5 i X @ K B

B ER I EI T %
B

HiO
e
A

F RSV REME G IEFH TENMER R HE

Improving Mobile File System Performance with Hybrid Caching

Mechanism
W 3% & - BT
Student: Un-Pan Ian
BEHE =8 Bt
Advisor: Dr. Yu-Lun Huang
hERBEAT+N\ERA

Summer, 2009

M ARG IVIRINEHIRFA I TENER R EE

Improving Mobile File System Performance with Hybrid Caching Mechanism

it 5% & - BT Student: Un-Pan Ian

BEHIE 584 Bt Advisor: Dr. Yu-Lun Huang

Bl i X B KX 2

BRERIEHI TIESER

A Thesis
Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering
National Chiao Tung University
in,partial Fulfill of the'Requirements
for the Degree of
Master

in

Department of Electrical and Control Engineering

Summer, 2009

Hsinchu, Taiwan, Republic of China

hERBINA+/N\FKA

MAESIVIRINEGIRFHTENERRH L

HE

B E RS RS 191
B % B A BEMREHNTEER (WRM) B

b 4

T

B IRENEHI ESRIEERE DV RBIER ARG HEFINNENEERE -
HERRARBEEZRIITEMEERRAAT » B ROEFRINEHITZEIR
(Whole-File Cache ™ &% WFC) MIE 5285 fREX (Block-File Cache f&§FEBFC) - Hrop -
WFC B—EEZERAR 2N RBIERR AP RIS RS - 58 WFC » ERET
DPEAREIRREEREZ - NEEEREFINEEERSARAEN RIS AR E R
& o BFC WEFRHIAIZIRERIIBI R ZENR - LERSER © BITERTE -
GEEMERASE © BFC EREMLENEREER - MAREGREERAST - &E
EABTEHAZHERT ' BFC U AB N EEREHMMENAE R REFEH N
TEERmX T HMERET—EESNAYIREMEE] (Hybrid Caching Mechanism * &7
HCM) - %5 WFC B BFC mfEIRENH - EHAEKIFITEINERRATHERER - K
INETY - BIEEAERIREEE - MRAZRITEMERR ARG E@EAZENEE
ASHASERRIREZ HOM BEB R e EB B X HRENERER @ WatlRMELBRINESR
FENINEE - EARMRD - HMAEBE—EEWER - 2TAERAS|IA HCM BERRS
HIREDN = ©

Improving Mobile File System Performance with Hybrid

Caching Mechanism

Student: Un-Pan [an Advisor: Dr. Yu-Lun Huang

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

File caching mechanisms are essential to the performance of network file systems,
especially for mobile. file systems.-The file.cache is a specific, reserved area of virtual storage
in the range of systemrmemory address. It operates on files or file blocks. Whole-file cache
(WFC) is one of the popular file caching mechanisms used in distributed network file systems.
With WFC, the file client keeps a local copy of the file obtained from the remote file server.
As long as the requested file remains resident in the cache, subsequent file I/O requests are
resolved directly from the cache without accessing the remote file server. Hence, the
communication costs are reduced. Another file caching mechanism, block-file cache (BFC),
intends to store a file in the local cache in blocks. Although more header overheads are
introduced to store the block information, only dirty blocks are transmitted during updates if
BFC is applied. Compared to WFC, BFC dramatically reduces communication costs if the size
of dirty blocks is much smaller than the whole file. In this paper, we design a hybrid caching
mechanism (HCM), combining WFC and BFC, to select a proper caching mechanism for a file
according to the file type, file size, etc. After conducting a series of experiments, we show that

the proposed mechanism offers a better performance than the traditional mobile file systems.

i

BARERGSHENENESRREEMREL - FRRXENIENTRERTES
BRBENMOEE - T2RSEHETERNREE LA TRSENEH EHE
MECEBNMREAS - EHHRHENREE - [RTEBMARL - =8E+2E
BN EBEERREFEEE MEEESRMNOESE - FHERETRMEER
£ HRMIEHHNAECRNES - feNERNBE - BHEHNR

EERERHRERENRE - ZEEMANETHIE - EF —HURERNIRK
2F o AHEARENEREESHINEEEEEFHWRA - ELAERALERE
BENEE - BEGMEHEAERANES -

S—1H BERBFHRTESERZENABME, FRIRE SE TS REREENIRE
EXENEENZREBEER/ME » TifiztLin 7 WIFEAZENFIEERS - J5X
BRMIEMESE HEDZRESELECNBZBBHBRELE IRREFAZE - M
RERBMABHERS ESEMERELENERGM - SBEHREM - RNBBEERE
AIMEE -

L5 - HEERHBNREHE - BE—EEHE LERRMATKNERME
MESY ~ RZEEE - RICFE - EEMT - AR - REIENE - RRIRERE @ ANFRNEIL
EEUIE T IFE SRNIRIEMOIE - I SEEZE D o EEIHE BN - 5
RARSHNBENRAE—BREENBRE - FRFEAR RN —RIWEGIRIERE
85 - BEHTM - BERTKRBEENERRSE - KABEREHK -

RV CTRAT - BIRAREGEL AFTHREE - RBEHAERNESERTMNNE -
RERETEMNENELTINGR - B LXK - BRMAEE—ZHE - BFESEAX

il

= BMEE=E -

Ri2 EUERMXRERALEPIERNF - ®EXE LA - TEREHFRER
EERNRHREE - HHERRBAZFEAWITE - EREEE—EESFEREHE
&% THE-EFEERNGEN - BBET ME—E8—EHERBHETFEN - BF
RE FthEREHFHIE!

v

Contents

iEES i
i

i

[Table of Contents| v
[List of Figures| viii
ix
[Chapter 1 Introduction| 1
(1.1 Motivation|. v . . o o o s o 1
(1.2 Contributions|0 .00 L e s 2
(1.3 Synopsis| . «v v e vt v s e s e e e 2
[Chapter 2 File Caching Mechanism| 3
2.1 Whole-fileCachel. o oo 3
2.2 Block-ileCache| o oo oo 4
2.3 ProsandCons| o e e e e e e e e 6
[Chapter 3 Distributed File Systems| 8
[3.1 NetworkFileSystem| 0000, 8
3.2 AndrewFileSystem|o o oo 9
3.3 Codal. . .. L e e e e e e e e e 9

4 AshFS| o o s e 10

[3.5 Low-bandwidth Network FileSystem|. 10

[3.6 Mobile Fileand AdaptionSystem| 11

[3.7 Nested FAmilLy of LineSegments| 12
[Chapter 4 Hybrid Caching Mechanism| 13
M.1 Overview| o L e e e e e e e e e e e e e e e e 13
................................. 15
[4.2.1 Fileformat| L o oo 15
[4.2.2 Filesize] o e 17
[4.2.3 Templates| oo Lo 17
[4.2.4 Strategy] W e e e e 19

4.3 Inmtialization[. o0 L0l e s 20
[4.3.1 Segmentation|0 uL oo oo e e e 21
[4.3.2 Digest] ©. . . oLl s e e e e 22
[4.3.3 lIdentification|.0 ..o o oL Lo oo 23
[4.3.4 Snapshot| . . ./ ..o oL oL e 25
[4.3.5 SuperSnapshot].<. o L Sl L oo o oo 26

