

國 立 交 通 大 學

電機與控制工程學系

碩士論文

智能型 DMA 的 DSP 架構設計在雙核心上

的應用

A Smart DMA-Based DSP Architecture

for Dual-Core Application

研究生： 郭昕展

指導教授： 林進燈 教授

中華民國九十八年七月

 i

智能型DMA的DSP架構設計

在雙核心上的應用

A Smart DMA-Based DSP Architecture for

Dual-Core Application

研 究 生：郭昕展 Student：Hsin-Chan Kuo

指導教授：林進燈 Advisor : Dr. Chin-Teng Lin

國立交通大學

電機與控制工程學系

碩士論文

A Thesis

Submitted to Institute of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electrical and Control Engineering

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

 ii

智智智智能能能能型型型型DMADMADMADMA的的的的DSPDSPDSPDSP架構設計在雙核心上的應用架構設計在雙核心上的應用架構設計在雙核心上的應用架構設計在雙核心上的應用

學生：郭昕展 指導教授：林進燈 博士

國立交通大學電機與控制工程研究所

中文摘要中文摘要中文摘要中文摘要

雙核心處理器雖具有平行處理的能力以達到較好的運算效能，卻會受限於記

憶體資料傳輸上頻寬的限制。若透過處理器做資料傳輸，將變得非常沒有效率。

而一般處理器的 DMA(Direct Memory Access) 雖能有效的利用記憶體頻寬用以

減低處理器傳輸上的負擔，但無法提供特殊數位訊號處理功能。在現今的處理器

已經開始重視 DMA 對數位訊號處理的能力設計，例如智原科技的 FTMCP020

以及 TI DSP 晶片等。針對數位訊號處理的一些特殊定址及運算，是傳統的處理

器或 DMA將不能發揮較好的效能，因此本論文將提出智慧型直接記憶體控制器

的設計。

本論文提出一個智慧型直接記憶體存取（DMA），用以輔助雙核心處理器提

升運算效能及傳輸效率。智慧型 DMA控制器設計以傳統 DMA傳輸模式設計加

上支援五種定址模式，能夠有效選取傳輸資料區塊，降低傳輸的頻寬及處理器的

負擔。本論文設計特色是具有（1）擁有內建 Dual-MAC 運算器搭配定址模式，

可支援雙通道資料記憶體向量運算，協助處理器處理大量且具有規則與繁雜的數

位訊號；（2）支援周邊輸出入匯流排，使得周邊擴充更有彈性；（3）減少約 75%

等待資料的時間；及（4）降低組語的程式碼。

本論文設計一個智慧型 DMA控制器，並整合於一個通用雙核心處理器上，

經實驗結果證明能大幅提升 FFT, DCT, FIR 等運算，特別是複數 FFT 運算。此晶

片採用 UMC 90nm 製程，以 Cell-based方式設計，晶片面積約 2.1x2.1 mm
2，預

估最大操作頻率在 200MHz。

 iii

A Smart DMA-Based DSP Architecture for

Dual-Core Application

Student：Hsin-Chan Kuo Advisor: Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

Although a dual-core processor has the ability of parallel processing and has a

better performance, it is limited to memory bandwidth. If the processor is used as data

transmission, it will become inefficiency. However, for a general-purpose processor

DMA (direct memory access) is often used to improve the effective usage of memory

bandwidth, but it can not offer special functions for digital signal processing. In recent

years, the processor has been respected for DMA design in the ability of digital signal

processing, such as Faraday’s FTDMAC020 and TI’s digital signal processors, etc.

Because the traditional processor or DMA has not more efficiency at present, this

thesis proposes a novel smart DMA controller design.

This thesis presents the SDMA controller in order to assist a dual-core processor

improving performance and transmission efficiency. The SDMA supports five

addressing modes compared with the design method of traditional DMA and four

transmission types to select the region of valid data and to reduce the transmission

bandwidth for the processor. The SDMA design has features as follows. (1) It has a

built-in dual complex-valued multiplication-and-accumulation (Dual-MAC) to

processes mass and regular data computation. Moreover, two channel can access two

 iv

memory banks and perform vector operations at the same time; (2) it supports the

peripheral bus to expand I/O devices flexibly; (3) it can save about 75% time wasted

on data transfer; and (4) the code size can be reduced.

This thesis proposes the smart DMA design is integrated into the dual-core

architecture to be a DSP-like processor. By experimental results, the proposed design

can achieve greatly efficiency at FFT, DCT, and FIR computation, especially in

complex operations. The chip has been integrated in the total area of 2.1 × 2.1 mm
2

by using UMC 90nm CMOS technology and has fabricated via the National Chip

Implementation Center (CIC). The maximum clock frequency is at 200MHz with a

single 1.0V supply.

 v

誌謝

兩年的研究所生涯隨著論文的完成劃上了句號，這兩年間，要感謝許多

人的鼓勵和幫忙，使我獲得充實的專業能力並順利完成研究所的學業。

首先要感謝的是我的指導教授-林進燈老師。林老師是國內十分傑出的一位教

授，在不同領域內都有相當好的研究成果。感謝老師提供了很理想的研究環

境、豐富的資源及正確的引導，使我在研究上非常順利。在老師悉心的指導

下，讓我學習到解決問題的能力及做研究應有的態度，使我獲益良多。

 在實驗室裡，鍾仁峰博士給予我最直接的教導，不管遇到課業上或研究上

的問題，常常去請教鍾仁峰博士，感謝鍾學長不厭其煩地教導，使我增進了

對積體電路設計上的專業知識，開拓了我的視野。在學校裡，感謝范倫達教

授時常關心我學業上的研究，時常與我討論論文方向及進度。還要特別感謝

洪紹航學長對於我研究上的指導，幫解決了我許多的問題。另外也感謝實驗

室所有的夥伴，毓廷、煒忠、建昇、孟修、寓鈞、舒愷、孟哲、俊彥、依伶

等學長姐們。還有我的同學們，哲睿、介恩、家欣、有德。以及實驗室的學

弟妹，感謝大家在研究上及生活上的互相扶持及鼓勵。

 最後要感謝家人爸爸、媽媽、妹妹的支持，讓我能專心於學術上的研究，

渡過所有難關，謝謝！人生值得感謝的人其實很多，感謝老天、感謝許多親

人、朋友和同學，在生命的旅途中，因為有你們，因為我們彼此珍惜、相互

扶持，才能有無比的力量。

 vi

CONTENTS

中文摘要中文摘要中文摘要中文摘要...II

ABSTRACT... III

誌謝誌謝誌謝誌謝...V

CONTENTS... VI

LIST OF FIGURES ... VIII

LIST OF TABLES...X

CHAPTER 1 INTRODUCTION..1

1.1 MOTIVATION ..2

1.2 ORGANIZATION OF THE THESIS...3

CHAPTER 2 ...4

SMART DMA CONTROLLER..4

2.1 FUNCTION OF SMART DMA ..4

2.1.2 Transfer Modes ...4

2.1.3 Addressing and Operation Mode ..7

2.2 ARCHITECTURE OF SDMAC ...13

2.2.1 Channel Controller ...13

2.2.2 Prioritizing Arbiter ...15

2.2.3 FIFO (First In First Out)..16

2.2.4 Register Bank ..18

2.2.5 Interrupt ..20

2.2.6 Memory Interface..20

2.2.7 APB(Advanced Peripheral Bus)..22

2.2.8 Dual-MAC...23

2.3 THE REGISTER BANK OF SMART DMA ...26

2.3.1 Source Register ...26

2.3.2 Destination Register..27

2.3.3 Control Register..28

2.3.4 Configuration Register..29

2.3.5 Status Register and ACC Register ..30

2.3.6 Operating Flow of SDMA ...31

CHAPTER 3 SDMA INTEGRATED WITH DUAL-CORE PROCESSOR........32

3.1 ARCHITECTURE OF DUAL-CORE PROCESSOR ..32

 vii

3.1.1 Processor Kernel...32

3.1.2 Instruction set architecture ...34

3.1.3 I
2
S Bus...37

3.2 INTEGRATION OF SDMA AND DUAL-CORE PROCESSOR38

CHAPTER 4 CHIP IMPLEMENTATION AND VERIFICATION41

4.1 CHIP IMPLEMENTATION ..41

4.1.1 Design Flow..41

4.1.2 Synthesis Results ...42

4.1.3 Layout and Package..43

4.1.4 Design for Testing Consideration ...47

4.2 CHIP VERIFICATION...49

4.2.1 Data Transmission ..49

4.2.2 Inner product...50

4.2.3 Convolution...51

4.2.4 FFT ...52

4.2.5 DCT...53

4.2.6 Peripheral Interface - APB ...54

4.2 PERFORMANCE COMPARISON ...55

4.3.1 Performance of Data Transmission ..56

4.3.2 Comparison the MAC performance with other DSPs.................................57

4.3.3 Comparison DSP functions with other DSPs..59

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS60

REFERENCES...62

APPENDEX..65

A TAPEOUT REVIEW FORM..65

 viii

List of Figures
Fig. 2-1: Illustration of the memory-to-memory transfer mode.5

Fig. 2-2: Illustration of the memory-to- peripheral transfer mode.................................5

Fig. 2-3: Illustration of the peripheral-to-memory transfer mode..................................6

Fig. 2-4: Illustration of the peripheral-to- peripheral transfer mode..............................6

