine can be calculated by equation:

Throughput =
Frequency × 128

Latency
. (3.15)

For the AES algorithm, the latency with key length 128 bits is 11, which includes 10 round

functions and the initial round for adding key. To achieve 10 Gb/s, the operating frequency

must be higher than 860 MHz. However, for the cell-based design, it is not easy to achieve

such high operating frequency. Therefore, increasing the level of parallelism by loop un-

39

rolling is more feasible. The level of parallelism can be determined by the throughput re-

quirement. For example, if 2 round functions are unrolled, the latency would be reduced to

6. In this way, the throughput 10 Gb/s can be achieved with operating frequency 470 MHz,

which is more feasible for cell-based design. The throughput requirement of the 40 GbE can

be achieved by using 4 independent AES engines or fully unrolling all the round functions.

If round functions are fully unrolled, then the latency would be reduced to 1. The throughput

40 Gb/s then can be achieved with operating frequency 313 MHz. For 100 GbE, the operat-

ing frequency must be higher than 782 MHz to meet the throughput requirement even if the

round functions are fully unrolled. Again, it is not easy for cell-based design to operate at

782 MHz, so a better solution for 100 Gb/s is using two 50 Gb/s AES engines operating at

391 MHz.

As mentioned above, the operating must be higher than 470 MHz and 391 MHz to

achieve throughput 10 Gb/s and 50 Gb/s, respectively. That is, the critical path should be

less than 2.12 ns and 2.55 ns. Since the SubBytes transformation is the most complicated,

implementation of the SubBytes transformation dominates the overall critical path delay. Al-

though the composite field based SubBytes can largely reduce the hardware complexity, the

critical path is also increased significantly. Therefore, LUT based is more suitable for high

throughput architectures. Fig. 3.5 shows the comparison between the composite field based

and LUT based SubBytes in 90 nm CMOS technology. The minimum path delay of the LUT

based method can be optimized to only 0.5 ns while that of composite field based method

can only be optimized to 1.5 ns. The critical path delay of LUT based method is three times

better with less than three times larger hardware cost.

Traditionally, usually 10% design margin is left for the back-end design flow. However,

the wire delay sometimes dominates over the gate delay in deep sub-micron technology such

as 90 nm CMOS. Therefore, the design margin is better increased to 30% - 50%, especially

for operating frequency higher than 400 MHz. In this way, the critical path of the AES

engine should be less than 1.5 ns to meet the throughput requirement when considering the

design margin. As a result, the composite field based method cannot be used in ultra high

40

����

���

��

����

����

����

	���

�����

�����

�����

�����

� ��� � ��� � ���

��

�
�
�
��
�
��
	

�
�
�

�

��
�������

��

��� ������

Figure 3.5: Implementation results of different SubBytes architecture.

����������	

��������	

���������	�

������

�����

����������

���������

����������

����������

�
�
�
�

�
��

	

�
�
�
��

�
!

	

"
�#

$
�
%�

&
�
	

�
�
�
�

�
�
�
�
�

��
	

������

'��	

�
�
�
�
�
��

	

�
�
�
��

�
!

	

"
�#

$
�
%�

&
�
	

�
�
�
�

�
�
�
�
�

��
	
������

'��	

Figure 3.6: Data path for 10 Gb/s throughput.

throughput architecture without pipelining architecture.

Once the operating frequency can be higher than 470 MHz, the throughput requirements

of 10 Gb/s and 50 Gb/s can be achieved by different levels of parallelism. Fig. 3.6 shows

the data path with 2 rounds unrolled for 10 Gb/s throughput requirement. The initial round

is performed during the data loading phase. The odd round functions contain four transfor-

mations and the even round functions contain one additional multiplexer for the last round

to skip the MixColumns. With this architecture, the average output per clock cycle can be

increased to 21.33 bits instead of 11.63 bits for non-unrolled architecture.

For throughput requirement higher than 50 Gb/s, the data path must be fully unrolled

as mentioned above. Fig. 3.7 shows the fully unrolled and pipelined architecture. The ini-

41

����������	

���
���

���
����

���
��

�����

���
��

����

���
��

�����

�
�
�
�
�
��
	

�
�
��
��
�
�
	

�
��
�
�
��
�

	

�
�
�
�
�
�

�
�
��
	

���
��

������

�
�
�
�
�
��
	

�
�
��
��
�
�
	

�
�
�
�
�
�

�
�
��
	

���
��

�����

Figure 3.7: Data path for 50 Gb/s throughput.

tial round is still performed during the data loading phase and other round functions are

performed with dedicated pipeline stage. Note that the MixColumns transformation is elim-

inated in the last round function. The throughput can be further increased by sub-stage

pipelining, that is, each stage is divided into two phases. To balance the path delay of each

sub-stage, the pipeline register is inserted right after the SubBytes transformation. The effect

of the sub-stage pipelining method is discussed latter in this section. With fully unrolling

scheme, the output per clock cycle can reach 128 bits.

3.2.2 Key Expansion Unit

Round keys required for the AES algorithm is expanded from the secret key by the key

scheduling algorithm specified in the standard [8]. The same secret key would always gener-

ate the same sequence of round keys. Since the key exchange process is usually time consum-

ing, the secret key for high throughput applications is less frequently changed. Therefore, the

round keys can be generated off-line and stored in registers or memories. The key expansion

process is invoked only when the secret key is changed.

Fig. 3.8(a) shows the architecture of the off-line key expansion unit for data path without

42

��������

���	�
�

��	�
�

����

��������������

����������������

���������������

���������������

(a) No sub-stage pipelining

��������

���	�
�

��	�
�

����

��������������

����������������

���������������

���������������

������������

(b) 2 sub-stage pipelining

Figure 3.8: The off-line key expansion unit.

sub-stage pipelining. The 128-bit secret key is loaded into four 32-bit registers W0, W1, W2,

and W3. These four 32-bit registers are concatenated as a 128-bit round key and then stored

into the round key registers. All the 10 round key can be generated with following equations:

W ′

0 = Subword(Rotword(W3)) ⊕ Rcon ⊕ W0

W ′

1 = W ′

0 ⊕ W1

W ′

2 = W ′

1 ⊕ W2

W ′

3 = W ′

2 ⊕ W3

(3.16)

where Rotword() cyclically shifts the word left by one byte and Subword() performs 4

independent SubBytes transformations to the 4-byte word. Rcon is a constant array as spec-

ified in the standard [8]. The key expansion unit can generate 128 bits round key in every

cycle and shift it into the round key registers. After all the round keys are generated, the key

43

�����

������

������

������

������

������

	�����

����� ����� ����� 	����
���� ������ ������ ������ �	����

��
�
��
��
�
	

�
�
�

�
�
��
�
�
�

���������
������

�������� �����������

Figure 3.9: Implementation results for 10 Gb/s throughput.

expansion unit halts and all required round keys are stored in round key registers.

Fig. 3.8(b) shows the off-line key expansion unit for 2 sub-stage pipelining data path.

Since the longest delay of the 2 sub-stage data path is the same as the delay of the SubBytes

transformation, the pipeline register is inserted right after the Subword() to balance the

critical path delay. With this architecture, it requires 22 clock cycles to generate all the 11

round keys but it is not a big issue if the secret key is rarely changed.

3.2.3 Implementation Results

The AES engine which targets at 10 Gb/s is implemented using UMC 90 nm CMOS tech-

nology. In Fig. 3.9, solid marks indicate synthesis results under different timing constraints.

The y-axis is the number of equivalent 2-input NAND gates and the x-axis is the throughput

in Gb/s. With 30% timing margin left for back-end flow on the safe side, the timing con-

straint for the front-end design should be less than 1.5 ns. As a result, the synthesis result

using timing constraint 1.5 ns is used to implement the AES engine targeted at 10 Gb/s. The

hollow mark indicates the implementation result after back-end design flow. The throughput

is degraded by 24%, which is within the 30% design margin, and the area is increased by

15%.

The fully unrolled AES engine that targets at 50 Gb/s is also implemented using UMC

44

�����

������

�������

�������

�������

�������

����� ������ ������� �������

��
�
��
��
�
	

�
�
�

�
�
��
�
�
�

���������
������

���	
�����������	��������� ��������	
�����������	���������

���	
���������������
�� ��������	
���������������
��

Figure 3.10: Implementation results for 50 Gb/s throughput.

90 nm CMOS technology. The synthesis results for architectures with 1 pipeline stage and

2 pipeline stages per round function are shown in Fig. 3.10. These two architectures are

also optimized with different timing constraints and trade-offs between hardware cost and

throughput can be illustrated in this figure. To achieve 50 Gb/s, the operating frequency

must be higher than 391 MHz, or the critical path delay is less than 2.55 ns. With 30%

design margin, the synthesis result of timing constraint 1.7 ns is used to implement the AES

engine for 50 Gb/s throughput. The implemented AES can achieve throughput 55.17 Gb/s

with 160k equivalent 2-input NAND gates. The throughput is degraded by around 27%,

which is also within 30% design margin, and the area is increased by 13%.

The design goal of 2 pipeline stage architecture is to achieve 100 Gb/s using a single core.

Under this specification, the operating frequency must be higher than 782 MHz, that is, the

critical path delay must be shorter than 1.28 ns. With 30% design margin, the synthesis

result with timing constraint 0.9 ns is used to implement the AES engine. However, the

implementation result shows that more than 50% design margin is required for such high

operating frequency. This is reasonable because in nano-meter technology the wire delay

would dominate over gate delay. The throughput can be further increased by using 3 stage

pipeline architecture, but such high operating frequency is not easy achieved with cell based

design and the design margin left has to be more than 50%. Therefore, two 50 Gb/s AES

45

Table 3.1: Comparison between AES engines over 10 Gb/s
Synthesis Results

Design Technology Frequency Throughput Area Gates Power
(MHz) (Gb/s) (mm2) (103) (mW)

2-round unrolled
90 nm

666 14.22 0.133 47.08 -
fully unrolled - 11 588 75.29 0.400 141.81 -
fully unrolled - 22 1087 139.13 0.519 183.95 -

Morioka [27] 0.13 µm 909 11.6 - 167.57 1920

Hodjat [28] 0.18µm 245 15.7 - 116 -
467 59.7 - 313 -

Implementation Results

Design Technology Frequency Throughput Area GEs Power
(MHz) (Gb/s) (mm2) (103) (mW)

2-round unrolled
90 nm

508 10.83 0.152 54.01 39.43
fully unrolled - 11 431 55.17 0.451 159.68 152.06
fully unrolled - 22 671 85.91 0.558 197.59 180.40

Mathew [33] 45 nm 2100 53 0.026 - 125
1 1 pipeline stage per round function
2 2 pipeline stage per round function

engines would be a better solution for 100 Gigabit Ethernet.

Table 3.1 shows the comparison between AES engines with throughput higher than

10 Gb/s. Note that synthesis results and implementation results are compared separately.

Among synthesis results, our design has the lowest hardware cost when targets at over 10

Gb/s throughput. Since different technologies are used, the hardware cost can be compared

using the number equivalent 2-input NAND gates.

Mathew et al. proposed the first fabricated AES engine with throughput higher than 50

Gb/s [33] with only 0.026 mm2 silicon area in Intel 45 nm technology. However, the key

expansion unit is not included in this design and round keys should be computed by users.

Moreover, the 50 Gb/s throughput is achieved when the operating frequency is 2.1 GHz,

which is unfeasible for standard cell-based design.

3.3 Low Cost AES Engine for Smart Cards or RFIDs

Throughput requirement in some applications such as smart cards or RFIDs is not so impor-

tant, instead, the hardware cost is the main consideration. Moreover, the operating frequency

46

�������

��	
�

	����

����	������ ������������

��������

���

�����������

Figure 3.11: 8-bit data-path for low cost AES engine.

in these applications is also much slower than that in high throughput applications, so it does

not make sense to optimize the throughput. As introduced in chapter 2, only encryption

function is required when the AES algorithm operates under OFB, CFB, and CTR modes

and it is sufficient to perform data encryption and decryption. Therefore, the hardware cost

can be minimized by designing a very compact AES encryptor.

In this section, a very low cost AES engine with 8-bit data-path unit and key expansion

unit is presented. The only design consideration is the hardware cost because the throughput

is less important for very low cost applications. The 8-bit data-path unit is presented first and

followed by an 8-bit on-the-fly key expansion unit. Implementation results and comparison

are given in the last sub-section.

3.3.1 Data-path Unit

Although the data block for the AES algorithm is specified as 128 bits, transformations on the

data block can be done byte-by-byte. The hardware cost can be significantly reduced if the

data-path width is implemented as 8-bit. The data-path reduction can be done easily for Ad-

dRoundKeys and SubBytes because these two transformations are byte-oriented. However,

the MixColumns transformation is performed on 32-bit data and the ShiftRows transforma-

tion is performed on whole 128-bit data. Fig. 3.11 shows the 8-bit data-path unit for the low

47

������

��	
����	��
�

��
��
�
���������

�����

�����
�
�
�
����

������
�
�
�
�
�
�

����
��

�
������������	
��

	���
��

��	
����	��

��������

�
���

��������

 �����

Figure 3.12: The low cost SubBytes transformation.

�� �� �� �� �� �� � � 	
 � � � � � �

��������

��
 � �� 	 � �� � � �� � � �� �� � �

Figure 3.13: The processing order of data bytes after ShiftRows transformation.

cost AES engine. The four transformations used in the AES algorithm is marked by different

colors. The AddRoundKeys is marked by red lines, and the MixColumns is marked by the

yellow line. The ShiftRows is performed by several multiplexers and is marked by the blue

line. Details of the these transformations are given as follows.

AddRoundKeys

The 8-bit data-path contains a dedicated AddRoundKeys for the last round of the AES pro-

cess. This additional AddRoundKeys consists of 8 2-input XOR gates, which is smaller

than an 8-bit 2-to-1 multiplexer. In addition, no extra control logic is required if a dedicated

circuit is used for the AddRoundKeys in the last round.

SubBytes

For the 8-bit data-path architecture, only one SubBytes module is required and all the 16

bytes can be performed in serial. For the hardware cost consideration, the composite field

based architecture for the SubBytes transformation is adopted. In addition, since the low

cost AES requires only the encryption function, the inverse SubBytes transformation can be

eliminated to further reduce the hardware cost. Fig. 3.12 shows the block diagram for the

SubBytes transformation. Details of the implementation is described in chapter 3.1.1.

48

�� �� �� �� �� �� � � 	
 � � � � � �

�� �� �� �� �� �� � � 	
 � � � � ��

� � ���� �� �� �� �� �� � � 	
��

� ��� � 	
��� �� �� �� �����

�� �� � 	
��� �� �� ������

� �� � 	
��� �� �� �������

� � � 	
��� �� �� ��������

� � � 	
 ��� �� ��������

� �	
 ��� �� ��������
	

�� 	
 ��� �� ��������
	

�� 	
 ��� ��������
	�

�� 	
 �� ��������
	���

��

��

��������
	�����

��
��������
	�����

��

�� �
��������
	�������

�� � ��������
	���������

�

�

��

��

�

�

��

�

�

��

�

	

�

��

��

Figure 3.14: The operation of the ShiftRows transformation for the 8-bit data-path.

