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Abstract

In this thesis, we propose an efficient iterative algorithm for finding the
minimum sampling frequency for a signal that consists of multiple band-
pass signals. This finds important application in software radio where it
is desirable to downconvert multiple bandpass signals simultaneously. We
will derive a new set of conditions for alias-free sampling for signals that
contain two bandpass signals. The conditions can be easily examined with
few computations. The minimum sampling frequency can be found by iter-
atively increasing the sampling frequency to meet the alias-free conditions.
We will show how the algorithm can be extended to find the minimum sam-
pling frequency for signals that consist of more than two bandpass signals.
Furthermore we will generalize the result to the case when a guard band
is required between different bandpass signals after sampling. The simula-
tions demonstrate that the proposed method has a much lower complexity
than existing algorithms.
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Chapter 1

Introduction

Bandpass sampling has important applications in downcoverting radio frequency
(RF) signals. In the application of softwareidefined radio systems, it is desirable to
downconvert multiple RF signals simultaneously to save cost [1]-[6]. The signal to
be sampled may consist of mere than-one bandpass signal. Sampling theorem for
a bandpass signal (two passbands) is well-known [7, 8] The minimum frequency
for alias-free sampling can be found in-a.closed form [9]. The minimum sampling
frequency is usually significantly lower than the cartier frequency of the bandpass
signal.

For signals with more than two passbands, the minimum sampling frequency
can not be found in a closed from due to the nonlinear nature of spectrum folding
in the process of sampling. Sampling for multi-band signals is extended in [6].
An example of a spectrum that consists of two bandpass signals is shown in
Fig. 1.1. Conditions for alias-free sampling of multi-band signals are derived
[6]. A systematic algorithm for finding valid sampling frequencies is developed
in [10]. In [11][12][13], the complexity for finding valid sampling frequency is
considerably reduced by imposing constraints on the ordering of the bands in the
folded spectrum. These results may not yield the minimum frequency for alias-
free sampling due to the ordering constraints. An efficient algorithm for finding
valid sampling frequency range is proposed in [14]. By exhausting all possible
orderings of the bands in the folded spectrum and categorizing all possible cases,

the computational complexity can be reduced. An algorithm for finding the
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Figure 1.1: An example of spectrum that consists of two bandpass signals.

minimum sampling frequency is developed in [15] by finding the intersection of
valid sampling frequencies for every two signal bands.

In this thesis, we propose an efficient-algorithm for finding the minimum sam-
pling frequency for a signal consisting of two or more bandpass signals. We will
first derive a set of conditions for-alias-free-sampling of signals that consist of two
bandpass signals (four bands). These conditions can be checked with very few
computations. When one of these conditions is not satisfied, the sampling fre-
quency can be adjusted with minimum increment so that the condition becomes
satisfied. By iteratively increasing the sampling frequency to meet the conditions
for alias-free sampling, an algorithm for finding the minimum sampling frequency
can be developed. There is no need to consider the ordering of the sinal band
in the folded spectrum. The algorithm can be extended to find the minimum
sampling frequency for multiple bandpass signals. We can also generalize the
algorithm to the case when a guard band is required between different bandpass
signals after sampling. We will see that the algorithm based on the conditions
derived in this thesis requires fewer computations when compared to previously

reported methods.



1.1 Outline

e Chapter 2: The problem of bandpass sampling is formulated.

e Chapter 3: Section 3.1, we review a low-cost algorithm proposed by S. Bose,
V. Khaitan, and A. Chaturvedi [13]. The algorithm finds the minimum sam-
pling frequency when an ordering constraint is placed on the passbands.
Section 3.2 introduces an efficient algorithm for finding valid sampling fre-
quency ranges proposed by C. H. Tseng and S. C. Chou [14]. Section
3.3 introduces a searching algorithm for minimum sampling frequency by
finding the intersection of valid sampling frequencies for every two signal

passbands. This is proposed by J. Bae and J. Park [15].

e Chapter 4: Section 4.1 describes a set of conditions for alias-free sampling
of two bandpass signals. " An efficient algorithm for finding the minimum
sampling frequency of two bandpass signals is“shown in section 4.2. A

complexity analysis is‘given in section 4.3.

e Chapter 5: Section 5.1 extends the alias-free conditions when there is an
user-specified minimum guard ‘band. A method for finding a valid sam-
pling frequency range is shown in 5.2. Section 5.3 extends the case of two

bandpass signals into the case of multi-band signals.

e Chapter 6: Simulations and comparisons of the previously reported meth-

ods and the proposed method are given.

1.2 Notations

e The notation |z| denotes the largest integer smaller than or equal to z.

e The notation [z] denotes the smallest integer larger than or equal to z.



Chapter 2

Problem Formulation

A receiver front end design of software defined radio is shown in Fig. 2.1. A
wide-band RF signal is received from.the/antenna and amplified with a low-noise
amplifier (LNA). Then the signalisfiltered with N parallel bandpass filters. Thus
the input signal to the analog-to-digital converter (ADC) is a multi-band RF sig-
nal as shown in Fig. 2.2. The sampling frequency of the ADC should be properly
chosen so that there is no aliasing.. The minimum sampling frquency provides an
attractive alternative to sampling at twice the carrier frequency (Nyquist rate)
[6]. Our goal here is to find the‘minimum sampling frequency efficiently given a

multiband signal like the one in Fig. 2.2.

Filter 1

N/

Filter 2

Figure 2.1: The software defined radio receiver front end.

If an analog signal x(t) (with X (f) denoting its Fourier transform) is sampled

with a sampling frequency f,, the spectrum will be folded back and there will be
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Figure 2.2: A spectrum that consists of N bandpass signals.

a copy of X(f) every fs,

[e.o]

> X(f—kf)

k=—00
Consider a bandpass signal (two passbands) X (f) as shown in Fig. 2.3(a).
Assume that X (f) # 0 for f, < |f| < fn, where. f; and fj, are band edges, and
W = f, — fo is the one-sided bandwidth as indicated in the figure. If we are to
sample X (f) without causing aliasing, the replicas of X ~(f) should not overlap
with X*(f). Suppose we shift X=(f) shifts by mfs and the copy X~ (f —mf;)
is located at the right side of X (/f) as shown.in Fig. 2.3(b). The smallest m for
this is
mi=12fn/ts] (2.1)

To avoid aliasing, we can have

—fi+(m—=1)f < fo,

and

—fntmfs = fn

Combining the above two conditions, we have a valid sampling frequency range [7,

8]
2fn < f< 21
m m—1

(2.2)

Since the lowest possible sampling frequency for no aliasing is 2, the maximum
of m is mpae = | fo/W]. Thus we can have a closed form of the minimum

sampling frequency as 2 2
.fs,min = i = i
Mmaz th/WJ

(2.3)

5



XN XN

v

~
~
~
~

~n 0| i f
4+—>
(@) W
X () X~ () X (f—~m=1)f,) X' X (f-mf,)
. ol Y7 oot S
¢ Hm=Df ~ tmf

(b)

Figure 2.3: (a) A spectrum of single bandpass signal. (b) The spectrum sampled
with f.

For signals with more than two passbands (Fig. 2.2), the minimum sampling
frequency can not be found in a closed from due to the nonlinear nature of
spectrum folding in the process of sampling:- Upon sampling with frequency fs,
replicas of each passband appear each f;, resultingin a periodic spectrum; we can
simply consider the period [0, f5). Fig. 2.4 gives an example of a signal spectrum
sampled with an alias-free sampling frequency fs. For alias-free sampling, there
are two types of constraints: one is referred to as boundary constraint and another

is referred to as neighbor constraint.

Boundary constraint. Boundary constraint means that the replicas of X;"(f)
and X, (f) should not overlap at the edge in [0, f,/2) (replica of X5 (f), X5(f)
and replica of X;"(f), X; (f) in Fig. 2.4) need to be completely positioned within
0, fs/2). If 0 or fs/2 is contained inside the band of these replicas, there will be

aliasing.

