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智慧型立體對應式之 

視差偵測法則設計 

 

學生 : 何承育                 指導教授: 陳永平 教授 

國立交通大學電機與控制工程研究所 

摘 要 

 在本篇論文中，提出處理一對左右影像特徵點立體對應問題的演算法來偵測

視差，而特徵點是使用 Harris 角落偵測器所抓取而得到的。此立體對應問題可

被系統化為一個最佳化問題的目標函數，該函數代表問題答案的限制和特性，而

且此目標函數可轉換成二維 Hopfield 神經網路的能量函數去做最小化處理。

Hopfield 神經網路是一個單層回授網路，每個神經元代表左圖與右圖各一點的

對應關係，當網路裡所有的神經元輸出皆不再改變時，也就是網路達到穩定狀

態，此時可獲得對應結果和對應配對之視差。本研究比較了三種不同之目標函數

的效能，並用一個簡單的應用來呈現視差的偵測。 
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Intelligent-Stereo-Matching-Based 
Disparity Detection Algorithm Design 

 

Student : Cheng-Yu Ho       Advisor：Prof. Yon-Ping Chen 

Department of Electrical and Control Engineering 

National Chiao−Tung University 

ABSTRACT 

 In this thesis, an algorithm is proposed to detect the disparity by solving the 

stereo matching problem for a set of feature points extracted by the Harris corner 

detector from a pair of stereo images. The stereo matching problem is formulated as 

an objective function which represents the constraints and properties on the solution. 

Then the objective function is transferred to the energy function of 2D discrete 

Hopfield neural network for minimization. This neural network is a single layer 

feedback network and each neuron in the network represents a possible match of two 

feature points, one in the left image and the other in the right image. The matching 

result and the disparity of the matched pairs are obtained when every output of 

neurons are no longer changed, i.e. the network reaches its stable status. Furthermore, 

the performances of three kinds of objective function are compared, and a simple 

application is presented to show the disparity detection. 
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Chapter 1 
Introduction 

1.1 Motivation 

In robot systems, the robot vision is a popular research and has been applied in 

many applications such as navigation, detection and recognition. Recently, some 

investigators [1]−[3] have paid their attentions to the stereo vision of robot, which 

have two cameras to build the stereo vision containing 3-D information. For a 

humanoid vision system (HVS) which simulates the motion of human eyes, the stereo 

vision is required to obtain the depth information. The HVS consists of two cameras 

so that two images of the same scene can be taken at the same time by the right 

camera and the left camera from two different perspectives, and the passive stereo 

vision can be implemented by this equipment. Passive stereo vision, capturing images 

by using two or more cameras, is a well-known technique [4], [5] to determine the 

depth of an object or a point in a scene and generally based on the so-called disparity 

to obtain 3-D depth information of objects. The disparity is the difference between the 

locations of the same physical point in the image pairs and can be used in the 

triangulation principle [6] to obtain 3-D depth information. In the procedure of 

obtaining the disparity, the most difficult and time consuming problem is to determine 

a feature extracted from one image that matches to a given feature extracted from the 

other image. This is called the correspondence problem or stereo matching problem. 

This thesis focuses on the stereo matching problem and proposes an algorithm based 

on a neural network structure to deal with this problem. 
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1.2 Related Work 

After reviewing some researches about the stereo matching problem, their 

approaches can be divided into two types: area-based [7-9] and feature-based [10-13] 

methods. For the area-based method, it often calculates the correlation between two 

images by using a fixed-size image window. It has been known that the resulted 

matched pairs are enormous. For the feature-based method, it applies the feature 

extraction and searches the major elements in an image related to the features, such as 

line segments, corners, or contours. It is evident that the number of matched pairs to 

be processed of the feature-based method is much less than that of the area-based 

method. In general, the stereo analysis using the feature-based method follows four 

steps: image acquisition, feature extraction, image matching, and depth determination.  

Recently, many researchers have proposed to turn the matching problem into an 

optimization task by using Hopfield neural networks (HNN). The advantage of using 

the neural network technique is the matching problem can be formulated as 

minimization of an objective function where all the constraints on the solution can 

explicitly be included in the objective function. The Hopfield neural networks were 

first proposed by Hopfield and Tank [14], and they applied the “Energy function” idea 

to the stability of the neural networks. In many HNN’s applications of optimization, 

an energy function is first constructed to represent the constraints on the solution. The 

HNN is used to minimize the energy function by adjusting the state of neurons so that 

the result can be the best answer to the problem. Obviously, the energy function is the 

connection between the optimization task and the HNN, so how to design the energy 

function is a key point of the algorithm. For the HNN which uses edge segment as the 

feature, G. Pajares, J. M. Cruz and J. Aranda [15] used similarity, smoothness and 
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uniqueness to establish the energy function of the analog HNN. Y. Ruichek [16] used 

the multilevel analog HNN for real-time obstacle detection and the uniqueness, 

ordering and smoothness constraints were used for matching. Sun [17] used the 

discrete HNN to minimize the energy function subject to the disparity, dummy and 

uniqueness constraints for solving a scanline-based stereo matching problem. For the 

HNN which uses point as feature, N. M. Nasrabadi and C. Y. Choo [18] proposed 

three constraints to establish the energy function based on physical observations: (i) 

uniqueness, each feature point from each image maybe assigned at most one disparity 

value. (ii) smoothness, if the points belong to the same object, then the disparity 

difference should be very small. (iii) geometric constraint, the difference between the 

distance separating two points in the left image and the distance separating their 

correspondents in the right one is small if the feature points are correctly matched. K. 

Achour and L. Mahiddine [19] added the similarity to the work of N. M. Nasrabadi 

and C. Y. Choo [18] and used an update rule to perform the network evolution. When 

the HNN reaches its stable state, each neuron represents a possible match between a 

left candidate and a right one. 

This thesis will adopt the feature based method and follow the same steps. In the 

first step, a HVS is used for image acquisition to capture images in gray level format. 

Then since the dense depth map is not necessary, the number of pixels to match is 

highly reduced, which improves the efficiency of the algorithm. Therefore, the Harris 

corner detector which can find points of high interest was chosen as a feature 

extraction technique. By using this detector, the output value of pixels on the object’s 

corners is large, and then through a selection to choose a fixed number of pixels 

whose output value is larger than a threshold as the feature points. However, it is not 

an easy task to find the corresponding feature points between two images, especially 
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when not all the feature points in one image are visible in the other image. To deal 

with the stereo matching, a HNN is proposed in this thesis. The proposed HNN 

follows the work of K. Achour and L. Mahiddine [19], but modifies the similarity and 

adds the vertical disparity in energy function. The result of the proposed HNN will 

compare with the algorithm [19] and be discussion in chapter 3 and 5. After the stereo 

matching, the disparity of all matched pairs can be easy derived. Finally, a simple 

application is proposed to obtain the depth information between object. 

