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中文摘要中文摘要中文摘要中文摘要    

雙核心處理器雖具有平行處理的能力以達到較好的運算效能，卻會受限於記

憶體資料傳輸上頻寬的限制。若透過處理器做資料傳輸，將變得非常沒有效率。

而一般處理器的 DMA(Direct Memory Access) 雖能有效的利用記憶體頻寬用以

減低處理器傳輸上的負擔，但無法提供特殊數位訊號處理功能。在現今的處理器

已經開始重視 DMA 對數位訊號處理的能力設計，例如智原科技的 FTMCP020

以及 TI DSP 晶片等。針對數位訊號處理的一些特殊定址及運算，是傳統的處理

器或 DMA將不能發揮較好的效能，因此本論文將提出智慧型直接記憶體控制器

的設計。 

本論文提出一個智慧型直接記憶體存取（DMA），用以輔助雙核心處理器提

升運算效能及傳輸效率。智慧型 DMA控制器設計以傳統 DMA傳輸模式設計加

上支援五種定址模式，能夠有效選取傳輸資料區塊，降低傳輸的頻寬及處理器的

負擔。本論文設計特色是具有（1）擁有內建 Dual-MAC 運算器搭配定址模式，

可支援雙通道資料記憶體向量運算，協助處理器處理大量且具有規則與繁雜的數

位訊號；（2）支援周邊輸出入匯流排，使得周邊擴充更有彈性；（3）減少約 75%

等待資料的時間；及（4）降低組語的程式碼。 

本論文設計一個智慧型 DMA控制器，並整合於一個通用雙核心處理器上，

經實驗結果證明能大幅提升 FFT, DCT, FIR 等運算，特別是複數 FFT 運算。此晶

片採用 UMC 90nm 製程，以 Cell-based方式設計，晶片面積約 2.1x2.1 mm
2，預

估最大操作頻率在 200MHz。 
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Abstract 

Although a dual-core processor has the ability of parallel processing and has a 

better performance, it is limited to memory bandwidth. If the processor is used as data 

transmission, it will become inefficiency. However, for a general-purpose processor 

DMA (direct memory access) is often used to improve the effective usage of memory 

bandwidth, but it can not offer special functions for digital signal processing. In recent 

years, the processor has been respected for DMA design in the ability of digital signal 

processing, such as Faraday’s FTDMAC020 and TI’s digital signal processors, etc. 

Because the traditional processor or DMA has not more efficiency at present, this 

thesis proposes a novel smart DMA controller design. 

This thesis presents the SDMA controller in order to assist a dual-core processor 

improving performance and transmission efficiency. The SDMA supports five 

addressing modes compared with the design method of traditional DMA and four 

transmission types to select the region of valid data and to reduce the transmission 

bandwidth for the processor. The SDMA design has features as follows. (1) It has a 

built-in dual complex-valued multiplication-and-accumulation (Dual-MAC) to 

processes mass and regular data computation. Moreover, two channel can access two 
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memory banks and perform vector operations at the same time; (2) it supports the 

peripheral bus to expand I/O devices flexibly; (3) it can save about 75% time wasted 

on data transfer; and (4) the code size can be reduced. 

This thesis proposes the smart DMA design is integrated into the dual-core 

architecture to be a DSP-like processor. By experimental results, the proposed design 

can achieve greatly efficiency at FFT, DCT, and FIR computation, especially in 

complex operations. The chip has been integrated in the total area of 2.1 × 2.1 mm
2
 

by using UMC 90nm CMOS technology and has fabricated via the National Chip 

Implementation Center (CIC). The maximum clock frequency is at 200MHz with a 

single 1.0V supply. 
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Chapter 1               

Introduction 

Media processing usually deals with large data streams of video, audio and 

graphics. In the media system, a large number of data should be transported. If the 

processor, which is good at data calculating, takes the charge of those data 

transporting, the performance of the media system will decrease greatly. 

In the last century, the technology of direct memory access (DMA) was 

introduced into the DSP (Digital Signal Processor) design. The traditional DMA only 

supports increment/decrement addressing modes and four types of transferring modes 

[1], [2], [3]. Due to this fundamental mode, it could complete the data transporting 

among memories or peripherals without the aid of the processor. Most real-time 

scheduling algorithms demand that the worst-case execution time of each task is 

known in advanced. This is hardly satisfied if a task uses a DMA I/O method to 

transfer data between I/O devices and memories.  

Several DMA controllers are proposed to support real-time systems. In 1988, B. 

Sprunt et al. [4] proposed a Preemptable I/O Controller (PIOC) to avoid priority 

inversion. The commercial product TMS320C621 DSP contains an Enhanced DMA 

(EDMA) controller [5], which prioritizes transfer requests and prefers serving 

higher-priority requests. Furthermore, the EDMA uses RAM to store transfer 

parameters and allows the new channel parameters immediately loaded via a linking 

mechanism. S. Srinivasam [6] proposed a PDMA (Pre-programmed DMA mechanism) 

that allow a DMA action to continue moving data even that the source or destination 

addresses are not consecutive. Although the PDMA can be used to execute a task 
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chain according to a predetermined schedule, it can not accept any unscheduled 

request and does not provide facility to circumvent unexpected delays to access I/O or 

memory. 

For example, in Freescale MPC823e, a dedicated RISC core was used to take 

charge of data transporting [7]. In ADI Blackfin processor, a task-chain based 

two-dimensional DMA mechanism which was very suitable for video processing 

was developed [8]. It could efficiently resolve data transporting in the media system. 

But those above were developed only for the single-processor system which was 

working in a single clock domain. Faraday’s FTDMAC020 [9] has a slave AHB 

(Advanced High-performance Bus) interface. The DMA is configurable up to an 

8-channel DMA engine. Each channel can be assigned a group priority level and 

channels of the same group priority are serviced in the Round Robin fashion. To 

ensure real-time applications, the computing system requires guaranteed I/O 

throughput. Thus, this thesis will improve traditional DMA and integrate Smart 

DMA into a general-purpose dual-core processor. 

 

 

1.1 Motivation 

In recent years, the DSP applications are widely. Especially, the development of 

embedded systems and consumer electronics are rapidly, such as mobile phones and 

MP3, etc. Due to a large number of consumer electronic products, the output value of 

DSP is about 75%. Therefore the cost and performance will become an important 

indicator of a choice. If we choose a low-end processor, the performance will decrease 

because there are a lot of architecture and different addressing modes used in digital 

signal processing [10], such as circular and bit-reverse addressing. If the processor 

does not support special addressing modes, it will need to spend more execution 
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cycles. This means that the processor needs higher clock rate and wastes more power 

consumption.  

The hardware design of digital signal processing has to consider the efficiency of 

architecture and data transmission. In most of researches, they only enhance the 

architecture and discarding the mass data transmission. Up to now, the DSP design 

begins emphasizing and discussing how to enhance DMA architecture in order to 

control transmission and computation of mass data. 

For reducing the cost and complexity of developing a DSP, in this thesis a smart 

DMA (SDMA) is proposed and integrated into a general-purpose dual-core processor. 

It can assist the dual-core processor to handle mass and regular operations and to 

achieve a DSP-like processor. Thus, the traditional DMA architecture will be 

improved to support multiple addressing modes and built-in operation units at the 

same time. These multiple addressing modes include increment/decrement, circular, 

mirror, and bit-reverse addressing. For the different computing case such as FIR, DCT, 

and FFT [11], we can choose different addressing modes and collocate with 

dual-MAC architecture to perform different digital signal processing functions. 