Neighbor constraint. Neighbor constraint means that the replicas of X;(f) and
X;(f) should not overlap each other in [0, f;/2). For example in Fig. 2.4, X; (f)
should not overlap X ,(f) fori=1,2,--- /N —1.

Existing algorithm for finding the minimum sampling frequency are reviewed
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Figure 2.4: An example of a signal spectrum sampled with an alias-free sampling
frequency fs.

in the next chapter.



Chapter 3

Previously Reported Methods

In this chapter we briefly review the previously methods for finding the valid
bandpass sampling frequency. Section 3:1; we review a low-cost algorithm pro-
posed by S. Bose, V. Khaitan,and A. Chaturvedi {13]. The algorithm finds the
minimum sampling frequency. when-an ordering constraint is placed on the pass-
bands. Section 3.2 introduces an efficient algorithm for finding valid sampling
frequency ranges proposed by C. H. Tseng and S. C.-Chou [14]. Section 3.3 in-
troduces a searching algorithm for minimum sampling frequency by finding the
intersection of valid sampling frequencies for.every two signal passbands. This is

proposed by J. Bae and J. Park [15].

3.1 Efficient Method with An Ordering Con-
straint [13]

In this section, we review a low-cost algorithm proposed by S. Bose, V. Khaitan,
and A. Chaturvedi. The algorithm finds the minimum sampling frequency when
an ordering constraint is placed on the passbands. Section 3.1.1 introduces the
assumption of ordering constraint and analyzes the constraint for alias-free sam-
pling under this assumption. Section 3.1.2 provides a low-cost algorithm finding

the minimum sampling frequency with the ordering constraint.



3.1.1 Alias-free Conditions with Ordering Constraints

Consider a signal that consists of N bandpass signals as shown in Fig. 3.1(a).
Assume X;(f) # 0 for fo, < |f| < fn,, i =1,2,--- N, where f,, and f,, are band
edges, and W; = f5, — fs, are one-sided bandwidths as indicated in the figure.
Let f; = (fo, + fn,)/2 denote the center frequency of X;"(f). Upon sampling with
frequency f,, replicas of each passband appear each f,, resulting in a periodic

spectrum as shown in Fig. 3.1(b), where r; (referred to as frequency shifting

<[5
b s 1

Assume that after alias-free bandpass sampling, the ordering of the bandpass

parameter) is given by

signals in the interval [0, fs/2) does not change. Let fip, = f; (mod fs) denote
the center frequency of the replica of X (f) in {0; f,/2) after sampling. The

ordering constraint is such that

fir, < frrs <= < firy

as indicating in the figure. Between every two replicas after bandpass sampling,
an user-specified minimum guard ‘hand G B is required for practical considera-
tions.

To avoid aliasing after sampling, two basic constraints must be satisfied: a
boundary constraint in the sampled bandwidth and a neighbor constraint between

adjacent passbands.

Boundary constraint. The boundary constraint is that X; (f) should be posi-
tioned within [ry fs, (r1+0.5) fs] and X3 (f) should be positioned within [ry fs, (ry+
0.5) fs] respectively so that aliasing by the negative frequency part of each signal
should not occur at both boundaries. Two boundary constraints can be obtained

as follows
Tlfs S f€1 - GB7 (31)

and
(rv +0.5)fs > fax +GB. (3.2)



Neighbor constraint. The neighbor constraint is that adjacent passbands should

not overlap each other, it can be expressed as
fri—1ifs < fo,, —GB—rigf, fori=1,2--- N-1 (3.3)

Combining equation (3.1), (3.2), (3.3), the alias-free sampling frequency range

can be expressed as

fuy + GB '
7"]]\\;—|-—% < fs < mln{fUBO,l?.fUBl,zﬂ e 7fUBN_1,N} (34)
where
. — fn, — GB
fUBm-_H = f&ﬂ Jh; fori=0,1,--- ,N—1

Ti+1 — Ti
fro = 0 and rg = 0. Since the lowest possible sampling frequency for alias-free

sampling is f; = 2{W; + Wy +«--+ Wy + (N +1)GB}, r; can be bounded as

1<r< 2{W1+W2+-flii+mcjf+ (N+1)GB}J’ fori=1,2,---,N (3.5)
Furthermore, observe that a valid sampling frequency f, for N bandpass sig-
nals will also be a valid sampling frequency for k' <. N bandpass signals. Thus,
equation (3.4) can be extended as
J?Zi—gf < fo <min{fup,,, fuBio s fuBe 1.} (3.6)
for k=1,2,---,N.
To ensure the existence of f;, the LHS of equation (3.6) should be less or

equal to the RHS of equation (3.6), and it can be expressed as follows
fhk+GB ffk_fhk—l_GB

< — fork=12,--- N 3.7
re+0.5 ~ JuBis Tk — Tk—1 o A 0
and
frn, + GB .
7’:+O5 < mlﬂ{fUBo,l?"' 7fUBk72,k—1} ) for k = 2737"' 7N (38)

From equation (3.7), it follows that

Y < Vkﬂfhk + GB) + 0.5(fe, — fr,, — GB)
b= Wk+fhk71 +2GB

J fork=1,2,---,N (3.9)

10



which gives the upper bound of 7, and equation (3.8) can be expressed as

" fn, +GB
Tk Z .
mln{fUBoyp ) fUBk—2,k—1

}—o.ﬂ Jfor k=2,3,---,N  (3.10)

which gives the lower bound of 7.

These two equations (3.9) and (3.10) define the valid range for 7. Note that
equation (3.10) does not provide the lower bound of r;. Since 7 is an positive
integer, the lower bound can be set as 0. Besides, the upper bound of r; from
(3.9) is given by

T < {%J;
which does not take into account all passbands. Thus it can be modified with a
tighter bound by taking into account all passbands

foo =GB
r < {2{W1+W2+'”+WN+(N+1)GB}J (3.11)

3.1.2 The Algorithm for Finding the Minimum Sampling
Frequency with Ordering Constraint

From the above section, the constraints of each r; include the alias-free constraint,
the purpose is to find the N-tuple of valid integers {7y, 79, -+ ,7n} which satisfy
(3.9) and (3.10). Let the lower bound and upper bound of 7 be denoted as 7y, .

and 1y, . For a given ry,ry, -+ ,rg_q, if rp_. >, then given k — 1-tuple is

not a valid one. Therefore, by iterating each ry, all valid tuple {ry,7rq9, -+ , 7y}
can be obtained. Furthermore, equation (3.6) shows that to choose the minimum
of fs, rr needs to choose maximum as possible and 7, depends on the induction

of r1,7r9, -+ ,rx_1. The searching algorithm is given as follows:
1. Set the minimum guard band GB.
2. Initialize fs i to the Nyquist rate 2(f,, + GB).
3. Set ry,,,. to 0 and evaluate ry, ,_ from equation (3.9). Then set ry to rq,,,.

4. Compute 7o, and 7o, from equation (3.9)(3.10).

min

11
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Figure 3.1: (a) A signal that consists of N bandpass signals. (b) The signals
spectrum after alias-free sampling with ordering constraint.
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10.

11.

12.

13.

14.

Ifry . >y, .., decrease ry by 1.
If ry =7y, , go to step 14; else go to step 4.
Set 9 to 1, ..

Compute r3,_. and r3, . from equation (3.9)(3.10).

min
Ifry, ., >rs, .., decrease ry by 1.

Ifro <1y decrease 1 by 1 and go to step 4; else go to step 8.

min’
Continue this procedure until obtaining a valid set of ry,7r9, -+ ,ry_1.

Compute 7y

min

and ry,,,, from.equation (3.9)(3.10).

