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Threat Assessment and Model-Based Attack Detection for

Precess Control Systems

Student: Zong-Syun Lin Advisor: Dr. Yu-Lun Huang

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

We present security analysis of process control systems (PCS) when an attacker can compromise
sensor measurements that are critical for maintaining the operational goals. We present the
general sensor attack model that can represent a wide variety of integrity attacks. By taking
example of a well studied process control system, we discuss the consequences of sensor attacks
on the performance of the system and important implications for designing defense actions. We
develop model-based detection methods that can be tuned to limit the false-alarm rates while
detecting a large class of sensor attacks. From the attacker's viewpoint, we show that when the
detection mechanisms and control system operations are understood by the attacker, it can carry
stealth attacks that maximize the chance of missed detection. From the defender's viewpoint,
we show that when an attack is detected, the use of model-based outputs maintains safety under

COHlpI'OIIliSGd sensor measurements.
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Chapter 1

Introduction

Control systems are widely used by industries and factories to stabilize safety-critical pro-
cesses. Any disruption of these systems can cause irreparable harm to people who depend on
them. In this chapter, we first explain what the control system is and analyze the new vulnera-

bilities in control systems.

1.1 Control Systems

Control systems are computer-based systems that monitor and control physical processes. These
systems represent a wide variety of networked information technology (IT) systems connected to
the physical world. Depending on the application, these control systems are also called Process
Control Systems (PCS), Supervisory Control and Data Acquisition (SCADA) systems (in indus-
trial control or in the control of the critical infrastructures), or Cyber-Physical Systems (CPS)
(to refer to embedded sensor and actuator networks). Control systems are responsible for vital
processes in the generation, transmission and distribution of utility services like electric power,
oil and gas, water and waste-water as well as in the operation of industrial manufacturing and
production units.

Control systems are usually composed of a set of networked agents, consisting of sensors,
actuators, control processing units, and communication devices. For example, the oil and gas

industry uses integrated control systems to manage refining operations at plant sites, remotely



monitor the pressure and flow of gas pipelines, and control the flow and pathways of gas trans-
mission. Water utilities can remotely monitor well levels and control the wells pumps; monitor
flows, tank levels, or pressure in storage tanks; monitor such as pH, turbidity, and chlorine

residual; and control the addition of chemicals to the water.

Modern day industrial control systems have a multi-layer control structure [1], [2]. The
overall objectives of such a control structure are: (1) to maintain safe operational goals by lim-
iting the probability of undesirable behavior, (2) to meet the production demands by keeping
certain process values within prescribed limits, (3) to maximize production profit.

We distinguish between two control layers that are supposed to handle a set of functionally
different control objectives while exchanging necessary information with each other. The reg-
ulatory control layer has direct access to the sensors that measure the process variables. The
process variables are controlled by the actuators that receive input signals from the regulatory
layer controllers. These controllers are responsible for nominal safety and operation of the pro-
cesses in the system and can intervene with high frequency. On the other hand, the controllers
in supervisory control layer is mainly responsible for controlling certain slowly varying process
variables and for providing set-points to the controllers in the regulatory layer.

Since the regulatory layer controllers are required to demonstrate faster response, they are
traditionally based on the classic proportional-integral-derivative (PID) algorithms. PID con-
trol algorithms still govern much of control system practice because they are easy to tune and
provide acceptable performance guarantees in many situations. However, the supervisory layer
controllers are generally based on optimization based predictive algorithms [3].

Supervisory layer controllers are often centralized and with strong computing power. We
can use complex and robust security solutions developing in IT systems to protect against attacks

but sensors in the regulatory layer are spread around the plant and with weak computing power.



Hence, sensors are exposed to the risk and easy to be compromised. According to these reasons,
we put our attention on attacks to sensor nodes and assume the computing blocks in supervisory

layer (all of controllers) are secured.

1.2 New Vulnerabilities and Threats

Several control systems are safety-critical: any attack may cause a significant impact on public
health, the environment, the economy, or even lead to loss of human life. Critical infrastructure
control systems are more vulnerable today than in the past due to the increased standardization
of technologies, the increased connectivity of control systems to other computer networks and
the Internet, insecure connections, etc. In short, control systems are becoming more complex
and interdependent---and therefore, more vulnerable.

Not only are control systems more vulnerable now, but there is now more groups interested
in attacking them. There are more individuals, organized groups and nation states interested in
exploiting the vulnerabilities of control systems.

Because of the increasing risk to computer attacks, there has been a significant effort in

recent years to discuss and identify the security issues of control systems [4--15].

1.3 Our Approach

We believe that most of the previous work in the security of control systems has three goals: (1)
create awareness of security issues with control systems, (2) help control systems operators and
IT security officers design a security policy, and (3) recommend basic security mechanisms for

prevention (authentication, access controls, etc), detection, and response to security breaches.

While these recommendations and standards have placed significant importance in the sur-



vivability of control systems (their ability to operate while they are under attack); we argue that
they have not considered new research problems that arise when control systems are under at-
tack. In particular, we believe that, so far, no one has been able to articulate what is new and
fundamentally different in this field from a research point of view compared to traditional IT
security.

In particular, research in computer security has focused traditionally on the protection of
information. Researchers have not considered how attacks affect the estimation and control

algorithms and ultimately, how attacks affect the physical world.

In this work we argue that the major distinction of control systems with respect to other IT
systems is the interaction of the control system with the physical world. In this paper we propose
to incorporate the physical process dynamics in the security analysis of the control system. In
this paper we focus on an attacker that compromises sensor readings. We have two major goals
(1) to develop a threat assessment methodology, and (2) to design attack detection and response

mechanisms.