4.4 Handshakel. . <« oo . . . o o o L 27
4.4.1 WFC|l . . o e o e e e e 27

4.4.2 BFCl e 29

4.5 Consistency| o e e e e e e 31
[Chapter 5 Analysis| 33
.1 StorageCost| L L e 33
>.1.1 BlockSize Distribution|o 0oL, 34

B.2 TimeCostl o o e e e 35
0.3 BlockSearch|. L oo 36
(5.4 Bandwidth Utilization (HCMvs. WFCvs. BFC)l 36
(.41 ReadCostl 36

vi

[>.4.2 Write Cost

[Chapter 6 Conclusions|

References

vii

List of Figures

2.1 Whole-filecache|.o o oo 4
2.2 Block-filecachel o oo 5
4.1 Architecture of (a) general file system (b) file system withHCM| 14
4.2 Templateselectionflow|00 19
4.3 BFC-usefilestructurel 000 0oL o o 21
4.4 BFCInitialization preprocess|e « & ove v v v v v v v v v v w s e e e 21
4.5 Using Array and Link-listed on BFC mechanism|.. 24
4.6 Snapshotcomposition| ¢ ..o Lo 25
(4.7 Super Snapshot composition| .= .o . oV L e o e e 27
4.8 WFC-downlaod|0 .0 oo o v o i ol 28
4.9 WFC-upload]0 i d v it it et e e e e 28
[4.10 BFC-download|o o L Sl oo 30
M.11BFC-upload| "~ « v vo Lo s 31
.1 BlockSize Distribution| oo Lo 35
.2 HCMReadCost]. ittt et s s 37
5.3 HCMWrite Costof Small DataSet| 38
.4 HCMWrite Costof BigDataSet| 39
.5 HCMWrite Costof AllDataSetf 39

viii

List of Tables

2.1 WFCvs.BFC| o o s 6
M.1 Templates| o L e e 18
.1 Averageblocksizevs.Overhead 34
(5.2 Time cost of two initializationprocess| 35
5.3 Blocksearch timeofalistvs. Link-list] 36

1X

Chapter 1

Introduction

1.1 Motivation

In recent years, mobile devices are far intimate with our daily life. Different from the
desktop device that typically run network on LAN orrADSL; mobile devices usually access
network through WLAN, 3G oreven GPRS, which connections are often unstable and speed
are usually slow, especially when-we-are on a moving transportation or vehicle. Many mobile
file systems are developed recently to overcome different network application environment,
most of them support disconnected operation and file consistency, which support users to
access file much more smoothly under mobile network. To accomplish those operations, a
local cache is the decisive factor: CODA [[1] utilizes the cache policy of whole-file cache
(WFC) which fetches a file to local cache entirely and beforehand to achieve the
disconnected operation. Users can still read files smoothly even the network is unstable, and
users do not need to fetch the file again when they execute the same file again. On the other
hand, Youtube support users to watch the video file while downloading it. This is block-file
cache (BFC) policy, which usually apply to video streaming. We can start watch the
video as soon as possible, unnecessary to wait until the file finish fetching. Commonly most
file systems apply one cache mechanism as cache policy. We can see that these two cache
mechanisms WFC and BFC cache both have their own advantages, but still inefficient in some
situations. So we suppose that if we utilize this two cache mechanisms suitably, we can get

1

better performance and enhance the average efficiency.

1.2 Contributions

In this paper, we will analyze the pros, cons and the most applicable case of employment
of the cache mechanisms WFC and BFC in detail. Then we design a hybrid caching
mechanism [EI] that combining the WFC mechanism and BFC mechanism into a file
system, which supporting auto selection of the cache mechanism in the most suitable way by
templates. Moreover, in BFC mechanism; we propose some methods to enhance the BFC
mechanism performance such as file'consistency, block search time, and block management.
We expect that file system with hybrid caching mechanism can conserve bandwidth

significantly and maintain acceptable performance.

1.3 Synopsis

The paper is organized as follows. In chapter introduces the caching mechanism of
WEFC and BFC in detail, respectively. In addition we compare the pros and cons of WFC and
BFC. Chapter introduces the distributed file systems that are related to our research.
Chapterlé—_ll discusses our hybrid caching mechanism design. Chapter show the analysis and

some experiments of the HCM performance. Finally chapter|§| concludes the paper.

Chapter 2

File Caching Mechanism

Whole-file-cache (WFC) and Block-file-cache (BFC) are network file system cache
mechanisms, with the aim of enhancing the file accessing efficiency, conserving valuable
network services bandwidth (services fees and access time). In the following paragraphs, we
introduce the characteristics of WFC and BFC, in addition to the advantages and the

disadvantages, respectively.

2.1 Whole-file Cache

WEC is a network cache mechanism which fetches files entirely from server to local
cache. WFC is designed for reducing bandwidth consumption, supporting disconnected
operation, and additionally enhancing transmission-efficiency. As shown in Fig. WEC
treats a file as a single file block plus a header with meta data inside. WFC mechanism
performs as a system stores the entire file that users can access through the internet in local
cache. Then when users once again access the identical contents can easily find it in the local
cache directly, unnecessary to access through internet. This is the key point of saving
bandwidth and also execution time; Meanwhile, WFC also allows users to execute the files
smoothly even though under the unstable even disconnected network status. WFC has a great

performance on saving the re-fetch bandwidth.

However, we do not utilize a file thoroughly in every read, possibly only some part of the

Server Disk

Server ‘ H ‘ A ‘
Server files
[H] B |
Requested file
WEC request ‘ " H 8

p
P Fetched;a{@k\sat a time
S

Client Client Cache

Figure 2.1: Whole-file.cache

file; moreover, whole<file cache also-means whole-file update, this means that we need to
upload a file to server entirely even though we have only modified a few portions of the file.
To lower the foregoing redundant bandwidth consuming, we propose to add one more cache
mechanism to the cache policy of the system, that is, block-file cache (BFC), trying to gather
the advantages of both WEC and BFC and also to complement the mutual shortcoming to get

better performance.

2.2 Block-file Cache

BFC is also designed for reducing network bandwidth consumption, utilizing the
cross-file similarities. The mechanism of BFC is shown in Fig. BFC divided a file into
data blocks, where each block size can be fixed or dynamic. Besides, there are a metadata
header at the beginning of a file and an index header of each data blocks. During the read flow,

BFC is similar to the WFC but only fetches several blocks in each request instead of directly

downloading the entire file. Client sends file path (fp), numbers of blocks to fetch (n), data
start point (sp) to server in every request. The primary purposes of BFC both are efficient data
access: 1. how much we need/change, how much we download/upload. 2. Faster response.
For example in 1, when a user reads a pdf document, user may not read the whole of the
dozens of pages of documents thoroughly, possibly user may only read several pages and then
close the file and never access it again. In this case, downloading the entire file but leaving
most of the parts unused is inefficient.

Under this situation, for example, an external prediction process can help to have great
performance with our mechanism for predicting the user's reading manner, in order to
determine whether system to fetch the next part of the file or not. Continuing the previous
example, initially the system fetches-the first 4 pages of the document. When the user is
reading the 3rd page, we can predict that user is willing to read the file continuously, and then
the system fetches the next 4 pages. BFC saves the bandwidth by reduce fetching unused parts.