Fig. 2-5: Increasing/Decreasing Addressing Mode..7

Fig. 2-6: Inner Product with Smart DMA..8

Fig. 2-7: Convolution with Smart DMA..8

Fig. 2-8: Circular Convolution with Smart DMA..9

Fig. 2-9: Mirror addressing of Smart DMA...10

Fig. 2-10: Index-based addressing of Smart DMA..11

Fig. 2-11: Bit-Reverse addressing of Smart DMA ..11

Fig. 2-12: Architecture of Smart DMA..13

Fig. 2-13: Architecture of Channel Controller...14

Fig. 2-14: Finite State Machine of read/write Controller ..15

Fig. 2-15: Prioritizing Arbiter of Smart DMA...16

Fig. 2-16: Pointer of FIFO ...17

Fig. 2-17: Pointer and counter of FIFO ...18

Fig. 2-18: Timing Diagram of reading data from register in Smart DMA19

Fig. 2-19: Timing Diagram of writing data from register in Smart DMA...................19

Fig. 2-20: Register Bank of Smart DMA...19

Fig. 2-21: Interrupt Controller ...20

Fig. 2-22: Data transmission via internal memory interface..21

Fig. 2-23: Memory symbol. ...21

Fig. 2-24: Read cycle timing diagram of memory...22

Fig. 2-25: Write cycle timing diagram of memory ..22

Fig. 2-26: APB bridge interface ...23

Fig. 2-27: Read cycle timing diagram of APB...23

Fig. 2-28: Write cycle timing diagram of memory ..23

Fig. 2-29: Architecture of dual-MAC ..25

Fig. 2-30: Source offset..27

Fig. 2-31: Operating flow of SDMA..31

Fig. 3-1: Processor Kernel ...33

Fig. 3-2: The transmitter of I
2
S ..37

Fig. 3-3: The receiver of I
2
S...37

Fig. 3-4: Timing diagram of I
2
S...38

Fig. 3-5: I
2
S at APB bus...38

 ix

Fig. 3-6: Integration of Smart DMA and dual-core processor39

Fig. 3-7: Bus of this system ...39

Fig. 3-8: Memory mapping ..40

Fig. 4-1: Chip design flow ...42

Fig. 4-2: Chip Layout and PAD allocation ..44

Fig. 4-3 Chip Package..44

Fig. 4-4: DRC result...45

Fig. 4-5: LVS result..45

Fig. 4-6: Memory BIST ...47

Fig. 4-7: Fault-Coverage..48

Fig. 4-8: Transmission in different memories……………………………………….49

Fig. 4-9: Transmission in a same memory...49

Fig. 4-10: Data transmission in different memories by circular addressing49

Fig. 4-11: Data transmission in different memories by mirror addressing50

Fig. 4-12:Inner product ..50

Fig. 4-13: Post-layout simulation of inner product..51

Fig. 4-14: Convolution...51

Fig. 4-15: Post-layout simulation of convolution ..52

Fig. 4-16: Post-layout simulation of FFT ..52

Fig. 4-17: MATLAB result of FFT ..53

Fig. 4-18: Input data of DCT ...53

Fig. 4-19: post-layout simulation of DCT..54

Fig. 4-20: MATLAB result of DCT ...54

Fig. 4-21: Transferring data form I
2
S to memory ..55

Fig. 4-22: Post-layout simulation of data transmission form I
2
S to memory55

Fig. 4-23: Performance of data moving ...57

Fig. 4-24: Comparison of computational performance with other DPSs.....................59

Fig. 4-25: FFFFTT EExxeeccuuttiioonn CCyycclleess..59

Fig. 5-1: System level design...61

 x

List of Tables
Table. 2-1: Addressing type of Smart DMA ..12

Table. 2-2: FIFO Control Signals...17

Table. 2-3: Pin descriptions of memory...21

Table. 2-4: Processing schedules of a complex 3-tap FIR convolution25

Table. 2-5: Source Register..26

Table. 2-6: Destination Register ..27

Table. 2-7: Control Register...28

Table. 2-8: Configuration Register ..29

Table. 2-9: Status Register ...30

Table. 3-1: Instructions of logic and arithmetic ...35

Table. 3-2: Instructions of jump and branch ..35

Table. 3-3: Instructions of data moving ...36

Table. 3-4: Instructions of setting Smart DMA ...36

Table. 3-5: Other instructions ..36

Table. 4-1: Synthesis Results ...42

Table. 4-2 Specification Table ...46

Table. 4-3 Comparison of commercial DMA and Smart DMA...................................56

Table. 4-5: Comparison of MAC operation with other DSPs......................................58

 1

Chapter 1

Introduction

Media processing usually deals with large data streams of video, audio and

graphics. In the media system, a large number of data should be transported. If the

processor, which is good at data calculating, takes the charge of those data

transporting, the performance of the media system will decrease greatly.

In the last century, the technology of direct memory access (DMA) was

introduced into the DSP (Digital Signal Processor) design. The traditional DMA only

supports increment/decrement addressing modes and four types of transferring modes

[1], [2], [3]. Due to this fundamental mode, it could complete the data transporting

among memories or peripherals without the aid of the processor. Most real-time

scheduling algorithms demand that the worst-case execution time of each task is

known in advanced. This is hardly satisfied if a task uses a DMA I/O method to

transfer data between I/O devices and memories.

Several DMA controllers are proposed to support real-time systems. In 1988, B.

Sprunt et al. [4] proposed a Preemptable I/O Controller (PIOC) to avoid priority

inversion. The commercial product TMS320C621 DSP contains an Enhanced DMA

(EDMA) controller [5], which prioritizes transfer requests and prefers serving

higher-priority requests. Furthermore, the EDMA uses RAM to store transfer

parameters and allows the new channel parameters immediately loaded via a linking

mechanism. S. Srinivasam [6] proposed a PDMA (Pre-programmed DMA mechanism)

that allow a DMA action to continue moving data even that the source or destination

addresses are not consecutive. Although the PDMA can be used to execute a task

 2

chain according to a predetermined schedule, it can not accept any unscheduled

request and does not provide facility to circumvent unexpected delays to access I/O or

memory.

For example, in Freescale MPC823e, a dedicated RISC core was used to take

charge of data transporting [7]. In ADI Blackfin processor, a task-chain based

two-dimensional DMA mechanism which was very suitable for video processing

was developed [8]. It could efficiently resolve data transporting in the media system.

But those above were developed only for the single-processor system which was

working in a single clock domain. Faraday’s FTDMAC020 [9] has a slave AHB

(Advanced High-performance Bus) interface. The DMA is configurable up to an

8-channel DMA engine. Each channel can be assigned a group priority level and

channels of the same group priority are serviced in the Round Robin fashion. To

ensure real-time applications, the computing system requires guaranteed I/O

throughput. Thus, this thesis will improve traditional DMA and integrate Smart

DMA into a general-purpose dual-core processor.

1.1 Motivation

In recent years, the DSP applications are widely. Especially, the development of

embedded systems and consumer electronics are rapidly, such as mobile phones and

MP3, etc. Due to a large number of consumer electronic products, the output value of

DSP is about 75%. Therefore the cost and performance will become an important

indicator of a choice. If we choose a low-end processor, the performance will decrease

because there are a lot of architecture and different addressing modes used in digital

signal processing [10], such as circular and bit-reverse addressing. If the processor

does not support special addressing modes, it will need to spend more execution

 3

cycles. This means that the processor needs higher clock rate and wastes more power

consumption.

The hardware design of digital signal processing has to consider the efficiency of

architecture and data transmission. In most of researches, they only enhance the

architecture and discarding the mass data transmission. Up to now, the DSP design

begins emphasizing and discussing how to enhance DMA architecture in order to

control transmission and computation of mass data.

For reducing the cost and complexity of developing a DSP, in this thesis a smart

DMA (SDMA) is proposed and integrated into a general-purpose dual-core processor.

It can assist the dual-core processor to handle mass and regular operations and to

achieve a DSP-like processor. Thus, the traditional DMA architecture will be

improved to support multiple addressing modes and built-in operation units at the

same time. These multiple addressing modes include increment/decrement, circular,

mirror, and bit-reverse addressing. For the different computing case such as FIR, DCT,

and FFT [11], we can choose different addressing modes and collocate with

dual-MAC architecture to perform different digital signal processing functions.

1.2 Organization of the Thesis

 In this thesis, the SDMA architecture is introduced in Chapter 2. Chapter 3

describes system combination of SDMA and a dual-core processor. The experimental

results and chip implementation are presented in Chapter 4, and conclusions are made

in the last chapter.

 4

Chapter 2

Smart DMA Controller

This chapter will introduce the design of smart direct memory access controller

(SDMAC), involving with the SDMAC function, architecture design, and illustrating

functions and setting of control register groups.

2.1 Function of Smart DMA

2.1.2 Transfer Modes

The SDMAC supports four transfer modes as memory-to-memory, memory-to-

peripheral, peripheral-to-memory, and peripheral-to-peripheral operations. Their

function is described as follows, respectively.

1. Memory-To-Memory:

The memory interface of SDMAC supports two embedded memories at the

same time. In the mode, data transfer occurs between two memories or in one of

memory. SDMAC can read and write data at the same time when the source and

destination memory are different. When the source and destination memory are

same, SDMAC begins to write destination data, if the internal buffer is full, after

reading source data from one of memory. Fig. 2-1 shows the transfer mode under

the memory-to-memory data path. The arrow with dotted line indicates all bus

transfer paths, and the arrow with hard line indicates the memory-to-memory path

through Channel 0.

 5

Fig. 2-1: Illustration of the memory-to-memory transfer mode.