The goal of threat assessment is to identify the most valuable targets and to understand
the possible attack strategies against the control system. We argue that an appropriate threat
assessment of control systems must include an analysis of how computer attacks can affect the
physical world in order to (1) understand the consequences of an attack, (2) estimate the possible
losses, (3) estimate the response time required by defenders, and (4) identify most cost-effective
defenses to our system.

The goal of attack detection and response is to prevent attacks crashing the plant. Unlike
the security of IT systems, we don't focus on protecting information in control system. The most
important thing for control system is to keep running and stay away from crashes. Crashes in

control systems may result in serious damage like explosion or poison gas leak. So we try to



ensure the safety of the plant when the plant is under attack.

Incorporating the physical model of the system can also help to detect and respond to attacks.
By modeling the dynamics of the physical process we can detect attacks, and use the model to

predict the state of the system in case some sensor nodes are compromised.

1.4 Synopsis

In the next chapter, we present a simplified Tennessee-Eastman process control system (TE-
PCS) for which a wide variety of regulatory control algorithms have been developed by control
system engineers. The operational goals of the control system is to maintain process safety and
ensure economical production. Chapter 3 focusses on threat assessment and provides insights on
the strategies that an attacker may follow to maximize damage to operational goals. In Chapter
4, we present the general sensor attack model that can model a number of integrity attacks
on sensor measurements that are accessible to the attacker. We present a model-based attack
detection method that can detect a wide class of attacks on sensor measurements in Chapter 5. In
Chapter 6, the attack detection method is tuned to limit false positive rates and its performance is
evaluated for detecting sensor attacks on TE-PCS. Chapter 7 presents the case of stealthy attacks
in which the attacker can exploit the knowledge of the attack detection and system operation

methods to avoid getting detected. We provide concluding remarks in Chapter 8.



Chapter 2

Process Description

In this paper, we use the Tennessee-Eastman process control system (TE-PCS) model and
the associated multi-loop PI control law as proposed by Ricker [16] as our experimental envi-
ronment. We briefly describe the process architecture and the control loops in Figure 2.1. The
original process model is implemented in FORTRAN and the PI control law is implemented in

MATLAB. We will use this code for our study.

Loop4 | P
Controller Cy4 L
F,*®
F v Pmax Vale v
4 alve
—4.  Loopl F, R 2 >
Controller C,; > * ]—b urge
uy
I
Feed 1 F, Pressure _ LO(;p 2 pe
sensor S P " lcontroller C
(A+B+C) Valve V, 2 (v2) 2
» Product(D)
Valve V; F,
Feed 2 _F2 Reactor
(pure A) sensor S; Product
\_/ sensor S;
u3 ¥
| F,
y3T —> Loop 3 < (yn)
controller C;

Figure 2.1: Architecture of the Simplified TE Plant

The chemical process consists of an irreversible reaction which occurs in the vapour phase

inside a reactor of fixed volume V' of 122 (m?). Two non-condensible reactants A and C react



in the presence of an inert B to form a non-volatile liquid product D:

A+c 2 D.

The feed stream 1 contains A, C' and trace of B; feed stream 2 is pure A; stream 3 is the purge
containing vapours of A, B, C; and stream 4 is the exit for liquid product D. The measured

flow rates of stream i is denoted by F; (kmol h™'). The control objectives are

- to regulate F}, the rate of production of the product D, at a set-point F,;” (kmol h™1),

- while maintaining P, the operating pressure of the reactor, below the crash limit of 3000 £ Pa

as dictated safety considerations,

- to keep s, the ratio of ingredient A in reactor, ensure operation of the chemical reactor.

According to the control objectives mentioned above, Ricker [16] suggests the control loops

as follows (also see Figure 2.1):

e Control loop 1:

The first control loop contains loop 1 controller C}, feed 1 valve V; and product sensor

Si.

Loop 1 controller monitors production rate F; = y; and computes control signals w; to
adjust feed 1 valve V;. By adjusting the value of V7, loop 1 controller changes the amount

of input ingredients and regulates production rate.

e Control loop 2:

The second control loop contains loop 2 controller Cy, purge valve V5 and pressure sensor

Sy.



Loop 2 controller receives sensor signals P = y, sended by pressure sensor and computes
controls signals us. Control signals u, open purge valve to let vapor in reactor goes outside

if pressure is overhigh, and vice versa.

e Control loop 3:

The third control loop contains loop 3 controller C5, feed 2 valve V3 and reactor sensor

Ss.

Loop 3 controller gets sensor signals y3 which is the ratio of ingredient A in reactor and
computes control signals ug to adjust feed 2 valve V3. Loop 3 controller keeps the ratio

of A in reactor by monitoring y3 and tuning feed 2 valve.

e Control loop 4:

The fourth control loop contains loop 4 controller Cy, loop 1 controller C, feed 1 valve

V1 and pressure sensor Ss.

Loop 4 controller is needed prevent the loss of pressure control resulting from saturation
of the purge rate uy in loop—2 controller. When P = vy, is overhigh, the loop 4 controller

changes set-point F,” and uses u; to control pressure P = .

Yy Y2 Y3 Variables (%)
100.0001 2700.0002 — 47.0001 80 feed1 valve

- - feed2 valve
- = - purge valve

2700.0001

2700

e —|
100 2699.9999

Pressure ( kPa)
»
3
2
8
©
8
8
8

2699.9997

Product Rate ( kmol / hour )
Amount of A in purge ( mol %
I
k]
a
g

2699.9996 46.9999 20
30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time (hour) Time (hour) Time (hour)

0 10 20
Time (hour)

Figure 2.2: Signals without Noise

These four control loops help plant work in steady-state. During the steady-state operation,
the production rate F; = 1 is 100 kmol h~!, the pressure P = 1 is 2700 K Pa and the fraction
of A in reactor y3 is 47 mol%. We also add a Gaussian disturbance with zero mean and variance

8
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Figure 2.3: Signals with Gaussian noise, mean = 0; var = 0.2

0.2 to the control inputs u;(k) so that the system is never in a complete steady state. Fig 2.2

and 2.3 show the simulation of the plant signals without noise (at steady state) and with noise

respectively.



