

國 立 交 通 大 學

電機與控制工程學系

碩碩碩碩 士士士士 論論論論 文文文文

智慧型手勢辨識系統設計

Intelligent Hand Gesture Recognition System Design

 研研研研 究究究究 生生生生：：：：洪新光洪新光洪新光洪新光

指導教授指導教授指導教授指導教授：：：：陳永平陳永平陳永平陳永平 教授教授教授教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 八八八八 年年年年 六六六六 月月月月

智慧型手勢辨識系統設計

Intelligent Hand Gesture Recognition System Design

研 究 生：洪新光 Student：Iman Hung

指導教授：陳永平 Advisor：Professor Yon-Ping Chen

國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the degree of Master

In

Electrical and Control Engineering

June 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年六月

i

智慧型運手勢辨識系統設計

學生：洪 新 光 指導教授：陳 永 平 博士

國立交通大學電機與控制工程學系

摘要

Chinese Abstract

本論文主要目的是設計智慧型手勢辨識系統，此系統是根據人腦所認知手

姿態狀態來識別不同的手勢，其中有九種手勢可以被此系統來描述，包含“向

左”、“向右”、“左轉”、“右轉”、“向上”、“向下”、“熱機”、“追

縱”和 “訓練”。手姿態的認知以及手勢的識別可以透過類神經網路的學習來

處理，首先可利用觸發式類神經網路來達成手姿態的認知，再借由手勢分類器來

完成手勢的識別。其中手勢分類器可分為前饋式類神經網路和遞迴式類神經網路

兩種類型，雖然兩者都可以達到很好的手勢識別效能，但是仍以遞迴式的類神經

網路為佳。

ii

Intelligent Hand Gesture Recognition System Design

Student: Iman Hung Advisor: Dr. Yon-Ping Chen

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

The main purpose of this thesis is to design the intelligent hand gesture

recognition system, which can recognize different hand gestures according to

cognitive posture states of human brain. There are nine hand gestures which can be

described by this system, including “Turn right”, “Turn left”, “Upward”, “Downward”,

“Right around”, “Left around”, “Warming”, “Following” and “Learning”. The

cognition of hand posture states and recognition of hand gestures can be learned by

neural network. A hand gesture analyzer, composed of a repeated state retriever and a

gesture classifier, is applied to recognize the hand gestures. The hand gesture is

closely related to the change of hand posture states; therefore, a repeated state

retriever is used to turn hand posture state sequence into triggered state sequence,

which can be further classified by the gesture classifier. The gesture classifier can be

implemented by two types of neural network, feed-forward and recurrent. It can be

shown that both types of gesture classifier can well recognize the hand gestures.

However, since the feed-forward classifier is often interfered by undefined hand

posture state sequence, the recurrent classifier has a better result in had gesture

recognition.

iii

Acknowledgement

在研究所的兩年中，首先我要感謝指導教授 陳永平教授的諄諄教

導，讓我在表達能力、思考邏輯以及英文寫作上都有大幅的進步，也使我

得以順利完成此篇論文。也要感謝桓展、世宏兩位學長在我遇到問題時幫

助、陪伴我解決問題與提供寶貴的建議。最後，謝謝口試委員 楊谷洋教

授與 張浚林教授提供寶貴的意見，讓整篇論文更加完整。

另外，感謝可變結構控制實驗室的承育、楊庭、瑋哲學弟、傳源學弟

的幫助，讓我順利走過研究所的兩年歲月。最後特別感謝父母對於我的支

持、鼓勵以及協助。謝謝你們！

謹以此篇論文獻給所有照顧我、關心我的親戚朋友們。

洪新光 2009.7.15

iv

Contents

Chinese Abstract……….………..……………...……………..…………..……..........i

English Abstract …....…..……………………………………………………...…...ii

Contents ..………….……………………………………..…………………………..iv

List of Figures………………..……………………………...……….………..……..vi

List of Tables……...………………………………………………...………………vii

Chapter 1 Introduction …………………………………………………….......1

1.1 Motivation……………………………………………………..……..1

1.2 Related Works………………………….…………….…………….. 2

1.2.1 Hand recognition….…………………..…….……………..2

1.2.2 Machine learning…………..….…………….……………..3

1.3 Organization…………………………..………….…………………. 3

Chapter 2 Intelligent Algorithms survey……………………………………….. 4

2.1 Feed-forward Neural Network…………………………………… 4

2.1 Recurrent Neural Networks………………………….……………5

2.2.1 Elman network..6

2.2.4 Second-order recurrent network.......................................9

Chapter 3 Intellingent Motion Description System.. 13

3.1 System Structure.. 13

3.1.1 Image Data Retriever...15

3.1.2 Posture Data Generator...16

3.1.3 Posture State Encoder..19

3.1.4 Gesture Analyzer..21

3.2 Machine learning.. 23

v

3.2.1 Repeated State Retriever…………………….............. 24

3.2.2 Gesture Classifier….………………………………...…28

3.2.2.1 Feed-Forward Classifier…………….............. 28

3.2.2 Recurent Classifier….………………………...…30

Chapter 4 Experimental Results………………………………………….........34

4.1 Repeated State Retriever……..………….……………………………34

4.2 Feed-forward classifier results…………………..……………….….. 36

4.3 Simple Recurrent Network results……………….….…………….…39

4.4 System Description and Operation Experiments..….……….………47

4.4.1 Human Vision Description…………………………………..48

Chapter 5 Conclusion and future work……………………………….…………50

References………………………………………………………………………...…52

vi

List of Figures

Figure 2.1 Artificial neuron …………………………...………………………………5

Figure 2.2 Elman neural network……….. ……………………………………………7

Figure 2.3 second-order recurrent…………………………….. ………………….11

Figure 2.4 second-order recurrent neural……………….………………...………….12

Figure 3.1 Intelligent Hand Gesture recognition Systems ……………………...14

Figure 3.2 Image Data Retriever …………………………………………………15

Figure 3.3 Posture data generator ………………………………………………...17

Figure 3.4 Posture state encoder.……….………………………………………….19

Figure 3.5 Hand gesture analyzer……………..…………………………………...22

Figure 3.6 Repeated state retriever………………………………………………..24

Figure 3.7 Feed-forward classifier………………….……………………………...29

Figure 3.8 Recurrent Classifier…………………………………………………….32

Figure3.9 the architecture of recurrent classifier….………………………………33

Figure 4.1 testing results with different number of trigger output ……………35

Figure 4.2 operation experiments…………………………………….……………49

Figure 4.1 Human Vision description………………………………..……………49

vii

List of Tables

Table 3.1 image data definition …………………………………………………..15

Table 3.2 Posture data description …………………………………………………..18

Table 3.3 Posture data definition …………………………………………………..18

Table 3.4 Posture state encoder…….………………………………………………..20

Table 3.5 Postures of posture state…….………………………...…………………..20

Table 3.6 Gesture description………………………………………………………..22

Table 3.7 Index condition ………………………………………………………..25

Table 3.8 Example of single state eliminator………………………………………..26

Table 3.9Example of Repeated state processor……….…………..……….…….…..27

Table 3.10 Example of trigger net…………………………………………………..27

Table 3.11 Hand gesture and triggeres state sequence.…………………….………..29

Table 3.12Transient pattern………..………………………………………………..30

Table 3.13Example of recurrent classifier…………….……………………………..31

Table 4.1 Architecture of repeated state retriever…..………………………………..35

Table 4.2 minimum neuron for different number of trigger output ……………..36

Table 4.3 training sample of nine gestures…………………………………………..36

Table 4.4 the nine hand gestures with trigger state sequence………………..………37

Table 4.5 testing result for feed-forward classifier…………………………….…….38

Table 4.6 testing performance ….. …………………………………………………...39

Table 4.7 Training samples for three motion events ……………………………..40

Table 4.8 the architecture of recurrent classifier …………………………………..43

Table 4.9 test samples for three motion events …………………………………..43

Table 4.10 testing performance …………………………………………………..46

Table 4.11 Comparison of Performance ……………………………………………..47

 1

Chapter I

Introduction

1.1 Motivation

The field of human-robot interaction, how to communicate with a robot

instinctively and directly is a major challenge. As using hand gestures is a natural way

for interaction between people, hand detection and hand gesture recognition could be

essential to human-robot interaction. It is worthwhile to research the area of

human-robot interaction. However, there are still lots of limitation in vision cognitions

of robot make the robot unintelligent. The human is intelligent is due to their learning

and reasoning ability. The so-called learning ability is to learn and memorize

something and reasoning ability is to reasoning something with experience. Therefore,

a gifted artificial intelligent neuron is birth to emulated brain neuron. Basically, the

artificial neural network based on the human neural network contains many neurons

connected with synaptic weights. Thus, it is intelligent by learning, recalling, and

reasoning from test data like a human brain.

