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Simultaneous Localization of Mobile Robot and
Unknown Number of Multiple Sound Sources

Student : Chen-Yu Chan Advisor : Dr. Jwu-Sheng Hu

Institute of Electrical and Control Engineering

ABSTRACT

This work proposes a method that is able to simultaneously localize a mobile
robot and unknown number of:multiple sound. sources in the environment. The reason
of using sound sources as the landmarks in SLAM algorithm is presented. Several
DOA estimation methods are described-and a combinational one is used for real time
application. After knowing the'"DOA “information, a bearings-only SLAM
(simultaneous localization and mapping) algorithm is introduced in detail, which
contains the theoretical structure of Bayes filter. The estimated DOAs are known as the
bearings information in the algorithm. As source signals are not persistent and there is
no identification of the signal content, data association is unknown which is solved
using particle filter. Modifications of the algorithm are made for real time application.
Experimental results are presented to verify the effectiveness of the proposed

approaches.
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Chapter 1. INTRODUCTION

1.1 Motivation and Objective

Robots are getting closer to human life in recent years. The interaction between
robots and human is a key factor how the robot could be applied to real environment
with human around. Among the interaction scenarios between robot and human,
localization of the robot is frequently discussed. Lots of the localization methods that
have been studied are using camera or laser range finder as the sensor input.

The cameras are able to distinguish different landmarks by using the visual
information such as color, object edge, shape of landmarks, etc. The association
between different temporal frames of sensor data is feasible. On the other hand, laser
range finders are able to provide accurate range information of different landmarks. A
more precisely measured data would help-the localization procedure converges faster.
However, both of these two sensors‘are ‘suffering from various drawbacks such as
occlusion. If a landmark is NLOS (non-line-of-sight), it will be not detectable.

We intend to propose a method focusing on solving the occlusion problem.
Acoustic signals are detectable even if a landmark is NLOS. Also, in human
environment, there are stationary sound sources such as air-conditioner, operating
sound of a computer, and non-stationary sound as human speech, door-knock, etc.
According to this characteristic, we consider multiple sound sources as the landmarks
in the localization problem. In that sense, a high-dimensional microphone array is
mounted on a mobile robot to detect these sound signals, and the robot has its own

encoder information to help the self localization of the robot.



1.2 Literature Review

The array signal processing technology [1] was first used in the World War I. The
invention was used to detect enemy aircrafts. The technology was applied to array
telescope such as the Very Large Array in New Mexico, USA. In this thesis, we use a
microphone array to implement the array signal processing algorithm [2].

There are generally two categories of method to solve direction of arrival (DOA)
estimation problem. One of the methods is TDE (time delay estimation) proposed by
Knapp and Carter [3]. Two microphones are used to record the sound signal, and
sound sources from different direction will cause different response to these two
microphones. To measure the time delay between microphones, a commonly used
method is GCC (Generalized Cross Correlation). Finding the maximum value of the
GCC expression indirectly indicates knowing the delay relation. The temporal
difference between these two responses.could be used to estimate the direction.

The second well-known DOA‘estimation method is eigenspace method. It
measures the distribution of eigenvector between different signals and estimates the
signal direction by mutual projection. The MUSIC algorithm proposed by Schmidt [4]
belongs to this category. It is able to localize multiple sound sources with prior
knowledge of the total number of sources.

After the DOA estimation, we use this information to localize the mobile robot.
There are a lot of researches focusing on solving SLAM (simultaneous localization
and mapping) problem. Bayes filters [6] are commonly used to both describe the

position state of a robot itself and the environmental landmarks position estimation.



1.3 Thesis Subject and Contribution

The subject of this thesis can be divided into two parts. The first part is to
implement a multiple sources DOA estimation algorithm. The DOA estimation results
will be considered as the bearing measurements of the second part of the thesis. The
second part of the method is the Bearings-Only SLAM algorithm that is able to
simultaneously localize the features in the experimental environment and to map the
robot itself to the environment.

In the first part, we compare the effectiveness of the two algorithms, which are
ES-GCC and accumulative MUSIC. ES-GCC is an eigenspace based method that is
able to detect unknown number of multiple sound sources direction simultaneously.
MUSIC is a more commonly used DOA estimation method that could only estimate
known number of multiple sound sources. We monitor the number of time frames
needed for both algorithms in-real-time application, and modified them to satisfy the
hardware limitation.

The second part is a SLAM problem architecture, which considers the outputs of
the first part as the measurements. SLAM problem could be solved using procedures
based on the Bayes filter. The particle filter is used for the non-parametric robot
environment. The removal of the resample step in particle filter doesn’t disturb the
algorithm but decrease the computing complexity and shorten the algorithm procedure
so that the method is able to be applied in real time.

The experimental results are shown to justified the valid modifications, yet

accomplishes the simultaneous localization and mapping problem in real-time.



1.4 Outlines of Thesis

The remainder of this thesis is organized as follows.

Chapter 2: The two kinds of DOA estimation method are clearly described, including
the performance analysis for real time application. The reasons of choosing
eigenspace method are explained and there would be modification made to
the algorithm to solve the insufficient performance of real time experiment.

Chapter 3: The detail concept of Bayes filter is stated in this chapter. Based on the
concept, a bearings-only SLAM algorithm constructed by EKF (extended
Kalman filter) and PF (particle filter) is introduced. The mathematical
detail is also in this chapter. Finally, PF is able to deal with the unknown
data association between different temporal frames.

Chapter 4: The experimental results are presented.-A combinational architecture of
DOA estimation and bearings-only SLAM is applied to a real mobile robot,
and the real time performance‘analysis is discussed.