One key point to the prediction function is that the application is necessary to recognize the

existence of BFC, or says application-aware. Otherwise application may not benefit by BFC.

Server Disk

St Ml a T Tm [m [a [a]
Server files
W e [ez [| es [[&s [| &s [[&6 [&7 |
Requested blocks
HE e[ez | e [l e+ [es |
BFC request 1 BFC request 2
fp, nl, fp, n2,
' sp2
spl P [| :Snapshot of block
Pl et N s2 [[es J ¢ [&5 |
Client Client Cache

Figure 2.2: Block-file cache

On the other hand, since a file is divided into blocks, we can also update the file to/from
server by blocks. That is, we can compare the difference between the original file and the
modified file, to find out which blocks have been modified. Then only those dirty blocks need

to be uploaded/ downloaded. As a result, the network bandwidth can be reduced substantially.

2.3 Pros and Cons

It seems that BFC is quite efficient than WFC. However, the design cost and hardware
support of BFC are respectively much higher and much more complicated than WFC.As

described in Table.

Advantages Disadvantages
Simple Longer response time
WEC
Directly perceived | Heavier upload workload
. Overhead from snapshot
Faster response time A
BFC and round trip time

Less bandwidth Complicated

Table 2.1 WFC vs. BFC

In BFC, for the partitioning file and distinguishing file blocks, we need to apply a hash
function [[7]] to the system. Compared to the WFC mechanism which fetching the file entirely,
BFC must introduce extra overheads on managing data blocks, identifying and preparing each
block. Therefore, if the size of the target file is too small, or we partition the file into too many

blocks, the rate of those extra overheads would be very high and lower the efficiency seriously.

As a result, there is no significant index can figure out that which cache mechanism will

be better, it's totally based on the certain using situation. Actually, WFC and BFC are

developed on different aspect, both of them have their own pros and cons. Only one of them
cannot achieve the best efficiency necessarily. Instead the use of two mechanisms
appropriately is expected to reach two complement each other. Particularly under different
situation, they will have significantly different performance.

We suppose that file size, file format, wireless network stability and bandwidth, in
addition the accessing frequency of the file, etc. would be the critical factors to the
performance of network file system.

Nowadays, there are a lot of file systems implement WFC mechanism; relatively less
implement BFC. In this paper, we try to implement these two cache mechanism in a single file

system in order to achieve better performance than that of implement only one.

Chapter 3

Distributed File Systems

3.1 Network File System

Network File System(NFS) [|§]] is the first widely deployed transparent file system which
allows hosts to mount partitions-ona remote system and use them as though they are local file
systems. This allows the system administrator to store resources in a central location on the
network, providing authorized users-continuous-access to them. The NFS protocol was
intended to be as stateless as possible. That is, client does not aware what the present server
status is, and all the operation will be blocked if there is no any response from server. Besides,
NFS uses a minimal caching scheme, no any cache mechanism is applied in NFS. It does not
fetch files in local cache so there would be in a high-latency easily during the low bandwidth
connection status because of a large number of operation messages transferring over the
network. Although in the latter extensions, NFS has outstanding improvements on network

security, the mobility support of NFS is still not enough.

The authentication of NFS server is through IP and subnet mask. For mobile users, they

usually cannot get stable IP, which makes users more difficult to use NFS in mobile network.

3.2 Andrew File System

Andrew File System (AFS) [2]] is large location-transparent distributed network file
system with very outstanding performance, particular on security and scalability. AFS can
support about 5,000 workstations in a time. AFS clients apply the cache mechanisml of
whole-file cache to keeps replicas in local cache, which can increase the operation speed once
the same file is accessed. AFS adopts the scheme of write-on-close, which clients write the
modified file back to server only when the file is closed. Besides, AFS server transmits a
callback message to clients to inform that some new updates of file are appeared. AFS has
wonderful performance on network file system and with widely acceptation, where the NFS

version 4 is heavily influenced by AFS.

3.3 Coda

Coda [|1]] is a large=scale distributed network file system composed of Unix workstations,
and which supports low bandwidth, server replication, disconnected operation and upload
conflicts to overcome the network failures.. Server teplication is a mechanism to store copies
of a file at multiple servers in case any designate servers malfunction. Disconnected operation
is a mode of execution with the cache mechanism of whole-file cache in which each client
utilizes the local disk as a file cache to store files and directories entirely. Whenever the server
is out of reach, clients can still operate the file system and execute the fetched files smoothly.
If there is any update action requested during the disconnected status, the requested files will
be propagated to the server as soon as the connection recovers. Disconnected operation is
particularly useful for mobile network and portable devices. Moreover, Coda has security

model for authentication, encryption and access control.

The design of Coda optimizes for availability and performance, and tries to provide the

highest degree of consistency attainable in the light of these objectives.

3.4 AshFS

AshFS [EI], a Coda-like network file system designed for mobile network which supports
automatic synchronization and disconnected operation, is based on FUSE(a file system built
on user space), and develop using SSHD protocol for transferring messages, sftp and rsync for
files to ease installation and deployment. The cache mechanism of AshFS is whole-file cache,
which fetching the entire file and store it in local cache. The disconnected operation is similar
to Coda, but upload file only when-the connection strength is strong. Moreover, it advocates
no server-side changes, sever do not need to install any new component when mounting this
system. AshFS has great performance on preserving bandwidth. In-addition, the network
variation does not affect the system's performance severely, the system can aware any change

in the network status and adjust the System setting sooner.

3.5 Low-bandwidth Network File System

Low-bandwidth Network File System(LBFS) , a network file system designed for
low-bandwidth networks. LBFS exploits similarities between files or versions of the same file
to save bandwidth. If data is found in client's cache or server's database, LBFS avoids sending
it over the network, only the different part of a file will be sent. The cache mechanism of
LBES is block-file cache-like. LBFS file server divided the files into blocks based on content,
using SHA-1 hash function [[7]] on small regions of file to determine blocks boundaries. On the

other hand, LBFS also indexes file blocks by hash value and a <file, offset, count> triple in a

10

database. Before transferring a file, server and client will check every block of the file in both
sides, then only the different (or modified) blocks will be transmitted, to avoid transferring the
redundant parts and save bandwidth. Under common operations such as editing documents
and compiling software, LBFS can consume less bandwidth than traditional filesystem. The
concept in cache strategy of our system is close to LBFS, but we try to hybridize WFC and
BFC in a single filesystem, and we avoid using the term ““offset" on indexing as we advocate
that any block insertion or deletion would cause a considerable workload to system as every
latter block's offset need to be modified. In my system, we will use another approach on

indexing the blocks to avoid the term "offset'.

3.6 Mobile File and Adaption-System

Mobile File and-Adaption System(MFAS) |]é—_1|] is a mobile file system supports fine-grained
file caching and consistency, and also supports network connectivity awareness for application
to adapt the caching and consistency behavior over the variable network conditions. Moreover,
MFAS proposes a policy of‘application-directed consistency, which allows applications to
decide their own consistency model based on their requirement and the available networking
resources. MFAS brings out 5 templates to indicate the consistency clearly to application
under different file types. In our system, we have similar policy, but we focus more on BFC
and the conditions of block segmentation. On the other hand, MFAS supposes that the policies
of updates-only and partial-file caching is the most important part of the system, which
concepts are similar to our block-file cache and block-file update but in different

implementations, where we apply hash function for indexing the blocks.