Ifryn,,.. > TnN,..., decrease ry_y by 1rand go to step 11; else compute f in

as
_ Juy +GB

s,man — 3.12
f ’ "N + 0.5 ( )

Output fsmin-

3.2 Method in [14]

In this section, we review an efficient algorithm for finding valid sampling fre-

quency range proposed by C. H. Tseng and S. C. Chou. By exhausting all possible

orderings of the bands in the folded spectrum and categorizing all possible cases,

the computational complexity can be reduced. Section 3.2.1 analyzes the all pos-

sible replica orders of the signal spectrum after bandpass sampling and derives

the constraints for alias-free sampling. Section 3.2.2 presents a searching algo-

rithm for the ranges of alias-free sampling frequency by iterating each index of

the segment, and the minimum sampling frequency can be obtained from the

valid ranges.

13
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Figure 3.2: A signal that consists of two bandpass signals.

3.2.1 Constraints of Valid Sampling Frequency Ranges for
Multiple Bandpass Signals

To sample without aliasing, the sampling frequency f, needs to be chosen without
causing spectral overlapping after bandpass sampling. First consider the problem
of sampling a signal that consists of two bandpass signals (four passbands) whose
spectrum is shown in Fig. 3.2, ‘there will be 8 possible replica orders after bandpass
sampling without causing aliasing as shown in'Fig. 3.3." The signal spectrum after
sampling is separated into many segments and n; and n, are the index of the
segment where the original spectrum’ X (f)-and X;°(f) are located and can be
obtained as ny = [ fy,/fs], ne = |fe/ fs] respectively, where f; and fy are the
center frequency of X; (f) and X, (f). The four passbands are symmetric to the
center of each segment.

For a given replica order, there are two types of constraints: one is referred to
as the neighbor constraint and the other is referred to as the boundary constraint.

Consider the case 1 in Fig. 3.3 as an example.

Boundary constraint. The boundary constraint for case 1 is that the passband
‘17 and ‘2’ should be completely inside the half of each segment, which lead to
two boundary constraints as f;; > ny fs and fro < (ng + 1/2) f,, or equivalently

fs < % (3.13)
Jh
fs = 12 (3.14)

Neighbor constraint. The neighbor constraint is that the passband ‘1" does not

14
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Figure 3.3: The 8 possible replica orders after bandpass sampling.
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overlap the passband ‘2’. This means fi; — nifs < fio — nofs, or equivalently

Jor — iy

Ny — 1y

fs < (3.15)

Combining (3.13)-(3.15), a range of alias-free sampling frequency for case 1 can

be found as

fhz
n2+1/2_f5_ {

By examining all the other replica orders, the ranges of alias-free sampling

fe, fez S
- ——}

1 Nng — 1Ny

frequency are summarized in table 3.1.

Case Range of Valid f,

7 Ter Tt
1 mﬁﬂ < fs <min {7, S2=0 )

fe foy—In
n2+1 st Smln{n +11/27 n22 nll}

fh1+fh2
ni¥na+l — fs = mln{ ny? n2+1 2

oyt in Iy 0
nl-lf—n2+21 = fs i mln{n1+1/2’ n22}

i foy+feoy

max{nl-i-l’ n2+1/2} fs — ni+no+1
} f f21+f182

TL1+1/2’ n2+1 s = n1+n2+1

max{nl—i—l’ no—mnq } — fs "N n2+1/2

In fro—fe
Inax{nl-&/27 ni—ml} > fs = ng

max {

O 3 O Tt = W N

Table 3.1: The ranges of alias-free sampling frequency for two bandpass signals.

Consider a signal that consists of NV bandpass signals (2)V passbands) as shown
in Fig. 2.2. The signal spectrum after bandpass sampling are the combinations
of all replicas of the 2N passbands. As the case of two bandpass signals, the
spectrum after sampling can be separated into many segments, and then consider
all possible replica orders in a segment. Note that there are two ways a passband
is located in a segment: one is in the first half of the segment and the other is in
the second half. Since there are N passbands in a segment after sampling, there
are 2V possibilities. In the half of the segment, there are N! ways of ordering
the allocated replicas. Therefore, the total number of all possible replica orders
is 2V x N!. For each possible replica order, there are 2 boundary constraints and

N — 1 neighbor constraints. Taking one of the possible replica order as shown in
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Figure 3.4: An example of onewf the possible replicacorder of N bandpass signals.

Fig. 3.4 as an example, there are 2 boundary conditions as

fe,
< =
fo<
and
f > th
" Ty +1/2
and N — 1 neighbor constraints as
fSSM fori=1,2,--- N —1.
Niy1 — Ny

3.2.2 Algorithm for Searching the Ranges of Alias-free
Sampling Frequency

Section 3.2.1 shows that given a particular segment index (nq,ns,--- ,ny), the
range of alias-free sampling frequency can be obtained. n; is the index of segment

where the original spectrum X (f) is located, and can be obtained as

. ffi f&' .
n"_{fsJS{2(W1+W2+~~+WN)J’Z_1’2’ N (3.16)
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where the inequality is obtained by the fact that f, must be larger than the lowest

possible sampling frequency. Since f; is bounded in each corresponding segment
nifs < fi < (nl+1)f3,222,3, N (317)

For a given n;, a tighter bound of n; for ¢ = 2,3,---, N can be obtained by
multiplying (3.17) by R;/fs and taking floor operation to each side, where R; =
fi-‘rl/fi for i = 172a”' 7N_1

The possible values of n;,; can be obtained for a given n;, 1 =1,2,--- /N —1

and 1 <ny < Lz(

T +W£ - +WN)J' Knowingall the possible values of n;, there are
two approaches to obtain the ranges of alias-free 'sampling frequency. The first
approach is that for a given (ny, ny+-+ ,ny), the all ranges of alias-free sampling
can be obtained by combining ‘the neighbor and boundary constraints for each
of the 2 x N! replica ordets. The second approach is that choose two bandpass
signals from the N bandpass signals, and evaluate the ranges of alias-free sampling
frequency of the two bandpass signals, then thete are total C3 tables which is
like table 3.1. Thus the ranges for N bandpass signals can be obtained from

the combination of the CJ tables. It is shown that the second approach is more

computationally efficient than the first approach.

3.3 Method in [15]

In this section, we review a searching algorithm for minimum sampling frequency
proposed by J. Bae and J. Park, which is achieved by finding the intersection of
valid sampling frequencies for every two signal passbands. Section 3.3.1 provides
the all valid sampling frequency ranges for N bandpass signals by the intersection
of the ranges from any two passbands. Section 3.3.2 shows the valid sampling fre-
quency ranges with user-specified minimum guard band and provides a procedure

for searching the minimum sampling frequency.
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3.3.1 Valid Sampling Frequency Ranges for Multiple Band-
pass Signals

Consider the signal that consists of N bandpass signals (2N passbands) as shown
in Fig. 3.5(a), where f; denotes the center frequency of each corresponding pass-
band. First consider the valid sampling frequency rages of any two passbands
Xn(f) and X, (f), where m,n € {£1,42,--- ,£N} as shown in Fig. 3.5(b).
Assume that sampling X,,,(f) and X,,(f) with an alias-free sampling frequency
denoting f;,,, as shown in Fig. 3.5(c). To avoid aliasing, f, needs to satisfy the

following two constrains

W, W
__n > m
fn 9 rm,nfsm,n - fm + 2
and
W, W
fo+ 7 = Dl R e N ——
2 ’ 2
which lead to the valid sampling frequency range
n—m m-n n—m m—+n 2
rom N N QR /N ! (319)
Tmn +1 ’ L,

where f,_, = fn = fo, Winan = Wi W5 and 1, ,, is an integer given by

fn—m - Wm+n/2
0<rmn, < 3.20
<y < | B (3.20)