1.3 Thesis organization 

 The remainder of this thesis is organized as follows. The Harris corner detector 

which is used to extract the feature points is introduced in chapter 2. In chapter 3, the 

HNN is briefly described, and the properties of the energy function in 2D HNN are 

discussed and applied to deal with the stereo matching problem. In chapter 4, the 

real-coded genetic algorithm is used to automatic find the four parameters of HNN 

which will affect the performance of stereo matching. In chapter 5, the result of 

genetic algorithm and the results of three kinds of energy function in 2D HNN are 

shown and compared. A simple application to detect the relative depth information is 

also proposed here. Finally, the conclusions and future works will be proposed in 

chapter 6. 
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Chapter 2 

Feature Extraction 

 When the stereo image pair is captured by two cameras, the first task is to find 

the feature points in the image pair. The feature points will be sent to the stereo 

matching process and affect the performance of the proposed algorithm, so those 

feature points must be the high interest and stable under local and global perturbations 

in the image domain. Generally, those feature points of high interest often occur at the 

corners and edges of the object in the image.  

 There are many techniques to detect corners or edges, and the Moravec operator 

is one of those techniques to find the points on the corners or edges, but it have some 

problems such as only a set of shifts at every 45 degree is considered and the response 

for the points of the edge are too strong. To deal with the two problems, the Harris 

corner detector [20], which modifies the Moravec operator, is adopted for extracting 

the feature points. Harris corner detector uses a method to calculate the local 

maximum variance of intensity in the image. It denotes the image intensities at the 

coordinate (x, y) by I(x, y), and the change H produced by a shift (u, v) is given by 

            2

,

( , ) ( , )[ ( , ) ( , )]
x y

H u v W x y I x u y v I x y= + + −∑  (2-1) 

where W(x,y) is a Gaussian window function defined as below: 

            
2 2

2( , ) exp
2

x yW x y
σ

⎛ ⎞+
= −⎜ ⎟

⎝ ⎠
 (2-2) 

And the shifts, (u, v), are considered comprise [(1, 0), (1, 1), (0, 1), (-1, 1)]. To deal 
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with the problem that only a set of shifts at every 45 degree is considered, the Harris 

corner detector use Taylor’s expansion truncated to the first order terms for small 

shifts, that is 

            ( , ) ( , ) ( , ) ( , )x yI x u y v I x y I x y u I x y v+ + ≈ + +  (2-3) 

where Ix = /I x∂ ∂ and Iy = / yI∂ ∂ , so that the change of image intensities H can be 

            2

,

( , ) ( , )[ ] =[ , ]x y
x y

u
H u v W x y I u I v u v M

v
⎡ ⎤

≅ + ⎢ ⎥
⎣ ⎦

∑  (2-4) 

where the 2 x 2 symmetric matrix M is  

            
2

2
,

( , ) x x y

x y x y y

I I I
M W x y

I I I
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑  (2-5) 

Note that H is closely related to the local autocorrelation function with matrix M 

describing its shape at the origin. Let α, β be the eigenvalues of matrix M, and the 

image points can be classified according to the eigenvalues. The classification 

contains three cases as below: 

1. If both α, β are small, so that the change of intensities E is flat, then the 

windowed image region is of approximately constant intensity. 

2. If one eigenvalue is high and another is low, so that the change of intensities 

E is ridge shaped, then only shifts along the ridge cause little change E. This 

indicates an edge. 

3. If both eigenvalues are high, so that the change of intensities E is sharply 

peaked, then shifts in any direction will increase E. This indicates a corner. 

To distinguish the response of corners and edges, a function R which only depends on 
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α and β is used to measure the response as below 

            2det( ) (Tr( )) , 0.04 ~ 0.06R M k M k= − =  (2-6) 

where k is a empirical constant between 0.04 and 0.06, and det(M) and Tr(M) are 

            det( )M αβ=  (2-7) 

            Tr( )M α β= +  (2-8) 

The contours of constant R1~R5 and the classification are shown in Fig. 2.1 where 

0<R1<R2<R3 and 0>R4>R5. Clearly, R is positive with large magnitude for a corner, 

negative with large magnitude for an edge, and the absolute value of R is small for a 

flat region. Practically, the flat region is specified by R falling below a selected 

threshold. In this thesis, to select a pixel as a nominated corner pixel, a threshold T for 

R and a limitation [Nmin, Nmax] for the number of the feture point are applied. The 

extraction process is shown as below: 

1. Evaluate the change of image intensity H in ROI, and then calculate the response 

R. 

2. To select the pixels which are the local maximum and larger than a given 

threshold T as the feature points. 

3. If the number of the feature points is less than Nmin, then the threshold of H will be 

decreased by multipling 0.8, i.e. T will be 0.8T, and then go to step 2 until the 

number of .the feature points satisfies the limitation. 
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Fig. 2.1 Auto-correlation principal curvature space, heavy lines give corner/edge/flat 

classification, and fine lines are equi-response contours. 

 

Fig. 2.2 Corners extracted by the Harris corner detector, and the yellow crosses 

represent the feature points. 
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Chapter 3 

Stereo Matching with the Hopfield 
Neural Network 

 In chapter 3, the Hopfield neural network is applied to deal with the stereo 

matching problem. At first, the Hopfield neural network will be introduced in the 

section 3.1, and then the section 3.2 contains three parts which illustrate how to use 

the Hopfield neural network to solve the stereo matching problem. Finally, the 

summary and the detail of matching process are presented in the section 3.3. 

3.1 Hopfield Neural Network Description 

The Hopfield neural network [21], [22], shown in Fig. 3.1, is a single layer 

feedback neural network developed by Hopfield and Tank. Clearly, it is a recurrent 

network containing feedback paths from the outputs of the neurons back into their 

inputs so that the response of such a network is dynamic. That means the recurrent 

network can perform a sequential updating process after applying an initial state. 

Starting from the initial state, the recurrent process is repeated again and again. 

Successive iterations produce smaller and smaller output change until reaching its 

equilibrium response. 

For the recurrent process, at time step t the ith neuron in HNN has an output yi
t 

and n inputs including one external constant input xi and n−1 feedback signals of the 

form wijyj
t, where wij =wji, j=1, 2,…, n and j≠i. To ensure the convergence of the 

proposed network, the network weights are constant and symmetric and there is no 

self-feedback in HNN since wii=0. Let the total input to neuron i be denoted as ui
t 
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which can be expressed as 

                    
1,= ≠

= +∑
n

t t
i ij j i

j j i

u w y x .                       (3-1) 

In the recurrent process, the update rule for each neuron in a discrete HNN is  

          

1
1

1,

1+sgn( )
1 sgn( )  ,   1, 2,..., .

