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摘要 

我們提出一個有效率的遞迴演算法來針對多射頻訊號尋找

其最小取樣頻率，這在軟體無線電(Software Radio)上有重要

的應用，我們可以同時對多射頻訊號做不重疊失真取樣來降

低成本。首先我們同時對兩個射頻訊號取樣，提出新的條件

來達到不失真取樣，並且這些條件僅需要少量的運算。藉由

遞迴增加取樣頻率來滿足所有的不失真條件，我們可以找到

最小的不失真取樣頻率。我們可以將演算法擴充到同時取樣

多個射頻訊號，並且在取樣後於不同的射頻訊號間加上保護

頻帶(Guard Band)。模擬的結果顯示，我們提出的演算法能

較之前的方法有效地降低運算量。 
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Abstract
In this thesis, we propose an efficient iterative algorithm for finding the

minimum sampling frequency for a signal that consists of multiple band-
pass signals. This finds important application in software radio where it
is desirable to downconvert multiple bandpass signals simultaneously. We
will derive a new set of conditions for alias-free sampling for signals that
contain two bandpass signals. The conditions can be easily examined with
few computations. The minimum sampling frequency can be found by iter-
atively increasing the sampling frequency to meet the alias-free conditions.
We will show how the algorithm can be extended to find the minimum sam-
pling frequency for signals that consist of more than two bandpass signals.
Furthermore we will generalize the result to the case when a guard band
is required between different bandpass signals after sampling. The simula-
tions demonstrate that the proposed method has a much lower complexity
than existing algorithms.
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Chapter 1

Introduction

Bandpass sampling has important applications in downcoverting radio frequency

(RF) signals. In the application of software defined radio systems, it is desirable to

downconvert multiple RF signals simultaneously to save cost [1]-[6]. The signal to

be sampled may consist of more than one bandpass signal. Sampling theorem for

a bandpass signal (two passbands) is well-known [7, 8]. The minimum frequency

for alias-free sampling can be found in a closed form [9]. The minimum sampling

frequency is usually significantly lower than the carrier frequency of the bandpass

signal.

For signals with more than two passbands, the minimum sampling frequency

can not be found in a closed from due to the nonlinear nature of spectrum folding

in the process of sampling. Sampling for multi-band signals is extended in [6].

An example of a spectrum that consists of two bandpass signals is shown in

Fig. 1.1. Conditions for alias-free sampling of multi-band signals are derived

[6]. A systematic algorithm for finding valid sampling frequencies is developed

in [10]. In [11][12][13], the complexity for finding valid sampling frequency is

considerably reduced by imposing constraints on the ordering of the bands in the

folded spectrum. These results may not yield the minimum frequency for alias-

free sampling due to the ordering constraints. An efficient algorithm for finding

valid sampling frequency range is proposed in [14]. By exhausting all possible

orderings of the bands in the folded spectrum and categorizing all possible cases,

the computational complexity can be reduced. An algorithm for finding the

1
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Figure 1.1: An example of spectrum that consists of two bandpass signals.

minimum sampling frequency is developed in [15] by finding the intersection of

valid sampling frequencies for every two signal bands.

In this thesis, we propose an efficient algorithm for finding the minimum sam-

pling frequency for a signal consisting of two or more bandpass signals. We will

first derive a set of conditions for alias-free sampling of signals that consist of two

bandpass signals (four bands). These conditions can be checked with very few

computations. When one of these conditions is not satisfied, the sampling fre-

quency can be adjusted with minimum increment so that the condition becomes

satisfied. By iteratively increasing the sampling frequency to meet the conditions

for alias-free sampling, an algorithm for finding the minimum sampling frequency

can be developed. There is no need to consider the ordering of the sinal band

in the folded spectrum. The algorithm can be extended to find the minimum

sampling frequency for multiple bandpass signals. We can also generalize the

algorithm to the case when a guard band is required between different bandpass

signals after sampling. We will see that the algorithm based on the conditions

derived in this thesis requires fewer computations when compared to previously

reported methods.

2



1.1 Outline

• Chapter 2: The problem of bandpass sampling is formulated.

• Chapter 3: Section 3.1, we review a low-cost algorithm proposed by S. Bose,

V. Khaitan, and A. Chaturvedi [13]. The algorithm finds the minimum sam-

pling frequency when an ordering constraint is placed on the passbands.

Section 3.2 introduces an efficient algorithm for finding valid sampling fre-

quency ranges proposed by C. H. Tseng and S. C. Chou [14]. Section

3.3 introduces a searching algorithm for minimum sampling frequency by

finding the intersection of valid sampling frequencies for every two signal

passbands. This is proposed by J. Bae and J. Park [15].

• Chapter 4: Section 4.1 describes a set of conditions for alias-free sampling

of two bandpass signals. An efficient algorithm for finding the minimum

sampling frequency of two bandpass signals is shown in section 4.2. A

complexity analysis is given in section 4.3.

• Chapter 5: Section 5.1 extends the alias-free conditions when there is an

user-specified minimum guard band. A method for finding a valid sam-

pling frequency range is shown in 5.2. Section 5.3 extends the case of two

bandpass signals into the case of multi-band signals.

• Chapter 6: Simulations and comparisons of the previously reported meth-

ods and the proposed method are given.

1.2 Notations

• The notation bxc denotes the largest integer smaller than or equal to x.

• The notation dxe denotes the smallest integer larger than or equal to x.

3



Chapter 2

Problem Formulation

A receiver front end design of software defined radio is shown in Fig. 2.1. A

wide-band RF signal is received from the antenna and amplified with a low-noise

amplifier (LNA). Then the signal is filtered with N parallel bandpass filters. Thus

the input signal to the analog-to-digital converter (ADC) is a multi-band RF sig-

nal as shown in Fig. 2.2. The sampling frequency of the ADC should be properly

chosen so that there is no aliasing. The minimum sampling frquency provides an

attractive alternative to sampling at twice the carrier frequency (Nyquist rate)

[6]. Our goal here is to find the minimum sampling frequency efficiently given a

multiband signal like the one in Fig. 2.2.

Filter 1

LNA

Filter 2

Filter N

ADC

f s

Figure 2.1: The software defined radio receiver front end.

If an analog signal x(t) (with X(f) denoting its Fourier transform) is sampled

with a sampling frequency fs, the spectrum will be folded back and there will be

4
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a copy of X(f) every fs,
∞∑

k=−∞
X(f − kfs)

Consider a bandpass signal (two passbands) X(f) as shown in Fig. 2.3(a).

Assume that X(f) 6= 0 for f` < |f | < fh, where f` and fh are band edges, and

W = fh − f` is the one-sided bandwidth as indicated in the figure. If we are to

sample X(f) without causing aliasing, the replicas of X−(f) should not overlap

with X+(f). Suppose we shift X−(f) shifts by mfs and the copy X−(f −mfs)

is located at the right side of X+(f) as shown in Fig. 2.3(b). The smallest m for

this is

m = b2fh/fsc (2.1)

To avoid aliasing, we can have

−f` + (m− 1)fs ≤ f`,

and

−fh + mfs ≥ fh.

Combining the above two conditions, we have a valid sampling frequency range [7,

8]
2fh

m
≤ fs ≤ 2f`

m− 1
(2.2)

Since the lowest possible sampling frequency for no aliasing is 2W , the maximum

of m is mmax = bfh/W c. Thus we can have a closed form of the minimum

sampling frequency as

fs,min =
2fh

mmax

=
2fh

bfh/W c (2.3)

5
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Figure 2.3: (a) A spectrum of single bandpass signal. (b) The spectrum sampled
with fs.

For signals with more than two passbands (Fig. 2.2), the minimum sampling

frequency can not be found in a closed from due to the nonlinear nature of

spectrum folding in the process of sampling. Upon sampling with frequency fs,

replicas of each passband appear each fs, resulting in a periodic spectrum; we can

simply consider the period [0, fs). Fig. 2.4 gives an example of a signal spectrum

sampled with an alias-free sampling frequency fs. For alias-free sampling, there

are two types of constraints: one is referred to as boundary constraint and another

is referred to as neighbor constraint.

