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Abstract

In recent years, traffic accident is one of the critical reasons to cause deaths of
drivers. Here, Drivers’ drowsiness has béen implicated as a causal factor in many
accidents because of the marked aecliﬁe in drivers.z perception of risk and recognition
of danger, and diminished vehicle handling abilities. Therefore, if the mental state of
drivers can be real-time monitored directly, drowsiness detection and warning can
effectively avoid disasters such as vehicle crashes in working environments. Some
previous researches used non-physiological method, as eye closure with CCD image
tracking, such as the pupil recognition, blink detection or identification the drivers
head shaking frequency. However, for CCD image tracking, users couldn’t move for
free, and the images detecting performance were easily be interfered by light. And
others used physiological parameters to increase the accuracy of drowsy detection,
like pulse wave analysis with neural network, the electrooculogram (EOG) and the
electromyography (EMG) measurement, and the electroencephalogram (EEG). In this

study, we proposed a real-time wireless brain computer interface for drowsiness

v



detection. Here, a small, light, and portable EEG acquisition module was designed for
long-time EEG monitoring. And a novel algorithm of drowsiness detection based on
was also proposed to reduce the computation complexity, and was implemented in a
portable DSP module. In order to estimate the level of drowsiness, a lane-keeping
driving experiment was designed. The drowsiness level of drivers was indirectly
assessed by the reaction time and driving trajectory under Virtual Reality Driving
Simulation Environment. The advantage of this unsupervised algorithm can remove
the differences between individual and environment in different people or
measurements. In order to verify the accurate and feasibility of our proposed
unsupervised algorithm, we compared drowsiness status estimated by driving
performance with that obtained by our proposed unsupervised algorithm. The results
showed that our proposed algorithm gan detect driver’s drowsiness status. Finally, our
system can successfully be applied.in practice to prevent traffic accidents caused by

drowsy driving.

KEYWORD: drowsiness detection, electroencephalogram, portable EEG acquisition
module, DSP module, Virtual Reality Driving Simulation Environment,

driving performance, unsupervised algorithm
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Chapterl Introduction

In recent years, traffic accident is one of the critical reasons to cause deaths of
drivers. World Health Organization report released that the global traffic accidents
killed 1.2 million lives each year and caused millions of people were injured [1]. The
report stated that a daily average of 1000 persons aged 25 years of age because of the
people killed in traffic accidents, of which 90 percent of the victims took place mainly
in Africa and Asia, low-income countries. The report said that the 19-year-old and
15-year-old groups to the cause of death, traffic accidents ranked first, far exceeding
the number of AIDS deaths. It showed that the traffic safety is the very urgent issues

that need to straighten and improve.

The cause of accidents is often imputed:to ‘driver’s mental state. A human in
drowsiness often exhibits relative inattention to environments, eye closure, less
mobility, failure to motor control'and decision mal'ﬁing [2]. Therefore, those accidents
which caused by falling drowsiness usually not only endanger themselves but also
involve the public. Many studies have pointed out that a driver’s drowsiness can cause
serious traffic accidents [3]-[6]. In 2002, the National Highway Traffic Safety
Administration (NHTSA) reported that about 0.7% of drivers have been involved in a
crash that they attribute to drowsy driving, amounting to an estimated 800,000 to 1.88
million drivers in the past five years [7]. The National Sleep Foundation (NSF) also
reported that 51% of adult drivers had driven a vehicle while feeling drowsy and 17%

had actually fallen asleep [8].

Thus, in the field of safety driving, development of methodologies for detection
drowsiness / departure from alertness in drivers has become an important area of

researches. If the mental state of drivers can be real-time monitored directly,



drowsiness detection and warning can effectively avoid disasters such as vehicle
crashes in working environments. Recently, with the development of brain computer
interface, real-time monitoring the mental states of drivers and detecting drowsiness

have become feasible.

1.1 Brain Computer Interface

Brain Computer Interface (BCI) is an interface between human and computers or
machines. BCIs were aimed at assisting, augmenting or repairing human cognitive or
sensory-motor functions. It is based on the translation of the specific brain activity
generated by a specific thought of a human to control machines, to communicate with
the outside world directly, to convey the message, and independent operations, as well

as self-care purposes.

Current BClIs almost are on(;,—way BCI, i.e. oﬁly external devices send signals to
the brain [9], or receive commands from it [10]-[13], [14]-[41]. By acquisition of
brain activities, BCI can be divided into three distinct modes: invasive,
partially-invasive, and non-invasive BCI. Invasive BCI is implanted directly into the
grey matter of the brain to obtain highest quality signals of brain activities or send
external signals into the brain. But as the body reacts to a foreign object in the brain,
scar-tissue is prone to buildup, and may cause the signals of BCI to become weaker or
even lost. Partially invasive BCI is implanted inside the skull but rest outside the brain
rather than among the grey matter. It produces better resolution signals than
non-invasive BCI and has a lower risk of forming scar-tissue in the brain than
invasive BCI. Electrocorticography (ECoG) is a typical technique used by

partially-invasive BCI [10]-[13]. However, both invasive and partially-invasive BCIs



depend on surgical techniques. They are not friendly for general users.

Contrast to invasive and partially-invasive BCIs, non-invasive BCI is easy to
wear, although non-invasive implants produce poor signal resolution due to that the
skull dampens and blurs signals of brain activities. However, non-invasive BCI is still
the main stream of BCI research. Non-invasive BCI has advantages of both easy
application and absence of procedural risks, such as infection or cortical micro-lesions.
There are several approaches to non-invasively acquire brain activities, such as
magentoencephalography (MEG), positron emission tomography (PET), functional
magnetic resonance imaging (fMRI), electroencephalography (EEG) and et al. EEG is
the mainstream of non-invasive BCI, because of its much fine temporal resolution,
ease of use, portability and low set-up cost. In particular, higher temporal resolution
becomes the great temptation tosuse EEG. techniques as a direct communication

channel from the brain to the reat world [42]; [43].

1.2 Previous Research

Drowsiness leads to decline in drivers’ abilities of perception, recognition, and
vehicle control and hence monitoring of drowsiness in derivers is very important to
avoid road accidents [44]. Some researches used non-physiological method, as eye
closure with CCD image tracking [45]-[51]. And others used physiological parameters
to increase the accuracy of drowsy detection, like pulse wave analysis with neural
network [55], the electrooculogram (EOG) and the electromyography (EMGQG)

measurement [52], [53], and the electroencephalogram (EEG) [54]-[56].