ShiftRows

The processing order of data bytes is rearranged after the ShiftRows transformation. Fig.

3.14 shows the processing order of all the 16 bytes with the 8-bit data-path architecture.

According to the ShiftRows transformation, data bytes in one round is processed with the

order 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11 instead of 0, 1, ..., 15 after the

ShiftRows transformation. Therefore, the ShiftRows in an 8-bit data-path architecture can

be performed by shift registers and multiplexers as shown in Fig. 3.11.

Fig. 3.14 shows the operation of shift registers and multiplexers for the ShiftRows trans-

formation. In this figure, data bytes marked in yellow are selected as the output of the

ShiftRows and that marked in gray are new data bytes for next round function. These data

bytes can be divided into four groups, each of which consists of four data bytes. Note that the

output is selected from the least significant byte of these four groups and a 4-to-1 multiplexer

can be used to performed this operation. If the output is not selected from the rightmost data

byte, then the rightmost data byte is shifted back to replace the selected output byte. For

example, in the second cycle, the data byte 5 is selected as the output and the rightmost data

49

�����

������

�����

������

�����

������

�����

������

����
� �

� �

����

���� ����

Figure 3.15: The operation of the MixColumns transformation for the 8-bit data-path.

byte 1 is shifted back to the left of data byte 4 to replace data byte 5. The shift-back operation

can be done by the 2-to-1 multiplexers prior to each 4-byte group.

MixColumns

The MixColumns transformation is a word-oriented operation and according to equation

(2.15), the output of the MixColumns can be written as following equations:

s′0,i = {02}s0,i + {03}s1,i + {01}s2,i + {01}s3,i

s′1,i = {01}s0,i + {02}s1,i + {03}s2,i + {01}s3,i

s′2,i = {01}s0,i + {01}s1,i + {02}s2,i + {03}s3,i

s′3,i = {03}s0,i + {01}s1,i + {01}s2,i + {02}s3,i

(3.17)

Since s0,i, s0,i, s0,i, and s0,i are available in serial, the MixColumns can be performed in four

cycles. The contents of four registers at each cycle are shown in Fig. 3.15. Note that the

50

mix en is set to 0 for the first cycle and set to 1 for remaining cycles.

3.3.2 Key Expansion Unit

Since the data-path requires only 8-bit round key at each cycle, the data-path width of the

key expansion can also be implemented as 8-bit to reduce hardware complexity. The 32-bit

operation of equation (3.16) can be modified to 8-bit operation as follows:

B′

0 = SubBytes(B13) ⊕ Rcon[i] ⊕ B0

B′

1 = SubBytes(B14) ⊕ B1

B′

2 = SubBytes(B15) ⊕ B2

B′

3 = SubBytes(B12) ⊕ B3

B′

4 = B′

0 ⊕ B4

B′

5 = B′

1 ⊕ B5

B′

6 = B′

2 ⊕ B6

B′

7 = B′

3 ⊕ B7

B′

8 = B′

4 ⊕ B8

B′

9 = B′

5 ⊕ B9

B′

10 = B′

6 ⊕ B10

B′

11 = B′

7 ⊕ B11

B′

12 = B′

8 ⊕ B12

B′

13 = B′

9 ⊕ B13

B′

14 = B′

10 ⊕ B14

B′

15 = B′

11 ⊕ B15

(3.18)

Fig. 3.16 shows the architecture of the 8-bit key expansion unit. Since equations in

equation (3.18) have shifting property, shift registers are used to reduce storage spaces. The

128-bit secret key is first loaded byte-by-byte into 16 8-bit registers, each of which stores a

51

�

�

�

�

�

�

�

�

�

�

�

�
� � 	
 � � � � � �

������

����

����������

���
���������

���������	��

Figure 3.16: The 8-bit key expansion unit.

�����

�����

�����

�����

�����

����� ������ ������� ������� ������� ������� ������� �������

�
�
�
��
�
��
	

�
�
�

�
�
��
�
�
�

���������
��� ���

	
������ �������
���

Figure 3.17: Implementation results of low cost AES engine.

key byte. Then the first key byte of the next round key can be generated by the first equation

in equation (3.18). The second and third key bytes can be generated in the same way except

the operation XOR with Rcon[i]. B12 and B3 are used to generate the forth key byte. After

4-cycle shifting, B12 and B3 will be stored in register byte 9 and 0, respectively. Following

key bytes can be obtained by XORing the data bytes in the register byte 12 and 0. Note that

a dedicated output is used for the last round key as that described in the data-path unit.

3.3.3 Implementation Results

The low cost AES engine is implemented in UMC 90 nm CMOS technology and implemen-

tation results are shown in Fig. 3.17. Synthesis results under different timing constraints are

marked in solid and implementation results after back-end design flow is marked in hollow.

For low cost AES designs, the throughput is less important and therefore no design margin

52

Table 3.2: Comparison between low cost AES engines

Design Technology Frequency Throughput Gates Power
(MHz) (Mb/s) (103) (µW)

Proposed 90 nm 185 137.8 2.76 35.2
@1V,1MHz

Feldhofer [35] 0.35 µm 80 9.9 3.40 4.5
@1.5V,100KHz

Hämäläinen [37]* 0.13 µm 152 121.0 3.10 37.0
@1.2V,1MHz

Good [39] 0.13 µm 12 4.3 5.50 0.692
@0.75V,100KHz

Satoh [20]* 0.11 µm 131 311.1 5.40 -
*Synthesis results

is left for the back-end design. The synthesis result with smallest silicon area is used to im-

plement the low cost AES engine. The implementation result shows that the hardware area

is slightly increased from 2640 equivalent gates to 2760 gates after back-end design. The

maximum throughput remains the same because the timing constraint is much looser.

Table 3.2 shows the comparison with state-of-the-art designs that also target at low cost.

The proposed low cost AES has the smallest hardware cost in terms of equivalent gate counts.

Throughputs of different designs vary a lot due to different architectures. For example,

Feldhofer [35] adopts memory based architecture to store round keys and therefore results in

very long latency for one AES encryption process.

The power consumption of the proposed low cost is slightly higher than state-of-the-art

designs because of the technology used. The leakage power consumption in deep sub-micron

technology usually dominates over the switching power consumption. The leakage power for

the proposed AES design is 24.5 µW, which is 70% of total power consumption.

3.4 Median Throughput AES Engine for WLAN

The architecture of median throughput and low cost AES engine shown in Fig.3.18 contains

an AES crypto core and an IO buffer. The AES crypto core consists of three major blocks:

control unit, key expansion unit, and integrated data process unit. The IO buffer is designed

53

��
��
�
��
��

	
�

����

������

����

������
��

�����

������

������

��������������

�����
�

���

�������������

���

��������� ���!��	�������

Figure 3.18: Block diagram of the median throughput AES architecture

due to the limitation of pin allocation.

The key expansion unit can be implemented with buffer memories or separate key expan-

sion data-paths [26,32]. Both approaches require additional cost for decryption. In addition,

different key expansion flows for different key lengths would further raise the hardware cost,

leading to the difficulty in implementing full-key-length AES.

On the other hand, the data process unit must be able to perform both encryption and

decryption. The most straight forward method is to utilize two dedicated data process units,

one for encryption and the other for decryption [26,32]. In our proposed architecture, the en-

cryption and the decryption data-paths are integrated as one data process unit with minimum

area overhead.

3.4.1 Data-path Unit

As shown in Fig.3.19, the integrated data process unit contains four basic transformation

modules and controlled multiplexers to switch between encryption or decryption. Different

data flows are indicated in Fig.3.19 with different lines. The black line indicates data flow

for encryption and the gray line indicates data flow for decryption. The dotted line is used to

support different operation modes.

To reduce hardware cost, the decryption data-path is combined with the encryption data-

path. The SubBytes used in encryption is different from that used in decryption; therefore,

54

�
�
�
�
�
��
�

�
	

�
��

�
�

�

�
�

��
�
�
�

�
�
�
�

�
�
�
�
��
�

�
�
�
��

�
��
��

�
��
�

�
�
�
�

�
�
�
�
��
�

� �

!"

�����

���

#�$��%�
�

��$��%�
�

&%�� �
������

Figure 3.19: Architecture of integrated data process unit

� � � � � � � �

� ���� ���� �
���

�
���� ���� �

��	
����������

��	
����������

��� ��� ���

��������� ����

Figure 3.20: The data flow of encryption and decryption process.

total 32 SubBytes modules are required if they are implemented based on LUT. As a result,

composite field based SubBytes is a better method to integrate the encryption and decryption

data-path [20,54] because the multiplicative inversion in SubBytes can be shared in SubBytes

and Inv-SubBytes. To further reduce cost of the integrated data process unit, the data flow of

decryption must be modified to merge the data-path of encryptor and decryptor.

To integrate data-paths of encryption and decryption for hardware resource sharing, the

data flow of the decryption process is modified. As shown in Fig. 3.20, the data flow of

decryption can be exactly the same as that of encryption by changing the processing order

of: 1) inverse SubBytes (InvB) and inverse ShiftRows (InvS), and 2) inverse MixColumns

(InvM) and AddRoundKeys (ARK). The first modification can be done without additional

overhead since both transformations are byte-oriented. However, the swapping of InvM and

ARK requires an additional MixColumns transformation in the key expansion unit. This

55

is because the InvM is defined over field GF ((28)4) but the ARK is defined over GF (2).

Combined equations of ARK and Inv-/MixColumns in encryption and decryption can be

expressed as

Encryption (s(x) × a(x) mod x4 + 1) + k(x)

Decryption (s(x) + k(x)) × a−1(x) mod x4 + 1

Note a(x) and a−1(x) are constant polynomials over GF ((28)4) defined in FIPS-197, and

s(x) and k(x) represent 32-bit data blocks of processed data and round keys, respectively.

The MixColumns transformation can be represented by s(x) × a(x) mod x4 + 1 and Ad-

dRoundKeys can be expressed by s(x) + k(x). By the distributive law, the equation for

decryption can be reformulated as

(s(x) × a−1(x) mod x4 + 1) + (k(x) × a−1(x) mod x4 + 1).

In this way, the data flow of decryption and encryption would be exactly the same with an ad-

ditional MixColumns transformation applied to round keys. To eliminate the MixColumns,

the processing order of InvM and ARK in the decryption is left unchanged. Note that the

AddRoundKeys module in gray shown in Fig.3.19 is used for decryption. This additional

AddRoundKeys can be reused to support different operation modes.

3.4.2 Key Expansion Unit

The proposed key expansion architecture is shown in Fig.3.21. It can be applied in both

encryption and decryption with different key lengths: 128-, 192-, and 256-bit. The key gen-

56

���������������	

�
�
�
�
�

�
�
�

�
�
�

���

�������

�������

�������

�� �� ��

�� ��

�� �� �� ��

Figure 3.21: On-the-fly key expansion unit for median throughput

erating algorithm of key length 256 for encryption can be modeled as following equations:

W ′

0 = Subword(Rotword(W7)) ⊕ Rcon ⊕ W0

W ′

1 = W ′

0 ⊕ W1

W ′

2 = W ′

1 ⊕ W2

W ′

3 = W ′

2 ⊕ W3

W ′

4 = Subword(W ′

3) ⊕ W4

W ′

5 = W ′

4 ⊕ W5

W ′

6 = W ′

5 ⊕ W6

W ′

7 = W ′

6 ⊕ W7

(3.19)

Note that W ′

n are next round key words and Wn are current round key words, and each 128-

bit round key contains four round key words. Subword contains four S-boxes to substitute

a word and Rotword shifts the input left by one byte. Rcon is a constant array defined in

FIPS-197 [8]. Because round keys used in the decryption flow are in reverse order, the key

expansion unit needs to on-the-fly compute these reversely ordered round keys. To generate

57

such reversely ordered round keys, the last round key is needed and then the following round

keys can be generated. That is, it needs to compute Wn from W ′

n. The round key expansion

process for decryption can be written as follows:

W0 = Subword(Rotword(W ′

6 ⊕ W ′

7)) ⊕ Rcon ⊕ W ′

0

W1 = W ′

0 ⊕ W ′

1

W2 = W ′

1 ⊕ W ′

2

W3 = W ′

2 ⊕ W ′

3

W4 = Subword(W ′

3) ⊕ W ′

4

W5 = W ′

4 ⊕ W ′

5

W6 = W ′

5 ⊕ W ′

6

W7 = W ′

6 ⊕ W ′

7

(3.20)

Note that the first round key used in decryption is the same as the last round key used in

encryption. If the key length is 256-bit, at most 14 cycles are required to produce the initial

round key in the first decryption operation. To speedup the decryption process, the last round

key could be stored in a buffer, then the following decryption process can start immediately

when the AES crypto core receives ciphertext blocks.

As defined in FIPS-197 [8], key expansion processes for key length 128 and 192 are

quite similar. The data flow of AES-128 is the solid line shown in Fig.3.21, and the dash

line is the additional data flow for AES-192. The complexity of key expansion unit is raised

significantly when considering key length 256. As shown in above equations, the round key

expansion process needs two Subword modules in AES-256. The additional Subword leads

to higher hardware cost and also increases the critical path. Since only 128 bits are required

as round keys, the key expansion process of AES-256 can be divided into two phases. In

encryption, {W ′

0, W ′

1, W ′

2, and W ′

3} are computed in the first phase and {W ′

4, W ′

5, W ′

6, and

W ′

7} are generated by using the same Subword module in the second phase. In decryption,

{W4, W5, W6, W7} are generated in the first phase and {W0, W1, W2, W3} are generated

58

�����

�����

������

������

������

������

����� ����� ����� ����� ����� ����� ����� �����

�
�
�
��
�
��
	

�
�
�

�
�
��
�
�
�

���������
������

�	
����� �������	���

Figure 3.22: Implementation results of median throughput AES engine.

���

������ 	
�
�
�

�������
�����

���

Figure 3.23: Die micrograph for median throughput AES engine

in the second phase. Note that the required W ′

6 ⊕ W ′

7 when computing W0 have already

been stored in W7 in the first phase. The dotted line in Fig.3.21 indicates the data flow in

AES-256.

3.4.3 Implementation Results

The median throughput and low cost AES engine is implemented in UMC 90 nm CMOS

technology and implementation results are shown in Fig. 3.22. Synthesis results under differ-

ent timing constraints are marked in solid circles and implementation results after back-end

flow is marked in hollow circle.

This design is also fabricated in UMC 90 nm technology and the die micrograph is shown

in Fig. 3.23. The core area is 0.069mm2 where 63% of the fabricated chip is the AES

59

Figure 3.24: Shmoo plot for median throughput AES engine

Table 3.3: Comparison between median throughput AES engines

Design Technology Frequency Throughput Gates Power Mbps
(MHz) (Gb/s) (103) (mW) /K-gates

Proposed 90 nm 131.8 1.69 15.58 5.02 108.5
Gürkaynak [26] 0.25µm 166 2.12 119 600 17.8

Hodjat [29] 0.18µm 330 3.84 54 79 48.6
Lin [32] 0.13µm 333 4.27 40.9 86.2 49.5

core and 37% is the IO buffer. The average power consumption of this chip is 5.02 mW

when operating at 131.8 MHz. Fig. 3.24 shows the Shmoo plot for the maximum operating

frequency under different conditions. The maximum operating frequency can be 145 MHz

when the supply voltage is 1.1V and the maximum operating frequency is 106 MHz with

0.9V supply voltage. All FIPS-197 test patterns and random patterns are fully tested.