2 2

−
−

= ≠

+
+

= = =
∑

n
t

ij j i t
j j it i

i

w y x
uy i n  (3-2) 

where sgn(•) is the signum function, i.e. if ui
t >0,then sgn(ui

t)=1, otherwise 

sgn( ) 1t
iu = − . Clearly, all the outputs yi

t are 0 or 1. The above update rule is applied in 

an asynchronous mode that each step time only one neuron is allowed to update its 

output. To describe the state of the network, its energy function is defined as 

                    
1 1, 1

1 .
2 = = ≠ =

= − −∑ ∑ ∑
n n n

t t t t
ij i j i i

i j j i i

E w y y x y  (3-3) 

Since yi
t∈{0, 1}, the energy is bounded as  

              max max− ≤ ≤tE E E   (3-4) 

where the upper bound
 

max
  1 1, 1

1 | | | |
2

n n n

ij i
i j j i i

E w x
= = ≠ =

= +∑ ∑ ∑ . If the output of neuron i is the 

one to be updated, then the change in energy is given by 

       1 1 1 1

1,

  ( )( ) ( ) .− − − −

= ≠

Δ = − = − + − = − Δ∑
n

t t t t t t t t
ij j i i i i i

j j i

E E E w y x y y u y  (3-5) 

From (3-2), Δyi
t is positive for ui

t−1 >0 and nonpositive for ui
t−1 ≦0, which implies ΔEt 

is nonincreasing, i.e. ΔEt≦0. Furthermore, Et is bounded in an n-dimensional space 

consisting of 2n vertices formed a hypercube, so iterations of the update rule will lead 
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Et to achieve the local minimum, one vertex of the hypercube.  

 

Fig. 3.1 The Hopfield neuron network with its neurons interconnection. 
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3.2 Applying HNN to the Stereo Matching 

Problem 

To solve the stereo matching problem using the HNN, the first step is to decide 

the representation scheme which allows the outputs of the neurons to be interpreted as 

a solution of the problem, and the next step is to define an energy function whose 

minimum value corresponds to the best solution of the problem from the applicable 

properties. The third step is to derive the connecting weights and the external input 

value from the energy function. Finally, the HNN will evolve to get the solution after 

setting up the initial output of each neuron.  

3.2.1 Interpretation of the neuron outputs 

This section adopts the 2D HNN shown in Fig. 3.2 to find the correspondences 

of the feature points between the left and the right images, and this model consist of a 

set of neurons representing pairs of feature points to be matched, for example if the 

output (or state) of the neuron nik is 1 then the pair (i, k) of feature points is matched, 

otherwise the pair is not matched. The 2D HNN is in a matrix form and contains Nl × 

Nr neurons with a binary output 0 or 1, where Nl and Nr are respectively the total 

number of the feature points in the left and right images. Besides, xik and yik represent 

the external input and the output of neuron nik respectively, and Wikjl is the connecting 

weight between neurons nik and njl. The energy function of 2D HNN is given by 

      1 1 1 1 1 1

1 .
2

l l lr r rN N NN N N

ikjl ik jl ik ik
i k j l i k

E W y y I y
= = = = = =

= − −∑∑∑∑ ∑∑  (3-6)
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Fig. 3.2 The 2D Hopfield neuron network with its neurons interconnections. 

To deal with the stereo matching problem, it is required to choose an appropriate 

energy function, commonly related to some properties, namely, uniqueness, similarity,  

smoothness and geometric. In addition to these properties, this thesis further 

introduces the vertical disparity into the energy function, which will be discussed and 

given in the next section. 

 

3.2.2 Energy function for stereo matching 

 The energy function proposed here is mainly composed of three parts 

respectively related to uniqueness, similarity and the other properties such as 

smoothness, geometric and vertical disparity. For the first property, uniqueness, it 

assumes that a feature point should be in one-to-one matching between two images. 

To evaluate the uniqueness of a feature point, the following energy function 

2 2
1

1 1 1 1

(1 ) (1 ) .
l lr rN NN N

ik ik
i k k i

E y y
= = = =

= − + −∑ ∑ ∑ ∑  (3-7) 
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is adopted, which sums up the output value of the neurons in each row and column.  

Clearly, the energy function E1 is minimized to zero when the summation of the 

outputs of every row and every column equals to 1. Since the output of each neuron is 

either 1 or 0, the minimization of E1 to zero implies only one output equals 1 for each 

row and each column, which also implies the feature points are uniquely matched 

between two images. 

 The second property, similarity, assumes that two matching points have similar 

neighbors with similar information in two images, such as gray level value. There is a 

method proposed to measure the degree of similarity for two feature points based on 

the following algorithm [19]: 

( , ) ,( , )

1 ( , ) ( , )
l l i r r k

ik i l l k r r
x y W x y W

M V x y V x y
n ∈ ∈

= −∑  (3-8) 

where Wi is a fixed size window centered on the ith feature point in the left image and 

Wk is a fixed size window centered on the kth feature point in the right image. Besides, 

functions Vi(xl,yl) and Vk(xr,yr) are defined as 

( , ) ( , )i l l i l l iV x y I x y I= −  

( , ) ( , )k r r k r r kV x y I x y I= −  (3-9) 

where Ii(xl, yl) and Ik(xr, yr) are the gray level values of points (xl, yl) and (xr,yr) within 

Wi and Wk, respectively. In addition, iI  and kI  are the mean of gray level values of 

Wi and Wk, respectively. A larger Mik implies worse similarity of the two feature points. 

The proposed algorithm uses above method to calculate the value Mik for two feature 

points and a function Sik which is defined below transfers Mik limited to [-1, 1]. 
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( )

2 1.
1 s ik sik MS

eλ θ−= −
+

 (3-10) 

The parameter θs represents the tolerance of Mik and Sik approaches to −1 for Mik >>θs 

and 1 for Mik <<θs. The effect caused by the parameter λs is depicted in Fig. 3.3 which 

contains three curves for different values of λs. Commonly, when λs > 1 the function 

Sik will abruptly change from +1 to −1 around Mik = θs, while λs < 1 the function Sik 

will smoothly change from +1 to −1 around Mik = θs. Hence, an energy function to 

evaluate the similarity can be formulated as 

2
1 1

.
lN Nr

ik ik
i k

E S y
= =

= −∑∑  (3-11) 

Note that some of the output yik are equal to 1 and the others are equal to 0. For those 

outputs equal to 1, it is evident that the energy function E2 will decrease to its 

minimum value when the functions Sik >0 corresponding to the neurons with output yik 

= 1.  

