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摘 要  

本論文提出一套在未知聲源個數的情況下能同步定位移動式機器人平台聲源

的方法，並解釋了使用聲音作為定位地標的原因。文中介紹了幾種角度估測(DOA)

的方法，並結合其中一些方法的特性來達到多聲源角度估測的目的，這些角度估

測將使用在理論基礎為貝氏濾波器(Bayes Filter)的純角度資訊同步定位演算法

(Bearings-only SLAM)。因聲源非同步發聲，且聲源沒有角度以外的資訊，故有未

知資料群落(Unknown Data Association)的問題需解決，演算法中的粒子濾波器

(particle filter)將可處理這部分的問題。本研究為了將演算法即時實現在實驗環境

中而做了不影響理論結果的修改，並且展示了實驗成果來證實演算法的效能。 
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ABSTRACT 

This work proposes a method that is able to simultaneously localize a mobile 

robot and unknown number of multiple sound sources in the environment. The reason 

of using sound sources as the landmarks in SLAM algorithm is presented. Several 

DOA estimation methods are described and a combinational one is used for real time 

application. After knowing the DOA information, a bearings-only SLAM 

(simultaneous localization and mapping) algorithm is introduced in detail, which 

contains the theoretical structure of Bayes filter. The estimated DOAs are known as the 

bearings information in the algorithm. As source signals are not persistent and there is 

no identification of the signal content, data association is unknown which is solved 

using particle filter. Modifications of the algorithm are made for real time application. 

Experimental results are presented to verify the effectiveness of the proposed 

approaches. 
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Chapter 1. INTRODUCTION 

1.1 Motivation and Objective 

Robots are getting closer to human life in recent years. The interaction between 

robots and human is a key factor how the robot could be applied to real environment 

with human around. Among the interaction scenarios between robot and human, 

localization of the robot is frequently discussed. Lots of the localization methods that 

have been studied are using camera or laser range finder as the sensor input. 

The cameras are able to distinguish different landmarks by using the visual 

information such as color, object edge, shape of landmarks, etc. The association 

between different temporal frames of sensor data is feasible. On the other hand, laser 

range finders are able to provide accurate range information of different landmarks. A 

more precisely measured data would help the localization procedure converges faster. 

However, both of these two sensors are suffering from various drawbacks such as 

occlusion. If a landmark is NLOS (non-line-of-sight), it will be not detectable. 

We intend to propose a method focusing on solving the occlusion problem. 

Acoustic signals are detectable even if a landmark is NLOS. Also, in human 

environment, there are stationary sound sources such as air-conditioner, operating 

sound of a computer, and non-stationary sound as human speech, door-knock, etc. 

According to this characteristic, we consider multiple sound sources as the landmarks 

in the localization problem. In that sense, a high-dimensional microphone array is 

mounted on a mobile robot to detect these sound signals, and the robot has its own 

encoder information to help the self localization of the robot. 
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1.2 Literature Review 

The array signal processing technology [1] was first used in the World War I. The 

invention was used to detect enemy aircrafts. The technology was applied to array 

telescope such as the Very Large Array in New Mexico, USA. In this thesis, we use a 

microphone array to implement the array signal processing algorithm [2]. 

There are generally two categories of method to solve direction of arrival (DOA) 

estimation problem. One of the methods is TDE (time delay estimation) proposed by 

Knapp and Carter [3]. Two microphones are used to record the sound signal, and 

sound sources from different direction will cause different response to these two 

microphones. To measure the time delay between microphones, a commonly used 

method is GCC (Generalized Cross Correlation). Finding the maximum value of the 

GCC expression indirectly indicates knowing the delay relation.  The temporal 

difference between these two responses could be used to estimate the direction. 

The second well-known DOA estimation method is eigenspace method. It 

measures the distribution of eigenvector between different signals and estimates the 

signal direction by mutual projection. The MUSIC algorithm proposed by Schmidt [4] 

belongs to this category. It is able to localize multiple sound sources with prior 

knowledge of the total number of sources.  

After the DOA estimation, we use this information to localize the mobile robot. 

There are a lot of researches focusing on solving SLAM (simultaneous localization 

and mapping) problem. Bayes filters [6] are commonly used to both describe the 

position state of a robot itself and the environmental landmarks position estimation.  
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1.3 Thesis Subject and Contribution 

The subject of this thesis can be divided into two parts. The first part is to 

implement a multiple sources DOA estimation algorithm. The DOA estimation results 

will be considered as the bearing measurements of the second part of the thesis. The 

second part of the method is the Bearings-Only SLAM algorithm that is able to 

simultaneously localize the features in the experimental environment and to map the 

robot itself to the environment. 

In the first part, we compare the effectiveness of the two algorithms, which are 

ES-GCC and accumulative MUSIC. ES-GCC is an eigenspace based method that is 

able to detect unknown number of multiple sound sources direction simultaneously. 

MUSIC is a more commonly used DOA estimation method that could only estimate 

known number of multiple sound sources. We monitor the number of time frames 

needed for both algorithms in real time application, and modified them to satisfy the 

hardware limitation.  

The second part is a SLAM problem architecture, which considers the outputs of 

the first part as the measurements. SLAM problem could be solved using procedures 

based on the Bayes filter. The particle filter is used for the non-parametric robot 

environment. The removal of the resample step in particle filter doesn’t disturb the 

algorithm but decrease the computing complexity and shorten the algorithm procedure 

so that the method is able to be applied in real time.  

The experimental results are shown to justified the valid modifications, yet 

accomplishes the simultaneous localization and mapping problem in real-time.  
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1.4 Outlines of Thesis 

The remainder of this thesis is organized as follows. 

Chapter 2: The two kinds of DOA estimation method are clearly described, including 

         the performance analysis for real time application. The reasons of choosing  

         eigenspace method are explained and there would be modification made to  

         the algorithm to solve the insufficient performance of real time experiment. 

Chapter 3: The detail concept of Bayes filter is stated in this chapter. Based on the  

         concept, a bearings-only SLAM algorithm constructed by EKF (extended  

         Kalman filter) and PF (particle filter) is introduced. The mathematical 

         detail is also in this chapter. Finally, PF is able to deal with the unknown 

         data association between different temporal frames. 

Chapter 4: The experimental results are presented. A combinational architecture of  

         DOA estimation and bearings-only SLAM is applied to a real mobile robot,  

         and the real time performance analysis is discussed. 