In Table 3.3, the proposed design is compared with some other designs in terms of

throughput and hardware cost. Only designs with measured results are listed in this ta-

ble. The performance metric, Mbps/K-gate, is also listed to show the efficiency and the

normalized performance is also given in the table for comparison.

Gürkaynak [26] proposed a full-duplex design which can achieve throughput up to 4.24

Gb/s in ECB and CBC modes and up to 2.12 Gb/s in OFB and CFB modes. However,

the encryptor and the decryptor are not easy to operate in parallel because it requires at

least 768 IO pins to make both encryptor and decryptor operate at the same time. Hodjat

[29] proposed a design adopting table look-up based S-boxes to reduce the critical path but

also leads to higher hardware cost. Lin [32] proposed a two-stage pipelining architecture

60

�

��

���

����

����� ���� ��� � �� ��� ����

��
�
��
��
�
	

�
�
�

�
�
��
�
�
�

���������
������

�����	
������������ �����	
�������������������� 	
���������������� �������� �����

�������
�
���� ����!��"� # ��
�$�!�%"� 	�&'��!(�"�

	�) ���
���!(%"� �����	
����������� �����	
������������������� 	
���������������

�������� ���� �������
�
��� *��+��� ��&�!��" ���$�,��$!�-"

# ����� !((" 	�&'��!�." /��&�����!(0" ���&!(."

Figure 3.25: Summary of area throughput trade-offs of AES engines.

with high throughput. However, separately designed encryptor and decryptor result in much

higher hardware cost. Moreover, the pipelining architecture also limits the implementation

of feedback operation modes such as OFB and CFB.

3.5 Summary

In this chapter, different architectures of AES engines are proposed for different applications.

Fig. 3.25 shows the area and throughput trade-offs for different architectures. The detailed

implementation technology and results can be found in previous sections. Note that designs

with synthesis results are indicated by solid marks while designs with implementation results

are indicated by hollow marks.

For designs with throughput higher than 10 Gb/s, the proposed design can achieve the

highest throughput without considering the hardware cost. For designs with median through-

put, the proposed AES engine has almost the smallest hardware cost. Satoh’s [20] design is

smaller than the proposed because only AES-128 and ECB mode is supported. However, the

proposed design can support AES-128, AES-192, and AES-256 under all different modes of

operation. As last, for the low cost AES engine, the proposed can also outperform others in

61

Table 3.4: Design summary on different AES architectures
Implementation Technique High Throughput Area Efficient Low Cost

Unrolling 2 - fully Non Non
Pipelining Yes No No
Data Width 128 128 8

Key Expansion Off-line On-the-fly On-the-fly
SubBytes Implementation LUT Composite Field Composite Field

terms of equivalent gate counts.

In this section, we also give a brief summary on design selection for different consider-

ations in Table 3.4. This table gives the prospective selection of implementation techniques

for different architectures.

62

Chapter 4

Power Analysis Attacks

Side-channel attacks exploit leaked physical information from chips to analyze possible keys

and have become efficient ways to attack cryptographic devices. In 1996, Kocher proposed

attacks that utilize the timing or power information with controlled data from attacked de-

vices [18]. Since the power information can be easily obtained by existing equipments,

power analysis has become the most common attacking methods.

The security weakness of hardware-based crypto chips is further investigated by Kocher

et al. in 1999 using simple power analysis (SPA) and differential power analysis (DPA) [19].

In [58], the SPA and DPA are more thoroughly introduced and discussed. For the SPA,

attackers observe a single power trace of attacked devices to guess a part of the secret key.

Because SPA utilizes key-dependent characteristics of power trace, this kind of attack is more

suitable to attack asymmetric encryption algorithms. However, in symmetric encryption al-

gorithms such as the AES algorithm, characteristics of power traces are independent of secret

keys. The DPA attack can more efficiently disclose secret keys by the power consumption

information leaked from cryptographic devices.

In this chapter, the SPA and DPA are briefly introduced in the first two sections. Since

the SPA is rarely used for the AES chips, only DPA attack results on the fabricated chip are

shown in the last section.

63

4.1 Simple Power Analysis

The SPA attack is described by Kocher et al. in [19] as: ”SPA is a technique that involves di-

rectly interpreting power consumption measurements collected during cryptographic opera-

tions.” That is, the attacker tries to disclose the secret key of cryptographic devices by observ-

ing collected power traces. However, the attacker must have detailed knowledge about the

cryptographic device under attacking, including the hardware architecture, operation timing

and so on. In addition, the noise from the measurement environment or equipments would

also make the SPA become more challenging.

4.1.1 General Description

SPA is a method to disclose the secret key when only very small number of power traces are

available. For example, consider the scenario when a user uses a smart card for payment. A

malicious card reader can record the power consumption of the smart card in the payment

process. The SPA can be categorized into single-shot SPA and multiple-shot SPA by the

number of power traces used to disclose the secret key. In single-shot SPA attack, only one

power trace is recored and this is the only information for secret key disclosure. In multiple-

shot SPA attack, a few power traces are recorded and used to disclose the secret key.

For the multiple-shot SPA, power consumption of the same pattern can be recorded mul-

tiple times, or even different patterns can be recorded. The most important advantage of

multiple-shot SPA is that noises from measurement environment or equipments can be re-

duced by computing the mean of collected traces.

Although the single-shot and multiple-shot SPA differs by the number of power traces

recorded, the fundamental idea of SPA attacks is the same. Attackers observe the single

or averaged power trace and disclose the secret key of cryptographic devices directly or

indirectly.

64

Figure 4.1: The power trace of a straightforward RSA implementation.

4.1.2 SPA on Asymmetric Ciphers

Since SPA extracts the secret key by observing a single or multiple power traces, the secret

key can be disclosed if the power trace is key dependent. That is, different secret key leads to

different characteristics of the power trace. Therefore, SPA is more suitable for asymmetric

ciphers such as RSA or ECC. This is because the fundamental operation of asymmetric is

exponentiation, which can be decomposed into a series of multiplication and squaring as

follows:

Input: Message M, Secret key E={En−1En−2...E0}2

Output: Ciphertext C = ME

P = M, C = 1;
for i = n-1 down to 0 do

C = C × C mod N;
if Ei == 1 then

C = C × P mod N;
end

end
return C;

Algorithm 2: Exponentiation

As shown in this algorithm, the key bit Ei == 0 and Ei == 1 will lead to different op-

eration. If the key bit equals to 1, then a modular multiplication will be performed and

this additional operation can result in different power consumption characteristics. Fig. 4.1

shows the power trace of an exponentiation operation from [59]. From the power trace, the

key bit 1 and 0 can be easily distinguished by different power consumption characteristics.

Techniques for resisting SPA are usually quite simple to implement. Once procedures

that require secret key for conditional branch can be avoided, then the power consumption

characteristics can be masked.

65

�����

�����

Figure 4.2: The power trace of an AES implementation.

4.1.3 SPA on Symmetric Ciphers

Operations of symmetric ciphers are usually independent of the secret key and then the SPA

is not easy to disclose the secret key by observing power traces. Fig. 4.2 shows the power

trace of one AES encryption operation. The period for the initial round for the AES algo-

rithm is enclosed by the red rectangle and that for the other 10 rounds can also be easily

distinguished as enclosed by blue rectangles. The power consumption characteristic for the

initial round is significantly different from others because only AddRoundKeys is performed

in the initial round. From this power trace, operation of the AES can be distinguished but the

secret key can not be disclosed by observing the power trace.

To demonstrate the SPA resistance, the power traces of the same plaintext with two differ-

ent secret keys are recorded. The characteristic of the peak for each round is slight different

if different keys are used. However, this difference is affected by all the 128 key bits and the

attacker must be able to distinguish all 2128 possible characteristics to disclose the secret key.

As a result, the SPA is less important for the symmetric cipher implementation and the SPA

resistance is not addressed in this dissertation.

4.2 Differential Power Analysis

DPA attacks are based on statistics to find the correlation between the measured power con-

sumption and the predicted power consumption. Because the power prediction model takes

into account both secret keys and processed data blocks, the statistical calculation result can

66

�����������	�	

����������������	

�����	������

�����	�	

�����������������

����������������������

�����������	������

����
����
����
����
����
����

����

����

����
����
����
����
����
����

����

����

��� �!�"

#"#$

#%#&###&

�#�%%���

�

�����

�

�

�

���������������������

�

������������������

'��	(���������������

))
)

*

Figure 4.3: The flow of the DPA attack.

be used to disclose the possible secret key in the cryptographic device.

4.2.1 DPA Attack Flow

A brief flow of the DPA attack is shown in Fig. 4.3. The attacker prepares N different

patterns for en-/decryption and records power traces of these patterns. These N power traces,

which consist of T sample points, are firstly arranged as a N-by-T measured power array for

further processing. The same plaintexts and all possible key hypotheses are used to generate

predicted power values by an appropriate power prediction model. The power prediction

model is a method to determine possible power consumption either in the behavior or in the

algorithm level. The most common used power models are the Hamming-distance model

and the Hamming-weight model. The DPA attack efficiency is largely dependent on the

power model used. Since the AES algorithm is byte-oriented, the 128-bit secret keys can be

67

divided into 16 8-bit sub-keys, which largely reduce the key space from 2128 to 16 × 28. As

shown in Fig. 4.3, power values are arranged as a N-by-K array, where N is the number of

plaintexts and K is the number of all possible key hypotheses. Every column of the array

indicates predicted power values for all N plaintexts of a specific key hypothesis.

The final step of the DPA attack is to find the correlation by statistical calculation such as

difference-of-means or correlation coefficient. For the difference-of-means, introduced by

Kocher et al. in [19], power traces are divided into two groups depending on corresponding

power values. The difference of the average of these two groups then indicates the correlation

between power traces and power values. The correlation coefficient, which is proposed by

Brier et al. [60], considers not only the means but also the variances to reduce the required

the number of measurements.

4.2.2 Power Models

For DPA attack, intermediate values of each key hypothesis are mapped to predicted power

values for analysis. This is a kind of power simulation of cryptographic devices and obtained

power values may be in some way related to the actual power consumption. The Hamming-

weight (HW) and Hamming-distance (HD) are two most often used power models and they

are briefly introduced in this sub-section.

Hamming-Weight Model

The HW model is a simple model that applied if attacker have less knowledge about the

cryptographic device. In case of the HW model, the power consumption is assumed to be

proportional to the number of bits that are set in the intermediate value. As a result, the HW

model is not suitable for describing the power consumption of CMOS circuits because the

power consumption of CMOS circuits depends on the number of transitions instead of the

processed value.

In practice the Hamming weight of an intermediate value is still somewhat related to the

power consumption. For example, a pre-charged or pre-discharged data bus will be all 1s or

68

0s before processing the data. Then the Hamming weight of the processed data is related to

the number of transitions.

However, it is not always the case that the data bus will be pre-charged or pre-discharged

and the HW model is not sufficient for these cases. HD model then must be used for inter-

preting intermediate values to predicted power values.

Hamming-Distance Model

The basic idea of the HD model is to count the number of transitions, including 1 → 0 and

0 → 1, in the circuit during a specific period. Then the number of transitions can be used

to describe the power consumption of the circuit in this period. Although the number of

transitions is not the actual power consumption in Watt, it is still proportional to the actual

power consumption.

Two assumptions are made when using the HD model to predict the power consumption

of the circuit. First, all 1 → 0 and 0 → 1 transitions contribute to the same power consump-

tion. Although in practice the power consumption of different transitions is slightly different,

it make the power model easier with this assumption. Second, all 0 → 0 and 1 → 1 contribute

equally to the power consumption. Parasitic capacitances of wires and cells are eliminated

in the HD model. The static power consumption such as internal power or leakage power are

also ignored for simplicity.

Since the HD model is simple and can better describe the CMOS circuit, it is commonly

used for power simulations. The power simulation based HD model can provide a rough

estimation of the power consumption of real chip. The HD model can be formalized by

HD(v0, v1) = HW (v0 ⊕ v1), where v0 and v1 are two successive values that appear on a

data bus in different time instance.

4.2.3 Statistical Analysis

The most commonly used statistical analysis methods are the difference-of-means [19] and

correlation coefficients [60]. The difference-of-means is introduced first and then followed

69

by the correlation coefficients in this sub-section.

Difference-of-Means

The basic idea of difference-of-means is to determine the relationship between columns of

measured power array and predicted power array as shown in Fig. 4.3. In order to check if a

key hypothesis Ki is correct or not, the power trace array is divided into two sets according to

power values of the key hypothesis. That is, N predicted power values for the key hypothesis

Ki is used to categorize N power traces. If the power value is larger than a threshold, then the

corresponding power trace is grouped to set 1. If the power value is lower than a threshold,

the corresponding power trace is grouped to set 0. The means of these two sets are calculated

by following equations:

m1i,j =
1

n1i

·
N

∑

l=1

⌊

hl,i

θh

⌋

· tl,j

m0i,j =
1

n0i

·

N
∑

l=1

(1 −

⌊

hl,i

θh

⌋

) · tl,j

(4.1)

where i and j are indices for key hypothesis Ki and sample point of the power trace. θh is a

pre-determined threshold, which is usually set to half of the maximum of hl,i, used to group

power traces. n1i and n0i are the number of power traces in set 1 and set 0, respectively. The

vector m1i and m0i are used to denote the mean of rows in set 1 and set 0, respectively. If the

key hypothesis Ki is incorrect, then the grouping is somewhat similar to a random method

and these two sets would have similar means. If the key hypothesis Ki is correct, then the

difference of m0i and m1i would be significant at some point in time.

The difference between m0i and m1i indicates the correlation between power values of

key hypothesis Ki and power traces at some time. The difference will be significant at the

point when the data and the secret key is processed. For the other time instances, the differ-

ence between m0i and m1i will approach zero. If the key hypothesis is incorrect, then the

difference will essentially be zero for all time instances.

70

Correlation Coefficient

The correlation coefficient is a common statistical method to determine the relationship be-

tween data. Therefore, the relationship between the measured power and predicted power

can also be determined by this method. Brier et al. proposed the method which is suitable

for the DPA attack. The equation used to find the correlation coefficient is as follows:

ri,j =

∑N
n=1

(hn,i − h̄i) · (tn,j − t̄j)
√

∑N

n=1
(hn,i − h̄i)2 ·

∑N

n=1
(tn,j − t̄j)2

, (4.2)

where hn,i is the power value of key hypothesis Ki for the n-th input pattern; tn,j is the mea-

sured power at sample time j for the n-th input pattern; h̄i and t̄j are mean values of hn,i and

tn,j for total N input patterns. The correlation coefficient is thus an index used for disclosing

the secret key. For example, if the key hypothesis is wrong, predicted power values and the

measured power would be independent and the correlation coefficient would approach 0 at

all sampling time. On the contrary, if the key hypothesis is correct, the correlation coefficient

would be much higher at the sample time performing related operations.

4.3 Security Evaluation

In this section, the practical environment for the DPA attack are introduced, including how

to set up the measurement environment and how to build the power models. After that,

the DPA attack on the AES circuit is conducted with different statistical analysis methods.