The all valid sampling frequency ranges can be obtained from the intersection
fsmn of any two passbands X,,(f) and X, (f), where m,n € {£1,%2,--- | £N}.
The number of f,,  is C2N and the valid ranges for N bandpass signals can be

expressed as

fs,all = fs,N— N fs,(N—l)— N---N fs,l— N fs,l—i- n---N fs,(N—l)-',- (321)
where
1— N+
fSJV* = [ m fSN—,k] n [ m fSNf,k]

k=(N—1)— k=1+

N+

Js. (N-1)— — ﬂ fS(N 1)— k [ ﬂ fS(N—l)—,k:]
k=(N—2)— =1+
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N+
fs,lf = m fsl,ﬁk

=1+

N+
fSJJr = ﬂ sz,k

k=2+
and
fs,(N—1)+ = fS(N71)+,N+
Note that f,, , and f,_, . (‘-" denotes the counterpart of the signal) have the
same range for m # n by symmetry. f; . and f, have the same range for
m # n similarly. Therefore, the number of f,,, . is reduced to N+(C3" —N)/2 =
N? and (3.21) can be modified as

fs,all = fs,N— N fs,(N-l)« N fs,(Nf2)~ AR fs,2— N fs,l— (322)
where
N+
fS,N— ﬂ fSN k [ﬂ fsN_,k]
N-1)— k=14
(N=1)+
f ﬂ fS(N 1)— k [ m fS(N—l)—,k]
NEDY= k=1+
1— (N—-2)+
fs—(N*Q)* = [ m fS(N72)7,k] N [ ﬂ fS(N72)7,k]
k=(N—-3)— k=1+
2+
fs,2— = f52_’1_ N ﬂ f82_,k
k=1+
and
Joa- = f817,1+

Note that the upper bound of 7,,, in (3.20) is obtained from only considering
the two passbands X,,(f) and X, (f). To consider the all N bandpass signals,

the bound for r,,, can be modified

nfm_Wm n 2
oym,ngv - d”J (3.23)

where fpouna = 2(W1 + W + -+« + Wiy), which is the lowest possible sampling

frequency for no aliasing.
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0 fsm,n
(rn,m+1)-th left-shifted replica

Figure 3.5: (a) Signal spectrum of N'RF Signals. (b)-Any two passbands of the
2N passbands. (c) The signal spectrum in(b)-after bandpass sampling.

3.3.2 Algorithm for Searching The Minimum Sampling
Frequency with User-Specified Minimum Guard-Band

To insert user-specified minimum guard band G B, the half of the guard band
is added on both sides of each passbands band edges as shown in Fig. 3.6. The
new valid sampling frequency range can be obtained by substituting W,,,, in
(3.19) with Wy inio6s = Wi + W, +2G B, and substituting fpounq in (3.23) with
faByuna = 2W1 + Wo + -+ -+ Wy + NGB). The two equations become

fnfm + Wm+n+2GB/2 < fs < fnfm - Wm+n+2GB/2
Tmn +1 IR Tmn

0< rap < \‘fn m m+n+2GB/2J
N e fGBbound

Furthermore, it is shown that 2fsp, . , is enough large to be an upper bound for

(3.24)

(3.25)

minimum sampling frequency from numerical experiments. Thus, the bound of
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Figure 3.6: Signal spectrum after introducing a user-specified minimum guard

band.

TGBm.n (3.25) can be modified as

\‘fn—m - Wm+n+2GB/2 (326)

\‘fn—m - Wm+n+2GB/2J
2fGBbound

J < TrGBp, <
fGBbound

Based on the above discussion, the minimum sampling frequency can be ob-

tained as follows:
1. Specify the value of the minimum guard band GB.
2. Evaluate the ranges ofrgp,, , for'each f;,, , using (3.26)
3. Evaluate the ranges of f;, . correspondingto each r¢p,, , using (3.24)

4. The minimum sapling frequency can be obtained as

fogp =min{fo y- N fo vy N---N foa_} (3.27)
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Chapter 4

The Proposed Algorithm

In this chapter, we propose an efficient algorithm for finding the minimum sam-
pling frequency for a signal consists of tworbandpass signals. First we start up
the analysis for a signal consists of two bandpass signals, which leads to four
constraints of fs for causing-no aliasing. This will be discussed in section 4.1.
In section 4.2 we introduce an efficient algorithm finding the minimum sampling

frequency. Section 4.3 demonstrates the complexity analysis.

4.1 Conditions for Alias-free' Sampling of Two
Bandpass Signals

Conditions for alias-free sampling can be stated in various ways in terms of the
band edges and bandwidths of the member bandpass signals. The conditions
that are employed affect the complexity of ensuing algorithms. In this section,
we derive a new set of conditions for alias-free sampling that will lead to an
efficient algorithm in the next section.

First we consider the case of two bandpass signals for simplicity. Suppose
we are to sample a signal X (f) that consists of two bandpass signals X;(f) and
X5(f) as shown in Fig. 4.1. Assume X;(f) # 0 for fo, < |f| < fn, i = 1,2,
where f,, and f;,, are band edges, and W; = f;, — f;, are one-sided bandwidths as
indicated in the figure. Let X (f), and X, (f) denote respectively the positive

frequency part and negative frequency part of X;(f). There are four signal bands,

23



@ T A0 Ty In I3
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Figure 4.1: An example of spectrum that consists of two bandpass signals.

including X" (f), Xy (f), Xo5-(f), and X (f). Since the replicas of any two bands
may overlap and result in aliasing after sampling, there are a total of Ci = 6 cases.
Note that X; (f) and X, (f)are symmetric with respect to 0, and so are X (f)
and X, (f). If X{"(f) and X, (f) are not aliasing after sampling, then X, (f)
and X, (f) will not be aliasing by symmetry:-Similarly, if X; (f) and X (f) are
not aliasing after sampling, then X; (f) and X, (f) will not be aliasing. Thus,

we need to consider only 4 cases:

(a) (X7 X0(1))
(b) {571, X5 (1) @1)
(©) (X7 (H. X5 () '
(@ (X000 X5 (D}

Case (a). If we consider only the pair {X; (f), X; (f)} as shown in Fig. 4.2(a),
this is the same as the case of one bandpass signal. For convenience, we will
derive a condition in terms of the band edge f;,, and one-sided bandwidth W;.
Upon sampling with frequency f;, replicas of X;(f) and X (f) appear every
fs, resulting in a periodic spectrum; we can simply consider the period [0, fs).
Since X' (f) and X, (f) are symmetric with respect zero, the replicas of X (f)

and X, (f) are symmetric with respect to % in the interval [0, fs) (Fig. 4.2(b)).
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replica of replica of
X7(/) XN
/52 fs
(b) : : >
of ¢ T t f
(~/3) (mod £;) i, (mod £;)
J¢,(mod £)

Figure 4.2: (a) The spectrum of X;"(f) and X; (f). (b) An example of the folded
spectrum for the interval [0, f;).

Observe that if 0 or f; is not contained insidé the band of replicas of X (f) and
X7 (f), there will not be aliasing. One necessary and sufficient condition for alias-
free sampling is thus f;,, (mod %) =0, or i, (mod %) > Wj. Equivalently, we

have

2fn, (mod f5)=0
or 2fn, (mod f5) > 2W; (4.2)

Case (b). Similar to case (a), if we consider the pair { X5 (f), X5 (f)} as shown
in Fig. 4.3(a), since X, (f) and X, (f) are symmetric with respect zero, the repli-
cas of X, (f) and X, (f) are symmetric with respect to £ in the interval [0, f;)
(Fig. 4.3(b)). Observe that if 0 or fs is not contained inside the band of repli-
cas of X, (f) and X, (f), there will not be aliasing. One necessary and sufficient
condition for alias-free sampling is thus f4, (mod £) =0, or fs, (mod L) > W.