2. Memory-To-Peripheral:

The mode can transfer data which is in particularly block of data memory to

peripheral devices. Fig. 2-2 shows the data path of memory-to-peripheral transfer

mode. The arrow with dotted line indicates all bus paths, and the arrow with hard

line indicates the memory-to- peripheral path through Channel 0.

Fig. 2-2: Illustration of the memory-to- peripheral transfer mode.

3. Peripheral -To- Memory:

It can transfer the data form peripheral device to a specify memory block

using SDMAC, then processor can processing the data in memory. Fig. 2-3 is the

data path of peripheral-to-memory transfer mode. It can transfer data from I
2
S to

memory.

 6

The arrow with dotted line indicates all bus transfer paths, and the arrow with

hard line indicates the peripheral-to-memory transfer path through Channel 0.

Fig. 2-3: Illustration of the peripheral-to-memory transfer mode.

4. Peripheral -To- Peripheral:

It can set the peripheral-to-peripheral transfer mode by SDMA when the

peripheral with ability of processing or just transfer data between two peripherals.

It can transfer without interrupt and do not need processor to handle this task. Fig.

2-4 is the data path of peripheral-to-peripheral transfer mode. The arrow with

dotted line indicates all bus transfer paths, and the arrow with hard line indicates

the peripheral-to-peripheral transfer path through Channel 0.

Fig. 2-4: Illustration of the peripheral-to- peripheral transfer mode.

 7

2.1.3 Addressing and Operation Mode

The SDMA supports five addressing modes involving increasing/decreasing

addressing, circular addressing, mirror addressing index-based addressing, and

bit-reversed addressing. The flowing will illustrate each addressing mode:

1. Increasing/Decreasing Addressing Mode:

This mode is a basic mode and is suitable for the other four modes. Fig. 2-5

is the increasing/decreasing addressing mode. The data is copied from Memory A

(RAM A) to Memory B (RAM B). When reading data from RAM A, it uses

increasing addressing; when writing data to RAM B, it uses decreasing

addressing.

Fig. 2-5: Increasing/Decreasing Addressing Mode

In Fig. 2-6, increasing addressing with Dual-MAC can compute inner

product. The data can from memory or peripheral and also can operate in a

memory. It can reduce the effort of processor.

 8

Fig. 2-6: Inner Product with Smart DMA

Increasing and decreasing addressing with Dual-MAC can perform

convolution operation such as in Fig. 2-7. The data can from memory or

peripheral and also can operation in a memory. It can reduce the effort of

processor.

Fig. 2-7: Convolution with Smart DMA

 9

2. Circular Addressing Mode:

User can define a block of memory when using circular addressing. When

address excesses the boundary of block, it returns to the starting address of the

block by the method of circular. To move in circles until the data transfer

completely. This addressing can also use increasing or decreasing addressing

according to different cases. In Fig. 2-8 , this addressing mode with Dual-MAC

can perform circular convolution which is often used in digital signal processing;

the X1 in RAM_A is a sequential data block and X2 in RAM_B is a circular data

block. SDMAC read data from two memories to do the function of circular

convolution.

Fig. 2-8: Circular Convolution with Smart DMA

3. Mirror Addressing Mode:

User can define a block of memory when using circular addressing. When

address excesses the boundary of block, it will increase or decrease from the

boundary address by the method of mirror until the data transfer completely. In

Fig. 2-9, this addressing mode with Dual-MAC can perform Discrete Cosine

 10

Transform (DCT) which is often used in digital signal processing; X1 in RAM_A

is a sequential data block, and X2 in RAM_B is a mirror data block. SDMAC read

data from two memories to execute. It can achieve the operation of mirror

addressing.

Fig. 2-9: Mirror addressing of Smart DMA

4. Index-based Addressing Mode :

User can set the index of increasing or decreasing address when use

index-based addressing mode to transfer data. It can choose valid data to reduce

the bandwidth when transfer. It can do a lot of digital signal processing functions

such as FIR (Finite Impulse Response), DCT (Discrete Cosine Transform). In Fig.

2-10, RAM_A is a sequential data block and reads data from RAM_B by

index-based addressing. SDMAC read data from two memories to perform

automatically. It can achieve the operation of mirror addressing.

 11

Fig. 2-10: Index-based addressing of Smart DMA

5. Bit-Reversed Addressing Mode:

By using bit-reverse addressing, we can reorder the coefficient before

computing and control the data path of Dual-MAC by configure signal. This

method can perform a butterfly unit in a cycle to speed up the FFT operation as

show in Fig. 2-11.

Fig. 2-11: Bit-Reverse addressing of Smart DMA

 12

We can divide the five addressing mode into 4 types such as D-type, B-type,

I-type, and bit-reverse as shown in Table. 2-1.

Table. 2-1: Addressing type of Smart DMA

Direction

(D-type)

Block

(B-type)

Index

(I-type)

other

Increasing

Decreasing

Circular

Mirror

Normal

Index-based Bit-reverse

Increasing Normal

Circular

Mirror

Decreasing Normal

Circular

Mirror

Index-based

Index-based

Index-based

Index-based

Index-based

Index-based

 13

2.2 Architecture of SDMAC

The SDMAC is different from traditional DMA design because it has multiple

addressing modes and built-in Dual-MAC. The SDMAC architecture is shown in Fig.

2-12. This includes two channel controllers, an arbiter, a register bank, an interrupt

controller, memory interface, and a Dual-MAC. The following subsection will

illustrate each component.

Fig. 2-12: Architecture of Smart DMA

2.2.1 Channel Controller

The SDMAC has two identical channel controllers. Each channel controller

plays the most important role in SDMAC. It will control all operations of data

transmission. According to the architecture of Fig. 2-12, when the data bus is not

conflict, all channels can work at the same time. On the other hand the controller will

decide channel priority by the arbiter. Of course, the number of channel controllers

can be increased easily to enhance processor performance. The channel controller

consists of two independent controllers. One is regarded as reading controller. The

 14

other is regarded as writing controller. When the controller reads or writes data, first it

has to check the FIFO (First In First Out) status. If FIFO is empty, the reading

controller can read data from external devices to FIFO. If FIFO is full, the writing

controller can write data from FIFO to external devices. Otherwise, the controller is

disabled. The register bank connected to two channel controllers separately can

decided all functions of SDMA. Both reading and writing controllers are implemented

by FSM (Finite State Machine). The channel controller architecture is shown in Fig.

2-13.

Fig. 2-13: Architecture of Channel Controller

The two channel controllers are disabled before using SDMAC. They will enter

different modes according to the given transfer mode (Memory or Peripheral). Then

SDMAC is enabled. The design flow for two channel controllers is explained in Fig.

2-14. First, the state stays in the idle mode. If the authority of reading or writing

operation is confirmed, the controller will enter the setup mode. After the data of

source or destination and FIFO are valid, the controller will enter the enable mode to

do data transmission. If data is not yet transferred completely, the controller will enter

the setup mode and wait next data. If data is transferred completely, the controller will

return to the disabled mode and send the interrupt signal to the processor. Finally, data

transmission is finished.

 15

Fig. 2-14: Finite State Machine of read/write Controller

2.2.2 Prioritizing Arbiter

In Fig. 2-12, these two channels (named Channel 0 and Channel 1) share an

internal data bus and a peripheral bus. If these two channels use the same bus at the

same time, the bus conflict will occur. So, a prioritizing arbiter is designed to avoid

data conflict between the same buses. The arbiter shown in Fig. 2-15 decides use of

bus in order of priority. The priority of Channel 0 is higher than Channel 1. When

these two channels obtain data from the same bus, the arbiter will halt operations of

Channel 1 due to a lower priority. If Channel 0 finishes the jobs, the arbiter will return

the control authority to Channel 1. When the lower priority channel is transferring

data, if data conflict occurs, it must finish the present data transmission first and then

release the control authority. When transfer the data from memory, it is usually a mass

Disable

Idle Idle

Channel Enable=1

Transfer Type=Memory Transfer Type=Peripheral

Channel Enable=1

Setup

Enable

Setup

Enable

FIFO & Memory valid

Peripheral

Channel Select=1

Transfer Complete Transfer Complete

FIFO & Peripheral valid

Memory

Channel Select=1

Next Data Next Data

 16

and not interrupted. To avoid transferring low-speed data by peripheral devices can

not get the bus control authority. Hence, we suggest setting a lower priority when

transfer the data from memory under the arbiter architecture.

Fig. 2-15: Prioritizing Arbiter of Smart DMA

2.2.3 FIFO (First In First Out)

The channel controller needs a buffer such as FIFO to save data. The FIFO

structure can read, write, and check own state. FIFO control signals are shown in

Table. 2-2. They are independent and used to design the controller read and write of

the channel controller.

There are two FIFO pointers (PT_PUSH and PT_POP) shown in Fig. 2-16. They

individually point to the PUSH address and POP address. Data will push into the

buffers when push is happened and the pointer PT_PUSH will move forward. When

PT_PUSH excess the end of FIFO, it will return to the start point of this FIFO. Data

will pop out from the buffers when pop is happened and the pointer PT_POP will

move forward. When PT_POP excess the end of FIFO, it will return to the start point

of this FIFO.

 17

Table. 2-2: FIFO Control Signals

Read Control

Signal Bit width Description

data_in 32 bits The data push into the FIFO.

Push 1 bit When clock at rising edge and this signal is high

Data will push into the FIFO.

Write Control

Signal Bit width Description

data_out 32 bits The data pop out from FIFO.

Pop 1 bit When clock at rising edge and this signal is high

Data will pop out from FIFO.

State Check

Signal Bit width Description

Full 1 bit Data in FIFO is full.