Moreover, the DPA attack results on the real chip is also given in the this sub-section. At last,

an estimation method for measurements to disclosure is illustrated in the last sub-section.

4.3.1 Measurement Environment

Fig. 4.4 shows the block diagram for the measurement environment. Each block are briefly

described and equipments used are also specified.

71

��������	
���

����
����������

��������	�����

����

��������

����
�

 !��

�!���

����������"#����

��!��	
���$����

Figure 4.4: The block diagram of the measurement environment.

• Cryptographic Device - The cryptographic device consists of hardware implementa-

tion of cryptographic algorithms such as the AES algorithm. The device provide an

interface to communicate with the logic analyzer and oscilloscope for verification and

power recording. I/O pins of the device are connected to the logic analyzer and a small

resist is shunt between the power supply and the device for the oscilloscope measuring

the current consumption.

• Logic Analyzer - The logic analyzer is an equipment that supplies input vectors to

the cryptographic device and captures output signals from the device for verification.

These input and output vectors are in the csv format and can be derived in the simu-

lation phase. The logic analyzer can also capture outputs of the cryptographic device

and compare the captured data with that in the csv file.

• Power Supply - The power of the cryptographic device can be supplied by external

DC power supplies. The power supply can be configured to supply 2.5 V and 1 V for

the pad and core of the cryptographic device.

• Oscilloscope - The digital oscilloscope uses a probe to measure the cross voltage of the

resistor in between the power supply and the cryptographic device. Stored power traces

can be transfered to the personal computer via network or portable storage devices for

further processing and analysis.

• Personal Computer - The personal computer receives power traces recorded by the

oscilloscope and analyzes these power traces by a C/C++ program. The personal com-

puter also generates the csv file for the logic analyzer to verify the function of the

72

������������

	
������

������

������

�������

�����������	�����

Figure 4.5: The test chip measurement and analysis environment setup.

cryptographic device.

The practical measurement and analysis environment setup is shown in Fig. 4.5. The

power consumed by the AES crypto core is measured by the cross voltage of a small resistor

between the DC power supply and the test chip. Input vectors are supplied by the Agilent

16720A pattern generator and output signals are analyzed by the Agilent 16902A logic ana-

lyzer. The cross voltage of the resistor is measured and recorded by the LeCroy SDA-4000

with 5 GHz sampling frequency. The recorded power traces are then transfered to a personal

computer for analysis.

4.3.2 Power Models

In practical scenarios, the user can only access to the ciphertext of a cryptographic device.

As a result, the round key for the last round is disclosed and then the secret key can be found

by the inverse key scheduling algorithm. To disclose the last round key, the power model is

build to predict the power consumption between the 10th round and 11th round as shown in

Fig. 4.6. Variables used to build the predicted power array are the known ciphertext and the

73

�
�
�
�
�
��
�

�
	

�
��

�
�

�

�
	
��
�
�
�
�

�

�
�
�
��
�
��
�
��

��������

��

����
����
���� �

Figure 4.6: The last round model for power simulation.

last round key.

In the AES algorithm, each data byte is processed independently, and therefore the secret

key can be disclosed byte-by-byte. All the 128-bit secret key can be disclosed by 16 DPA at-

tacks. However, although only 8-bit secret key is disclosed at a time, the power consumption

measured from the chip is still contributed from all the 128-bit secret key. The Hamming

distance of data registers between the 10th round and last round is used as the predicted

power value. Since the data register in the last round contains the ciphertext, the predicted

power value can be obtained if the data register in the 10th round is known. To calculate

the 128-bit data of 10th round, the 128-bit round key, which contains the 8 guessed bits and

other 120 random bits, is built for a series of inverse transformations. Each ciphertext is used

to generate 256 power values by the 256 key hypotheses and then the predicted power array

can be built from N ciphertexts and 256 key hypotheses.

4.3.3 DPA Results

To demonstrate the efficiency of the DPA attack, the attack flow is applied to the proposed

AES engine presented in chapter 3. To evaluate the DPA resistance of AES engine before

chip fabrication, a simulation-based platform is set up for early stage estimation. Since the

estimation is based on transistor level simulation in a noiseless environment, a lower bound

74

�������

��	
���

����������

�������

���

�����

������

�������

������

�
�����

����

�����
���

�����

����	����

�
���������

�����
���

��������

���
���
���

������ ������

!�����
���

"�����

���#�
���

�����
���

��
����"�

���
�����$���

!�
�����

�
����

�
�
������

%&��
����

��'�%�

�����
���

��!�

!�
�����
���(���

�$���

�������

��������

���
�

���

����#����������� �������

��$

�
�)#����

�	����
�

���������$

��!�������
����%����
�����$

Figure 4.7: The design and estimation flow for the AES engine.

of the DPA resistance for a fabricated chip can be obtained.

Fig. 4.7 shows the design and estimation flow for the AES engine. The design flow can

be partitioned into three major parts: 1) front-end circuit design flow, 2) back-end physical

design flow, and 3) DPA resistance estimation flow. The major modification is the DPA re-

sistance estimation flow. For the DPA resistance estimation design flow, the SPICE model

of the AES engine is extracted from the layout and then simulated power traces can be ob-

tained by transistor-level simulation. Then simulated power traces and the predicted power

model are used to perform the DPA attack. Since power traces from transistor level simu-

lation represent the ideal case of the power consumption, the DPA resistance obtained from

these power traces can be considered as the lower bound for a real chip. The simulation

based analysis results based on both the different-of-means and the correlation coefficients

are shown first and then followed by the real chip attack.

Results of Difference-of-Means

Fig. 4.8 shows the analysis results from transistor level simulation based on the difference-

of-means. Fig. 4.8(a) shows the difference-of-means for all 256 key hypotheses with 8000

power traces. The result for incorrect key hypotheses are plotted in gray bars and that for the

correct one is highlighted in black. The difference-of-means of the correct key hypothesis is

75

0 50 100 150 200 250
−140

−120

−100

−80

−60

−40

−20

0

20

40

Key hypotheses
(a)

D
iff

er
en

ce
−o

f−
M

ea
ns

0 1000 2000 3000 4000 5000 6000 7000 8000
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

X: 490
Y: −259.1

Measurements
(b)

D
iff

er
en

ce
−o

f−
M

ea
ns

Figure 4.8: The DPA results based on difference-of-means.

significantly higher than all other incorrect ones and therefore the attacker can disclose the

secret key byte by identifying the peak from this figure.

Fig. 4.8(b) shows the relationship between the difference-of-means and the number of

measurements. The difference-of-means of all incorrect key hypotheses with different num-

ber of measurements are plotted in gray lines while that of the correct one is highlighted in

black. This figure shows that only 490 measurements are required to disclose the key byte in

a noiseless environment. This figure also shows that the correct key byte becomes easier to

be distinguished with the number of measurements increased.

Results of Correlation Coefficient

In addition to the difference-of-means, the same power traces are also analyzed by the cor-

relation coefficient method. Fig. 4.9 shows analysis results from transistor level simulation

based on the correlation coefficient. In Fig. 4.9(a), the correlation coefficients of all 256 key

hypotheses are obtained with the same 8000 power traces. The correlation coefficients of in-

correct key hypotheses are again plotted in gray bars and that of the correct key is highlighted

in black. This figure also shows that the correct key is more easier distinguished when the

76

0 50 100 150 200 250
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Key hypothese
(a)

C
or

re
la

tio
n

co
ef

fic
ie

nt

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X: 240
Y: −0.08301

Measurements
(b)

C
or

re
la

tio
n

co
ef

fic
ie

nt
Figure 4.9: The DPA results based on correlation coefficient.

correlation coefficient is used for statistical analysis with the same power traces.

Fig. 4.9(b) shows the relationship between correlation coefficients and the number of

measurements. Correlation coefficients of all incorrect key hypotheses with different num-

ber of measurements are again plotted in gray lines while that of the correct key is highlighted

in black. This figure shows that the minimum number of measurements to disclose the secret

is reduced to only 240 power traces, which is about 50% more efficient than the difference-

of-means method. When the number of measurements increased, the difference between the

correct key and incorrect keys are also more significant. As a result, the correlation coeffi-

cient method has higher efficiency than the difference-of-means method and the following

analysis results are based on the correlation coefficient for DPA attack.

Real Chip Analysis Results

The DPA attack on a real AES chip is shown in Fig. 4.10. Fig. 4.10(a) shows correlation

coefficients of all 256 key hypotheses with 10000 measurements. Correlation coefficient of

the correct key hypothesis is reduced from -0.06 to -0.03 because of the non-ideal power

supply and noises in the measurement environment. Although the correlation coefficient

77

0 50 100 150 200 250
−0.04

−0.03

−0.02

−0.01

0

0.01

Key hypotheses
(a)

C
or

re
la

tio
n

co
ef

fic
ie

nt

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

X: 9300
Y: −0.03145

Measurements
(b)

C
or

re
la

tio
n

co
ef

fic
ie

nt
Figure 4.10: The DPA attack results on real AES chip.

is significantly reduced, it is still possible to distinguish the correct key hypothesis from

incorrect ones with 10000 measurements.

In Fig. 4.10(b), correlation coefficients versus the number of measurements of the correct

key hypothesis is plotted as the black line while that of other incorrect key hypotheses are

plotted as gray lines. When noises in the measurement environment are involved, the number

of measurement to disclose the secret key is increased largely from 240 measurements to

about 9300 measurements, which is about 38 times higher than the noiseless simulation

environment.

4.3.4 Accessing the Number of Needed Power Traces

In DPA attacks, the more power traces acquired, the more precise the DPA result is. However,

how many traces does the attacker need to disclose the secret key is an important issue. Since

the DPA attack is based on statistical analysis, it is not easy to give a precise answer. In fact,

only a rough estimation can be provided based on statistical calculations. The estimation is

based on two assumptions: 1) the DPA attack is successful if there is a significant peak for

correlation index ri,j, and 2) the number of traces that are needed to see a peak exclusively

78

Table 4.1: Quantiles z1−α of the normal distribution for different 1 − α.
1 − α z1−α 1 − α z1−α

0.850 0.842 0.990 2.326
0.900 1.036 0.995 2.576
0.950 1.282 0.999 3.090
0.975 1.960 0.9999 3.719

Table 4.2: The estimated number of traces for different ρck,ct.
ρck,ct nα=0.0001 ρck,ct nα=0.0001 ρck,ct nα=0.0001

0.900 16 0.090 3400 0.009 341493
0.800 26 0.080 4307 0.008 432206
0.700 40 0.070 5630 0.007 564519
0.600 64 0.060 7668 0.006 768378
0.500 95 0.050 11049 0.005 1106471
0.400 157 0.040 17273 0.004 1728870
0.300 292 0.030 30720 0.003 3073559
0.200 676 0.020 69140 0.002 6915526
0.100 2751 0.010 276606 0.001 27662152

depends on simulation based correlation coefficient ρck,ct, where ck is the index of the correct

key and ct is the index of the correct time.

The number of traces needed to distinguish the correlation coefficient ρck,ct from ρ = 0

with confidence α can be assessed by the following equation:

n = 3 + 8
z2
1−α

ln2 1+ρck,ct

1−ρck,ct

, (4.3)

where z2
1−α the quantile of the normal distribution for some values of α as listed in Table 4.1

and 1 − α is error probability. To illustrate the relationship between the estimated number

of traces and the ρck,ct, Table 4.2 shows calculated values according to equation (4.3) with

error probability α = 0.0001.

We now can assess the number of power traces for the AES engine based on the simula-

tion based correlation coefficient ρck,ct. In Fig. 4.9, we can see that the correlation coefficient

for the correct key is stabilized after around 5000 measurements and the simulated correla-

tion coefficient is about -0.06 (negatively related). Then we can estimate the number of traces

needed by looking up Table 4.2 and the result shows that 7668 traces are needed to disclose

79

the secret key. Compared with the DPA result of the real chip, total 9300 traces are required

to disclose the secret key. Hence, the estimated value could be used as a rough assessment.

80

Chapter 5

Design of DPA Resistant AES Engines

In this chapter, brief introductions to power-masking and power-hiding methods are given

first. Then the proposed DPA countermeasure circuit based on pseudo random number gen-

erator is presented. A security issue of the pseudo random based architecture is analyzed and

then followed by an improved architecture based on true random like number generator.

5.1 Previous Works on DPA Countermeasure

In the last decade, several methods in algorithm level or circuit level have been proposed

[42, 61–70] to counteract the DPA attacks. In general, these methods can be categorized

as power-masking or power-hiding. The fundamental concept of these methods is to break

the correlation between the real power consumption and the predicted power consumption.

Power-masking methods [61–67] incorporate a random mask into processed data blocks to

make the power consumption of cryptographic devices unpredictable. The random mask is

added into data blocks at the beginning of the encryption and is removed at the end of the

encryption. Although power-masking methods can effectively increase the DPA resistance,

the hardware cost is increased by at least 2 times and the performance is degraded by at least

50% [71–73]. Power-hiding methods use new logic cells [68–70] or switching capacitors

[42] to make the power consumption of different transitions be equal. That is, different

plaintexts would lead to the same power consumption characteristics. The DPA resistance of

81

these methods can also be effectively increased, but the cost is also 2 times higher with more

than 50% performance degradation.

5.1.1 Power Masking Methods

For power-masking methods, data blocks can be masked either in the algorithm level or in

the circuit level. In the algorithm level masking, the non-linear transformation, SubBytes,

has to be modified to facilitate the recovery of correct data at the end of the encryption. The

first masked SubBytes transformation is proposed by Akkar and Giraud [61]. In addition

to the random mask used at the beginning of the encryption process, another independent

mask is added into data blocks before performing the SubBytes transformation and removed

at the end of the SubBytes transformation. Trichina et al. proposed a simplified method

based on Akkar and Giraud’s by reusing the original random mask instead of using a new

random mask [62]. However, an all-zero data byte would not be masked and therefore these

two masked SubBytes are still vulnerable to the DPA attack. As a result, different masked

SubBytes are proposed to solve the all-zero case [64–66]. Instead of the algorithm level

modification, Trichina proposed a SubBytes masked in the circuit level by using masking

cells [63]. Later, Suzuki proposed another masking cells called random switching logic to

reduce the area overhead and shorten the critical path [67].

Masking in Algorithm Level

Fig. 5.1 illustrates the concept of the masking methods in the algorithm level. A random

mask is added into data blocks by bit-wise XOR operation for data encryption. The random

mask on linear operations can be easily removed because f(A⊕X) = f(A)⊕ f(X). How-

ever, the mask on non-linear operations can not be easily removed because f(A ⊕ X) 6=

f(A) ⊕ f(X). As a result, the data recovery circuit contains all the linear operations of the

AES algorithm to remove the masked data. The non-linear part of the AES algorithm is

modified as shown in Fig. 5.2. Since the mask can not be easily removed, the modified in-

version preserves the random mask X after the operation. The modified inversion computes

82

��������	
�����

��������������

����������

�	������ ���������

�������

����

Figure 5.1: The concept of the masking methods in algorithm level.

���
������	�
��	�����

��
����
�
�

�
��
�� �����	 ���

Figure 5.2: The modification of non-linear parts in AES algorithm.