 

Fig. 3.3 Graph of the nonlinear function Sik. 

 For the remaining properties, smoothness, geometric property and vertical 

disparity, they are adopted to represent the degree of compatibility of a match between 
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a pair of points (i, j) in the left image and a pair of points (k, l) in the right image. they 

are determined by the following term  

, ( , ), ( , ) 20ikjlX d D Y i x y j x y= Δ + Δ + Δ <   (3-12) 

where Δd, ΔD and ΔY are respectively concerning the smoothness, geometric property 

and vertical disparity. The condition ( , ), ( , ) 20i x y j x y <  means (3-12) is not 

applied to the pair of points (i, j) in the left image with distance more than 20 pixels, 

since such a pair of feature points may belong to different object. Besides, the term Δd 

is defined as the difference of the disparities between the matched pairs (i, k) and (j, l), 

which is related to the smoothness of neighboring feature points. The existence of 

depth discontinuities often leads to a lager Δd. The term ΔD is defined as the 

difference between the distance from i to j and the distance from k to l, which is 

related to the geometric property and becomes smaller for correctly matched feature 

points. The term ΔY is defined as the difference of the vertical disparity between the 

matched pairs (i, k) and (j, l), which is added to enhance the importance of the match 

of the feature points in vertical disparity since the two cameras are set on the same 

horizontal surface.  

 Similar to (3-10), the term Xikjl is transferred into the interval [-1, 1] by the 

following transfer function 

( )
2 1.

1 c ikjl cikjl XC
eλ θ−= −

+  (3-13) 

where θc is the tolerance of Xikjl and λc is a parameter to be determined. Obviously, a 

smaller Xikjl implies better compatibility between two pairs (i, k) and (j, l). The energy 

function to represent smoothness, geometric and vertical disparity properties is 

formulated as 
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3
1 1 1 1

.
l lr rN NN N

ikjl ik jl
i k j l

E C y y
= = = =

= −∑∑∑∑  (3-14) 

Clearly, the energy function E3 becomes smaller for Cikjl >0 and yik = yjl = 1, i.e., both 

the pairs (i, k) and (j, l) are matched and with better compatibility, a desirable case. 

 Next, by combining E1, E2 and E3 in (3-7), (3-11), and (3-14), the total energy 

function for stereo matching problem is given as below 

2 2

1 1 1 1 1 1 1 1

1 1

(1 ) (1 )

.

l l l lr r r

l

N N N NN N N Nr

ikjl ik jl ik ik
i k j l i k k i

N Nr

ik ik
i k

E C y y y y

S y

= = = = = = = =

= =

= − + − + −

−

∑∑∑∑ ∑ ∑ ∑ ∑

∑∑
 

(3-15)
 

The first term is the compatibility degree between a couple of points, i and j, in the 

left image and a couple points, k and l, in the right one. The second and third term 

represent the uniqueness, and the fourth term represents the similarity. Clearly, 

according to the definition of E1, E2 and E3, the best result will be occurred when the 

energy function reach its minimum. To search the minimum of the energy function, 

both the connection weights and the external input are required for the HNN to update 

the outputs of neurons. Next, the way to derive of the connection weights and the 

external input is shown based on (3-6) and (3-15). 

 

3.2.3 Derivation of connection weights and external input 

 After obtaining the total energy function, it is necessary to transfer (3-15) to the 

form of (3-6) which ensures the update rule will make the energy function decreased. 

Referring to the work by N. M. Nasrabidi and C. Y. Choo [18], (3-15) could be 

written as the following form: 
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1 1 1 1 1 1

1( ) ( ) (2 )
2

δ δ
= = = = = =

= − − − − +∑∑∑∑ ∑∑
l l lr r rN N NN N N

ikjl ij kl ik jl ik ik
i k j l i k

E C y y S y
 

(3-16)
 

whereδij andδkl interpret the uniqueness property. if i=j, then δij=1, otherwise δ

ij=0; similarly, if k=l, thenδkl=1, otherwise δkl=0. By the comparison of (3-6) and 

(3-16), it is easy to derive the values of the connection weights and the external input 

as follows: 

                        
2 .

ikjl ikjl ij kl

ik ik

W C

I S

δ δ= − −

= +
 (3-17) 

It is important to point out that the symmetrical inter-connection weights and no 

self-feedback are required to ensure the convergence of the energy function E. To 

substitute Wikjl and Iik in (3-5) by (3-17), a variation Δyik of the neuron nik leads to the 

energy variation, expressed as  

           1 -1

1 1

( ) 2 =δ δ −

= =

⎡ ⎤
Δ = − − − + + Δ − Δ⎢ ⎥

⎣ ⎦
∑∑

l rN N
t t t t t

ikjl ij kl jl ik ik ik ik
j l

E C y S y u y  (3-18) 

which describes the dynamic of the network and always shows non-positive when 

applying the following update rules at each time step t: 

1 1

1 1

1 1

1 1

1

0 if  =1 and ( ) 2 0

  1 if  =0 and ( ) 2 0

otherwise

δ δ

δ δ

− −

= =

− −

= =

−

⎧ ⎡ ⎤
− − + + <⎪ ⎢ ⎥

⎣ ⎦⎪
⎪ ⎡ ⎤⎪= − − + + >⎨ ⎢ ⎥

⎣ ⎦⎪
⎪
⎪
⎪⎩

∑∑

∑∑

l r

l r

N N
t t
ik ikjl ij kl jl ik

j l

N N
t t t
ik ik ikjl ij kl jl ik

j l

t
ik

y C y S

y y C y S

y

 (3-19) 

After setting the initial state of the 2D HNN, this update rule executes repeatedly until 

the network outputs do not change that implies the energy function reaches its 

minimum, and the solution of the stereo matching problem will be obtained.
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3.3 Summary and the Matching Procedure 

 Based on the energy function (3-16), the connection weights, external input and 

update rules of the 2D HNN are obtained. Further setting the output of each neuron in 

the 2D HNN by suitable initial value, the outputs of the 2D HNN can be updated to a 

set of fixed values, which represent matching relation of feature points. In this thesis, 

the initial outputs of the 2D HNN are determined by using a fixed size 30× 40 

window to roughly separate the possible and impossible matched pairs. For example, 

if a feature point i with coordinate (xl, yl) is selected in the left image, and a 30× 40 

window will be opened and centered on (xl−20, yl) in the right image. Every feature 

point k in this window will be the matching candidates and the initial output of neuron, 

yik, is set to 1. Clearly, the disparity range will be limited by the initialization to 