The robot uses the camera as the eye which is completely different from human

in vision cognition. In order solve above problems, we develop a human-like system

which is according to human vision of cognition.

 2

1.2 Related Works

Human Computer Interaction (HCI) is a very important research area.

Researchers try to create convenient, intuitive and useful interface to improve the

communication between human and computer. Keyboard and mouse are the most

popular interface for personal computer. However, the current definition

of”computer” is not only the personal computer but also means intelligent machine

system, intelligent space, etc. For these”new type computer”, the standard keyboard

and mouse are not satisfying the requirement. Therefore, vision based hand gesture

interface is an important research topic. But recognizing gestures are a task which

needs pattern recognition, machine learning, even motion modeling techniques. In the

past, researchers have spent effort on hand gesture recognition. In this section, we will

review hand recognition, and machine learning techniques.

1.2.1 Hand recognition

The human hand is a complex articulated object consisting of many connected

parts and joints. Considering the global hand pose and each finger joint, the human

hand motion has roughly 27 degrees of freedom (DOFs) [1]. To use human hands as a

natural HCI, glove-based devices, such as the CyberGlove, have been used to capture

human hand motions. However, the gloves and their attached wires are still quite

cumbersome and awkward for users to wear, and moreover, the cost of the glove is

often too expensive for regular users. With the latest advances in the fields of

computer vision, image processing, and pattern recognition, real-time vision-based

hand gesture classification is becoming more and more feasible for human–computer

interaction in Virtual environment. In this thesis to make the image processing easier

 3

for the vision-based hand gesture recognition, color-based algorithm is implemented

to meet the real-time performance, accuracy and robustness requirements.

1.2.2 Machine Learning

In recent years, many researchers have been devoted to developing artificial

intelligence system, consisted of following theory, High-level Vision [2],

representation and reasoning [3], spatial and temporal reasoning [3-7] and neural

network[7, 8]. In general, the spatial temporal reasoning adopts the concept of state

machine to describe a hand gesture represented by a specified state sequence;

however, it is not intelligent to design a state machine manually. If a new state is

added, the state machine must be redesign and all the transition probabilities should

be changed accordingly which makes the spatial temporal reasoning not extendable.

In order to solve above problems, we proposed a system combined neural network

and spatial temporal reasoning together. However, it is difficult only plain neural

network to learning the motion movement related time; therefore, a recurrent neural

network is introduced for learning state machine automatically [9-18].

1.3 Organization

The thesis contains five chapters. The introduction is described in this chapter.

Chapter 2 describes the basic neural network theory. The Intelligent Hand Gesture

Recognition System is implemented by neural network explained in detail in Chapter

3 and the simulation results are demonstrated in Chapter 4. Finally, the conclusion is

given in Chapter 5.

 4

Chapter 2

Intelligent algorithms survey

Learning has long been and will continue to be a key issue in intelligent

algorithms and systems design. By emulating the behavior of human learning the high

levels such as symbolic processing and low levels such as neuronal processing has

long been a dominant interest among researchers worldwide.

2.1 Feed-forward Neural Network

An artificial neural network (ANN) demonstrates the ability to learn, recall, and

generalize from training patterns or data. Artificial neural networks which are

modeled after the physical architecture of the human brain is proposed to simulate the

learning function for intelligent machine. Therefore, ANN is highly interconnected by

a large of processing elements, which are also called artificial neuron or neuron

simply, and its connective behavior is like human brain.

A feedforward neural network is an ANN where connections among the elements

do not form a directed cycle, as shown in Fig-1. The feed forward neural network was

the first and arguably simplest type of ANN. In this network, the information moves

in only one direction, forward, from the input nodes, through the hidden nodes (if any)

and to the output nodes. There are no cycles or loops in the network.

 5

2.2 Recurrent neural network

A recurrent neural network (RNN) is a class of neural network where

connections among elements form at least a directed cycle. This creates an internal

state of the network which allows it to exhibit dynamic temporal behavior.

Recurrent neural networks are devised differently from feedforward neural

networks, both when analyzing their behavior and training them. Recurrent neural

networks can also behave chaotically and dynamical system theory is often used to

model and analyze them. Unlike feedforward neural network, the RNN is a kind of

temporal learning structure and can learn time sequence process task. Recently,

investigators have paid more attention to the RNN and developed lots of RNN-related

architecture and learning algorithms. The most famous recurrent networks are

first-order and second-order RNNs. The first-order RNN is also known as Elman

network. Both will be applied in this thesis.

ΣΣΣΣ f(‧)

x1

x2

xp

bias

w1

wp

y

Figure 2.1 ANN

 6

2.2.1 Elman network

An Elman network is known to have memories in the structure and able to

represent time in an implicit way. The basic structure of Elman network is shown in

Figure 2.2 and formed by four layers including one input layer, one hidden layer, one

context layer and one output layer. Clearly, the current input of the context layer

receives the previous output ()1k−x from the hidden layer. The output ()kx of

the hidden layer depends on the input layer and the context layer, and is described by

the following activation function:

() ()()j jx k = f h k , j=1, 2,…, r (2-1)

where

() () ()
m r

j jp p jq q j

p=1 q=1

h k = v u k + z x k- 1 + q∑ ∑ (2-2)

Note that vjp and zjq are the weights connecting node p of input layer and node q of

context layer to node j of hidden layer, and jθ represents the threshold. After x(k)

are obtained, the output layer can be calculated as:

 () ()()p py k g s k= , p=1, 2,…, n (2-3)

where

() ()
1

r

p pq q p

q

s k w x k φ
=

= +∑ (2-4)

 7

with the weight wpq connecting node p in the hidden layer to node q in the output

layer and the threshold
pφ .

In general, the summed squared error (SSE) is chosen as the cost function,

expressed as

 () () ()()
2

1 1 1

1

2

l l n

p p

k k p

e k d k y kE
= = =

= = −∑ ∑∑ , k=1, 2,…, l (2-5)

where dp(k) is the desired output, l is the total number of available training samples

and n is the total number of output nodes.