Boundary constraint. Boundary constraint means that the replicas of X+
i (f)

and X−
i (f) should not overlap at the edge in [0, fs/2) (replica of X+

N(f), X−
N(f)

and replica of X+
1 (f), X−

1 (f) in Fig. 2.4) need to be completely positioned within

[0, fs/2). If 0 or fs/2 is contained inside the band of these replicas, there will be

aliasing.

Neighbor constraint. Neighbor constraint means that the replicas of Xi(f) and

Xj(f) should not overlap each other in [0, fs/2). For example in Fig. 2.4, X−
i (f)

should not overlap X−
i+1(f) for i = 1, 2, · · · , N − 1.

Existing algorithm for finding the minimum sampling frequency are reviewed

6
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in the next chapter.
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Chapter 3

Previously Reported Methods

In this chapter we briefly review the previously methods for finding the valid

bandpass sampling frequency. Section 3.1, we review a low-cost algorithm pro-

posed by S. Bose, V. Khaitan, and A. Chaturvedi [13]. The algorithm finds the

minimum sampling frequency when an ordering constraint is placed on the pass-

bands. Section 3.2 introduces an efficient algorithm for finding valid sampling

frequency ranges proposed by C. H. Tseng and S. C. Chou [14]. Section 3.3 in-

troduces a searching algorithm for minimum sampling frequency by finding the

intersection of valid sampling frequencies for every two signal passbands. This is

proposed by J. Bae and J. Park [15].

3.1 Efficient Method with An Ordering Con-

straint [13]

In this section, we review a low-cost algorithm proposed by S. Bose, V. Khaitan,

and A. Chaturvedi. The algorithm finds the minimum sampling frequency when

an ordering constraint is placed on the passbands. Section 3.1.1 introduces the

assumption of ordering constraint and analyzes the constraint for alias-free sam-

pling under this assumption. Section 3.1.2 provides a low-cost algorithm finding

the minimum sampling frequency with the ordering constraint.

8



3.1.1 Alias-free Conditions with Ordering Constraints

Consider a signal that consists of N bandpass signals as shown in Fig. 3.1(a).

Assume Xi(f) 6= 0 for f`i
< |f | < fhi

, i = 1, 2, · · · , N , where f`i
and fhi

are band

edges, and Wi = fhi
− f`i

are one-sided bandwidths as indicated in the figure.

Let fi = (f`i
+fhi

)/2 denote the center frequency of X+
i (f). Upon sampling with

frequency fs, replicas of each passband appear each fs, resulting in a periodic

spectrum as shown in Fig. 3.1(b), where ri (referred to as frequency shifting

parameter) is given by

ri =

⌊
f`i
−GB

fs

⌋
.

Assume that after alias-free bandpass sampling, the ordering of the bandpass

signals in the interval [0, fs/2) does not change. Let fIF i
= fi (mod fs) denote

the center frequency of the replica of X+
i (f) in [0, fs/2) after sampling. The

ordering constraint is such that

fIF 1 < fIF 2 < · · · < fIF N

as indicating in the figure. Between every two replicas after bandpass sampling,

an user-specified minimum guard band GB is required for practical considera-

tions.

To avoid aliasing after sampling, two basic constraints must be satisfied: a

boundary constraint in the sampled bandwidth and a neighbor constraint between

adjacent passbands.

Boundary constraint. The boundary constraint is that X+
1 (f) should be posi-

tioned within [r1fs, (r1+0.5)fs] and X+
N(f) should be positioned within [rNfs, (rN+

0.5)fs] respectively so that aliasing by the negative frequency part of each signal

should not occur at both boundaries. Two boundary constraints can be obtained

as follows

r1fs ≤ f`1 −GB, (3.1)

and

(rN + 0.5)fs ≥ fhN
+ GB. (3.2)
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Neighbor constraint. The neighbor constraint is that adjacent passbands should

not overlap each other, it can be expressed as

fhi
− rifs ≤ f`i+1

−GB − ri+1fs for i = 1, 2, · · · , N − 1 (3.3)

Combining equation (3.1), (3.2), (3.3), the alias-free sampling frequency range

can be expressed as

fhN
+ GB

rN + 0.5
≤ fs ≤ min{fUB0,1 , fUB1,2 , · · · , fUBN−1,N

} (3.4)

where

fUBi,i+1
=

f`i+1
− fhi

−GB

ri+1 − ri

for i = 0, 1, · · · , N − 1

fh0 = 0 and r0 = 0. Since the lowest possible sampling frequency for alias-free

sampling is fs = 2{W1 + W2 + · · ·+ WN + (N + 1)GB}, ri can be bounded as

1 ≤ ri ≤
⌊

f`i
−GB

2{W1 + W2 + · · ·+ WN + (N + 1)GB}
⌋
, for i = 1, 2, · · · , N (3.5)

Furthermore, observe that a valid sampling frequency fs for N bandpass sig-

nals will also be a valid sampling frequency for k < N bandpass signals. Thus,

equation (3.4) can be extended as

fhk
+ GB

rk + 0.5
≤ fs ≤ min{fUB0,1 , fUB1,2 , · · · , fUBk−1,k

} (3.6)

for k = 1, 2, · · · , N .

To ensure the existence of fs, the LHS of equation (3.6) should be less or

equal to the RHS of equation (3.6), and it can be expressed as follows

fhk
+ GB

rk + 0.5
≤ fUBk−1,k

=
f`k

− fhk−1
−GB

rk − rk−1

, for k = 1, 2, · · · , N (3.7)

and

fhk
+ GB

rk + 0.5
≤ min{fUB0,1 , · · · , fUBk−2,k−1

} , for k = 2, 3, · · · , N (3.8)

From equation (3.7), it follows that

rk ≤
⌊

rk−1(fhk
+ GB) + 0.5(f`k

− fhk−1
−GB)

Wk + fhk−1
+ 2GB

⌋
, for k = 1, 2, · · · , N (3.9)
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which gives the upper bound of rk, and equation (3.8) can be expressed as

rk ≥
⌈

fhk
+ GB

min{fUB0,1 , · · · , fUBk−2,k−1
} − 0.5

⌉
, for k = 2, 3, · · · , N (3.10)

which gives the lower bound of rk.

These two equations (3.9) and (3.10) define the valid range for rk. Note that

equation (3.10) does not provide the lower bound of r1. Since r1 is an positive

integer, the lower bound can be set as 0. Besides, the upper bound of r1 from

(3.9) is given by

r1 ≤
⌊

f`1 −GB

2(W1 + 2GB)

⌋
,

which does not take into account all passbands. Thus it can be modified with a

tighter bound by taking into account all passbands

r1 ≤
⌊

f`1 −GB

2{W1 + W2 + · · ·+ WN + (N + 1)GB}
⌋

(3.11)

3.1.2 The Algorithm for Finding the Minimum Sampling
Frequency with Ordering Constraint

From the above section, the constraints of each rk include the alias-free constraint,

the purpose is to find the N -tuple of valid integers {r1, r2, · · · , rN} which satisfy

(3.9) and (3.10). Let the lower bound and upper bound of rk be denoted as rkmin

and rkmax . For a given r1, r2, · · · , rk−1, if rkmin
> rkmax , then given k − 1-tuple is

not a valid one. Therefore, by iterating each rk, all valid tuple {r1, r2, · · · , rN}
can be obtained. Furthermore, equation (3.6) shows that to choose the minimum

of fs, rk needs to choose maximum as possible and rk depends on the induction

of r1, r2, · · · , rk−1. The searching algorithm is given as follows:

1. Set the minimum guard band GB.

2. Initialize fs,min to the Nyquist rate 2(fhN
+ GB).

3. Set r1min
to 0 and evaluate r1max from equation (3.9). Then set r1 to r1max .

4. Compute r2min
and r2max from equation (3.9)(3.10).
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Figure 3.1: (a) A signal that consists of N bandpass signals. (b) The signals
spectrum after alias-free sampling with ordering constraint.
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5. If r2min
> r2max , decrease r1 by 1.