Chapter 5: The conclusion of this thesis and the possible improvement in the future is  

         presented is this chapter. 
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Chapter 2. DETECTION OF MULTIPLE SOUND SOURCES 

2.1 Introduction 

DOA (direction of arrival) estimation is usually mentioned as the research of 

estimating the spatial position of signals, or to measure the emitting direction between 

signals and sensors. In technical points of view, DOA estimation contains two 

categories, TDE (time delay estimation) and eigenspace method. Although TDE is 

only able to distinguish the emitting direction of single non-overlapped sound source, 

it needs only two microphones. The hardware architecture is comparatively simple, 

and the order of computation is more suitable for real time application. On the other 

hand, eigenspace method is able to distinguish multiple sound sources with the prior 

knowledge of the quantity of sources. Even if the sources are temporal overlapped. 

2.2 Mathematical Structure of TDE and Eigenspace Method 

2.2.1 TDE 

Two microphones are used to record the sound signal, and sound sources from 

different direction will cause different response to these two microphones. To measure 

the time delay between microphones, a commonly used method is GCC (Generalized 

Cross Correlation). Suppose there is one single source in the environment, in ideal 

case the sound signal received by the two microphones could be expressed as 

1 1 1( ) ( ) ( )x t s t n t= +             (2.1) 

2 1 2( ) ( ) ( )x t s t D n tα= + +            (2.2) 

where 1( )s t , 1( )n t , 2 ( )n t are WSS (wide sense stationary) and uncorrelated. D  is 
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the real delay between two microphones. α  is a magnitude scaling factor. D  and 

α  are changing relatively slower than 1( )s t , which is the signal itself. The cross 

correlation between the microphones is 

[ ]
1 2, 1 2( ) ( ) ( )x xR E x t x tτ τ= −            (2.3) 

where E  is the expectation value. The related τ  that gets maximum 
1 2, ( )x xR τ  is the 

delay value. Due to limited observation time, the estimated cross correlation is 

expressed as  

1 2, 1 2
1( ) ( ) ( )

T
x xR x t x t dt

T τ
τ τ

τ

∧

= −
− ∫          (2.4) 

T  represents the observation time interval. The cross correlation is the inverse 

Fourier Transform of the cross power spectrum. Expressed as 

1 2 1 2

2
, ,( ) ( ) j f

x x x xR G f e dfπ ττ
∞

−∞
= ∫           (2.5) 

Consider the real spatial situation, the sound signal received by the microphones 

are transformed by space, so the cross power spectrum between the real microphones 

are 

1 2 1 2

*
, 1 2 ,( ) ( ) ( ) ( )y y x xG f H f H f G f=          (2.6) 

where 1( )H f  and 2 ( )H f  are the spatial impulse response form the signal to the 

first and the second microphone. So, we define the generalized cross correlation 

between the microphone pair as 

1 2 1 2

( ) 2
, ,( ) ( ) ( )g j f

y y g x xR f G f e dfπ ττ ψ
∞

−∞
= ∫         (2.7) 

where 

*
1 2( ) ( ) ( )g f H f H fψ =             (2.8) 
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Practically, we should substitute 
1 2, ( )x xG f  by 1 2, ( )x xG f

∧

 due to limited observation 

time, where 1 2, ( )x xG f
∧

 is an estimation of 
1 2, ( )x xG f , so (2.7) should rewrite as 

1 2 1 2

( )
2

, ,( ) ( ) ( )
g

j f
y y x xgR f G f e dfπ ττ ψ

∧ ∧∞

−∞
= ∫         (2.9) 

Using (2.9), we could estimate the delay of the microphone pair. Different choices 

of ( )g fψ  will affect the delay estimation. Carter [5] propose the method named 

PHAT (phase transform), which is 

1 2,

1( )
( )g

x x

f
G f

ψ =             (2.10) 

This method is very effective when the noise distributions of the two microphones 

are uncorrelated. 

2.2.2 ES-GCC, a combination of TDE and Eigenspace Method 

ES(eigen space)-GCC [8] uses the characteristic of Eigenspace Method to divide 

the signal into signal subspace and noise subspace. The signal subspace is the principle 

distribution of the recorded signal. Extracting the signal subspace would suppress the 

noise interference. Then, calculate the GCC focusing on the signal subspace.  

Suppose there is a microphone array with M  microphones, and there are d  

sources in the environment, the signal received by the m th microphone is 

1

( ) ( ) ( )
d

m mk k mk m
k

x t a s t n tτ
=

= − +∑           (2.11) 

where mka  is the gain from the k th source to the m th microphone. ( )mn t  is the 

noise received by the m th microphone. Take the Fourier transform to (2.11) is 
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1
( , ) ( , ) ( , )

1,2, ,

f mk
d

j
m f mk k f m f

k
X n a S n e N n

f F

ω τω ω ω−

=

= +

=

∑
…

      (2.12) 

where fω  is the observed frequency band, and n  is the index of temporal frame. 

Rewrite (2.12) to matrix form 

( , ) ( ) ( , ) ( , )f f f fn n nω ω ω ω= +X A S N         (2.13) 

where 

1( , ) [ ( , ), , ( , )]f f M fn X n X nω ω ωΤ =X "           (2.14) 

1( , ) [ ( , ), , ( , )]f f M fn N n N nω ω ωΤ =N "           (2.15) 

1( , ) [ ( , ), , ( , )]f f d fn S n S nω ω ωΤ =S "           (2.16) 

11 1

1

11 1

1

( )

f f d

f M f Md

j j
d

f
j j

M Md

a e a e

a e a e

ω τ ω τ

ω τ ω τ

ω

− −

− −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

A
"

# % #

"

        (2.17) 

Now we calculate the correlation matrix and take the eigenvalue decomposition of it 

1

1

1( ) ( , ) ( , )

( ) ( ) ( )

N
H

xx f f f
n

M
H

i f i f i f
i

n n
N

ω ω ω

λ ω ω ω

=

=

=

=

∑

∑

R X X

V V
         (2.18) 

N  is the total signal frame number used to estimate the correlation matrix. 