A−1 + X instead of (A + X)−1. That is, the masking in algorithm level uses mathematical

methods to obtain A−1 + X from A + X .

Fig. 5.3 shows the method proposed by Akkar and Giraud [61]. The A+X is transformed

to A × X before the inversion operation. The (A × X)−1 is then transformed to A−1 + X

after the inversion operation. Another independent random mask Y is required to mask the

power of the inversion operation.

Oswald et al. try to find the A−1 + X by direct finite field arithmetic [65]. The multi-

��� ������ ��

�
��	
�����

������
�
�

����
��

�

����
��
�

��
��

��
��

�
��
��

Figure 5.3: The modified SubBytes by Akkar and Giraud.

83

plicative inverse over GF ((24)2) can be computed by the following equations:

(ahx + al)
−1 = a′

hx + a′

l

a′

h = ah × d′

a′

l = (ah + al) × d′

d′ = (a2

h × p0) + (ah × al) + a2

l

d = d−1

(5.1)

In the similar manner, the masked multiplicative inversion over GF ((24)2) can be computed

by the following equations:

((ah + mh)x + (al + ml))
−1 = (a′

h + m′

h)x + (a′

l + m′

l)

a′

h + m′

h = fah((ah + mh), (d
′ + m′

d), mh, m
′

h, m
′

d)

= ah × d′ + m′

h

a′

l + m′

l = fal((a
′

h + m′

h), (al + ml), (d
′ + m′

d), ml, m
′

h, m
′

l, m
′

d)

= (ah + al) × d′ + m′

l

d + md = fd((ah + mh), (al + ml), p0, mh, ml, md)

= a2

h × p0 + ah × al + a2

l + md

d′ + m′

d = fd′(d + md, md, m
′

d)

= d−1 + m′d

(5.2)

Masking in Circuit Level

Instead of modifying the AES algorithm, the masking in the circuit or cell level can be

achieved with new logic cells. Fig. 5.4 shows the masked-AND logic proposed by Trichina

to perform masked operation [63]. The ax and by are masked by x and y, respectively. With

this masked-AND logic, a masked result abz (a AND b masked by z) can be obtained without

knowing values of a and b. Since the operation of the AES is over finite field, XOR and AND

84

�� �� � � �

���

Figure 5.4: The masked-AND logic.

gates are sufficient to implement the AES engine. Therefore, only masked-AND is required

to resist the DPA attack.

5.1.2 Power Hiding Methods

For power-hiding methods, new cells are adopted to balance the power consumption of dif-

ferent transitions. The sense amplifier based logic (SABL) [68], wave dynamic differential

logic (WDDL) [69], dual-rail circuit [70], and switching capacitors [42] are of this kind of

countermeasure methods. Dual-rail cells balance the power consumption by redundant com-

plementary logic cells. In addition, since these new logic cells have complementary outputs,

differential routing is also required in physical implementation, which leads to much higher

design effort. The switching capacitors proposed by Tokunaga and Blaauw [42] uses an

array of capacitors to isolate the current supplied by the power supply and that consumed

by cryptographic devices. Since power-hiding methods are algorithm independent, they can

also be applied to other encryption algorithms such as RSA or ECC to resist the DPA attacks.

Wave Dynamic Differential Logics (WDDL)

To make the power consumption be constant for different transitions, two conditions must

be satisfied: 1) a logic gate has exactly one charging event per clock cycle and 2) the logic

85

Figure 5.5: The wave dynamic differential logic.

Figure 5.6: The differential routing technique.

gate charges a constant capacitance in that event. The first condition can be achieved by the

WDDL cells as shown in Fig. 5.5 and the second condition can be achieved by the differential

routing as shown in Fig. 5.6 [41].

The WDDL gates consist of two positive but complementary gates as shown in Fig 5.5.

The complementary gate computes the false output by using complementary input signals.

For example, the AND gate now consists of an AND gate and a OR gate. The AND gate

works for the original function and the OR gate generates a false output f = a + b. In this

way, there will be exactly one transition among two complementary outputs.

In addition to the same transition numbers per clock cycle, the amount of capacitance

charged must be the same. That is, the output loading for both complementary outputs must

86

Figure 5.7: The switching capacitors.

be equivalent. The loading capacitance is composed of the output capacitance of the gate, the

wire parasitic capacitance, and the input capacitance of the load. Since the output capacitance

and input capacitance for the gates can be balanced by selecting appropriate cells, the wire

parasitic capacitance is the most challenging part to balance the total output loading. Fig. 5.6

shows the method called differential routing technique to balance the wire load presented

in [41].

Switching Capacitors

Switching capacitors are used to make the power consumption of different operations con-

stant to resist the DPA attack. Fig. 5.7 shows the circuit proposed by Tokunaga and Blaauw

to equalize the current consumption. The switching cycle starts with supply trigger S1. In

this cycle, the capacitor is charged to full potential by directly connecting the power supply

to the capacitor. In the next cycle, supply trigger is opened and logic trigger is closed. Then

the current demanded by the circuit is now supplied by capacitors. At last, the shut trigger is

closed for the capacitor reaching a known state. These three states are performed repeatedly

and can be done in parallel by an array of capacitors.

87

���������

��	
��	�

���

����������

���������

������������

�� �!� ��"�

#�"���$%�&���

����

�
	
�
 �

��
��

%
�%

��
��

�&
��

�

�
�
�
"
��

&

!
��
��

�
'

&

�
��

�
�
��

�
�
&

�
�
�
�

�
�
�
�
#

�"
&

������%����(%�%�)��*�&&�����

�� �!�$

("�%��*�)�+,

()��

���������%&����

���*���

�-

Figure 5.8: Block diagram of the pseudo random based DPA-resistant AES chip.

5.2 Pseudo Random Based DPA Countermeasure Circuit

Block diagram of the proposed DPA-resistant AES chip, including an I/O buffer, an AES

engine, an on-chip dynamic pseudo random number generator (PRNG), as well as the pro-

posed DPA countermeasure circuit, is shown in Fig. 5.8. The I/O data buffer is a 1024×128

embedded SRAM with 512 entries for plaintext and 512 entries for ciphertext. The AES

engine can support encryption and decryption for key lengths 128, 192, and 256 specified

in FIPS-197 [8]. The on-chip dynamic PRNG and the DPA countermeasure circuit work to-

gether to counteract the DPA attacks. Details of these components are given in the following

subsections.

5.2.1 Ring Oscillator Based DPA Countermeasure Circuit

Both DPA countermeasure and on-chip PRNG circuits are designed to dynamically change

power signatures of the AES crypto core. Unlike power-masking methods that change data

blocks by adding random masks, the proposed DPA countermeasure circuit and the on-chip

PRNG can work in parallel with the AES core, implying that no extra delay will be induced

in the critical path.

88

���������
��	
������

�������������������
�

������

�������������������
�

������

�������������������
�

������

�������������������
�

������

��
����������
���������

�
���
��

������

���������

�
���
��

������

��
����������

Figure 5.9: Detailed structure of the DPA countermeasure sub-circuit.

The DPA countermeasure circuit is composed of 16 identical sub-circuits and each sub-

circuit is based on digitally controlled ring oscillators as shown in Fig. 5.9. All these 16 sub-

circuits will be enabled at the same time when the AES core is activated. Each sub-circuit

consists of 4 digital ring oscillator sets and each of which is composed of 3 ring oscillators.

Two of them are directly activated by internal control signals, which are obtained by bit-wise

XORing a random byte from the PRNG and a data byte from the AES core. Data bytes from

the AES core are incorporated to generate more random internal control signals because the

PRNG always starts from a deterministic state after system reset. If data bytes from the AES

core are incorporated, different internal control signals can be generated with different data

blocks. Remaining ring oscillators are indirectly activated by the combination of internal

control signals. Furthermore, a global enable signal controlled by the AES core can be used

to turn off these ring oscillators to reduce the power consumption. The amount of additional

power depends on the number of activated ring oscillators. As a result, overall power of

the chip at every cycle can be randomly changed to make it independent of predicted power

models.

To minimize area overhead of the DPA countermeasure circuit, the number of inversion

stages of a ring oscillator should be as short as possible. Because ring oscillators must be

initialized and controlled by internal and global control signals, at least three inversion stages

89

���������	���
����

��������	���
����

���������	���
����

���������	���
����

Figure 5.10: The power traces of ring oscillators with different inversion stages.

are required. As shown in Fig. 5.9, internal control signals and their combination are applied

to one NAND gate and the global enable signal is applied to the other NAND gate. A ring

oscillator will be activated only when the corresponding internal control signal is logic one.

Furthermore, the DPA countermeasure circuit would be activated only when the AES core is

working. Fig. 5.10 shows power signatures of ring oscillators with 3, 5, 7, and 9 inversion

stages. All ring oscillators are controlled by the same data bytes and random bytes, and

power signatures shown in Fig. 5.10 are quite similar except power values. A section of

wave is zoomed in to show that relative changes of the current are maintained with different

inversion stages. Therefore, 3 inversion stages are adopted in the DPA countermeasure circuit

to minimize area overhead. Note that the pulse width would be too short that internal signals

of ring oscillators may not reach full rail. However, since ring oscillators still consume

additional power, the DPA resistance of our proposal can be increased even they cannot

reach full rail.

The number of ring oscillators in each DPA countermeasure sub-circuit is another design

consideration for area overhead. Since each sub-circuit is controlled by a data byte and a

random byte, the most intuitive way is to adopt 8 ring oscillators in a sub-circuit. However,

this architecture is still vulnerable to the DPA attack because random power consumption of

the proposed DPA countermeasure circuit cannot dominate over total power consumption.

From equation (4.2), it is obvious that the correlation coefficient would approach zero if

90

����

����

����

����

����

����

��	�

��
�

������ ������ ���� ����� �����

����

����

����

����

����

����

��	�

��
�

������ ������ ���� ����� �����

� ���	�	�� � ��������

Figure 5.11: The power distribution of AES engines.

variables hn,i and tn,j are independent. Once power consumption of the DPA countermeasure

can dominate, the standard deviation of tn,j will be increased. Therefore, the correlation

coefficient of correct key hypothesis would also approach zero. From SPICE simulation

in 90 nm CMOS technology, power consumption of a single ring oscillator is around 90

µW and that of one sub-bytes module, the most power consumptive component, is around

150 µW. As a result, at least two ring oscillators are activated at the same time in order to

dominate over power consumption of one sub-bytes module. As shown in Fig. 5.9, 2 ring

oscillators are activated even when Hamming weight of internal control signals is 1. For

Hamming weight more than 1, more than 2 ring oscillators would be activated.

Fig. 5.11 shows simulated power traces of encryption operations with the same data block

repeatedly applied to both the unprotected and protected AES core, respectively. Power

traces of the unprotected and protected core are superimposed to show the effect of proposed

DPA countermeasure circuit. As shown in this figure, power traces of the protected core

have quite different characteristics even when the same data block is applied. The probability

density function (PDF) at an interested time in the last round is also provided in Fig. 5.11.

The PDF plot shows that power distribution of the unprotected core is quite centralized,

indicating that the DPA attack can be used to disclose secret keys. On the contrary, PDF

91

plot of the protected AES core at the same time instance is also shown in Fig. 5.11 enclosed

by black rectangular. The standard deviation is increased and the distribution becomes more

flattened than that of the unprotected AES core. Because it is not easy to measure power

consumption of individual modules of the protected AES core, the uncorrelated power of ring

oscillators is used to increase the standard variation of total power consumption. Once the

standard variation is increased, correlation coefficients can therefore be reduced according to

equation (4.2) and therefore that of the correct key hypothesis would not lead to a significant

peak. Hence, it is much difficult to disclose secret keys and the security level of the AES

chip can be largely enhanced.

5.2.2 Dynamic Pseudo Random Number Generator

An on-chip PRNG is used to control the DPA countermeasure circuit. The most common

method to implement a PRNG is based on linear feedback shift registers (LFSR), but charac-

teristic polynomials can be broken easily due to regularity of the output sequence. A dynamic

PRNG (DPRNG) [74] can change the feedback configuration of a LFSR to produce a more

unpredictable output sequence. Block diagram of an 8-bit DPRNG is shown in Fig. 5.12. In

order to generate 8 random bits at the same time, the DPRNG consists of 8 LFSRs based

on [74] for each random bit. In addition, in order to further increase period of the 8-bit

random byte, the length of each LFSR is chosen to be different. That is, characteristic poly-

nomials with different degrees are used for each LFSR. With this architecture, period of the

8-bit sequence can be much higher than the 1-bit architecture.

The feedback configuration of each LFSR is dynamically selected from 4 characteristic

polynomials by a 5-bit LFSR and a decoder. The purpose of the 5-bit LFSR and the decoder

is to randomly configure the feedback network of each LFSR and make the output sequence

meet the FIPS SP800-22 requirements [75]. To reduce the hardware cost, only polynomi-

als with minimum terms are used as feedback configurations for each LFSR. With these

minimum-term characteristic polynomials, the number of XOR gates for the feedback con-

figuration is minimized. For example, characteristic polynomials used in the longest 17-bit

92

����������	���
��������	
��

�����
�����������

�

�

������

���� �

��
!�"

�#
!�"

�$
!�"

�#%
! "

�#&
! "

�#'
! "

�%
! "

�������

����������	���
��������	
�#

� ����#���
!#"

�#
!#"

�#�
!#"

����������	���
��������	
�

� ��
! "

�#
! "

�#&
! "

�#(
! "

�
! "

�#�
! "

��������

�	
�

�����
��	�
	�

������� 	��

�� ����������������

�� ����������������

�� ���������������

�� ����������������

Figure 5.12: The block diagram of the on-chip dynamic PRNG.

LFSR is provided in Fig. 5.12. Since terms x17, x15, x5, x0 can be shared among these 4 char-

acteristic polynomials, the feedback circuit requires only one additional 4-to-1 multiplexer

instead of 4 combinational circuits for each configuration as also shown in Fig. 5.12.

5.2.3 Security Evaluation on SubBytes

In this sub-section, security analysis results of AES engines with LUT based and compos-

ite field based SubBytes are presented. The proposed DPA countermeasure circuit can be

applied to different implementation architecture to provide the DPA resistance.

Fig. 5.13(a) shows the analysis result of a LUT based SubBytes implementation with

proposed DPA countermeasure circuit. The correct key now does not result in the highest

correlation and is now hidden in the analysis result. Therefore, even if attackers can find a

peak in the analysis result, they still cannot find the correct key. As shown in Fig. 5.13(b),

the correlation of the correct key is still lower than some other key hypotheses after one

million traces are used for analysis. Besides, our proposed DPA countermeasure circuit

can also efficiently counteract DPA attacks along with a composite field based SubBytes

as shown in Fig. 5.14(a). The correlation of the correct key is always lower than some

other key hypotheses, so the correct key can also be hidden under the protection of our DPA

countermeasure circuit. Fig. 5.14(b) shows that the correct key again cannot be found even

93

0 50 100 150 200 250
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x 10−3

Key hypotheses
(a)

C
or

re
la

tio
n

co
ef

fic
ie

nt

0 1 2 3 4 5 6 7 8 9 10
x 105

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Measurements
(b)

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 5.13: DPA results for LUT based SubBytes.