Chapter 5: The conclusion of this thesis and the possible improvement in the future is

presented is this chapter.



Chapter 2. DETECTION OF MULTIPLE SOUND SOURCES

2.1 Introduction

DOA (direction of arrival) estimation is usually mentioned as the research of
estimating the spatial position of signals, or to measure the emitting direction between
signals and sensors. In technical points of view, DOA estimation contains two
categories, TDE (time delay estimation) and eigenspace method. Although TDE is
only able to distinguish the emitting direction of single non-overlapped sound source,
it needs only two microphones. The hardware architecture is comparatively simple,
and the order of computation is more suitable for real time application. On the other
hand, eigenspace method is able'to distinguish-multiple sound sources with the prior

knowledge of the quantity of sources. Even‘if the Sources are temporal overlapped.

2.2 Mathematical Structure of TDE and Eigenspace Method

2.2.1 TDE

Two microphones are used to record the sound signal, and sound sources from
different direction will cause different response to these two microphones. To measure
the time delay between microphones, a commonly used method is GCC (Generalized
Cross Correlation). Suppose there is one single source in the environment, in ideal

case the sound signal received by the two microphones could be expressed as
X, (1) = s,(t) + n, (1) (2.1)
X, (t) = as,(t+ D) +n,(t) (2.2)

where s (t), n(t), n,(t)are WSS (wide sense stationary) and uncorrelated. D is



the real delay between two microphones. « is a magnitude scaling factor. D and

a are changing relatively slower than s (t), which is the signal itself. The cross
correlation between the microphones is

R, (7)=E [%, ()%, (t—7)] (2.3)
where E is the expectation value. The related z that gets maximum R, , (z) isthe

delay value. Due to limited observation time, the estimated cross correlation is

expressed as

Ry, (7) :% [ %0, -r)dt (2.4)

T represents the observation time interval. The cross correlation is the inverse
Fourier Transform of the cross power spectrum:.Expressed as

R, =] G, (f)e'*idf (2.5)

Consider the real spatial situation, the sound signal received by the microphones
are transformed by space, so the cross power spectrum between the real microphones

are
GYleZ(f) = Hl(f)H;(f)le,xz(f) (26)
where H,(f) and H,(f) are the spatial impulse response form the signal to the

first and the second microphone. So, we define the generalized cross correlation

between the microphone pair as
RO, (0) = [ vy ()G, (e df 2.7)

where

v, (f)=H,(f)H;(f) (2.8)



Practically, we should substitute G, , (f) by éxl,xz(f) due to limited observation

time, where Gy, () is an estimation of G, , (f),so (2.7) should rewrite as

A (9)

Ry (1) = |y (1) G (£)" e (2.9)

Using (2.9), we could estimate the delay of the microphone pair. Different choices

of y (f) will affect the delay estimation. Carter [5] propose the method named

PHAT (phase transform), which is

1
V/g(f)—m (2.10)

This method is very effective when the noise distributions of the two microphones

are uncorrelated.

2.2.2 ES-GCC, a combination of TDE and Eigenspace Method

ES(eigen space)-GCC [8] uses.the characteristic of Eigenspace Method to divide
the signal into signal subspace and noise subspace. The signal subspace is the principle
distribution of the recorded signal. Extracting the signal subspace would suppress the

noise interference. Then, calculate the GCC focusing on the signal subspace.

Suppose there is a microphone array with M microphones, and there are d

sources in the environment, the signal received by the m™ microphone is

Xm (t) = iamksk (t _ka) + nm (t) (211)

where a_ is the gain from the k™ source to the m™ microphone. n.(t) is the

noise received by the m"™ microphone. Take the Fourier transform to (2.11) is



d .
X n=>ya.S .n)e ™ 4 N .n
m (a)f ) kz1: mk ~k (a)f ) m (a)f ) (212)
f=12....F

where o, isthe observed frequency band, and n is the index of temporal frame.

Rewrite (2.12) to matrix form

X(a)f ' n) = A(a)f )S(a)f ' n) + N(a)f ' n) (213)
where

XT(wf’n):[X1(wf’n)i"'va(wf’n)] (214)
NT(wf’n):[Nl(wf’n)l'“’NM(wf’n)] (215)
S" (@0 =[S, (@; ).+, S, (@,,M)] (2.16)

alle*jwf 551 a1d e*jwffld
Aw,) = : : (2.17)

aM le—jwam aMd e_jwaMd

Now we calculate the correlation:matrix and take the eigenvalue decomposition of it

%ix@f X" (@,,n)

B Z’\j“ﬂ’l (@; )V, (o )ViH (o)

Rxx (a)f ) =
(2.18)

N is the total signal frame number used to estimate the correlation matrix.

A(@,) isthe eigenvalue and V,(w,) is the corresponding eigenvector, where
(@) 2 (o) 2= Ay (o) (2.19)

The MUSIC (multiple signals classification method) algorithm [4] divides the

eigenvectors in (2.18) into two groups



1. V(@,),V,(w;)-V4(w,) Is called the eigenvectors of the signal and
span{V, (@, ),V,(®,)---V,(w,)} Is the signal subspace.

2. V, (@), V,,(o)-V, (@) iscalled the eigenvectors of the noise and
span{V, ,(@;),V,,,(@,)---V, (@;)} Is the noise subspace.

The array manifold vector is formed according to the array geometry and plane

wave assumption of the sound signal. Take uniform linear array as the example,

A
Source

o ] T T T i T T T .