6. If r1 = r1min
, go to step 14; else go to step 4.

7. Set r2 to r2max .

8. Compute r3min
and r3max from equation (3.9)(3.10).

9. If r3min
> r3max , decrease r2 by 1.

10. If r2 < r2min
, decrease r1 by 1 and go to step 4; else go to step 8.

11. Continue this procedure until obtaining a valid set of r1, r2, · · · , rN−1.

12. Compute rNmin
and rNmax from equation (3.9)(3.10).

13. If rNmin
> rNmax , decrease rN−1 by 1 and go to step 11; else compute fs,min

as

fs,min =
fhN

+ GB

rNmax + 0.5
(3.12)

14. Output fs,min.

3.2 Method in [14]

In this section, we review an efficient algorithm for finding valid sampling fre-

quency range proposed by C. H. Tseng and S. C. Chou. By exhausting all possible

orderings of the bands in the folded spectrum and categorizing all possible cases,

the computational complexity can be reduced. Section 3.2.1 analyzes the all pos-

sible replica orders of the signal spectrum after bandpass sampling and derives

the constraints for alias-free sampling. Section 3.2.2 presents a searching algo-

rithm for the ranges of alias-free sampling frequency by iterating each index of

the segment, and the minimum sampling frequency can be obtained from the

valid ranges.
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3.2.1 Constraints of Valid Sampling Frequency Ranges for
Multiple Bandpass Signals

To sample without aliasing, the sampling frequency fs needs to be chosen without

causing spectral overlapping after bandpass sampling. First consider the problem

of sampling a signal that consists of two bandpass signals (four passbands) whose

spectrum is shown in Fig. 3.2, there will be 8 possible replica orders after bandpass

sampling without causing aliasing as shown in Fig. 3.3. The signal spectrum after

sampling is separated into many segments and n1 and n2 are the index of the

segment where the original spectrum X+
1 (f) and X+

2 (f) are located and can be

obtained as n1 = bf`1/fsc, n2 = bf`2/fsc respectively, where f1 and f2 are the

center frequency of X+
1 (f) and X+

2 (f). The four passbands are symmetric to the

center of each segment.

For a given replica order, there are two types of constraints: one is referred to

as the neighbor constraint and the other is referred to as the boundary constraint.

Consider the case 1 in Fig. 3.3 as an example.

Boundary constraint. The boundary constraint for case 1 is that the passband

‘1’ and ‘2’ should be completely inside the half of each segment, which lead to

two boundary constraints as fl1 ≥ n1fs and fh2 ≤ (n2 + 1/2)fs, or equivalently

fs ≤ f`1

n1

(3.13)

fs ≥ fh2

n2 + 1/2
(3.14)

Neighbor constraint. The neighbor constraint is that the passband ‘1’ does not

14
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overlap the passband ‘2’. This means fh1 − n1fs ≤ fl2 − n2fs, or equivalently

fs ≤ f`2 − fh1

n2 − n1

(3.15)

Combining (3.13)-(3.15), a range of alias-free sampling frequency for case 1 can

be found as
fh2

n2 + 1/2
≤ fs ≤ min {f`1

n1

,
f`2 − fh1

n2 − n1

}

By examining all the other replica orders, the ranges of alias-free sampling

frequency are summarized in table 3.1.

Case Range of Valid fs

1
fh2

n2+1/2
≤ fs ≤ min {f`1

n1
,

f`2
−fh1

n2−n1
}

2
fh2

n2+1
≤ fs ≤ min { f`1

n1+1/2
,

f`2
−fh1

n2−n1
}

3
fh1

+fh2

n1+n2+1
≤ fs ≤ min {f`1

n1
,

f`2

n2+1/2
}

4
fh1

+fh2

n1+n2+1
≤ fs ≤ min { f`1

n1+1/2
,

f`2

n2
}

5 max { fh1

n1+1
,

fh2

n2+1/2
} ≤ fs ≤ f`1

+f`2

n1+n2+1

6 max { fh1

n1+1/2
,

fh2

n2+1
} ≤ fs ≤ f`1

+f`2

n1+n2+1

7 max { fh1

n1+1
,

fh2
−f`1

n2−n1
} ≤ fs ≤ f`2

n2+1/2

8 max { fh1

n1+1/2
,

fh2
−f`1

n2−n1
} ≤ fs ≤ f`2

n2

Table 3.1: The ranges of alias-free sampling frequency for two bandpass signals.

Consider a signal that consists of N bandpass signals (2N passbands) as shown

in Fig. 2.2. The signal spectrum after bandpass sampling are the combinations

of all replicas of the 2N passbands. As the case of two bandpass signals, the

spectrum after sampling can be separated into many segments, and then consider

all possible replica orders in a segment. Note that there are two ways a passband

is located in a segment: one is in the first half of the segment and the other is in

the second half. Since there are N passbands in a segment after sampling, there

are 2N possibilities. In the half of the segment, there are N ! ways of ordering

the allocated replicas. Therefore, the total number of all possible replica orders

is 2N ×N !. For each possible replica order, there are 2 boundary constraints and

N − 1 neighbor constraints. Taking one of the possible replica order as shown in
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Fig. 3.4 as an example, there are 2 boundary conditions as

fs ≤ f`1

n1

,

and

fs ≥ fhN

nN + 1/2
.

and N − 1 neighbor constraints as

fs ≤
fhi+1

− f`i

ni+1 − ni

, for i = 1, 2, · · · , N − 1.

3.2.2 Algorithm for Searching the Ranges of Alias-free
Sampling Frequency

Section 3.2.1 shows that given a particular segment index (n1, n2, · · · , nN), the

range of alias-free sampling frequency can be obtained. ni is the index of segment

where the original spectrum X+
i (f) is located, and can be obtained as

ni =

⌊
f`i

fs

⌋
≤

⌊
f`i

2(W1 + W2 + · · ·+ WN)

⌋
, i = 1, 2, · · · , N (3.16)
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where the inequality is obtained by the fact that fs must be larger than the lowest

possible sampling frequency. Since fi is bounded in each corresponding segment

nifs < fi < (ni + 1)fs, i = 2, 3, · · · , N (3.17)

For a given n1, a tighter bound of ni for i = 2, 3, · · · , N can be obtained by

multiplying (3.17) by Ri/fs and taking floor operation to each side, where Ri =

fi+1/fi for i = 1, 2, · · · , N − 1

bRinic < ni+1 < bRi(ni + 1)c, i = 1, 2, · · · , N − 1 (3.18)

The possible values of ni+1 can be obtained for a given ni, i = 1, 2, · · · , N − 1

and 1 ≤ n1 ≤ b f1

2(W1+W2+···+WN )
c. Knowing all the possible values of ni, there are

two approaches to obtain the ranges of alias-free sampling frequency. The first

approach is that for a given (n1, n2 · · · , nN), the all ranges of alias-free sampling

can be obtained by combining the neighbor and boundary constraints for each

of the 2N ×N ! replica orders. The second approach is that choose two bandpass

signals from the N bandpass signals, and evaluate the ranges of alias-free sampling

frequency of the two bandpass signals, then there are total CN
2 tables which is

like table 3.1. Thus the ranges for N bandpass signals can be obtained from

the combination of the CN
2 tables. It is shown that the second approach is more

computationally efficient than the first approach.