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4
x 10−3

Key hypotheses
(a)

C
or

re
la

tio
n

co
ef

fic
ie

nt

0 1 2 3 4 5 6 7 8 9 10
x 105

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Measurements
(b)

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 5.14: DPA results for composite field based SubBytes.

94

��������	
������

�
�	�
����	

���	�������

����������
�

��	

�
�
�
��
	
��
�
	�
�

��
�
�
	�
�

��
�
��
�
	�
�

��
�
	�
�

�
�

�
�!

��

�
�

�
�
�
��

�
�
�
�

"
��
�

#�	����	���$�	��%�
!������	

$�	�&'�()* $�	�&��+('�*
������

$%���
��	�� ���������!�	�

�

�

��

���	
��

��	
��

���	
��

��	
��

���	
��

��	
��

���	
��

��	
��

�

�

��

��

�

�

�

$�	�&+()*

$�	�&�,(�*

$�	�&�'(�-*

$�	�&'�(�.*

�����

����������
��

�����

����������
��

Figure 5.15: Block diagram of true random like based DPA-resistant AES engine.

one million power traces are used for analysis.

5.3 True Random Like Based DPA Countermeasure Cir-

cuit

Fig. 5.15 shows block diagram of the proposed true random like based DPA-resistant AES

engine. The AES engine contains an integrated data process unit for data encryption/decryption

and a on-the-fly key expansion unit for round key scheduling. The DPA countermeasure cir-

cuit is controlled by the AES engine when the data is processed in the data process unit.

When the AES engine is in the idle state, the DPA countermeasure circuit is turned off to

eliminate unnecessary power consumption. The 128-bit data path is connected to the DPA

countermeasure circuit to dynamically enable different number of ring oscillators to resist

the DPA attack. The least significant 32 bits are connected to the module with self gener-

ated random sequence and the remaining bits are connected to 12 ring oscillator based DPA

countermeasure modules.

In this section, a serious issue of pseudo random based architecture is analyzed first. This

95

issue is a common problem if a pseudo random number generator is adopted. The improved

architecture based on true random like number generator is presented to self generate a true

random like sequence by reusing ring oscillators of the DPA countermeasure circuit.

5.3.1 Security Issue on PRNG

To demonstrate effect of the DPA countermeasure circuit, power traces recorded by SPICE

simulation are illustrated in Fig. 5.16(a). This figure shows power traces of an unprotected

AES circuit with the same input pattern but two different secret keys. The same input data is

repeatedly encrypted for 100 times and those two secret keys differ only in the least signif-

icant bit. The distribution of the power consumption at a specific time instance is shown in

Fig. 5.16(b). Standard deviations for both keys are relatively small and normal distributions

are quite centralized. Since normal distributions of different secret keys can be easily distin-

guished, the DPA attack can use the statistical analysis to disclose secret keys with such kind

of distribution.

On the contrary, power traces of the protected AES circuit with the same input pattern

and secret key are shown in Fig. 5.17(a). Normal distributions of these two different secret

keys are shown in Fig. 5.17(b). The standard deviation is largely increased compared with

the unprotected AES circuit, leading to more flattened distributions. In this way, distributions

of two different secret keys become very difficult to be distinguished and the DPA resistance

can be largely increased.

However, there is still a security issue with this pseudo random based architecture. The

random byte from the pseudo random number generator would be the same after the system

is reset. Therefore, the additional power consumption added by the DPA countermeasure

circuit in each cycle would be the same if the attacker resets the system before recording

each power trace. Fig. 5.18 shows power traces and distributions if the system is reset before

every operation. It is clear from the figure that the same amount of power consumption

is added in each cycle. Power distributions with two different secret keys become easily

distinguishable again, indicating that the DPA resistance is decreased.

96

����

����

����

����

����

����

��	�

��
�

�� �� �� �� �� �� �� �� 	�

�
�

�
�
�
��
��
�

���������

����

����

������

	
�		�
������������������������	

������

	
�		�
������������������������

��

��

Figure 5.16: Power distributions of the unprotected AES engine.

�

���

���

���

���

���

���

��	

�� �� 	�
� ��

�
�

�
�
�
��
��
�

���������

����

����

������

�	����	�������������������������

������

�	����	������������������������	

 �!

 �!

Figure 5.17: Power distributions of the pseudo random based architecture.

97

�

���

���

���

���

���

���

��	

��

�� �� �� �� �� �� 	� 	�
�

�
�

�
�
�
��
��
�

���������

����

����

������

�	����	�������������������������

������

�	����	������������������������	

 �!

 �!

Figure 5.18: Power distributions of DPA-resistant AES engine with reset.

5.3.2 DPA Countermeasure with True Random Like Sequence

To solve the security issue in the pseudo random based architecture, a true random like

sequence for the DPA countermeasure circuit is required. However, most true random like

number generators are analog circuits with much higher power consumption. Golić proposed

a digital method to generate random data by using ring oscillators in fibonacci or Galois

configuration [76]. As shown in Fig. 5.19, fibonacci and Galois ring oscillator consist of a

series of inverters connected with feedback polynomial f(x) =
∑r

i=0
fix

i, where f0 = fr =

1. The coefficient fi = 1 indicates that the path is connected while fi = 0 indicates no

connection.

Instead of designing an extra true random like number generator, Fig. 5.20 shows the

proposed DPA countermeasure circuit that can generate a true random like sequence of itself.

Since the DPA countermeasure circuit is composed of several digital ring oscillators, these

oscillators can be reused as random sources of the true random like number generator. Note

98

�

�

Figure 5.19: (a) Fibonacci ring oscillator (b) Galois ring oscillator.

�������

�	�����

������

�	����

�������

�	�����

�������

�	�����

��

��

������

������

�����	

�����

�����

�������������

�����

������������

�� �� �� �� ��

Figure 5.20: DPA countermeasure circuit with true random like sequence.

that the proposed DPA countermeasure circuit consists of 4 fibonacci ring oscillators sets

(FiRO), 4 Galois ring oscillators sets (GaRO), and 8 post-processing circuits. The FiRO and

GaRO are composed of 4 fibonacci and Galois ring oscillators, respectively.

The combination of 2 fibonacci ring oscillators and 2 Galois ring oscillators are used as

the random source to generate one random sequence. These 4 ring oscillators are selected

from the FiRO and GaRO randomly. In order to generate 8 independent random bits for

each data byte, total 32 ring oscillators (including fibonacci and Galois ring oscillators) are

required in the DPA countermeasure circuit. These 8 random sources are sampled by flip-

flops for further post-processing. After post-processing, these 8 random bits are XORed

with data bytes from the cryptographic circuit to dynamically enable oscillators in the FiRO

and GaRO. The FiRO and GaRO now work not only as random sources in [76] to generate

99

���

���

����

����

��	
��
��

��	
��
��

Figure 5.21: The randomness analysis of random sequence.

random data but also as the digitally controlled ring oscillators in the proposed DPA coun-

termeasure circuit.

As discussed in [76], the fibonacci ring oscillator will not have a fixed point if and only

if f(x) = (1 + x)h(x) and h(1) = 1, where f(x) is the polynomial presentation of the

feedback configuration for fibonacci ring oscillator and h(x) is a primitive polynomial. Note

that a fixed point is a state that the output vector of inverters is an alternating string of 1

and 0 ({01010 · · · } or {10101 · · · }). Since each random source is from the combination of

four different ring oscillators, at least four different h(x) are required. To have four different

forms of h(x), the minimum degree of f(x) for the fibonacci ring oscillator is 6. Similarly,

the condition for the Galois ring oscillator having no fixed point is f(1) = 0 and the degree

of f(x) must be odd [76]. Again, in order to have four different configurations, the minimum

degree of f(x) for Galois ring oscillators must be 7. The selected four fibonacci and Galois

ring oscillators are shown in Fig. 5.20 for minimum hardware cost consideration.

The post-processing circuit is composed of LFSRs with different initial seeds. The

purpose of the post-processing circuit is to remove bias of random sources. In each post-

processing circuit, the feedback value is XORed with that from ring oscillators. In this way,

even the post-processing circuit starts from a deterministic state after the system is reset, the

generated random sequence would not be the same because the random source is incorpo-

100

�

���

���

���

���

���

���

��	

��

�
 �� �
 	� 	

�

 �� �
 ���

�

�
�
�
�
��
��
�

���������

����

����

������

�	����	�������������������������

������

�	����	������������������������	

 �!

 �!

Figure 5.22: Power distributions of true random like based architecture.

rated into the feedback of LFSRs. Fig. 5.21(a) shows means and deviations of one random

source for 100 system reset. Fig. 5.21(b) shows means and deviations of the random bits af-

ter post-processing circuit. The means show that the random sequence would be VDD/2 and

standard deviations show that the generated sequence is true random like after a warm-up

time. Although standard deviations are zero in the first few cycles, which means the gener-

ated bits in these cycles would be always the same after the system is reset. However, after

the warm-up time, standard deviations would increase significantly and the random number

generator would enter the true random like state.

To demonstrate the effect of the true random like based DPA countermeasure circuit,

power traces of the AES engine with proposed DPA countermeasure circuit are shown in

Fig. 5.22(a). The same conditions are used as previous analysis. Power traces now have

different power consumption characteristics even the system reset is asserted before every

operation. Normal distributions shown in Fig. 5.22(b) become flattened again due to the true

101

random like sequence. These two distributions can not be easily distinguished and therefore

the DPA resistance of the true random like based architecture is increased even if the system

is reset before every operation.

102

Chapter 6

Implementation Results and Comparison

This chapter presents chip implementation results of pseudo and true random like based

DPA-resistant AES engines in UMC 90 nm CMOS technology. In addition, the DPA resis-

tance of these two AES engines are also analyzed to demonstrate the effect of the proposed

DPA countermeasure circuit. As last, the proposed DPA-resistant AES engines are com-

pared with state-of-the-art designs in terms of area, throughput, power consumption, and

DPA resistance.

6.1 Chip Implementation Results

Chip implementation results for the pseudo random based and true random like based archi-

tectures are provided in the following two sub-sections.

6.1.1 Pseudo Random Based Architecture

The summary of chip implementation results of the pseudo random based architecture is

listed in TABLE 6.1. The first part provides the physical specification of the fabricated chip

and the second part provides implementation results of the test chip.

The cell area for the unprotected AES core is 0.0885 mm2 with 31.6 k equivalent 2-input

NAND gates. The cell area for the DPA countermeasure circuit and the on-chip PRNG is

103

Table 6.1: Chip summary of pseudo random based architecture
Unprotected Protected

Technology 90 nm
Core Voltage 1 V
IO Voltage 2.25 V

Package 48-Pin DIP
Chip Area 1220 × 926 µm2

Core Area 944 × 650 µm2

Cell Area 0.0885 mm2 0.0975 mm2

Max Frequency 237 MHz 237 MHz
Max Throughput 2.76 Gbps 2.76 Gbps

Power (1V,237MHz) 39.5 mW 45.6 mW

0.009 mm2. The area overhead of the DPA countermeasure circuit and the on-chip PRNG to

a single AES core is 10.2%. However, when considering the I/O buffer, the area overhead of

the DPA countermeasure circuit would be reduced to only 2.6%. The maximum measured

operating frequency is 237 MHz and the throughput of AES-128 at this operating frequency

is 2.76 Gbps. Since the DPA countermeasure circuit works in parallel with the AES core,

the protected core can achieve zero throughput degradation. The power consumption of the

unprotected AES core and the protected AES core is 39.5 mW and 45.6 mW, respectively.

The power overhead of the DPA countermeasure circuit is 15.4%, indicating our design

can be used in mobile devices requiring both low power consumption and high security.

Fig. 6.1 shows the power breakdown for the unprotected AES operation. The AES core

consumes 50.44% of total power and the embedded memory consumes almost 40% of total

power. As mentioned earlier, the power consumption of our proposed 3-stage ring oscillator

is 90 µW and each digital ring oscillator set is activated with probability 75%. That is, on

average, 6 ring oscillators in a DPA countermeasure sub-circuit will be activated at each

cycle. Therefore, a DPA countermeasure sub-circuit will consume 540 µW. Since the DPA

countermeasure circuit consists of 16 identical sub-circuits, 8.64 mW additional power is

required to protect the AES core and power overhead would be 43% without considering

infrastructure for test chip fabrication. However, when power consumption of the embedded

memory for data IO is included, power overhead is reduced to around 21.7%. Moreover,

the DPA countermeasure can be disabled during loading phases of input and output data

104

��������

	
���

����

������

������

�������

�����

�����

���	�

Figure 6.1: Power breakdown of the test chip.

�����������	

�����������

	��

����������

	��

�����

�����������

Figure 6.2: The die micrograph of pseudo random based test chip.

blocks. For this test chip, when the data loading phase is included, the power overhead can

be reduced to about 15%. B

Fig. 6.2 shows the die micrograph of the test chip. The test chip contains a memory, an

unprotected AES engine, and a protected AES engine as partitioned in this figure. Detailed

location of the protected AES core is specified in this figure, where the location of ring oscil-

lators is also specified by black blocks. Since placement is done by EDA tool automatically,

it is not easy to identify the DPA countermeasure circuit from real silicon. As a result, the

invasive alternation such as FIB to cut connections from ring oscillators or DPRNG to the

AES core is hard to be achieved.

105

Table 6.2: Chip summary of true random like based architecture
Unprotected Protected

Technology 90 nm
Core Voltage 1 V
IO Voltage 2.25 V

Package 40-Pin DIP
Chip Area 787 × 787 µm2

Core Area 470 × 470 µm2

Cell Area 0.0979 mm2 0.104 mm2

Max Frequency 255 MHz 255 MHz
Max Throughput 2.97 Gbps 2.97 Gbps

Power (1V,255MHz) 7.68 mW 8.70 mW
Power (1V,100MHz) 3.35 mW 4.71 mW

6.1.2 True Random Like Based Architecture

The summary of chip implementation results of the true random like based architecture is

listed in TABLE 6.2. The first part again provides physical specifications of the test chip and

the second part provides implementation results of the chip.

The cell area for the AES engine is 0.0979 mm2 and that of the DPA countermeasure

circuit is 0.0061 mm2, indicating the area overhead is around 6.2%. The area overhead is

slightly reduced from 10.2% to 6.2% for the true random like based architecture because

ring oscillators are reused to generate a random sequence and the PRNG can be eliminated.

The maximum operating frequency for the AES engine is 255 MHz with throughput up to

2.97 Gb/s. Note that when the DPA countermeasure circuit is enabled to resist the DPA

attack, the maximum operating frequency of the AES engine is not degraded, which means

no throughput degradation when the DPA resistance is provided. The power consumption

for the AES engine working under 255 MHz with the DPA countermeasure circuit enabled

and disabled is 7.68 mW and 8.7 mW, respectively. If the operating frequency is decreased

to 100 MHz, the power consumption is reduced to 3.35 mW and 4.71 mW, respectively.

Fig. 6.3 shows the die micrograph of the test chip. The test chip contains the proposed

true random like based DPA-resistance AES engine as highlighted in this figure. Note that

another irrelative design is also included for other purpose.

106

������

���	
�

����������

�
	��

����

���������������

�	���	��

Figure 6.3: The die micrograph of true random like based test chip.