Empty 1 bit No data in FIFO.

Half 1 bit Data in FIFO is over than half.

Fig. 2-16: Pointer of FIFO

 18

There is a counter in the FIFO structure. It counts the number of data saved in

FIFO. The current state of FIFO from the counter can be obtained directly, such as

shown in Fig. 2-17.

Fig. 2-17: Pointer and counter of FIFO

2.2.4 Register Bank

The SMDAC has 12 control registers called a register bank, where each register

is 32 bits. The register bank seems a 16 × 16 memory array in the processor. Hence,

the processor can directly read/write the register bank as access memory. This method

is called as memory-mapped I/O. The use of the control register is illustrated in next

subsection in details.

 For register reading and writing in SDMAC, the timing diagram is shown in Fig.

2-18 and Fig. 2-19. Reading or writing operations are enabled by the rising edge clock

and CEN=0. When WEN is high, the register bank can be read according to the given

address. When WEN is low, data can be written to the register bank of SDMAC

according to the given address.

Fig. 2-20 shows the register bank in SDMAC. The left side is connected to the

part of processor’s memory. Another side is connected to two channel controllers and

a dual-MAC unit.

 19

Fig. 2-18: Timing Diagram of reading data from register in Smart DMA

Fig. 2-19: Timing Diagram of writing data from register in Smart DMA

Fig. 2-20: Register Bank of Smart DMA

CLK

CEN

WEN

SDMA_ADDR

SDMA_RegOut

CLK

CEN

WEN

SDMA_ADDR

SDMA_RegIn

 20

2.2.5 Interrupt

 The SDMAC can enable interrupt via setting configuration register. After the

interrupt is set, if the channel controller finishes assigned works, an interrupt signal is

sent to the processor immediately. The channel controller is closed at the same time.

The interrupt signal is active low and holds on for two clock cycles. The channel

controller is connected to the interrupt controller. When data transmission is finished,

an interrupt signal is generated and written to the status register as shown in Fig.

2-21 .

Fig. 2-21: Interrupt Controller

2.2.6 Memory Interface

 The SDMAC supports two synchronous high-density and single-port SRAM.

Each memory has a 9-bit address line, a 32-bit data line, and read/write control lines.

Fig. 2-22 shows the data transmission from RAM_A to RAM_B and the memory

interface. If the processor wants to access internal memory, it also uses the same

memory interface.

 21

Fig. 2-22: Data transmission via internal memory interface

 The memory symbol is shown in Fig. 2-23. The pin assignments are shown in

Table. 2-3.

Fig. 2-23: Memory symbol.

Table. 2-3: Pin descriptions of memory

Signal Bit Width Description

CK 1 Clock signal

A m Address signal

D w Input data

OE 1 Output enable signal, active high

CS 1 Chip select, active high

WEB 1 Write enable signal, active high

DO w Output data

 22

Programmers set SDMA control registers to select one of memory banks which

want to read or to write. So the memory interface has to conform to the timing

diagram of Fig. 2-24 and Fig. 2-25.

Fig. 2-24: Read cycle timing diagram of memory

Fig. 2-25: Write cycle timing diagram of memory

2.2.7 APB(Advanced Peripheral Bus)

 APB is a part of AMBA [12] (Advanced Microcontroller Bus Architecture), the

control signals are shown as Fig. 2-26. It has low power and easy to use. The channel

controller in Smart DMA supports the interface of APB directly. The timing diagram

of reading cycle of APB shows in Fig. 2-27. The timing diagram of writing cycle of

APB shows in Fig. 2-28.

 23

Fig. 2-26: APB bridge interface

Fig. 2-27: Read cycle timing diagram of APB

Fig. 2-28: Write cycle timing diagram of memory

2.2.8 Dual-MAC

 The MAC operation is one of the most important features for a DSP. This is not

only used for multimedia applications but also used for communication applications.

Traditional DSP with a real-valued MAC data path cannot efficiently execute

arithmetic operations on complex-valued signals. Accordingly, recent DSP are

designed with a view to improve the efficiency of the complex-valued MAC operation

 24

[13], [14], [15], [16]. The complex-valued MAC operation consists of four

real-valued multiplications and two accumulations as Eq. (2.1), where ACCR is the

real part of the accumulation register, and ACCI is the imaginary part of the

accumulation register.

() *

() ()*()

() () ()

R I R I

R R I I R I I R

ACCR jACCI X Y

ACCR jACCI X jX Y jY

ACCR jACCI X Y X Y j X Y X Y

+ +

= + + + +

= + + − + +

 (2.1)

The dual-MAC architectures, such as DSP16000 [14] and MDSP-II [16], use two

parallel 16×16 multipliers to calculate the product and to sum the real and imaginary

parts, respectively. Thereby, it spends two cycles for completing one complex-valued

MAC operation. The swap multiplexer in DSP16000 and MDSP-II is used to select a

pair of inputs from four operands and to generate four partial products during the

complex-valued multiplication operation. The other dual 16×16 MAC architectures in

LODE [13] operate by a similar strategy except that it employs a delay register to

store the input operands for the next MAC operation. This approach also executes one

complex-valued MAC within two cycles. Straightforward the extension of the

previous architectures to a 16×16 complex-valued MAC architecture using four

parallel real MAC units is possible but unpopular, primarily because of its lack of

hardware efficiency. Although the four-parallel-MAC architecture can perform one

complex-valued MAC operation within one cycle, three MAC units sit idle in a

real-valued MAC operation. An efficient four-parallel MAC architecture is proposed

in the proposed SDMAC design.

 The proposed dual-MAC architecture is shown in Fig. 2-29. We can configure

the data path by the control register to perform different DSP applications. The

complex-valued MAC is composed of four real multipliers and two accumulators as

 25

shown in Fig. 2-29. (ACC is not used in this case.) Table. 2-4 lists an example of the

execution of a 3-tap complex FIR filter to compute one output samples within three

cycles. In this case, the signal Mode is switched to the complex mode. The data path

can perform a k-tap real-valued FIR within k/2 cycles, and it can perform a butterfly

unit within one cycle.

Fig. 2-29: Architecture of dual-MAC

Table. 2-4: Processing schedules of a complex 3-tap FIR convolution

Cycle MAC Input Product

CH CL

 DH DL

P0 P2

P1 P3

1

 CR(0) CI(0)

 XR(0) XI(0)

CR(0)XR(0) CR(0)XI(0)

CI(0) XI(0) CI(0)XR(0)

2

 CR(1) CI(1)

 XR(1) XI(1)

CR(1)XR(1) CR(1)XI(1)

CI(1) XI(1) CI(1)XR(1)

3

CR(2) CI(2)

 XR(2) XI(2)

CR(2)XR(2) CR(2)XI(2)

CI(2) XI(2) CI(2)XR(2)

 26

2.3The register bank of Smart DMA

 To achieve the best performance of SDMAC, users must set the configuration

register. The following will illustrate these functions and the method how to set the

register bank in SDMAC.

2.3.1 Source Register

 The source register is 32 bits in the register bank, but is seems to two 16 bits for

processor. After setting the source register by processor, the value will preserve. But

the source address will be changed according to the addressing mode. In the source

register, the high 16-bit part specifies the addressing mode, and the low 16-bit part is

defined as source address as shown in Table. 2-5. The following will illustrate the

arrangement for each bit.

Table. 2-5: Source Register

Bit High Source Register

15 Source Circular 0:circular / 1:mirror

14:7 Source Base Address number of increasing or decreasing

6:0 Source Offset The start position of block

Bit Low Source Register

15 Source Device 0:Ram_A / 1:Ram_B

14:0 Source Address Source address

 (1) Source circular: decide circular addressing or mirror addressing. If it does not

need both of them, set the block size equal to zero.

 (2) Source Base: to decide the index of increase or decrease of the index-based

addressing.

 27

 (3) Source offset: to decide the distance of first data form the block boundary as

shown in Fig. 2-30.

Fig. 2-30: Source offset

2.3.2 Destination Register

The setting method is same as the source register. The register is applied to a

target device. After setting the destination register by processor, the value will

preserve. But the destination address will be changed according to the addressing

mode. The high 16-bit part specifies the addressing mode, and the low 16-bit part is

defined as destination address as shown in Table. 2-6.

Table. 2-6: Destination Register

Bit High Destination Register

15 Destination Circular 0:circular / 1:mirror

14:7 Destination Base Address number of increasing or decreasing

6:0 Destination Offset The start position of block

Bit Low Destination Register

15 Destination Device 0:Ram A / 1:Ram B

14:0 Destination Address Destination address

 28

2.3.3 Control Register

 The control register seems two 16-bit registers. After setting the control register by

processor, the value will preserve. But the number of data transmission accompanying

with writing data to target device actually will be reduced. The high 16-bit part

indicates the source and destination region. The low 16-bit part is control signals of

SDMAC as shown in Table. 2-7.

(1) Source/destination region: indicate the source or destination region of mirror or

circular addressing.

 (2) Source increment: increase source address (increase=1).

 (3) Source decrement: decrease source address (increase=0, decrease=1).

(4) Destination increment: increase destination address (increase=1).

 (5) Destination decrement: decrease destination address (increase=0, decrease=1).