In 2003, Hamada et al. proposed a driver status monitor system by using CCD

camera, as shown in Fig. 1-1 [48]. The CCD camera was installed in the car and
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focused on the user’s eyes. The driver status monitor detected drowsiness from the
change in the duration of eye closure during blinking and inattention from the change
in the gaze direction. Using CCD camera to contribute the urgency system was a very
difficult work here. There were some critical points inside, and needed to overcome.
For instance, user couldn’t move for free, the images detecting performance were
easily be interfered by light, and the biggest problem was that the system is too big,
complex, and expensive to implement. The algorithm of eye tracking also needed to
use edge detecting to train data, and hence to build up a neural network to classify the

drowsy status.

Urgency / Assent

Route & Warning

Fig. 1-1: The role of driver status monitor [48]

An alternate is to detect the moment from alertness to drowsiness by using
physiological parameters. In 2005, Thum et al. used EOG as an alternative to
video-based systems in detecting eye activities caused by drowsiness [53]. EOG is
electrical signal generated by polarization of the eye ball and can be measured on skin
around the eyes. Its magnitude varies in accordance to the displacement of the eye
ball from its resting location. Rapid eye movements (REM), which occur when one is
awake, and slow eye movements (SEM), which occur when one is drowsy, can be
detected through EOG. The results showed that the detection rate for eye activities

caused by drowsiness was more than 80 %.



In EEG system, it was different from other physiological parameters, and
moreover it owned intuitive and specific characteristics, such as alpha, theta or beta
band power followed subject’s own mental state. In addition, the EEG system usually
needed to collect enough EEG data to analyze. The supervised methods which
previously study often had been used to train a learning data, and usually implement
in off-line EEG analysis. Our previous studies which used supervised methods
developed several kinds of brain computer interface for drowsiness detection [54],
[55]. When the subject changed the state from alertness to drowsiness, the alpha
rhythm will increase and beta rhythm will decrease [56]. In 2005, a drowsy estimation
system was developed by combining independent component analysis (ICA),
power-spectrum analysis, correlation evaluations, and linear regression model to
estimate a driver’s cognitive state:when he/she drove a car in a virtual reality
(VR)-based dynamic simulator [54]. Its flowchart of EEG processing was shown in
Fig. 1-2. In 2006, an EEG-based drivers>cognitive States estimation system by using
fuzzy neural network (FNN) was pfoposed [55]. Hére, fuzzy neural network was used
to train drowsiness estimation coefficients. The ICAFNN is a fuzzy neural network
(FNN) capable of parameter self-adapting and structure self-constructing to acquire a
small number of fuzzy rules for interpreting the embedded knowledge of a system
from the given training dataset. Our experiments showed that the ICAFNN can
achieve significant improvements in the accuracy of drowsiness estimation compared
with our previous works. Its flowchart of EEG processing was shown in Fig. 1-3. In
the above studies, an EEG machine, Scan NuAmps Express system (Compumedics
Ltd., VIC, Australia), was used to measure EEG, as shown in Fig. 1-4. It is not small,
light, and wearable. Moreover, the above algorithms for drowsiness detection requires
mass computation complexity, thus, they are not easy to be implemented in a portable

DSP device.
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Fig. 1-4: Scan NuAmps Express system (Compumedics Ltd., VIC, Australia)

In this mode, supervised _I_léarning"iﬁ;e}ﬁgdls Js;i';ch as artificial neural network
(ANN) could be used to classif}-l.__ dlfférentstatesof vigilance. But stimulus may
introduce some noise. So in [57], the 'aiuth(')r“.];).r.oposed a semi-supervised learning
algorithm which can quickly label huge amount of data. Here another author proposed
another kind of semi-supervised learning method based on probabilistic principle
component analysis (PPCA) to distinguish wake, drowsy and sleep in driving
simulation experiment. After training with data of around 20 min (6—8 min for each
state), they could directly use our method as a real time classifier to estimate driver’s
vigilance state [58]. Although this method could greatly reduce the training time, but
it still must used in off-line analysis. In our target, we wanted to find a non-training

and unsupervised method, and easily implement to an on-line detecting system.



1.3 Motivation

Recently, the advance in sensor technology and information technology reduces
the power consumption of the sensors and make the cost of production cheaper. These
trends make it possible to embed sensors in different places or objects to measure a
wide variety of physiological signals. A physiological signal monitoring system will
be extremely useful in many areas if they are portable and capable of wirelessly
monitoring target physiological signals and analyzing them in real time. However, the
inconvenience of traditional BCI (heavy and large EEG machine) limits the user’s
mobility. Thus, portable and inexpensive BCI platform with long battery life that can

be carried indoors or outdoors are desired.

In this study, we proposed a.real-time Wireless brain computer interface for
drowsiness detection. Here, a small, light, and wearable EEG acquisition module was
designed for long-time EEG monitoring.—And a novel algorithm of drowsiness
detection based on [59] was proposéd toreduce the computation complexity. Different
from previous ICA-based drowsiness detection algorithm, it used the statistics
properties of alpha and theta rhythm in alert state to build up the alert model.
Consequently, a derivation from the alert model can be used to detect drowsiness. The
most useful advantage of this algorithm could remove the differences between
individual and environment in different people or measurements, and every analysis
were independent. Moreover, with the advantage of low computation complexity, it is

easy to be implemented in a portable DSP module.



1.4 Organization of Thesis

In Chapter 2, it will describe that what is EEG signal, virtual reality driving
simulation environment, and algorithms implemented in this thesis, which including
EEG processing and unsupervised approach. In Chapter3, it will introduce how to
implement a wireless portable EEG acquisition module and DSP module in hardware
design. In Chapter 4, it will explain the detail of driving performance, unsupervised
algorithm, and how to accomplish them. Finally, introduce the driving performance
sorting analysis; then the method of driving performance and unsupervised approach
will be verified with 15 real experimental subjects’ driving trajectories and
corresponding EEG signals, the procedures and results of verification will be

described in Chapter 5. Finally it will have/conclusion in Chapter 6.



Chapter2 Material and Method

We developed the BCI system according to the steps of Fig. 2-1. The portable
EEG acquisition module which we designed was used in input device of BCI. The
EEG raw data continually transmitted to DSP module, hence, the following three
steps: signal processing, features extraction, and classifier, were processed in DSP
module. The algorithm we chose was according to unsupervised approach (N. R. Pal,
2008 [59]). The user interface can output real-time EEG signal and the results of
drowsy detection on the screen of DSP module. If the results were judged to
drowsiness by algorithm, DSP module will call the buzzer to output a warning voice

to wake user up as a BCI application.