Equivalently, we have there will be no aliasing if and only if

2fn, (mod fs) =0,
or  2f, (mod f,) = 2W, (4.3)

25



@) T Aot i, In ;
replica of replica of
X5 X3
o \ s Lo
of 4 T 4 s
(_fhz)(mOdfs) fhz(mOdfs)
fo(mod £;)

Figure 4.3: (a) The spectrum of X7 (f) and X, (f). (b) An example of the folded
spectrum for the interval [0, f;).

Case (c). Consider Fig. 4,4(a)where we have shown only the pair { X" (f), XJ7(f)}.
First observe that there is no aliasing due to this pair if and only if there is no
aliasing when we sample a shifted version of the pait { X" (f + fo), X5 (f + fo)}
where fj is the shift. For convenience we will consider the condition for alias-free
sampling of the pair with a shift. Suppose we choose fy as the midpoint of f,

and fp,, i.e.,
Jo=(fo, + fra)/2-
Then the shifted pair is as shown in Fig. 4.4(b), where
Jhe = fu

= 5 ,
b= fo, = (fo, + [12) /2,
c= fhl - (ffl +fh2)/2

If we consider the folded spectrum in the [0, fs) interval, the band edges a
(mod fs) and (—a) (mod fs) are equal-distanced from f;/2. We now discuss
two possible scenarios (i) a (mod fs) > (—a) (mod fs) and (ii) a (mod f5) <
(—a) (mod f,). Examples of these two possible cases are shown respectively in
Fig. 4.4(c) and (d).
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(i) When a (mod fs) > (—a) (mod fs) there will be no aliasing if and only if
(—a) (mod fs) = a (mod fy) orif the interval ((—a) (mod f5),a (mod fy))

is large enough to accommodate the two replicas. That is,

a (mod f) — ((—a) (mod fs)) =0,
or a (mod f5)— ((—a) (mod f)) > W;+ Ws.

The equivalent conditions are

2a  (mod f5) =0,
or 2a  (mod fy) > Wy + Wy (4.4)

(ii) when a (mod fs) < (—a) (med fs) as shown in Fig. 4.4(d), there is some
space between the two replicas and the space is of length ((—a) (mod fs)—a
(mod fs)). There will be no-aliasing if and only if the remaining part of

the [0, fs) interval is large enough to take in the two replicas. That is,
fs — ((—a)* (mod f5) —a - (mod fy)) > Wy + Ws.

Or equivalently
2a  (mod fy) > Wi+ W,

This is the same as the second condition in (4.4).

Substituting a = (fn, — fr,)/2 to (4.4), we obtain one necessary and sufficient

condition for alias-free sampling

(th - fh) (mOd fs) = O,
or (fho = fo,)  (mod f5) > Wy + Wy (4.5)

Case (d). Similarly, for the pair {X; (f), X5 (f)} as shown in Fig. 4.5(a), we
can use the technique in case (c) to consider the condition for alias-free sampling

of the pair with a shift where we choose f; as the midpoint of —f;,, and f,, i.e.,

fo= (fro — fn)/2.
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Figure 4.4: (a) The spectrum of X;"(f) and X, (f). (b) The shifted spectrum
X7 (F+fo) and X (f+ fo), where fo = (fus+ fo,) /2 and @ = (fa, — f,)/2. (c) An
example of the folded spectrum for the interval [0, fs) when a (mod f5) > (—a)
(mod f5). (d) An example of the folded spectrum for the interval [0, fs) when a

(mOd fs) < (_a) (mOd fs)
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Then the shifted pair is as shown in Fig. 4.5(b), where

" fhl;rfm,

b= fr, = (fno — fna)/2,
c= _ffl - (fhz - fhl)/Q

If we consider the folded spectrum in the [0, fs) interval, the band edges a
(mod f;) and (—a) (mod f;) are equal-distanced from f;/2. We can discuss two
possible scenarios (i) a (mod fs) > (—a) (mod fs) and (ii) @ (mod f;) < (—a)
(mod f5) as case (c) similarly and examples of these two possible cases are shown
respectively in Fig. 4.5(c) and (d). Substituting a = (fn, + fr,)/2 to (4.4), we

obtain one necessary and sufficient condition for alias-free sampling

(fh1+fh2) (mOd fs)zoa
or (fny Fifna)  (mod fs) = Wat Wo (4.6)

Summarizing, for a given sampling frequency fs, there will not be aliasing if

the following four conditions are satisfied.

—_

. 2fp, (mod fs) =0 or 2f,, (mod f) > 2W;

2. 2fp, (mod fs) =0 or 2f,, (mod fs) > 2W,

w

- (fny = fo,) (mod f;) =0 or (fn, — fr,) (mod fo) > Wy + Wy

W

: (fhl +fh2) (mOd fs) =0 or (fhl +fh2) (mOd fS) > W1+W2

4.2 Proposed Algorithm for finding the Mini-
mum Sampling Frequency of Two Bandpass
Signals

In this section we propose an efficient algorithm for finding the minimum sampling
frequency. For simplicity, first consider the case of two bandpass signals, which

we have derive four alias-free conditions in section 4.1. For each of the four
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Figure 4.5: (a) The spectrum of X; (f) and X, (f). (b) The shifted spectrum

X1 (f+fo) and X5 (f+ fo), where fo = (fn,—fn,)/2 and @ = (fu, + fn,)/2- (c) An
example of the folded spectrum for the interval [0, fs) when a (mod f5) > (—a)
(mod f5). (d) An example of the folded spectrum for the interval [0, fs) when a

(mod fs) < (—a) (mod f).
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cases, we derive the minimum increment in sampling frequency such that the

corresponding condition for alias-free sampling can be satisfied.

Case (a). Suppose the condition in (4.2) is not satisfied for a given sampling
frequency fs;. Consider the folded spectrum for the interval [0, fs). We discuss
the two cases (i) 0 < f5, (mod fs) < fs/2 and (ii) fs/2 < fr, (mod f5) < fs

separately.

(i) 0 < fn, (mod fs) < fs/2: When we gradually increase the sampling fre-
quency the band edge f,, (mod f;) of replica X; (f) moves towards 0 while
the band edge — f;, (mod fs) of replica X (f) moves towards f;. When
the sampling frequency is increased such that f,, (mod f;) decreases to 0,

then the condition in (4.2) becomes satisfied.

(i) fs/2 < fn, (mod fs) <ofs: Similarly the condition in (4.2) becomes satisfied
when f,, (mod fs) decreases to fs/2.

Therefore we can conclude that the alias-free-condition (4.2) can be satisfied by
increasing the sampling frequency. such that f;,becomes an integer multiple of
fs/2. The smallest new sampling fs news for this to happen can be computed as

follows. Let
fhl :nh1f5/2+rh17
where 7, = fp, (mod fs/2) and n,, = |fa,/(fs/2)]. Then we have f,, =

Nhy fsmew/2, or equivalently

o 2fh1 _ 2fh1 — 2fh1 (4.7)

Fonew = T Tl Fof2)] 2/ 1]

where we have used the fact that ny,, can also be computed using ny, = |25,/ fs]-

Case (b). Similar to case (a), if the condition in (4.3) is not satisfied, we can

increase sampling frequency to

=2 (48)

fs,new )
L2fh2 /fSJ
then (4.3) will become satisfied.
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Case (c). Suppose the condition in (4.5) is not satisfied. Consider again the
shifted spectrum in Fig. 4.4(b). Using the steps in case (a), we can verify that
there will be not aliasing if we increase the sampling frequency so that a (mod f;)

to be equal to 0 or f? Moreover the new sampling frequency can be obtained by

_2a fwy— Joy
Fonew = 10T = 1 — Fo) /14 (49)

Case (d). Like case (c), if the condition in (4.6) is not satisfied, we can increase

the sampling frequency to

f Y T
T (fn + fro)/ 1)

(4.10)

then (4.6) will be satisfied.