 

1.2 Organization of the Thesis 

   In this thesis, the SDMA architecture is introduced in Chapter 2. Chapter 3 

describes system combination of SDMA and a dual-core processor. The experimental 

results and chip implementation are presented in Chapter 4, and conclusions are made 

in the last chapter. 
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Chapter 2  

Smart DMA Controller  

This chapter will introduce the design of smart direct memory access controller 

(SDMAC), involving with the SDMAC function, architecture design, and illustrating 

functions and setting of control register groups. 

 

2.1 Function of Smart DMA 

2.1.2 Transfer Modes 

The SDMAC supports four transfer modes as memory-to-memory, memory-to- 

peripheral, peripheral-to-memory, and peripheral-to-peripheral operations. Their 

function is described as follows, respectively. 

 

1. Memory-To-Memory: 

The memory interface of SDMAC supports two embedded memories at the 

same time. In the mode, data transfer occurs between two memories or in one of 

memory. SDMAC can read and write data at the same time when the source and 

destination memory are different. When the source and destination memory are 

same, SDMAC begins to write destination data, if the internal buffer is full, after 

reading source data from one of memory. Fig. 2-1 shows the transfer mode under 

the memory-to-memory data path. The arrow with dotted line indicates all bus 

transfer paths, and the arrow with hard line indicates the memory-to-memory path 

through Channel 0. 
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Fig. 2-1: Illustration of the memory-to-memory transfer mode. 

 

2. Memory-To-Peripheral: 

The mode can transfer data which is in particularly block of data memory to 

peripheral devices. Fig. 2-2 shows the data path of memory-to-peripheral transfer 

mode. The arrow with dotted line indicates all bus paths, and the arrow with hard 

line indicates the memory-to- peripheral path through Channel 0. 

 

 
Fig. 2-2: Illustration of the memory-to- peripheral transfer mode. 

 

 

3. Peripheral -To- Memory: 

It can transfer the data form peripheral device to a specify memory block 

using SDMAC, then processor can processing the data in memory. Fig. 2-3 is the 

data path of peripheral-to-memory transfer mode. It can transfer data from I
2
S to 

memory. 
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The arrow with dotted line indicates all bus transfer paths, and the arrow with 

hard line indicates the peripheral-to-memory transfer path through Channel 0. 

 

 
Fig. 2-3: Illustration of the peripheral-to-memory transfer mode. 

 

4. Peripheral -To- Peripheral: 

It can set the peripheral-to-peripheral transfer mode by SDMA when the 

peripheral with ability of processing or just transfer data between two peripherals. 

It can transfer without interrupt and do not need processor to handle this task. Fig. 

2-4 is the data path of peripheral-to-peripheral transfer mode. The arrow with 

dotted line indicates all bus transfer paths, and the arrow with hard line indicates 

the peripheral-to-peripheral transfer path through Channel 0. 

 

 
Fig. 2-4: Illustration of the peripheral-to- peripheral transfer mode. 
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2.1.3 Addressing and Operation Mode 

The SDMA supports five addressing modes involving increasing/decreasing 

addressing, circular addressing, mirror addressing index-based addressing, and 

bit-reversed addressing. The flowing will illustrate each addressing mode: 

 

1. Increasing/Decreasing Addressing Mode: 

This mode is a basic mode and is suitable for the other four modes. Fig. 2-5 

is the increasing/decreasing addressing mode. The data is copied from Memory A 

(RAM A) to Memory B (RAM B). When reading data from RAM A, it uses 

increasing addressing; when writing data to RAM B, it uses decreasing 

addressing. 

 

 

Fig. 2-5: Increasing/Decreasing Addressing Mode 

 

In Fig. 2-6, increasing addressing with Dual-MAC can compute inner 

product. The data can from memory or peripheral and also can operate in a 

memory. It can reduce the effort of processor. 
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Fig. 2-6: Inner Product with Smart DMA 

 

Increasing and decreasing addressing with Dual-MAC can perform 

convolution operation such as in Fig. 2-7. The data can from memory or 

peripheral and also can operation in a memory. It can reduce the effort of 

processor. 

 

 

Fig. 2-7: Convolution with Smart DMA 
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2. Circular Addressing Mode: 

User can define a block of memory when using circular addressing. When 

address excesses the boundary of block, it returns to the starting address of the 

block by the method of circular. To move in circles until the data transfer 

completely. This addressing can also use increasing or decreasing addressing 

according to different cases. In Fig. 2-8 , this addressing mode with Dual-MAC 

can perform circular convolution which is often used in digital signal processing; 

the X1 in RAM_A is a sequential data block and X2 in RAM_B is a circular data 

block. SDMAC read data from two memories to do the function of circular 

convolution. 

 

 

Fig. 2-8: Circular Convolution with Smart DMA 

 

3. Mirror Addressing Mode: 

User can define a block of memory when using circular addressing. When 

address excesses the boundary of block, it will increase or decrease from the 

boundary address by the method of mirror until the data transfer completely. In 

Fig. 2-9, this addressing mode with Dual-MAC can perform Discrete Cosine 
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Transform (DCT) which is often used in digital signal processing; X1 in RAM_A 

is a sequential data block, and X2 in RAM_B is a mirror data block. SDMAC read 

data from two memories to execute. It can achieve the operation of mirror 

addressing. 

 

 

Fig. 2-9: Mirror addressing of Smart DMA 

 

4. Index-based Addressing Mode : 

User can set the index of increasing or decreasing address when use 

index-based addressing mode to transfer data. It can choose valid data to reduce 

the bandwidth when transfer. It can do a lot of digital signal processing functions 

such as FIR (Finite Impulse Response), DCT (Discrete Cosine Transform). In Fig. 

2-10, RAM_A is a sequential data block and reads data from RAM_B by 

index-based addressing. SDMAC read data from two memories to perform 

automatically. It can achieve the operation of mirror addressing. 
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Fig. 2-10: Index-based addressing of Smart DMA 

 

5. Bit-Reversed Addressing Mode: 

By using bit-reverse addressing, we can reorder the coefficient before 

computing and control the data path of Dual-MAC by configure signal. This 

method can perform a butterfly unit in a cycle to speed up the FFT operation as 

show in Fig. 2-11. 

 

 

Fig. 2-11: Bit-Reverse addressing of Smart DMA 
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We can divide the five addressing mode into 4 types such as D-type, B-type, 

I-type, and bit-reverse as shown in Table. 2-1.  

 

Table. 2-1: Addressing type of Smart DMA 

Direction 

(D-type) 

Block 

(B-type) 

Index 

(I-type) 

other 

Increasing 

Decreasing 

Circular 

Mirror 

Normal 

Index-based Bit-reverse 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing Normal 

Circular 

Mirror 

Decreasing Normal 

Circular 

Mirror 

Index-based 

Index-based 

Index-based 

Index-based 

Index-based 

Index-based 
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2.2 Architecture of SDMAC 

The SDMAC is different from traditional DMA design because it has multiple 

addressing modes and built-in Dual-MAC. The SDMAC architecture is shown in Fig. 

2-12. This includes two channel controllers, an arbiter, a register bank, an interrupt 

controller, memory interface, and a Dual-MAC. The following subsection will 

illustrate each component. 

 

 

Fig. 2-12: Architecture of Smart DMA 

 

2.2.1 Channel Controller 

The SDMAC has two identical channel controllers. Each channel controller 

plays the most important role in SDMAC. It will control all operations of data 

transmission. According to the architecture of Fig. 2-12, when the data bus is not 

conflict, all channels can work at the same time. On the other hand the controller will 

decide channel priority by the arbiter. Of course, the number of channel controllers 

can be increased easily to enhance processor performance. The channel controller 

consists of two independent controllers. One is regarded as reading controller. The 
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other is regarded as writing controller. When the controller reads or writes data, first it 

has to check the FIFO (First In First Out) status. If FIFO is empty, the reading 

controller can read data from external devices to FIFO. If FIFO is full, the writing 

controller can write data from FIFO to external devices. Otherwise, the controller is 

disabled. The register bank connected to two channel controllers separately can 

decided all functions of SDMA. Both reading and writing controllers are implemented 

by FSM (Finite State Machine). The channel controller architecture is shown in Fig. 