1
I

I Signal Features ] :

I . . | Classifier |

1 | Preprocessing Extraction |
I

t 1

@ Output Ul
Closed Loop
Applications
Feedback s

Fig. 2-1: A typical BCI system architecture

In off-line analysis, we wanted to verify the relationship between user’s driving
trajectories and corresponding EEG signal. Before analyzing, we assumed that driving
trajectories were directly proportional with variance of theta and alpha spectrum. So

we designed a driving simulation experiment and used our portable EEG acquisition
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module to observe and record driving information and actual EEG raw data at one
time. We recorded 15 subjects’ EEG raw data and every one experimented 30 minutes.
Our analysis included two parts: one was to analyze the driving trajectories, and
another was to analyze the corresponding EEG signals. The first step of driving
trajectories processing is to analyze the driving performance. On the other hand, we
also analyze EEG signals. First, we use FFT to get the theta and alpha band
information, and then using both two information built up an alert module, counting
covariance matrix and mean vector of theta and alpha spectra. Furthermore, compute
MDT, MDA, and MDC continually by using unsupervised method. After finishing
both data analysis, we use binary classification test, sensitivity and specificity, to
verify the drowsiness hit rate. Every experimental trial is separated and sorted, hence,
the corresponding MD* (MDT, MDA, and MDC) will also be sorted. Defining the
threshold of both information which been processed to decide the drowsiness or

alertness, and to analyze the drowsy aceuracy:

2.1 EEG Signal Acquisition

Electroencephalography (EEG) is the recording of electrical activity along the
scalp produced by the firing of neurons within the brain. In clinical contexts, EEG
refers to the recording of the brain's spontaneous electrical activity over a short period
of time, usually 2040 minutes, as recorded from multiple electrodes placed on the
scalp [60]. When measuring from the scalps, recorded the EEG signal is about
10-100uV for a typical adult human. And a common system reference electrode is
connected to the other input of each different amplifier. These amplifiers amplify the

voltage between the active electrode and the reference (typically 1,000-100,000 times,
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or 60—100 dB of voltage gain). The EEG is typically described in terms of rhythmic
activity and transients. The rhythmic activity is divided into bands by frequency. The
common band of EEG is shown as Table 2-1. Following the classification of EEG,
Theta and Alpha band are related to drowsiness. Thus, when the subjects become

drowsy, both bands will increase their power.

Table 2-1: Common band of EEG

Type Frequency (Hz) Normally

Delta <4 Slow wave sleep for adults

Theta 4~7 Drowsiness, idling, or arousal in children and adults
Alpha 8~12 Relaxed, reflecting, or closing the eyes

Beta 12~30 Alert or working

There are high correlation between drowsiness and EEG obtained from the
location of OZ in the international ;1020 EEG system [61]. Therefore, in this study,
we only monitored EEG in the location of OZ. Here, three EEG electrodes were used.
One is input, one is reference, aﬁd the Tother-is -ground. According to a modified
International 10-20 EEG system and refer to right ear lobe as depicted in Fig. 2-2. We
use the following notations: F: Frontal lobe. T: Temporal lobe. C: Central lobe. P:
Parietal lobe. O: Occipital lobe. "Z" refers to an electrode placed on the mid-line. The
input data is placed in OZ, ground is fixed in the center of forehead, and reference is

pasted behind the right ear.
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Fig. 2-2: International 10-20 system

Raw EEG data were recorded with 12-bit quantization level at the sampling rate
of 512 Hz. To simplify the computation, raw EEG data were down-sampled to
sampling rate of 64 Hz. And a simple moving average filter was used to remove 60

Hz power line noise and other high-frequeney noise.

2.2 Virtual Reality Driving'Simulation Environment

In this study, a lane-keeping driving experiment was utilized to investigate
driving performance under different levels of drowsiness. Here, a virtual reality
(VR)-based cruising environment was developed to simulate a car driving at 100
km/hr on a straight four-lane highway at night [54], [62]. During the driving
experiments, all scenes move according to the displacement of the car and the
subject’s maneuvering of the wheels which make the subject feel like driving the car

on a real road. The VR environment is showing in Fig. 2-3.

13



Fig. 2-3: The overview of surrounded VR scene. The VR-based highway scenes are

projected into surround screen with seven projectors.

In all our experiments we have kept the driving speed fixed at 100 km/hr and
system automatically and randomly drifté the car awéy from the center of the cruising
lane to mimic the effects of a non ideal road'surface. The driver is asked to maintain
the car along the center of the cruising lane. All subjects involved in this study have
good driving skill and hence when the subject is alert, his/her response time to the
random drift is short and the deviation of the car from the center of the lane is small.
But, when the subject is not alert / drowsy, both the response time and the car’s
deviation are high. Note that, in all our experiments, the subject’s car is the only car
cruising on the VR-based freeway. Although, both response time and the deviation
from the central line are related to the subject’s driving performance, in this study, we
use the car’s deviation from the central line as a measure of performance of the

subjects. The driving task is showing in Fig. 2-4.
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» Cruises at a constant speed.
(100km/hr).

» Random deviation onset,

(interval: 3 ~ 7 sec )

- Response onset.

- Response offset.

2 @

« Linear deviation (D=c )

* New Cruises

Fig. 2-4: The digitized highway scene. The width of highway is equally divided into
256 units and the width of the car is 32 units. An example of the deviation event. The
car cruised with a fixed velocity of 100 km/hr on the VR-based highway scene and it
was randomly drifted either to the left or to the right away from the cruising position
with a constant velocity. The subjects were instructed to steer the vehicle back to the

center of the cruising lane as quickly as possible [61].

In order to synchronize the records of driving trajectory and raw EEG data, a
JAVA program was designed to record both of them at the same sampling rate. The
driving trajectory produced from the VR-based cruising environment environment
program, and raw EEG data obtained by portable EEG acquisition module were

transmitted to JAVA program via RS232 and Blue tooth respectively. After finishing
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the experiment, both the driving trajectory and raw EEG data were saved in a text file.
Then, we can investigate the correlation between driving performance and results of
unsupervised approach. The illustration of synchronization between the driving

trajectory and EEG data was shown in Fig. 2-5.