Figure 2.2 Elman network

 8

To train an Elman network, the gradient of the output error with respect to the

weights is calculated, and the weights are incrementally adjusted to reduce the output

error by the so-called Back Propagation Through Time (BPTT). According to gradient

descent method, each weight change in the network should be proportional to the

negative gradient of the cost function (1-5), and defined as

()
()1

1

l

l
k

i j

ki j i j i j

e k
e kE

w
w w w

η η η=

=

∂ ∂∂ ∆ = − = − = −

∂ ∂ ∂

∑
∑ (2-6)

where η is the learning rate. Βased on the chain rule, it can be further rearranged as

()
()

()
()

()

()
()

() ()

1

1

1

l
p p

ij

k p p i j

l
p

p

k i j

l

p j

k

y k s ke k
w

y k s k w

s k
k

w

k x k

η

η δ

η δ

=

=

=

∂ ∂∂
∆ = − ⋅ ⋅

∂ ∂ ∂

∂
= ⋅

∂

= ⋅

∑

∑

∑

 (2-7)

Note that the truth of
()

()p

j

i j

s k
x k

w

∂
=

∂
is directly derived from (2-4). Besides,

from (1-5) and (1-3), the function ()p kδ can be also express as

()
()
()

()
()

() ()() ()()

p

p

p p

p p p

y ke k
k

y k s k

d k y k g s k

δ
∂∂

= ⋅
∂ ∂

′= − ⋅

 (2-7)

With the same process, the weight changes for z and v are found as

 9

 () ()
1

l

j p j p

k

v k x kη δ
=

∆ = ∑ (2-8)

 () ()
1

1
l

j q j q

k

z k h kη δ
=

∆ = −∑ (2-9)

After the weight changes are obtained, the weights will be updated correspondingly as

below

 i j i j i jw w w= + ∆ (2-10)

 j p j p j pv v v= + ∆ (2-11)

 j q j q j qz z z= + ∆ (2-12)

These weights will be changed for every learning step until all the training sets are

used. As for the learning cycle, it will be terminated when the total error satisfies the

requirement.

2.2.2 Second-order recurrent neural network

Second-order recurrent neural network can directly identify different sequences

which are grammatical or ungrammatical. The architecture of second-order RNN

proposed by Giles is shown in Fig.2.3 which consists of two layers connected by

weights. The first layer has two groups of neurons: three state neurons

() () (){ }0 1 2
 S k , S k , S k and two input neurons () (){ }0 1

 I k , I k . Define the

 10

current-state vector as () () () ()0 1 2

T

k S k S k S k = S and the input vector as

() () ()0 1

T

k I k I k = I . The output layer includes three output neurons

() () (){ }0 1 2
1 1 1S k , S k , S k+ + + and then define the output vector as

() () () ()0 1 2
1 1 1 1

T

k S k S k S k + = + + + S .with one special neuron ()0 1S k+ as the

indicator in the output layer to indicate the classification decision of the network, i.e.,

whether the input string is grammatical or ungrammatical. An index
pT for the p

th

training string is needed for the supervised learning process. The forward propagation

(with second-order connection weights) can be defined using the following formula

 () () ()1 pq p q

p q

S k w S k I k+ =∑∑ (2-13)

with the weight wpq connecting node p of the recurrent output and node q of the input

layer to the hidden layer. The objective function E to be minimized is defined as

below

 ()()
2

2

0

1 1

1 1
1

2 2

P P

p p

p p

E S k
P P

e T
= =

= = − +∑ ∑ (2-14)

where P denotes the total number of strings in the training set.

 11

A convenient way to view a second-order recurrent network that deals with

binary sequence is to decompose the network structure into two separate component

networks, net0 and net1, controlled by an “enabling” or “gating” as shown in Fig.2.4.

The network consists of two first-order recurrent networks with shared state nodes.

The state node values are copies back to both net0 and net1 after each time step, and

the input sequence acts as a switching control to enable or disable one of two nets. For

example, when the current input is 1, net1 is enabled while net0 is disabled. The state

node values are then determined by the state node values from the previous time step

weighted by the weights in the net1.

Delay

Figure 2.3 second-order recurrent

()kI()kS

()1kS +

()0 1S k+

 12

Figure 2.4 second-order recurrent neural network

()0 1S k+ ()1 1S k+

()0
S k ()0

S k ()1
S k ()1

S k

Input

 13

Chapter III

System structure

In general, the so-called spatial temporal learning is adopted to describe hand

gesture under the assumption that each hand gesture represented by a state sequence

in fixed length. However, a practical hand gesture usually occur in variable time

duration, which causes a state sequence in fixed length fail to deal with such situation.

To improve this problem, a novel technology called spatial temporal learning is

proposed for the hand gesture recognition system represented by state sequences not

in fixed length.

In the literature of hand gesture recognition, there are two important definitions

listed as below:

1. Hand posture is a static hand poses and hand location without any

movement involved.

2. Hand gesture refers to a sequence of hand postures that are connected by

continuous motions over a short time span with the intent to convey

information or interact with computer.

Intelligent hand gesture recognition system with spatial temporal learning will be

introduced as following. The system structure of the proposed hand gesture

recognition system shown in Figure 3.1 includes image data retriever, posture data

generator, posture state encoder, and gesture analyzer. The main goal of the proposed

hand gesture recognition system is used to recognize hand gestures of the relative

sequence of hand posture captured by a CCD camera.

 14

Figure 3.1 Intelligent Hand Gesture Recognition Systems

Hand Gesture

Analyzer

(MEA)

Posture States Sequence

Image Sequence

Image Data Sequence

Posture Data

Generator

(PDG)

Image Data

Retriever

(IDR)

Posture Data Sequence

Posture States

Encoder

(PSG)

Hand Gesture Recognition

CCD Camera

Scene

 15

3.1.1 Image Data Retriever

The skin color and the hand shape are image features that are frequently used

for hand posture detection. Nevertheless, color-based algorithms often face the

difficulty in distinguishing objects which have similar color with the hand. To solve

this problem, black background and white gloves is required to make the hand

detection more steady and accurate.

After the sequence of images is captured by the CCD camera, the image data

retriever shown in Figure 3.2 retrieves useful information of each image as the image

data by image color processing and data extraction. The image data captured at time k

includes center hand position, back of hand indicator, fingers average position and

thumb position. For the convenience of data computation, let the image data be

denoted by a vector form as

 []
T

k = Xhnd Yhnd Bhnd Xfng Yfng Xthmb Ythmbi (3-1)

where X,Y and B represent the horizontal position, vertical position and back of the

hand respectively, while hnd, fng and thmb denote the hand, finger and thumb

respectively. More detail definitions of the components of ik are given in Table 3.1.

Image Sequence Image Data Image Color

Processing

Feature

Detection

Image Data Retriever

Figure 3.2 Image Data Retriever

 16

Table 3.1 image data definition

Feature Image Data

Components

Definition

Hand Xhnd The average horizontal position of hand.

Yhnd The average vertical position of hand.

Bhnd The indicator of back hand.

Fingers Xfng The average horizontal position of fingers.

Yfng The average Vertical position of fingers.

Thumb Xthmb The average horizontal position of thumb.

Ythmb The average vertical position of fingers.

3.1.2 Posture Data Generator

With an image data ik at time k, the posture data generator depicted in Figure 3.3

produces a posture data pk, which contains four posture situations at time k, namely

Fpos, Hpos, Tpos and Hcon. Table 3.2 shows their definitions. Moreover, to suitably

assign values for these four posture situations, some condition variables should be

defined first as below:

 () ()() ()2 5k kfi max , max Yhnd,Yfng= =i i (3-2)

 () ()() ()1 6k kti max , max Xhnd, Xthmb= =i i (3-3)

() ()() () ()()

() ()

2 2

2 2

1 4 2 5

k k k khi

Xhnd Xfng Yhnd Yfng

i i i i= − + −

= − + −

 (3-4)

 17

where fi is the maxima value of Yhnd and Yfng, ti is the maxima value of Xhnd and

Xthmb and hi is the distance between hand and finger.

The posture data trained by feed-forward neural network at time k includes four

components, Fpos, Hpos, Tpos and Hcon, which are described in Table 3.2 and

expressed as

 []
T

k = Hpos Fpos Tpos Hconp (3-5)

Table 3.3 shows the values assigned to these four components in corresponding

conditions. Note that the parameter thc in the condition of Hcon is a threshold and

will be discussed later.

Figure 3.3 Posture data generator

Posture data

generator

Image Data Posture Data

ik pk

 18

Table 3.2 Posture data description

Posture data

Components

Description

Hpos A value to describe the hand surface position in the front side or

back side position.

Fpos A value to describe the relation between hand and fingers whether

the fingers is up or below the hand position.