11

3.7 Nested FAmiLy of Line Segments

. Nested FAmiLy of Line Segments (nested FALLS) presented an efficient approach
for remote partial file access based on a compact pattern description language, which supports
client request data from server partially. FALLS sends each request by a compact description
for all the required parts of a file to server, to save the handshake traffic between client and
server. On the other hand, FALLS proposed an element called file format reader, which assists
applications to read the file in partial smoothly without application-awareness. We follow this
concept in our system, suppose that there exist a reader between our file system and
application, decoding the file blocks to the original file format so they are readable to
applications. Moreover, we suggest that application-aware can increase the efficiency of our

file system.

12

Chapter 4

Hybrid Caching Mechanism

This system is designed for reducing bandwidth consumed on file transfering by
hybridizing the cache schemes, WFC and BFC, and picking up suitable cache mechanism
exactly for different situations. In particular, we suggest using the close-to-open consistency.
Only when a user had modified and then closed.the file,.in addition the network status was
strong enough, upload start. On the hybrid solutions of WEC-and BFC, we try to analyze our
selection in several aspect: file size; file format and application type, etc. In order to save
bandwidth, we suppose that adding BFC to original file system can lower down the average

communication cost:

For the remainder of this chapter, we first introduce the architecture of HCM, and then we
introduce our hybrid caching strategy, after that we discuss the mechanism of WFC and BFC

in detail.

4.1 Overview

Fig.4.1|illustrates the architecture of general file system (a) and a file system with HCM
(b). We can see that HCM is designed inside the both client and server file system. In the
HCM client side, two local caches are arranged for WFC and BFC, which store the replicas

from server in respective mechanism.

HCM takes charge of all the works for hybridizing WFC and BFC that we mentioned

13

‘ Application ‘ i

1

* Interpreter i

File Client % i File Server

‘ Ao ‘ || Hybrid Caching | | Hybrid Caching
! ! Mechanism | Mechanism
| t |

: i I e —
File Client «ﬁ File Server i 3 % %

File Client (a) File Server d
File Client (b) File Server

Figure 4.1: Architecture of (a) general file system(b) file system with HCM

before, such as the select strategy of WFC and BFC; BFC preprocess, and handshake protocol
of WFC and BFC, etc. Blocks (or file) will be stored in the local caches after every
transmission. Once application accesses the same blocks (files), system can provide the blocks
(files) directly from the local caches. Except the server support of WFC and BFC
transmission, the preprocess initialization of BFC is mainly proceed in the HCM server side, as

the computational performance of server are much-higher than mobile devices.

When we apply file in BFC, we fetch files block by block. For identifying and searching
the target blocks, a snapshot including digest and block identification information must be
added into every block. As a result, these extra data (snapshots) beyond the original file data
may cause errors during the execution because applications do not familiar with those data.
Another example that would also cause error is that in some file format, metadata would be
added both at the beginning and the end of the file. If we fetch the blocks sequentially, the
block file might be unreadable because of the omitting metadata placing at the end of the file.

Consequently, we need an extra handler to coordinate between the application and the file

14

system. In this paper, we focus on the analysis and hybrid cache mechanism design of WFC
and BFC. So we assume that there is an interpreter (Fig. (b)) that takes charge of
reconstructing the blocks into the format that the application can read before application
receives the target data from the file system in client side. Moreover, the interpreter also
collects the essential metadata for application. On the other hand, if application aware the
existence of HCM, then application can execute more effective by skipping the interpreting

step. We will discuss more about the file formats later.

4.2 Criteria

In order to enhance the system-performance, we need to select WFC and BFC in the most
suitable time. Here we suppose the following two factors would be the decisive points to

determine which cache mechanism is more suitable under different case.

4.2.1 File format

In HCM, we suppose that large file'can gain-benefits transmitting by BFC mechanism.
However, under the aspect of block execution, not all the file formats can execute with data
piece even we obtain the complete header or metadata, and usually the specification
documents that describes exactly how data is encoded are also unpublished. For example,
Mircosoft Word encodes file into binary code, any of a bit missed in the file content affects a
large-scale of the original data content. Even if we can get the encoding algorithm through
OpenOffice organization , it is still not an good idea to implement the decoding algorithm
on mobile device. As a result, it is hard to gain benefit on Word format by using BFC

mechanism, and the other encode/decode-like file formats are also unreachable. File formats

15

like Mircosoft Office series have similar property.

Test on different formats

We did some simple tests on common different file formats by deleting some random parts
of a file using text editor, try to find out the metadata location and to discuss whether the file
formats are suitable to apply BFC or not. We tested audio, video, ASCII text, image file,
Mircosoft Office series file and also pdf files. Audio file such as mp3 are store file into frames,
it is similar to that divide into blocks, so we can apply our BFC mechanism to audio files.
Furthermore, the metadata of mp3.is'placed at the beginning. Video files are mostly similar to
the audio's, no matter the data contents and metadata storage ways, but some format like .mov
which implements special encoding on the file data stream. ASCIL text files such as .txt, .c, .h
and some calendar format are saved as hexadecimal ASCII code, any of insufficient data of a
character just affects.itself. As a result, ASCIL text file is suitable for BFC mechanism. No file
metadata is placed on' ASCII text file. Image file such-as bmp and jpg builds data file
sequentially, it also can put on. BFC. Mircosoft series file such as .doc, .ppt, .xls encode the file
in their own algorithm, any missing data in-data'stream would cause a large-scale of precious
data section unreadable, or even file inexecutable. Therefore, we do not suggest use BFC
mechanism on Mircosoft Office files as the application of read on fetching, but we still can get
benefit on the aspect of upload process. Finally pdf file arrange file data based on pages, there
is no relation on storing between two independent pages. In addition, PDF has a header and
trailer metadata at the front and the end, we need to collect both of them firstly. Furthermore,
there are many pairs of control message in a pdf file, missing one of the pairs would cause

error, as a result we still can apply BFC mechanism to pdf file but need specially handle.

16

4.2.2 File size

When we apply BFC mechanism to a file, extra overhead is necessary to be added into the
file, and we also need extra workload on handling BFC mechanism, including the BFC
initialization, recognition, transmission and execution. As a result, if a small size file apply
BFC, not only it cannot obtain better performance, but also increase the device's workload
even if the format is fit to use BFC mechanism. So, we suggest that if any file size smaller or
equal to a constant, says 7, we use WFC mechanism directly. Otherwise, we will determine it

by the next factor.