Proposed iterative algorithm

Using the conditions for alias-free sampling in section 4.1 and the methods for
computing new sampling frequency for each case, we have the following iterative
algorithm for finding the minimum-sampling-frequency. To start off, let f, =

2(Wy + W3), which is the lowest possible sampling frequency for no aliasing.

1. Examine if the condition for case (a) in (4.2) is satisfied. If it is, go to the
next step. If it is not satisfied, compute the new sampling frequency using

(4.7) and go to the next step.

2. If the condition (4.3) for case (b) is satisfied, go to the next step. If it is not
satisfied, compute the new sampling frequency using (4.8) and go to step

1.

3. If the condition (4.5) for case (c) is satisfied, go to the next step. If it is

not, compute the new sampling frequency using (4.9) and go to step 1.

4. If the condition (4.6) for case (d) is not satisfied, compute the new sampling
frequency using (4.10) and go to step 1. If it is satisfied then we have found

the minimum sampling frequency.
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Usually not all four steps are performed in one iteration.

4.3 Complexity

In this section we will analyze the computation of the algorithm. In the algo-
rithm for two bandpass signals, the main computations are in the inspection of
conditions in (4.2), (4.3), (4.5) and (4.6), and the computation of new sampling
frequency in (4.7)-(4.10). Few computations are required for these equations as
we can borrow results from earlier evaluations. For example in step 1 we compute
2fn, (mod fy) in (4.2). In the process we can also obtain the integer nj, which
is used in computing the new sampling frequency (4.7). Similar conclusions can
be drawn for steps 2. In step 3, wemeed torevaluate f, — f;, (mod f;) which

can be written as

(fh2 - ffl) (mOd fS)
— (. (modufy) = foGod )] (mod £,)

call;?lis x (411)
_ x , & Z O)
N xr + fs,. otherwise.

When we are in step 3, the conditions-in step 1 are already satisfied, we can

obtain f,, (mod fs) using
fo, (mod f5) = fn, (mod f5) — Wi.

if fhl (mOd fs) 7& 0. When fh1 (mOd fs) =0, f€1 (HlOd fs) = fs - W fh1 and

2 fn, can be expressed as follows.

fro =mfs+ frn, (mod fs), where m = VZZMJ

thlJ
Js
Comparing the above two equations, f,, (mod fs) = (2fs,) (mod fs)/2 if n is

even and fp, (mod fs) = ((2fn,) (mod fs) + fs)/2 if n is odd. Thus both fj,
(mod f) and f, (mod fs) can be obtained from steps 1 and 2. The evaluation

2fn, = nfs+ (2fn,) (mod fy), where n = {
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for step 3 requires at most 5 additions. Similarly in step 4, we need to evaluate

fny + fr, (mod f,) which can be written as

(o + fny)  (mod f)
= (fn, (mod fs) + fn, (mod f;)) (mod f,)

i

call\t?lis y (412)
_ )y , Y <fs
y+ fs , otherwise.

frn, (mod f5) and fp,, (mod f;) are already obtained from step 3. The evaluation

requires at most 2 additions.
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Chapter 5

Generalization and Extensions

In this chapter, we extends the proposed algorithm to general case. In section
5.1, we extend the results in Sec. 4.1.and Ch. 3 to the case when there is a user-
specified minimum guard band. In Sec. 5.2, we propose a method for finding
a valid sampling frequency range.—In section 5.3, we extend the case of two

bandpass signals to the case-of multi-band signals.

5.1 Guard Bands

In practice it is desirable to have guard bands between different bandpass signals
after sampling. Suppose the minimum guard interval is GB. Then every 2 pass-
bands should be spaced apart by at least GB after sampling. We can consider
the spacing of every two replica as in Sec. 4.1, and there are a total of C cases.
Again due to the fact that X;"(f) and X, (f) are symmetric with respect to 0, if
there is a guard band of at least GB between the replica of X (f) and X, (f),
then replicas of X (f) and X5 (f) will be spaced apart by at least GB. Simi-
lar conclusion can be drown for the pair {X; (f), X57(f)} and {X;(f), X5 (f)}.

Therefore, we only need to consider the spacing of pairs (c) and (d) in (4.1).

Case(c). The pair {X{(f), X5 (f)}. Let us make the following adjustment of
band edges for X;"(f) and X (f)

fh. = fn +GB/2

[ = fo—CB)2 Jfori=1,2. (5.1)

35



Then X (f) and X (f) have expanded bandwidths
Wl =W, +GB and W)=W,+GB (5.2)

respectively, as illustrated in Fig. 5.1(a). We can verify expanding the passband
like this, we are effectively placing a guard band of GB/2 on each side of X; (f)
and X5 (f), there will be a spacing of at least GB if the newly defined band edges
and bandwidths satisfy the alias-free sampling condition in (4.5), that is,

(fhe = f2,)  (mod fi) =0,
or  (fa, = fr,) (mod fo) = Wi+ W, (5.3)

Fig. 5.1(b) shows an example of the replicas in the frequency range [0, f;) when
the above condition is satisfied:. The number-ay and fy that are useful in the

analysis of locations of replicas in case (¢) of See. 4.1.are now respectively
!/ 1 /! / / ]' /! /
a :§(fh2_f£1)7 fOZE(th—}_le)'

If the condition in (5.3) is not satisfied, we-can'increase the sampling frequency
to . 4
f _ fh2 u ffl
7 L(ffle_fél)/fSJ
Then (5.3) will become satisfied and there will be a spacing of GB.

(5.4)

Case (d). The pair {X; (f), X, (f)}. Similar to case (c) above, we can make
the adjustment of band edges and bandwidths as in (5.1) and (5.2), which is
shown in Fig. 5.2(a). There will be a guard band of GB if the new band edges

satisfy the alias-free condition in (4.6), that is

(fh + fry)  (mod f5) =0,
or  (fa, +fp,) (mod fi) = Wi+ W; (5.5)

If the condition in (5.5) is not satisfied, we can increase the sampling frequency

to
P
Lk i) )
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X X5

GB GB GB GB

2 2 2 2
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»

tt— . -
O| ft’lfll fhlfhl ffzft’z fhthz.f

replica of replica of
XT( ) X34
(b) : H >
o t fil2 t /
(—a’) (mod f5) a’(mod f)

1=y + 120 na =y~ 12

Figure 5.1: (a)The spectrum of X" (f) and X3 (f) with expanded passbands.

An example of the folded speetrum for the interval [0, fs) with guard band.

XN X;(f)
GB B GB. GB
(@ - W - =l
i T Ao Lh O fir Joo Iy Sin S
replica of replica of
v X () ‘ X;(f*fb’)
5 T 5l NG 5
(b) : —>
o 4 * f
(—a’) (mod f5) a’ (mod fy)

L= i)z a =G, +i,)2

Figure 5.2: (a)The spectrum of X; (f) and X, (f) with expanded passbands.

An example of the folded spectrum for the interval [0, fs) with guard band.
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Fig. 5.2(b) shows an example with the above condition satisfied.

The iterative algorithm in Sec. 4.2 can be modified for the case with guard
band. The first 2 steps can be carried out as before. For the 3rd and 4th steps, we
will use the new band edges and bandwidths in (5.1) and (5.2) to check whether
there is enough spacing between guard bands ((5.3) and (5.5)) and to increase

the sampling frequency ((5.4) and (5.6)) when the conditions are not satisfied.

5.2 Finding a Range of Valid Sampling Frequency

In practice it is desirable to have a sampling frequency range for alias-free sam-
pling. From the proposed algorithm we obtain a minimum sampling frequency
fsmin that meets the four alias-free conditions (4.1). For each case, we can grad-
ually increase the sampling frequency and have a boundary when the alias-free
condition becomes unsatisfied if we keep increasing the sampling frequency. We

will derive the boundary for-each case.