( )i fλ ω  is the eigenvalue and ( )i fωV  is the corresponding eigenvector, where 

1 2( ) ( ) ( )f f M fλ ω λ ω λ ω≥ ≥ ≥"           (2.19) 

The MUSIC (multiple signals classification method) algorithm [4] divides the 

eigenvectors in (2.18) into two groups 
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1. 1 2( ), ( ) ( )f f d fω ω ωV V V"  is called the eigenvectors of the signal and 

1 2{ ( ), ( ) ( )}f f d fspan ω ω ωV V V"  is the signal subspace. 

2. 1 2( ), ( ) ( )d f d f M fω ω ω+ +V V V"  is called the eigenvectors of the noise and 

1 2{ ( ), ( ) ( )}d f d f M fspan ω ω ω+ +V V V"  is the noise subspace. 

The array manifold vector is formed according to the array geometry and plane 

wave assumption of the sound signal. Take uniform linear array as the example,  

Source

d

θ

d

………

d

Reference 
Point

1 2 3 4 M-1 MM-2

 

Figure 1. Model of a Uniform Linear Array 

Set the first microphone as the reference point, the array manifold vector of the 

linear array is defined as 

sin ( 1) sin( ) [1 ]c cj k d j k d MTa e eθ θθ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅= "         (2.20) 

where 2
c

c

k π
λ

=  indicates the number of wave fronts, cλ  is the wave length, d  is 

the distance between adjacent microphones, and M  is the number of microphones. 

The i th element of the array manifold vector is the phase difference between the first 

microphone and the i th microphone when the source direction is θ . The phase 

difference in frequency domain is the temporal difference in time domain. Transform 

the array manifold vector to time domain will be 
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( ) [1 sin ( 1) sin ]T
time domain

c c

d da mθ θ θ
λ λ− = ⋅ − ⋅"      (2.21) 

MUSIC calculates the inner product of the array manifold vector and 

1 2( ), ( ) ( )d f d f M fω ω ω+ +V V V"  to determine the direction of the source. 

1

1max
( ) ( )

DOA M
H H

i i
i d

a a
θ

θ θ
= +

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞

⋅ ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ V V

       (2.22) 

The signal subspace is orthogonal to noise subspace, so (2.20) could rewrite as  

1
max ( ) ( )

d
H H

DOA i i
i

a aθ θ θ
=

⎛ ⎞⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑V V         (2.23) 

The array manifold vector represents the phase difference between microphones. 

Since MUSIC measures the projection of the array manifold vector to the signal 

subspace, the principle eigenvector of the signal subspace should contains the phase 

relation between microphones. So, we extract 1( )fωV  from the signal subspace. 

1( )fωV  is the principle axis of the microphone array at frequency fω , and it could be 

expressed as 

1 11 12 1( ) ( ) ( ) ( )
T

f f f M fV V Vω ω ω ω⎡ ⎤= ⎣ ⎦V "        (2.24) 

The principle matrix for all frequency is 

11 1 11 2 11

12 1 12 2 12

1 1 1 2 1

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

F

F

M M M F

V V V
V V V

V V V

ω ω ω
ω ω ω

ω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

1E

"
"

# # % #
"

        (2.25) 

In (2.25), the i th column is the principle vector at sound frequency iω . We 

estimate the phase relation between microphones by taking GCC to 1E , so the 



11

ES-GCC between the i th microphone and the j th is defined as 

1

*
1 1( ) ( ) ( )F

i j

j
x x i jV V e d

ω ωτ

ω
τ ω ω ω= ∫R          (2.26) 

And the estimation of the time delay between microphones is 

ˆ arg max ( )
i jES GCC x xτ

τ τ− = R            (2.27) 

2.3 Performance of Different Eigenspace Methods in Real Time 

Application 

In this section we’ll discuss the functionality of ES-GCC and MUSIC. The time 

frame number required for ES-GCC to calculate a DOA is 1500*(200-1)+2560 

samples, which is 18.82 sec. The MUSIC algorithm needs 2560*30 samples, which is 

4.80 sec. So, ES-GCC is more time consuming. However, ES-GCC is able to calculate 

multiple sound sources without previous knowledge, while MUSIC is only able to 

estimate single source without other information. Another aspect is that ES-GCC 

requires a TDE step before estimating the direction, and MUSIC estimate the DOA 

directly. Since there might be TDE error in ES-GCC which causes more serious TDA 

estimation error, MUSIC is the method that has less estimation error. Finally, in the 

MUSIC algorithm the array manifold vector, which was determined by the array 

geometry, may not be a direct mapping with the source direction, so it’s computation 

consuming. On the other hand, ES-GCC only examines the delay relation between 

microphone pairs. It costs less computation to derive the DOA of the source.  

 



12

Chapter 3. BEARINGS-ONLY SLAM ALGORITHM 

3.1 Between DOA estimation and Bearings-Only SLAM 

The connection between DOA estimation algorithm and Bearings Only SLAM 

algorithm is essential. The DOA algorithm estimates the sound emitting direction of 

multiple sources. The output information may not be of the same index order, and the 

total number of estimated sound source is not static. The later algorithm should be able 

to handle incomplete measurement and unknown data association. 

The Bearings-Only SLAM is a probabilistic robotics algorithm. It uses bearing 

information of landmarks in the environment to simultaneously localize the robot in 

the environment and to realize the location of the landmarks. The uncertain 

information from the output of DOA estimation algorithm is handled as the 

measurement input. The data association is not necessary to be known because the 

localization result based on wrong association is going to be eliminated using this 

algorithm. The remaining detail of Bearings-Only SLAM is introduced in the 

following section of this chapter. 

3.2 Introduction of Probabilistic Robotics 

Probabilistic robotics [6] is alternative to the conventional deterministic robotic. 

The key idea in probabilistic robotics is to represent uncertainty explicitly using the 

calculus of probability theory. Instead of relying on a single result as to what might be 

the case, probabilistic algorithm represents information by probability distributions 

over a whole space of guesses. They can represent ambiguity and degree of belief in a 

mathematically sound way. In contrast with traditional programming techniques in 
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robotics, probabilistic approaches tend to be more robust in the face of sensor 

limitations and model limitation. This enables them to scale much better to complex 

real-world environments than previous diagram, where uncertainty is of greater 

importance. Probabilistic algorithms are the only known working solutions to robotic 

estimation problems such as localization. 