Chapter 3

Threat Assessment

We study the security issues of control systems by experimenting and simulating cyber
attacks on sensor signals in the TE-PCS model. Because operating the chemical reactor with a
pressure larger than 3000 kPa is unsafe. It may lead to an explosion or damage of the equipment.
Assume that that the goal of the attacker is to raise the pressure level of the tank to a value larger
than 3000 kPa, we attack a single sensor at a given time. Let y; denotes the measurement by
sensor ¢ and ¢ denote the received measurements by the controller. The sensor signals y; equal
to y; if there are no attacks on sensor nodes; y; differ to y; when plant is under attack. From
the experimental results, we found that the most effective of these attacks were the max/min
attacks (make the forged signals the extreme values, i.e, 3™ or y™"); however, not all of them

were able to drive the pressure to unsafe levels. We now summarize some of the results.

e By attacking the sensors, a controller is expected to respond with incorrect control signals
since it receives wrong information from the compromised sensors. If an attacker does
not know the dynamics of the plant, or the control algorithms, it may compromise a given
device at random. For example, by forging y3 as y5'* from ¢ = 10 to 30, the controller

believes there is a large amount of ingredient A in the tank.

From the experiments, we found that the plant system can go back to the steady state after
the attack finishes, as illustrated in Fig 3.1. Furthermore, the pressure in the main tank
never reaches 3000 kPa. In general we found that the plant is very resilient to attacks on

y1 and y3. Even attacks in the limit of the sensing range (™" and y™ax) can't force the

10



system into an unsafe state.

A Y3
3000 . 120 . -
2 Y3
2900 %
S 100 ; L — Y3
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@ 2700 2 ! !
% - 1 1
€ 2600 3 ool ! ! 1
a 2 1 1
c
=3 1 1
2500 g ;
< 401 4
2400
0 10 20 30 40 0 10 20 30 40

Time (hour) Time (hour)

Figure 3.1: Integrity attack y7**® from ¢ = 10 to 30. The system remains in a safe state for attacks on ys3.

e By launching attack y5"" the controller turns down the purge valve to increase the pressure
and prevent the liquid products from accumulating. We can see that the real pressure of
the tank (y in Fig 3.2(a)) keeps increasing past 3000 kPa and the system operates in an
unsafe state. In this experiment, it takes about 20 hours (¢ = 10 to ¢t = 30) to crash (or
cause an explosion to) the plant. It takes long time that the system operators may observe

this unusual phenomenon and take proper actions against the attack.

Y2 Y2
3500 T T X:28.6 — | ~ 3050
Y:3002 === —__aT
oo0f " Y Y2
— Y2 —_—
~ 2500 1 Y ~ 2950 Y2
© ©
o 1 o
< 2000t 1 z
© | © 2850
@ 1500} 1 @
123 1%}
jd 1 o
2 10001 1 o 2750 F
1
500 '
1
0 : " . 2650 . . .
0 10 20 30 40 0 10 20 30 40
Time (hour) Time (hour)
(a) (b)

Figure 3.2: Safety can be breached by compromising sensor 3, (3.2(a)). DoS attacks, on the
other hand, do not cause any damage (and they are easy to detect.) (3.2(b)).

e We found out that in general DoS attacks do not affect the plant. We ran the plant 20
times for 40 hours each and for a DoS attack lasting 20 hours the pressure in the tank
never exceeded 2900 kPa.

11



We conclude that if the plant operator wants to prevent an attack from making the system
operate in an unsafe state, it should prioritize the integrity of the sensors rather than their avail-
ability. Some of the sensors are more critical to the plant, in this experiment, the sensor g, should
also be a priority.

Threat assessment helps us find out some easy way to crash TE-PCS. Following we try to

model more effective attacks according to the results of threat assessment.

12



Chapter 4

Attack models

In this paper we focus on attacks on sensor networks and the effects they can have on the
process control system. We consider the case when the state of the system is measured by a
sensor network of p sensors that observes the measurement vector y(k) = {y1(k), ..., yp(k)},
where y;(k) denotes the measurement by sensor i at time k. All sensors have a dynamic range
that defines the domain of y; for all k. That is, all sensors have defined minimum and maximum
values Vk, y;(k) € [y, ymae]. Let J; = [y, y™%]. We assume each sensor has a unique
identity protected by a cryptographic key.

Let j(k) € RP denote the received measurements by the controller at time k. Based on
these measurements the control system defines control actions to maintain certain operational
goals. If some of the sensors are under attack, 7(k) may be different from the real measurement
y(k); however, we assumed that the attacked signals g;(k) also lie within )); (signals outside this

range can be easily detected by fault-tolerant algorithms).

Let IC, = {ks, ..., k.} represent the attack duration; between the start time & and stop time

k. of an attack.

4.1 Additive Attacks

Additive attacks add an arbitrary noise ), to sensor signals. )\, may be either a constant or a

random number. In the former case, attackers forge sensor signals by shifting the original signals

13



a constant offset \,. If )\, is a random number, then attackers alter the original signals by adding
some random noises.