2-13. 

 

 

Fig. 2-13: Architecture of Channel Controller 

 

The two channel controllers are disabled before using SDMAC. They will enter 

different modes according to the given transfer mode (Memory or Peripheral). Then 

SDMAC is enabled. The design flow for two channel controllers is explained in Fig. 

2-14. First, the state stays in the idle mode. If the authority of reading or writing 

operation is confirmed, the controller will enter the setup mode. After the data of 

source or destination and FIFO are valid, the controller will enter the enable mode to 

do data transmission. If data is not yet transferred completely, the controller will enter 

the setup mode and wait next data. If data is transferred completely, the controller will 

return to the disabled mode and send the interrupt signal to the processor. Finally, data 

transmission is finished. 
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Fig. 2-14: Finite State Machine of read/write Controller 

 

 

2.2.2 Prioritizing Arbiter 

In Fig. 2-12, these two channels (named Channel 0 and Channel 1) share an 

internal data bus and a peripheral bus. If these two channels use the same bus at the 

same time, the bus conflict will occur. So, a prioritizing arbiter is designed to avoid 

data conflict between the same buses. The arbiter shown in Fig. 2-15 decides use of 

bus in order of priority. The priority of Channel 0 is higher than Channel 1. When 

these two channels obtain data from the same bus, the arbiter will halt operations of 

Channel 1 due to a lower priority. If Channel 0 finishes the jobs, the arbiter will return 

the control authority to Channel 1. When the lower priority channel is transferring 

data, if data conflict occurs, it must finish the present data transmission first and then 

release the control authority. When transfer the data from memory, it is usually a mass 

 

 

 

 

 

 

Disable 

Idle Idle 

Channel Enable=1 

Transfer Type=Memory Transfer Type=Peripheral 

Channel Enable=1 
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Enable 
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FIFO & Memory valid 

Peripheral 
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and not interrupted. To avoid transferring low-speed data by peripheral devices can 

not get the bus control authority. Hence, we suggest setting a lower priority when 

transfer the data from memory under the arbiter architecture.  

 

 

Fig. 2-15: Prioritizing Arbiter of Smart DMA 

 

 

 

2.2.3 FIFO (First In First Out) 

The channel controller needs a buffer such as FIFO to save data. The FIFO 

structure can read, write, and check own state. FIFO control signals are shown in 

Table. 2-2. They are independent and used to design the controller read and write of 

the channel controller. 

There are two FIFO pointers (PT_PUSH and PT_POP) shown in Fig. 2-16. They 

individually point to the PUSH address and POP address. Data will push into the 

buffers when push is happened and the pointer PT_PUSH will move forward. When 

PT_PUSH excess the end of FIFO, it will return to the start point of this FIFO. Data 

will pop out from the buffers when pop is happened and the pointer PT_POP will 

move forward. When PT_POP excess the end of FIFO, it will return to the start point 

of this FIFO. 
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Table. 2-2: FIFO Control Signals 

Read Control 

Signal Bit width Description 

data_in 32 bits The data push into the FIFO. 

Push 1 bit When clock at rising edge and this signal is high 

Data will push into the FIFO. 

Write Control 

Signal Bit width Description 

data_out 32 bits The data pop out from FIFO. 

Pop 1 bit When clock at rising edge and this signal is high 

Data will pop out from FIFO. 

State Check 

Signal Bit width Description 

Full 1 bit Data in FIFO is full. 

Empty 1 bit No data in FIFO. 

Half 1 bit Data in FIFO is over than half. 

 

 

 

Fig. 2-16: Pointer of FIFO 
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There is a counter in the FIFO structure. It counts the number of data saved in 

FIFO. The current state of FIFO from the counter can be obtained directly, such as 

shown in Fig. 2-17. 

 

Fig. 2-17: Pointer and counter of FIFO 

 

2.2.4 Register Bank 

The SMDAC has 12 control registers called a register bank, where each register 

is 32 bits. The register bank seems a 16 × 16 memory array in the processor. Hence, 

the processor can directly read/write the register bank as access memory. This method 

is called as memory-mapped I/O. The use of the control register is illustrated in next 

subsection in details. 

    For register reading and writing in SDMAC, the timing diagram is shown in Fig. 

2-18 and Fig. 2-19. Reading or writing operations are enabled by the rising edge clock 

and CEN=0. When WEN is high, the register bank can be read according to the given 

address. When WEN is low, data can be written to the register bank of SDMAC 

according to the given address. 

Fig. 2-20 shows the register bank in SDMAC. The left side is connected to the 

part of processor’s memory. Another side is connected to two channel controllers and 

a dual-MAC unit. 
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Fig. 2-18: Timing Diagram of reading data from register in Smart DMA 

 

 

   

Fig. 2-19: Timing Diagram of writing data from register in Smart DMA 

 

 

Fig. 2-20: Register Bank of Smart DMA 
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2.2.5 Interrupt 

   The SDMAC can enable interrupt via setting configuration register. After the 

interrupt is set, if the channel controller finishes assigned works, an interrupt signal is 

sent to the processor immediately. The channel controller is closed at the same time. 

The interrupt signal is active low and holds on for two clock cycles. The channel 

controller is connected to the interrupt controller. When data transmission is finished, 

an interrupt signal is generated and written to the status register as shown in Fig. 

2-21 . 

 

Fig. 2-21: Interrupt Controller 

2.2.6 Memory Interface 

   The SDMAC supports two synchronous high-density and single-port SRAM. 

Each memory has a 9-bit address line, a 32-bit data line, and read/write control lines. 

Fig. 2-22 shows the data transmission from RAM_A to RAM_B and the memory 

interface. If the processor wants to access internal memory, it also uses the same 

memory interface.  
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Fig. 2-22: Data transmission via internal memory interface 

 

   The memory symbol is shown in Fig. 2-23. The pin assignments are shown in 

Table. 2-3. 

 

Fig. 2-23: Memory symbol. 

 

Table. 2-3: Pin descriptions of memory 

Signal Bit Width Description 

CK 1 Clock signal 

A m Address signal 

D w Input data 

OE 1 Output enable signal, active high 

CS 1 Chip select, active high 

WEB 1 Write enable signal, active high 

DO w Output data 
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Programmers set SDMA control registers to select one of memory banks which 

want to read or to write. So the memory interface has to conform to the timing 

diagram of Fig. 2-24 and Fig. 2-25. 

 

 

Fig. 2-24: Read cycle timing diagram of memory 

 

 

Fig. 2-25: Write cycle timing diagram of memory 

 

2.2.7 APB(Advanced Peripheral Bus) 

   APB is a part of AMBA [12] (Advanced Microcontroller Bus Architecture), the 

control signals are shown as Fig. 2-26. It has low power and easy to use. The channel 

controller in Smart DMA supports the interface of APB directly. The timing diagram 

of reading cycle of APB shows in Fig. 2-27. The timing diagram of writing cycle of 

APB shows in Fig. 2-28. 
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Fig. 2-26: APB bridge interface 

 

 

Fig. 2-27: Read cycle timing diagram of APB 

 

 

Fig. 2-28: Write cycle timing diagram of memory 

2.2.8 Dual-MAC 

   The MAC operation is one of the most important features for a DSP. This is not 

only used for multimedia applications but also used for communication applications. 

Traditional DSP with a real-valued MAC data path cannot efficiently execute 

arithmetic operations on complex-valued signals. Accordingly, recent DSP are 

designed with a view to improve the efficiency of the complex-valued MAC operation 
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[13], [14], [15], [16]. The complex-valued MAC operation consists of four 

real-valued multiplications and two accumulations as Eq. (2.1), where ACCR is the 

real part of the accumulation register, and ACCI is the imaginary part of the 

accumulation register. 