Table. 2-7: Control Register

 Source/Destination Region Register

Bit Signal Description

15:8 SrcReg Block size of source

7:0 DestReg Block size of destination

 Control Register

Bit Signal Description

15 SrcInc Source Increase

14 SrcDec Source Decrease

13 DestInc Destination Increase

12 DestDec Destination Decrease

11 SrcWidth Source Width(Default =32 bits)

10 DestWidth Destination Width(Default =32 bits)

9:0 TransferSize Transfer Size

 29

2.3.4 Configuration Register

The configuration register seems one 16-bit register which can access from the

processor. After setting the configuration register, the value will preserve. But the

reset signal of accumulators (high-active) will become low after one cycle by setting

the configuration register. After channel enable and data transfer completely, the

channel controller will close automatically. The following will illustrate the

arrangement of bit as shown in Table. 2-8.

(1) Halt: channel access stop. It will stop after write out the data from FIFO.

 (2) Interrupt enable.

 (3) Source peripheral: supporting 8 source peripheral devices.

 (4) Destination peripheral: supporting 8 destination peripheral devices.

 (5) Transfer type: transfer Type (0：RMA/ 1：I/O device).

 (6) Sequence transfer: continuously transfer, the transfer data are infinite (ST=1).

 (7) Function: operation functions (normal: 000 MAC: 001 CFIR: 010 FFT: 100).

 (8) ACC clear: accumulator clear (AC = 1).

 (9) Channel enable.

Table. 2-8: Configuration Register

Bit Configuration Register

 signal description

15 Halt Channel stop

14 IntEn Channel interrupt enable

13:11 SrcPer Source Peripheral

10:8 DestPer Destination Peripheral

7:6 TransferType Transfer Type

5 SeqTran Sequence Transfer

4:2 Func Function

1 ACClr ACC Clear

0 ChEn Channel Enable

 30

2.3.5 Status Register and ACC Register

 The status register seems one 16-bit register which can access from the processor.

It consist the information of two channels. The higher bits are channel 1 and the lower

bits are channel 0. The following will illustrate the arrangement of bit as shown in

Table. 2-9.

(1) Interrupt：Low-Active interrupts.

 (2) Full: The state of FIFO.

 (3) Half: The state of FIFO.

 (4) Empty: The state of FIFO.

 (5) Channel Select: Arbiter decides which channel is working.

 (6) Error: accumulator overflow.

Table. 2-9: Status Register

Bit Status Register [15:8] Channel 1 / [7:0] for Channel 0

 Signal Description

7 Interrupt Channel Interrupt

6 Full DMA FIFO data full

5 Empty DMA FIFO data empty

4 Half DMA FIFO data more than half

3 ChSel Channel is select in working state

2:0 Err Accumulator overflow

 The ACC register seems one 16-bit register which can access from the processor.

It can only write data with a 16-bit format and only read data with a 32-bit

sign-valued format. The ACC is 40 bits in register bank.

 31

2.3.6 Operating Flow of SDMA

 The setting method of SDMAC is shown in Fig. 2-31. First, set the source,

destination, and control register and then set the configuration register to enable the

SDMA channel. This moment it can do other tasks until interrupt occurred, then the

SDMAC finish its jobs.

Fig. 2-31: Operating flow of SDMA

 32

Chapter 3

SDMA Integrated with Dual-Core Processor

The SDMAC can not work alone so it needs to put into a processor and to use. In

this thesis, we also develop a general-purpose dual-core processor. The following

subsection will illustrate characteristics, instructions sets, assembler, and architecture

of the dual-core processor.

3.1Architecture of Dual-Core Processor

 The dual-core processor is RISC architecture and has five-stage pipeline [17],

[18], where dual-core design can be a DSP unit or micro-control unit. The proposed

SDMAC designed is also integrated into the dual-core signal processor [21]. We can

set SDMA operations via defined assembly instructions. The SDMAC has a

peripheral bus called APB so that some peripheral devices can be mounted. It can

transfer data from peripheral to memory by SDMAC.

3.1.1 Processor Kernel

 The processor which is a dual-core processor has a five-stage pipeline. The

design of processor architecture shown in Fig. 3-1 includes a program counter (PC),

an instruction fetch unit (IF), an instruction decode unit (ID), a register file, an

execution unit. The following will illustrate their function for each component.

 33

Fig. 3-1: Processor Kernel

(1) Program Counter (PC): PC is an internal register. When the value of PC is

changed and sent to the next stage, the processor will jump correct

instruction address to perform.

(2) Instruction Fetch: According to PC as a memory address, fetch one

instruction from an external program ROM. The memory address line and

data width is 16 bits and 32 bits, respectively. Because there are some

instructions need the value of PC in the execution stage, passing it stage by

stage. To avoid fetching an instruction after a branch instruction, two flags

are set to stall the pipeline.

(3) Instruction Decode: The fetched instruction from ROM is decoded. In the

instruction format, there are two source registers and one destination register.

These addresses will pass to next stage for fetching operands and the write

back address of the execution stage. Due to the dual-core architecture, it can

 34

get register data for each other. Also this processor combines SDMAC design

so a few instructions are defined. When the processor uses SDMAC, it needs

a set of address bus to access the register bank and to set parameters.

(4) Register File: Each core has 32 registers. It has two read ports and one write

port to offer operands for the execution and write-back stage. There are a lot

of signals connected to the execution stage for data forwarding.

(5) Execution: The unit is to compute and to handle data forwarding. The

forwarding unit is used to avoid a RAW hazard in the pipeline.

There are some special designs in the dual-core processor should be presented as

follows.

(1) Operand isolation: We will know what kind of instructions in the decode

stage. It can set an enable signal to control the execution stage. Then it can

avoid perform addition, subtraction, multiplication at the same time to reduce

power consumption. With this method, the processor can save about 30%

power consumption.

(2) A MAC instruction completed in one cycle.

(3) Bit-reverse addressing for FFT operation.

3.1.2 Instruction set architecture

 The instructions can be divided into 5 groups including data moving, arithmetic and

logic, branch and jump, SDMA, and others.

(1) Arithmetic and logic instructions are listed in Table. 3-1.

 35

Table. 3-1: Instructions of logic and arithmetic

Instruction Opcode Example

NOP 000000 NOP

ADD 000001 ADD rd, rs, rt

SUB 000010 SUB rd, rs, rt

MUL 000011 MUL rd, rs, rt

MAC 000100 MAC acc, rs, rt

AND 000101 AND rd, rs, rt

OR 000110 OR rd, rs, rt

XOR 000111 XOR rd, rs, rt

INV 001000 INV rd, rs

ADDI 001001 ADDI rd, rs, imm

SUBI 001010 SUBI rd, rs, imm

MULI 001011 MULI rd, rs, imm

ANDI 001100 ANDI rd, rs, imm

ORI 001101 ORI rd, rs, imm

XORI 001110 XORI rd, rs, imm

(2) Jump and branch instructions are listed in Table. 3-2.

Table. 3-2: Instructions of jump and branch

Instruction Opcode Example

J 001111 J, imm

JR 010000 J, @rd

BEZ 010001 If(rs=0) go to address

BNEZ 010010 If(rs!=0) go to address

BGTZ 010011 If(rs>=0) go to address

BLTZ 010100 If(rs<=0) go to address

BEQ 010101 If(rs=rt) go to address

BNE 010110 If(rs!=rt) go to address

BGT 010111 If(rs>rt) go to address

BLT 011000 If(rs<rt) go to address

 36

(3) Data instructions are listed in Table. 3-3.

Table. 3-3: Instructions of data moving

Instruction Opcode Example

LW 011001 LW, rd, address

SW 011010 SW, rs, address

MOVRC 011011 MOVRC, rt, imm

MOVRR 011100 MOVRR, rt, rs

MOVMRR 011101 MOVMRR, rt, rs

MOVRRM 011110 MOVRRM, rt, rs

MOVARR 011111 MOVRRM, rt@B, rs@A

MOVREVRM 100000 MOVREVRM, rt, rs

MOVREVRM 100001 MOVREVRM, rt, rs

MOVREVMRR 100010 MOVREVMRR, rt, rs

MOVREVRRM 100011 MOVREVRRM, rt, rs

(4) The instructions about setting SDMAC as shown in Table. 3-4.

Table. 3-4: Instructions of setting Smart DMA

Instruction Opcode Example

SDMAD 100100 SDMAD, data

SDMAR 100101 SDMAD, rs

DMAOK 100110 DMAOK

GDMA 100111 GDMA, address

GDMAR 101000 GDMAR, rt

(5) Other instructions

Table. 3-5: Other instructions

Instruction Opcode Example

SHR 101001 SHR, rs

SHL 101010 SHL, rs

SET 101011 SET, rs

GET 101100 GET, rs

ENDC 101101 ENDC

In the Table. 3-5, the instruction of ENDC means the end of program.

 37

3.1.3 I
2
S Bus

 The I
2
S [22] design contains three signals as SCK (serial clock), WS (word

select), and SD (serial data). They are explained as follows.

(1) SCK: the transferring clock of each bit which is same as sampling rate.

(2) WS: the signal for switching channel, it indicates the channel being

transmitted when WS= 0 (left channel) and WS = 1 (right channel).

(3) SD: the data for transmission.

 The bus is a unidirectional design which has one transmitter and one receiver.

The transmitter plays a slaver when transferring data, it is controlled by the signal of

SCK and WS which sent by the receiver as shown in Fig. 3-2. The receiver plays a

slaver when receiving data, it is controlled by the signal of SCK and WS which sent

by the transmitter as shown in Fig. 3-3.

Fig. 3-2: The transmitter of I
2
S

Fig. 3-3: The receiver of I
2
S

 The I
2
S is implemented by a shift register. It has to follow the timing diagram as

shown in Fig. 3-4 when transmitting or receiving data.