4.2.3 Templates

After determine the selection-of WFC and BFC, as every format (or application) has it's
own characteristic, we build some templates to assign different cache setting based on different
file format and application. A brief description for the supported templates will be introduced

in the following:

BFC Template

For files which size are larger than 7 and formats are suitable for BFC's application. Here

we define three BFC templates for several different situations.

e BFCFIX is appropriate for the file that we seldom or even never modify, but we can get
benefit on fetching, such as the video and audio file, .avi, .mp3, etc. BFCFIX divides file

into fix blocks.

e BFCVAR aimed to the ASCII text-based file, which user make insertion and deletion

commonly to the file. File format such as .c, .cpp, .txt, .jpg and the calendar file, etc, can

17

have greater performance by using the BFC. However, if this kind of files is set to

unable to be written, we use WHOLEFILE template.

e BFCSPEC particularly focus on the files that metadata locates both at the beginning and
the end, for example, pdf files. Moreover, pdf file builds file data page by page, so we
divide the file blocks to match the pages. In addition pdf file data also include control

messages which exist in pair, we need to keep any of a pair into the same block.

WFC's Template

e WHOLEFILE is appropriate to-small files'which size is smaller than 7, and which
formats belong to Mircosoft Office or other unmentioned format, or a text-based file and
its file mode(in‘inode) is set-unable to write. WHOLEFILE template treats file without

dividing the file and adding any overhead to inside.

Fille type Cache mechanism Template Remark
All WFC WHOLEFILE Size <7
avi, mp3, flv BEC BFCFIX Block size fix
txt, ¢, cpp, BFC BFCVAR Block size variable

calendar, jpg

pdf BFC BFCSPEC Divided page by page

Mircosoft office series

& OTHERS WEFC WHOLEFILE

Table 4.1: Templates

18

Dynamic Regulation

In some special case, the WFC file will exceed the size of 7 after user's modification.
Under this situation, upload will still apply WFC. Then both server and client apply the divide
function to the target file and produce snapshot for each blocks. After that, the cache strategy
will be changed to BFC. Besides if a big BFC file size decrease to lower than 7, we take the

similar way to handle and change to WFC mechanism.

4.2.4 Strategy

We introduced two criteria to determine template for WFC and BFC mechanism, Fig. 4.2

shows the cache mechanism selection strategy.

Template

WFC
Generate () N H‘ Data File
Template

Template Data File

G BFC
—— Qo QRO B v [2 | s

Figure 4.2: Template selection flow

In the following we talk about when and where HCM will be started and who takes it.

The initialization is mainly took charge by HCM server. Firstly, users prepare some files

in server, and then server runs the initialization to identify the BFC-suit file, and build

19

snapshot and super snapshot. In some case, for example, user may create a new BFC-suit file
with some content, if the file size finally exceeds 7, HCM runs initialization in both client side
and server side after client upload the file to server. Afterwards, all the file modification will

be handled in the HCM BFC mechanism.

In read operation, HCM client first check the target file existence in local, if it is located in
one of the local caches, then it is cache hit and we read it directly and execute according to the
“TEMPLATE" term in super snapshot. Otherwise, we connect to server to ask for file if it is
cache miss. HCM client first gets the metadata of target file from HCM server. Next client
recognize the cache mechanism according to the file format and file size. Finally HCM client
sends relative request based on the mechanism.

In write operation; we suggest taking the write-on-close scheme. When we close a file, we
check the dirty bit to recognize the modification was happened or not. If the target file is WFC
mechanism, HCM client writes the file entirely to HCM server; else if it is BFC mechanism,
HCM client first check the *"CODE" of every blocks to collect the dirty blocks, and then send

a BFC-based request to HCM server.

4.3 Initialization

As shown in Fig|2.1} the structure of a file for applying WFC is simple, just include the
file header (metadata) and also a single data block without any extra overhead, thus it is
unnecessary to take any preprocess on the target files. On the other hand, Fig depicts the
structure of file to apply BFC does. We can see that except for the header and the data blocks,
we also define three more components *“breakpoint", “snapshot" and *“super snapshot" to

approach the BFC function. Therefore, an initialization preprocess is necessary to build up a

20

BFC-suit file. As a result, after HCM determined the template of a file, if the template is

Mm H B2 H B3 H B4 H B5 H B6 H B7

Figure 4.3: BFC-use file structure

belongs to BFC template, HCM then executes the initialization process. As discuss before,
files to apply BFC mechanism need to add extra information.

The brief description of BFC Initialization preprocess is shown in Fig. There are
several parts in the initialization flow: Segmentation, Digest, Identification, Snapshot and

Super snapshot.

Segmentation Digest

(][]
I B

[

Snapshot Identification

[l 2

Super
Snapshot

IT:] M2]--[x]

-

Figure 4.4: BFC Initialization preprocess

4.3.1 Segmentation

The first thing we do is to divide up files into multiple blocks. If the template is
“"BFCVAR", then we use we use the Rabin Fingerprint algorithm to get a variable
size boundary, with the suggested average block size of 8KB (probability 271%), and the range

21

of block size from 2KB to 64KB setting. Rabin Fingerprint is a polynomial representation of
data modulo a predetermined irreducible polynomial. The reason we choose Rabin Fingerprint
is that it provide an effectively computation on a sliding window on block segmentation, and
we can easily have random size non-overlapping blocks. Furthermore, we claim that the block
boundary should be variable, the boundary is determined based on file contents rather than by
certain position, therefore insertions/deletions only affect the surrounding blocks, avoid
causing the problem of large file contents shift even only single bytes is change at the start. On
the other hand, if the template is “"BFCFIX", we suppose that this kind of file will never be
modified, we determine the breakpoint directly by the position, with block size 8KB. Finally if
the template is ""BFCSPEC", we determined the breakpoint based on certain file content, take

pdf file as an example, we set the breakpoint at the end of one page.

4.3.2 Digest

After dividing a file into blocks, we then give a digest to each block by the SHA-1 hash
function , in order to simplify the comparison of two blocks. Sha-1 hash function take
a input data which size limit to 2°4 — 1'bits,.and-theén output a 160 bits hash value.
Theoretically, only equal contents can obtain same hash value. We can compare the equality of
two blocks easily through the respectively digest. (In 2005, Wang, X. and Yin, Y.L. and Yu, H.
announced an attack method on breaking SHA-1 . They indicate that they can find SHA-1
collision in less than 263 operations, where a brute-force search would require2®° operations.
Here we still use SHA-1 because there only contain at most dozens thousand blocks in a file,
and we do not use the hash code into security way, we think that SHA-1 is enough for our

design. Additionally, the output of SHA-1 is smaller than upper SHA family).

22

4.3.3 Identification

Now we divide file into block, and give each block a digest for easily compare, in the next
stage we assign identification information to each blocks for searching the blocks more
effectively. In LBFS, they use a term "offset" to find out the target block. Nevertheless, we
suppose that this method would be suffer from the issue of block insertion/deletion, any
insertion/deletion happen at the start may cause a large scale of "“offset" shift, then we need to
modified the shifted blocks' offset record. In order to avoid the shift-offset issue, we assign a
term “"BLOCK ID" to instead, then search block by block with " BLOCK ID". However, this
method may avoid the shift-offset issue, but simultaneously produce another issue--longer
search time. When we search in a unsequential link-list, the BIG O is O(n) (n:the number of
blocks), compare with the " offset" method, the search efficiency is significant decrease from
O(1) to O(n).