Tpos A value to describe the position between hand and thumb whether

the thumb is right side or left side of the hand position.

Hcon A value to describe the condition that hand is open or close.

 Table 3.3 Posture data definition

Posture data Output Value Output Symbol Condition

Hpos

1 'Front' Bhnd = 1

-1 'Back' Bhnd = 0

Fpos 1 'Upside' fi = 1 (Yhnd Yfng<)

-1 'Downside' fi =−1 (Yhnd Yfng>)

Tpos 1 'Right' ti = 1 (Xhnd Xthmb<)

-1 'Left' ti = −1 (Xhnd Xthmb>)

Hcon 1 'Open' hi > thc

-1 'Close' hi < thc

 19

3.1.3 Posture State Encoder

To represent hand postures, Posture State Encoder, called PSE in brief, is

implemented by Neural Network which transforms the posture data pk into the posture

state sk as shown in Fig 3.4. Each posture state represents one hand posture given in

Table-3.4. Note that although there are four posture data generated from Posture Data

Generator, only three of them, Hcon, Hpos and Fpos, are required to form the posture

states, with Tpos being treated as don’t care. This thesis will focus on nine gestures,

named upward, downward, turn left, turn right, left around, right around, follow,

learning and warming. Each gesture is determined by a sequence of postures

matching to posture states correspondingly shown in Table 3.5. In other words, each

gesture is recognized by a sequence of posture states, which are partitioned into two

parts including one starting command formed singly by the state S9 and one gesture

command formed by two or three posture states chosen from S1 to S8.

Figure 3.4 Posture State Encoder

Posture state

encoder

Posture Data Posture State

pk sk

 20

Τable 3.4 Posture State Encoder

Hcon Hpos Fpos Tpos S1 S2 S3 S4 S5 S6 S7 S8 S9

0 0 00 X 1 0 0 0 0 0 0 0 0

0 0 01 X 0 1 0 0 0 0 0 0 0

0 0 10 X 0 0 1 0 0 0 0 0 0

0 0 11 X 0 0 0 1 0 0 0 0 0

0 1 00 X 0 0 0 0 1 0 0 0 0

0 1 01 X 0 0 0 0 0 1 0 0 0

0 1 10 X 0 0 0 0 0 0 1 0 0

0 1 11 X 0 0 0 0 0 0 0 1 0

1 0 00 X 0 0 0 0 0 0 0 0 1

Τable 3.5 Postures of Posture States

S1 S2 S3 S4 S9

S5 S6 S7 S8

 21

3.1.4 Hand Gesture Analyzer

For a hand in motion, the posture states are continuously captured by the CCD

camera in sequence. There are two kinds of posture states in the sequence, named as

single posture state and repeated posture state. When a posture state sk at time k is

different to the former sk-1 and the latter sk+1, it is called the single posture state,

otherwise it is called the repeated posture state. Because the single posture state

always happens from the change of posture states, it is treated as undesirable noise

during the recognition process. The trigger net is designed to delete the single posture

state away from the sequence and the resulted output is called the triggered state

sequence. Then, a gesture classifier is set up following the trigger net to form the

Hand Gesture Analyzer or HGA in short, as shown in Fig 3.5. The gesture classifier

determines the gesture concerning the triggered posture states in terms of the

following gesture vector, expressed as

 []
T

k k k k k k k k k kuw dw tr tl ra la w f l=g (3-6)

Clearly, the nine gestures are represented by the nine elements,

 gk(i), for i =1,2,…9 (3-7)

described in Table 3.6, respectively.

The detail learning structure of the Hand Gesture Analyzer will be described on

the following section.

 22

Table 3.6 Gesture description

gk Gesture Description

gk(1) Upward The gesture to command the eyes robot to turn up the

head to upward 90
o
 then turns back to the initial

position.

gk(2) Downward The gesture to command the eyes robot to turn down

the head to downward 90
o
 then turns back to the

initial position.

gk(3) Turn right The gesture to command the eyes robot to turn the

head to the right side 90
o
then turns back to the initial

position.

gk(4) Turn Left The Gesture to command the eyes robot to turn the

head to the left side 90
o
then turns back to the initial

position.

gk(5) Right around The gesture to command the eyes robot to rotate the

head clockwise direction 360
o
 then back to the initial

position.

Repeated

State

Retriever

Gesture

Classifier

Posture State

Sequence
Gesture

Figure 3.5 Hand Gesture Analyzer

sk …sk+j . . .sk+l gk

 23

gk(6) Left around The gesture to command the eyes robot to rotate the

head counter clockwise direction 360
o
 then back to

the initial position.

gk(7) Warming The gesture to command the eyes robot to check all

the axes condition to make sure all the axes can

normally work.

gk(8) Following The gesture to command the eyes robot to tracking

the hand for about 30 seconds.

gk(9) Learning The gesture to command the eyes robot to learning

the hand position relative trajectory.

3.2 Machine learning

To describe a hand gesture by a posture state sequence, it is often based on a

fixed-length sequence of posture states. However, a hand gesture usually happens

during an uncertain time; for example one hand posture can change to another hand

posture quickly or slowly and thus it is difficult to represent a hand gesture by a

fixed-length state sequence. To solve this problem, the hand gesture analyzer (HGA)

contains a trigger net and a gesture classifier in Fig 3.5, which is developed to learn a

posture state sequence unfixed length. As for the gesture classifier, two types of

learning structure, called the feed-forward classifier and the recurrent classifier, will

be introduced in the followings.

 24

3.2.1 Repeated State Retriever

To analyze a hand gesture represented by a hand posture state sequence not in

fixed length, the key component to be used is the Repeated State Retriever shown in

Fig.3.6, which is composed of the Single State Eliminator, the Repeated State

Processor, and the Trigger Net.

The Single State Eliminator and the Repeated State Processor are implemented

by the Feedforward Neural Network, while the Trigger Net is implemented by the

Recurrent Neural Network. The detailed structure of Repeated State Retriever is

depicted in Fig.3.6. The first stage is the Single State Eliminator and described as

1

1

for1

for1

k k

k

k k

s s
i

s s

−

−

=
=

≠−
 (3-8)

for k=1,2,…,L, where the output ik is an index to represent whether the posture state sk

at time k is the same as the former posture state sk−1 or not. An example is given in

Table 3.8, when the time k=3, 4, 8, 10, 11, 12 and 15 are shows the cases when the

current posture states are different with the former posture state, at these time the

indexes are −1 and otherwise the indexes are 1.

Figure 3.6 Repeated State Retriever

 25

The Repeated State Processor, which is the second stage of the Repeated State

Retriever, is described as

1 1
for 1 and 1

0 otherwise

k k k

k

s i i
p

− −= − =
=

 (3-9)

for k=1,2,…,L, where the output pk is equal to the former posture state sk−1 for the case

that the index is changed from ik−1=1 to ik=−1 and set to be 0 for the other cases. Table

3.7 shows all the cases related to (3-9). The given example at Table 3.9 shows at the

time k=2, 7, 9 and 14 the index is changed from ik−1=1 to ik=−1 and the output pk is

equal to the former posture state sk−1 otherwise the output pk is equal to 0.

Table 3.7 Index condition

ik-1 ik Condition

1 1 sk-2 = sk-1 and sk-1 = sk

1 -1 sk-2 = sk-1 and sk-1≠sk

-1 1 sk-2 ≠ sk-1 and sk-1 = sk

-1 -1 sk-2 ≠ sk-1 and sk-1 ≠sk

The third stage of the Repeated State Retriever is the Trigger Net, which is

described by

() ()1 1 2 for 0k k kq i q i , i , ,...,N, p−= = = (3-10)

and

()

() ()1

 1
 for 0

 1 1 2 1

k k

k

k k

q p
p

q i q i , i , ,...,N−

 =
≠

+ = = −
 (3-11)

 26

Clearly, the Repeated State Retriever rejects all the state except the final state of each

repeated posture state sequence. The example of trigger net is given at Table 3.10, at

the time k=2, 7, 9 and 14 the trigger net is just triggered non zero processed posture

state pk and rejects the zero values of processed posture state pk. When the trigger net

is reject the processed posture state pk, qk(i) is equal to the former output qk−1(i),

otherwise qk(1) is equal to pk.