Figure 1. Model of a Uniform Linear Array

Set the first microphone as the reference point, the array manifold vector of the

linear array is defined as

a.T (0) — [l e j-ke-d-sing . ej-kc~d-(M -1)-sin 6’] (220)

where K, =i—” indicates the number of wave fronts, A, is the wave length, d is

C

the distance between adjacent microphones, and M is the number of microphones.
The i™ element of the array manifold vector is the phase difference between the first
microphone and the i™ microphone when the source direction is &. The phase
difference in frequency domain is the temporal difference in time domain. Transform

the array manifold vector to time domain will be



T it Ysing - L monsi
a @@= lsm@ 7 (m-1)-sind] (2.21)

time—domain
o o

MUSIC calculates the inner product of the array manifold vector and

V. (@0,),V,,,(®,)---V, (w,) todetermine the direction of the source.

1
a“(e)-(ivi-vi”}-aw)

i=d+1

Gpon = Max (2.22)

The signal subspace is orthogonal to noise subspace, so (2.20) could rewrite as

Opop = max(aH (9)[&1% A ja(é?)j (2.23)

i=1
The array manifold vector represents the phase difference between microphones.
Since MUSIC measures the projection -of the array manifold vector to the signal
subspace, the principle eigenvector 'of-the signal-subspace should contains the phase

relation between microphones. ‘So,. we extract V,(w,) from the signal subspace.
V,(@,) is the principle axis of the microphone array at frequency «,, and it could be

expressed as

Vl(a)f):[vll(wf) V(@) - Vi (a)f):|T (2.24)

The principle matrix for all frequency is

_Vll(a)l) Vll(wz) Vll(a)F)

V(@) V(@) - V(o) (2.25)

_V1|v| (@) V(@) - Vy (C‘)F)_
In (2.25), the i™ column is the principle vector at sound frequency o,. We

estimate the phase relation between microphones by taking GCC to E,, so the

10



ES-GCC between the i™ microphone and the j™ is defined as
R, (0)=["Vy(0V',(@)e" do (2.26)
i >

And the estimation of the time delay between microphones is

Tes_gec = arg max inxj (7) (2.27)
2.3 Performance of Different Eigenspace Methods in Real Time

Application

In this section we’ll discuss the functionality of ES-GCC and MUSIC. The time
frame number required for ES-GCC to calculate a DOA is 1500*(200-1)+2560
samples, which is 18.82 sec. The MUSIC algorithm needs 2560*30 samples, which is
4.80 sec. So, ES-GCC is more time consuming.-However, ES-GCC is able to calculate
multiple sound sources without”previous-knowledge, while MUSIC is only able to
estimate single source without other information. Another aspect is that ES-GCC
requires a TDE step before estimating the direction, and MUSIC estimate the DOA
directly. Since there might be TDE error in ES-GCC which causes more serious TDA
estimation error, MUSIC is the method that has less estimation error. Finally, in the
MUSIC algorithm the array manifold vector, which was determined by the array
geometry, may not be a direct mapping with the source direction, so it’s computation
consuming. On the other hand, ES-GCC only examines the delay relation between

microphone pairs. It costs less computation to derive the DOA of the source.

11



Chapter 3. BEARINGS-ONLY SLAM ALGORITHM

3.1 Between DOA estimation and Bearings-Only SLAM

The connection between DOA estimation algorithm and Bearings Only SLAM
algorithm is essential. The DOA algorithm estimates the sound emitting direction of
multiple sources. The output information may not be of the same index order, and the
total number of estimated sound source is not static. The later algorithm should be able
to handle incomplete measurement and unknown data association.

The Bearings-Only SLAM is a probabilistic robotics algorithm. It uses bearing
information of landmarks in the environment to simultaneously localize the robot in
the environment and to realize+the location of the landmarks. The uncertain
information from the output of DOA' estimation algorithm is handled as the
measurement input. The datarassociation is_not necessary to be known because the
localization result based on wrong association is going to be eliminated using this
algorithm. The remaining detail of Bearings-Only SLAM is introduced in the

following section of this chapter.
3.2 Introduction of Probabilistic Robotics

Probabilistic robotics [6] is alternative to the conventional deterministic robotic.
The key idea in probabilistic robotics is to represent uncertainty explicitly using the
calculus of probability theory. Instead of relying on a single result as to what might be
the case, probabilistic algorithm represents information by probability distributions
over a whole space of guesses. They can represent ambiguity and degree of belief in a

mathematically sound way. In contrast with traditional programming techniques in

12



robotics, probabilistic approaches tend to be more robust in the face of sensor
limitations and model limitation. This enables them to scale much better to complex
real-world environments than previous diagram, where uncertainty is of greater
importance. Probabilistic algorithms are the only known working solutions to robotic

estimation problems such as localization.
3.3 Bayes Filter

3.3.1 State Estimation using Probabilistic Generative Laws

Environments are characterized by state. The state is a collection of all
information of the robot and its environment that can impact the future. It includes
variables regarding to the robot itself, such as its pose, velocity, whether or not its
sensors are functioning correctly, and.so _.on.=The robot uses its sensors to obtain
information about the state of ‘the environment; and the result of such perceptual
interaction will be called measurement(or-ohservation). The evolution of state and
measurements is governed by probabilistic laws. Mathematically, the emergence of

state x, is conditioned on all past states, measurement, and control inputs, so the
probability distribution of x, could be expressed in the conditional probability form
P(X, | Xgr1r Zig1: U (3.1)
where x,,, are the past states from time index O to t-1, z,, are the past
measurements, and u,, are the past control input. Note that the control input u, is
executed first, and then we take the measurement z,. To simplify the expression, a
state x, should be a sufficient summary of all that happened in previous time steps. In

particular, x_, is a sufficient statistic of all previous controls and measurements up to

13



this point of time, that is, u, , and z, . So, if we already knew state X _,, only the
control input u, will affect the present state. In mathematical expression
PO | Xoo1s Ziea Ug) = POX | % g0Uy) (3.2)

This property is called conditional independence.