To avoid the detection of fault-tolerant detector, the forged signals should lie within the

maxr

range [y, y™**]. The additive attack can be modeled as follows.

yi(t) fort ¢ 7,
. yilt) + Ao fort € T, & yi(t) + Xa € Vi
i (t) =
ymin fort € T, & yi(t) + Ao < y™"
ymas fort € T, & y;(t) + Ay > y™**

4.2 Multiplicative Scaling Attacks

Namely, multiplicative scaling attacks attack a system by changing the scale of sensor signals.
By carefully choosing an scaling parameter \,,(t), the adversary alters the sensor signal y and
sends an scaling value § to the controller. To avoid the detection of fault-tolerant detector, the
forged signals should lie within the range [y, y%®]. Thus, we can model an scaling attack as

7

follows.

yl(k) fOI' ]C §é ICa

~ N (Ru(k)  fork € K,

g (k) =
Y for k € Ko & N"(k)yi(k) < ymir
Y for k € K, & N (k)yi(k) > yi*

After launching an scaling attack to the sensor ¢, the sensor signals y; are changed to ;.
Without a proper defense mechanism, the controllers may mistakenly command the actuators

and lead the plant system into an unstable and insecure state.

14



4.3 Delay Attacks

Real-time requirement is one of the most important issue in industrial control systems. The
control systems can not handle disturbances without real-time information. To crash the plant
system or make it unstable, an adversary may slow down the reaction of a controller by delaying
the sensor signals. The following equations model the delay attack, where )4 is the delay time

of sensor signals.

yi(k) for k ¢ IC,
GH(k) =1 yi(k — M(k))  fork € K, &k > (k)

v:(0) for k < \4(k)

Note that the initial signal y(0) is applied if the current time ¢ is earlier than the specified

parameter \,.

After modeling variety of attacks, we now study an alternative and more cost-effective

approach: automatic detection and response to attacks by using anomaly detection schemes.

15



Chapter 5

Model-Based Attack Detection

Detecting attacks to control systems can be formulated as anomaly-based intrusion detection
systems [17]. One big difference in control systems compared to traditional IT systems, is that
instead of creating models of network traffic or software behavior, we can use a representative

model of the physical system.

Our argument is that if we know how the output sequence of the physical system, y(k),
should react to the control input sequence, u(k), then any attack to the sensor and control data
can be potentially detected. Given an input sequence u(k), the attacked sensor measurements
will exhibit abnormal deviations from the expected sensor outputs leading to detection of sensor
attacks. Similarly, given an output sequence y(k), any attack to the control inputs can also be
detected by comparing the deviations of the attacked control inputs with the expected control
inputs.

Our proposed attack detection system is presented in Figure 5.1. The control input sequence
u(k) is fed to the physical system after being perturbed by an additive Gaussian process noise
sequence w(k). The process noise sequence can be thought as unmodeled factors that affect
the evolution of system state. The input sequence u(k) is also fed to a system model that is
representative of the physical system and is internal to the detection system. (In this case, we use
a linear model as described in Section 5.1.) The internal model will produce an output sequence
y(k). The anomaly detection module (ADM) will compare the two measurement sequences: the

sequence ¢(k) that is received from the sensor measurements and may have been influenced by
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the attacker with the sequence y(k) that is obtained from internal model. The ADM raises an

alert if the deviation between the two sequences is significant.

Disturbance
Attack
wi(k)
_ Plant 12X, & 5
(sensors) et ——— .
k+1) |
_____ _."| ADM | Controller [ |
// . 7'y |\
/| Linear |
u(k) \\ Model §(k) Computing Blocks //

—_~ e e e ————— . e — —

Figure 5.1: The proposed detection module: use Linear Model.

To formalize this problem, we need (1) a simple model that is representative of physical
system, and (2) an anomaly detection algorithm. In section 5.1 we discuss our choice of linear
model as the representative model. In section 5.2, we describe change detection theory and the

detection algorithm we use - a nonparametric cumulative sum (CUSUM) statistic.

5.1 Linear Model

To develop accurate control algorithms, control engineers often construct a representative model
that captures the behavior of the physical system in order to predict how the system will react
to a given control signal. A representative process model can be derived from first principles
--a model based on the fundamental laws of physics-- or from empirical input and output data
--a model obtained by simulating the process inputs with a carefully designed test sequence.
It is also very common to use a combination of these two models; for example, first-principle
models are typically calibrated by using process test data to estimate key parameters. Likewise,

empirical models are often adjusted to account for known process physics [2, 3].
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For highly safety-critical applications, such as the aerospace industry, it is technically and
economically feasible to develop accurate representative models [2]. However, for majority
of process control systems, the development of process models from fundamental physics is
difficult: in many cases such detailed models are difficult to justify economically, and possibly
even impossible to obtain in reasonable time due to the complex nature of many systems and
processes. To solve these problems most control vendors provide tools (called identification
packages) to develop representative models of physical systems from training data. The most

common representative models are /inear systems.

Linear systems can be used to model dynamics that are linear in state (k) and control

input u(k)

x(k+1) = Az(k) + Bu(k) (5.1)

where time is represented by k € ZT, z(k) = (z1(k), ..., xz,(k)) € R™is the state of the system,
and u(k) = (ui(k),...,un(k)) € R™ is the control input. The matrix A = (a;;) € R™*"
models the physical dependence of state ¢ on state j, and B = (b;;) € R™™ is the input matrix
for state ¢ from control input j.

Assume that the system (5.1) is monitored by a sensor network with p sensors. We can

obtain the representative measurement sequence from the observation equations

y(k) = Cx(k), (5.2)

where §(k) = (91(k), ..., 9,(k)) € RP, and y;(k) € R is the estimated measurement collected
by sensor [ at time k. Matrix C' € RP*" is called output matrix.

In this paper we use the linear system, characterized by the matrices A, B, and C, obtained
by linearizing the non-linear TE-PCS model about the steady-state operating conditions. (See

Ricker [16].) The steady-state conditions are mentioned at the end of Section 2. The linear
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model is a good representative of the actual TE-PCS model when the operating conditions are

reasonably close to the steady-state.