Case (a). The pair { X (f), X, (f)}= Suppose the condition in (4.2) is satisfied
for a given sampling frequency«fs:.Consider thefolded spectrum for the interval
0, f5). We discuss the two cases (1) 0/ < fo (mod f;) < fs/2 and (ii) fs/2 < fo,
(mod f) < fs separately as shown in Fig. 5.3(a) and (b).

(i) 0 < fo, (mod fs) < fs/2: When we gradually increase the sampling fre-
quency the band edge f;, (mod f;) of replica X (f) moves towards 0 while the
band edge (—f,) (mod fs) of replica X (f) moves towards fs. When the sam-
pling frequency is increased such that f,, (mod f) decreases to 0, the condition
in (4.2) becomes unsatisfied if we keep increasing the sampling frequency.

(ii) fs/2 < fo, (mod f5) < fs: Similarly the condition in (4.2) becomes unsat-
isfied if we keep increasing the sampling frequency when f;, (mod f;) decreases
to fs/2.

Therefore we can conclude that the alias-free condition (4.2) becomes unsat-

isfied if we keep increasing the sampling frequency when f,, becomes an integer
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replica of replica of

X700 X0
(a) AL J:
a : : >
0| T * + f
S (mod f5) (~/y) (mod ;)
fel (mOd fS‘)
replica of replica of
X7 X1
fs/2 I
(b) : : >
o 4 T 4 /
(/) (mod f5) Sy (mod £5)
£, (mod £;)

Figure 5.3: (a) An example of the folded spectrum for the interval [0, fs) when
0 < fr, (mod fs) < fs/2. (b) Anexample of the folded spectrum for the interval

0, fs) when f,/2 < f,, (mod f5) < fs.

multiple of f;/2. The boundary for this case f,, can be computed as follows. Let

fel R° nf1fs/2 + Ty,

where ry, = f;, (mod f,/2) and nyy ={fe/(fs/2)]. Then we have fo, = ng, fu, /2,

or equivalently ; ; ;
_ 2fy _ 2fy, _ 2fy
fua a Ty Lfﬁl/(fs/Q)J L2f€1 /fsJ ’

where we have used the fact that n,, can also be computed using n,, = |2f, /fs]-

(5.7)

Case (b). The pair {X;(f), X, (f)}. Similar to case (a), if the condition in
(4.3) is satisfied, we can increase sampling frequency to

20, 2fe, _2fy,
b = e T G ~ 2l T (58)

then (4.3) will become unsatisfied if we keep increasing the sampling frequency.

Case (c). The pair { X (f), X (f)} as shown in Fig. 5.4(a). For convenience
we consider the condition of the pair with a shift. Suppose we choose fy as the

midpoint of fy,, and fy,, i.e.,

Jo= (fh1 + fb)/Q'
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Then the shifted pair is as shown in Fig. 5.4(b), where
féz - fhl

T =

2

If we consider the folded spectrum in the [0, fs) interval, the band edges x
(mod fs) and (—z) (mod fs) are equal-distanced from f;/2. In Fig. 5.4(c) and
(d) we show the two possible scenarios of x (mod f;) > (—x) (mod f5) and x
(mod f5) < (—x) (mod f;) respectively. Using the steps in case (a), we can verify
that if the condition in (4.5) is satisfied, we can increase the sampling frequency
such that = (mod fs) to be equal to 0 or fs/2. Moreover we can increase sampling
frequency to
2z Joo = I

Foe = T2 i e — o) 72) (59)

then (4.5) will become unsatisfied if we keep increasing the sampling frequency.

Case (d). The pair {X; (), X;7(f)}. Like case (¢);if the condition in (4.6) is

satisfied, we can increase sampling frequency to

fo. + fo,
L[(fe, + o) /24

then (4.6) will become unsatisfied ‘if we keep increasing the sampling frequency.

Fuyp = (5.10)

For a given minimum frequency f; i, for alias-free sampling, we have derived
four boundaries for each case using (5.7), (5.8), (5.9), and (5.10). To ensure the
four alias-free conditions to be satisfied, the upper bound for the valid range can
be obtained by choosing the minimum of the four boundaries. Then we have a

valid sampling frequency range

Ssmin < fs <min{ fu,, fups fues Jua}- (5.11)

5.3 Multiple-Bandpass Signals

We can extend the proposed algorithm to find the minimum sampling frequency
for multiple bandpass signals. Suppose we are to sample a signal consist N band-
pass signals (2N bands). Since every two of the passbands may cause aliasing,

we need to consider C2V cases. In the analysis of two bandpass signals, we note
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Figure 5.4: (a) The spectrum of X; (f) and X, (f). (b) The shifted spectrum

X{"(f+fo) and X3 (f + fo), where fo = (fn, +fo,)/2 and a = (fo,— fn,)/2. (c) An
example of the folded spectrum for the interval [0, f5) when = (mod fs) > (—x)
(mod f5). (d) An example of the folded spectrum for the interval [0, f5) when z

(mod f,) < (~z) (mod £.).
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that X (f) and X, (f) are symmetric to 0, which is shown in Fig. 5.5(a), we can

have N alias-free conditions

2fp (mod f,) =0
or 2fn, (mod f5) >2W;, fori=1,2,--- N. (5.12)

Consider the other C3¥ — N cases, we note that if X;"(f) and X (f) are
not aliasing after sampling, then X; (f) and X, (f) will not be aliasing due to

symmetry, which is shown in Fig. 5.5(b). The corresponding condition is

(o, = fe.)  (mod fs) =0,
or (fn; = fo) (mod fo) > W; +W;, for 1 <i<j<N. (5.13)

Similarly, if X;"(f) and X (f) are-not-aliasing after sampling, then X; (f)
and X" (f) will not be aliasing, which i shown in Fig. 5.5(c). This requires

(fh: + fn;) = (mod f5) =0,
or (fn, + [n;) = (mod fo) >Wi+W;, for1 <i<j<N. (5.14)

There are N conditions in (5.12), N(N —1)/2«conditions in (5.13) and N (N —
1)/2 conditions in (5.14). Combining (5:12); (5.13) and (5.14), we have a total of
N? sufficient and necessary conditions for alias-free sampling. We can examine
each of the N? conditions. If one condition is not satisfied, we can always increase
the sampling frequency so that the condition becomes satisfied. By iteratively
examining the conditions and increasing the frequency, we can find the minimum

sampling frequency for alias-free sampling.

Remark. For multiple bandpass signals, we can also leave guard bands be-
tween different bandpass signals after sampling. Similar to the two bandpass
signals case, we can make the adjustment of band edges and bandwidths, and
use the conditions in (5.13) and (5.14). The new band edges and bandwidths are

respectively
fi, = fu—GBJ2
fh, = fu+GBJ2 fori=1,2,--- N. (5.15)
wW! = W;+GB
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Figure 5.5: (a)The spectrum of X; (f) and X;"(f). (b) The spectrum of X" (f)
and X" (f). (¢)The spectrum of X; (f) and X (f).
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Chapter 6

Simulations and Comparisons

In this chapter, we apply the proposed algorithm to wireless applications. The
bandpass signals considered in the simulations are GSM 900 (935-960 MHz, one-
sided bandwidth 25 MHz), GSM 1800 (1805-1880' MHz, one-sided bandwidth 75
MHz) [17], DAB Eureka-147-I-Band (1472.286-1473.822 MHz, one-sided band-
width 1536 KHz) [18], IEEE 802.11g (2412-2432 MHz, one-sided bandwidth 20
MHz) [19], and WCDMA (2119-2124 MHz, one-sided bandwidth 5 MHz).