Another key concept in the probabilistic robotics is belief. The belief is the robot’s
internal knowledge about the state of the environment. Probabilistic robotics
represents the beliefs through conditional probability distributions. Belief distributions
are posterior probabilities over state variables conditioned on the available data. We

denote belief over a state variable x, by bel(x,)
bel (%) = P(X, | 2. Uy,) (3.3)
where the posterior is the probability; distribution over the state x, at time t,
conditioned on all past measurements-z, and all past control u,, . Notice that the
belief is assumed to be taken after the measurement z, . If we take the belief before the
measurement, which is usually the case for real application, the posterior will be
bel (%) = P(X | 2y 5, Uyy) (3.4)
This probability distribution is often referred to as prediction. The Bayes filter

predicts the posterior @(xt) based on the previous state posterior bel(x ), and

then corporates @(xt) with the measurement at time t. The corporation is called

measurement update.
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1. Algorithm Bayes_filter(bel(x_,),u,,z,):

2. forall x do

3 bel(x) = [ p(x, | u,x_)bel (x_,)dx,, (prediction)
4. bel (%) =77p(z | x)bel(x) (update)

5. end for

6. return bel(x,)

Figure 2. The Pseudo-Algorithm for Bayes Filtering

As in Figure 2, the Bayes filter algorithm possesses two essential steps. In line 3,
it processes the control wu,. It does so by calculating a belief over the state x, based
on the prior belief over state x, ;- and the control u,. In particular, the belief @(xl)
that the robot assigns to state- x; is obtained by the integral (sum) of the product of
two distributions: the prior assigned to—x, ,,.and the probability that control u,
induces a transition from x_, to x . Thisstep is call predict.

The second step is update. In line 4, the Bayes filter algorithm multiplies the
belief @(xt) by the probability that the measurement z, may have been observed.
The result is normalized using 7.

3.3.2 Parametric Filter — Kalman Filter and Extended Kalman Filter

The Kalman filter was invented by Swerling and Kalman [7] as a technique for
filtering and prediction in linear Gaussian systems. The Kalman filter represents

beliefs by the mean p, and covariance X,, and the posteriors are Gaussian. The

Kalman filter has several properties
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1. The state transition probability p(x,|x,,,u,) is a linear function with added

Gaussian noise. Which is

X, =AX_; +Bu, +¢g (3.5)

-1

Here x, and x,_, are state vectors, and wu, is the control vector at time t.

t-1

The term g, is a Gaussian random vector that models the uncertainty
generated by the state transition. Its mean is zero vector and covariance is R, .
So the total probability distribution is

p(x, | x,_y,u,)

1 1 _
= WeXp{_E(Xt - Atxt—l - Btut)T Rt l(xt - Atxtfl - Btut)}
t

(3.6)

2. The measurement probability p(z/}x,) is also a linear in the argument
transition.
z, = Cx, +9, (3.7)
The probability distribution'of " p(z, | x,) should be

p(zt |Xt)
! eptle-cx) otz —cx)}
|27 -Q, | 27 T o

(3.8)

where Q, isthe covariance of the zero-mean Gaussian random vector 9,
3. The initial probability distribution of p(x,) isa Gaussian distribution. In this
case the propagation of p(x,) is guaranteed to be Gaussian distribution.

The above three characteristics are sufficient for the use of Kalman filter. Figure 3

is the detail algorithm procedure.
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1. Algorithm Kalman_filter(p, ,,X ,,u,,z,):
n, =Apn,_ +Bu, (prediction)

T =AZ_A +R, (prediction)

-y Zl_l't +Kt (Zt _Ctl_lt) (update)

. L, =(1-K,C)X: (update)

2
3
4. K,=%C(CEC+Q)*
5
6
7

.return p, X,

Figure 3. The Kalman Filter Algorithm for

Linear Gaussian state transitions and measurements

After knowing the iterative procedure:of Kalman filter, we now examine another
version of Kalman filter, which is called-EKF. (extended Kalman filter). According to
(3.5) and (3.7), the observations are linear functions of the state and the state transition
is also linear function. This assumption is important to Kalman filter but not adequate
for real world. The key point is that generally the transition and observation procedure
of state are nonlinear functions. In mathematical form,

X, =0(x,5,u) +§ (3.9)
z, =h(x,)+9, (3.10)

Since the assumption we made about linear transition no longer exist, there
should be some approximation about the nonlinear function. The most general
terminology is linearization via first order Taylor expansion. Taylor expansion

constructs a linear approximation to a function g from g*s value and slope near the

function point. The slope is given by the partial derivative
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09(u,, X, ,) (3.11)

9'(u,,x, ;)= .

t-1

From the expression above, g is approximated by its value at 4 , and u,, so

g(u,x ;) = g(u,p ) +9'(w,p ) (X, — R y)
= g(“t 1 ut—l) + Gt ) (Xt—l - ut—l)

(3.12)
The matrix G, is defined as the Jacobian matrix, and it should be a function of
various value of 4 , and u, . In the form of a Gaussian distribution, the state

transition probability distribution approximation is

p(xt | Xt—l’ut)
T exp{2x, - U )~ Gy (%~ )T (3.13)
[27-R,| o LA By BAC YRR ] .
Rtil[xt =g(uipe) -G, - (X —n)}
EKF implements the same linearization for-the measurement function h. Here

the Taylor expansion is developed around ;_nt

h(x,) = h(m,) +h'(w) - (x, — )

v v (3.14)
= h(”t) +H, - (Xt _”t)
The Gaussian form would be
p(z, | x,)
1 1 - -
= exp{—=[z,—h(n)-H, (x, —p)] 3.15
|27T'Qt | p{ Z[Zt (llt) t(xt ut)] ( )