5.2 Detection Methods

Because we need to detect anomalies in real time, we can use results from sequential detection
theory to give a sound foundation to our approach. Sequential detection theory considers the
problem where the measurement time is not fixed, but can be chosen online as and when the
measurements are obtained. Such problem formulations are called optimal stopping problems.
Two such problem formulations are: sequential detection (also known as sequential hypothe-
sis testing), and quickest detection (also known as change detection). A good survey of these

problems is given by Kailath and Poor [18].

In optimal stopping problems, we are given a time series sequence z(1), z(2), ..., z(NV),
and the goal is to determine the minimum number of samples, N, the anomaly detection scheme
should observe before making a decision dy between two hypotheses: H, (normal behavior)
and H, (attack).

The main difference between sequential detection and change detection is that the former
assumes the sequence z(i) is generated either by the normal hypothesis H or by the attack
hypothesis H;. The goal is to decide which hypothesis is true in minimum time. On the other
hand, change detection assumes that the observation z (i) starts under H, and then, at a given k;

it changes to hypothesis ;. Here the goal is to detect this change as soon as possible.

Both problem formulations are very popular, but security researchers have used sequen-
tial detection more frequently. However, for our attack detection method, the change detection

formulation is more intuitive. To facilitate this intuition, we now briefly describe the two for-
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mulations.

5.2.1 Sequential Detection

Given a fixed probability of false alarm and a fixed probability of detection, the goal of se-
quential detection problem is to minimize the number of observations required to make a de-
cision between two hypotheses. The solution is the classic sequential probability ratio test
(SPRT) of Wald [19] (also referred as the threshold random walk (TRW) by some security pa-
pers). SPRT has been widely used in various problems in information security such as detecting
portscans [20], worms [21], proxies used by spammers [22], and botnets [23].

Assuming that the observations z(k) under H; are generated with a probability distribution

pj, the SPRT can be described by the following equations:

EeAC)
S+ 1) = log 2 2 + S (k)

N =inf{n: S(n) ¢ [L,U]}.

starting with S(0) = 0. The SPRT decision rule d is defined as:

H, ifS(N)>U
dy = (5.3)

Hy ifS(N)<L,
where L =~ In ﬁ and U =~ In 17‘”, and where a is the desired probability of false alarm and b is

the desired probability of missed detection (usually chosen as small values).

5.2.2 Change Detection

Goal of the change detection problem is to detect a possible change, at an unknown change

point k,. The cumulative sum (CUSUM) and the Shiryaev-Roberts statistics are the two most
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commonly used algorithms for change detection problems, the CUSUM statistic being very
similar to the SPRT.

Given a fixed false alarm rate, the CUSUM algorithm attempts to minimize the time N
(where N > k) for which the test stops and decides that a change has occurred. Let S(0) = 0.

The CUSUM statistic is updated according to

S(k+1) = <1Og p1(2(k))

oz (k)) + S(k)) (5.4)

where (a)* = a if a > 0 and zero otherwise. The stopping time is:
N = igf{n :S(n) > 1} (5.5)

for a given threshold 7 selected based on the false alarm constraint.

We can see that the CUSUM algorithm is an SPRT test with L. = 0, U = 7, and whenever

the statistic reaches the lower threshold L, it re-starts.

One problem that we have in our case is that we do not know the probability distribution
for an attack p;. In general, an adaptive adversary can select any arbitrary (and possibly) non-
stationary sequence z;(k). Assuming a fixed p; will thus limit our ability to detect a wide range

of attacks.

To avoid making assumptions about the probability distribution of an attacker, we use ideas
from nonparametric statistics. We do not assume a parametric distribution for p; and py; instead,
only place mild constraints on the observation sequence. One of the simplest constraints is to
assume that the expected value of random process Z; (k) that generates the sequence z;(k) under
Hy is less than zero (Eq[Z;] < 0) and the expected value of Z;(k) under H, is greater than zero
(E1[Z;] > 0). In the following, we use the subscript ¢ to denote the sequence corresponding to

Sensor 1.
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To achieve these conditions let us define
zi(k) = 9i(k) — 9i(K)| = b; (5.6)
where b; is a small positive constant chosen such that
Eol|7:(k) — 9i(k)| — b:] <0 (5.7)
The nonparametric CUSUM statistic for such for sensor ¢ is
Si(k) = (Si(k — 1) + zi(k))*, Si(0) = 0 (5.8)

and the corresponding decision rule is

H; 1fS1(/<;) > T

Hy, otherwise.

where 7; is the threshold selected based on the false alarm rate for sensor i.

Following [24], we state the following two important results for CUSUM algorithm (5.8)-

(5.9):
- The probability of false alarm decreases exponentially as the threshold 7; increases,

- The time to detect an attack, (IV; — k;57i)+, is inversely proportional to b;.

5.2.3 Response Using Linear Model

While response is an essential task for information assurance, there are very few intrusion de-
tection papers proposing response strategies.

Our response strategy (shown in Fig 5.1) can be summarized as follows: For sensor ¢, if
S;(k) > T, the ADM replaces the sensor measurements g;(k) with measurements generated
by the linear model g;(k) (that is the controller will receive as input y;(k) instead of g;(k)).

Otherwise, it treats g;(k) as the correct sensor signal.
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We would like to point out that our response strategy is meant as a temporary solution
before a human operator responds to the alarm. Based on our results we believe that the time

for a human response can be very large (a couple of hours).
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Chapter 6

Experiments

In this chapter, we first explain how to determine the two parameters (b and 7) of the non-
parametric CUSUM statistic. Then, we describe how our defense system works under different

attacks.

6.1 Training Parameters

6.1.1 Training b

In order to detect the anomalies, we need to infer the expected value of the distance |; (k) —y; (k)|

between the linear model estimate ¢;(k) and the sensor measurement y; (k).