Here is the example how the Repeated State Retriever work with the input

posture state is [5 5 5 7 1 1 1 1 3 3 9 1 2 2 2 3] with the output length N is set as 3

firstly, the Single State Eliminator will be convert the input posture state to the

posture state index as shown at Table 3.8.

Table 3.8 Example of Single State Eliminator

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sk 5 5 7 1 1 1 1 3 3 9 1 2 2 2 3

sk-1 5 5 5 7 1 1 1 1 3 3 9 1 2 2 2

ik 1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1

when the current posture state is the same as the former posture state, the posture state

index is set as 1(blue rectangle), otherwise will set as -1(red rectangle). Then for the

next step, the Repeated State Processor will be observing the transition of the posture

state index. As shown at the table 3.7 there is just one condition is considered, that is

when the current posture state index is -1 and the former posture state index is 1 as

shown at (red rectangle) Table 3.9.

 27

Table 3.9 Example of Repeated State Processor

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sk-1 5 5 7 1 1 1 1 3 3 9 1 2 2 2 3

ik-1 1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1

ik 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1

pk 0 5 0 0 0 0 1 0 3 0 0 0 0 2 0

after repeated state sequence is processed, the Trigger Net will trigger the processed

state sequence whenever the processed state sequence is not zero as shown at (red

rectangle) Table 3.10..

Table 3.10 Example of Trigger Net

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pk 0 5 0 0 0 0 1 0 3 0 0 0 0 2 0

qk-1(1) 0 0 5 5 5 5 5 1 1 3 3 3 3 3 2

qk-1(2) 0 0 0 0 0 0 0 5 5 1 1 1 1 1 3

qk-1(3) 0 0 0 0 0 0 0 0 0 5 5 5 5 5 1

qk(1) 0 5 5 5 5 5 1 1 3 3 3 3 3 2 2

qk(2) 0 0 0 0 0 0 5 5 1 1 1 1 1 3 3

qk(3) 0 0 0 0 0 0 0 0 5 5 5 5 5 1 1

 28

Next, this Repeated State Retriever will be applied to the feed-forward gesture

classifier and the recurrent gesture classifier, with different N. There are two kinds of

clock mode, synchronous and asynchronous, used in this gesture recognition system.

If Repeated State Retriever is applied for feed-forward classifier, then the gesture

recognition system adopts synchronous clock mode for recurrent classifier, otherwise,

adopts asynchronous clock mode. In synchronous clock mode, the output of

feed-forward classifier will be processed according to each coming clock k. In

asynchronous clock mode, however, the output of recurrent classifier will be

processed according to the output of trigger net which is shifted down. Gesture

classifier will be discussed at different clock modes in next section.

3.2.2 Gesture Classifier

Different hand gestures can be recognized by gesture classifier according to

different triggered state sequences. The two types of classifier, feed-forward and

recurrent, are developed according to different number of outputs of the trigger net. In

fact, the length of triggered state sequence can be extended to N, where N is the

maximum length of triggered state sequence among all the hand gestures. In this

thesis, the number of outputs of the trigger net is set N=3 for feed-forward classifier

and N=1 for recurrent classifier.

3.2.2.1. Feed-forward classifier

For the gesture classifier, there are three triggered state sequences at time k,

which are denoted by qk(1), qk(2) and qk(3) and sent in parallel to the input layer of the

Feed-forward classifier to analyze the nine gestures described in Section 3.4 and

represented as a vector gk shown in Figure 3.7. A fixed length of triggered state

 29

sequences for each hand gestures are shown in Table 3.11. These triggered state

sequences can be identified by the gesture classifier.

 Table 3.11 Hand gesture and triggered state sequence

Hand Gesture Triggered State Sequence Output gk

Upward S9→S2→S5 [1 0 0 0 0 0 0 0 0]

Downward S9→S1→S6 [0 1 0 0 0 0 0 0 0]

Turn right S9→S4→S7 [0 0 1 0 0 0 0 0 0]

Turn Left S9→S7→S4 [0 0 0 1 0 0 0 0 0]

Right around S9→S1→S5 [0 0 0 0 1 0 0 0 0]

Left around S9→S5→S1 [0 0 0 0 0 1 0 0 0]

Warming S9→S1→S7 [0 0 0 0 0 0 1 0 0]

Following S9→S1→S4 [0 0 0 0 0 0 0 1 0]

Learning S9→S1→S3 [0 0 0 0 0 0 0 0 1]

Figure 3. 7. feed-forward classifier

Triggered State

Sequence

Feed-forward

Classifier

gk

Hand Gesture

qk(1)

qk(2)

qk(3)

 30

3.2.2.2 Recurrent classifier

A concept of "Transient Pattern" will be presented here for recurrent classifier,

the outputs of recurrent classifier will give a transient pattern for learning hand

gesture according to state transient condition given in following Table 3.12 and a

simple example of transient pattern is given at Table 3.13.

Table 3.12 Transient Pattern

qk-2→qk-1→qk

gk Transient

pattern gk(1) gk(2) gk(3) gk(4) gk(5) gk(6) gk(7) gk(8) gk(9)

Sx→S9→S1 0 0.6 0 0 0.6 0 0.6 0.6 0.6 tp1

S9→S1→S3 0 0 0 0 0 0 0 0 1 X

S9→S1→S4 0 0 0 0 0 0 0 1 0 X

S9→S1→S5 0 0 0 0 1 0 0 0 0 X

S9→S1→S6 0 1 0 0 0 0 0 0 0 X

S9→S1→S7 0 0 0 0 0 0 1 0 0 X

Sx→S9→S2 0.6 0 0 0 0 0 0 0 0 tp2

S9→S2→S5 1 0 0 0 0 0 0 0 0 X

Sx→S9→S4 0 0 0.6 0 0 0 0 0 0 tp3

S9→S4→S7 0 0 1 0 0 0 0 0 0 X

Sx→S9→S5 0 0 0 0 0 0.6 0 0 0 tp4

S9→S5→S1 0 0 0 0 0 1 0 0 0 X

Sx→S9→S7 0 0 0 0.6 0 0 0 0 0 tp5

S9→S7→S4 0 0 0 1 0 0 0 0 0 X

Others 0 0 0 0 0 0 0 0 0 X

 31

 Table 3.13 example of recurrent classifier

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Triggered

Sequence
1 9 1 4 9 1 3 9 1 9 2 5 9 7

g(1) 0 0 0 0 0 0 0 0 0 0 0.6 1 0 0

g(2) 0 0 0.6 0 0 0.6 0 0 0.6 0 0 0 0 0

g(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6

g(5) 0 0 0.6 0 0 0.6 0 0 0.6 0 0 0 0 0

g(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g(7) 0 0 0.6 0 0 0.6 0 0 0.6 0 0 0 0 0

g(8) 0 0 0.6 1 0 0.6 0 0 0.6 0 0 0 0 0

g(9) 0 0 0.6 0 0 0.6 1 0 0.6 0 0 0 0 0

Transient

Pattern
X X tp1 X X tp1 tp1 tp7 tp13

The initial value of outputs g(i), i=1,2,…,9 is set to zeros. The state transient

S9→S1 has a transient pattern tp1 as target of hand gesture. The state transient S9→S1

→S5 will cause the Right around hand gesture is triggered for process. The state

transient condition S9→S3 isn’t defined in state transient condition, thus the value of

output of hand gesture will clear as zeros. It is obvious that the training sequence,

trigger sequence and target of hand gestures, can be obtained from above example for

recurrent classifier. For the recurrent classifier, there is triggered state at time k,

denoted by qk(1), sent sequentially to the input layer of the recurrent classifier for

 32

analyzes the nine hand gestures represented as a vector gk shown in Figure 3.8. The

recurrent classifier adopted a switch control to decide whether the switch is ‘on’ or

‘off’ described as

()
()

1 , for 1 0

0 , for 1 0

k

k

q
Sc

q

≠
=

=
 (3-16)

the switch signal Sc is triggered whenever qk(1) is non zero. The output of hand

gesture gk perform one calculation according to the outputs of hidden layers hm-1 and

triggered state qk(1) when the switch is ‘on’.