2 240 15+ , that is limited to about 61.85. Besides, the center of the window in the 

right image is shifted left by 20 pixels, from (xl, yl) to (xl−20, yl), due to the fact that 

for a physical point captured by two cameras in parallel its horizontal coordinate in 

the left image will be larger than the one in the right image, for example the difference 

is 20 pixels for the two cameras system in this thesis. After that, two stereo matching 

classes are obtained: possible and impossible. Furthermore, the update rule is only 

applied to the possible matched pairs that can speed up the convergence of energy 

function and avoid changing the impossible matched pairs to the possible matched 

pairs. The initial outputs of HNN will be saved to ensure the next step, random choice, 

will choose the possible matched pair to be update. To calculate the compatibility 

term, when a possible matched pair nik is chosen to updated, according to the 

smoothness property, a region 40× 40 pixels which is centered on feature point i is 

opened to search the neighboring feature points. All the points belong to this region 
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represent the j’s of equation (3-18). For every point j, the l’s of equation (3-18) are the 

neuron njl whose output equals to 1. Therefore, the output of the neuron nik will be 

adjusted by the update rule. To summarize the stereo matching, the overall flow chart 

is shown as Fig. 3.4, where  

-1 -1

1 1

( ) 2δ δ
= =

⎡ ⎤
= − − + +⎢ ⎥

⎣ ⎦
∑∑

l rN N
t t
ik ikjl ij kl jl ik

j l

u C y S . (3-20) 

In this thesis, the random updating procedure is iterated until the outputs of network 

remain unchanged during 200 iterations. 

 The proposed algorithm ISMB refers to the work of K. Achour and L. Mahiddine 

[19] denoted as Method-I, but there are three differences between them. The first 

difference is that ISMB uses genetic algorithm to search the parameters of HNN 

instead of using try and error. The second difference is the usage of the similarity 

property. In Method-I, the degree of similarity Mik is combined with smoothness and 

geometric properties to form a function which is similar to E3 which requires more 

than one matched pairs to calculate. Therefore, other matched pairs (j, l) around the 

matched pair (i, k) are required, and then the Mik can be used in energy function. To 

emphasize the similarity, ISMB measures the similarity of two feature points by the 

function Sik which only depends on matched pair (i, k). The third difference is the 

usage of the vertical disparity. In Method-I, the vertical disparity ΔY is used as a 

post-processing for reducing the multiple matching cases after obtaining the result of 

the 2D HNN. ISMB directly combines it with other properties to form a term E3 of the 

energy function in 2D HNN to reducing some incorrect matched pairs. The results of 

the second and third differences between them will be shown in chapter 5. 
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Fig. 3.4 The flow chart of stereo matching. 
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Chapter 4 

Real-coded genetic algorithm 

 Aim to search the four parameters of the energy function in 2D HNN, the genetic 

algorithm is used to automatic find the parameters which make the performance of 2D 

HNN better. The section 4.1 will briefly introduce the real-coded genetic algorithm, 

and then to apply the real-coded genetic algorithm to search the parameters of the 

energy function, a fitness function is designed in the section 4.2 

4.1 The Real-Coded Genetic Algorithms 

Description 

 Genetic algorithms are a particular class of evolutionary algorithms based on the 

concepts of biological evolutionary theory and a kind of search techniques used in 

computing to find exact or approximate solutions to optimization and search problems. 

Generally, a basic genetic algorithm has the following components [23]:  

 a population of chromosomes which represent potential solutions of the problem. 

 a fitness function indicates the adaptation of the chromosomes. 

 genetic operators (crossover and mutation). 

 a selection mechanism. 

At the beginning, the population is composed of randomly generated chromosomes, 

and then advance toward better chromosomes during successive iterations, called 

generations, by using the selection mechanism and applying genetic operators such as 

crossover and mutation operators modeled on the genetic processes in nature.  
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 Although there are many possible variants on the basic genetic algorithm, the 

operation of a standard genetic algorithm is described in the following steps [24]: 

1. Randomly create an initial population of chromosomes. 

2. Compute the fitness of every member of the current population. 

3. If there is a member of the current population that satisfies the problem 

requirement then stop. Otherwise, continue to the next step. 

4. Create an intermediate population P’ by extracting members from the current 

population using selection mechanism. 

5. Generate a new population by applying the genetic operators of crossover and 

mutation to this intermediate population. 

6. Go back to step 2. 

 Following the above steps, the chromosomes consist of a set of genes commonly 

are represented in binary as strings of 0s and 1s so that if a chromosome is a vector v 

consisting of n gene gi, then { }1 2( , ,..., ), 0,1 ,n nv g g g g= ∈  where n is the length 

of the chromosome. However, it is more natural to represent the genes directly as real 

numbers since the representations of the solutions are very close to the natural 

formulation. The advantage of using real-coded genetic algorithm is increased 

precision since binary coding of real numbers can suffer loss of precision depending 

on the number of bits used to represent a number. Moreover, for real-valued 

optimization problems, real-value coding is much easier and more efficient to 

implement because it is closer to the problem space. In this thesis, real-coded genetic 

is used so that the chromosome is a vector of floating point numbers and the genes of 

the chromosome represent the variables of the problem. For the two genetic operators 

of real-coded genetic algorithm, the crossover operator and mutation operator used 
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here are arithmetic crossover and random mutation and will be introduced in next 

part. 

 For arithmetic crossover, assume that C1 = (g1
1, g2

1, …, gn
1) and C2 = (g1

2, g2
2, …, 

gn
2) are two chromosomes chosen for application of the crossover operator, then two 

offspring Hk = (h1
k, h2

k, …, hn
k), k =1, 2, are generated, where hi

1 = λci
1 + (1−λ)ci

2 and 

hi
2 = λci

2 + (1−λ)ci
1. λ is a random value limited into the interval [0, 1] for each 

generation. For the random mutation, assume that C = (g1, g2, …, gn) is a chromosome 

to mutate, one of genes in chromosome gi will be changed by a random value gi’ in 

the interval [min(gi), max(gi)]. 
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4.2 Applying Real-Coded Genetic Algorithm to 

the 2D HNN 

 As mentioned above, real-coded genetic algorithm is convenient to find the 

appropriate four parameters for the proposed 2D HNN. The real-coded genetic 

algorithm used in this thesis also follows the basic genetic algorithm starts at the 

randomly creation of chromosomes, and each chromosome is a vector contains four 

elements to represent the four parameters of the 2D HNN. After the randomly creation 

of chromosomes, a fitness function is defined to evaluate whether the chromosome 

make the result of 2D HNN good or not. To define the fitness function, a target for the 

stereo matching problem is established by user so that the defined fitness function 

described below can judge the relation between the target and result of 2D HNN 

which use the four parameters of the chromosome. 