2 «10* A A

15000 25 25

x10'

X:0.015
Y:1.911e+04
L

@ o

X:0.015 2 18e+04 2

Y: 9951 L]

Figure 6.1: The paramenter of ADM: b. For y1, 9951 bs are 0.015. The mean value of by, is 0.0642.

We run experiments for ten thousand times (and for 40 hours each time) without any attacks
to gather statistics. Fig 6.1 shows the estimated probability distributions (without normaliza-
tion).

To obtain b;, we compute the empirical expected value for each distance and then round up
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to the most significant units. We obtain b,, = 0.064, b,, = 4.1, b,, = 0.041.

6.1.2 Training 7

Once we have b, for each sensor, we need to find a threshold 7; to balance the tradeoff between

false alarms and detection time.

False Alarm Rate

We run simulations for twenty times without attacks and compute the total number of false
alarms for different values of 7 (and for each sensor). Fig 6.2 shows the results. Taking ¢, as an

example, we notice that S, alerts frequently if we set 7, < 6.
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Figure 6.2: The number of false alarms decreases exponentially with increasing 7. This results confirm the
theory supporting the nonparametric CUSUM algorithm.

In general, we would like to select 7 as high as possible for each sensor to avoid any false

alarm; however, increasing 7 increases the time to detect attacks.

Detection Time

To measure the time cost of attack detection, we run simulations by launching scaling attacks

on sensors ¥, yo and ys. Fig 6.3 shows the experimental results.

e Fory,
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Figure 6.3: The time for detection increases linearly with increasing 7. This results confirm the theory behind

the nonparametric CUSUM algorithm.

— It takes 0.5 hours to detect the scaling attack when A,

50.

— It takes 0.1 hours to detect the scaling attack when A,

50.

e For ys,

— It takes 1.8 hours to detect the scaling attack when A,

5000.

— It takes 0.3 hours to detect the scaling attack when \,,

5000.

— It takes 0.5 hours to detect the scaling attack when \,,

8000.

e For ys,

is set to 0.9 and 7,

is set to 0.5 and 7,

is set to 0.9 and 7,

is set to 0.5 and 7,

is set to 0.5 and 7,

1S set to

1S set to

1S set to

1S set to

1S set to

— It takes 2 hours to detect the scaling attack when \,,, is set to 0.9 and 7,,, is set to 100.

— It takes 0.4 hours to detect the scaling attack when )\, is set to 0.5 and 7, is set to

100.

— It takes 0.5 hours to detect the scaling attack when )\, is set to 0.5 and 7, is set to
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100.

The selection of the 7 is a trade-off between detection time and the number of false alarms.
The appropriate value differs from system to system. Because the large number of false alarms
is one of the main problems for anomaly detection systems, we choose the conservative set of

parameters 7, = 50, 7, = 10000, 7,, = 200.

6.2 Safety of Automatic Response

A comprehensive security posture for any system should include mechanisms for prevention,
detection, and response to attacks. Most of the technical efforts for securing systems focus
on prevention (authentication, access controls, etc.) and detection (intrusion detection systems,
integrity codes, etc.). In contrast, there has been fewer efforts for designing automatic responses

to attacks.

The primary problem in designing a computer-automated response is that in several cases,
responding to attacks may cause various negative consequences. This is particularly true if
a response mechanism is triggered by a false alarm. In our proposed detection and response
architecture (Fig. 5.1), we have to make sure that if there is a false alarm, controlling the system

by using the estimated values from the linear system will not cause any safety concerns.

To address these concerns we ran the simulation scenario without any attacks 1000 times;
each time the experiment ran for 40 hours. As expected, with the parameter set 7,, = 50,
Ty, = 10000, 7,, = 200 our system did not detect any false alarm (see Table 6.1); therefore we
decided to reduce the detection threshold to 7,, = 5, 7, = 1000, 7,, = 20 and run the same
experiments again. Table 6.2 shows the behavior of the pressure after a response to a false alarm.

We can see that while a false response mechanism increases the pressure of the tank, it never
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Alarms | Avg yo | Std Dev | Max y,
0 27004 | 14.73 2757

Table 6.1: For Thresholds 7,, = 50, 7,,, = 10000, 7,,, = 200 we obtain no false alarm. Therefore
we only report the expected pressure, the standard deviation of the pressure, and the maximum
pressure reached under no false alarm.

Alarms | Avg y, | Std Dev | Max g5
% 61 2710 30.36 2779
Y2 106 2705 18.72 2794
Y3 53 2706 20.89 2776

Table 6.2: Behavior of the plant after response to a false alarm with thresholds 7,, = 5,7, =
1000, 7, = 20.

reaches dangerous levels. The maximum pressure obtained while controlling the system based
on the linear model was 2779k Pa, which is in the same order of magnitude than the normal

variation of the pressure without any false alarm (2757k Pa).

6.3 Detection and Response

Operating the chemical reactor with a pressure larger than 3000 kPa is unsafe (it can lead to an
explosion or damage of the equipment), so one of the main goals of an attacker is to raise the
pressure level of the tank to a value larger than 3000 kPa. In this section, we implement the
integrity attacks described in previous chapter, including multiplicative scaling attacks, delay

attacks, etc.

6.3.1 Multiplicative Scaling Attacks

Multiplicative scaling attacks deceive controllers by sending compromised sensor signals and
the controller is expected to respond with incorrect control signals. We launch scaling attack on

sensor 1, Y2, Y3 to see how attacks affect plant and the performance of ADM.
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e Attacking v,
We first launch scaling attacks to sensor y;(production rate) at time 7" = 10 (hr). By
lowering the production rate, controller opens the input valves to raise production rate
and causes pressure raise. However, the plant uses two controllers to protect the pressure.
The pressure stops raising when another controller observes pressure is over 2900 kPa and

turns down the input valve.