Virtual Reality RS232
Simulation Environment

A 4

Text File
JAVA Program |:> (txt)

7Y
Portable EEG System @
Blue Tooth

Driving Performance
&

Unsupervised analysis

Fig. 2-5: Illustration of synchronizationibetween the driving trajectory and EEG data

2.3 EEG Preprocessing

The EEG preprocessing steps were shown in Fig. 2-6. First, a simple moving
average filter (low-pass filter with a cutoff frequency of 32 Hz) was used to remove
60 Hz power line noise and other high-frequency noise. In order to simplify the
computation, raw EEG data were down-sampled to sampling rate of 64 Hz. Then, a
512-point moving window we designed to save the 8 seconds EEG information, as
Fig. 2-7 shown. Finally, the power in the frequency band of alpha rhythm (8 ~ 11Hz)

and theta rhythm (4 ~ 7Hz) was extracted.
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Fig. 2-6: Steps of EEG preprocessing

512-point

l

L
I
64-point |

Theta Band

Alpha Band

512-Point FFT

Fig. 2-7: Illustration of 8-second moving window with 7-second overlap

2.4 Unsupervised Analysis

It is recognized that the changes in EEG spectra in the theta band (4~7Hz) and

alpha band (8~11Hz) reflect changes in the cognitive and memory performance [63].

Other studies have reported that EEG power spectra at the theta band [64], [65] and/or

alpha band [66], [67] are associated with drowsiness, and EEG log power and

subject’s driving performance are largely linearly related.

As the above researches said, these findings have motivated us to derive the alert

models of the driver using the alpha-band and theta-band EEG power spectrum

computed using OZ channel output recorded in the first few minutes of driving. The
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choice of the OZ channel is explained in the Experimental Results section. We
emphasize that the few minutes of data used to find the alert model are not necessarily
collected from the very beginning of driving session because different factors, such as
walking of driver by a few meters to reach the garage, may influence the EEG signal
generated at the very beginning. The specific window to be used for generation of the
alert model is selected by Mardia test (explained later) [68]. We assume that if the
subject/driver is in an alert state, then the EEG power spectra relating to theta band (as
well as that relating to alpha band) would follow a multivariate normal distribution.
The parameters of the multivariate normal distributions characterize the models.
Using the alpha-band and theta-band EEG power, we identify two normal-distribution
based models. Then, we assess the deviation of the current state of the subject from
the alert model using Mahalanobis distance (MD). We assume that when the subject
continues to remain alert, his/her- EEG power should resemble the sample data used to
generate the model and hence would match-the-alert model or template. If the subject
becomes drowsy, then its power spéctra in the alph-a band (and also in theta band) will
deviate from the respective model and hence MD will increase. With a view to
reducing the effect of spurious noise, MDs are smoothed over a 90-sec moving
windows, the window is moved by 1-sec steps [61]. We then study the relationship
between smoothed Mahalanobis distance and subject’s driving performance by
computing the correlation between the two. Fig. 2-8 shows the overall flow of the
EEG data analysis. In this figure, note that, after the models are identified, the
preprocessed alpha band and theta band power data directly go to the blocks for
computation of MDA and MDT, respectively. MDT and MDA are measure of
deviations of the subject’s present state from the respective models, this will be
clarified later. The block for computation of MDC makes a linear combination of

MDT and MDA. Finally, all three, MDA, MDT and MDC are used in correlation
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analysis with the driver’s performance.
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Fig. 2-8: The flowchart of the EEG analysis method.
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Chapter3 Hardware Frameworks

In this chapter, we focus on this portable system hardware. Following the design
flowchart, we will introduce the design methods of hardware circuits and firmware

structures steps by steps.

3.1 System Overview

In order to online measure and analyze EEG signals, the whole hardware
framework of our BCI mainly contains two sub-systems: One is portable EEG
acquisition module, and the other is DSP module. First, EEG signal was measured by
our portable EEG acquisition module_centinually. After amplifying tiny EEG signals,
noise except the frequency band of EEG would be removed by filters in our portable
EEG acquisition module. Andithen, filtered EEG: signals would be digitized by
analog-to-digital converter, and l;e- traﬁsited to the; DSP module via Bluetooth. Here,
Linux kernel uClinux was used as the operation system in DSP module to handle
user’s applications. The major tasks of DSP module are to receive EEG signals via
Bluetooth, and to execute the program of online drowsiness level detection, which
monitor the variation of power of users’ alpha rhythm and theta rhythm. The program
of online drowsiness level detection would collect EEG data under alertness for first 3
minutes to build EEG alert model, and then calculated drowsiness level by assessing
the power variation of alpha and theta rhythm every 2 seconds. If the power variation
exceeded the threshold of alert model, the DSP module would send warning tone of

buzzer to wake up users. The whole hardware framework is shown as Fig. 3-1.
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Fig. 3-1: Illustration of hardware framework of our BCI system

3.2 Portable EEG Acquisition Module

In order to be as small as possible and be.easily wearable, a portable, distributive
and wireless EEG headband system was designed to measure EEG signals. To reduce
noise on PCB board produced by digital“control circuit, the analog amplifier and
digital control circuit were separated into two PCB boards. Following the previous
researches [69], [70] worked, this general system was designed to minimize the
circuit’s size, use a simple microcontroller to handle programs, implement filter more
accurate, and etc. We also referenced some circuit designs [71]-[76]. Those circuit
designs followed portable and wireless rules, separating the circuit into client and
server model. In this session, we interested in the client circuit design. The portable
EEG acquisition module system mainly contains five parts: (1) front-end filter circuit,
(2) analog to digital converter, (3) digital controller, (4) power management circuit

and (5) wireless transmission. The system block diagram is shown in Fig. 3-2.
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Fig. 3-2: Block diagram of Portable EEG acquisition module

3.2.1 Front-End Filter Circuit

The front-end circuit consisted of preamplifier, and band-pass filter. The total
gain of front-end circuit was set as about 5040 times with the frequency band of
0.1~100 Hz. In some references, other circuit deésigns liked to use unit gain filters and
one variable gain amplifier. Mor€oyer, they didn’t use a high-pass filter to cut-off the
noise in low frequency band. To improve them;-we designed a 3 stages high pass filter
and 2 stages low pass filter to geti the clear BEG information without noise. Hence,

adding the gain into filter tried to minimize the total size.
A. Preamplifier

Here, instrumental amplifier LT1789-1 was used as the first stage of analog
amplifier. LT1789-1 owns an ultra low input current and a high common-mode
rejection ratio (CMRR) about 90dB. A high CMRR is important in applications that
the signal of interest is represented by a small voltage fluctuation superimposed on a
(possibly large) voltage offset, or when relevant information is contained in the
voltage difference between two signals. Here, instrumental amplifier LT1789-1
provided not only the function of gain, but also that of one stage high pass filter by

adding a capacitor. The corner frequency was set at 0.1Hz, and the gain was set to
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2.25 times. The instrumental amplifier circuit was shown in Fig. 3-3, and the

simulation of preamplifier’s gain response was in Fig. 3-4.
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Fig. 3-4: Simulation of preamplifier’s gain response

B. Band pass filter

In order to more precisely reserve relevant EEG signal, a band pass filter with
frequency band of 0.1Hz ~ 100Hz and with gain of 1588.75 times was designed. The

band-pass filter consisted of a 2nd-order high-pass filter and a 2nd-order low-pass
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filter. Here, OP-AMP ADS8607 was used to construct the band-pass filter. AD8607
also owns high CMRR (about 100dB), low input current, low distortion, and no phase
reversal. The band-pass filter circuit was shown in Fig. 3-5, and the simulation of

those gain response was in Fig. 3-6.
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Fig. 3-6: Simulation of band-pass filter’s gain response
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The system specification of portable EEG acquisition module is listed below.