 

( ) *

( ) ( )*( )

( ) ( ) ( )

R I R I

R R I I R I I R

ACCR jACCI X Y

ACCR jACCI X jX Y jY

ACCR jACCI X Y X Y j X Y X Y

+ +

= + + + +

= + + − + +

                     (2.1) 

 

The dual-MAC architectures, such as DSP16000 [14] and MDSP-II [16], use two 

parallel 16×16 multipliers to calculate the product and to sum the real and imaginary 

parts, respectively. Thereby, it spends two cycles for completing one complex-valued 

MAC operation. The swap multiplexer in DSP16000 and MDSP-II is used to select a 

pair of inputs from four operands and to generate four partial products during the 

complex-valued multiplication operation. The other dual 16×16 MAC architectures in 

LODE [13] operate by a similar strategy except that it employs a delay register to 

store the input operands for the next MAC operation. This approach also executes one 

complex-valued MAC within two cycles. Straightforward the extension of the 

previous architectures to a 16×16 complex-valued MAC architecture using four 

parallel real MAC units is possible but unpopular, primarily because of its lack of 

hardware efficiency. Although the four-parallel-MAC architecture can perform one 

complex-valued MAC operation within one cycle, three MAC units sit idle in a 

real-valued MAC operation. An efficient four-parallel MAC architecture is proposed 

in the proposed SDMAC design. 

   The proposed dual-MAC architecture is shown in Fig. 2-29. We can configure 

the data path by the control register to perform different DSP applications. The 

complex-valued MAC is composed of four real multipliers and two accumulators as 
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shown in Fig. 2-29. (ACC is not used in this case.) Table. 2-4 lists an example of the 

execution of a 3-tap complex FIR filter to compute one output samples within three 

cycles. In this case, the signal Mode is switched to the complex mode. The data path 

can perform a k-tap real-valued FIR within k/2 cycles, and it can perform a butterfly 

unit within one cycle. 

 

Fig. 2-29: Architecture of dual-MAC 

Table. 2-4: Processing schedules of a complex 3-tap FIR convolution 

Cycle MAC Input Product 

 

 

CH                CL 

    DH                DL 

P0            P2 

P1            P3 

1 

 

    CR(0)             CI(0) 

    XR(0)             XI(0) 

CR(0)XR(0)    CR(0)XI(0) 

CI(0) XI(0)     CI(0)XR(0) 

2 

 

    CR(1)             CI(1) 

    XR(1)             XI(1) 

CR(1)XR(1)    CR(1)XI(1) 

CI(1) XI(1)     CI(1)XR(1) 

3 

 

CR(2)             CI(2) 

    XR(2)             XI(2) 

CR(2)XR(2)    CR(2)XI(2) 

CI(2) XI(2)     CI(2)XR(2) 
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2.3The register bank of Smart DMA 

   To achieve the best performance of SDMAC, users must set the configuration 

register. The following will illustrate these functions and the method how to set the 

register bank in SDMAC. 

 

2.3.1 Source Register 

   The source register is 32 bits in the register bank, but is seems to two 16 bits for 

processor. After setting the source register by processor, the value will preserve. But 

the source address will be changed according to the addressing mode. In the source 

register, the high 16-bit part specifies the addressing mode, and the low 16-bit part is 

defined as source address as shown in Table. 2-5. The following will illustrate the 

arrangement for each bit. 

 

Table. 2-5: Source Register 

Bit High Source Register 

15 Source Circular 0:circular / 1:mirror 

14:7 Source Base  Address number of increasing or decreasing 

6:0 Source Offset The start position of block 

Bit Low Source Register 

15 Source Device 0:Ram_A / 1:Ram_B 

14:0 Source Address  Source address 

 

  (1) Source circular: decide circular addressing or mirror addressing. If it does not 

need both of them, set the block size equal to zero. 

  (2) Source Base: to decide the index of increase or decrease of the index-based 

addressing. 
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  (3) Source offset: to decide the distance of first data form the block boundary as 

shown in Fig. 2-30. 

 
Fig. 2-30: Source offset 

 

2.3.2 Destination Register 

The setting method is same as the source register. The register is applied to a 

target device. After setting the destination register by processor, the value will 

preserve. But the destination address will be changed according to the addressing 

mode. The high 16-bit part specifies the addressing mode, and the low 16-bit part is 

defined as destination address as shown in Table. 2-6. 

 

Table. 2-6: Destination Register 

Bit High Destination Register 

15 Destination Circular 0:circular / 1:mirror 

14:7 Destination Base  Address number of increasing or decreasing 

6:0 Destination Offset The start position of block 

Bit Low Destination Register 

15 Destination Device 0:Ram A / 1:Ram B 

14:0 Destination Address  Destination address 
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2.3.3 Control Register 

  The control register seems two 16-bit registers. After setting the control register by 

processor, the value will preserve. But the number of data transmission accompanying 

with writing data to target device actually will be reduced. The high 16-bit part 

indicates the source and destination region. The low 16-bit part is control signals of 

SDMAC as shown in Table. 2-7. 

(1) Source/destination region: indicate the source or destination region of mirror or 

circular addressing. 

  (2) Source increment: increase source address (increase=1). 

  (3) Source decrement: decrease source address (increase=0, decrease=1). 

(4) Destination increment: increase destination address (increase=1). 

  (5) Destination decrement: decrease destination address (increase=0, decrease=1). 

 

Table. 2-7: Control Register 

 Source/Destination Region Register 

Bit Signal Description 

15:8 SrcReg Block size of source 

7:0 DestReg Block size of destination 

 Control Register 

Bit Signal Description 

15 SrcInc Source Increase 

14 SrcDec Source Decrease 

13 DestInc Destination Increase 

12 DestDec Destination Decrease 

11 SrcWidth Source Width( Default =32 bits) 

10 DestWidth Destination Width( Default =32 bits) 

9:0 TransferSize Transfer Size 
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2.3.4 Configuration Register 

The configuration register seems one 16-bit register which can access from the 

processor. After setting the configuration register, the value will preserve. But the 

reset signal of accumulators (high-active) will become low after one cycle by setting 

the configuration register. After channel enable and data transfer completely, the 

channel controller will close automatically. The following will illustrate the 

arrangement of bit as shown in Table. 2-8. 

(1) Halt: channel access stop. It will stop after write out the data from FIFO. 

  (2) Interrupt enable. 

  (3) Source peripheral: supporting 8 source peripheral devices. 

  (4) Destination peripheral: supporting 8 destination peripheral devices. 

  (5) Transfer type: transfer Type (0：RMA/ 1：I/O device). 

  (6) Sequence transfer: continuously transfer, the transfer data are infinite (ST=1). 

  (7) Function: operation functions (normal: 000 MAC: 001 CFIR: 010 FFT: 100). 

  (8) ACC clear: accumulator clear (AC = 1). 

  (9) Channel enable. 

Table. 2-8: Configuration Register 

Bit Configuration Register 

  signal  description 

15 Halt Channel stop 

14 IntEn Channel interrupt enable 

13:11 SrcPer Source Peripheral 

10:8 DestPer Destination Peripheral 

7:6 TransferType Transfer Type 

5 SeqTran Sequence Transfer 

4:2 Func Function 

1 ACClr ACC Clear 

0 ChEn Channel Enable 
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2.3.5 Status Register and ACC Register 

  The status register seems one 16-bit register which can access from the processor. 

It consist the information of two channels. The higher bits are channel 1 and the lower 

bits are channel 0. The following will illustrate the arrangement of bit as shown in 

Table. 2-9. 

(1) Interrupt：Low-Active interrupts. 