Q. '[z, —h(n,) - H,(x, — )]}

And the total procedure of EKF is in figure 4.
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1. Algorithm Extended_Kalman_filter(p, .~ ,,u,,z,):

H =g u) (prediction)

% =G.X_G, +R, (prediction)

- W= l:t +K, (Zt —h (ﬁt)) (Update)

. X, =(-KH,)X: (update)

2
3
4. K,=LZH(HZIH +Q)*
5
6
7

.return p,, X,

Figure 4. The Extended Kalman Filter Algorithm

Due to the simplicity and its computational efficiency, the EKF is almost the most
frequently used state estimation terminology. in robotics. Each update requires time

O(k**+n?), where k is dimension-of-the measurement vector z,, and p X, is the

t

dimension of the state vector: x,..Other_algorithms, such as the particle filter, may

require time exponential in n
3.3.3 Nonparametric Filter - Particle Filter

Particle filter does not rely on a fixed functional form of the posterior, like
Gaussian distribution in Kalman filter. It approximates posteriors by a finite number of
values, each roughly corresponding to a region in state space. The quality of the
approximation depends on the number of parameters used to represent the posterior.
As the number of parameters goes to infinity, the method tends to converge uniformly

to the correct posterior. The key idea is to represent the posterior bel(x,) by a set of

random state samples drawn from this posterior. In particle filters, the samples of a

posterior distribution are called particles.
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o=x M x P x M) (3.16)
Each particle x!™ is a representation of the state at time t. In other words, a

particle is a hypothesis as to what the true world state may be at time t. M is the

number of particles in the particle set y,. Ideally, the likelihood for a state to be
included in the particle set y, shall be proportional to its posterior bel(x,)

Xt[m] - p(xt |Zl:t’u1:t) (3-17)

Just like all other Bayes filter algorithms discussed, the particle filter algorithm

constructs the belief bel(x,) recursively from the bel(x _,) one time step earlier,

which means the particle set y, recursively from the set y,,. The input of particle

filter is the particle set y, ,, along with the _most recent control u, and the most
recent measurement z,. To :get-the predicted probability distribution bel(x,), we

sample the new particles x ™ according-to_ the distribution of the previous step

p(x, |u,,x, ). To incorporate the measurement z, into the particle set, we calculate

the importance factor w'™, which are obtained according to the probability of the

[m

measurement z, under particle x™, given by w!™ = p(z, |x™). If we interpret
w,™ as the weight of a particle, the set of weighted particles represent approximately

the Bayes filter posterior bel(x,). The last step is called resample. Since each of the

particles already has a corresponding weight, the weigh value could be interpreted as
the probability that this particle would be chosen again. Resampling algorithm

transforms a particle set of M particles into another particle set of the same size.

Before the resampling step, they were distributed according to bel(x,), after the
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resampling the dare distributed according to the posterior

bel(x,) = 7p(z, | x™)bel(x ). The illustrated algorithm flow is in Figure 5.

1. Algorithm Particle_filter(y, ,,u,,z,):

2. o =%.=0

3. for m=1 to M do(prediction)

4 sample x™ ~ p(x, |u,,x,_,[™)
5. w™ = p(z, | x™)

6 Lo = 2+ w™]

7. end for

8. for m=1to M do

9 draw i with probability oc w"!

10. add xt[i] to y,
11. end for

12. return 1y,

Figure 5. The Particle Filter Algorithm, a Bayes Filter Based on Importance Sampling

3.4 SLAM

3.4.1 Problem Definition

The simultaneous localization and mapping problem is commonly abbreviated as
SLAM, and is also known as Concurrent Mapping and Localization. SLAM problem
arise when the robot does not have access to a map of the environment, nor doest it

know its own pose. All it is given are measurement z,, and controls u,, . In SLAM,

the robot acquires a map of its environment while simultaneously localizing itself
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relative to this map. From a probabilistic perspective, there are two main forms of the
SLAM problem, which are both of equal practical importance. The online SLAM
estimates the posterior over the momentary pose along with the map.

p(x,m|z,,u,) (3.18)
where x, is the pose at time t, m is the map. This problem is call online SLAM

problem since it only involves the estimation of variables that persist at time t. The
other category is called the full SLAM. In full SLAM, we calculate a posterior over the
entire path x,, along with the map, instead of just the current pose x,.
p(xy,,m|z,,u,) (3.19)
The mathematical relation between (3.18) and (3.19) is shown below.
p(x,om | 2, uy) = [ [--of (el zay, wddx,dx, ... dx, (3.20)
In practice, calculating a-full posterior like (3.19) is usually infeasible. Problems
arise from the high dimensionality. if the continuous parameter space, and the large
number of discrete correspondence variables. Many state-of-the-art SLAM algorithms
construct maps with tens of thousands of features, or more. Even under known
correspondence, the posterior over those maps alone involves probability distributions
over space with 105 or more dimensions. This is opposite to localization problems, in
which posteriors were estimated over three-dimensional continuous spaces. Not to say
in most application the correspondence are unknown. The number of possible
assignments to the vector of all correspondence variables grows exponentially. Thus
practical SLAM algorithms that can cope with the correspondence problem must rely

on approximations.
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3.4.2 FastSLAM

FastSLAM is a combinational algorithm that is using both the concept of particle
filter and the extended Kalman filter. Particle filters are at the core of some of the most
effective robotics algorithm. However the particle filter is not so applicable to the
SLAM algorithm due to the course of dimensionality, it scales exponentially with the
number of dimensions of the estimation problem. A straightforward implementation of
particle filters for the SLAM problem would fail because of the large number of
variables involved on describing a map.