The damping ratio of second order filter was set to 0.5, thus, the Bode diagram could

be smoother in two sides of 3dB point as Table 3-1 descript. The final simulation of

gain response was shown in Fig. 3-7.

Table 3-1: System specification of IA, HP, and LP filter for portable EEG acquisition

module
Orders Type Gain Corner Freq. Damping
Instrumental amplifier Quasi HP 2.25 0.099
High-pass filter HP 43.7 0.099 0.5
Low-pass filter LP 51.25 97.93 0.707
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Fig. 3-7: Simulation of gain response of the portable EEG acquisition module
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3.2.2 Analog to Digital Converter

The analog amplifier circuit and digital control circuit of our portable EEG
acquisition module were placed individually in two PCB boards. There are some
leading wires to connect both. A 12-bits analog-to-digital converter (ADC) AD7466
was used to convert continuous EEG signal of analog amplifier circuit to digitized
EEG signal. Here, the micro-controller (MSP430F1611) was used to control ADC
AD7466. The handshake mode between MSP430F1611 and AD7466 was shown in
Fig. 3-8. The command signals and serial digitized EEG signal were transmitted via
the serial peripheral interface (SPI) of MSP430F1611. The micro-controller
MSP430F1611 outputs SCLK and CS signals in specific sampling rate 512Hz, and
then digitized EEG signal would deliver into MSP430F1611. Each converting interval
needed 16 cycles to complete tranSmission-of-digitized data, here, the data in first 4

cycles were zero, and the others were real 12-bit digitized data based on MSB.

ADT7466 MSP430F
SCLK SCLK
SDATA soMl
cs PINx

Fig. 3-8: Handshake mode between AD7466 and MSP430F 1611

Moreover, according to equation (3-1), the conversion time is about 4.7 us, and
8-bit digitized data were transmitted every transmission cycle. And the maximum
frequency of input signal of ADC was 100Hz. After calculating in equation (3-2) and
(3-3), the result conforms to the equation (3-1). Thus, this system needn’t a sample

and hold amplifier to hold analog voltage.
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3.2.3 Digital Controller

The TI micro-controller MSP430F1611 was utilized to control other parts of
circuits in portable EEG acquisition module. It owns many advantages for medical
application, includes ultra-low power consumption, 16-bit RISC architecture, 125 ns
instruction cycle time, five powef -s'_avi_ng modés’_; and diversification of peripheral

communication interface. The functional -bl_ock“ diagréim of MSP430F1611 was shown

in Fig. 3-9. R A% :
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Fig. 3-9: Functional block diagram of MSP430F1611

MSP430F1611 catch digitized EEG signal from ADC AD7466 via serial
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peripheral interface with sampling rate 512Hz, and then digitized EEG data were
stored into memory of MSP430F1611. Next, a moving average filter was used to
remove 60-Hz power line interference before wireless transmission. The operating

flow chart in MSP430F1611 was shown in Fig. 3-10.

1
1

ADC | <Pl Moving UART Blue I
AD7466 Average Interface Tooth :
|

|

Timer-A to set sampling rate 512Hz I

Fig. 3-10: Operating flow chart in MSP430F1611

A. Timer Interrupt

The interrupt function of MSP430F 1611 is based on inner timer/counter register,
called Timer A, to count a specific'time value. The counter value TACCRO had to be
set first, as shown in Fig. 3-11. When the timer c_o'unted to the TACCRO value, the
TACCRO CCIFG interrupt flag would "be set. And when the timer counted from
TACCRO to zero, the TAIFG interrupt flag would be set. In our portable EEG
acquisition module, 4MHz crystal oscillator was used as system clock of
MSP430F1611, and the sub-system master clock was set to 2MHz. Therefore, the
operating cycle of program in MSP430F1611 would follow sub-system master clock.
Thus, if the sampling rate of our EEG acquisition module is set to 512 Hz, TACCRO

has to be set to 3906.

_2M/ -
TACCRO 412 3906
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Fig. 3-11: Timer A up mode for interrupt function of MSP430F1611
B. SPI Mode

In synchronous mode, the USART of MSP430F1611 connects to external

systems via three or four pins: SIMO, SOMI, UCLK, and STE, as shown in Table 3-2.

Table 3-2: Definition and function for pins of SPI mode

SPI Mode Operation

SIMO Slave in, master-out

SOMI Slave out, master in

UCLK USART SPI clock

STE Slave transmit enable. Not used in 3-pin mode.

The master configuration of USART was shown in Fig. 3-12. The data
transmission function of USART was initiated when transmitted data were moved to
the transmit data buffer UXTXBUF. If the TX shift register was empty, then data in
UxTXBUF would be moved into the TX shift register. When transmitted data were
received, the received data were moved from the RX shift register to the received data
buffer UxXRXBUF and the receive interrupt flag URXIFGx would be set, that

indicates the RX/TX operation was completed.

In our portable EEG acquisition module, the micro-controller MSP430F1611 can
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cascade-connect with four front-end circuits via SPI, as shown in Fig. 3-13. Therefore,
the handshake connection between Master module and Slave module needs 3-pin to
transmit data: CS, SOMI, and UCLK. And there are four CS signal lines, one SOMI,

and one UCLK signal line inside the leading wire.

MASTER SIMO _ SIMO SLAVE
Receive Buffer UxRXBUF Transmit Buffer UXTXBUF SPI Receive Buffer
Px.x > STE
P ES)
STE - Port.x
. . . o ars . SOMI SOMI ) .
Receive Shift Register - Transmit Shift Register < Data Shift Register (DSR) |-
MSB LSB W MSB LSB MSB LSB
UCLK > SCLK
MSP430 USART COMMON SP!I

Fig. 3-12: US_A_RT Master: and_ external Slave

Digital circuit Four channels front-end circuit

Fig. 3-13: Illustration for connection between four front-end circuits and digital

control circuit

C. Moving Average

Moving average, also called rolling average or running average, is usually used
to analyze a set of data points by creating a series of averages of different subsets of
the full data set. Moving average can be applied to any data set, however, it is most
commonly used with time series data to smooth out short-term fluctuations and

highlight longer-term trends or cycles. The choice between short- and long- term, and
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the setting of moving average parameters depends on the requirement of application.
Mathematically, moving average is a type of convolution and is similar to a low-pass
filter used in signal processing. The moving average filter is optimal for a common
task: reducing random noise while retaining a sharp step response. This makes it as

the premier filter for time domain encoded signals.