We enable ADM and repeat the experiment again. ADM detects the attack at time 7" =
10.1 (hr) and the pressure of i, remains around 2700 kPa. We conclude that attacking 1,

is not good because it doesn't make plant crash and is detected too fast.
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Figure 6.4: 17, = y; x 0.5

e Attacking ys
Sensor y, monitors pressure of the reactor. Attacking sensor y» by lowering the value

makes controller turn down the purge valve to increase pressure. In an unprotected system,
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the plant crashes at time 7" = 23.5 (hr) if we set parameter of scaling attack )\, to 0.5.

With ADM enabled, the attack can be detected at time 7" = 10.7 (hr) and the plant remains

stable.
y2 y2
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1500 I @ —mmm=- 1 1500 F |1 Y:1369
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Time (hour) Time (hour)
(a) without ADM, plant crashes at T' = 23.5 (hr) (b) ADM detects and responds to the attack at T' =
10.7 (hr)

Figure 6.5: 1o = yo % 0.5

e Attacking y3
Sensor y3 monitors amount of ingredient A in reactor. In an unprotected system, if we
set A, to 0.5 and launch a scaling attack to the sensor y3, then the controller detects a
low quantity of material A and adds more A into the system. This results in the lack of
material B and C. At time T" = 30.2 (hr), the value of y3 is 96.68 which means 96.68%

of the reactor materials are ingredient A. The plant can't keep running anymore and shuts

down.

With ADM enabled, such an attack can be detected at time 7" = 10.8 (hr) and the plant

system continues the reaction without influencing by compromised sensor signals.

Fig 6.7 shows the detection time costs when varying A, and launching scaling attacks to

the sensors v, y2 and ys.
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Figure 6.7: detection time v.s. scaling attack. Note that for A,,, = 1 there is no alarm.

6.3.2 Delay Attacks

Delay attacks delay sensor signals so that the controllers may slow down the reactions and fail to
respond in real-time. In this experiment, we launch delay attacks on y, monitoring the pressure

of reactor.

e Delaying y
We delay signals of sensor - so that the controller may ignore the variation of pressure.
Fig 6.8 shows the result of the delay attack on y5. Since the controller of y5 cannot correctly
react in time so the plant enters an unstable state. The experiment result shows that ADM
can detect the delay attack at time 7" = 24.5 (hr) even no forged signal is generated in this

attack.

After several experiments with different \;s, we conclude that the damages resulted from
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delay attacks are related to the delay time A,;. Larger )\, leads to higher probability of
crashing plant systems, but it may be easier to be detected by ADM. In addition to the
delay time, noise is another significant factor that may affect the probability of crashing

plant system. Different orders of the same noise may lead to different degree of damage.

In this experiment, we run simulations for 100 times to observe the relationship between

delay time, crash time and detection time (see Fig 6.9).
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Figure 6.8: 9(t) = y2(t — 10)
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Figure 6.9: delay time v.s. crash time & detection time

From the results, we found that different delay times lead to different crash times and
detection times. To eliminate the uncertainty of noise, we combine an scaling and delay

attack and study the effect of compound attacks.

e Delaying y» & multiplying 1,
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In this example, we launch a delay attack and scaling attack on g, and y; respectively.
Fig 6.10 shows the experiment results, where the scaling attack deceives and delay attack
slows down the controllers under attack. Without ADM, the pressure exceeds 3000 kPa
and plant crashes at time 7" = 15 (hr). Scaling attacks can be detected at time 7" = 10.2

(hr) when ADM is enabled.

Compared with just launching an single attack, neither scaling attacking on y; (see Fig 6.4)

nor delay attacking on gy, can crash the plant system.

y1 y2
120 - 3050 =
_ | . - -1 .
5 X: 15
o — X:15 1 — .
£ 10 Y1 1SN = 2950 Y2 Y: 3002
° o
E x
£ z
3 100 1 — £ 2850
& !
B ! T
3 90 1 e q 2750
g v -
1. “tel,

80 : L : 2650 : : :
0 5 10 15 20 0 5 10 15 20

Time (hour) Time (hour)
(a) without ADM, system crashes at 7" = 15 (hr)

Yy Y2
120 ~ T T 3050 ~

o SR
110 — Y1 1 2050 —— Y2

100 2850

Pressure (kPa)

90 1 2750

Product Rate ( kmol / hour )

h J
X:10.1 |
:‘ X101 WW
80 u 2650
0 10 20 30 40 0 10 20 30 40
Time (hour) Time (hour)

(b) ADM detects attack at 7' = 10.2 (hr)

Figure 6.10: 41 (t) = y1 * 0.8 & ya(t) = y2(t — 10)

e Delaying y» & multiplying y3
Next, we attack sensor y3 instead of y; to understand how the compound attack works. In
the original plant system (without ADM), Fig 6.11 shows that plant goes to unsafe state at
time 7" = 16.2 (hr). Compared with just launching an scaling attack on ys (see Fig 6.6),

the compound attack takes much less time to crash the plant. The reason is that the delay
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attack compromises sensor ¥s, so that the controller of 3, can not obtain real information

to fix the warning condition of pressure in time.

Eventually, ADM detects the attack at time 7' = 12.2 (hr) and the plant goes back to

control. In short, although the compound attack shortens the crash time, ADM still detects

the attack in time.
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Chapter 7

Stealthy Attacks

We have shown that the ADM can detect a wide range of attacks. We now consider a more
powerful adversary that knows about our detection scheme. We take a conservative approach in
our models by assuming a very powerful attacker with knowledge of: (1) the exact linear model
that we use (i.e., matrices A,B, and C), (2) the parameters of the ADM (7 and b), and (3) the
control command signals. Such a powerful attacker may be unrealistic in some scenarios, but
we want to test the resiliency of our system to such an attacker to guarantee safety for a wide

range of attack scenarios.