 The architecture of recurrent classifier as shown in Figure 3.9, eight input of

neuron is indexed as n1, n2,…, n8. If input state is not zero then the value one will be

set to nj and others will set to zeros. The outputs of recurrent classifier gk are

represented as the nine gestures.

Triggered state

sequence

Hand Gestures Recurrent Classifier

qk(1)

Gk

Figure 3.8 Recurrent Classifier

Z
-1

Input Hidden Output

hm

e hm-1

Z
-1

SC Switch

Control

 33

g(1) g(2) g(9)

n1 n2 n8

Hidden units

at time k

Output unit at

time k

Input unit

at time k

Hidden units

at time k -1

Z
-1

Figure 3.9 the architecture of recurrent classifier

 34

Chapter 4

Experimental result

The experiment results of hand gestures learned by Cascaded Neural Network

and Simple Recurrent Network are presented in Section 4.1 and 4.2 respectively. The

comparison between these two architectures networks will be discussed in Section 4.3

and a sequence of image with hand gesture recognition were showed in Section 4.4.

4.1 Repeated State Retriever

4000 state sequence is generated according to following equation.

1

0.6

() 0.4

k

k

s rd
s

S i rd
+

≥
=

<
 (4-1)

Where S(i) is the state i which is a random integer ranging from 1, 2, 3…, 9 and rd is

a random value range from 0~1. According to equation (3-8) and (3-11), the training

sample can be obtained. Input layer of repeated state retriever contains sk and sk−1

entity for input node and output layer of repeated state retriever contains qk(1),

qk(2),… , qk(N) entity for output node as shown in Figure 3.5.The Table 4.1 shows the

architecture of repeated state retriever and training parameter.

 35

Table 4.1 Architecture of repeated state retriever

Single State

Eliminator

Repeated State

Processor

Trigger

Net

of neuron input /output 2/1 3/1 4/3

Transfer function of hidden layer Hyperbolic tangent

Training algorithm Levenberg-Marquardt

Although, the number of trigger output N=3 is used for feed-forward classifier which

used to classification of hand gesture. The number of trigger output which N is range

from 3~8 was implemented here to proving this system is extendable. The decrease of

testing-error is followed by increase of number of neuron of hidden layer for different

number of trigger output as shown in Figure 4.1.

Figure 4.1 testing results with different number of trigger output

 36

Different trigger output number at least needs a neuron number to reach 100% success

rate given in Table 4.2 according to Figure 41. Table 4.2 tells that the increase of

number of trigger output lead to the increase of neuron number of hidden layer.

Table 4.2 minimum neuron for different number of trigger output

of trigger output 3 4 5 6 7 8

of neuron at

least

4 7 7 9 11 12

Training samples 4000

Test samples 1000

Success rate 100

4.2 Feed-forward classifier results

The hand gesture machine will be set up and used to generate a string of hand

gestures. Each hand gestures will generate triggered state sequence with different

probability given in Table 4.3. Up to 4000 length of trigger state sequence will be

generated and used for hand gesture classification task.

 Table 4.3 training sample of nine hand gesture

Trigger State Sequence Probability Hand Gesture

S9→S2→S5 0.04 Upward

S9→S1→S6 0.04 Downward

S9→S4→S7 0.04 Turn right

S9→S7→S4 0.04 Turn Left

S9→S1→S5 0.04 Right around

 37

S9→S5→S1 0.04 Left around

S9→S1→S7 0.04 Warming

S9→S1→S4 0.04 Following

S9→S1→S3 0.04 Learning

others 0.64 Don’t Care

 Table 4.4 the nine hand gestures with trigger state sequence

Trigger State Sequence gk Hand Gesture

S9→S2→S5 [1 0 0 0 0 0 0 0 0] Upward

S9→S1→S6 [0 1 0 0 0 0 0 0 0] Downward

S9→S4→S7 [0 0 1 0 0 0 0 0 0] Turn right

S9→S7→S4 [0 0 0 1 0 0 0 0 0] Turn Left

S9→S1→S5 [0 0 0 0 1 0 0 0 0] Right around

S9→S5→S1 [0 0 0 0 0 1 0 0 0] Left around

S9→S1→S7 [0 0 0 0 0 0 1 0 0] Warming

S9→S1→S4 [0 0 0 0 0 0 0 1 0] Following

S9→S1→S3 [0 0 0 0 0 0 0 0 1] Learning

others [0 0 0 0 0 0 0 0 0] Don’t Care

Where Sj is a triggered posture state, for j=1, 2 … 9. Table 4.4, Testing-data is

possessed from recording an image sequence captured by camera. The output gk will

be triggered decided by feed-forward classifier. Table 4.5 shows testing results

according to Table 4.4.

 38

 Table 4.5 testing result for feed-forward classifier

Testing-sample Target Testing-sample Target

qk(3) qk(2) qk(1) gk qk(3) qk(2) qk(1) gk

[1 9 1] X X [9 1 4] gk(8) gk(8)

[1 4 1] X X [4 1 9] X X

 [1 9 1] X X [9 1 3] gk(9) gk(9)

[1 3 1] X X [3 1 9] X X

[1 9 1] X X [9 1 9] X X

[1 9 2] X X [9 2 4] X X

[2 4 5] X X [4 5 9] X X

[5 9 1] X X [9 1 9] X X

[1 9 1] X X [9 1 2] gk(7) X

[1 2 4] X X [2 4 5] X X

[4 5 9] X X [5 9 2] X X

[9 2 4] X X [2 4 5] X X

[4 5 9] X X [5 9 1] X X

[9 1 6] gk(4) gk(4) [1 6 9] X X

[6 9 1] X X [9 1 9] X X

[1 9 1] X X [9 1 4] gk(8) gk(8)

[1 4 7] X X [4 7 9] X X

[7 9 1] X X [9 1 9] X X

[1 9 1] X X [9 1 5] gk(5) gk(5)

[1 5 1] X X [5 1 9] X X

[1 9 1] X X [9 1 6] gk(4) gk(4)

 39

[1 6 1] X X [6 1 9] X X

[1 9 1] X X [9 1 4] gk(8) gk(8)

[1 4 7] X X [4 7 1] X X

[7 1 9] X X [1 9 4] X X

[9 4 7] gk(1) gk(1) [4 7 9] X X

[7 9 7] X X [9 7 4] gk(2) gk(2)

[7 4 9] X X [4 9 2] X X

[9 2 5] gk(3) gk(3) [2 5 7] X X

[5 7 9] X X [7 9 1] X X

Table 4.6 testing performance

 All Testing

samples

motion

Sequence

Undefined

sequence

of test samples 60 10 50

of misclassified 1 0 1

Success Rate 98.33% 100% 98%

4.3 Simple Recurrent Neural Network results

Table 4.6 provides training sequences for the task of hand gesture classification.

Input sequence of Table 4.6 is generated by posture state generator according to

Figures 4.2 and Table 4.3. Target of nine gestures are designed according to Figures

3.10. The 10 hand gestures are consisting of 60 sequence length generated for

sequential learning in the following table.