( ) = −c ef C n n  (4-1) 

where C is a chromosome contains four parameters, i.e. C = [θc, θs, λc, λs], nc is the 

number that the matched pairs of result are identical to the matched pairs of the target 

and ne is the number that the match pairs of result are not identical to the matched 

pairs of the target. Follow the definition of 4-1, the best fitness value equals to the 

number of matched pairs in target and occurs at the result of 2D HNN is identical to 

the target. For the stop condition, the genetic algorithm stops when the average fitness 

value of all chromosome in the intermediate population equal to the maximum of the 

fitness value or has reached the maximum number of generations. For creating an 

intermediate population P’, the two chromosomes with the largest fitness value will 

be first copy to the intermediate population to make sure that the best-performing 
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chromosome always survives from one generation to the next, and a competition 

method is used for selection mechanism by randomly choose two chromosomes and 

comparing their fitness value that the large one will be copy to the intermediate 

population. This creation process will repeat the competition until the number of 

chromosomes in the population reaches its maximum (30 individuals in this thesis). 

Once the intermediate population is created, the population of the next generation can 

be formed by applying the crossover and mutation operators on the chromosomes in 

P’. For the genetic operators, arithmetic crossover operator and random mutation are 

used. Two chromosomes are randomly selected from P’ and serve as parents depends 

on the crossover rate pc which is the probability of the two will be crossed over. If the 

two is crossed over, the offspring chromosome may mutates by the random mutation 

depends on the mutation rate pm which is the probability of the mutation. After 

applying these genetic operators, the next step is to compute the fitness value of those 

offspring chromosomes, and then the chromosomes in p’ and those offspring 

chromosomes will be combined to generate the new intermediate population by the 

process of creating an intermediate population. The genetic algorithm will continue 

until the stop condition is satisfied. 
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Chapter 5 

Experimental results 

 In this chapter, the system structure is described in section 5.1 and the algorithm 

is executed by the software MATLAB R2006a. The results of the real-coded genetic 

algorithm and stereo matching process will be shown and compared in section 5.2.  

5.1 System Description 

 The system shown in Fig. 5.1 is established by setting two cameras on a 

horizontal line and their lines of vision are parallel and fixed. In addition, the distance 

between two cameras is set as constant equal to 10 cm and these two cameras, 

QuickCamTM Communicate Deluxe, have specification listed below. The 

experimental environment for testing is our laboratory and the deepest depth of the 

background is 180 cm. 

 1.3-megapixel sensor with RightLight™2 Technology  

 Built-in microphone with RightSound™ Technology 

 Video capture: Up to 1280 x 1024 pixels (HD quality) (HD Video 960 x 

720 pixels) 

 Frame rate: Up to 30 frames per second 

 Still image capture: 5 megapixels (with software enhancement) 

 USB 2.0 certified 

 Optics: Manual focus 
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Fig. 5.1 The humanoid vision system. 

 

5.2 The stereo matching results 

 In order to test the proposed method, there are several stereo images pairs 

captured from an indoor environment, and each pair consists of two left and right 

original images and two left and right images of labeled feature points. All the test 

images are 240× 320 pixels in size, with 256 gray levels. Because the proposed 

method focuses on the center region of two images, a fixed size region of interest 

(ROI) whose size is one fourth of the image is allowed and labeled in the image. Fig. 

5.2 show an original image pair, and Fig. 5.3 show the corresponding images with the 

feature points extracted with the Harris operator. Each feature point has a unique 

number label and denoted as + symbol, so there are 18 feature points in left image and 

20 feature points in right image. For the stereo matching problem, three kinds of 2D 

HNN are compared in this thesis to discuss the effect of the modified similarity and 
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vertical disparity. The first kind 2D HNN is proposed in [19] and denoted as Method-I, 

which combines the similarity with smoothness and geometric property to form a term 

in energy function and does not use the vertical disparity in energy function. The 

second one denoted as Method-II and the third one denoted as Method-III all use the 

proposed 2D HNN, but the difference is the second one does not use the vertical 

disparity in energy function. In following section, the real-coded genetic algorithm is 

applied to search the four parameters of 2D HNN, and the effects of the modified 

similarity and the vertical disparity are presented by comparing the results of 

Method-I with Method-II and the results of Method-II and Method-III, respectively. 

Finally, a simple application is proposed to detect the relative distance information 

between the objects. 

 

5.2.1 The result of genetic algorithm and the comparison 

between Method-I and Method-II 

 To discuss the modified similarity, the Method-I and Method-II are established to 

do the stereo matching process of the Fig. 5.2, and the size of each HNN is 20× 20 to 

represent the 400 matched pairs, each neuron for one matched pair, and the initial 

state of the two HNN are the same. In Table 5.1, a list shows the initial state of the 

HNN and there are 39 pairs to be considered as the possible matched pairs after the 

initialization described in section 3.3. But these 39 possible matched pairs still include 

some incorrect matched pairs, and the HNN is used to cancel the incorrect matched 

pairs. After the initialization, the HNN will update the output of neurons by the update 

rule until the HNN satisfies the stable condition. However, before executing 2D HNN, 



 30

there are two parameters [θc, λc] of the Method-I and four parameters [θc, θs, λc, λs] of 

Method-II have to be determined by the proposed real-coded genetic algorithm 

described in section 4.2. For the real-coded genetic algorithm, some settings have to 

be determined as below: 

1. To establish the target of the matching problem by user, and the target value will 

be the number of the matched pairs in the target. For this example, the target 

contains 13 matched pairs and is denoted as * in the Table 5.1, so the target value 

will be 13. 

2. The maximum number of intermediate population is 30. 

3. Crossover rate pc=0.8 and mutation rate pm=0.05. 

4. The genetic algorithm stops when the average of fitness value equals the target 

value or the number of generations reaches the maximum number which is set as 

500.  