. N . .
Given a sequence{a,}. , the output of an n-moving average is a new sequence

{Si}i’:n+1 defined as the average of subsequences of n terms. The formula of moving

averaging was shown as followings.

1 i+n—1

s = Z a (3-4)

Therefore, the sequences S, of n-meving averages when n =23 can be expressed

as

1 ;
s, =E(a‘ +a,,a, +ay,....8,, +8,)

°> -1

-2

1
33=§(a1+a2+a3,az+a3+a4a~ a,,+a,,+a,) G-3)

Fig. 3-14 shows the results of noise cancellation by using moving average. Here,
a function generator was used to generate sin wave, and our portable EEG acquisition
module was used to record this signal. If our portable EEG acquisition module was
close to some electric instruments, the signal recorded from EEG acquisition module
would easily be influenced by noise of 60 Hz power line. In the above figure of Fig.
3-14, it showed that the original sib wave had been contaminated by 60Hz power-line
noise. After filtering by using moving average with 9-point moving window, we found
moving average could effectively remove power-line noise, as shown in the below

figure of Fig. 3-14.
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Fig. 3-14: Result of nojse cancellation by using moving average
D. UART Interface

In asynchronous mode, USART connected MSP430 to external systems via two
external pins, URXD and UTXD. In UART mode, USART transmitted and received
characters at a bit rate asynchronously to another device. Timing for each character
was based on the selected baud rate of USART. Here, the transmitter and receiver
used the same baud rate. For initializing UART, RX and TX had to be enable first, and
then decided the baud rate of UART and disable SWRST. The required division factor

N for determining baud rate was listed as followings:

N BRCLK (3-7)
baud rate

Here, BRCLK was 4 MHz, and baud rate was 115200 bit/s. After initializing
UART, the micro-controller could transmit data filtered by moving average to BLUE

TOOTH module via UART.
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3.2.4 Power Management

Power Management circuit in our portable EEG acquisition module includes two

parts: one is power supply circuit, and the other is charging circuit.

A. Power Supply Circuit

In our portable EEG acquisition module, the operating voltage VCC was at 3V,
and the virtual ground of analog circuit was at 1.5V. In order to provide stable 1.5V
and 3V voltage, a regulator LP3985 was used to regulate battery voltage to 3V. Here,
LP3985 is a micro-power, 150mA low noise, and ultra low dropout CMOS voltage
regulator. The maximum output current can support 550mA. Furthermore, the turn-on
time can reach 200us. And a voltage divider circuit was used to divide 3V voltage
into 1.5V, and a unity amplifier constructed fitom AD8628 was used to provide a
voltage buffer. The total power supply circuit was shown in Fig. 3-15.

m——
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Fig. 3-15: Power supply circuit in portable EEG acquisition module
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B. Charging Circuit

The charging circuit BQ24010DRC had integrated power FET and current sensor
for 1-A charging applications. The maximum charging current can arrive to 1A. The
battery’s power would be detected automatically by charging circuit and switched to
charging mode when battery’s power was not enough. BQ24010DRC also protected
battery to avoid over charging or over driving [77]. The charging circuit was shown in

Fig. 3-16.
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Fig. 3-16: Charging circuit in our portable EEG acquisition module

3.2.5 Wireless Transmission

Bluetooth is a wireless protocol utilizing short-range communication technology
to facilitate data transmission over short distances from fixed and/or mobile devices.
The intent behind the development of Bluetooth was the creation of a single digital
wireless protocol, capable of connecting multiple devices and overcoming issues

arising from synchronization of these devices. In this study, Bluetooth module
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BMO0203 was used. BM0203 is an integrated Bluetooth module to ease the design gap
and uses CSR BuleCore4-External as the major Bluetooth chip. CSR
BlueCore4-External is a single chip radio and baseband IC for Bluetooth 2.4GHz
systems including enhanced data rates (EDR) to 3Mbps. It interfaces to 8Mbit of
external Flash memory. When used with the CSR Bluetooth software stack, it
provides a fully compliant Bluetooth system to v2.0 of the specification for data and
voice communications. All hardware and device firmware of BMO0203 is fully
compliant with the Bluetooth v2.0 + EDR specification. Bluetooth operates at high
frequency band to transmit wireless data, so it can be perfect worked by using a PCB

antenna, as shown in Fig. 3-17.
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Fig. 3-17: PCB Blue Tooth antenna [77]

3.3 DSP Module

The design goal of DSP module is to build a back-end analysis platform. This
platform not only has greatly powerful calculating ability, but also supports various
peripheral interfaces. After measuring and pre-processing EEG signal by our portable
EEG acquisition module, EEG signal would be transmitted to this DSP module via
Bluetooth module. DSP module would then process and analyze EEG signal, and

display results of EEG analysis on TFT LCD. Furthermore, it also can use other
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peripheral interfaces to implement other applications [77].

3.3.1 DSP Framework

A powerful digital signal processor Analog Device BF533-STAMP was used in
this DSP module, and its CPU speed can be up to 600MHz. It owns two 16-bit MAC,
Multiply-And-Accumulate, to execute 1200 lines addition and multiplication
functions. By the way, DSP contains many independent DMA, Direct Memory Access,
to effectively reduce the processing time of core. The system block diagram was
shown in Fig. 3-18. Here, Bluetooth module and UART both worked in the same

UART interface.