6.2 Security Analysis Results

The DPA attack is performed on both test chips to show the DPA resistance of the proposed

DPA countermeasure circuit in this section.

6.2.1 Pseudo Random Based Architecture

Power traces of the test chip for one encryption operation are shown in Fig. 6.4. Fig. 6.4(a)

shows a measured power trace of the unprotected AES core for one encryption operation.

11 rounds of the AES encryption process can be easily distinguished and the peak current

consumption is corresponding to round keys and data blocks. Fig. 6.4(b) shows the power

trace of the protected AES core for the same encryption operation. Power consumption

characteristics are now changed by the DPA countermeasure circuit.

DPA attack results for the least significant key byte are shown in Fig. 6.5. Fig. 6.5(a)

shows that the correlation coefficient of the correct key hypothesis is still not distinguishable

from other incorrect key hypotheses with 107 measurements. Compared with simulation-

based DPA attack results, the correlation coefficient of the correct key hypothesis is reduced

from -0.003 to -0.0003. If environment noises are considered, the measurement to disclosure

(MTD) is increased by 38 times as discussed earlier. As a result, since the MTD of the

107

(a) Unprotected core

(b) Protected core

Figure 6.4: Power traces of the test chip for one encryption operation.

0 50 100 150 200 250
−5

−4

−3

−2

−1

0

1
x 10−4

Key hypotheses
(a)

C
or

re
la

tio
n

co
ef

fic
ie

nt

0 1 2 3 4 5 6 7 8 9 10
x 106

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1
x 10−3

Measurements
(b)

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 6.5: DPA results for pseudo random based test chip.

108

(a) Unprotected core

(b) Protected core

Figure 6.6: Power traces of the test chip for one encryption operation.

protected AES core is more than 106 measurements in simulation, the estimated MTD of

the protected AES core could be more than 3.8× 107 measurements when considering these

non-ideal effects. However, from the DPA attack on the test chip, the MTD of the protected

AES core is at least 107 measurements as shown in Fig. 6.5(b), which is sufficient to resist

the DPA attack.

6.2.2 True Random Like Based Architecture

Power traces of the test chip for one encryption operation are shown in Fig. 6.6. Fig. 6.6(a)

is the measured power trace of the unprotected AES core for one encryption operation. The

power trace of the protected AES core is also given in Fig. 6.6(b) for comparison. The peak

power consumption of every clock cycle is now changed by the DPA countermeasure circuit,

which leads to the DPA resistance of the AES engine.

DPA attack results for the least significant key byte is shown in Fig. 6.7. Note that the

109

0 50 100 150 200 250
−2

−1

0

1

2

3

4
x 10−4

Key hypotheses
(a)

C
or

re
la

tio
n

co
ef

fic
ie

nt

0 1 2 3 4 5 6 7 8 9 10
x 106

−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10−3

Measurements
(b)

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 6.7: DPA results for true random like based test chip.

system reset is asserted before every encryption operation to demonstrate the effect of the

true random like based architecture. Fig. 6.7(a) shows correlation coefficients of all key

hypotheses with 107 measurement. As shown in this figure, the correlation coefficient of the

correct key hypothesis can not be distinguished from other wrong key hypotheses. That is,

the attacker can not disclose the correct key byte from the analysis result.

To illustrate the security in terms of MTD, correlation coefficients of all key hypotheses

for different number of measurements are given in Fig. 6.7(b). In this figure, the correlation

coefficient of the correct key byte is plotted in black while that of wrong key hypotheses are

plotted in gray. This figure shows that the correct key hypothesis can not be disclose with

less than 107 measurements. The security of the true random like based architecture now can

provided the same security level even if system reset is asserted before every operation.

To further assess the number of required power traces to disclose the secret key, equation

(4.3) and Table 4.1 is used to estimation the number of power traces to distinguish correlation

value between 0.0003 and zero. Note that 0.0003 is used as ρck,ct obtained from the analysis

result. With ρck,ct equals to 0.0003, the assessed MTD for the protected AES engine could

be around 3 × 108 measurements.

110

Table 6.3: Comparison for hardware cost
Design Technology DPA Core Area OverheadA

True Random Like Based 90 nm N 0.0979 mm2 -
Y 0.104 mm2 6.2%

Pseudo Random Based 90 nm N 0.0885 mm2 -
Y 0.0975 mm2 10.2%

WDDL [41] 0.18 µm N 0.79 mm2 -
Y 2.45 mm2 210.1%

Switching Capacitors [42] 0.13 µm N 0.35 mm2 -
Y 0.44 mm2 27.1%

6.3 Comparison

The comparison to state-of-the-art designs in terms of area overhead, throughput degrada-

tion, power overhead, and DPA resistance are presented in this section. Note that only silicon

proven designs are listed for conciseness. Table 6.3 lists the comparison in terms of the hard-

ware area. The WDDL cells are usually 2-3 times larger than the standard cells and therefore

the protected AES engine proposed by Hwang et al. results in 210% area overhead. Switch-

ing capacitors proposed by Tokunaga and Blaauw can significantly reduce the area overhead

to 27.1%. Our proposed architectures require only 10.2% and 6.2% more silicon area to

resist the DPA attack. This factor indicates that the proposed DPA countermeasure circuit

can be widely adopted in area limited applications such as smart cards or secure RFIDs.

Table 6.4 lists the comparison in terms of the throughput. The maximum operating fre-

quency of different AES engines differ due to different architectures and technologies. It is

more fair to compare the performance index in terms of throughput degradation. That is,

how much will the DPA countermeasures affect the throughput. The WDDL cells result in

longer cell delay and the maximum operating frequency is degraded by 74% when the DPA

resistance is provided. For switching capacitors, the current consumed by the AES engine is

now supplied by an array of capacitors. The maximum operating frequency is also degraded

by 50% due to the operation of these capacitors. Since the proposed DPA countermeasure

circuit works in parallel with the AES engine, no extra delay in the AES engine is induced

when the DPA resistance is provided. Therefore, the maximum achievable throughput is not

111

Table 6.4: Comparison for throughput
Design Technology DPA Frequency Throughput OverheadT

True Random Like Based 90 nm N 255 MHz 2.97 Gb/s -
Y 255 MHz 2.97 Gb/s 0%

Pseudo Random Based 90 nm N 237 MHz 2.76 Gb/s -
Y 237 MHz 2.76 Gb/s 0%

WDDL [41] 0.18 µm N 330 MHz 3.84 Gb/s -
Y 85.5 MHz 0.99 Gb/s 74.2%

Switching Capacitors [42] 0.13 µm N 200 MHz 2.56 Gb/s -
Y 100 MHz 1.28 Gb/s 50%

Table 6.5: Comparison for power
Design Technology DPA Power Condition OverheadP

True Random Like Based 90 nm N 7.68 mW 1V, 255MHz -
Y 8.70 mW 1V, 255MHz 13.3%

Pseudo Random Based 90 nm N 39.5 mW 1V, 237MHz -
Y 45.6 mW 1V, 237MHz 15.4%

WDDL [41] 0.18 µm N 54 mW 1.8V, 50MHz -
Y 200 mW 1.8V, 50MHz 270.4%

Switching Capacitors [42] 0.13 µm N 33.32 mW 1.2V, 100MHz -
Y 44.34 mW 1.2V, 100MHz 33%

affected. This factor indicates that the proposed DPA countermeasure circuit can also be

widely adopted in high throughput applications such as secure storage devices or high speed

communications.

Table 6.5 shows the comparison in terms of the power consumption. Again, since the

power consumption largely depends on architectures and technologies, the power consump-

tion overhead is more important than absolute power consumption values. The WDDL

method requires a lot of redundant gates to balance the power consumption of different

transitions. Therefore, the resulting power overhead is more than 270%. For switching

capacitors, extra logic to control the array of capacitors is required and therefore the power

overhead is around 33%. Note that in [42] the power consumption of other circuits such as

I/O memory is included. That is, the power overhead will be much higher if only the AES

engine is considered. The proposed DPA countermeasure circuit can result in only 13.3%

power overhead.

Table 6.6 shows the result that considers the area overhead, throughput degradation, and

112

Table 6.6: Comparison for figure of merit
Design OverheadA OverheadT OverheadP Figure of merit

True Random Like Based 6.2% 0% 13.3% 1.20
Pseudo Random Based 10.2% 0% 15.4% 1.27

WDDL [41] 210.1% 74.2% 270.4% 20.01
Switching Capacitors [42] 27.1% 50% 33% 2.54

power overhead at the same time. The figure of merit is defined as (OverheadA + 100%) ×

(OverheadT + 100%)× (OverheadP + 100%). The smaller value indicates less impact on

the AES engine when the DPA resistance is provided. This table shows that our proposal

outperforms other state-of-the-art designs.

113

Chapter 7

Conclusion and Future Works

In this chapter, conclusions on the implementation of different AES engines and DPA-

resistant AES engines are given first. Then some possible research directions are discussed

in the following section.

7.1 Conclusion

The AES algorithm has been widely adopted in different applications to provide data se-

curity. However, design considerations for different applications differ a lot. The AES al-

gorithm can be implemented with different architectures to meet requirements for different

applications. As a result, the implementation of AES engines are discussed first in this dis-

sertation.

For applications that require throughput higher than 10 Gb/s, the AES can be imple-

mented using loop unrolling and pipelining. The 10 Gb/s throughput requirement can be

met by unrolling two rounds of the AES algorithm with a 2-stage pipelining architecture.

The implementation result shows that 10 Gb/s throughput can be achieved with 0.152 mm2

silicon area, or 54K equivalent 2-input NAND gates, in 90 nm CMOS technology. For ap-

plications such as 40 GbE, the throughput requirement can be met by a fully unrolled and

pipelined architecture. The implementation result shows that 50 Gb/s throughput can be

achieved with 0.451 mm2 silicon area, or 160K equivalent 2-input NAND gates, in 90 nm

114

CMOS technology. For 100 GbE, the throughput requirement can be met by using two 50

Gb/s AES engines because it is not easy for cell based design to achieve 100 Gb/s in a single

core.

For area limited applications such as smart cards or RFIDs, the throughput requirement

is less important. As a result, data-path width of the AES engine can be reduced from 128-

bit to 8-bit to largely reduce the hardware cost. Only 8 bits are processed in each cycle,

and therefore the latency is increased from 11 cycles to 172 cycles. Moreover, only the

encryption function of the AES with key length 128 bits is implemented to reduce hardware

complexity. The data encryption and decryption can be achieved by modes of operation

for block ciphers. The implementation result shows that the silicon area can be minimized

to 7800 µm2, or 2764 equivalent 2-input NAND gates, in 90 nm CMOS technology. The

throughput can be up to 137 Mb/s while operating under frequency 185 MHz, which is quite

sufficient for smart cards or RFIDs.

For applications that require both high throughput and low cost such as high speed mobile

devices, an area efficient architecture is also presented. To achieve Gb/s throughput, 128-

bit data-path is required. To reduce the hardware cost, no loop unrolling and pipelining

architecture is adopted. The implementation result shows that 1.69 Gb/s throughput can be

achieved with only 0.044 mm2 silicon area, or 15.58K equivalent 2-input NAND gates, in 90

nm CMOS technology.

In addition to the architecture design of the AES algorithm, the security issue of cryp-

tographic devices is also discussed in this dissertation. The power analysis, especially the

DPA attack, is used to attack the proposed AES engine. The DPA attack result shows that

only 9300 measurements are sufficient to disclose the secret key of an AES engine. Com-

pared with the brute force method, which requires 2128 attempts to disclose the secret key,

the efficiency is significant improved.

To resist the DPA attack, a DPA countermeasure circuit based on digitally controlled

ring oscillators is presented. The statistical analysis of power traces for both pseudo and true

random based architectures is discussed. Although the pseudo random based method has

115

the advantage of easy implementation, the DPA resistance is largely reduced if the system is

reset before recording the power trace. Therefore, a true random based architecture utilizing

ring oscillators is proposed to eliminate this security problem. As compared with the pseudo

random based architecture, the hardware overhead is slightly improved since ring oscillators

are shared by the DPA countermeasure circuit and the true random number generator. The

area overhead for the true random based architecture is largely reduced to only 6.2% while

no throughput degradation is induced. As a result, the proposed DPA countermeasure circuit

can be widely applied all applications that require both high security and low cost or high

throughput.

7.2 Future Works

There are several possible research directions for the power analysis or even side-channel

analysis attacks. In this dissertation, the DPA is conducted based on single time instance,

which is called as the first-order DPA attack. For the first-order DPA attack, attackers use

the measured power traces to disclose secret keys directly. However, several literatures work

on second-order or high-order DPA attack to disclose the secret key for the data-masking

methods [77, 78]. In data masking methods, the random masks may be reused to save the

required random sequence. As a result, by proper operations on power traces, such as aver-

aging or subtraction, the power information of random masks could be removed. Therefore,

instead of performing direct analysis on power traces, high-order DPA attacks analyzing the

manipulated power traces. Since the proposed DPA countermeasure circuit is based on data-

masking method, the high-order DPA attack on the DPA-resistant AES engine should be

further analyzed.

Another possible research direction is to reduce the power overhead of the DPA-resistance

AES engine for low power applications. Although the proposed DPA countermeasure can

reduce the power consumption overhead to 18%, the power overhead is still too high for

applications such wireless sensor networks. One possible solution is to utilize the concept

116

of dynamic voltage and frequency scaling (DVFS). For DVFS, the supply voltage can be

changed by controlling power gating cells and the number of turned on cells is determined

by a specific algorithm. Instead of this specific algorithm, the power gating celling can be

turned on by a random sequence. The number of ones in this random sequence indicates the

number of turned on power gating cells. As a result, the number of turned on cells would be

different for every operation. In this way, the power consumption can also be dynamically

changed for each operation. The power consumption would also reduce due to lower supply

voltage and lower operating frequency. For low power applications, the throughput is usu-

ally not an important consideration and the DVFS based method may provide an excellent

solution to reduce the power consumption.

In addition to the power analysis attacks, there is still some other side-channel attacks

that utilize the side-channel effect to disclose the secret key. For instance, the fault attack

relies on the fault injection to the cryptographic device to disclose the secret key [79–81].

This is also a possible research direction for future works.

117

Bibliography

[1] H. Wu, “The stream cipher hc-128,” in New Stream Cipher Designs, ser. Lecture Notes
in Computer Science, vol. 4986. Springer Berlin / Heidelberg, 2008, pp. 39–47.

[2] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius, “Rabbit:
A new high-performance stream cipher.” in FSE, 2003, pp. 307–329.

[3] D. Bernstein, “Salsa20,” eSTREAM, ECRYPT Stream Cipher Project, Report
2005/025, 2005, http://www.ecrypt.eu.org/stream.

[4] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert, “Sosemanuk, a fast
software-oriented stream cipher,” eSTREAM, ECRYPT Stream Cipher Project, Report
2005/027, 2005, http://www.ecrypt.eu.org/stream.

[5] M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for constrained en-
vironments,” eSTREAM, ECRYPT Stream Cipher Project, Report 2005/010, 2005,
http://www.ecrypt.eu.org/stream.

[6] S. Babbage and M. Dodd, “The mickey stream ciphers,” in New Stream Cipher Designs,
ser. Lecture Notes in Computer Science, vol. 4986. Springer Berlin / Heidelberg, 2008,
pp. 191–209.