 38

Fig. 3-4: Timing diagram of I

2
S

I
2
S conforms to the specification of the APB interface. They are seems to two

registers at the bus as shown in Fig. 3-5.

Fig. 3-5: I

2
S at APB bus

3.2 Integration of SDMA and Dual-Core Processor

 In this thesis, we integrate the proposed SDMAC and the general-purpose

dual-core processor as shown in Fig. 3-6 to verify the correctness of SDAMC and the

whole system. We also verify functions and performance of SDMA integrated with

the dual-core processor. The program memory is put outside, and two data memories

are put in the core together. These two data memories and SDMAC share the same

data bus to connect each other. The SDMAC supports the ARM peripheral bus (APB).

SDMAC

I
2
S Receiver

I
2
S Transmitter

SCK

SD

SCK

SD

WS

WS APB Bus

I2S RX

I2S TX

 39

Fig. 3-6: Integration of Smart DMA and dual-core processor

 There are four separately bus in the dual-core architecture as shown in Fig. 3-7.

Both SDMAC and the dual-core processor share two data buses to access two data

memories in the different core. The dual-core processor controls these two data buses

to handle data conflict. When the processor does not use instructions of memory

reference, a data bus will be released to SDMAC.

Fig. 3-7: Bus of this system

 The processor can directly write the register of SDMAC to set parameters. There

are two different ways to integrate two IPs. First, it can add some instructions for

access the register of SDMAC. Second, it can use the method of memory mapping as

 40

shown in Fig. 3-8.

Fig. 3-8: Memory mapping

 41

Chapter 4

Chip Implementation and Verification

 This chapter will describe the function verification and experimental results

of SDMAC and dual-core processor and also refer the chip realization. Finally,

compared its performance with other commercial DSP is discussed in the last

subsection.

4.1 Chip Implementation

4.1.1 Design Flow

In this thesis, the cell-based design flow shown in Fig. 4-1 to implement the

proposed SDMAC architecture is adopted. First, we write corresponding RTL code in

terms of proposed architecture to do functional verification. Then the design is

synthesized by UMC 90nm process technology, and the scan chain and memory BIST

elements for the testability are also added. If the function of synthesized circuits is

correct, the design is automatic placed and routed (APR) by SOC encounter. After

APR, the tool DRC and LVS is used to check layout correctness. Finally, post-layout

simulation is performed by the tool called NanoSim to verify the whole function of

chip design.

 42

Fig. 4-1: Chip design flow

4.1.2 Synthesis Results

First, we write corresponding RTL code in terms of proposed architecture to

verify the design function. Then the design is synthesized by UMC 90nm process

technology, and the scan chain and memory BIST elements for the testability are also

added. Table. 4-1 lists the synthesis result of the whole chip design.

Table. 4-1: Synthesis Results

ITEM Area（㎜ 2） Timing Total fault Fault coverage

Dual-Core Processor+SDMA 2.1x2.1 5ns 317480 95.07 %

 43

4.1.3 Layout and Package

The design is automatic placed and routed (APR) by the tool called SOC

encounter. The APR result will be illustrated as follows.

(1) CHIP name：DCSP

(2) Technology：UMC 90nm 1P9M standard CMOS process

(3) Package：144 CQFP

(4) Chip Size：2.1× 2.1 mm
2

(5) Power Dissipation：~100mW

(6) Operation Frequency：200 MHz（5ns）

Using the tool called Prime Power to measures the power consumption which is

about 100mW. The layout and the PAD allocation are shown in Fig. 4-2, and the

package is shown in Fig. 4-3.

 44

Fig. 4-2: Chip Layout and PAD allocation

Fig. 4-3 Chip Package

 45

To verify the final chip layout, both DRC (Design Rule Check) and LVS (Layout

verse Schematic) are passed. The result is shown in Fig. 4-4 and Fig. 4-5.

Fig. 4-4: DRC result

Fig. 4-5: LVS result

 46

 Finally, the detailed chip specification is listed in Table. 4-2.

Table. 4-2 Specification Table

Technology Description

Process UMC 90nm 1P9M Mixed Signal

Architecture Dual-Core 5-stage pipeline

Synthesis Synopsys Design Compiler

Gate Count 253K

Embedded Memory RAM0，RAM1

Die size 1.85 × 1.85 mm2

Supply 1.0V/3.3V ± 10%

Input Delay Time Max 1ns/ Min 0.5ns

Output Delay Time Max 2ns/ Min 1ns

Output Loading 30pf

Power consumption 100mW@200MHz

Operation Frequency 200MHz

DMA Design

DMA Channel 2

DMA Request 8

DMA Gate Count 45K

Transfer Type Memory-to-Memory

Memory-to-Peripheral

Peripheral-to-Memory

Peripheral-to-Peripheral

Compliance with APB bus Support 8 device

Hardware DMA channels priority High: Ch0 / Low:Ch1

DMA Special Function Inner Product

Convolution

Multiple Addressing

Built-in I2S interface

 47

4.1.4 Design for Testing Consideration

 There are two types for chip testing. One is the error testing produced by

manufacturing. The other is the correctness testing of functions. The previous is about

the memory BIST (Built-In Self Test) and the scan-chain insertion of the whole circuit.

The following will illustrate about BIST and scan-chain functions.

 Because the process is more and more advanced, the gate counts increase in a

unit area. To avoid errors that produced by manufacturing, it must add testing circuit

to the proposed design.

 At the part of memory, using the tool called Srambist to produce self-test circuit

in memory and using the Moving Inversion algorithm as shown in Fig. 4-6. This

method can test where the built-in memory is failed or not. Each memory has a BIST

controller itself, and shares the BistMode signal. When BistMode is high, the two

memories are running at the testing mode until testing is finished. The Finish signal

will be set to high. If some errors occur, the BistFail signal will be set to high.

Fig. 4-6: Memory BIST

 48

 Using the tool called DFT Compiler adds testing circuit to the proposed design.

As can be seen, a scan-chain line is inserted. Finally, the report is generated as shown

in Fig. 4-7. The testing pattern data are 904, and the fault-coverage is 95.07%.

Fig. 4-7: Fault-Coverage

 For verifying the correctness of functions, we support five patterns and translate

to the format of the tester (Agilent 93K). We can see the results from PAD. The

testing patterns are data moving, inner product, convolution, DCT, and FFT.

 49

4.2 Chip Verification

 We can write program in assembler to verify the functions and performance of

SDMAC with a general-purpose dual-core processor. The testing functions involve in

data transmission, inner product, convolution, DCT, and FFT. The following

subsection will illustrate in details.

4.2.1 Data Transmission

 Data transmission consists of four types. This can verify the correctness of

transferring in different memories of the dual-core processor architecture.

 (1) Architecture of data transmission in different memories as shown in Fig. 4-8.

 (2) Architecture of data transmission in the same memory as shown in Fig. 4-8:

Transmission in different memories .

Fig. 4-8: Transmission in different memories Fig. 4-9: Transmission in a same

memory

(3) Architecture of data transmission in different memories with circular addressing

as shown in Fig. 4-10.

Fig. 4-10: Data transmission in different memories by circular addressing

 50

(4) Architecture of data transmission in different memories with mirror addressing

as shown in Fig. 4-11.

Fig. 4-11: Data transmission in different memories by mirror addressing

4.2.2 Inner product

 In Fig. 4-12, the data in memory is the same as the memory address, and we set

two memories (RAM_A and RAM_B) with increment addressing to compute the

inner product. At this time, the dual-MAC operates at the real-valued-MAC mode.

The hardware can automatically compute the result of Eq. (4.1), and post-layout

simulation is shown in Fig. 4-13.

 44347135
510

1

2
=∑

=i

i (4.1)

Fig. 4-12:Inner product

 51

Fig. 4-13: Post-layout simulation of inner product

4.2.3 Convolution

In Fig. 4-14, the data in memory is the same as the memory address, and we set

one memory with increment addressing and the other with decrement addressing to

compute the linear convolution. At this time, the dual-MAC operates at the

real-valued-MAC mode. The hardware can automatically compute the result of Eq.

(4.2), and post-layout simulation is shown in Fig. 4-15.

510
[] (510)* 22108415

1

y n k k

k

= − =∑

=
 (4.2)

Fig. 4-14: Convolution

 52

Fig. 4-15: Post-layout simulation of convolution

4.2.4 FFT

The SDMA computes 32-point FFT operation with a 16-bit fixed-point format.

Fig. 4-16 and Fig. 4-17 show the post-layout simulation result and the MATLAB

result, respectively.

Fig. 4-16: Post-layout simulation of FFT

 53

Fig. 4-17: MATLAB result of FFT

4.2.5 DCT

The SDMA computes 36-point DCT operation with a 16-bit fixed-point format.

The input data is shown in Fig. 4-18. Fig. 4-19 and Fig. 4-20 show the post-layout

simulation result and the MATLAB result, respectively.

Fig. 4-18: Input data of DCT

 54

Fig. 4-19: post-layout simulation of DCT

Fig. 4-20: MATLAB result of DCT

4.2.6 Peripheral Interface - APB

The peripheral interface bus called APB is often used in data transferring of

peripheral devices, such as I
2
S (Inter-IC Sound). The architecture of data transmission

 55

form I
2
S to memory is shown in Fig. 4-21. The post-layout simulation shows in Fig.

4-22.