3.3 Method in [15]

In this section, we review a searching algorithm for minimum sampling frequency

proposed by J. Bae and J. Park, which is achieved by finding the intersection of

valid sampling frequencies for every two signal passbands. Section 3.3.1 provides

the all valid sampling frequency ranges for N bandpass signals by the intersection

of the ranges from any two passbands. Section 3.3.2 shows the valid sampling fre-

quency ranges with user-specified minimum guard band and provides a procedure

for searching the minimum sampling frequency.
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3.3.1 Valid Sampling Frequency Ranges for Multiple Band-
pass Signals

Consider the signal that consists of N bandpass signals (2N passbands) as shown

in Fig. 3.5(a), where fi denotes the center frequency of each corresponding pass-

band. First consider the valid sampling frequency rages of any two passbands

Xm(f) and Xn(f), where m, n ∈ {±1,±2, · · · ,±N} as shown in Fig. 3.5(b).

Assume that sampling Xm(f) and Xn(f) with an alias-free sampling frequency

denoting fsm,n as shown in Fig. 3.5(c). To avoid aliasing, fs needs to satisfy the

following two constrains

fn − Wn

2
− rm,nfsm,n ≥ fm +

Wm

2

and

fn +
Wn

2
− (rm,n + 1)fsm,n ≤ fm − Wm

2

which lead to the valid sampling frequency range

fn−m + Wm+n/2

rm,n + 1
≤ fsm,n ≤

fn−m −Wm+n/2

rm,n

(3.19)

where fn−m = fn − fm, Wm+n = Wm + Wn, and rm,n is an integer given by

0 ≤ rm,n ≤
⌊

fn−m −Wm+n/2

Wm+n

⌋
(3.20)

The all valid sampling frequency ranges can be obtained from the intersection

fsm,n of any two passbands Xm(f) and Xn(f), where m,n ∈ {±1,±2, · · · ,±N}.
The number of fsm,n is C2N

2 and the valid ranges for N bandpass signals can be

expressed as

fs,all = fs N− ∩ fs (N−1)− ∩ · · · ∩ fs 1− ∩ fs 1+ ∩ · · · ∩ fs (N−1)+ (3.21)

where

fs N− = [
1−⋂

k=(N−1)−
fsN−,k

] ∩ [
N+⋂

k=1+

fsN−,k
]

fs (N−1)− = [
1−⋂

k=(N−2)−
fs(N−1)−,k

] ∩ [
N+⋂

k=1+

fs(N−1)−,k
]
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fs 1− =
N+⋂

k=1+

fs1−,k

fs 1+ =
N+⋂

k=2+

fs1+,k

and

fs (N−1)+ = fs(N−1)+,N+

Note that fsm,n and fs−m,−n (‘-’ denotes the counterpart of the signal) have the

same range for m 6= n by symmetry. fsm,−n and fs−m,n have the same range for

m 6= n similarly. Therefore, the number of fsm,n is reduced to N +(C2N
2 −N)/2 =

N2 and (3.21) can be modified as

fs,all = fs N− ∩ fs (N−1)− ∩ fs (N−2)− ∩ · · · ∩ fs 2− ∩ fs 1− (3.22)

where

fs N− = [
1−⋂

k=(N−1)−
fsN−,k

] ∩ [
N+⋂

k=1+

fsN−,k
]

fs (N−1)− = [
1−⋂

k=(N−2)−
fs(N−1)−,k

] ∩ [

(N−1)+⋂

k=1+

fs(N−1)−,k
]

fs (N−2)− = [
1−⋂

k=(N−3)−
fs(N−2)−,k

] ∩ [

(N−2)+⋂

k=1+

fs(N−2)−,k
]

fs 2− = fs2−,1− ∩
2+⋂

k=1+

fs2−,k

and

fs 1− = fs1−,1+

Note that the upper bound of rm,n in (3.20) is obtained from only considering

the two passbands Xm(f) and Xn(f). To consider the all N bandpass signals,

the bound for rm,n can be modified

0 ≤ rm,n ≤
⌊

fn−m −Wm+n/2

fbound

⌋
(3.23)

where fbound = 2(W1 + W2 + · · · + WN), which is the lowest possible sampling

frequency for no aliasing.
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3.3.2 Algorithm for Searching The Minimum Sampling
Frequency with User-Specified Minimum Guard-Band

To insert user-specified minimum guard band GB, the half of the guard band

is added on both sides of each passbands band edges as shown in Fig. 3.6. The

new valid sampling frequency range can be obtained by substituting Wm+n in

(3.19) with Wm+n+2GB = Wm +Wn +2GB, and substituting fbound in (3.23) with

fGBbound
= 2(W1 + W2 + · · ·+ WN + NGB). The two equations become

fn−m + Wm+n+2GB/2

rm,n + 1
≤ fsm,n ≤

fn−m −Wm+n+2GB/2

rm,n

(3.24)

0 ≤ rGBm,n ≤
⌊

fn−m −Wm+n+2GB/2

fGBbound

⌋
(3.25)

Furthermore, it is shown that 2fGBbound
is enough large to be an upper bound for

minimum sampling frequency from numerical experiments. Thus, the bound of
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rGBm,n (3.25) can be modified as

⌊
fn−m −Wm+n+2GB/2

2fGBbound

⌋
≤ rGBm,n ≤

⌊
fn−m −Wm+n+2GB/2

fGBbound

⌋
(3.26)

Based on the above discussion, the minimum sampling frequency can be ob-

tained as follows:

1. Specify the value of the minimum guard band GB.

2. Evaluate the ranges of rGBm,n for each fsm,n using (3.26)

3. Evaluate the ranges of fsm,n corresponding to each rGBm,n using (3.24)

4. The minimum sapling frequency can be obtained as

fs,GB = min{fs N− ∩ fs (N−1)− ∩ · · · ∩ fs 1−} (3.27)
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Chapter 4

The Proposed Algorithm

In this chapter, we propose an efficient algorithm for finding the minimum sam-

pling frequency for a signal consists of two bandpass signals. First we start up

the analysis for a signal consists of two bandpass signals, which leads to four

constraints of fs for causing no aliasing. This will be discussed in section 4.1.

In section 4.2 we introduce an efficient algorithm finding the minimum sampling

frequency. Section 4.3 demonstrates the complexity analysis.

4.1 Conditions for Alias-free Sampling of Two

Bandpass Signals

Conditions for alias-free sampling can be stated in various ways in terms of the

band edges and bandwidths of the member bandpass signals. The conditions

that are employed affect the complexity of ensuing algorithms. In this section,

we derive a new set of conditions for alias-free sampling that will lead to an

efficient algorithm in the next section.

First we consider the case of two bandpass signals for simplicity. Suppose

we are to sample a signal X(f) that consists of two bandpass signals X1(f) and

X2(f) as shown in Fig. 4.1. Assume Xi(f) 6= 0 for f`i
< |f | < fhi

, i = 1, 2,

where f`i
and fhi

are band edges, and Wi = fhi
−f`i

are one-sided bandwidths as

indicated in the figure. Let X+
i (f), and X−

i (f) denote respectively the positive

frequency part and negative frequency part of Xi(f). There are four signal bands,
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Figure 4.1: An example of spectrum that consists of two bandpass signals.

including X+
1 (f), X−

1 (f), X+
2 (f), and X−

2 (f). Since the replicas of any two bands

may overlap and result in aliasing after sampling, there are a total of C4
2 = 6 cases.

Note that X+
1 (f) and X−

1 (f) are symmetric with respect to 0, and so are X+
2 (f)

and X−
2 (f). If X+

1 (f) and X+
2 (f) are not aliasing after sampling, then X−

1 (f)

and X−
2 (f) will not be aliasing by symmetry. Similarly, if X−

1 (f) and X+
2 (f) are

not aliasing after sampling, then X+
1 (f) and X−

2 (f) will not be aliasing. Thus,

we need to consider only 4 cases:

(a) {X+
1 (f), X−

1 (f)}
(b) {X+

2 (f), X−
2 (f)}

(c) {X+
1 (f), X+

2 (f)}
(d) {X−

1 (f), X+
2 (f)}.

(4.1)

Case (a). If we consider only the pair {X+
1 (f), X−

1 (f)} as shown in Fig. 4.2(a),

this is the same as the case of one bandpass signal. For convenience, we will

derive a condition in terms of the band edge fh1 and one-sided bandwidth W1.