TFT-LCD, worked by using Memory-Mapping, shared the same Memory Bus
with SDRAM. In order to reduce the size of platform, we decided to replace
traditional parallel NOR Flash with"SPI*Flash, and it also shared with SD/MMC
Socket. Furthermore, the DSP module also"owned power management and charging
circuits. SD/MMC Socket provided the interface scalability, such as SD/MMC Card,
Sensor, ADC, Wireless Card, etc. In our application for drowsiness detection and
warning, an expanded SD card circuit which can plug in SD card socket of DSP
module was designed to produce buzzer. This circuit will be introduced in next

session.
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Fig. 3-18: The block diagram of DSP system [77]

3.3.2 The Expanded SD Card Circuit

The expanded SD card circuit was designed to expand the function of DSP
module. DSP module and expanded SD card circuit communicated with each other
via SPI interface. Here, DSP module was set as Master configuration, and expanded

SD card circuit was set as Slave configuration, as shown in Fig. 3-19.

cs .
Master %» Slave
(DSP)  [Cwiso ™ (SD circuit)

Fig. 3-19: Handshake mode between DSP module and expanded SD card circuit

In this expanded SD card circuit, another microcontroller MSP430F2013 was
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used as the core of this circuit. This controller only has 14 pins and its size is 5.1 mm

x 6.2 mm. MSP430F2013 can provide many benefits, such as inner 32768 Hz

oscillator, two pair I/O ports, USI (Universal Serial Interface) interface, Timer

interrupt, watch dog timer, 16-bit Sigma-Delta Analog to Digital converter, etc. The

expanded SD card circuit included a microcontroller, an ICE download pin, SD/MMC

interface connection, a buzzer, and a LED. The function block diagram was shown in

Fig. 3-20. The schematic circuit of expanded SD card circuit was shown in Fig. 3-21.
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Fig. 3-20: The function block diagram of MSP430F2013
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Fig. 3-21: Schematic circuit of expanded SD card circuit

The operating flow chart of expanded SD card circuit was shown in Fig. 3-22.
Here, MSP430F2013 in expanded SD card circuit always waited to receive commands
from DSP module. When command data was arrived,
start USI interrupt. Second, the ¢ommand-.data for expanded SD card circuit was
defined as two different warning modes. In mode one, low frequency warning tone

would be generated by an interval PWM, and“in_mode two, high frequency warning

tone would be generated by a high potential signal.
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Fig. 3-22: Operating flow chart of expanded SD card circuit

3.4 Hardware System Implementation

A. Portable EEG acquisition module

Fig. 3-23(a ~ c) are the front-end analog circuit and digital control circuit in our
portable EEG acquisition module, and the whole EEG acquisition module respectively,
and the size of each circuit compared with a coin of one NTD was shown in Fig. 3-23.
There are three leads in our portable EEG acquisition module, includes EEG input,
reference, and virtual ground of the front-end analog circuit. The electrodes connected

with the leads of virtual ground and EEG reference were placed on user’s forehead
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and behind right ear respectively. The specification of portable EEG acquisition

module was listed in Table 3-3.

(b)

Fig. 3-23: (a) The front-end analog circuit, (b) the digital control circuit, and (c) the
whole portable EEG acquisition module with single channel.
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Table 3-3: The spec of portable EEG acquisition module

Type Portable EEG Acquisition Module
Channel Number 1~8

System Output Voltage Range 0~3V

Gain 5000

Bandwidth 0.1~100Hz

ADC Resolution 12bits

Output Current 29.5mA

Battery Lithium 3.7V 450mAh  15~33hr
Full Scale Input Range 577uV

Sampling 512Hz

Input Impedance greater than 10MQ
Common Mode Rejection Ratio 77dB

Power Supply Rejection Ratio 88dB

Size 18mm x 20mm and 25mm x 40mm

B. DSP Module and SD Card Circuit

The expanded SD card circuit was shown' in Fig. 3-24(a). It looked like a
SD/MMC card, which can easily be plugged into the SD/MMC socket in DSP module.
The size of expanded SD card circuit is 24mm x 32mm. Fig. 3-24(b) is the illustration

for application of expanded SD card circuit.
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(b)

Fig. 3-24: (a) The expanded SD éard cn‘cum and (b) i__Hustration for application of

expanded SD card circuit
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Chapter4 Unsupervised Approach

Based on the unsupervised analysis flowchart in Fig. 2-8, we will further discuss
the details of every analysis diagrams in the following sessions. In order to find out
the real driving behavior information, first we calculate the driver’s driving
performance by using the record in simulation experiment. Moreover, we use the
unsupervised analysis method to analyze the corresponding EEG information,
including the preprocessing, alert model construction, and computation of the

deviation using Mahalanobis distance method.

4.1 Driving Performance

The VR-based four-lane straight highway scene was applied in the experiment.
In this scene, the four lanes from left to right-are separated by a median stripe and the
distance from the left side to the right side-of the road was equally divided into 256
points indicating the position of the vehicle as the digital output signal of the VR
scene at each time instant. The width of each lane and the car is 60 units and 32 units,
respectively. Fig. 2-4 shows an example of the driving performance represented by the
vehicle deviation trajectories. We have defined an indirect index of the subject’s
alertness level (driving performance) as the deviation between the center of the
vehicle and the center of the cruising lane. VR driving simulation environment will
randomly start a deviation event to move the car to right or left side in the car driving
experiments. Subjects needs to sense those sudden movements and trying to make a
reversely turn to back to the third lane. At one time, the VR environment also outputs
the driving events inside the data of car trajectories, as deviation event start trigger,

response onset trigger; and response offset trigger. Fig. 4-1 shows the example of
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deviation event.

Deviation
start trigger
(left turn)

Fig. 4-1: The example of deviation event and car trajectories

Response Response
onset offset

Deviation
start trigger
(right turn)

Response Response

onset

offset

In Fig. 4-2, the driving trajectories that we recorded followed below steps to

show the driving performance. For restoring trajectories data, event trigger removal is

the first process that we do. After deviation:tesponse offset, the positions of every

experiment trial aren’t consistent; so that we need to remove the baseline every trial.

The results of the second step-will leave right or:left turn trajectories. And then

absolute trials to collocate total right / left turn-data. Typically the drowsiness level

fluctuates with cycle lengths longer than 4 minutes [64], [65], and hence we smooth

the indirect alertness level index using a causal 90-sec moving window advancing.

This helps us to eliminate variance with cycle lengths shorter than 1-2 minutes. We

emphasize that this index is used only to validate our approach, and it is not as an

input to develop the model for the alert state of the subject.