[7] C. D. Canniére and B. Preneel, “Trivium - a stream cipher construction inspired by
block cipher design principles,” eSTREAM, ECRYPT Stream Cipher Project, Report
2005/010, 2005, http://www.ecrypt.eu.org/stream.

[8] Federal Information Processing Standards Publication 197 - Advanced Encryption
Standard, National Institute of Standards and Technology, Nov. 2001.

[9] Federal Information Processing Standards Publication 46-3 - Data Encryption Stan-
dard, National Institute of Standards and Technology, Oct. 1999.

[10] NIST Special Publication 800-67 - Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher, National Institute of Standards and Technology, May
2008.

[11] Federal Information Processing Standards Publication 185 - Escrowed Encryption
Standard (EES), National Institute of Standards and Technology, Feb. 1994.

[12] B. Schneier, “Description of a new variable-length key, 64-bit block cipher (blowfish),”
in FSE, 1993, pp. 191–204.

118

[13] E. Biham, R. J. Anderson, and L. R. Knudsen, “Serpent: A new block cipher proposal,”
in FSE, 1998, pp. 222–238.

[14] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, no. 6, pp. 644 – 654, Nov. 1976.

[15] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126,
February 1978.

[16] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, no.
177, pp. pp. 203–209, 1987.

[17] V. S. Miller, “Use of elliptic curves in cryptography,” in Lecture Notes in Computer
Science; 218 on Advances in cryptology—CRYPTO 85. Springer-Verlag New York,
Inc., 1986, pp. 417–426.

[18] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems,” in Proceedings of the 16th Annual International Cryptology Confer-
ence on Advances in Cryptology. Springer-Verlag, 1996, pp. 104–113.

[19] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proceedings of the 19th

Annual International Cryptology Conference on Advances in Cryptology. Springer-
Verlag, 1999, pp. 388–397.

[20] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael hardware
architecture with s-box optimization,” in Proceedings of Advances in Cryptography,
ser. LNCS, vol. 2248, 2001, pp. 239–254.

[21] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance testing of a
2.29-GB/s Rijndael processor,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp.
569–572, Mar. 2003.

[22] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost AES
processor,” IEEE Communications Magazine, vol. 41, no. 12, pp. 86 – 91, Dec. 2003.

[23] K. U. Järvinen, M. T. Tommiska, and J. O. Skyttä, “A fully pipelined memoryless 17.8
gbps aes-128 encryptor,” in Proceedings of the 2003 ACM/SIGDA eleventh interna-
tional symposium on Field programmable gate arrays, ser. FPGA ’03. ACM, 2003,
pp. 207–215.

[24] G. Saggese, A. Mazzeo, N. Mazzocca, and A. Strollo, “An FPGA-based performance
analysis of the unrolling, tiling, and pipelining of the AES algorithm,” in Field-
Programmable Logic and Applications, ser. Lecture Notes in Computer Science, vol.
2778. Springer Berlin / Heidelberg, 2003, pp. 292–302.

[25] X. Zhang and K. K. Parhi, “High-speed VLSI architectures for the AES algorithm,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 9, pp.
957 – 967, Sept. 2004.

[26] F. K. Gürkaynak, A. Burg, N. Felber, W.Fichtner, D. Gasser, F. Hug, and H. Kaeslin,
“A 2 Gb/s balanced AES crypto-chip implementation,” in Proceedings of the 14th ACM
Great Lakes symposium on VLSI, Boston, MA, USA, Apr. 2004, pp. 39–44.

119

[27] S. Morioka and A. Satoh, “A 10-Gbps full-AES crypto design with a twisted BDD S-
Box architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 12, no. 7, pp. 686 – 691, July 2004.

[28] T. A. Processor and A. Hodjat, “Speed-area trade-off for 10 to 100 Gbits/s throughput
AES processor,” in 37th Asilomar Conference on Signals, Systems, and Computers,
2003.

[29] A. Hodjat, D. D. Hwang, B. Lai, K. Tiri, and I. Verbauwhede, “A 3.84 Gbits/s AES
crypto coprocessor with modes of operation in a 0.18-µm CMOS technology,” in Pro-
ceedings of the 15th ACM Great Lakes symposium on VSLI, Chicago, Illinois, USA,
2005, pp. 60–63.

[30] A. Hodjat and I. Verbauwhede, “Area-throughput trade-offs for fully pipelined 30 to 70
Gbits/s AES processors,” IEEE Transactions on Computers, vol. 55, no. 4, pp. 366–
372, Apr. 2006.

[31] M. Alam, S. Ray, D. Mukhopadhayay, S. Ghosh, D. RoyChowdhury, and I. Sengupta,
“An area optimized reconfigurable encryptor for AES-Rijndael,” in Proceedings of the
conference on Design, automation and test in Europe, ser. DATE ’07. San Jose, CA,
USA: EDA Consortium, 2007, pp. 1116–1121.

[32] S. Y. Lin and C. T. Huang, “A high-throughput low-power AES cipher for network
applications,” in Proceedings of Asia and South Pacific Design Automation Conference,
Jan. 2007, pp. 595–600.

[33] S. Mathew, F. Sheikh, A. Agarwal, M. Kounavis, S. Hsu, H. Kaul, M. Anders, and
R. Krishnamurthy, “53Gbps native GF(24)2 composite-field AES-encrypt/decrypt ac-
celerator for content-protection in 45nm high-performance microprocessors,” in 2010
IEEE Symposium on VLSI Circuits (VLSIC), June 2010, pp. 169 –170.

[34] S. Mangard, M. Aigner, and S. Dominikus, “A highly regular and scalable AES hard-
ware architecture,” IEEE Transactions on Computers, vol. 52, no. 4, pp. 483 – 491,
April 2003.

[35] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES implementation on a grain of
sand,” in IEE Proceedings of Information Security, vol. 152, no. 1, Oct. 2005, pp. 13–
20.

[36] N. Pramstaller, S. Mangard, S. Dominikus, and J. Wolkerstorfer, “Efficient aes im-
plementations on ASICs and FPGAs,” in Advanced Encryption Standard - AES, ser.
Lecture Notes in Computer Science, vol. 3373. Springer Berlin / Heidelberg, 2005,
pp. 571–571.

[37] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. Hämäläinen, “Design and implemen-
tation of low-area and low-power AES encryption hardware core,” in 9th EUROMICRO
Conference on Digital System Design: Architectures, Methods and Tools, 2006, pp. 577
–583.

[38] S.-F. Hsiao, M.-C. Chen, and C.-S. Tu, “Memory-free low-cost designs of advanced en-
cryption standard using common subexpression elimination for subfunctions in trans-
formations,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53,
no. 3, pp. 615 –626, March 2006.

120

[39] T. Good and M. Benaissa, “692-nW Advanced Encryption Standard (AES) on a 0.13-
µm CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 18, no. 12, pp. 1753 –1757, Dec. 2010.

[40] S. B. Örs, F. Gürkaynak, E. Oswald, and B. Preneel, “Power-analysis attack on an ASIC
AES implementation,” in Proceedings of the International Conference on Information
Technology: Coding and Computing, vol. 2. Washington, DC, USA: IEEE Computer
Society, 2004, p. 546.

[41] D. D. Hwang, K. Tiri, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont, and I. Ver-
bauwhede, “AES-based security coprocessor IC in 0.18-µm CMOS with resistance to
differential power analysis side-channel attacks,” IEEE Journal of Solid-State Circuits,
vol. 41, no. 4, pp. 781–792, Apr. 2006.

[42] C. Tokunaga and D. Blaauw, “Securing encryption systems with a switched capacitor
current equalizer,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 23 –31, Jan.
2010.

[43] J. Daemen and V. Rijmen, “The block cipher rijndael,” in Proceedings of the The In-
ternational Conference on Smart Card Research and Applications. London, UK:
Springer-Verlag, 2000, pp. 277–284.

[44] A. Menezes, P. V. Ooschot, and S. Vanstone, Handbook of Applied Cryptography. New
York: CRC Press, 1997.

[45] NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of Op-
eration, National Institute of Standards and Technology, Dec. 2001.

[46] NIST Special Publication 800-38E - Recommendation for Block Cipher Modes of Op-
eration: The XTS-AES Mode for Confidentiality on Storage Devices, National Institute
of Standards and Technology, Jan. 2010.

[47] NIST Special Publication 800-38B - Recommendation for Block Cipher Modes of Op-
eration: The CMAC Mode for Authentication, National Institute of Standards and Tech-
nology, May 2005.

[48] NIST Special Publication 800-38C - Recommendation for Block Cipher Modes of Op-
eration: The CCM Mode for Authentication and Confidentiality, National Institute of
Standards and Technology, May 2008.

[49] NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of Op-
eration Galois/Counter Mode (GCM) and GMAC, National Institute of Standards and
Technology, Dec. 2007.

[50] IEEE Standard for Information technology - Telecommunication and information ex-
change between systems - Local and metropolitan networks - Specific requirements.
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 6: Medium Access Control (MAC) Security Enhancements,
IEEE Computer Society, 2004.

[51] IEEE Standard for Local and metropolitan area networks - Media Access Control
(MAC) Security, IEEE Computer Society, Aug. 2006.

121

[52] FIBRE CHANNEL - SECURITY PROTOCOLS, American National Standard for Infor-
mation Technology, Feb. 2006.

[53] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of the AES
SBoxes,” in Topics in Cryptology - CT-RSA 2002, ser. Lecture Notes in Computer Sci-
ence, vol. 2271. Springer Berlin / Heidelberg, 2002, pp. 29–52.

[54] D. Canright, “A Very Compact S-Box for AES,” in Proceedings of CHES 2005, ser.
LNCS, vol. 3659. Springer-Verlag, 2005, pp. 441–455.

[55] X. Zhang and K. Parhi, “On the optimum constructions of composite field for the AES
algorithm,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53,
no. 10, pp. 1153 –1157, Oct. 2006.

[56] H. Li and J. Li, “A new compact architecture for AES with optimized shiftrows opera-
tion,” in IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007.,
May 2007, pp. 1851 –1854.

[57] V. Rijmen, “Efficient implementation of the Rijndael s-box,” 2001, available at http:
//www.esat.kuleuven.ac.be/∼rijmen/rijndael/sbox.pdf.

[58] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Secrets of
Smart Cards. Springer Science+Business Media, LLC, 2007.

[59] G. Hollestelle, W. Burgers, and J. den Hartog, “Power analysis on smartcard algorithms
using simulation,” Eindhoven, 2004.

[60] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage model,”
in Cryptographic Hardware and Embedded Systems - CHES. Springer Berlin / Hei-
delberg, 2004, pp. 16–29.

[61] M.-L. Akkar and C. Giraud, “An implementation of DES and AES, secure against some
attacks,” in Cryptographic Hardware and Embedded Systems - CHES. Springer Berlin
/ Heidelberg, 2001, pp. 309–318.

[62] E. Trichina, D. D. Seta, and L. Germani, “Simplified adaptive multiplicative masking
for AES,” in Cryptographic Hardware and Embedded Systems - CHES. Springer
Berlin / Heidelberg, 2003, pp. 71–85.

[63] E. Trichina, “Combinational logic design for AES subbyte transformation on masked
data,” IACR report, Tech. Rep., 2003.

[64] J. Blömer, J. Guajardo, and V. Krummel, “Provably secure masking of AES,” in Se-
lected Areas in Cryptography. Springer Berlin / Heidelberg, 2005, pp. 69–83.

[65] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-channel analysis resis-
tant description of the AES s-box,” in 12th International Workshop on Fast Software
Encryption. Springer Berlin / Heidelberg, 2005, pp. 413–423.

[66] D. Canright and L. Batina, “A very compact ”perfectly masked” s-box for AES,” in
Applied Cryptography and Network Security. Springer Berlin / Heidelberg, 2008, pp.
446–459.

122

[67] D. Suzuki, M. Saeki, and T. Ichikawa, “Random switching logic: A countermeasure
against DPA based on transition probability,” on Transition Probability, IACR ePrint,
Tech. Rep., 2004.

[68] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential CMOS logic
with signal independent power consumption to withstand differential power analysis
on smart cards,” in Proceedings of the 28th European Solid-State Circuits Conference,
Sept. 2002, pp. 403–406.

[69] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure DPA resis-
tant ASIC or FPGA implementation,” in Proceedings of Design, Automation and Test
in Europe Conference and Exhibition, vol. 1, Feb. 2004, pp. 246–251.

[70] D. Sokolov, J. Murphy, A. Bystrov, and A. Yakovlev, “Design and analysis of dual-rail
circuits for security applications,” IEEE Transaction on Computer, vol. 54, no. 4, pp.
449–460, 2005.

[71] N. Pramstaller, F. Gürkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Fichtner, “To-
wards an AES crypto-chip resistant to differential power analysis,” Sept. 2004, pp.
307–310.

[72] E. Trichina, T. Korkishkoand, and K. H. Lee, “Small size, low power, side channel-
immune AES coprocessor: Design and synthesis results,” in Advanced Encryption
Standard - AES, ser. Lecture Notes in Computer Science, vol. 3373. Springer Berlin
/ Heidelberg, 2005, pp. 113–127.

[73] M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh, “A design methodology for a DPA-
resistant cryptographic LSI with RSL techniques,” in Cryptographic Hardware and
Embedded Systems - CHES, ser. Lecture Notes in Computer Science, vol. 5747.
Springer Berlin / Heidelberg, 2009, pp. 189–204.

[74] R. Mita, G. Palumbo, S. Pennisi, and M. Poli, “A novel pseudo random bit generator
for cryptography applications,” in 9th International Conference on Electronics, Circuits
and Systems, vol. 2, 2002, pp. 489–492.

[75] A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryp-
tographic Applications, National Institute of Standards and Technology, Apr. 2010.

[76] J. D. Golić, “New methods for digital generation and postprocessing of random data,”
IEEE Transactions on Computers, vol. 55, pp. 1217–1229, Oct. 2006.

[77] M.-L. Akkar and L. Goubin, “A generic protection against high-order differential power
analysis,” in Fast Software Encryption, ser. Lecture Notes in Computer Science, vol.
2887, 2003, pp. 192–205.

[78] J. Waddle and D. Wagner, “Towards efficient second-order power analysis,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2004, ser. Lecture Notes in Com-
puter Science, vol. 3156. Springer Berlin / Heidelberg, 2004, pp. 1–15.

[79] G. Piret and J. jacques Quisquater, “A Differential Fault Attack Technique Against SPN
Structures, with Application to the AES,” in AES and KHAZAD”, CHES 2003, LNCS
2779. Springer-Verlag, 2003, pp. 77–88.

123

[80] A. Moradi, M. Shalmani, and M. Salmasizadeh, “A Generalized Method of Differential
Fault Attack Against AES Cryptosystem,” in Cryptographic Hardware and Embedded
Systems - CHES 2006, ser. Lecture Notes in Computer Science, vol. 4249. Springer
Berlin / Heidelberg, 2006, pp. 91–100.

[81] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi, “Fault attack on
AES with single-bit induced faults,” in Information Assurance and Security (IAS), 2010
Sixth International Conference on, Aug. 2010, pp. 167 –172.

124