Upon sampling with frequency fs, replicas of X+
1 (f) and X−

1 (f) appear every

fs, resulting in a periodic spectrum; we can simply consider the period [0, fs).

Since X+
1 (f) and X−

1 (f) are symmetric with respect zero, the replicas of X+
1 (f)

and X−
1 (f) are symmetric with respect to fs

2
in the interval [0, fs) (Fig. 4.2(b)).
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Observe that if 0 or fs is not contained inside the band of replicas of X+
1 (f) and

X−
1 (f), there will not be aliasing. One necessary and sufficient condition for alias-

free sampling is thus fh1 (mod fs

2
) = 0, or fh1 (mod fs

2
) ≥ W1. Equivalently, we

have

2fh1 (mod fs) = 0

or 2fh1 (mod fs) ≥ 2W1 (4.2)

Case (b). Similar to case (a), if we consider the pair {X+
2 (f), X−

2 (f)} as shown

in Fig. 4.3(a), since X+
2 (f) and X−

2 (f) are symmetric with respect zero, the repli-

cas of X+
2 (f) and X−

2 (f) are symmetric with respect to fs

2
in the interval [0, fs)

(Fig. 4.3(b)). Observe that if 0 or fs is not contained inside the band of repli-

cas of X+
2 (f) and X−

2 (f), there will not be aliasing. One necessary and sufficient

condition for alias-free sampling is thus fh2 (mod fs

2
) = 0, or fh2 (mod fs

2
) ≥ W2.

Equivalently, we have there will be no aliasing if and only if

2fh2 (mod fs) = 0,

or 2fh2 (mod fs) ≥ 2W2 (4.3)
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Case (c). Consider Fig. 4.4(a) where we have shown only the pair {X+
1 (f), X+

2 (f)}.
First observe that there is no aliasing due to this pair if and only if there is no

aliasing when we sample a shifted version of the pair {X+
1 (f + f0), X

+
2 (f + f0)}

where f0 is the shift. For convenience we will consider the condition for alias-free

sampling of the pair with a shift. Suppose we choose f0 as the midpoint of f`1

and fh2 , i.e.,

f0 = (f`1 + fh2)/2.

Then the shifted pair is as shown in Fig. 4.4(b), where

a =
fh2 − f`1

2
,

b = f`2 − (f`1 + fh2)/2,

c = fh1 − (f`1 + fh2)/2.

If we consider the folded spectrum in the [0, fs) interval, the band edges a

(mod fs) and (−a) (mod fs) are equal-distanced from fs/2. We now discuss

two possible scenarios (i) a (mod fs) ≥ (−a) (mod fs) and (ii) a (mod fs) <

(−a) (mod fs). Examples of these two possible cases are shown respectively in

Fig. 4.4(c) and (d).
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(i) When a (mod fs) ≥ (−a) (mod fs) there will be no aliasing if and only if

(−a) (mod fs) = a (mod fs) or if the interval ((−a) (mod fs), a (mod fs))

is large enough to accommodate the two replicas. That is,

a (mod fs)− ((−a) (mod fs)) = 0,

or a (mod fs)− ((−a) (mod fs)) ≥ W1 + W2.

The equivalent conditions are

2a (mod fs) = 0,

or 2a (mod fs) ≥ W1 + W2 (4.4)

(ii) when a (mod fs) < (−a) (mod fs) as shown in Fig. 4.4(d), there is some

space between the two replicas and the space is of length ((−a) (mod fs)−a

(mod fs)). There will be no aliasing if and only if the remaining part of

the [0, fs) interval is large enough to take in the two replicas. That is,

fs − ((−a) (mod fs)− a (mod fs)) ≥ W1 + W2.

Or equivalently

2a (mod fs) ≥ W1 + W2

This is the same as the second condition in (4.4).

Substituting a = (fh2 − f`1)/2 to (4.4), we obtain one necessary and sufficient

condition for alias-free sampling

(fh2 − f`1) (mod fs) = 0,

or (fh2 − f`1) (mod fs) ≥ W1 + W2 (4.5)

Case (d). Similarly, for the pair {X−
1 (f), X+

2 (f)} as shown in Fig. 4.5(a), we

can use the technique in case (c) to consider the condition for alias-free sampling

of the pair with a shift where we choose f0 as the midpoint of −fh1 and fh2 , i.e.,

f0 = (fh2 − fh1)/2.
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Then the shifted pair is as shown in Fig. 4.5(b), where

a =
fh1 + fh2

2
,

b = f`2 − (fh2 − fh1)/2,

c = −f`1 − (fh2 − fh1)/2.

If we consider the folded spectrum in the [0, fs) interval, the band edges a

(mod fs) and (−a) (mod fs) are equal-distanced from fs/2. We can discuss two

possible scenarios (i) a (mod fs) ≥ (−a) (mod fs) and (ii) a (mod fs) < (−a)

(mod fs) as case (c) similarly and examples of these two possible cases are shown

respectively in Fig. 4.5(c) and (d). Substituting a = (fh1 + fh2)/2 to (4.4), we

obtain one necessary and sufficient condition for alias-free sampling

(fh1 + fh2) (mod fs) = 0,

or (fh1 + fh2) (mod fs) ≥ W1 + W2 (4.6)

Summarizing, for a given sampling frequency fs, there will not be aliasing if

the following four conditions are satisfied.

1. 2fh1 (mod fs) = 0 or 2fh1 (mod fs) ≥ 2W1

2. 2fh2 (mod fs) = 0 or 2fh2 (mod fs) ≥ 2W2

3. (fh2 − f`1) (mod fs) = 0 or (fh2 − f`1) (mod fs) ≥ W1 + W2

4. (fh1 + fh2) (mod fs) = 0 or (fh1 + fh2) (mod fs) ≥ W1 + W2

4.2 Proposed Algorithm for finding the Mini-

mum Sampling Frequency of Two Bandpass

Signals

In this section we propose an efficient algorithm for finding the minimum sampling

frequency. For simplicity, first consider the case of two bandpass signals, which

we have derive four alias-free conditions in section 4.1. For each of the four
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cases, we derive the minimum increment in sampling frequency such that the

corresponding condition for alias-free sampling can be satisfied.

Case (a). Suppose the condition in (4.2) is not satisfied for a given sampling

frequency fs. Consider the folded spectrum for the interval [0, fs). We discuss

the two cases (i) 0 < fh1 (mod fs) < fs/2 and (ii) fs/2 < fh1 (mod fs) < fs

separately.

(i) 0 < fh1 (mod fs) < fs/2: When we gradually increase the sampling fre-

quency the band edge fh1 (mod fs) of replica X+
1 (f) moves towards 0 while

the band edge −fh1 (mod fs) of replica X−
1 (f) moves towards fs. When

the sampling frequency is increased such that fh1 (mod fs) decreases to 0,

then the condition in (4.2) becomes satisfied.

(ii) fs/2 < fh1 (mod fs) < fs: Similarly the condition in (4.2) becomes satisfied

when fh1 (mod fs) decreases to fs/2.

Therefore we can conclude that the alias-free condition (4.2) can be satisfied by

increasing the sampling frequency such that fh1 becomes an integer multiple of

fs/2. The smallest new sampling fs,new for this to happen can be computed as

follows. Let

fh1 = nh1fs/2 + rh1 ,

where rh1 = fh1 (mod fs/2) and nh1 = bfh1/(fs/2)c. Then we have fh1 =

nh1fs,new/2, or equivalently

fs,new =
2fh1

nh1

=
2fh1

bfh1/(fs/2)c =
2fh1

b2fh1/fsc , (4.7)

where we have used the fact that nh1 can also be computed using nh1 = b2fh1/fsc.