3.3 Bayes Filter 

3.3.1 State Estimation using Probabilistic Generative Laws 

Environments are characterized by state. The state is a collection of all 

information of the robot and its environment that can impact the future. It includes 

variables regarding to the robot itself, such as its pose, velocity, whether or not its 

sensors are functioning correctly, and so on. The robot uses its sensors to obtain 

information about the state of the environment, and the result of such perceptual 

interaction will be called measurement (or observation). The evolution of state and 

measurements is governed by probabilistic laws. Mathematically, the emergence of 

state tx  is conditioned on all past states, measurement, and control inputs, so the 

probability distribution of tx  could be expressed in the conditional probability form 

0: 1 1: 1 1:( | , , )t t t tp x x z u− −             (3.1) 

where 0: 1tx −  are the past states from time index 0  to 1t − , 1: 1tz −  are the past 

measurements, and 1:tu  are the past control input. Note that the control input 1u  is 

executed first, and then we take the measurement 1z . To simplify the expression, a 

state tx  should be a sufficient summary of all that happened in previous time steps. In 

particular, 1tx −  is a sufficient statistic of all previous controls and measurements up to 
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this point of time, that is, 1: 1tu −  and 1: 1tz − . So, if we already knew state 1tx − , only the 

control input tu  will affect the present state. In mathematical expression 

0: 1 1: 1 1: 1( | , , ) ( | , )t t t t t t tp x x z u p x x u− − −=          (3.2) 

This property is called conditional independence. 

Another key concept in the probabilistic robotics is belief. The belief is the robot’s 

internal knowledge about the state of the environment. Probabilistic robotics 

represents the beliefs through conditional probability distributions. Belief distributions 

are posterior probabilities over state variables conditioned on the available data. We 

denote belief over a state variable tx  by ( )tbel x  

1: 1:( ) ( | , )t t t tbel x p x z u=             (3.3) 

where the posterior is the probability distribution over the state tx  at time t , 

conditioned on all past measurements 1:tz  and all past control 1:tu . Notice that the 

belief is assumed to be taken after the measurement tz . If we take the belief before the 

measurement, which is usually the case for real application, the posterior will be 

1: 1 1:( ) ( | , )t t t tbel x p x z u−=            (3.4) 

This probability distribution is often referred to as prediction. The Bayes filter 

predicts the posterior ( )tbel x  based on the previous state posterior 1( )tbel x − , and 

then corporates ( )tbel x  with the measurement at time t . The corporation is called 

measurement update.  
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Figure 2. The Pseudo-Algorithm for Bayes Filtering 

As in Figure 2, the Bayes filter algorithm possesses two essential steps. In line 3, 

it processes the control tu . It does so by calculating a belief over the state tx  based 

on the prior belief over state 1tx −  and the control tu . In particular, the belief ( )tbel x  

that the robot assigns to state tx  is obtained by the integral (sum) of the product of 

two distributions: the prior assigned to 1tx − , and the probability that control tu  

induces a transition from 1tx −  to tx . This step is call predict. 

The second step is update. In line 4, the Bayes filter algorithm multiplies the 

belief ( )tbel x  by the probability that the measurement tz  may have been observed. 

The result is normalized using η . 

3.3.2 Parametric Filter – Kalman Filter and Extended Kalman Filter 

The Kalman filter was invented by Swerling and Kalman [7] as a technique for 

filtering and prediction in linear Gaussian systems. The Kalman filter represents 

beliefs by the mean tμ  and covariance tΣ , and the posteriors are Gaussian. The 

Kalman filter has several properties 

1. Algorithm Bayes_filter( 1( ), ,t t tbel x u z− ): 

2.  for all tx  do 

3.   1 1 1( ) ( | , ) ( )t t t t t tbel x p x u x bel x dx− − −= ∫ (prediction) 

4.   ( ) ( | ) ( )t t t tbel x p z x bel xη= (update) 

5.  end for 

6. return ( )tbel x  
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1. The state transition probability 1( | , )t t tp −x x u  is a linear function with added 

Gaussian noise. Which is 

1t t t t t t−= + +x A x B u ε             (3.5) 

Here tx  and 1t−x  are state vectors, and tu  is the control vector at time t . 

The term tε  is a Gaussian random vector that models the uncertainty 

generated by the state transition. Its mean is zero vector and covariance is tR . 

So the total probability distribution is  

1

1
1 1

( | , )
1 1exp{ ( ) ( )}

2| 2 |

t t t

T
t t t t t t t t t t t

t

p

π

−

−
− −= − − − − −

⋅

x x u

x A x B u R x A x B u
R

  (3.6) 

2. The measurement probability ( | )t tp z x  is also a linear in the argument 

transition. 

t t t t= +z C x δ               (3.7) 

The probability distribution of ( | )t tp z x  should be 

1

( | )
1 1exp{ ( ) ( )}

2| 2 |

t t

T
t t t t t t t

t

p

π
−= − − −

⋅

z x

z C x Q z C x
Q

      (3.8) 

where tQ  is the covariance of the zero-mean Gaussian random vector tδ  

3. The initial probability distribution of 0( )p x  is a Gaussian distribution. In this 

case the propagation of ( )tp x  is guaranteed to be Gaussian distribution. 

The above three characteristics are sufficient for the use of Kalman filter. Figure 3 

is the detail algorithm procedure. 
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Figure 3. The Kalman Filter Algorithm for  

Linear Gaussian state transitions and measurements 

After knowing the iterative procedure of Kalman filter, we now examine another 

version of Kalman filter, which is called EKF (extended Kalman filter). According to 

(3.5) and (3.7), the observations are linear functions of the state and the state transition 

is also linear function. This assumption is important to Kalman filter but not adequate 

for real world. The key point is that generally the transition and observation procedure 

of state are nonlinear functions. In mathematical form, 

1g( , )t t t t−= +x x u ε                (3.9) 

h( )t t t= +z x δ              (3.10) 

Since the assumption we made about linear transition no longer exist, there 

should be some approximation about the nonlinear function. The most general 

terminology is linearization via first order Taylor expansion. Taylor expansion 

constructs a linear approximation to a function g  from g ‘s value and slope near the 

function point. The slope is given by the partial derivative 

1. Algorithm Kalman_filter( 1 1, , ,t t t t− −μ Σ u z ): 

2.  1t t t tt −= +μ A μ B u  (prediction) 

3.  1
T

t t t t t−= +Σ A Σ A R  (prediction) 

4.  1( )T T
t tt t t t t

−= +K Σ C C Σ C Q  

5. ( )t t t tt t= + −μ μ K z C μ  (update) 