In a SLAM problem with known correspondence, there is a conditional
independence between any two disjoint set of features in the map, given the robot pose.
So we could estimate the location of all ‘features independently of each other.
Dependencies on these estimates arise only:.through robot pose uncertainty. This
structural characteristic makes- it poessible-torapply Rao-Blackwellized Particle Filter
(RB particle filter) to SLAM problem.:RB particle filter uses particles to represent the
posterior over some variables, along with parametric PDF to represent all other
variables.

We use particle filter to estimate the robot path. Since the conditional independent
characteristic holds, the mapping problem can be factored into many separate
problems, one for each feature in the map. Each single map feature is estimated using
a low-dimensional EKF. This is different from other SLAM algorithms that use single
high-dimensional Gaussian to estimate the all features jointly.

The advantage of FastSLAM is that it could be implemented in time logarithmic

in the number of features, so it’s computational efficient. Another key advantage of
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FastSLAM is that the data association decisions can be made on per-particle basis. The
ability to pursue multiple data associations simultaneously makes FastSLAM
significantly more robust to data association problems than algorithms based on

incremental maximum likelihood data association.

robot path feature 1 | feature 2 feature N
Particle
MR (CR01 N Ve N AR u Mz,
Particle
k=2 i ={(x,y,0)" }! Az 2, TSR NG
Particle .
k=M ol =00y ) B | M EM M M "z M

Table 1. Particles in FastSLAM are composed of a path estimate and

a set of estimators of individual feature locations with associated covariance

Particles in the basic FastSLAM algerithm are of the form shown in Table 1. Each

particle contains an estimated. robot-pese;-denoted x, and a set of Kalman filters

with mean " and covariance ' ione‘for each feature m, in the map. Here [K]

is the index of the particle. As usual, the total number of particles is denoted M . The

basic step of the FastSLAM includes several steps. At each time step t, retrieve a

pose x,_,*1 from the particle set, sample a new pose according to the distribution
x ~ p(x, | x,"),u,). Then for each observed feature z,', identify the correspondence
j and update the corresponding EKF by updating mean 4, "' and covariance =, .

Each new particle should have a new importance weight w™!. The final step is

resample, which is sampling the M particles with the probability proportional to

Wik
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3.4.3 Unknown Data Association

The data association is also mentioned as correspondence in this thesis. In most
of the Bayes filter process, the data association problem exists. Every time we take a
measurement of the map, we don’t necessarily know which feature the measurement
belongs to (usually we don’t have this piece of information). Generally the data
association techniques are using argument such as maximum likelihood. They have
only single data association per measurement for the entire filter, and once the
association is incorrect, the update procedure fails and the filter diverges. The key
advantage of using particle filters for SLAM is that each particle can rely on its own,
local data association decision. Thus, the filter is actually sampling over possible data
association decisions. Since therelare multiple.correspondence decisions, as long as a
small subset of the particles is based ‘on the correct data association, data association
errors are not as fatal as in EKF approaches:-Particles with wrong correspondence will
possess inconsistent map, which decrease the weight of those particles, and hence they

are more likely to be sampled out in the future resample step.
3.5 Simulation Result of Fast SLAM

In this simulation we’ll examine the effectiveness of the FastSLAM algorithm.
Assume there are 6 features in the environment that are to be tracked, and the robot
will walk through a certain path that is previously given. The space is 700cm*700cm.
Maximum detectable range of the bearing sensors is 300cm. The algorithm generates
particles according to the very first bearing measurements. Since there is a maximum
detectable range, we sample the initial particle ranges according to a uniform

distribution of half of the maximum range. The procedure is as Figure 6.
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Initialization
Each particle is a state vector of robot pose and landmark estimation.

k k k k k k k k
Yo[ . Z{Xo[ ]’!‘1.0[ ]121,0[ ]’/12,0[ ]vzz,o[ ]""v/uN,O[ ]'ZN,O[ ]}
where x,M ={(x,y,0)"},
The elements in x,M is calculate according to the very first bearing

measurement with some random noise. And all the means and
covariance is zero.

\ 4

Prediction
For each time step t, the robot’s displacements
(Ax,Ay) are considered as the inputs to the filter To

simulate the real situation, noises are added to the inputs.
ALKl A A A 4,A
xe ={(X, Y, 00T ={[(x_, + AX), (¥, + Ay), tan 1(A—i)]T b

v
Weight Computing

Calculate the estimated measurement 2. according
to the relation between previous landmark positions

. . ~ [K]
and this new robot position.x; . Compare the true
measurement z and the estimated measurement

2 to calculate the weight wi. (3.21)

t

Whether all
particles are
calculated?

No

2 1 Akl ~ K]
w = 27Q) 2 exp{—E(zt -zt )'QY(z,—-z )}

Yes where Q is the measurement covariance (3.21)

Resampling
Sample the new particle set along

with the weight distribution.

Figure 6. The Simulation Procedure of the FastSLAM Algorithm

Notice that in (3.21), the weight value will be small if the estimated measurement
is different from the real measurement. And since there is resample step, we don’t have

to worry about data association problem.