Case (b). Similar to case (a), if the condition in (4.3) is not satisfied, we can

increase sampling frequency to

fs,new =
2fh2

b2fh2/fsc , (4.8)

then (4.3) will become satisfied.
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Case (c). Suppose the condition in (4.5) is not satisfied. Consider again the

shifted spectrum in Fig. 4.4(b). Using the steps in case (a), we can verify that

there will be not aliasing if we increase the sampling frequency so that a (mod fs)

to be equal to 0 or fs

2
. Moreover the new sampling frequency can be obtained by

fs,new =
2a

ba/fs

2
c =

fh2 − f`1

b(fh2 − f`1)/fsc (4.9)

Case (d). Like case (c), if the condition in (4.6) is not satisfied, we can increase

the sampling frequency to

fs,new =
fh1 + fh2

b(fh1 + fh2)/fsc (4.10)

then (4.6) will be satisfied.

Proposed iterative algorithm

Using the conditions for alias-free sampling in section 4.1 and the methods for

computing new sampling frequency for each case, we have the following iterative

algorithm for finding the minimum sampling frequency. To start off, let fs =

2(W1 + W2), which is the lowest possible sampling frequency for no aliasing.

1. Examine if the condition for case (a) in (4.2) is satisfied. If it is, go to the

next step. If it is not satisfied, compute the new sampling frequency using

(4.7) and go to the next step.

2. If the condition (4.3) for case (b) is satisfied, go to the next step. If it is not

satisfied, compute the new sampling frequency using (4.8) and go to step

1.

3. If the condition (4.5) for case (c) is satisfied, go to the next step. If it is

not, compute the new sampling frequency using (4.9) and go to step 1.

4. If the condition (4.6) for case (d) is not satisfied, compute the new sampling

frequency using (4.10) and go to step 1. If it is satisfied then we have found

the minimum sampling frequency.
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Usually not all four steps are performed in one iteration.

4.3 Complexity

In this section we will analyze the computation of the algorithm. In the algo-

rithm for two bandpass signals, the main computations are in the inspection of

conditions in (4.2), (4.3), (4.5) and (4.6), and the computation of new sampling

frequency in (4.7)-(4.10). Few computations are required for these equations as

we can borrow results from earlier evaluations. For example in step 1 we compute

2fh1 (mod fs) in (4.2). In the process we can also obtain the integer nh1 which

is used in computing the new sampling frequency (4.7). Similar conclusions can

be drawn for steps 2. In step 3, we need to evaluate fh2 − f`1 (mod fs) which

can be written as

(fh2 − f`1) (mod fs)
= (fh2 (mod fs)− f`1 (mod fs))︸ ︷︷ ︸

call this x

(mod fs)

=

{
x , x ≥ 0,
x + fs , otherwise.

(4.11)

When we are in step 3, the conditions in step 1 are already satisfied, we can

obtain f`1 (mod fs) using

f`1 (mod fs) = fh1 (mod fs)−W1.

if fh1 (mod fs) 6= 0. When fh1 (mod fs) = 0, f`1 (mod fs) = fs −W1. fh1 and

2fh1 can be expressed as follows.

fh1 = mfs + fh1 (mod fs), where m =

⌊
fh1

fs

⌋

2fh1 = nfs + (2fh1) (mod fs), where n =

⌊
2fh1

fs

⌋

Comparing the above two equations, fh1 (mod fs) = (2fh1) (mod fs)/2 if n is

even and fh1 (mod fs) = ((2fh1) (mod fs) + fs)/2 if n is odd. Thus both fh1

(mod fs) and fh2 (mod fs) can be obtained from steps 1 and 2. The evaluation
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for step 3 requires at most 5 additions. Similarly in step 4, we need to evaluate

fh1 + fh2 (mod fs) which can be written as

(fh1 + fh2) (mod fs)
= (fh1 (mod fs) + fh2 (mod fs))︸ ︷︷ ︸

call this y

(mod fs)

=

{
y , y < fs,
y + fs , otherwise.

(4.12)

fh1 (mod fs) and fh2 (mod fs) are already obtained from step 3. The evaluation

requires at most 2 additions.
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Chapter 5

Generalization and Extensions

In this chapter, we extends the proposed algorithm to general case. In section

5.1, we extend the results in Sec. 4.1 and Ch. 3 to the case when there is a user-

specified minimum guard band. In Sec. 5.2, we propose a method for finding

a valid sampling frequency range. In section 5.3, we extend the case of two

bandpass signals to the case of multi-band signals.

5.1 Guard Bands

In practice it is desirable to have guard bands between different bandpass signals

after sampling. Suppose the minimum guard interval is GB. Then every 2 pass-

bands should be spaced apart by at least GB after sampling. We can consider

the spacing of every two replica as in Sec. 4.1, and there are a total of C4
2 cases.

Again due to the fact that X+
i (f) and X−

i (f) are symmetric with respect to 0, if

there is a guard band of at least GB between the replica of X+
1 (f) and X+

2 (f),

then replicas of X−
1 (f) and X−

2 (f) will be spaced apart by at least GB. Simi-

lar conclusion can be drown for the pair {X−
1 (f), X+

2 (f)} and {X+
1 (f), X−

2 (f)}.
Therefore, we only need to consider the spacing of pairs (c) and (d) in (4.1).

Case(c). The pair {X+
1 (f), X+

2 (f)}. Let us make the following adjustment of

band edges for X+
1 (f) and X+

2 (f)

f ′hi
= fhi

+ GB/2
f ′`i

= f`i
−GB/2

, for i = 1, 2. (5.1)
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Then X+
1 (f) and X+

2 (f) have expanded bandwidths

W ′
1 = W1 + GB and W ′

2 = W2 + GB (5.2)

respectively, as illustrated in Fig. 5.1(a). We can verify expanding the passband

like this, we are effectively placing a guard band of GB/2 on each side of X+
1 (f)

and X+
2 (f), there will be a spacing of at least GB if the newly defined band edges

and bandwidths satisfy the alias-free sampling condition in (4.5), that is,

(f ′h2
− f ′`1) (mod fs) = 0,

or (f ′h2
− f ′`1) (mod fs) ≥ W ′

1 + W ′
2 (5.3)

Fig. 5.1(b) shows an example of the replicas in the frequency range [0, fs) when

the above condition is satisfied. The number a0 and f0 that are useful in the

analysis of locations of replicas in case (c) of Sec. 4.1 are now respectively

a′ =
1

2
(f ′h2

− f ′`1), f ′0 =
1

2
(f ′h2

+ f ′`1).

If the condition in (5.3) is not satisfied, we can increase the sampling frequency

to

fs,new =
f ′h2

− f ′`1
b(f ′h2

− f ′`1)/fsc (5.4)

Then (5.3) will become satisfied and there will be a spacing of GB.

Case (d). The pair {X−
1 (f), X+

2 (f)}. Similar to case (c) above, we can make

the adjustment of band edges and bandwidths as in (5.1) and (5.2), which is

shown in Fig. 5.2(a). There will be a guard band of GB if the new band edges

satisfy the alias-free condition in (4.6), that is

(f ′h1
+ f ′h2

) (mod fs) = 0,

or (f ′h1
+ f ′h2

) (mod fs) ≥ W ′
1 + W ′

2 (5.5)

If the condition in (5.5) is not satisfied, we can increase the sampling frequency

to

fs,new =
f ′h1

+ f ′h2

b(f ′h1
+ f ′h2

)/fsc (5.6)
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Fig. 5.2(b) shows an example with the above condition satisfied.

The iterative algorithm in Sec. 4.2 can be modified for the case with guard

band. The first 2 steps can be carried out as before. For the 3rd and 4th steps, we

will use the new band edges and bandwidths in (5.1) and (5.2) to check whether

there is enough spacing between guard bands ((5.3) and (5.5)) and to increase

the sampling frequency ((5.4) and (5.6)) when the conditions are not satisfied.