6. ( ) tt t t= −Σ I K C Σ  (update) 

7. return ,t tμ Σ  
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1
1

1

g( , )g ( , ) : t t
t t

t

−
−

−

∂′ =
∂
u xu x
x

           (3.11) 

From the expression above, g  is approximated by its value at 1tμ −  and tu , so 

1 1 1 1 1

1 1 1

g( , ) g( , ) g ( , ) ( )
g( , ) ( )

t t t t t t t t

t t t t t

− − − − −

− − −

′≈ + ⋅ −

= + ⋅ −

u x u μ u μ x μ
u μ G x μ

      (3.12) 

The matrix tG  is defined as the Jacobian matrix, and it should be a function of 

various value of 1tμ −  and tu . In the form of a Gaussian distribution, the state 

transition probability distribution approximation is 

1

1 1 1

1
1 1 1

( | , )
1 1exp{ [ g( , ) ( )]

2| 2 |

[ g( , ) ( )]}

t t t

T
t t t t t t

t

t t t t t t t

p

π

−

− − −

−
− − −

= − − − ⋅ − ⋅
⋅

− − ⋅ −

x x u

x u μ G x μ
R

R x u μ G x μ

   (3.13) 

EKF implements the same linearization for the measurement function h . Here 

the Taylor expansion is developed around tμ  

h( ) h( ) h ( ) ( )

h( ) ( )
t tt t t

t tt t

′≈ + ⋅ −

= + ⋅ −

x μ μ x μ

μ H x μ
          (3.14) 

The Gaussian form would be  

1

( | )
1 1exp{ [ h( ) ( )]

2| 2 |

[ h( ) ( )]}

t t

T
t t tt t

t

t t t tt t

p

π
−

= − − − −
⋅

− − −

z x

z μ H x μ
Q

Q z μ H x μ

     (3.15) 

And the total procedure of EKF is in figure 4. 
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Figure 4. The Extended Kalman Filter Algorithm 

Due to the simplicity and its computational efficiency, the EKF is almost the most 

frequently used state estimation terminology in robotics. Each update requires time 

2.4 2( )O k n+ , where k  is dimension of the measurement vector tz , and ,t tμ Σ  is the 

dimension of the state vector tx . Other algorithms, such as the particle filter, may 

require time exponential in n  

3.3.3 Nonparametric Filter - Particle Filter 

Particle filter does not rely on a fixed functional form of the posterior, like 

Gaussian distribution in Kalman filter. It approximates posteriors by a finite number of 

values, each roughly corresponding to a region in state space. The quality of the 

approximation depends on the number of parameters used to represent the posterior. 

As the number of parameters goes to infinity, the method tends to converge uniformly 

to the correct posterior. The key idea is to represent the posterior ( )tbel x  by a set of 

random state samples drawn from this posterior. In particle filters, the samples of a 

posterior distribution are called particles. 

1. Algorithm Extended_Kalman_filter( 1 1, , ,t t t t− −μ Σ u z ): 

2.  1g( , )t tt −=μ μ u  (prediction) 

3.  1
T

t t t t t−= +Σ G Σ G R  (prediction) 

4.  1( )T T
t tt t t t t

−= +K Σ H H Σ H Q  

5. ( h ( ))t t tt t= + −μ μ K z μ  (update) 

6. ( ) tt t t= −Σ I K H Σ  (update) 

7. return ,t tμ Σ  
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[1] [2] [ ]: , , , M
t t t t=χ x x x"             (3.16) 

Each particle [ ]m
tx  is a representation of the state at time t . In other words, a 

particle is a hypothesis as to what the true world state may be at time t . M  is the 

number of particles in the particle set tχ . Ideally, the likelihood for a state to be 

included in the particle set tχ  shall be proportional to its posterior ( )tbel x  

[ ]
1: 1:( | , )m

t t t tpx x z u∼             (3.17) 

Just like all other Bayes filter algorithms discussed, the particle filter algorithm 

constructs the belief ( )tbel x  recursively from the 1( )tbel x −  one time step earlier, 

which means the particle set tχ  recursively from the set 1t−χ . The input of particle 

filter is the particle set 1t−χ , along with the most recent control tu  and the most 

recent measurement tz . To get the predicted probability distribution ( )tbel x , we 

sample the new particles [ ]m
tx  according to the distribution of the previous step 

1( | , )t t tp −x u x . To incorporate the measurement tz  into the particle set, we calculate 

the importance factor [ ]m
tw , which are obtained according to the probability of the 

measurement tz  under particle [ ]m
tx , given by [ ] [ ]( | )m m

t t tw p= z x . If we interpret 

[ ]m
tw  as the weight of a particle, the set of weighted particles represent approximately 

the Bayes filter posterior ( )tbel x . The last step is called resample. Since each of the 

particles already has a corresponding weight, the weigh value could be interpreted as 

the probability that this particle would be chosen again. Resampling algorithm 

transforms a particle set of M particles into another particle set of the same size. 

Before the resampling step, they were distributed according to ( )tbel x , after the 
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resampling the dare distributed according to the posterior 

[ ]( ) ( | ) ( )m
t t t tbel x p bel xη= z x . The illustrated algorithm flow is in Figure 5. 

 

Figure 5. The Particle Filter Algorithm, a Bayes Filter Based on Importance Sampling 

3.4 SLAM 

3.4.1 Problem Definition 

The simultaneous localization and mapping problem is commonly abbreviated as 

SLAM, and is also known as Concurrent Mapping and Localization. SLAM problem 

arise when the robot does not have access to a map of the environment, nor doest it 

know its own pose. All it is given are measurement 1:tz  and controls 1:tu . In SLAM, 

the robot acquires a map of its environment while simultaneously localizing itself 

1. Algorithm Particle_filter( 1, ,t t t−χ u z ): 

2.  tt = =χ χ 0  

3.  for 1m =  to M  do(prediction) 

4.   sample [ ] [ ]
1( | , )m m

t t t tp −x x u x∼  

5.   [ ] [ ]( | )m m
t t tw p= z x  

6.   [ ] [ ][ , ]m m
t tt t w= +χ χ x  

7.  end for 

8.  for 1m =  to M  do 

9.   draw i  with probability [ ]i
tw∝  

10.  add [ ]i
tx  to tχ  

11. end for 

12. return tχ  
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relative to this map. From a probabilistic perspective, there are two main forms of the 

SLAM problem, which are both of equal practical importance. The online SLAM 

estimates the posterior over the momentary pose along with the map. 