  (2) Full: The state of FIFO. 

  (3) Half: The state of FIFO. 

  (4) Empty: The state of FIFO. 

  (5) Channel Select: Arbiter decides which channel is working. 

  (6) Error: accumulator overflow. 

 

Table. 2-9: Status Register 

Bit Status Register [15:8] Channel 1  /  [7:0] for Channel 0 

 Signal Description 

7 Interrupt Channel Interrupt 

6 Full DMA FIFO data full 

5 Empty DMA FIFO data empty 

4 Half DMA FIFO data more than half 

3 ChSel Channel is select in working state 

2:0 Err Accumulator overflow 

 

   The ACC register seems one 16-bit register which can access from the processor. 

It can only write data with a 16-bit format and only read data with a 32-bit 

sign-valued format. The ACC is 40 bits in register bank. 
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2.3.6 Operating Flow of SDMA 

   The setting method of SDMAC is shown in Fig. 2-31. First, set the source, 

destination, and control register and then set the configuration register to enable the 

SDMA channel. This moment it can do other tasks until interrupt occurred, then the 

SDMAC finish its jobs. 

 

 

Fig. 2-31: Operating flow of SDMA 
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Chapter 3                      

SDMA Integrated with Dual-Core Processor 

    

The SDMAC can not work alone so it needs to put into a processor and to use. In 

this thesis, we also develop a general-purpose dual-core processor. The following 

subsection will illustrate characteristics, instructions sets, assembler, and architecture 

of the dual-core processor. 

 

3.1Architecture of Dual-Core Processor 

   The dual-core processor is RISC architecture and has five-stage pipeline [17], 

[18], where dual-core design can be a DSP unit or micro-control unit. The proposed 

SDMAC designed is also integrated into the dual-core signal processor [21]. We can 

set SDMA operations via defined assembly instructions. The SDMAC has a 

peripheral bus called APB so that some peripheral devices can be mounted. It can 

transfer data from peripheral to memory by SDMAC. 

 

 

3.1.1 Processor Kernel 

   The processor which is a dual-core processor has a five-stage pipeline. The 

design of processor architecture shown in Fig. 3-1 includes a program counter (PC), 

an instruction fetch unit (IF), an instruction decode unit (ID), a register file, an 

execution unit. The following will illustrate their function for each component. 
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Fig. 3-1: Processor Kernel 

 

(1) Program Counter (PC): PC is an internal register. When the value of PC is 

changed and sent to the next stage, the processor will jump correct 

instruction address to perform.  

(2) Instruction Fetch: According to PC as a memory address, fetch one 

instruction from an external program ROM. The memory address line and 

data width is 16 bits and 32 bits, respectively. Because there are some 

instructions need the value of PC in the execution stage, passing it stage by 

stage. To avoid fetching an instruction after a branch instruction, two flags 

are set to stall the pipeline. 

(3) Instruction Decode: The fetched instruction from ROM is decoded. In the 

instruction format, there are two source registers and one destination register. 

These addresses will pass to next stage for fetching operands and the write 

back address of the execution stage. Due to the dual-core architecture, it can 
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get register data for each other. Also this processor combines SDMAC design 

so a few instructions are defined. When the processor uses SDMAC, it needs 

a set of address bus to access the register bank and to set parameters. 

(4) Register File: Each core has 32 registers. It has two read ports and one write 

port to offer operands for the execution and write-back stage. There are a lot 

of signals connected to the execution stage for data forwarding. 

(5) Execution: The unit is to compute and to handle data forwarding. The 

forwarding unit is used to avoid a RAW hazard in the pipeline. 

There are some special designs in the dual-core processor should be presented as 

follows.  

(1) Operand isolation: We will know what kind of instructions in the decode 

stage. It can set an enable signal to control the execution stage. Then it can 

avoid perform addition, subtraction, multiplication at the same time to reduce 

power consumption. With this method, the processor can save about 30% 

power consumption. 

(2) A MAC instruction completed in one cycle. 

(3) Bit-reverse addressing for FFT operation. 

 

3.1.2 Instruction set architecture 

 The instructions can be divided into 5 groups including data moving, arithmetic and 

logic, branch and jump, SDMA, and others. 

(1) Arithmetic and logic instructions are listed in Table. 3-1. 
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Table. 3-1: Instructions of logic and arithmetic 

Instruction Opcode Example 

NOP 000000 NOP 

ADD 000001 ADD rd, rs, rt 

SUB 000010 SUB rd, rs, rt 

MUL 000011 MUL rd, rs, rt 

MAC 000100 MAC acc, rs, rt 

AND 000101 AND rd, rs, rt 

OR 000110 OR  rd, rs, rt 

XOR 000111 XOR rd, rs, rt 

INV 001000 INV rd, rs 

ADDI 001001 ADDI rd, rs, imm 

SUBI 001010 SUBI rd, rs, imm 

MULI 001011 MULI rd, rs, imm 

ANDI 001100 ANDI rd, rs, imm 

ORI 001101 ORI rd, rs, imm 

XORI 001110 XORI rd, rs, imm 

 

(2) Jump and branch instructions are listed in Table. 3-2. 

 

Table. 3-2: Instructions of jump and branch 

Instruction Opcode Example 

J 001111 J, imm 

JR 010000 J, @rd 

BEZ 010001 If(rs=0) go to address 

BNEZ 010010 If(rs!=0) go to address 

BGTZ 010011 If(rs>=0) go to address 

BLTZ 010100 If(rs<=0) go to address 

BEQ 010101 If(rs=rt) go to address 

BNE 010110 If(rs!=rt) go to address 

BGT 010111 If(rs>rt) go to address 

BLT 011000 If(rs<rt) go to address 
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(3) Data instructions are listed in Table. 3-3. 

Table. 3-3: Instructions of data moving 

Instruction Opcode Example 

LW 011001 LW, rd, address 

SW 011010 SW, rs, address 

MOVRC 011011 MOVRC, rt, imm 

MOVRR 011100 MOVRR, rt, rs 

MOVMRR 011101 MOVMRR, rt, rs 

MOVRRM 011110 MOVRRM, rt, rs 

MOVARR 011111 MOVRRM, rt@B, rs@A 

MOVREVRM 100000 MOVREVRM, rt, rs 

MOVREVRM 100001 MOVREVRM, rt, rs 

MOVREVMRR 100010 MOVREVMRR, rt, rs 

MOVREVRRM 100011 MOVREVRRM, rt, rs 

(4) The instructions about setting SDMAC as shown in Table. 3-4. 

Table. 3-4: Instructions of setting Smart DMA 

Instruction Opcode Example 

SDMAD 100100 SDMAD, data 

SDMAR 100101 SDMAD, rs 

DMAOK 100110 DMAOK 

GDMA 100111 GDMA, address 

GDMAR 101000 GDMAR, rt 

(5) Other instructions 

Table. 3-5: Other instructions 

Instruction Opcode Example 

SHR 101001 SHR, rs 

SHL 101010 SHL, rs 

SET 101011 SET, rs 

GET 101100 GET, rs 

ENDC 101101 ENDC 

In the Table. 3-5, the instruction of ENDC means the end of program. 
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3.1.3 I
2
S Bus 

   The I
2
S [22] design contains three signals as SCK (serial clock), WS (word 

select), and SD (serial data). They are explained as follows. 

(1) SCK: the transferring clock of each bit which is same as sampling rate. 

(2) WS: the signal for switching channel, it indicates the channel being 

transmitted when WS= 0 (left channel) and WS = 1 (right channel). 

(3) SD: the data for transmission. 

   The bus is a unidirectional design which has one transmitter and one receiver. 

The transmitter plays a slaver when transferring data, it is controlled by the signal of 

SCK and WS which sent by the receiver as shown in Fig. 3-2. The receiver plays a 

slaver when receiving data, it is controlled by the signal of SCK and WS which sent 

by the transmitter as shown in Fig. 3-3. 