To overcome the issue, we propose to assign one more term = GROUP ID" joining
“"BLOCK ID". We arrange all the blocks in to groups,€ach group has an id and contain 10
blocks at default. The group size.is variable, any block insertion/deletion only affect that group
itself. At this situation, according to the condition of "GROUP ID" and ""'BLOCK ID", the
search time decrease dramatically from O(n) to O(g). (g:average group size, approximately 10
at default). If a certain group experienced a series of insertion and group size increase to more
than 30 blocks, then we can execute a regrouping process, allotting blocks to the surrounding
groups until group size reduce to 20.

To maintain this method in memory, we store the blocks in a composite data structure
combining an array and lists, we call it aList. Utilize the array as the group id indexer, and
simultaneously have a pointer point to a link-list that store the grouping blocks. The initial

process of aList is illustrated in Fig. First we open a file from disk then store it in memory

23

with a char * array buffer, finally allot the blocks to aList by the *"GROUP ID" and "BLOCK
ID". Now we can find out the target file effectively with *"GROUP ID" for array index and

“BLOCK ID" for link-list search.

()
oo o

& Read Fi to buffer

Open file Fi

Array
Buffer

File-(Fi)

Transform|to block cache

1 H Fi/B11 J Fi/B12 HFUBIS W 4 Fi/BIN
) H Fi/B21 H Fi/B22 } Fi/B23 H Fi/B24 & N H Fi/B2M

K HFUBKI] Fi/BK2 H Fi/BK3 L Fi/BKO

Figure 4.5: Using Array and Link-listed on BFC mechanism

24

4.3.4 Snapshot

After dividing the file, assign digest and ID to each blocks, we build up a snapshot to store

this information, and then save it in front of every block at the breakpoint.

BLOCK SIZE

BLOCKID
PRECIOUS BLOCK ID
NEXT BLOCKID

DIGEST (20 BYTES)

LAST MODIFIED TIMESTAMP (8 BYTES)

CODE GROUP ID |

Figure 4.6: Snapshot composition

In our snapshot contents (Figl4.6)), except the SHA-1 hash digest with 20 bytes, ""BLOCK
ID" and “"GROUP ID"; we also detine several terms for recording the block state to enhance

the efficiency of BFC mechanism, they are described in the following:

BLOCK SIZE: Record the size of this block. Use to allocate memory.

PRECIOUS BLOCK ID: Record the precious block id of current block.

NEXT BLOCK ID: Record the next block id of current block.

LAST MODIFIED TIMESTAMP: Record the last modified time.

e CODE: a code stand for ""CLEAN", ""MODIFIED", ""CREATED", ""DELETED",
“"REGROUP" to express the block state. "*CLEAN" means no any modification is done

on the block since last update; *"MODIFIED" means the block content is changed and

25

wait for update to server; "CREATED" means we create a new block, simultaneously to
indicate server to run an insert progress after receive this kind of snapshot;
“"REGROUP" means that block has happened to be regrouped. Moreover, as we need a
way to indicate to server that we have done a deletion, we also define a term of
“"DELETED" stands for an empty block which data is cleared by user. Here we still hold
the snapshot in our system even the block content is cleared, then we send the
“"DELETED" snapshot to server according to the update progress, after the server
receive the snapshot and detects the ""DELETED" code, server searches the certain

block and then delete the block and also the snapshot to finish the action of deletion.

When the ""MODIFIED" and ""CREATED" and blocks are updated to server, then we turn
them to ""CLEAN"; On the other hand, after the " DELETED" block(" ' DELETED" always

means empty block)is updated, we will delete the snapshot.

Totally, each snapshot is 48 bytes (with 1 byte empty for option data), which is similar to

the LBFS recommended.

4.3.5 Super Snapshot

We have finished the most of the initialization of BFC-use file. Finally we collect some
entire information from the initialized file that snapshot does not record but necessary to the
BFC mechanism, then we save the information into a structure called super snapshot. Fig.

shows the super snapshot contents.

e VERSION: Record file version with float point, auxiliary term to the consistency issue.
e QUANTITY of BLCOK: Record the number of blocks in file. Use to open an aList;

e QUANTITY of BLCOK : Record the number of group in file. Use to open an aList;

26

0 7 15 31

VERSION
QUANTITY of GROUPS QUANTITY of BLOCKS
TEMPLATE MODE

Figure 4.7: Super Snapshot composition

e TEMPLATE: record the template type the file use in BFC mechanism(section4.2.3)).

e MODE: Indicating to other users that this file is being accessed or not.

4.4 Handshake

4.4.1 WFC
File Read

The read process between server-and client in WFC is shown.in Fig The parameter
that WFC server need is‘file path. Once server receive a request from client, firstly server reply
the metadata of the target file to/client for some checking, then server transmits whole target
data file to client if still necessary, finally client store the replica into local cache for the
follow-up application. Here we can find a term 7., in the Fig It is defined as the total
time from the first request start to the end of file transmitting. In other word, how much I need
to execute the file after my request. In WFC, applications need to wait for file execution until

the file finishes the transmission.

27

Client

& READ(fp,size) ‘I

READ(A sizeof(A)) [H] A

Tresp

Tresp=t2-tl

[+] A |

Figure 4.8: WFC-downlaod

File Write

The WFC write process is very similar to the read process, which illustrated in Fig.
Write process usually follow-up by consistency issue, different file system has different
solution on this issue. Here we do not discuss the issue of file consistency, users can have their

own setting and mostly will not affect the functionnHCM does.

Server

'WRITE(fp,size) ‘I

Client

Modified file A
(] A | BTy Original file A
[+] A |
Modified file A
(-] A

Figure 4.9: WFC-upload

28

4.4.2 BFC
File Reads

The read flow between server and client in both BFC mechanism is shown in Fig
respectively. Firstly, a request is sent to server, then server responses the requested the header,
the snapshot and also the super snapshot of target file (blocks) to client immediately. BFC
mechanism needs not only the file path parameter but also the number of request blocks and
the start block id of the target blocks. After receiving the snapshot, client checks the existence
of the target blocks through the information;in.snapshot. Then client require again if it misses
the target blocks. Finally server request the target blocks to client. We can see that there is
numbers of round trip between server.and client if we use BEC mechanism to fetch every
block. But of course we can stop fetching at anytime we are enough then consume the unused
part's bandwidth. On the other hand, we can see that the 7’4, of BFC mechanism would be
much smaller than the WFC's inm if the file is large enough. 7., is one of the main
advantage of BFC, we can get great performance as long as we apply BFC mechanism

appropriately.

File Writes

Fig depicts the write flow of BFC. In BFC mechanism, client only uploads the
modified blocks to server, called block-update, whereas WFC uploads the entire file to server
in every modification, even only several characters were changed. This is another main
advantage of BFC mechanism. In many case, there are still many blocks in a modified file stay
unchanged, utilize those unchanged blocks can save bandwidth efficiently. On the other hand,
block-update avoids the potential damage on two or more writing the same file. Block-update

copy an original file as a temp file, after the deletion and insertion of the modified blocks on

29

Client Server

GetSnap(fp,count,sid)
Read(fp,size) -~ @

ol GetSnap(B,2,1)
k\,\oc\‘\~43 :m File B
K2 SV
Block 1 and block 2 not in o H (M[l[81 [[B2 [[83 [B4 [[85]
databarscezi us::e;d read DD cad(B.sizel)
Tresp Read(Bsize2)
- T B2
t2 [\
[rll e [ez | ;
GetSnap(B,4,2)
Wl e 1= Qi Read(Baied
block 2 in database Read(B’sme
Block 3 block 4 and ’
blockS5 not in database,
send read request Tresp=t2-t1
\y » D : Snapshot of block
(Ml [s2 [8 [e “/ [] : Super Snapshot

Figure 4.10: BFC-download

server side, system replace the temp file to the original file as a new version.