1: 1:( , | , )t t tp x m z u              (3.18) 

where tx  is the pose at time t , m  is the map. This problem is call online SLAM 

problem since it only involves the estimation of variables that persist at time t . The 

other category is called the full SLAM. In full SLAM, we calculate a posterior over the 

entire path 1:tx  along with the map, instead of just the current pose tx .  

1: 1: 1:( , | , )t t tp x m z u              (3.19) 

The mathematical relation between (3.18) and (3.19) is shown below. 

1: 1: 1: 1: 1: 1 2 1( , | , ) ( , | , )t t t t t t tp p d d d −= ∫ ∫ ∫x m z u x m z u x x x" …     (3.20) 

In practice, calculating a full posterior like (3.19) is usually infeasible. Problems 

arise from the high dimensionality if the continuous parameter space, and the large 

number of discrete correspondence variables. Many state-of-the-art SLAM algorithms 

construct maps with tens of thousands of features, or more. Even under known 

correspondence, the posterior over those maps alone involves probability distributions 

over space with 105 or more dimensions. This is opposite to localization problems, in 

which posteriors were estimated over three-dimensional continuous spaces. Not to say 

in most application the correspondence are unknown. The number of possible 

assignments to the vector of all correspondence variables grows exponentially. Thus 

practical SLAM algorithms that can cope with the correspondence problem must rely 

on approximations. 
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3.4.2 FastSLAM 

FastSLAM is a combinational algorithm that is using both the concept of particle 

filter and the extended Kalman filter. Particle filters are at the core of some of the most 

effective robotics algorithm. However the particle filter is not so applicable to the 

SLAM algorithm due to the course of dimensionality, it scales exponentially with the 

number of dimensions of the estimation problem. A straightforward implementation of 

particle filters for the SLAM problem would fail because of the large number of 

variables involved on describing a map. 

In a SLAM problem with known correspondence, there is a conditional 

independence between any two disjoint set of features in the map, given the robot pose. 

So we could estimate the location of all features independently of each other. 

Dependencies on these estimates arise only through robot pose uncertainty. This 

structural characteristic makes it possible to apply Rao-Blackwellized Particle Filter 

(RB particle filter) to SLAM problem. RB particle filter uses particles to represent the 

posterior over some variables, along with parametric PDF to represent all other 

variables. 

We use particle filter to estimate the robot path. Since the conditional independent 

characteristic holds, the mapping problem can be factored into many separate 

problems, one for each feature in the map. Each single map feature is estimated using 

a low-dimensional EKF. This is different from other SLAM algorithms that use single 

high-dimensional Gaussian to estimate the all features jointly. 

The advantage of FastSLAM is that it could be implemented in time logarithmic 

in the number of features, so it’s computational efficient. Another key advantage of 
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FastSLAM is that the data association decisions can be made on per-particle basis. The 

ability to pursue multiple data associations simultaneously makes FastSLAM 

significantly more robust to data association problems than algorithms based on 

incremental maximum likelihood data association. 

 robot path feature 1 feature 2  "  feature N
Particle 

1k =  
[1] [1]
1: 1:{( , , ) }T

t tx y θ=x  [1] [1]
1 1,μ Σ  [1] [1]

2 2,μ Σ  "  [1] [1],N Nμ Σ  

Particle 
2k =  

[2] [2]
1: 1:{( , , ) }T

t tx y θ=x [2] [2]
1 1,μ Σ  [2] [2]

2 2,μ Σ  "  [2] [2],N Nμ Σ  

#  
Particle 
k M=  

[ ] [ ]
1: 1:{( , , ) }M T M

t tx y θ=x [ ] [ ]
1 1,M Mμ Σ  [ ] [ ]

2 2,M Mμ Σ  "  [ ] [ ],M M
N Nμ Σ

      
Table 1. Particles in FastSLAM are composed of a path estimate and  

a set of estimators of individual feature locations with associated covariance 

Particles in the basic FastSLAM algorithm are of the form shown in Table 1. Each 

particle contains an estimated robot pose, denoted [ ]
1:
k
tx , and a set of Kalman filters 

with mean [ ]k
jμ  and covariance [ ]k

jΣ , one for each feature jm  in the map. Here [ ]k  

is the index of the particle. As usual, the total number of particles is denoted M . The 

basic step of the FastSLAM includes several steps. At each time step t , retrieve a 

pose [ ]
1

k
t−x  from the particle set, sample a new pose according to the distribution 

[ ] [ ]( | , )k k
t t t tpx x x u∼ . Then for each observed feature j

tz , identify the correspondence 

j  and update the corresponding EKF by updating mean [ ]
,

k
j tμ  and covariance [ ]

,
k

j tΣ . 

Each new particle should have a new importance weight [ ]kw . The final step is 

resample, which is sampling the M  particles with the probability proportional to 

[ ]kw  
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3.4.3 Unknown Data Association 

The data association is also mentioned as correspondence in this thesis. In most 

of the Bayes filter process, the data association problem exists. Every time we take a 

measurement of the map, we don’t necessarily know which feature the measurement 

belongs to (usually we don’t have this piece of information). Generally the data 

association techniques are using argument such as maximum likelihood. They have 

only single data association per measurement for the entire filter, and once the 

association is incorrect, the update procedure fails and the filter diverges. The key 

advantage of using particle filters for SLAM is that each particle can rely on its own, 

local data association decision. Thus, the filter is actually sampling over possible data 

association decisions. Since there are multiple correspondence decisions, as long as a 

small subset of the particles is based on the correct data association, data association 

errors are not as fatal as in EKF approaches. Particles with wrong correspondence will 

possess inconsistent map, which decrease the weight of those particles, and hence they 

are more likely to be sampled out in the future resample step.  

3.5 Simulation Result of Fast SLAM 

In this simulation we’ll examine the effectiveness of the FastSLAM algorithm. 

Assume there are 6 features in the environment that are to be tracked, and the robot 

will walk through a certain path that is previously given. The space is 700cm*700cm. 

Maximum detectable range of the bearing sensors is 300cm. The algorithm generates 

particles according to the very first bearing measurements. Since there is a maximum 

detectable range, we sample the initial particle ranges according to a uniform 

distribution of half of the maximum range. The procedure is as Figure 6. 
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Figure 6. The Simulation Procedure of the FastSLAM Algorithm 

Notice that in (3.21), the weight value will be small if the estimated measurement 

is different from the real measurement. And since there is resample step, we don’t have 

to worry about data association problem.  