Fig. 4-21: Transferring data form I
2
S to memory

Fig. 4-22: Post-layout simulation of data transmission form I
2
S to memory

4.2 Performance Comparison

In this thesis, the SDMAC, which is different from traditional DMA, is proposed

and designed. The traditional DMA only supports fewer addressing modes and does

not have built-in arithmetic units. For the proposed design, it has not only multiple

addressing modes, but also a built-in dual-MAC. Hence, it is suitable for a lot of DSP

operations. SDMA can compute at the same time during data transmission. So, this

method can greatly improve performance of the general-purpose processor. As shown

in Table. 4-3, the proposed design is compared with the commercial DMA such as

Faraday [9] and Global Unichip [24].

 56

Table. 4-3 Comparison of commercial DMA and Smart DMA

FARADAY

[9]

GLOBAL

UNICHIP [24]

This work

FTDMAC020 UAPC5110 DCSP

Channel 8 2(8) 2

Request 8 4(32) 8

Transfer

Type

M-to-M

M-to-P

P-to-M

M-to-M

M-to-P

P-to-M

P-to-P

M-to-M

M-to-P

P-to-M

P-to-P

Addressing Chain

Transfer

Increase/Decrease Increase/Decrease

Circular

Mirror

Index-Base

Bit-Reverse

Special

Function

None None Dual-MAC

 The following subsection will describe the performance on data moving and

arithmetic computation compared with other commercial DSP.

4.3.1 Performance of Data Transmission

We compare the processor that has not SDMAC and has SDMAC, and the

performance of data transmission is shown in Fig. 4-23, where A2A indicates from

memory A to A, and A2B indicates from memory A to B. As can be seen, the SDMAC

can help the general-purpose processor to do data transmission efficiently in lots of

addressing.

 57

Fig. 4-23: Performance of data moving

4.3.2 Comparison the MAC performance with other DSPs

The MAC operation is a basic unit for DSP functions. This thesis presents a

dual-MAC architecture put into SDMA. This architecture in a cycle can compute a

complex-valued operation or a butterfly unit. As shown in Table. 4-4, we compare the

execution cycles of dual-MAC with other DSPs.

 58

Table. 4-4: Comparison of MAC operation with other DSPs

 TI

C62X

LODE

[13]

DSP1600

[14]

MDSP-II

[15]

CDSP

[16]

Hiroyuki

JSSC98

[27]

Complex-MAC No No No No Yes Yes

Complex-MAC 2 cycles 2 cycles 2 cycles 2 cycles 4 cycles 2 cycles

Real-MAC 1/2

cycles

1/2

cycles

1/2

cycles

1

cycles

1/2

cycles

1/4

cycles

Butterfly 6 cycles 4 cycles 4 cycles 5 cycles 8 cycles 3 cycles

 Hinrichs

JSSC2000

[28]

Ackland

JSSC2000

[29]

Olofsson

ISSCC2002

[30]

Agarwaral

ISSCC2002

[31]

This Work

Complex-MAC No No No No Yes

Complex-MAC 2 cycles 2 cycles 4 cycles 2 cycles 1 cycles

Real-MAC 1/2 cycles 1/2 cycles 1/2 cycles 1/2 cycles 1/4 cycles

Butterfly 3 cycles 3 cycles 8 cycles 3 cycles 1 cycles

 59

4.3.3 Comparison DSP functions with other DSPs

For a traditional DMA of the general-purpose processor, it can not perform DSP

functions efficiently, but it can be improved to be SDMA. The SDMAC can assist the

dual-core processor to handle mass and regular operations such as FIR, DCT, FFT, etc.

The computational performance of FIR, and DCT is compared and shown in Fig. 4-24

and, where the R-FIR means real-valued FIR, and C-FIR means complex-valued FIR.

Fig. 4-24: Comparison of computational performance with other DPSs

Fig. 4-25 shows lower cycles than other processors computing in 256-point

complex-valued FFT operations with using dual- MAC architecture. The complex

FFT operation is a significant DSP algorithm which is often published for a variety of

processors.

Fig. 4-25: FFFFTT EExxeeccuuttiioonn CCyycclleess

5406 5250 5012

20010 20300

10012

168 293 44
0

5000

10000

15000

20000

25000

TI'C62X ADSP-BF533 This Work

cy
cl

es

R-FIR

C-FIR

DCT

FFT-256points

4216

2324
2700

3900

2060

0

1000

2000

3000

4000

5000

TI'C62X ADSP-

BF533

CSEM-

icyflex [32]

ARM-

ARM9[32]

This Work

cy
cl

es

FFT

 60

Chapter 5

Conclusions and Future Works

This thesis proposes an efficient SDMAC design which is integrated into the

general-purpose dual-core processor in order to turn into a DSP-like processor chip.

The main purpose is to increase the additional value when data transmitting, i.e.,

arithmetic computation.

The SDMA supports five addressing modes compared with the design method of

traditional DMA and four transmission types to select the region of valid data and to

reduce the transmission bandwidth for the processor. The SDMA design has features

as follows. (1) It has a built-in dual complex-valued multiplication-and-accumulation

(Dual-MAC) to processes mass and regular data computation. Moreover, two channel

can access two memory banks and perform vector operations at the same time; (2) it

supports the peripheral bus to expand I/O devices flexibly; (3) it can save about 75%

time wasted on data transfer; and (4) the code size can be reduced.

By experimental results, the proposed dual-core processor design with SDMA

can achieve greatly efficiency at FFT, DCT, and FIR computation, especially in

complex operations. Compared with TI C62X series, when the processor is running

real- or complex-valued FIR operations, it will improve efficiency about 7% to 50%.

The dual-core processor with SDMA has been integrated in the total area of 4.41 mm
2

by using UMC 90nm standard CMOS technology and has fabricated via the National

Chip Implementation Center (CIC). The maximum clock frequency is at 200MHz

with a single 1.0V supply.

In the future, this chip can be integrated with AHB and other ASIC (application

specify integrated circuit) or ADC to become a SoC (system-on-chip) as shown in

Fig. 5-1. Users can write a program on this chip according to the algorithm

which they wanted. On the other hand, the proposed architecture has not a friendly

I/O interface. In the next generation, we can also add other serial communication

interfaces, for example, I2C, Uart, SPI, etc. We can also increase the channels to

 61

enhance the peripheral transmission.

Fig. 5-1: System level design

 62

References

[1] Dave Comiskey, Sanjive Agarwala, and Charles Fuoco, “A scalable

high-performance DMA architecture for DSP application,” Proceedings of the

IEEE International Conference on Computer Design (ICCD), pp. 414-417, 2000.

[2] C. M. Yuen, K. F. Tsang, and W. H. Chan, “Direct memory access frequency

synthesizer for channel efficiency improvement in frequency hopring

communication,” Proceedings of IEEE International Symposium on Circuits and

Systems (ISCAS 2000), pp.485-488, 2000.

[3] Mattias O’Nils and Axel Jantsch, “Synthesis of DMA controllers from

architecture independent descriptions of HW/SW communication protocols,”

Proceedings of IEEE International Conference on VLSI Design (ICVD), 1999.

[4] B. Sprunt, D. Kirk, L. Sha, “Priority-driven, preemptive I/O controllers for

real-time systems,” Proceedings of the 15th Annual International Symposium on

Computer architecture, pp. 152-159, 1988.

[5] Texas Instrument, TMS320C6000 Peripherals Reference Guide.

[6] S. Srinivasan and D. B. Stewart, “High Speed Hardware-Assisted Real Time

Interprocess Communication for Embedded Microcontrollers,” Proceedings of

the 21st Real-Time Systems Symposium, pp. 269-279, 2000.

[7] Motorola Inc, PowerPC™ MPC823e Reference Manual, Website at

http://e-www.motorola.com/.

[8] Analog Devices Inc, ADSP-BF533 Blackfin™ Processor Hardware Reference,

Website at http://www.analog.com/static/imported-files/data_sheets/.

[9] Faraday, “Direct Memory Access Controller: Faraday/UMC FTDMAC020,” rev.

1.2, www.faraday.com.tw, 2003.

[10] Vijay K. Madisetti, VLSI Digital Signal Processors: An Introduction to Rapid

Prototyping and Design Synthesis, IEEE Press, 1995.

[11] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, Discrete Time Signal

Processing, 2
nd
 Edition, Prentice Hall, 1999.

[12] ARM Ltd, AMBA Specification, rev. 2.0, http://www.arm.com, 1999.

[13] I. Verbauwhede, M. Touriguian, K. Gupta, J. Muwafi, K. Yick, and G. Fettweis,

“A low power DSP engine for wireless communications,” in Proc. Workshop

VLSI Signal Processing, vol. IX, pp. 471–480,1996.

 63

[14] M. Alidina, G. Burns, C. Holmqvist, E. Morgan, D. Rhodes, S. Simanapalli, and

M. Thierbach, “DSP16000: A high performance, low power dual-MAC DSP core

for communication applications,” in Proc. IEEE Custom Integrated Circuits

Conf., pp. 119–122, May 1998.

[15] T.S. Rappaport, Wireless Communications, Principles and Practice, 2
nd

Englewood Cliffs, NJ: Prentice Hall, 2002.

[16] B. W. Kim, J. H. Yang, C. S. Hwang, Y. S. Kwon, K. M. Lee, I. H. Kim, Y. H.

Lee, and C. M. Kyung, “MDSP-II: A 16-bit DSP with mobile communication

accelerator,” IEEE J. Solid-State Circuits, vol. 34, pp.397–403, Mar. 1999.

[17] John L. Hennessy and David A. Patterson, Computer Architecture, 3
rd
 Edition,

Morgan Kaufmann, 2003.

[18] John L. Hennessy and David A. Patterson, Computer Organization & Design：

The Hardware / Software Interface, 2nd Edition, Morgan Kaufmann Publishers,

1998.