 40

Table 4.7 Training samples for nine hand gestures

Input gk

qk(1) gk(1) gk(2) gk(3) gk(4) gk(5) gk(6) gk(7) gk(8) gk(9)

1 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

4 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

3 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

9 0 0 0 0 0 0 0 0 0

2 0.6 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

2 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

 41

5 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

2 0.6 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

6 0 1 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

4 0 0 0 0 0 0 0 1 0

7 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

5 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

6 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

 42

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

4 0 0 0 0 0 0 0 1 0

7 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

4 0 0 0.6 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

7 0 0 0 0.6 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

2 0.6 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

1 0 0.6 0 0 0.6 0 0.6 0.6 0.6

The recurrent classifier is implemented by recurrent neural network with

Levenberg-Marquardt learning algorithms given in Figure 4.7, where input layer

contains 4 nodes, two hidden layer contains 17 neurons and 8 neurons with hyperbolic

tangent function and output layer contains 3 neurons with saturation function.

 43

 Table 4.8 the architecture of recurrent classifier

Architecture of SRN

 Input layer Hidden layer Output layer

Number of layer 1 2 1

Number of neuron 4 [17 8] 3

Transfer function Hyperbolic

tangent

Linear

Training algorithms Levenberg-Marquardt

The neural network's training function that updates weight and bias values according

to Levenberg-Marquardt learning algorithms. This learning has better performance

than gradient descent learning algorithms. Test output value can't exceed the threshold

0.8 by using gradient descent learning algorithms when that hand gesture has occurred.

Table 4.8 showed that testing results for nine hand gestures by using previous training

table. A threshold 0.8 is used to judge nine gestures is triggered for out. The testing

performance given at Table 4.9 shows success result for hand gestures classification.

Table 4.9 test samples for nine hand getures

qk(1)

Test Output Target

gk HG gk HG

1 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

4 [0 0 0 0 0 0 0 1 0] following [0 0 0 0 0 0 0 1 0] following

1 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

 44

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

3 [0 0 0 0 0 0 0 0 1] learning [0 0 0 0 0 0 0 0 1] learning

1 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

2 [0 0 0 0 0 0 0 0 0] [0.6 0 0 0 0 0 0 0 0]

4 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

5 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

2 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

4 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

5 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

2 [0 0 0 0 0 0 0 0 0] [0.6 0 0 0 0 0 0 0 0]

4 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

5 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

6 [0 1 0 0 0 0 0 0 0] downward [0 1 0 0 0 0 0 0 0] downward

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

 45

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

4 [0 0 0 0 0 0 0 1 0] following [0 0 0 0 0 0 0 1 0] following

7 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

5 [0 0 0 0 1 0 0 0 0] [0 0 0 0 1 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

6 [0 1 0 0 0 0 0 0 0] downward [0 1 0 0 0 0 0 0 0] downward

1 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

4 [0 0 0 0 0 0 0 1 0] following [0 0 0 0 0 0 0 1 0] following

7 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

4 [0 0 0 0 0 0 0 0 0] [0 0 0.6 0 0 0 0 0 0]

7 [0 0 1 0 0 0 0 0 0] training [0 0 1 0 0 0 0 0 0] training

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

7 [0 0 0 0 0 0 0 0 0] [0 0 0 0.6 0 0 0 0 0]

 46

4 [0 0 0 1 0 0 0 0 0] turnleft [0 0 0 1 0 0 0 0 0] turnleft

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

2 [0 0 0 0 0 0 0 0 0] [0.6 0 0 0 0 0 0 0 0]

5 [1 0 0 0 0 0 0 0 0] upward [1 0 0 0 0 0 0 0 0] upward

7 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

9 [0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0]

1 [0 0 0 0 0 0 0 0 0] [0 0.6 0 0 0.6 0 0.6 0.6 0.6]

 Table 4.10 Testing performance

 All Testing

samples

motion

samples

Undefined

motion samples

of test samples 60 10 50

of misclassified 0 0 0

Success Rate 100% 100% 100%

The two experiments including feed-forward and recurrent type of gestures

classifier shows that good performance in hand gesture recognition task. Test

sequence consists of lots of undefined gesture samples need to design training

samples additionally for better performance in feed-forward type of gesture classifier.

However, it is easy to design gesture contribution tree in recurrent classifier.

Feed-forward classifier must have fixed-three input samples for motion classification.

However, recurrent classifier doesn't limit input sequence length for motion

classification task. In other word, recurrent classifier is more extendable for sequence

classification task because there is no limitation about the length sequence of a hand

gesture. The performance between feed-forward and recurrent motion classifier is

compared shown in Table 4.10.

 47

Table 4.11 Comparison of Performance

Size of neural

network

Complexity of

Training

Motion event

Extendable

Test error

Feed-forward

Classifier

Bigger Fast Bad Good

Recurrent

Classifier

Smaller Slow Batter Good

4.4 System Configuration and operation experiments

This thesis developed an experimental human interface system using the

proposed had gesture recognition system. The current system uses PC executes on

Matlab r2006a and Humanoid Vision robot for image extraction, hand posture state

encoder and hand gesture recognition. The operation experiment structure is shown at

Fig.4.2, firstly the image sequence of hand gestures is continuously captured by

Human Vision robot CCD, and then PC will accept the image sequence then extract

these images sequence to the task of hand posture data and processes this data by the

proposed hand gesture recognition system. The hand gesture recognition system will

recognize the input hand gesture and this hand gesture were the command that will be

execute by the Human Vision robot. The description for PC and Human Vision robot

is describe at following section.

 48

4.4.1 Humanoid Vision Description

The HVS is built with two cameras and five motors to emulate human eyeballs

as shown in Fig. 4.3. These five motors, FAULHABER DC−servomotors, are used to

drive the two cameras to implement the eye movement, one for the conjugate tilt of

two eyes, two for the pan of two eyes, and two for the pan and tilt of the neck

correspondingly. The control of DC−servomotors is executed by the motion control

card, MCDC 3006 S, in a positioning resolution of 0.18°. With these 5 degrees of

freedom, the HVS would track the target whose position is determined from the image

processing of the two cameras. In addition, these two cameras, QuickCam
TM

Communicate Deluxe, have specifications listed below.

� 1.3-megapixel sensor with RightLight™2 Technology

� Built-in microphone with RightSound™ Technology

� Video capture: Up to 1280 x 1024 pixels (HD quality) (HD Video 960 x

720 pixels)

� Frame rate: Up to 30 frames per second

� Still image capture: 5 megapixels (with software enhancement)

� USB 2.0 certified

� Optics: Manual focus

In this proposed system structure, the control and image process are both

implemented in personal computer with 3.62 GHz CPU.

 49

Fig. 4.2 operation experiments structure

Fig. 4.3 Humanoid vision system

 50

Chapter 5

Conclusion and future work

In this thesis, we provide an intelligent hand gesture recognition system which

contains Image Data Retriever, Posture Data Generator, Posture States Encoder and

Hand Gesture Analyzer. Image sequence of posture data can effectively encode to

hand posture state by Posture States Encoder. Hand Gesture Analyzer contains two

stages, Repeated State Retriever and Gesture Classifier, there are two kinds of

Classifier are used in this thesis, feed-forward classifier and recurrent classifier. Based

on trained gesture classifier, Hand Gesture Analyzer is implemented to classify

different hand gestures. Each subsystem is serial cascaded and implemented by neural

network. The experimental results show that this structure can achieve satisfactory

real-time performance and high classification accuracy. The proposed intelligent hand

gesture recognition system contained several advantages described below:

� Another application of hand gesture can be implemented by increasing hand

posture states

� There is no limit of length of state sequence for a recognized hand gesture

(trigger net).

� This system can't be influenced by undefined hand gesture (recurrent

classifier).

A system has been developed to demonstrate the proposed approach the

proposed approach. The experimental result shows that the system can correctly

recognize the hand gestures in real time. The image sequences are processed in real

time: at 8fps for the hand detection and 4fps for color tracking and hand posture

recognition.