26



- ; ; i : _ - i i ; ; i .
|::> 20 -10 u} 10 20 an 40 ) |::> 20 -10 0 10 20 30 40 &0
Unit: 10cm

Figure 7. Simulation Results of the FastSLAM Algorithm without Resample

(Only single feature is illustrated)

Figure 7 shows a sequential graph of the simulation. The six green stars are the
feature that to be localized. Red dots are the estimation of the current robot position.
Red circles are the waypoint of the path. All the black particles are trying to localize

the feature at (4.95,11.26). And the blue circles are the particles with larger weight

value (there is also a blue circle at the origin). To explain what the figure is all about,
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we conclude the following observation. Originally there are a lot of particles that have
high weight, and as time step increase, the weight will concentrate to several mostly

correct particle. Even if the resample state is not implemented, the outlier particles will

converge to the feature’s neighborhood.

- - - ‘ ‘ - i - ; ; | | ; |
|:> =20 -10 a 10 20 30 40 50 |::> 20 -0 0 10 i) a0 a0 a0
Unit: 10cm

Figure 8. Simulation Results of the FastSLAM Algorithm with Resample

In Figure 8, it is shown that with the help of resample, all the low-weight particles

will be sampled out. The filter converges in only few time steps.
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Chapter 4. Experimental Result and Discussion

4.1 Introduction of the Robot Platform

In the experimental results presented afterward, we’re using a research and
development platform called PIONEER 3-DX from MobileRobots Inc. Some detail

specification is written in Table 2.

Pioneer 3-DX Research Robot
Length 44.5cm
Width 40.0 cm
Physical Height 24.5cm
Weight
(with battery) kg
Battery L 12V sealed, lead-acid
Power Charge Time.s A 12 hours
Runtimel . Jlii. & 18-24 hours
Drive: | "2-wheel-drive, plus rear balancing caster
Gearratio ~ |- = o 38.3:1
Mobility Pushing force & om0 6 kg
Swing radids .~ Y 32 cm
Translate speed max i 1.2 m/sec
Standard position encoders 500 tick encoders
Communications ports 3 RS-232 serial ports on microcontroller
Main power switch Robot power; 12VDC; red LED indicator

Table 2. The Specification of the POINEER 3-DX Robot [9]

Figure 9. Overall Picture of the Mobile Robot Platform
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The main purpose of using this robot platform is to record the robot path using the
included position encoders. These encoder data will be considered as the input to the
FastSLAM algorithm. We use a laptop to control the robot through the RS-232 port. A
wireless access point in mounted on the robot so that the instruction could be done
remotely.

Another important hardware is the microphone array. Figure 10 shows the
architecture of the array, which contains 8 digital microphones, an FPGA, and the USB
communication module. The digital microphones are using the MEMS technology to
imbed sigma-delta modulators in the microphones. Digital microphones have the
advantages of little signal crosstalk, low circuit noise, and small circuit size due to
needless of A/D converter. The FPRGA will take decimation to the microphone input
data. It passes the 1.2MHz digital microphone: signal through a second-order low pass
filter (LPF), and down samples the 1.2-MHz 75 times to get a 16 KHz sound signal.
Afterward, the USB will select  thes:channel number through a MUX, and

simultaneously transmit the 8-channel 16 KHz data to the laptop.

’—> Digital Mic
FPGA

> Decimation filter }»

t» Decimation filter }» Memory
controller

t» Decimation filter |—

» Decimation filter —

USB
Module

»{ Notebook

—1»| Decimation filter | RAM RAM

»—{» Decimation filter [ 1 i

»—»| Decimation filter || )
Ping-pong
controller

» Decimation filter —

Figure 10. Block Diagram of the Microphone Array
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Figure 11. (a) The 8-Channel Digital Microphone (b) The FPGA and the USB Module

The experimental data was recorded in a 350cm*450cm room, with three static
loud speakers playing human speech in English. The circular microphone array is of

radius 5.5¢cm, so the far field assumptionh

size and the array size is lar
design path to avoid some im|

SLAM. Figure 12 shows the en ""-‘_«e:;e iment that ' je record the sound data.

‘Faeibh

Figure 12. The Spatial Relation of the Speaker, the Robot, and the Laser Range Finder

4.2 Performance of offline calculated algorithm

The experiment was first done under an offline calculation to test the algorithm
effectiveness. The program procedure for offline calculated FastSLAM is shown in

Figure 13.
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DOA Estimation
At every time step, the ES-GCC algorithm
might calculates several outputs representing
the sound sources direction.

\ 4

Qutlier Elimination
Occasionally the DOA estimated by ES-GCC
has unreasonable value. To determine whether
the value is an outlier, we compare the
previous and present robot position to define a
reasonable DOA range.

A 4

Weight Computing
Without need of calculating correspondence,
all the particles should compare their estimated
feature measurement with the DOA result and
evaluated the weight of them.

Whether all
particles are
calculated?

No

Resampling
Sample the new particle set along

with the weight distribution.

Figure 13. The Algorithm Procedure for Offline Calculation

As mentioned in section 2.3, the ES-GCC method estimates the DOA by using the
least square method. The algorithm needs to accumulate a certain time frame to get
solid delay information between microphones. Only those delay combination with
reasonable sound speed generates DOA estimation. Furthermore, the DOA estimation
IS not necessary correct, which may be eliminated in the Outlier Elimination step.

Upon all the reasons above, the DOA estimation won’t be correct when the robot is
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moving. So we program the algorithm to update the estimation only when the robot

stops. The experimental results are shown below.

Expetimental resault
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Figure 14. The Experimental Results of Offline Calculated FastSLAM

In Figure 14, the blue ground truth.data are collected by a static laser range finder
to compare the SLAM output and the real environment. The big yellow clusters are the

waypoints that the robot stops to update the landmark estimation.