 

 

Fig. 3-2: The transmitter of I
2
S 

 

 

Fig. 3-3: The receiver of I
2
S 

 

   The I
2
S is implemented by a shift register. It has to follow the timing diagram as 

shown in Fig. 3-4 when transmitting or receiving data. 
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Fig. 3-4: Timing diagram of I

2
S 

 

I
2
S conforms to the specification of the APB interface. They are seems to two 

registers at the bus as shown in Fig. 3-5. 

 
Fig. 3-5: I

2
S at APB bus 

 

3.2 Integration of SDMA and Dual-Core Processor 

    In this thesis, we integrate the proposed SDMAC and the general-purpose 

dual-core processor as shown in Fig. 3-6 to verify the correctness of SDAMC and the 

whole system. We also verify functions and performance of SDMA integrated with 

the dual-core processor. The program memory is put outside, and two data memories 

are put in the core together. These two data memories and SDMAC share the same 

data bus to connect each other. The SDMAC supports the ARM peripheral bus (APB). 
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Fig. 3-6: Integration of Smart DMA and dual-core processor 

 

  There are four separately bus in the dual-core architecture as shown in Fig. 3-7. 

Both SDMAC and the dual-core processor share two data buses to access two data 

memories in the different core. The dual-core processor controls these two data buses 

to handle data conflict. When the processor does not use instructions of memory 

reference, a data bus will be released to SDMAC. 

 

Fig. 3-7: Bus of this system 

    

 The processor can directly write the register of SDMAC to set parameters. There 

are two different ways to integrate two IPs. First, it can add some instructions for 

access the register of SDMAC. Second, it can use the method of memory mapping as 
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shown in Fig. 3-8. 

 

Fig. 3-8: Memory mapping 
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Chapter 4                        

Chip Implementation and Verification 

 

    This chapter will describe the function verification and experimental results 

of SDMAC and dual-core processor and also refer the chip realization. Finally, 

compared its performance with other commercial DSP is discussed in the last 

subsection. 

 

 

4.1 Chip Implementation 

4.1.1 Design Flow 

In this thesis, the cell-based design flow shown in Fig. 4-1 to implement the 

proposed SDMAC architecture is adopted. First, we write corresponding RTL code in 

terms of proposed architecture to do functional verification. Then the design is 

synthesized by UMC 90nm process technology, and the scan chain and memory BIST 

elements for the testability are also added. If the function of synthesized circuits is 

correct, the design is automatic placed and routed (APR) by SOC encounter. After 

APR, the tool DRC and LVS is used to check layout correctness. Finally, post-layout 

simulation is performed by the tool called NanoSim to verify the whole function of 

chip design. 
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Fig. 4-1: Chip design flow 

 

 

4.1.2 Synthesis Results 

First, we write corresponding RTL code in terms of proposed architecture to 

verify the design function. Then the design is synthesized by UMC 90nm process 

technology, and the scan chain and memory BIST elements for the testability are also 

added. Table. 4-1 lists the synthesis result of the whole chip design. 

 

Table. 4-1: Synthesis Results 

ITEM Area（㎜ 2） Timing Total fault Fault coverage 

Dual-Core Processor+SDMA 2.1x2.1 5ns 317480 95.07 % 
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4.1.3 Layout and Package 

The design is automatic placed and routed (APR) by the tool called SOC 

encounter. The APR result will be illustrated as follows. 

(1) CHIP name：DCSP 

(2) Technology：UMC 90nm 1P9M standard CMOS process 

(3) Package：144 CQFP 

(4) Chip Size：2.1× 2.1 mm
2
  

(5) Power Dissipation：~100mW 

(6) Operation Frequency：200 MHz（5ns） 

 

Using the tool called Prime Power to measures the power consumption which is 

about 100mW. The layout and the PAD allocation are shown in Fig. 4-2, and the 

package is shown in Fig. 4-3.  

 

 

 



 

 44

 

Fig. 4-2: Chip Layout and PAD allocation 

 

 

Fig. 4-3 Chip Package 
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To verify the final chip layout, both DRC (Design Rule Check) and LVS (Layout 

verse Schematic) are passed. The result is shown in Fig. 4-4 and Fig. 4-5. 

 

 

Fig. 4-4: DRC result 

 

 

Fig. 4-5: LVS result 
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  Finally, the detailed chip specification is listed in Table. 4-2. 
 

Table. 4-2 Specification Table 

Technology Description 

Process UMC 90nm 1P9M Mixed Signal 

Architecture Dual-Core 5-stage pipeline 

Synthesis Synopsys Design Compiler 

Gate Count  253K 

Embedded Memory RAM0，RAM1  

Die size 1.85 × 1.85 mm2 

Supply 1.0V/3.3V ± 10% 

Input Delay Time Max 1ns/ Min 0.5ns 

Output Delay Time Max 2ns/ Min 1ns 

Output Loading 30pf 

Power consumption 100mW@200MHz 

Operation Frequency 200MHz 

DMA Design    

DMA Channel 2 

DMA Request 8 

DMA Gate Count 45K 

Transfer Type Memory-to-Memory 

Memory-to-Peripheral 

Peripheral-to-Memory 

Peripheral-to-Peripheral 

Compliance with APB bus Support 8 device 

Hardware DMA channels priority High: Ch0  /  Low:Ch1 

DMA Special Function Inner Product 

Convolution 

Multiple Addressing 

Built-in I2S interface 
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4.1.4 Design for Testing Consideration 

    There are two types for chip testing. One is the error testing produced by 

manufacturing. The other is the correctness testing of functions. The previous is about 

the memory BIST (Built-In Self Test) and the scan-chain insertion of the whole circuit. 

The following will illustrate about BIST and scan-chain functions. 

   Because the process is more and more advanced, the gate counts increase in a 

unit area. To avoid errors that produced by manufacturing, it must add testing circuit 

to the proposed design. 

   At the part of memory, using the tool called Srambist to produce self-test circuit 

in memory and using the Moving Inversion algorithm as shown in Fig. 4-6. This 

method can test where the built-in memory is failed or not. Each memory has a BIST 

controller itself, and shares the BistMode signal. When BistMode is high, the two 

memories are running at the testing mode until testing is finished. The Finish signal 

will be set to high. If some errors occur, the BistFail signal will be set to high. 

 

 

 

Fig. 4-6: Memory BIST 
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  Using the tool called DFT Compiler adds testing circuit to the proposed design. 

As can be seen, a scan-chain line is inserted. Finally, the report is generated as shown 

in Fig. 4-7. The testing pattern data are 904, and the fault-coverage is 95.07%. 

 

 

Fig. 4-7: Fault-Coverage 

 

   For verifying the correctness of functions, we support five patterns and translate 

to the format of the tester (Agilent 93K). We can see the results from PAD. The 

testing patterns are data moving, inner product, convolution, DCT, and FFT. 
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4.2 Chip Verification 

   We can write program in assembler to verify the functions and performance of 

SDMAC with a general-purpose dual-core processor. The testing functions involve in 

data transmission, inner product, convolution, DCT, and FFT. The following 

subsection will illustrate in details. 

 

4.2.1 Data Transmission 

   Data transmission consists of four types. This can verify the correctness of 

transferring in different memories of the dual-core processor architecture. 

  (1) Architecture of data transmission in different memories as shown in Fig. 4-8. 

  (2) Architecture of data transmission in the same memory as shown in Fig. 4-8: 

Transmission in different memories     . 

                   

Fig. 4-8: Transmission in different memories     Fig. 4-9:  Transmission in a same 

memory 

 

(3) Architecture of data transmission in different memories with circular addressing 

as shown in Fig. 4-10. 