6.1 Complexity Comparisens of The Proposed
Algorithm and Previously Reported Meth-
ods

In this section, we compare the number of addition and multiplication for finding
the minimum sampling frequency using method in [14], method in [15], and our
proposed method. Table 6.1 lists the complexity in finding the minimum sam-
pling frequency for different combinations of wireless systems. The simulation
result demonstrates that the proposed method can reduce the number of addi-
tions and multiplications significantly. The required numbers of additions and
multiplications are reduced respectively by around 35-41% and 36-53% in two
bandpass signals case, 28-58% and 61-76% in three bandpass signals case. As an-
other example, we consider GSM 900 application with spectrum divided to 125
users and the bandwidth of each user is 200 kHz. Table 6.2 lists the complexity for
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Case Method in [14] | Method in [15] | Proposed Method

ADD MUL | ADD MUL | ADD MUL

GSM900, GSM1800 29 20 38 20 17 28
DAB, 802.11¢g 65 122 161 296 42 78
GSM900, WCDMA 35 62 101 176 21 29
DAB, WCDMA 119 230 452 878 7 141
GSM900, GSM1800, 802.11g | 105 186 87 109 60 42
DAB, GSM1800, 802.11¢g 75 126 99 133 41 36
GSM900, DAB, WCDMA 183 342 198 331 77 84

Table 6.1: Complexity for finding the minimum sampling frequency of multiple
bandpass signals in terms of additions (ADD) and multiplications (MUL).

User Index Method in [14] | Method in [15] | Proposed Method

ADD MUL | ADD MUL | ADD MUL

577, ‘101’ 329 650 3585  T144 11 13

377, 49 1109 22103554 7082 15 22

‘107, 457, ‘88’ 2553 9082 | 4772 9479 1014 962

307, 507, ‘95 4359 - .8694" | 4780 9495 | 2325 2332
‘87,1467, ‘747, ‘102 3270 6492 | 6001 11884 | 812 575
257, 1397, ‘7T, 1125 8952 17856 | 6013 11908 | 4525 3089
257, 507, ‘757, ‘1007, ‘1257 2336 4392 | /7253 14317 | 1734 1174
‘117, 4397, ‘787, ‘1107, ‘119’ 12062 24044177251 14313 | 4164 2172
207, 407, ‘607, ‘807, ‘100°, ‘120" { 37657410 | 8488 16702 | 2476 1021
‘87,157, 4367, ‘737, ‘997, ‘1117 | 19593 © 39066 | 8467 16660 | 2986 1206

Table 6.2: Complexity for finding the minimum sampling frequency for GSM 900
with multiple users. For the ‘’-th user, f,, = 935 + 0.2(i — 1) Mhz, W; = 200

kHz, i = 1 — 125.

finding the minimum sampling frequency. The required numbers of additions and

multiplications are reduced to around 25-98% and 73-99% compared to the other

two methods. We can see that the proposed algorithm is much more efficient for

finding the minimum bandpass sampling frequency.
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Case GB (MHz) | fymin (MHz) | ADD MUL

GSM900, GSM1800 0 240 17 28
12.5 240 15 13

DAB, WCDMA 0 13.9737 77 141

0.768 15.3357 50 88

GSM900, GSMI800, 802.11g 0 320 60 42
10 320 37 20

GSM900, DAB, WCDMA 0 77.2364 77 84
0.768 80.1509 70 71

Table 6.3: Complexity for finding the minimum sampling frequency with and
without guard band.

6.2 Complexity Comparisons for Finding the Min-
imum Sampling Frequency with and with-
out Guard Band

Table 6.3 lists the complexity ‘with and without guard band. The simulation
results shows that introducing a larger guard band aslarger, the minimum sam-
pling frequency is in general larger.. Furthermore; having guard band between
different bandpass signals may ‘increase or decrease the complexity, depending
on the length of guard band. Consider the case of the signals that consists of
three bandpass signals, GSM900, GSM1800, and IEEE 802.11g. We apply the
proposed algorithm to find the minimum sampling frequency fs . It is equal
to 320 MHz. Fig. 6.1 shows the folded spectrum. When GB = 10 MHz, the
minimum sampling frequency is also equal to 320 MHz. In this particular exam-
ple, including a guard band of 10 MHz does not increase the minimum sampling
frequency. In fact we can see in Fig. 6.1 that, the replicas of different bandpass
signals are spaced apart by at least 13 MHz. Applying the proposed algorithm
with GB < 13 MHz will yield the same f in.
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Figure 6.1: An example of the sampled signal in [0, f5) with f; = 320 MHz.

Case fsmin (MHz) fs.min (MHz)
with ordering con- | without ordering con-
straint [13] straint
GSM900, GSM1800 417.7778 240
DAB, WCDMA 14.0198 13.9737
GSM900, GSM1800, 802.11g 4864 320
GSM900, DAB, WCDMA, 802.11g | 4864 137.1429

Table 6.4: Minimum sampling frequency comparisons with and without an or-
dering constraint.

6.3 Minimum Sampling Frequency Comparisons
with and without Ordering Constraint

Table 6.4 lists the minimum sampling frequency when there is a ordering among
the replicas [13]. The constraint is such that in the [0, f;) frequency range the
replica of X;7(f) is at the left of X (f). We have also listed the minimum
sampling frequency obtained using the proposed iterative algorithm without an
ordering constraint. We can see that the minimum sampling frequency without
an ordering constraint can be much smaller that with an ordering constraint.
Consider a signal that consists of two bandpass signals, GSM 900 and GSM
1800. The minimum sampling frequency is 240 MHz without an ordering con-
straint as shown in Fig. 6.2(a), and 417.778 MHz with an ordering constraint as
shown in Fig. 6.2(b). Since the proposed algorithm does not impose the ordering

constraint, it can obtain the true minimum sampling frequency.
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Figure 6.2: An example of the sampled signal in [0, f5) (a) fsmin = 240 MHz
without an ordering constraint. (b) fsm, = 417.778 MHz with an ordering
constraint.

Case Valid sampling frequency range (MHz)

GSM900, GSM 1800 240.0000 < fs < 240.6667
DAB, 802.11g 46.7880 <-f, < 46.7986
GSM900, WCDMA 64.3636 <-fs < 64.3889
DAB, WCDMA 139737 < f, < 13.9739

GSM900, GSM 1800, 802'11g 320.0000. < f, < 321.6000
DAB, GSM1800, 802.11g 209.6139 < f, < 209.7391
GSM900, DAB, WCDMA 77.2364 < f, < 77.2667

Table 6.5: Valid ranges of the sampling frequency.

6.4 Range of Valid Sampling Frequency

Table 6.5 lists a valid sampling frequency range for different combinations of wire-
less systems. Consider a signal that consists of GSM 900, GSM 1800, and IEEE
802.11g. The minimum sampling frequency is 320 MHz as shown in Fig. 6.3(a).
When we gradually increase the sampling frequency, the positive part of the
replica of 802.11g moves towards f;/2. When we increase the sampling frequency
to 321.6 M H z, the positive part and negative part of replica of 802.11g will be
aliasing if we keep increasing the sampling frequency as shown in Fig. 6.3(b). The

frequencies in the range of 320-321.6 MHz are all alias-free sampling frequency.
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Figure 6.3: An example of the sampled signal in [0, f;) (&) fsmin = 320 MHz. (b)
£, = 321.6 Mz
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Chapter 7

Conclusions

In this thesis, we have proposed an efficient algorithm for finding the minimum
sampling frequency for signals that centain multi-passband signals. We have de-
rived a set of necessary and sufficient conditions for alias-free sampling that can
be checked with few computations.—These conditions lead to an iterative algo-
rithm for finding the minimum sampling frequency. This is done by iteratively
increasing the sampling frequency to meet the alias-free conditions. The com-
plexity for finding the minimum sampling frequencyis much lower than existing
methods. There is no need to consider ordering of the signal bands in the folded
spectrum. The method can be easily extended the case when a guard band is

required.
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