Initialization 
Each particle is a state vector of robot pose and landmark estimation.

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0 0 1.0 1,0 2,0 2,0 ,0 ,0{ , , , , , , , }k k k k k k k k

N Nμ μ μ= Σ Σ ΣY x "   
where [ ] [ ]

0 0{( , , ) }k T kx y θ=x  
The elements in [ ]

0
kx  is calculate according to the very first bearing 

measurement with some random noise. And all the means and 
covariance is zero.

Prediction 
For each time step t , the robot’s displacements 
( , )x yΔ Δ are considered as the inputs to the filter To 
simulate the real situation, noises are added to the inputs.
� � � �[ ] [ ] 1 [ ]

1 1{( , , ) } {[( ),( ), tan ( )] }
k T k T k

t t t t tt
yx y x x y y
x

θ −
− −

Δ
= = + Δ + Δ

Δ
x

Weight Computing 
Calculate the estimated measurement 

[ ]k
tz� according 

to the relation between previous landmark positions 
and this new robot position. �

[ ]k
tx . Compare the true 

measurement  tz  and the estimated measurement 
[ ]k

tz�  to calculate the weight [ ]kw . (3.21) 

Whether all 
particles are 
calculated?

Resampling 
Sample the new particle set along 
with the weight distribution.

Yes

No 

1 [ ] [ ][ ] 12 1| 2 | exp{ ( ) ( )}
2

k kk T
t tt tw z z z zπ

− −= − − −Q Q� �

where Q  is the measurement covariance (3.21)



27

  

  

  
 Unit: 10cm

Figure 7. Simulation Results of the FastSLAM Algorithm without Resample 

(Only single feature is illustrated)  

Figure 7 shows a sequential graph of the simulation. The six green stars are the 

feature that to be localized. Red dots are the estimation of the current robot position. 

Red circles are the waypoint of the path. All the black particles are trying to localize 

the feature at (4.95,11.26) . And the blue circles are the particles with larger weight 

value (there is also a blue circle at the origin). To explain what the figure is all about, 
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we conclude the following observation. Originally there are a lot of particles that have 

high weight, and as time step increase, the weight will concentrate to several mostly 

correct particle. Even if the resample state is not implemented, the outlier particles will 

converge to the feature’s neighborhood. 

  

  

  
 Unit: 10cm

Figure 8. Simulation Results of the FastSLAM Algorithm with Resample 

In Figure 8, it is shown that with the help of resample, all the low-weight particles 

will be sampled out. The filter converges in only few time steps.  
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Chapter 4. Experimental Result and Discussion 

4.1 Introduction of the Robot Platform 

In the experimental results presented afterward, we’re using a research and 

development platform called PIONEER 3-DX from MobileRobots Inc. Some detail 

specification is written in Table 2. 

Pioneer 3-DX Research Robot 
Length 44.5 cm 
Width 40.0 cm 
Height 24.5 cm Physical 
Weight  

(with battery) 9 kg 

Battery 12V sealed, lead-acid 
Charge Time 12 hours Power 

Run time 18-24 hours 
Drive 2-wheel drive, plus rear balancing caster 

Gear ratio 38.3:1 
Pushing force 6 kg 
Swing radius 32 cm 

Mobility 

Translate speed max 1.2 m/sec 
Standard position encoders 500 tick encoders 

Communications ports 3 RS-232 serial ports on microcontroller 
Main power switch Robot power; 12VDC; red LED indicator 

Table 2. The Specification of the POINEER 3-DX Robot [9] 

 

Figure 9. Overall Picture of the Mobile Robot Platform 
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The main purpose of using this robot platform is to record the robot path using the 

included position encoders. These encoder data will be considered as the input to the 

FastSLAM algorithm. We use a laptop to control the robot through the RS-232 port. A 

wireless access point in mounted on the robot so that the instruction could be done 

remotely.  

Another important hardware is the microphone array. Figure 10 shows the 

architecture of the array, which contains 8 digital microphones, an FPGA, and the USB 

communication module. The digital microphones are using the MEMS technology to 

imbed sigma-delta modulators in the microphones. Digital microphones have the 

advantages of little signal crosstalk, low circuit noise, and small circuit size due to 

needless of A/D converter. The FPGA will take decimation to the microphone input 

data. It passes the 1.2MHz digital microphone signal through a second-order low pass 

filter (LPF), and down samples the 1.2 MHz 75 times to get a 16 KHz sound signal. 

Afterward, the USB will select the channel number through a MUX, and 

simultaneously transmit the 8-channel 16 KHz data to the laptop. 

 
Figure 10. Block Diagram of the Microphone Array 
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(a) (b) 

Figure 11. (a) The 8-Channel Digital Microphone (b) The FPGA and the USB Module 

The experimental data was recorded in a 350cm*450cm room, with three static 

loud speakers playing human speech in English. The circular microphone array is of 

radius 5.5cm, so the far field assumption hold since the scale ratio between the room 

size and the array size is large enough. The robot is waking through a specifically 

design path to avoid some improper situations for DOA estimation and Bearings-Only 

SLAM. Figure 12 shows the environment that we record the sound data.  

 

Figure 12. The Spatial Relation of the Speaker, the Robot, and the Laser Range Finder 

4.2 Performance of offline calculated algorithm 

The experiment was first done under an offline calculation to test the algorithm 

effectiveness. The program procedure for offline calculated FastSLAM is shown in 

Figure 13. 
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Figure 13. The Algorithm Procedure for Offline Calculation 

As mentioned in section 2.3, the ES-GCC method estimates the DOA by using the 

least square method. The algorithm needs to accumulate a certain time frame to get 

solid delay information between microphones. Only those delay combination with 

reasonable sound speed generates DOA estimation. Furthermore, the DOA estimation 

is not necessary correct, which may be eliminated in the Outlier Elimination step. 

Upon all the reasons above, the DOA estimation won’t be correct when the robot is 

DOA Estimation 
At every time step, the ES-GCC algorithm 
might calculates several outputs representing 
the sound sources direction. 

Outlier Elimination 
Occasionally the DOA estimated by ES-GCC 
has unreasonable value. To determine whether 
the value is an outlier, we compare the 
previous and present robot position to define a 
reasonable DOA range. 