In BFC mechanism, once a block is modified or created/deleted, HCM assigns a new
SHA-1 hash data for new content, and the dirty bit (the term "CODE") in snapshot will be set
until the dirty block be uploaded. In Fig block=update firstly check the dirty bit in
snapshot to identify the modified blocks. ‘After that client uploads the dirty snapshot to server
to check the status or of target block in server side. (Normally dirty bit on means block was
modified, but sometimes we may cancel the modification we did, or that block also be
modified the same content in server side simultaneously, so we still check the validation.)
Then the server creates a temp file to handle the process of block update and file blocks
reconstruction. Next server responses message to client to require target blocks. After that
client delivers the missing blocks to server, and then sends a commit message to notified server

that upload finish. Finally server replace the original file by the temp file as a new version,

30

write flow finishes.

Client MakeTemFile(fp) Server
UpSnap(fp,size)

WRITE(fp,size)
COMMIT(fp) R

Modified B2, B3, and B5 Original file B

[A[a7 [2 [8 [8« [&5 |

(Wl et M 2 [& [s [&5]

MakeTemFile(B)

Copy B to a temp file B’
B2 not in database
B3 in database

B35 not in database
B2 not found

B3 found
BS not found
Temp file B’

Write B2 intoB" NIENEN
Write B5 into B’

B3 [Ba [5 |

All modified blocks uploaded, commit

Replace B" into B

D : Snapshot of block

I “Dirty” Snapshot

Figure 4.11: BFC-upload

4.5 Consistency

In HCM, we suppose that filesystem designers will have their own consistency model, so
we do not discuss the consistency scheme in this paper. Instead, we provide two ways to help
handling the consistency issue. First we define a term ©"CODE" in snapshot to easily recognize
the block's modification status, we have discuss this term before in Moreover, we define
two terms "MODE" and ""VERSION", we not only can check the validation directly through
“VERSION", but we also can know how much version we have missed. ' 'MODE" means that
what accessing mode is the file. That is, if someone is writing to server, then "MODE" will be
set; and record how many users are writing the target file, then user can determine whether
start write his own file to server, or to wait until other users finish writing. **CODE" and
""MODE" have not completely defined, file system designer can develop new function based

on their own requirement.

31

For example, user A is writing to server, the term *"MODE" was set; at the same time
another user B start to write. Under this situation, server can send a conflict notification to user
B, if user B determines to continue his writing, server can overwrite the preceding file, or
rename each conflict file with version and time.

Another example, users may be notified by server that their upload files are not the
freshest through the term *"VERSION". In this case server may reject the write request or

rename the target file name like the preceding solution.

32

Chapter 5

Analysis

In this chapter we show some test result to illustrate the BFC overhead and performance.

All the experiments are held in

e Server side :Intel P4 3.0GHZ ,1G RAM, 10/100M NIC LAN CARD

e Client side :Intel P4 3.0GHZ, 512 RAM; 10/100M NIC LAN CARD

All the local experiment is tested on the server side.

5.1 Storage Cost

The total size of'a file using WFC.mechanism can be presented as follow:
Swrc = Su + Sp

Where Sy o stands for total file size in WEC | Sx 1s the size of header, Sp is the size of the

data block.

On the other hand, the total size of a BFC file can be expressed in:

S
Sprc = Su + [gw X Ssn + Stp + Sssn
B

where Spre stands for total size of file using BFC , Sy is the size of header, St is the size of

all the blocks, S5 is the size of average blocks(block size may be variable), Sgy is the size of

. . S
snapshot, Ssy is the size of super snapshot, and the ZTB means the number of total blocks of a

B
file.

33

We can find that total block size in BFC is equal to the size of data block in WFC, that is

Stp = Sp. So the extra storage cost of BFC mechanism is all the snapshot size and the super

S
LiB-I X Sgn + Sssn.
B

snapshot size, |

The snapshot size is 48 bytes, average block size 8K bytes, so the average overhead of a
file to use BFC mechanism in disk is about 0.58% more than WFC mechanism (Moreover
super snapshot 12 bytes, but it can be almost too small to ignore). Here the average block size
can be changed by the designer. If average block size increase, quantity of snapshot decrease,
but relatively every single block uploaded workload increase, and vice versa.

We ran initialization process to build snapshot for showing the overhead size and
percentage. Here a SOMB file is‘applied, with the average block size of 4KB, 8KB and 16KB.
The result is shown in'Table. We-can see that larger average block size with lower

overhead, but relatively higher transmission cost per block update.

Average block size. || Quantity of blocks | Total overhead size. | Overhead percentage
4KB 8005 384240 Bytes 0.768%
8KB 4806 230688 Bytes 0.461%
16KB 2693 129264 Bytes 0.259%

Table 5.1: Average block size vs. Overhead

5.1.1 Block Size Distribution

We apply Rabin Fingerprint to determine the variable boundary for BFC-use file. Fig.

illustrates the block size distribution of a SOMB, with 4806 blocks and average size 8KB

setting file. We can see that the block size centralize to around 8KB.

34

500 q

450 1

400 q

350 q

300 q

250 q

Quantity of block

200 q

150 1

100 1

0 10 20 30 40 50 60 70
Size of block (KB)

Figure 5.1: Block Size Distribution

5.2 Time Cost

Except the disk maintain overhead, BEC mechanism takes more round trip time on
handshake, and extra CPU workload on BEC operation such as snapshot initialization and aList
initialization, block location and block comparison, etc than WEC mechanism. We will show

We executed the snapshot initialization and aList initialization with a 5S0MB, average
block size 8KB file, the respectively time cost is shown in Table. Snapshot initialization
takes only one time per file, and aList need to be maintain in every time file to be opened. We

suppose that both this two extra cost is acceptable.

Time
Snapshot
Initialization 19.9s
al.ist
Initialization 0.09's

Table 5.2: Time cost of two initialization process

35

5.3 Block Search

To test aList structure performance, we search 10,000 random blocks in both link-list and
aList in 10MB file (995 blocks) and 150MB file (14363 blocks), Table shows the result.
We can see that the search speed of aList is much faster than the link-list dose, and the larger
the file is, the bigger the search time ration. The data also show that we can still find out the

block in a very fast speed with aList structure even if the file size is very large.

File Size || Link-list Time | aList Time || Time Ratio

10MB 1.23.s 0.0025 s =500

150MB 945s 0.0063:s = 1500

Table 5.3: Block search time of alList vs. Link-list

5.4 Bandwidth Utilization (HCM vs. WEC vs. BFC)

5.4.1 Read Cost

We applied the three cache mechanism to three different size range data sets respectively
to test the efficiency of read and write. A small file set of the random size range from 50B to
2KB with 100 files, the total size is 55KB; a big file set of 50KB to 5S0MB range with 30 files,
the total size is 439.24MB and finally a file set mixing all the small and big file set with 130
files and 439.29MB size. In this test, we set the 7 as 128KB, all block size ad 8KB and all the
files in file sets can be BFC-based file.