5.2 Finding a Range of Valid Sampling Frequency

In practice it is desirable to have a sampling frequency range for alias-free sam-

pling. From the proposed algorithm we obtain a minimum sampling frequency

fsmin
that meets the four alias-free conditions (4.1). For each case, we can grad-

ually increase the sampling frequency and have a boundary when the alias-free

condition becomes unsatisfied if we keep increasing the sampling frequency. We

will derive the boundary for each case.

Case (a). The pair {X+
1 (f), X−

1 (f)}. Suppose the condition in (4.2) is satisfied

for a given sampling frequency fs. Consider the folded spectrum for the interval

[0, fs). We discuss the two cases (i) 0 < f`1 (mod fs) < fs/2 and (ii) fs/2 < f`1

(mod fs) < fs separately as shown in Fig. 5.3(a) and (b).

(i) 0 < f`1 (mod fs) < fs/2: When we gradually increase the sampling fre-

quency the band edge f`1 (mod fs) of replica X+
1 (f) moves towards 0 while the

band edge (−f`1) (mod fs) of replica X−
1 (f) moves towards fs. When the sam-

pling frequency is increased such that f`1 (mod fs) decreases to 0, the condition

in (4.2) becomes unsatisfied if we keep increasing the sampling frequency.

(ii) fs/2 < f`1 (mod fs) < fs: Similarly the condition in (4.2) becomes unsat-

isfied if we keep increasing the sampling frequency when f`1 (mod fs) decreases

to fs/2.

Therefore we can conclude that the alias-free condition (4.2) becomes unsat-

isfied if we keep increasing the sampling frequency when f`1 becomes an integer
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multiple of fs/2. The boundary for this case fua can be computed as follows. Let

f`1 = n`1fs/2 + r`1 ,

where r`1 = f`1 (mod fs/2) and n`1 = bf`1/(fs/2)c. Then we have f`1 = n`1fua/2,

or equivalently

fua =
2f`1

n`1

=
2f`1

bf`1/(fs/2)c =
2f`1

b2f`1/fsc , (5.7)

where we have used the fact that n`1 can also be computed using n`1 = b2f`1/fsc.

Case (b). The pair {X+
2 (f), X−

2 (f)}. Similar to case (a), if the condition in

(4.3) is satisfied, we can increase sampling frequency to

fub
=

2f`2

n`2

=
2f`2

bf`2/(fs/2)c =
2f`2

b2f`2/fsc , (5.8)

then (4.3) will become unsatisfied if we keep increasing the sampling frequency.

Case (c). The pair {X+
1 (f), X+

2 (f)} as shown in Fig. 5.4(a). For convenience

we consider the condition of the pair with a shift. Suppose we choose f0 as the

midpoint of fh1 and f`2 , i.e.,

f0 = (fh1 + f`2)/2.
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Then the shifted pair is as shown in Fig. 5.4(b), where

x =
f`2 − fh1

2
.

If we consider the folded spectrum in the [0, fs) interval, the band edges x

(mod fs) and (−x) (mod fs) are equal-distanced from fs/2. In Fig. 5.4(c) and

(d) we show the two possible scenarios of x (mod fs) ≥ (−x) (mod fs) and x

(mod fs) < (−x) (mod fs) respectively. Using the steps in case (a), we can verify

that if the condition in (4.5) is satisfied, we can increase the sampling frequency

such that x (mod fs) to be equal to 0 or fs/2. Moreover we can increase sampling

frequency to

fuc =
2x

bx/(fs/2)c =
f`2 − fh1

b(f`2 − fh1)/2c
, (5.9)

then (4.5) will become unsatisfied if we keep increasing the sampling frequency.

Case (d). The pair {X−
1 (f), X+

2 (f)}. Like case (c), if the condition in (4.6) is

satisfied, we can increase sampling frequency to

fud
=

f`1 + f`2

b(f`1 + f`2)/2c
, (5.10)

then (4.6) will become unsatisfied if we keep increasing the sampling frequency.

For a given minimum frequency fs,min for alias-free sampling, we have derived

four boundaries for each case using (5.7), (5.8), (5.9), and (5.10). To ensure the

four alias-free conditions to be satisfied, the upper bound for the valid range can

be obtained by choosing the minimum of the four boundaries. Then we have a

valid sampling frequency range

fs,min ≤ fs ≤ min {fua , fub
, fuc , fud

}. (5.11)

5.3 Multiple-Bandpass Signals

We can extend the proposed algorithm to find the minimum sampling frequency

for multiple bandpass signals. Suppose we are to sample a signal consist N band-

pass signals (2N bands). Since every two of the passbands may cause aliasing,

we need to consider C2N
2 cases. In the analysis of two bandpass signals, we note
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that X+
i (f) and X−

i (f) are symmetric to 0, which is shown in Fig. 5.5(a), we can

have N alias-free conditions

2fhi
(mod fs) = 0

or 2fhi
(mod fs) ≥ 2Wi, for i = 1, 2, · · · , N. (5.12)

Consider the other C2N
2 − N cases, we note that if X+

i (f) and X+
j (f) are

not aliasing after sampling, then X−
i (f) and X−

j (f) will not be aliasing due to

symmetry, which is shown in Fig. 5.5(b). The corresponding condition is

(fhj
− f`i

) (mod fs) = 0,

or (fhj
− f`i

) (mod fs) ≥ Wi + Wj, for 1 ≤ i < j ≤ N. (5.13)

Similarly, if X+
i (f) and X−

j (f) are not aliasing after sampling, then X−
i (f)

and X+
j (f) will not be aliasing, which is shown in Fig. 5.5(c). This requires

(fhi
+ fhj

) (mod fs) = 0,

or (fhi
+ fhj

) (mod fs) ≥ Wi + Wj, for 1 ≤ i < j ≤ N. (5.14)

There are N conditions in (5.12), N(N−1)/2 conditions in (5.13) and N(N−
1)/2 conditions in (5.14). Combining (5.12), (5.13) and (5.14), we have a total of

N2 sufficient and necessary conditions for alias-free sampling. We can examine

each of the N2 conditions. If one condition is not satisfied, we can always increase

the sampling frequency so that the condition becomes satisfied. By iteratively

examining the conditions and increasing the frequency, we can find the minimum

sampling frequency for alias-free sampling.

Remark. For multiple bandpass signals, we can also leave guard bands be-

tween different bandpass signals after sampling. Similar to the two bandpass

signals case, we can make the adjustment of band edges and bandwidths, and

use the conditions in (5.13) and (5.14). The new band edges and bandwidths are

respectively
f ′`i

= f`i
−GB/2

f ′hi
= fhi

+ GB/2
W ′

i = Wi + GB
, for i = 1, 2, · · · , N. (5.15)

42



X f( ) X f( )
i j
+ +

0 f

(a)

(b)

(c)

~ ~~ ~

f ff

l i

l i

l i

l i

f
l j

l j

hj

hj

X f( ) X f( )
i i
- +

0 f

~~ ~ ~

f-f f-f
ih

ih

ih

ih

X f( )
j
+

0 f

~ ~~ ~

ff

X f( )
i
-

-f -f

Figure 5.5: (a)The spectrum of X−
i (f) and X+

i (f). (b) The spectrum of X+
i (f)

and X+
j (f). (c)The spectrum of X−

i (f) and X+
j (f).

43



Chapter 6

Simulations and Comparisons

In this chapter, we apply the proposed algorithm to wireless applications. The

bandpass signals considered in the simulations are GSM 900 (935-960 MHz, one-

sided bandwidth 25 MHz), GSM 1800 (1805-1880 MHz, one-sided bandwidth 75

MHz) [17], DAB Eureka-147 L-Band (1472.286-1473.822 MHz, one-sided band-

width 1536 KHz) [18], IEEE 802.11g (2412-2432 MHz, one-sided bandwidth 20

MHz) [19], and WCDMA (2119-2124 MHz, one-sided bandwidth 5 MHz).