The results of the real-coded genetic algorithm applied to the two kinds HNN are 

respectively shown in Fig. 5.3 and Fig. 5.4. For the Method-I, the average of fitness 

value is increasing through the number of generation increases and the proposed 

genetic algorithm stops when the number of generation equals to 500. The 

chromosome with the best fitness value [41.57, 4.40] can be obtained and be used to 

set the parameters [θc, λc] of the Method-I. The stereo matching result of the Method-I 

which θc =41.57 and λc =4.40 is shown in Table 5.2. For the Method-II, the genetic 

algorithm stops when the number of generation equals to 500, and the four parameters 

of the Method-II, [θc, θs, λc, λs], can be determined by choosing one of the 

chromosome in the final intermediate population [7.45, 15.20, 1.47, 4.08]. The stereo 

matching result of the Method-II which θc =7.45, θs=11.78, λc =1.47 and λs =4.08 is 

shown in Table 5.3. Comparing Table 5.1 and Table 5.2, the Method-I can reduce the 
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incorrect matched pairs from the initial result which contains 39 matched pairs, but 

there are three error matched pairs whose number are 1, 2 and 5 in the result of the 

Method-I and the result does not contain a target pair whose number is 26 in Table 5.1. 

The Table 5.3 is the result of the Method-II and contains the whole target pairs, but 

one error matched pair still exist in the Table 5.3. Clearly, the Method-II can improve 

the performance of stereo matching by modifying the similarity in the energy function. 

In addition, to ensure the update rule make the energy function decrease, the Fig. 5.5 

shows the average energy value of executing the Method-II 20 times and the energy 

value monotonously decreases during the update process. 

 

(a) (b) 

Fig. 5.2 The original image pair, (a) left gray level image, (b) right gray level image. 
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(b) 

Fig. 5.3 The corresponding image pair with the feature points extracted with the 
Harris operator and ROI, (a) the left image with 20 feature points, (b) the right image 

with 20 feature points. 
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Fig. 5.4 The result of genetic algorithm corresponding to Method-I. 
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Fig. 5.5 The result of genetic algorithm corresponding to Method-II. 
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Fig. 5.6 Average energy values at each iteration number. 
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Table 5.1 The initial state of 2D HNN applied to Fig. 5.2. 
Pair 

number 
Left feature 

label 
Right feature 

label 
yleft xleft yright xright disparity

*1 1 1 99 99 100 88 11.05 
2 2 3 148 103 138 89 17.20 
3 2 4 148 103 149 91 12.04 
4 3 1 99 117 100 88 29.02 
*5 4 5 68 120 69 112 8.06 
*6 5 6 126 137 128 119 18.11 
7 6 7 147 142 143 122 20.40 
*8 8 9 68 162 69 154 8.06 
*9 9 8 97 163 98 152 11.05 
*10 10 10 122 165 123 154 11.05 
11 12 10 114 190 123 154 37.11 
12 12 11 114 190 123 170 21.93 
13 12 12 114 190 114 179 11.00 
14 12 13 114 190 122 180 12.81 
15 13 10 122 190 123 154 36.01 
*16 13 11 122 190 123 170 20.03 
17 13 12 122 190 114 179 13.60 
18 13 13 122 190 122 180 10.00 
19 14 14 150 196 142 189 10.63 
20 14 15 150 196 152 190 6.32 
21 15 11 113 199 123 170 30.68 
*22 15 12 113 199 114 179 20.03 
23 15 13 113 199 122 180 21.02 
24 16 11 121 199 123 170 29.07 
25 16 12 121 199 114 179 21.19 
*26 16 13 121 199 122 180 19.03 
*27 17 14 140 208 142 189 19.11 
28 17 15 140 208 152 190 21.63 
29 17 16 140 208 151 200 13.60 
30 18 14 150 209 142 189 21.54 
*31 18 15 150 209 152 190 19.11 
32 18 16 150 209 151 200 9.06 
33 19 14 150 220 142 189 32.02 
34 19 15 150 220 152 190 30.07 
*35 19 16 150 220 151 200 20.03 
36 19 17 150 220 149 211 9.06 
37 20 16 147 231 151 200 31.26 
*38 20 17 147 231 149 211 20.10 
39 20 18 147 231 146 224 7.07 
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Table 5.2 The result of Method-I applied to Fig. 5.2. 
Pair 

number 
Left feature 

label 
Right feature 

label 
yleft xleft yright xright Disparity

1 2 4 148 103 149 91 12.04 
2 3 1 99 117 100 88 29.02 
3 4 5 68 120 69 112 8.06 
4 5 6 126 137 128 119 18.11 
5 6 7 147 142 143 122 20.40 
6 8 9 68 162 69 154 8.06 
7 9 8 97 163 98 152 11.05 
8 10 10 122 165 123 154 11.05 
9 13 11 122 190 123 170 20.03 
10 15 12 113 199 114 179 20.03 
11 17 14 140 208 142 189 19.11 
12 18 15 150 209 152 190 19.11 
13 19 16 150 220 151 200 20.03 
14 20 17 147 231 149 211 20.10 

 

Table 5.3. The result of Method-II applied to Fig. 5.2. 
Pair 

number 
Left feature 

label 
Right feature 

label 
yleft xleft yright xright Disparity

1 1 1 99 99 100 88 11.05 
2 2 4 148 103 149 91 12.04 
3 4 5 68 120 69 112 8.06 
4 5 6 126 137 128 119 18.11 
5 8 9 68 162 69 154 8.06 
6 9 8 97 163 98 152 11.05 
7 10 10 122 165 123 154 11.05 
8 13 11 122 190 123 170 20.03 
9 15 12 113 199 114 179 20.03 
10 16 13 121 199 122 180 19.03 
11 17 14 140 208 142 189 19.11 
12 18 15 150 209 152 190 19.11 
13 19 16 150 220 151 200 20.03 
14 20 17 147 231 149 211 20.10 
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5.2.2 The comparison between Method-II and Method-III 

 To illustrate the effect of vertical disparity used in HNN, Method-II and 

Method-III are applied to a realistic image pair which is shown in Fig 5.7 and with the 

feature points in the ROI. The limitation for the number of the feature points is set as 

[20, 30] and the threshold T is set as 30. To deal with the stereo matching problem of 

Fig. 5.7, the parameters of Method-II and Method-III also have to be determined by 

the proposed genetic algorithm. The processes of the genetic algorithm applied to 

Method-II and Method-III are shown in Fig. 5.8 and Fig. 5.9, respectively. Since the 

number of matched pairs in target is 12, the best fitness value is also 12. When the 

stop condition of the genetic algorithm is satisfied, the chromosome with the 

maximum fitness value in the population is chosen to determine the parameters of 

HNN so that the parameters of Method-II are set as [11.51, 26.24, 8.89, 1.16] and the 

parameters of Method-III are set as [17.97, 24.02, 6.37, 2.2]. Table 5.4 is the 

corresponding result when Method-II applied to Fig. 5.7 and reaches its stable state. 