 51

 In the future, addition of new gesture through the “learning” hand gesture will

make the system is more intelligent and flexible. This self learning behavior makes

the system much more closely to human brain behavior. However there are a lot of

conditions and restrictions need to be cleared to realize this concept. To solve this

problem is the main goal in the future.

 52

References

[1] Y. Wu and T. S. Huang, “Hand modeling analysis and recognition for

vision-based human computer interaction,” IEEE Signal Process Mag.—Special

Issue on Immersive Interactive Technology, vol. 18, no. 3, pp. 51–60, May 2001.

[2] N. Badler,“Temporal Scene Analysis - Conceptual Descriptions of Object

Movements,” Report TR 80, 1975.

[3] R. Brooks,“Symbolic reasoning among 3D models and 2D images,” Artificial

Intelligence, pp, 285-348, 1981.

[4] A. Cohn, D. Magee, A. Galata, D. Hogg, S. Hazarika,“Towards an Architecture

for Cognitive Vision using Qualitative Spatio-Temporal Representations and

Abduction,” Spatial Cognition III, Springer, 2003.

[5] M. Erwig and M. Schneider,“Spatio-Temporal Predicates,” IEEE Trans. on

Knowledge and Data Engineering (TKDE), vol. 14, no. 4, pp. 1–42, 2002.

[6] P. Muller, “ A qualitative theory of motion based on spatiotemporal

primitives,” In A.G. Cohn, L.K. Schubert, and S.C. Shapiro, editors, Principles

of Knowledge Representation and Reasoning: Proceedings of the Sixth

International Conference (KR’98). Morgan Kaufmann, 1998.

[7] P. Sebastiani, M. Ramoni, P. Cohen, “Sequence Learning via Bayesian

Clustering by Dynamics, Sequence Learning: Paradigms, Algorithms, and

Applications,” Springer, 2000.

[8] M. Mohnhaupt, B. Neumann,“Understanding Object Motion: Recognition,

Learning and Spatiotemporal Reasoning, Toward Learning Robots,” MIT

Press , 65-92, 1993.

[9] A. Galata, A.D.M Cohn, D. Hogg,“Learning Temporal and Qualitative Spatial

Components of an Interaction Model,” Proc. ECCV Workshop on Vision and

 53

Modelling of Dynamic Scenes (VAMODS), 2002.

[10] K.S. Fu, “Syntactic Pattern Recognition and Applications”, Prentice Hall, 1982.

[11] A. Tijsseling, and L. Berthouze,“A neural network for temporal sequential

information.” Proceedings of the 8th International Conference on Neural

Information Processing, Shanghai (China), pp. 1449–1454, 2001.

[12] J.L.Elman, “Finding structure in time,” Cognitive Science., vol. 14, pp.179–211,

1990.

[13] R.J. Williams and D. Zipser, “A learning algorithm for continually running fully

recurrent neural networks,” Neural Computa., vol. 1, pp.270–280, 1989.

[14] S.E. Fahlman, “The recurrent cascade-correlation architecture,” Carnegie Mellon

Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-91-100, 1991.

[15] W.C. Omlin, K.K. Thornber, and C.L Giles," Fuzzy Finite-State Automata Can

Be Deterministically Encoded into Recurrent Neural Networks", IEEE

Transactions on Fuzzy systems, Vol. 6, no. 1, FEBRUARY 1998.

[16] C.L. Giles, S. Lawrence and A.C. Tsoi, “Noisy Time Series Prediction using a

Recurrent Neural Network and Grammatical Inference”, Machine Learning.

2000.

[17] C.W. Omlin and C.L.Giles, “Extraction of Rules from Discrete-Time Recurrent

Neural Networks”, Neural Networks, vol. 9, no. 1, pp. 41-52, 1996.

[18] S.E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,” in

Advances in Neural Information Processing Systems, D. S. Touretzky, Ed. San

Mateo, CA: Morgan Kaufmann, vol. 2, 1990, pp. 524–532.

[19] C.L. Giles, D. Chen, G.Z. Sun, H.H. Chen, Y.C. Lee, and M.W. Goudreau,

“Constructive learning of recurrent neural networks: Limitations of recurrent

casade correlation and a simple solution,” IEEE Trans. Neural Networks, vol. 6,

pp. 829–836, 1995.

 54

[20] L.B. Almeida, “A learning rule for asynchronous perceptrions with feedback in a

combinatorial environment,” in Proc. IEEE 1st Annu. Int. Conf. Neural Networks,

M. Caudil and C. Butler, Eds. New York: IEEE Press, pp. 609–618, 1987.

[21] L. Atlas et al., “A performance comparison of trained multilayer perceptrons and

trained classification trees,” Proc. IEEE, vol. 78, pp. 1614–1619, 1992.

[22] A. Sperduti, A. Starita, and C. Goller, “Learning distributed representations for

the classification of terms,” in Proc. Int. Joint Conf. Artificial Intell., pp.

509–515, 1995.

[23] A. Sperduti, A. Starita, and C. Goller, “Fixed length representation of terms in

hybrid reasoning systems, report i: Classification of ground terms,” Dipartimento

di Informatica, Universit`a di Pisa, Italy, Tech. Rep. TR-19/94, 1994.

[24] A. Sperduti and A. Starita, “An example of neural code: Neural trees

implemented by LRAAM’s,” in Proc. Int. Conf. Neural Networks Genetic

Algorithms, Innsbruck, Austria, pp. 33–39, 1993.

[25] A. Sperduti, “Encoding of labeled graphs by labeling RAAM,” in Advances in

Neural Information Processing Systems, J. D. Cowan, G. Tesauro, and J.

Alspector, Eds. San Mateo, CA: Morgan Kaufmann.

[26] J.A. Sirat and J.P. Nadal, “Neural trees: A new tool for classification,” Network,

vol. 1, pp. 423–438, 1990.

[27] A. Sankar and R. Mammone, “Neural tree networks,” Neural Networks: Theory

and Applications. New York: Academic, pp. 281–302, 1991.

[28] J. B. Pollack, “Recursive distributed representations,” Artificial Intell., vol. 46,

nos. 1–2, pp. 77–106, 1990.

[29] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory and

methods,” J. Logic Programming, vol. 19, no. 20, pp. 629–679, 1994.

[30] Y. Hochreiter, Bengio, P. Frasconi, and J. Schmidhuber,“Gradient flow in

 55

recurrent nets: The difficulty of learning long-term dependencies.” In S. C.

Kremer and J. F. Kolen,editors, A Field Guide to Dynamical Recurrent Neural

Networks. IEEE Press, 2001.

[31] Bengio, P. Simard, and P. Frasconi,“Learning long-term dependencies with

gradient descent is difficult,”IEEE Transactions on Neural Networks, vol. 5, no.

2, pp. 157–166, 1994.

[32] Pearlmutter,“Gradient calculations for dynamic recurrent neural networks: A

survey,”IEEE Transactions on Neural Networks, vol. 6, no. 5, pp. 1212–1228,

1995.

[33] J. Williams and J. Peng,“An efficient gradient-based algorithm for on-line

training of recurrent network trajectories”, Neural Computation, vol. 2, no. 4,

pp. 490–501, 1990.

[34] C.H. Lan , “Design of Intelligent Motion Description System”, 2008

[35] S. Wagner, B. Alefs, C. Picus, “Framework for a portable gesture interface”,

Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International

Conference , pp. 275 – 280, 2006

[36] Q. Chen, N.D Georganas, . and E.M. Petriu, “Hand Gesture Recognition Using

Haar-Like Features and a Stochastic Context-Free Grammar”, Instrumentation

and Measurement, IEEE Transaction, Volume 57, Issue 8, pp.1562 – 1571,

2008

[37] M. Vafadar, A. Behrad, “Human hand gesture recognition using spatio-temporal

volumes for human-computer interaction”, Telecommunications, 2008. IST 2008.

International Symposium, pp.713 – 718, 2008