[19] A. Kalavade and E. A. Lee, “A hardware-software codesign methodology for

DSP application,” IEEE Design & Test of Computers, vol. 10, pp. 16-28, Sept.

1993.

[20] Steve Fuber, ARM System-on-Chip Architecture, 2nd edition, Addison-Wesley

Professional, 2000.

[21] Hans-Joachim Stolberg, Mladen Berekovic, Lars Friebe, Sören Moch, Mark

Bernd Kulaczewski and Peter Pirsch, “HiBRID-SoC: A Multi-Core

System-on-Chip Architecture for Multimedia Signal Processing Applications,”

Proceedings of International Conference on Very Large Scale Integration of

System-on-Chip, pp. 155-160, 2003.

[22] Philips Semiconductor, I2S bus Specification, 1996. Website Available:

http://www.semiconductors.philips.com.

[23] Donald E. Thomas and Philip Moorby, The Verilog Hardware Description

Language, Kluwer Acadmic Publishers, 1994.

[24] GlobalUnichip, “UAPC-5110 DMA Controller Lite,” 2002. Website Available:

http://www.globalunichip.com.tw.

[25] TMS32C62x Technical Overview. Texas Instruments Inc.Dallas, TX. Website

Available: http://www.ti.com/

[26] C. K. Chen, P. C. Tseng, Y. C. Chang, and L. G. Chen, “A digital signal processor

 64

with programmable correlator array architecture for third generation

communication system,” IEEE Trans. Circuits Syst. II, vol. 48, pp. 1110–1120,

Dec. 2001.

[27] H. Igura, Y. Naito, K. Kazama, I. Kuroda, M. Motomura, and M.Yamashina, “An

800-MOPS, 110-mW, 1.5-V, parallel DSP for mobile multimedia processing,”

IEEE J. Solid-State Circuits, vol. 33, pp. 1820–1828, Nov. 1998.

[28] W. Hinrichs, J. P. Wittenburg, H. Lieske, H. Kloos, M. Ohmacht, and P. Pirsch,

“A 1.3-GOPS parallel DSP for high-performance image-processing

applications,” IEEE J. Solid-State Circuits, vol. 35, pp. 946–952, July 2000..

[29] B. Ackland et al., “A single-chip 1.6-billion 16 bMAC/s multiprocessor DSP,”

IEEE J. Solid-State Circuits, vol. 35, pp. 412–424, Mar. 2000.

[30] A. Olofsson and F. Lange, “A4.32 GOPS 1Wgeneral-purpose DSP with an

enhanced instruction set for wireless communication,” in IEEE Int. Solid-State

Circuits Conf. Dig. Tech. Papers, vol. 2, pp. 36–389, 2002.

[31] S. Agarwala et al., “A 600 MHz VLIW DSP,” in IEEE Int. Solid-State Circuits

Conf. Dig. Tech. Papers, vol. 2, pp. 38–389, 2002.

[32] C. Arm et al., “Low-power 32-bit dual-MAC 120 µW/MHz 1.0 V icyflex

DSP/MCU core,” 34th European Solid-State Circuits Conference, pp. 190-193,

Sept. 2008.

 65

Appendex
A Tapeout Review Form

1. 晶片概述：

1-1 專題名稱： 智能型智能型智能型智能型 DMADMADMADMA 的的的的 DSPDSPDSPDSP 架構設計在雙核心上的應用架構設計在雙核心上的應用架構設計在雙核心上的應用架構設計在雙核心上的應用
1-2 Top Cell 名稱： DCSP

1-3 使用 library 名稱：

 v CIC_CBDK90
 CIC_CBDK18

CBDK 版本:

是否使用 Core Cell: Yes 若有使用 Core Cell 型號: □hvt VVVV rvt □lvt

 Core Cell有無更改 Cellname: (建議保留勿更

改)

是否使用 IO: Yes 若有使用 IO, 採用形式是 : □Linear VVVV Staggered

1-4 是否使用 CIC提供之 Memory？ Yes 若使用 Memory, 是否已上傳 spec檔:

Yes

使用 Memory之種類為何？ Synchronous Single-Port Register File

1-5 是否使用 CIC提供之 ARM CPU IP？ (若為 Yes, 請務必塡寫第 9項)

使用 CPU 之種類為何？(ARM7TDMI or ARM926EJ)

1-6 工作頻率： 200Mhz

1-7 功率消耗： 100mW

1-8 晶片面積： 1.85mm X 1.85mm

2. 設計合成：

2-1. 使用之合成軟體？ Synopsys Design Compiler

2-2. 是否加入 boundary condition：

 v input drive strength、 v input delay、 v output loading、 v output delay

2-3. 是否加入 timing constraint：

 v specify clock (sequential design)

 v max delay、 v min delay (combinational design)

2-4. 是否加入 area constraint？ No

2-5. 合成後之 report是否有 timing violation？ No

 有 setup time violation、 有 hold time violation

2-6. 合成後之 verilog是否含有 assign描述？ No

2-7. 合成後之 verilog是否含有 *cell* 之 instance name？ No

2-8. 合成後之 verilog是否含有反鈄線 \ 之 instance name 或 net name？ No

3. 可測試性設計(前瞻性晶片必填)：

3-1. 使用之設計軟體？ DFT Compiler

3-2. 使用之 ATPG軟體？ TetraMAX

3-3. 使用 Embedded memory數量: SRAM 2 ，ROM

Memory大小: 512x32 (Word x bit)

測試方法: BIST Yes ，or 其他測試方法

若使用 BIST,其 Test Algorithm為何? Moving Inversion (13N March)

同時有多個 memory，是否共用 BIST controller No ，BIST controller數量 2

3-4. Scan Chain Information

Flip-Flop 共有多少個？ 4863

Scan chain 的數量共有多少條？ 1

Scan chain length (Max.) ？ 66087.41

3-5. Uncollapsed fault coverage 是否超過 90% ？ Yes ，為多少？ 95.07%

 66

ATPG pattern的數目為多少？ 904

註：若使用 Synopsys TetraMAX 來產生 ATPG pattern，請使用 set faults

-fault_coverage指令指定 TetraMAX 產生 fault coverage information

若使用 SynTest TurboScan之 asicgen來產生 ATPG pattern，請以 atpg pessimistic

fault coverage 的值為準

4. 佈局前模擬

4-1. gate level simulation 是否有 timing violation？ No

 有 setup time violation、 有 hold time violation

5. 實體佈局

5-1. 使用之 P&R軟體？ Apolo、 v SOC Encounter

5-2. power ring寬度？ 8um 是否已考量 current density(1mA/1um)？ Yes

5-3. 是否考慮 output loading？ Yes

5-4. 是否加上 Clock Tree？ Yes

5-5. 是否加上 Corner pad？ Yes

5-6. IO Buffer 間是否加上 IO Filler: Yes IO Filler寬度: 12 um (建議

至少需 12um寬)

5-7. 是否加上 Core Filler？ Yes

5-8. 是否上加 Bonding Pad？ Yes

以下(A-1)為使用 Apollo者才須回答

A-1. 是否執行 Fill Notch and Gap 步驟？

以下(S-1 至 S-2)為使用 SOC Encounter 者才須回答

S-1. power ring上是否有 overlap vias？ No

S-2. 是否確定 IO Row和 Corner Row互相貼齊？ Yes

6. 佈局後模擬

6-1. 是否做過 post-layout gate-level simulation？ Yes

STA(static timing analysis) 軟體？ Primetime /ncverilog

6-2. 是否做過 post-layout transistor-level simulation？ Yes

6-3. 已針對以下環境狀態模擬： SS、 v TT、 FF

6-4. 晶片取得時將以何種方式進行測試？ CIC測試機台測試機台測試機台測試機台（（（（Agilent 93K））））

6-5. 模擬時是否考量輸出負載影響？ Yes 若有輸出負載是: 30 pF (建

議至少需 20pF)

7. DRC/LVS 驗證

7-1. 是否有 DRC錯誤？ Yes 錯誤原因： 有有有有 4.1.1GDEN_LT25 的錯誤的錯誤的錯誤的錯誤,

這是因為我們的這是因為我們的這是因為我們的這是因為我們的

Standard Cell 是不完整的是不完整的是不完整的是不完整的 Layout,所以會有所以會有所以會有所以會有 DIFF density 不足的錯誤不足的錯誤不足的錯誤不足的錯誤

驗證 DRC軟體？ Calibre

是否有不作 DRC的區域？ No

7-2. 是否有 LVS 錯誤？ No

驗證 LVS 軟體？ Calibre

是否有非 CIC提供的 BlackBox？ No

8. MT Form 填寫

8-1. 是否填上 系所單位、 設計者姓名、 聯絡電話(與手機) 、 日期

8-2. 是否填上晶片上傳目錄？

8-3. 是否填上檔案名稱？

8-4. 是否寫上 top cell name？

9. 使用 ARM926EJ or ARM7TDMI CPU IP

9-1. 若有使用 ARM926EJ /ARM7TDMI CPU IP，請提供以下訊息以便向 ARM 原廠申

請 Design ID。

 67

使用的 CPU 種類 (ARM926EJ or ARM7TDMI) :

使用的 metal layers 的層數:

佈局中 ARM926EJ /ARM7TDMI Macro 的 cell name:

這個晶片是否為修訂版本(revision,也就是之前曾下線過相同晶片)？

若是修訂版本，前一次下線的晶片編號:

修訂版本的原因是？(例如修正 bug)

設計者簽名: 郭昕展 指導教授簽名: 林進燈