Weight Computing 
Without need of calculating correspondence, 
all the particles should compare their estimated 
feature measurement with the DOA result and 
evaluated the weight of them.  

Whether all 
particles are 
calculated?

Resampling 
Sample the new particle set along 
with the weight distribution.

Yes

No 
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moving. So we program the algorithm to update the estimation only when the robot 

stops. The experimental results are shown below.  

 
Figure 14. The Experimental Results of Offline Calculated FastSLAM 

In Figure 14, the blue ground truth data are collected by a static laser range finder 

to compare the SLAM output and the real environment. The big yellow clusters are the 

waypoints that the robot stops to update the landmark estimation.  

 Landmark 1 Landmark 2 Landmark 3 Average 
Range Error 5 cm 22 cm 6cm 11cm 

Range Error Rate 2.05% 7.90% 1.81% 3.92% 
Bearing Error 2.81 D  4.48 D  5.03 D  4.11 D  

Table 3. The Error Analysis of Offline Calculated FastSLAM 
As in Table 3, the position estimation has larger error rate than the landmarks 

estimation. This phenomenon happens due to the joint uncertainty of the feature 

estimation and the encoder measurement. Conceptually, the position estimation is a 

sensor fusion result of the encoder and the DOA measurement. To adjust the believe 

ratio between DOA measurement and encoder, the covariance matrix of these two 

● ground truth 
● encoder location 
● estimated robot location 
● estimated landmark (mean)
→ real landmark location 
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sensor data should be modified.  

4.3 Performance of online algorithm 

The online algorithm here is not identical to the online SLAM mentioned in 

section 3.3. Here the “online” stands for the issue for real-time experiment. Some 

modifications of the FastSLAM algorithm are made for this application. The most 

significant adjustment is the removal of the resample state.  

 

Figure 15. The Algorithm Procedure for Onine Calculation 

The pseudo procedure of the real-time experiment is illustrated in Figure 15. In 

order to release the calculation load of particle filter, the number of particles is 

decreased. Theoretically there is still a subset of the particle that is still having the 

DOA Estimation 
At every time step, the MUSIC algorithm 
calculates one output representing one sound 
sources direction. The bearing measurements 
might belong to different landmarks 

Data Accumulation and Voting 
Use the nearest neighborhood concept to sort 
the MUSIC output into categories. The 
categories with large number of votes are 
considered to be sound source. The output of 
this stage may be multiple directions. 

Particle Update 
Associate the measurement with the nearest 
neighborhood (estimation) and update the 
particle using this correspondence information.

Particle Initialization 
Assume all the features exist and are emitting 
sound at the beginning of the scenario. The 
accumulated MUSIC initializes all the particles 
with the features it detected. 
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right correspondence. However, based on our experiment that this subset would not 

always exist, and hence the resample state will be forced to choose a wrong data 

association that is having relatively higher weight. This will fail the whole filter 

procedure.  

Another adjustment is the DOA estimation method. We use the accumulated 

MUSIC to estimate the DOA instead of ES-GCC. MUSIC has a very good 

characteristic in finding single source. Under the situation of multiple speech sources 

with same scale of magnitude, MUSIC tends to find each of them sequentially. So, by 

accumulating the calculated directions, we sort this array using nearest neighborhood 

method. Only the clusters with sufficient amount DOA estimation pass through this 

step. The output of this step would be a robust DOA estimation. 

 

Figure 16. The Real-time Experimental Environment 

Figure 16 shows how the speaker is distributed. The robot considers its start point 

as the origin and move through a path that doesn’t have severe echo problem and 
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sound source overlap. We use 30 particles to describe the probability distribution.  

Figure 17. The Real-time Experimental Results 

The red circle in Figure 17 is the robot position estimation. The yellow, light blue 

and blue circles are the distributed particles. The red crosses are the mean of each 

group of estimation, and the green square is the ground truth of the features.  

The microphone array received the three angle estimations at the initialization 
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step, so three sets of particles were initialized. As the robot stopped at the next stop 

point, the accumulated MUSIC popped out one angle value. This angle was recognized 

to be a measurement of landmark 3. So the filter updated the estimation of landmark 3 

for a while and headed to the next stop point. Afterward, the measurement of landmark 

1 and 2 popped out. The filter was able to update arbitrary numbers of estimation 

group.  

 Landmark 1 Landmark 2 Landmark 3 Average 
Range Error 50 cm 2 cm 3 cm 18.33 cm 

Range Error Rate 16.27% 0.70% 1.67% 6.21% 
Bearing Error 1.74 D  2.82 D  4.76 D  3.11 D  

Table 4. The Error Analysis of Real-time FastSLAM 

As in Table 4, the average range error rate is 6.21%, and the average bearing error 

is 3.11 D . The final result of the real-time FastSLAM is illustrated in Figure 18. 

 

Figure 18. The Final Real-time Experimental Results 

 

180 cm

170 cm

210 cm
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Chapter 5. Conclusion and Future Study 

A combinational algorithm of DOA estimation and Bearings-Only SLAM is 

proposed in this thesis. The new algorithm is managed to deal with the landmark 

occlusion problem commonly faced in vSLAM. Using the ES-GCC or accumulative 

MUSIC allows us to estimate multiple DOAs within a short period of time frame. The 

theoretical knowledge of SLAM is presented in chapter 3 to explain the 

nondeterministic method that is used in the thesis. Figure 7 and figure 8 shows the 

simulation results of a particle filter.  

The experimental result presented in chapter 4 show that the algorithm is 

applicable in offline calculation. Due to some hardware limitation, the real-time 

calculation procedure neglects the resampling part of the original algorithm and 

applies the nearest neighborhood concept to the data association. The simultaneous 

localization and mapping results are shown with range error of 6.21% and bearing 

error of 3.11 D  in average.  

There are several areas for improvement. The more particles that are used in a 

particle filter, the more accurate it is. The real-time process could be modified in other 

method rather than decreasing the particle number. Also, the experiment in this thesis 

assumes that all the landmarks could be detected in the initial state. If there are new 

landmarks, the current algorithm is not able to localize them. An adjustable state 

vector should be used to intelligently modify the size of the vector to improve the 

SLAM robustness. Also, although the sound sources are detectable when they are 

NLOS, the DOA information does not hold the same characteristic. The specificity of 

NLOS sound sources should be studied.  
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