 

Fig. 4-10: Data transmission in different memories by circular addressing 
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(4) Architecture of data transmission in different memories with mirror addressing 

as shown in Fig. 4-11. 

 

Fig. 4-11: Data transmission in different memories by mirror addressing 

 

 

4.2.2 Inner product 

 In Fig. 4-12, the data in memory is the same as the memory address, and we set 

two memories (RAM_A and RAM_B) with increment addressing to compute the 

inner product. At this time, the dual-MAC operates at the real-valued-MAC mode. 

The hardware can automatically compute the result of Eq. (4.1), and post-layout 

simulation is shown in Fig. 4-13. 

 

                         44347135
510

1

2
=∑

=i

i                    (4.1) 

 

 

Fig. 4-12:Inner product 
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Fig. 4-13: Post-layout simulation of inner product 

 

 

4.2.3 Convolution 

In Fig. 4-14, the data in memory is the same as the memory address, and we set 

one memory with increment addressing and the other with decrement addressing to 

compute the linear convolution. At this time, the dual-MAC operates at the 

real-valued-MAC mode. The hardware can automatically compute the result of Eq. 

(4.2), and post-layout simulation is shown in Fig. 4-15. 
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            (4.2) 

 

 

Fig. 4-14: Convolution 
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Fig. 4-15: Post-layout simulation of convolution 

 

 

4.2.4 FFT 

The SDMA computes 32-point FFT operation with a 16-bit fixed-point format. 

Fig. 4-16 and Fig. 4-17 show the post-layout simulation result and the MATLAB 

result, respectively. 

 

 

Fig. 4-16: Post-layout simulation of FFT 
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Fig. 4-17: MATLAB result of FFT 

 

 

4.2.5 DCT 

The SDMA computes 36-point DCT operation with a 16-bit fixed-point format. 

The input data is shown in Fig. 4-18. Fig. 4-19 and Fig. 4-20 show the post-layout 

simulation result and the MATLAB result, respectively. 

 

 

Fig. 4-18: Input data of DCT 



 

 54

 

Fig. 4-19: post-layout simulation of DCT 

 

Fig. 4-20: MATLAB result of DCT 

 

4.2.6 Peripheral Interface - APB 

The peripheral interface bus called APB is often used in data transferring of 

peripheral devices, such as I
2
S (Inter-IC Sound). The architecture of data transmission 
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form I
2
S to memory is shown in Fig. 4-21. The post-layout simulation shows in Fig. 

4-22. 

 

Fig. 4-21: Transferring data form I
2
S to memory 

 

 

Fig. 4-22: Post-layout simulation of data transmission form I
2
S to memory 

 

 

4.2 Performance Comparison  

In this thesis, the SDMAC, which is different from traditional DMA, is proposed 

and designed. The traditional DMA only supports fewer addressing modes and does 

not have built-in arithmetic units. For the proposed design, it has not only multiple 

addressing modes, but also a built-in dual-MAC. Hence, it is suitable for a lot of DSP 

operations. SDMA can compute at the same time during data transmission. So, this 

method can greatly improve performance of the general-purpose processor. As shown 

in Table. 4-3, the proposed design is compared with the commercial DMA such as 

Faraday [9] and Global Unichip [24]. 
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Table. 4-3 Comparison of commercial DMA and Smart DMA 

FARADAY 

[9] 

GLOBAL 

UNICHIP [24] 

This work 

 

  

FTDMAC020 UAPC5110 DCSP 

Channel 8 2(8) 2 

Request 8 4(32) 8 

Transfer 

Type 

M-to-M 

M-to-P 

P-to-M 

M-to-M 

M-to-P 

P-to-M 

P-to-P 

M-to-M 

M-to-P 

P-to-M 

P-to-P 

Addressing Chain 

Transfer 

Increase/Decrease Increase/Decrease 

Circular 

Mirror 

Index-Base 

Bit-Reverse 

Special 

Function  

None None Dual-MAC 

 

   The following subsection will describe the performance on data moving and 

arithmetic computation compared with other commercial DSP. 

 

 

4.3.1 Performance of Data Transmission 

We compare the processor that has not SDMAC and has SDMAC, and the 

performance of data transmission is shown in Fig. 4-23, where A2A indicates from 

memory A to A, and A2B indicates from memory A to B. As can be seen, the SDMAC 

can help the general-purpose processor to do data transmission efficiently in lots of 

addressing. 
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Fig. 4-23: Performance of data moving 

 

 

4.3.2 Comparison the MAC performance with other DSPs 

The MAC operation is a basic unit for DSP functions. This thesis presents a 

dual-MAC architecture put into SDMA. This architecture in a cycle can compute a 

complex-valued operation or a butterfly unit. As shown in Table. 4-4, we compare the 

execution cycles of dual-MAC with other DSPs. 
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Table. 4-4: Comparison of MAC operation with other DSPs 

 TI 

C62X 

 

LODE 

[13] 

DSP1600 

[14] 

MDSP-II 

[15] 

CDSP 

[16] 

Hiroyuki 

JSSC98 

[27] 

Complex-MAC No No No No Yes Yes 

Complex-MAC 2 cycles 2 cycles 2 cycles 2 cycles 4 cycles 2 cycles 

Real-MAC 1/2 

cycles 

1/2 

cycles 

1/2 

cycles 

1  

cycles 

1/2 

cycles 

1/4 

cycles 

Butterfly 6 cycles 4 cycles 4 cycles 5 cycles 8 cycles 3 cycles 

 

 Hinrichs 

JSSC2000 

[28] 

Ackland 

JSSC2000 

[29] 

Olofsson 

ISSCC2002 

[30] 

Agarwaral 

ISSCC2002 

[31] 

 

This Work 

Complex-MAC No No No No Yes 

Complex-MAC 2 cycles 2 cycles 4 cycles 2 cycles 1 cycles 

Real-MAC 1/2 cycles 1/2 cycles 1/2 cycles 1/2 cycles 1/4 cycles 

Butterfly 3 cycles 3 cycles 8 cycles 3 cycles 1 cycles 
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4.3.3 Comparison DSP functions with other DSPs 

For a traditional DMA of the general-purpose processor, it can not perform DSP 

functions efficiently, but it can be improved to be SDMA. The SDMAC can assist the 

dual-core processor to handle mass and regular operations such as FIR, DCT, FFT, etc. 

The computational performance of FIR, and DCT is compared and shown in Fig. 4-24 

and, where the R-FIR means real-valued FIR, and C-FIR means complex-valued FIR. 

 

 

  

 

 

 

 

 

 

 

Fig. 4-24: Comparison of computational performance with other DPSs 

 

Fig. 4-25 shows lower cycles than other processors computing in 256-point 

complex-valued FFT operations with using dual- MAC architecture. The complex 

FFT operation is a significant DSP algorithm which is often published for a variety of 

processors. 
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Chapter 5               

Conclusions and Future Works 

This thesis proposes an efficient SDMAC design which is integrated into the 

general-purpose dual-core processor in order to turn into a DSP-like processor chip. 

The main purpose is to increase the additional value when data transmitting, i.e., 

arithmetic computation. 

The SDMA supports five addressing modes compared with the design method of 

traditional DMA and four transmission types to select the region of valid data and to 

reduce the transmission bandwidth for the processor. The SDMA design has features 

as follows. (1) It has a built-in dual complex-valued multiplication-and-accumulation 

(Dual-MAC) to processes mass and regular data computation. Moreover, two channel 

can access two memory banks and perform vector operations at the same time; (2) it 

supports the peripheral bus to expand I/O devices flexibly; (3) it can save about 75% 

time wasted on data transfer; and (4) the code size can be reduced.  