The pair number 11 in Table 5.4 is an error matched pair, but this pair does not occur 

in the Table 5.5 which is the result of the Method-III applied to Fig. 5.7 since the 

vertical disparity of point number 18 in left image and point number 13 in right image 

is large. From the Table 5.5, the result is one-to-one and correct matching that verifies 

the Method-III can be used to improve the performance by reducing the matched pair 

with the large vertical disparity. Besides, to show the performance of the parameters, 

the Method-III with the parameters [17.97, 24.02, 6.37, 2.2] is also applied to other 

realistic stereo image pairs shown in Fig. 5.8. The testing results are the results using 

the parameters [17.97, 24.02, 6.37, 2.2] and the training results are the results using 

another parameters which are obtained by applying the proposed genetic algorithm to 

each image pair. The error term represents how many matched pairs are not identical 
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to the target, and the percentage of the correct matching by using the Method-III with 

the parameters [17.97, 24.02, 6.37, 2.2] is 91.24%. 
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(b) 

Fig. 5.7 The realistic image pair with the feature points in the ROI, (a) left image with 

21 feature points, (b) right image with 20 feature points. 
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Fig. 5.8 The result of genetic algorithm corresponding to Method-II. 
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Fig. 5.9 The result of genetic algorithm corresponding to Method-III. 
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Correct/Error/Target 
Testing: 12/0/12 
Training: 12/0/12 

Correct/Error/Target 
Testing: 11/0+1/12 
Training: 11/0+1/12 

Correct/Error/Target 
Testing: 11/0+1/12 
Training: 11/0+1/12 

 

Correct/Error/Target 
Testing: 15/0/15 
Training: 15/0/15 

Correct/Error/Target 
Testing: 5/0+2/5 
Training: 5/0/5 

Correct/Error/Target 
Testing: 13/0+1/13 
Training: 13/0/13 

 
Correct/Error/Target 
Testing: 14/2+0/16 
Training: 16/0+1/16 

Correct/Error/Target 
Testing: 14/0+1/16 
Training: 15/0/16 

Correct/Error/Target 
Testing: 12/0+2/12 
Training: 12/0+2/12 

 
Correct/Error/Target 
Testing: 16/1+1/17 
Training: 17/0/17 

Correct/Error/Target 
Testing: 16/0+1/20 
Training: 20/0/20 

Total: C/E/T = 125/14/137
 

Accurate rate 
125/137=91.24% 

Fig. 5.10 The left images of the realistic image pairs in the experiment. 
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Table 5.4 The result of the Method-II applied to Fig. 5.7. 

Pair 
number 

Left feature 
label 

Right feature 
label 

yleft xleft yright xright Disparit
y 

1 5 2 70 111 73 92 19.24 
2 6 3 128 113 131 95 18.25 
3 8 4 155 120 158 98 22.20 
4 9 6 119 137 122 116 21.21 
5 11 7 160 138 164 116 22.36 
6 12 5 173 143 178 108 35.35 
7 14 10 138 145 142 123 22.36 
8 15 8 173 152 178 118 34.37 
9 16 11 147 174 150 153 21.21 
10 17 12 153 204 158 184 20.62 
11 18 13 158 217 172 193 27.78 
12 19 14 74 229 78 208 21.38 
13 20 15 136 230 141 209 21.59 

 

Table 5.5 The result of the Method-III applied to Fig. 5.7. 

Pair 
number 

Left feature 
label 

Right feature 
label 

yleft xleft yright xright Disparit
y 

1 5 2 70 111 73 92 19.24 
2 6 3 128 113 131 95 18.25 
3 7 1 170 116 173 85 31.14 
4 8 4 155 120 158 98 9.85 
5 9 6 119 137 122 116 21.21 
6 11 7 160 138 164 116 22.36 
7 12 5 173 143 178 108 35.35 
8 14 10 138 145 142 123 22.36 
9 15 8 173 152 178 118 34.36 
10 16 11 147 174 150 153 21.21 
11 17 12 153 204 158 184 20.62 
12 20 14 74 229 78 208 21.38 
13 21 15 136 230 141 209 21.59 
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5.2.3 A simple application to obtain the relative distance 

between objects 

 A simple application to detect objects and find the relative distance between the 

detected objects is also proposed in the following experiment. The first step is to 

establish a scene as the background shown in Fig. 5.11, and the disparities of matched 

pairs in the background images will be derived by applying the Method-III and are 

marked in Fig. 5.12. Secondly, if there are two objects appear in the scene, such as Fig. 

5.13 in which two toy cars appear, the disparities of the two objects can be acquired 

shown in Fig. 5.14 by applying the Method-III to Fig. 5.13 and deleting the feature 

points of background. After that the relative distance information can be obtained by 

comparing the disparities of background and two objects. The feature point with large 

disparity is more closed to the two cameras than the feature point with small disparity. 

From the Fig. 5.14, the feature points of the left toy car have the larger disparities so 

that the left car is more closed to the two cameras than the right toy car. In addition, to 

compare the Fig. 5.12 and Fig. 5.14, the information that two objects are in front of 

the box in the center of the image is also obtained.  
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(b) 
Fig. 5.11 The background image pair with the feature points in the ROI, (a) left image 

with 21 feature points, (b) right image with 20 feature points. 
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Fig. 5.12 The feature points with disparities in the background image.  
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Fig. 5.13 The feature points of the two objects which appear in the ROI of image pair. 
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Fig. 5.14 The feature points of the two objects and with their disparities.
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Chapter 6 

Conclusions and Future Works 

 An intelligent algorithm to detect the disparity of feature point by solving the 

stereo matching problem is proposed in this thesis. The algorithm consists of feature 

extraction, stereo matching process and a searching parameters algorithm. The feature 

extraction is implemented by the Harris corner detector, which extracts the corners of 

objects as the feature points. The stereo matching problem is formulated as a 

minimization of a neural network’s energy function which represents the constraints 

on the solution. The neural network is a 2D Hopfield neural network with connection 

weights between neurons to minimize the energy function. Since there are four 

parameters in the energy function have to determined, a real-coded genetic algorithm 

is applied to automatic search those parameters which make the performance of the 

stereo matching process better. The contribution of this thesis is to design the energy 

function, and the experimental results show that using this energy function provides 

good matching results. Besides, the execution time of the test image pairs on a PC 

with AMD 1.92 GHz CPU is estimated between 2 and 3 seconds. Finally, after 

solving the stereo matching problem, the disparity of the matching points can be 

obtain. 

 Although the proposed ISMB have some achievements of stereo matching, it 

does not yet provide a full performance and several improvements to the ISBM may 

be possible. To enhance the performance, two works are considered in the future 

works: (1) using the analog Hopfield neural network to avoid the local minimum of 

the energy function. (2) to extract the edges as complementary features.
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