Landmark 1 | Landmark 2 | Landmark 3 Average
Range Error 5cm 22 cm 6cm 1lcm
Range Error Rate 2.05% 7.90% 1.81% 3.92%
Bearing Error 2.81° 4.48° 5.03° 411°

Table 3. The Error Analysis of Offline Calculated FastSLAM
As in Table 3, the position estimation has larger error rate than the landmarks

estimation. This phenomenon happens due to the joint uncertainty of the feature
estimation and the encoder measurement. Conceptually, the position estimation is a
sensor fusion result of the encoder and the DOA measurement. To adjust the believe

ratio between DOA measurement and encoder, the covariance matrix of these two
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sensor data should be modified.
4.3 Performance of online algorithm

The online algorithm here is not identical to the online SLAM mentioned in
section 3.3. Here the “online” stands for the issue for real-time experiment. Some
modifications of the FastSLAM algorithm are made for this application. The most

significant adjustment is the removal of the resample state.

Particle Initialization
Assume all the features exist and are emitting
sound at the beginning of the scenario. The
accumulated MUSIC initializes all the particles
with the features it detected.

A 4

DOA Estimation
At every time step, the MUSIC algorithm
calculates one output representing one sound
sources direction. The bearing measurements
might belong to different landmarks

h 4

Data Accumulation and Voting
Use the nearest neighborhood concept to sort
the MUSIC output into categories. The
categories with large number of votes are
considered to be sound source. The output of
this stage may be multiple directions.

\ 4

Particle Update
Associate the measurement with the nearest

neighborhood (estimation) and update the
particle using this correspondence information.

Figure 15. The Algorithm Procedure for Onine Calculation

The pseudo procedure of the real-time experiment is illustrated in Figure 15. In
order to release the calculation load of particle filter, the number of particles is

decreased. Theoretically there is still a subset of the particle that is still having the
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right correspondence. However, based on our experiment that this subset would not
always exist, and hence the resample state will be forced to choose a wrong data
association that is having relatively higher weight. This will fail the whole filter
procedure.

Another adjustment is the DOA estimation method. We use the accumulated
MUSIC to estimate the DOA instead of ES-GCC. MUSIC has a very good
characteristic in finding single source. Under the situation of multiple speech sources
with same scale of magnitude, MUSIC tends to find each of them sequentially. So, by
accumulating the calculated directions, we sort this array using nearest neighborhood

method. Only the clusters with sufficient amount DOA estimation pass through this

step. The output of this step woulchbe ambﬁ&lpOA estimation.

Figure 16. The Real-time Experimental Environment

Figure 16 shows how the speaker is distributed. The robot considers its start point

as the origin and move through a path that doesn’t have severe echo problem and

35



sound source overlap. We use 30 particles to describe the probability distribution.
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Figure 17. The Real-time Experimental Results

The red circle in Figure 17 is the robot position estimation. The yellow, light blue
and blue circles are the distributed particles. The red crosses are the mean of each
group of estimation, and the green square is the ground truth of the features.

The microphone array received the three angle estimations at the initialization
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step, so three sets of particles were initialized. As the robot stopped at the next stop
point, the accumulated MUSIC popped out one angle value. This angle was recognized
to be a measurement of landmark 3. So the filter updated the estimation of landmark 3
for a while and headed to the next stop point. Afterward, the measurement of landmark

1 and 2 popped out. The filter was able to update arbitrary numbers of estimation

group.

Landmark 1 | Landmark 2 | Landmark 3 Average

Range Error 50 cm 2cm 3cm 18.33cm
Range Error Rate 16.27% 0.70% 1.67% 6.21%
Bearing Error 1.74° 2.82° 4.76° 3.11°

Table 4. The Error Analysis of Real-time FastSLAM

As in Table 4, the average range error. rate is 6.21%, and the average bearing error

is 3.11°. The final result of the real-time FastSLAM is illustrated in Figure 18.

b 170 cm 5
F= A g &
210 cm
-]
b -]
180 ity
cm 2 ,0.’ ° =
A S
. 1 g

Figure 18. The Final Real-time Experimental Results
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Chapter 5. Conclusion and Future Study

A combinational algorithm of DOA estimation and Bearings-Only SLAM is
proposed in this thesis. The new algorithm is managed to deal with the landmark
occlusion problem commonly faced in vSLAM. Using the ES-GCC or accumulative
MUSIC allows us to estimate multiple DOAs within a short period of time frame. The
theoretical knowledge of SLAM is presented in chapter 3 to explain the
nondeterministic method that is used in the thesis. Figure 7 and figure 8 shows the
simulation results of a particle filter.

The experimental result presented in chapter 4 show that the algorithm is
applicable in offline calculation. Due;te, some hardware limitation, the real-time
calculation procedure neglects the resampling part of the original algorithm and
applies the nearest neighborhood concept to the-data association. The simultaneous

localization and mapping results are shown with range error of 6.21% and bearing

error of 3.11° in average.

There are several areas for improvement. The more particles that are used in a
particle filter, the more accurate it is. The real-time process could be modified in other
method rather than decreasing the particle number. Also, the experiment in this thesis
assumes that all the landmarks could be detected in the initial state. If there are new
landmarks, the current algorithm is not able to localize them. An adjustable state
vector should be used to intelligently modify the size of the vector to improve the
SLAM robustness. Also, although the sound sources are detectable when they are
NLOS, the DOA information does not hold the same characteristic. The specificity of

NLOS sound sources should be studied.
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