By experimental results, the proposed dual-core processor design with SDMA 

can achieve greatly efficiency at FFT, DCT, and FIR computation, especially in 

complex operations. Compared with TI C62X series, when the processor is running 

real- or complex-valued FIR operations, it will improve efficiency about 7% to 50%. 

The dual-core processor with SDMA has been integrated in the total area of 4.41 mm
2
 

by using UMC 90nm standard CMOS technology and has fabricated via the National 

Chip Implementation Center (CIC). The maximum clock frequency is at 200MHz 

with a single 1.0V supply.   

In the future, this chip can be integrated with AHB and other ASIC (application 

specify integrated circuit) or ADC to become a SoC (system-on-chip) as shown in  

Fig. 5-1. Users can write a program on this chip according to the algorithm 

which they wanted. On the other hand, the proposed architecture has not a friendly 

I/O interface. In the next generation, we can also add other serial communication 

interfaces, for example, I2C, Uart, SPI, etc. We can also increase the channels to 
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enhance the peripheral transmission. 

 

Fig. 5-1: System level design 
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Appendex 
A Tapeout Review Form 

1. 晶片概述： 

1-1  專題名稱：          智能型智能型智能型智能型 DMADMADMADMA 的的的的 DSPDSPDSPDSP 架構設計在雙核心上的應用架構設計在雙核心上的應用架構設計在雙核心上的應用架構設計在雙核心上的應用                
1-2 Top Cell 名稱：    DCSP             

1-3 使用 library 名稱： 

 v   CIC_CBDK90 
    CIC_CBDK18 

CBDK 版本:              

是否使用 Core Cell:    Yes    若有使用 Core Cell 型號: □hvt  VVVV rvt  □lvt 

         Core Cell有無更改 Cellname:        (建議保留勿更

改) 

是否使用 IO:    Yes    若有使用 IO, 採用形式是 : □Linear  VVVV Staggered 

1-4 是否使用 CIC提供之 Memory？  Yes    若使用 Memory, 是否已上傳 spec檔:   

Yes    

使用 Memory之種類為何？     Synchronous Single-Port Register File          

1-5 是否使用 CIC提供之 ARM CPU IP？         (若為 Yes, 請務必塡寫第 9項)   

使用 CPU 之種類為何？(ARM7TDMI or ARM926EJ)                               

1-6 工作頻率：       200Mhz         

1-7 功率消耗：      100mW           

1-8 晶片面積：  1.85mm    X  1.85mm    

 

2. 設計合成： 

2-1. 使用之合成軟體？  Synopsys Design Compiler               

2-2. 是否加入 boundary condition：  

 v   input drive strength、 v   input delay、 v   output loading、 v   output delay 

2-3. 是否加入 timing constraint：  

  v  specify clock (sequential design) 

 v   max delay、 v   min delay (combinational design) 

2-4. 是否加入 area constraint？    No     

2-5. 合成後之 report是否有 timing violation？  No   

    有 setup time violation、    有 hold time violation 

2-6. 合成後之 verilog是否含有 assign描述？    No     

2-7. 合成後之 verilog是否含有 *cell* 之 instance name？   No      

2-8. 合成後之 verilog是否含有反鈄線 \ 之 instance name 或 net name？   No      

 

3. 可測試性設計(前瞻性晶片必填)： 

3-1. 使用之設計軟體？      DFT Compiler                   

3-2. 使用之 ATPG軟體？       TetraMAX                   

3-3. 使用 Embedded memory數量: SRAM     2         ，ROM                 

Memory大小: 512x32  (Word x bit)   

測試方法: BIST     Yes         ，or 其他測試方法                

若使用 BIST,其 Test Algorithm為何?   Moving Inversion (13N March)   

同時有多個 memory，是否共用 BIST controller   No     ，BIST controller數量 2     

3-4. Scan Chain Information 

Flip-Flop 共有多少個？  4863         

Scan chain 的數量共有多少條？     1         

Scan chain length (Max.) ？  66087.41          

3-5. Uncollapsed fault coverage 是否超過 90% ？   Yes      ，為多少？   95.07%       
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ATPG pattern的數目為多少？   904     

註：若使用 Synopsys TetraMAX 來產生 ATPG pattern，請使用 set faults 

-fault_coverage指令指定 TetraMAX 產生 fault coverage information 

若使用 SynTest TurboScan之 asicgen來產生 ATPG pattern，請以 atpg pessimistic 

fault coverage 的值為準 

 

4. 佈局前模擬 

4-1.   gate level simulation 是否有 timing violation？   No    

    有 setup time violation、    有 hold time violation 

 

 

5. 實體佈局 

5-1. 使用之 P&R軟體？     Apolo、 v   SOC Encounter 

5-2. power ring寬度？   8um      是否已考量 current density(1mA/1um)？    Yes      

5-3. 是否考慮 output loading？    Yes      

5-4. 是否加上 Clock Tree？    Yes      

5-5. 是否加上 Corner pad？   Yes      

5-6. IO Buffer 間是否加上 IO Filler:     Yes      IO Filler寬度:    12   um (建議

至少需 12um寬) 

5-7. 是否加上 Core Filler？    Yes      

5-8. 是否上加 Bonding Pad？   Yes       

以下(A-1)為使用 Apollo者才須回答 

A-1.   是否執行 Fill Notch and Gap 步驟？          

以下(S-1 至 S-2)為使用 SOC Encounter 者才須回答 

S-1.   power ring上是否有 overlap vias？   No       

S-2.   是否確定 IO Row和 Corner Row互相貼齊？   Yes       

 

 

6. 佈局後模擬 

6-1. 是否做過 post-layout gate-level simulation？    Yes      

STA(static timing analysis) 軟體？    Primetime /ncverilog                    

6-2. 是否做過 post-layout transistor-level simulation？   Yes       

6-3. 已針對以下環境狀態模擬：    SS、  v   TT、     FF 

6-4. 晶片取得時將以何種方式進行測試？    CIC測試機台測試機台測試機台測試機台（（（（Agilent 93K））））                             

6-5. 模擬時是否考量輸出負載影響？    Yes       若有輸出負載是:   30   pF (建

議至少需 20pF) 

 

7. DRC/LVS 驗證 

7-1. 是否有 DRC錯誤？    Yes      錯誤原因：    有有有有 4.1.1GDEN_LT25 的錯誤的錯誤的錯誤的錯誤,

這是因為我們的這是因為我們的這是因為我們的這是因為我們的                              

Standard Cell 是不完整的是不完整的是不完整的是不完整的 Layout,所以會有所以會有所以會有所以會有 DIFF density 不足的錯誤不足的錯誤不足的錯誤不足的錯誤                                                                     

驗證 DRC軟體？       Calibre                 

是否有不作 DRC的區域？   No       

7-2. 是否有 LVS 錯誤？    No      

驗證 LVS 軟體？        Calibre              

是否有非 CIC提供的 BlackBox？  No       

8. MT Form 填寫 

8-1. 是否填上     系所單位、    設計者姓名、    聯絡電話(與手機) 、    日期 

8-2. 是否填上晶片上傳目錄？          

8-3. 是否填上檔案名稱？          

8-4. 是否寫上 top cell name？          

9. 使用 ARM926EJ or ARM7TDMI CPU IP 

9-1. 若有使用 ARM926EJ /ARM7TDMI CPU IP，請提供以下訊息以便向 ARM 原廠申

請 Design ID。 
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使用的 CPU 種類 (ARM926EJ or ARM7TDMI) :                       

使用的 metal layers 的層數:                                           

佈局中 ARM926EJ /ARM7TDMI Macro 的 cell name:                          

這個晶片是否為修訂版本(revision,也就是之前曾下線過相同晶片)？                

若是修訂版本，前一次下線的晶片編號:                               

修訂版本的原因是？(例如修正 bug)                                              

 

設計者簽名:      郭昕展                 指導教授簽名:    林進燈               