Fig. illustrates the read cost in applying both HCM, simple WFC and simple BFC

mechanism to the three file sets. In order to show the result significantly, we magnify the scale

36

of the small file set's. We can see that in small file set, the network traffic of simple BFC is
about 10% larger than HCM's and simple WFC's. This is because of the snapshots overhead of
BFC mechanism and the size of overhead is relatively large to the file itself. On the other
hand, the files in small file set are all smaller than 7, as a result HCM all uses WFC mechanism
to transmit the file and without any overhead, that's why the traffic of HCM and WFC is equal.
In the big file set, we can see that both HCM, WFC and BFC are very close, but simple
WEC takes the least as no overhead is added to the files. HCM takes BFC mechanism if file is
larger than 128KB and takes WFC mechanism if smaller, so the traffic of HCM is between
simple WFC and simple BFC. The result of all file setis similar to the big one as the total size

of small file set possess relative very little percentage on the total size.

500
s 441876 441877 441970 | aamoss
2000 T—2ti-
SO0 1000 -
350 T 60000 =
- 300 + O 58000, 7
-] [}
= 1o ESEDD{} EHCM
= T WHCW
"E % 5700 4 BWFC
200 + &
£ 5600 1 Rl e
150 T F o L
100 + 54000 1
o | s
52000 A
0 00579
Small Big All

Figure 5.2: HCM Read Cost

5.4.2 Write Cost

Fig illustrate the write of both three file sets. In the traffic of small file set, it's

the same result as read cost did, simple BFC performs about 10% larger than HCM and simple

37

WEFC with the same principle. However, in the result of big file set we can see that simple BFC
can be much smaller than simple WFC if the user only writes several blocks. This is because
simple WFC mechanism writes the while file to server in each write operation no matter how
much the target file was modified but simple BFC mechanism only writes the modified blocks
in each write operation. Here HCM takes BFC mechanism if file is large enough, thus the
result of HCM and simple BFC is very close, just like result in read cost does. Finally the
result of all file set is similar to the big file set does because of the little percentage of small file

set possessing in total size.

62 T T

5
©
I

Traffic (Bytes)
w»
®
L

—— HCM WRITE
-/=-/BFCWRITE ||
------- WEFC WRITE

56 B

57

55 L L L L L 1
0 10 20 30 40 50 60 70 80 20 100

Quantity of dlirty blocks

Figure 5.3: HCM Write Cost of Small Data Set

We can conclude that simple BFC can gain significant benefits in right situations and

HCM try to cover the remainder situation.

38

450 : :

400+

Traffic (MB)

Traffic (MB)

—— HCM WRITE
-:=+-BFC WRITE |
------- WFC WRITE

x10

350+ g
300+ g
250+ 4
200 g
1501 g
100 7
——HCMWRITE
50 =+=-BFC WRITE |
------- WFC WRITE
0 L 1 L L
0 1 2 3 5 6
Quantity of dirty blocks x10

Figure 5.5: HCM Write Cost of All Data Set

39

Chapter 6

Conclusions

HCM mechanism reduces bandwidth consumption during upload stage and enhances
system efficiency by hybridizing two cache models into a file system, gathering the advantages
of WFC and BFC, and complement the mutual shortcoming. HCM define templates to
determine the cache model selection based on file size; file formats and the file states. In the
BFC mechanism of HCM; HCM divide file into blocks based on content, using hash value to
distinguish the blocksjassign some-id-to each group for block searching, and finally collect
this information and build in a snapshot located in front of the data block. Although we add
overhead to data, file'system using HCM can get better performancethan traditional mobile
file system under some situations, such as editing documents or calendar and then update, or
read a pdf document but not reading thoroughly.

Implement HCM takes reasonable initialization cost on storage and time, besides aList
solves the offset issue and increase the speed of block search significantly. HCM mechanism
uses BFC mechanism in large file and BFC in small file, which gains advantage in both read
and write operation. That is HCM increases a bit read cost but reduce write cost significantly,

which cover the shortcoming of simple WFC and simple BFC.

40

References

[1] J. Kistler and M. Satyanarayanan, "Disconnected operation in the Coda file system,"

ACM Transactions on Computer Systems (TOCS), vol. 10, no. 1, pp. 3--25, 1992.

[2] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West, "Scale and performance in a distributed file system," ACM Transactions on

Computer Systems (TOCS), vol. 6, no. 1, pp. 51--81, 1988.

[3] A. Muthitacharoen, B..Chen, and D. Mazieres, "A low<bandwidth network file system,"
in Proceedings of the eighteenth- ACM symposium on Operating systems principles.

ACM New York, NY, USA, 2001, pp. 174--187.

[4] D. Dwyer, "Adaptive file system consistency for unreliable mobile
computingenvironments," in /[EEE International Computer Performance and

Dependability Symposium, 1998. IPDS'98. Proceedings, 1998, pp. 164--173.
[5] C. Yang, "A Hybrid File-Caching Scheme for Distributed File Access."

[6] K. Froese and R. Bunt, "Cache management for mobile file service," The Computer

Journal, vol. 42, no. 6, pp. 442--454, 1999.

[7] S. Standard, "FIPS Publication 180-1," National Institute of Standards and Technology,

1995.

[8] I. Voras and M. Zagar, "Network distributed file system in user space," 2006, pp.

669--674.

41

[9] L.-Y. Chang and Y.-L. Huang, "Ashfs: A lightweight mobile file system supporting

disconnected operations," Master's thesis, National Chiao Tung University, 2008.

[10] T. Schutt, A. Merzky, A. Hutanu, and F. Schintke, "Remote partial file access using

compact pattern descriptions," in /[EEE International Symposium on Cluster Computing

and the Grid, 2004. CCGrid 2004, 2004, pp. 482--489.

[11] "File format resource library," Tech. Rep. [Online]. Available: [ttp://www.wotsit.org/]

[12] "Open office organization," Tech. Rep. [Online]. Available:

Ittp://www.openoffice.org/indéx.html

[13] M. Rabin, Fingerprinting by randompolynomials. ~Center for Research in Computing

Techn., Aiken Computation-Laboratory, Univ., 1981.

[14] X. Li, D. Salyers, and A. Striegel, "Improving packet cachingscalability through the

concept of an explicit end of data marker," Proc. of IEEE HotWeb.

[15] C. De Canniere and C. Rechberger, "Finding SHA-1 characteristics: General results and

applications," Lecture Notes in-Computer Science, vol. 4284, p. 1, 2006.

[16] X. Wang, Y. Yin, and H. Yu, "Finding collisions in the full SHA-1," Lecture Notes in

Computer Science, vol. 3621, pp. 17--36, 2005.

[17] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman, and
B. Schott, "Comparative analysis of the hardware implementations of hash functions

SHA-1 and SHA-512," Lecture notes in computer science, pp. 75--89, 2002.

42

http://www.wotsit.org/
http://www.openoffice.org/index.html