The goal of the attacker is to raise the pressure in the tank without being detected (i.e., raise

the pressure while keeping the statistic he controls below the corresponding threshold 7).

7.1 Model Stealthy Attacks

Stealthy attackers may attack the plant system stealthily and carefully not to trigger the alarm.
To avoid triggering the alarm system, the attacker computes Si.s and makes sure that Sys don't
not reach the detection threshold 7. For this reason, the attacker sets two new thresholds A, 7
and A\, 7 (A\s; > As,). The value of S rises up when the system is under attack, otherwise it
falls down. To stealthily attack an system, the attacker pause the attack when S exceeds the
first threshold (S, > A4, 7). The attacker relaunches the attack after Sj, falls under the second

threshold (Si, < \,,7). To pause and restart the attack, the attacker sets a flag F), for indication
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(1 for pause and 0 for restart).

There are a variety of implementations of stealthy attacks. We can realize an stealthy attack
by launching additive, scaling, delay attacks or any combination of them. Thus, we model an

stealthy attack (77 (t)) as follows

No attack:

yi(k) for k ¢ K,

Under attack:

yi(k), F, 1 for Sy < As,7

Uty =19 y+(k) for Ay, < S, < Ay,7and F, = 0

Pause attack:

yi (k) for A\;,7 < S < Ag,Tand F), =1

yi(k), F, — 0 for S, > A\, T

In this model, ;" is the combination of additive, scaling and delay attacks. It is represented

RRTANC (TER VA T 5
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7.2 Experiments

Theoretically, it is difficult for ADM to detect the stealthy attacks since attackers stop attacking
the plant system once S exceeds the first threshold A\s, 7 (A;; < 1). In this experiment, we
implement stealthy attacks in three ways, by scaling, noises and combining scaling and delay
attacks.

In the first example, we stealthily launch a scaling attack on y,. We specify A, as 0.9,
As; = 0.9, and A\;, = 0.7. From the experiment results shown in Fig 7.1, we observe that ADM
does not detect any attack and the stealthy attack does not cause any injuries in the plant system

neither. Before relaunching the next attack, the plant system goes back to an stable state.

Y2 S0y,
10000 T T

3000 s
-4

2800} —Y2 8000} W

f 6000
2600f !

kPa

4000

Pressure
—
—

n
5
o
S

L}

2000

2200 0
0 20 40 60 80 100 0 20 40 60 80 100

Time (hour) Time (hour)

Figure 7.1: stealthy attack(ya = y * 0.9)

The second example of a stealthy attack is implemented by an additive attack. Normal
distribution noises are inserted into the sensor signals ¥,. Fig 7.2 shows that the signals oscillate
and the plant becomes unstable during the attack, but the plant system recovers once an attacker
pauses the attack for avoiding the detection by ADM.

The last example implements the stealthy attack by launching a scaling attack and a delay
attack on y3 and g9, respectively. In this example, we specify A, as 1.2, A4 as 10 hours. Fig 7.3
shows the sensor signals of ys, i3 and their Si.s. The compound attack is launched at time 7" = 10
(hr) and paused after 2 hours. The results in Fig 6.11 show that the attack duration is too short

to crash the plant.
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Figure 7.3: stealthy attack

Defending against stealthy attacks is significant since stealthy attacks not only represent
insider attacks but also the attacks want to evade ADM. Our approach shows that even though
ADM fails to detect stealthy attacks, we can keep the the plant in safe conditions. Conclusively,
the attacks want to evade ADM lose their threats to the plant. ADM ensures safety of plant no

matter there is a attack or just the disturbance.
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Chapter 8

Concluding Remarks and Future Work

In this work we conducted threat assessment of sensors of a well-studied process control
system, TE-PCS, and introduced a methodology to design detection and response mechanisms

for such control systems.

We showed that an attacker can compromise the safety of the system by attacking different
sets of sensors. Since all attacks take several hours to cause a significant damage, we believe that
building an anomaly detection module may offer a cost-effective security solution in comparison
to investing in more costly tamper resilient devices.

By proposing an anomaly detection scheme we are able to detect and respond to attacks.
Our anomaly detection scheme does not have any false alarm under the optimal configuration.
Under a suboptimal configuration (designed to raise alarms), we show that a false alarm (which
forces us to operate the plant under the representative model instead of the sensor readings) still
maintains the safe operation. We also show how our scheme maintains the safe operation of
the plant even against powerful stealthy attacker who has knowledge of the parameters of the
anomaly detection module and who can compromise all sensors.

Our approach shows the utility of anomaly detection and automatic response by using a
representative model of process dynamics of the system. Even though we have focused on the
analysis of a chemical reactor system, our principles and techniques can be applied to many
other physical processes. An automatic detection and response module will not be a reason-

able solution for all control system processes; however, we believe that many processes posses
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the characteristics similar to the TE-PCS, and so our approach would potentially offer a good

solution for these processes.

Our model-based detection and response method can be extended to other control systems if
the attack detection module is equipped with a representative model of the system. Since many
control system operators have access to a reasonably large data set of sensor measurements and
control inputs under nominal operating mode, a representative model can be constructed using
system identification techniques. Moreover, as more data corresponding to operating modes
under attacks (often with reduced functionality) become available, representative models for
these operating modes can be created. A sophisticated response strategy would then be to switch
between different representative models corresponding the operating mode identified by the
ADM.

Finally, we would like to emphasize that the automatic response mechanism should be con-
sidered as a temporary solution before a human investigates the alarm. A full deployment of
any automatic response mechanism should take into consideration the amount of time in which
it is reasonable for a human operator to respond. In our chemical reactor plant the response time

can be very large since the plant dynamics change slowly.
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