6.1 Complexity Comparisons of The Proposed

Algorithm and Previously Reported Meth-

ods

In this section, we compare the number of addition and multiplication for finding

the minimum sampling frequency using method in [14], method in [15], and our

proposed method. Table 6.1 lists the complexity in finding the minimum sam-

pling frequency for different combinations of wireless systems. The simulation

result demonstrates that the proposed method can reduce the number of addi-

tions and multiplications significantly. The required numbers of additions and

multiplications are reduced respectively by around 35-41% and 36-53% in two

bandpass signals case, 28-58% and 61-76% in three bandpass signals case. As an-

other example, we consider GSM 900 application with spectrum divided to 125

users and the bandwidth of each user is 200 kHz. Table 6.2 lists the complexity for
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Case Method in [14] Method in [15] Proposed Method
ADD MUL ADD MUL ADD MUL

GSM900, GSM1800 29 50 38 50 17 28
DAB, 802.11g 65 122 161 296 42 78

GSM900, WCDMA 35 62 101 176 21 29
DAB, WCDMA 119 230 452 878 77 141

GSM900, GSM1800, 802.11g 105 186 87 109 60 42
DAB, GSM1800, 802.11g 75 126 99 133 41 36
GSM900, DAB, WCDMA 183 342 198 331 77 84

Table 6.1: Complexity for finding the minimum sampling frequency of multiple
bandpass signals in terms of additions (ADD) and multiplications (MUL).

User Index Method in [14] Method in [15] Proposed Method
ADD MUL ADD MUL ADD MUL

‘57’, ‘101’ 329 650 3585 7144 11 13
‘37’, ‘49’ 1109 2210 3554 7082 15 22

‘10’, ‘45’, ‘88’ 2553 5082 4772 9479 1014 962
‘30’, ‘50’, ‘95’ 4359 8694 4780 9495 2325 2332

‘8’, ‘46’, ‘74’, ‘102’ 3270 6492 6001 11884 812 575
‘25’, ‘39’, ‘77’, ‘125’ 8952 17856 6013 11908 4525 3089

‘25’, ‘50’, ‘75’, ‘100’, ‘125’ 2336 4592 7253 14317 1734 1174
‘11’, ‘39’, ‘78’, ‘110’, ‘119’ 12062 24044 7251 14313 4164 2172

‘20’, ‘40’, ‘60’, ‘80’, ‘100’, ‘120’ 3765 7410 8488 16702 2476 1021
‘8’, ‘15’, ‘36’, ‘73’, ‘99’, ‘111’ 19593 39066 8467 16660 2986 1206

Table 6.2: Complexity for finding the minimum sampling frequency for GSM 900
with multiple users. For the ‘i’-th user, f`i

= 935 + 0.2(i − 1) Mhz, Wi = 200
kHz, i = 1− 125.

finding the minimum sampling frequency. The required numbers of additions and

multiplications are reduced to around 25-98% and 73-99% compared to the other

two methods. We can see that the proposed algorithm is much more efficient for

finding the minimum bandpass sampling frequency.
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Case GB (MHz) fs,min (MHz) ADD MUL
GSM900, GSM1800 0 240 17 28

12.5 240 15 13
DAB, WCDMA 0 13.9737 77 141

0.768 15.3357 50 88
GSM900, GSM1800, 802.11g 0 320 60 42

10 320 37 20
GSM900, DAB, WCDMA 0 77.2364 77 84

0.768 80.1509 70 71

Table 6.3: Complexity for finding the minimum sampling frequency with and
without guard band.

6.2 Complexity Comparisons for Finding the Min-

imum Sampling Frequency with and with-

out Guard Band

Table 6.3 lists the complexity with and without guard band. The simulation

results shows that introducing a larger guard band as larger, the minimum sam-

pling frequency is in general larger. Furthermore, having guard band between

different bandpass signals may increase or decrease the complexity, depending

on the length of guard band. Consider the case of the signals that consists of

three bandpass signals, GSM900, GSM1800, and IEEE 802.11g. We apply the

proposed algorithm to find the minimum sampling frequency fs,min. It is equal

to 320 MHz. Fig. 6.1 shows the folded spectrum. When GB = 10 MHz, the

minimum sampling frequency is also equal to 320 MHz. In this particular exam-

ple, including a guard band of 10 MHz does not increase the minimum sampling

frequency. In fact we can see in Fig. 6.1 that, the replicas of different bandpass

signals are spaced apart by at least 13 MHz. Applying the proposed algorithm

with GB ≤ 13 MHz will yield the same fs,min.
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Figure 6.1: An example of the sampled signal in [0, fs) with fs = 320 MHz.

Case fs,min (MHz) fs,min (MHz)
with ordering con-
straint [13]

without ordering con-
straint

GSM900, GSM1800 417.7778 240
DAB, WCDMA 14.0198 13.9737

GSM900, GSM1800, 802.11g 4864 320
GSM900, DAB, WCDMA, 802.11g 4864 137.1429

Table 6.4: Minimum sampling frequency comparisons with and without an or-
dering constraint.

6.3 Minimum Sampling Frequency Comparisons

with and without Ordering Constraint

Table 6.4 lists the minimum sampling frequency when there is a ordering among

the replicas [13]. The constraint is such that in the [0, fs) frequency range the

replica of X+
i (f) is at the left of X+

i+1(f). We have also listed the minimum

sampling frequency obtained using the proposed iterative algorithm without an

ordering constraint. We can see that the minimum sampling frequency without

an ordering constraint can be much smaller that with an ordering constraint.

Consider a signal that consists of two bandpass signals, GSM 900 and GSM

1800. The minimum sampling frequency is 240 MHz without an ordering con-

straint as shown in Fig. 6.2(a), and 417.778 MHz with an ordering constraint as

shown in Fig. 6.2(b). Since the proposed algorithm does not impose the ordering

constraint, it can obtain the true minimum sampling frequency.
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Figure 6.2: An example of the sampled signal in [0, fs) (a) fs,min = 240 MHz
without an ordering constraint. (b) fs,min = 417.778 MHz with an ordering
constraint.

Case Valid sampling frequency range (MHz)
GSM900, GSM1800 240.0000 ≤ fs ≤ 240.6667

DAB, 802.11g 46.7880 ≤ fs ≤ 46.7986
GSM900, WCDMA 64.3636 ≤ fs ≤ 64.3889

DAB, WCDMA 13.9737 ≤ fs ≤ 13.9739
GSM900, GSM1800, 802.11g 320.0000 ≤ fs ≤ 321.6000

DAB, GSM1800, 802.11g 209.6139 ≤ fs ≤ 209.7391
GSM900, DAB, WCDMA 77.2364 ≤ fs ≤ 77.2667

Table 6.5: Valid ranges of the sampling frequency.

6.4 Range of Valid Sampling Frequency

Table 6.5 lists a valid sampling frequency range for different combinations of wire-

less systems. Consider a signal that consists of GSM 900, GSM 1800, and IEEE

802.11g. The minimum sampling frequency is 320 MHz as shown in Fig. 6.3(a).

When we gradually increase the sampling frequency, the positive part of the

replica of 802.11g moves towards fs/2. When we increase the sampling frequency

to 321.6MHz, the positive part and negative part of replica of 802.11g will be

aliasing if we keep increasing the sampling frequency as shown in Fig. 6.3(b). The

frequencies in the range of 320-321.6 MHz are all alias-free sampling frequency.
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fs = 321.6 MHz.
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Chapter 7

Conclusions

In this thesis, we have proposed an efficient algorithm for finding the minimum

sampling frequency for signals that contain multi-passband signals. We have de-

rived a set of necessary and sufficient conditions for alias-free sampling that can

be checked with few computations. These conditions lead to an iterative algo-

rithm for finding the minimum sampling frequency. This is done by iteratively

increasing the sampling frequency to meet the alias-free conditions. The com-

plexity for finding the minimum sampling frequency is much lower than existing

methods. There is no need to consider ordering of the signal bands in the folded

spectrum. The method can be easily extended the case when a guard band is

required.
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