Step 1

Event Trigger
Removal

——p| Baseline Removal F—

Step 2

Step 3

Absolute Trials of

Right and Left

Fig. 4-2: The processing steps of driving performance

Step 4

> 90 sec

Moving Average

Following the above 4 steps, an example of driving performance are shown as
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Fig. 4-3. Fig. 4-3(a) shows the original driving data which including event triggers,
and Fig. 4-3(b ~ d) shows the results of 4 steps respectively. The final driving
performance is in Fig. 4-3(e). Thus, we use this result to compare with MD*(MDT,

MDA, and MTC) and implement in correlation analysis with the driver’s

performance.
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Fig. 4-3: Example of driving performance analysis. (a ~ d) are the fragment of
information which marked by two lines. (a) is the original driving trajectories data
which including deviation event triggers. (b) is the result which has passed through
event trigger removal. (c) is the absolute result. (d) is the result which has smoothed

by 90-sec moving average. (¢) shows the total driving performance data.
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4.2 Smoothing of the Power Spectra

Before extracting the power spectra of alpha and theta rhythms, raw EEG data
would be preprocessed to remove power line noise and increase the resolution in the
low frequency spectra. In this smoothing method, we used a moving average, as a
low-pass filter to cut-off at 32 Hz in and filter noise over 32 Hz. A moving average
filter was used to minimize the presence of artifacts in the EEG records of all
sub-windows. Next, we down sample 8 times to 64Hz, so that every sub-window only
left 64 points in one second. Those two preprocessing methods can decrease the
unnecessary noise and increase the low frequency band information in theta and alpha
band spectra. Go on, building up an 8 second moving window to save sub-windows,
and displace a sub-window in every 1_second.-The first FFT result will be produced at
8™ seconds; moreover other FFT reéults will be 'in every following 1 second. The
smoothing method of moving window, can reserve the low frequency information of
EEG power spectra longer to fur‘;her énalysis. Thu.s,. for each session EEG log power
time series at alpha band as well as at theta band with 1 sec time intervals were

generated. Fig. 4-4 showed the processes of spectra analysis as precedence.
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Fig. 4-4: Processes of spectra analysis as precedence

4.3 Construction of the Alertness Model

To investigate the relationship between the measured EEG signals and subject’s
cognitive state, and to quantify -the lével of the subject’s alertness in our previous
studies [78]-[80], first, we need to quantify the volunteer’s drowsiness level in this
experiment. When subjects fall drowsy, they often exhibit relative inattention to
environments, eye closure, less mobility, failure to motor control and making decision.

Hence, the vehicle deviations were defined as the subject’s drowsiness index.

In our approach for every subject in every driving session a new model will be
constructed. Consequently the variability between subjects as well as the inter-session
variability is no more important; these are taken into account automatically. To

develop the alert model we make a few mild but realistic assumptions as follows:

(1) The subject is usually very alert immediately after he/she starts the driving

session.
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(2) Subject’s cognitive state can be characterized by the power spectrum of his/her
EEG.

(3) When the person is in the alert state, it can be modeled reasonably well using a
multivariate distribution of the power spectrum.

(4) The alert model expresses well the EEG spectra when the subject remains alert or

return to alert state from drowsiness.

One can argue that the subject may already be in a drowsy state when he/she
begins driving. If that is really true, then that can be detected by checking the
consistency between two alert models derived using data in two successive time
intervals. In other words, we can check whether the two alert-models identifies in two
successive time intervals are statistically same or not. If the subject was already in a
drowsy state, then he/she will either move-te-a-deep drowsy/sleepy state or will transit

to an alert state. In both cases, the two models will not be statistically consistent.

Here we use a multivariat-e-diétribution to.-rﬁodel the distribution of power
spectrum in the alert state. In particular, at every 1 second, we calculate the power
spectrum vector in p dimension. In our experiment theta band is located in 32~63
(4~7Hz), and alpha band is in 64~96 (8~12Hz). In this way, a set of n=60 data vectors
{X1,...,Xe0} 1s generated in every minute. We use 3 minutes of spectral data to derive
the alert model. The alert model is represented and characterized by a multivariate
normal distribution N(z,%*) , where x is the mean vector and = is the

variance-covariance matrix.

We use the maximum likelihood estimates for x andX*. After finding the alert
model we check whether the EEG spectrum in the alpha band (also in theta band)
indeed follows a multivariate normal using Mardia’s test [81], [82]. If the model

passes the Mardia’s test, we accept that model as the alert model. Otherwise, we move
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the data window by one minute and again use the next 3 minutes of data to derive and
validate the model using Mardia’s test. Once a model is built, a significant deviation
from the model can be taken as a departure from alertness. Note that, we are saying
“departure from alertness” which is not necessarily drowsiness. For example, the
subject could be excited over a continued conversation over a mobile phone. In this
case, although the person is not drowsy, he/she is not alert as far as the driving task is
concerned and hence needs to be cautioned. Thus our approach is more useful than
typical drowsiness detection systems. A consistent and significant deviation for

some time can be taken as an indicator of drowsiness.

For the sake of completeness, we briefly explain the Mardia’s test of
multi-variate normality. Given a random sample, X={Xy,...,X,} in RP, Mardia [81],

[82] defined the p-variate skewness'and kurtosis as:

b, = : 22 —X)'SHX; 108 E (4-1)

-2
n" 5 =

by, =L (%, ~RY'S(x, ~ %)}

S|

(4-2)

In (1) and (2) X and S represent the sample mean vector and covariance matrix,

respectively. In this case of university data, by, and b, , reduces to the usual university
measures skewness and kurtosis, respectively. If the sample is obtained from a
multivariate normal distribution, then the limiting distribution of b;;, is a Chi-square

with p(p+D)(p+2)/6 degrees of freedom, while that of
\/H(bz’p —p(p+2))/8/p(p+2) is N(0,1). Hence we can use these statistics to test

multi-variety normality. In all our experiments, we have used the routines available

for Mardia’s test in the R-package [83].
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4.4 Computation of the Deviation from the Subject

After the alert model is found, we use it to assess the subject’s cognitive state.
This was done by finding how the subject’s present state, as represented by the EEG
power spectra, and was different from the state represented by the alert model. The
deviation of the present state from the model is computed using Mahalanobis distance
[84] that can account for the covariance between variables while computing the

distance. Let the alert model computed using the alpha band be represented by
(X,S), and that by the theta band be represented by (X,S);. Let X be a vector

representing the power spectra in the alpha band (or in the theta band) of the EEG of
the subject at some time instant, thén the deviation of the present state from the model

1S:

MD*(X) = +/(x-X)"S!(x-X) ] (4-3)

In (3) if we use the alpha band model, then * is A, and for the theta band model
and data, * will be T. Thus the deviation from the alpha band model will be denoted
by MDA and that for the theta band model will be denoted by MDT. Similar to the
pre-processing of the indirect alertness level index (driving performance), the
MDA/MDT is also smoothed by the moving average method using a window with a
window of 90 seconds. The moving average window is shifted by just one value (i.e.,
2 sec). For a better visual display, we have scaled the MD* values by subtracting the

average MD* computed over the training data used for finding the alert model.

We shall see later that the deviation from either the alpha band model (i.e., MDA)

or the theta band model (i.e., MDT) can be used to detect departure from the alart
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cognitive state. This raises a natural question, can a combined use of MDA and MDT
do a better job than individual ones. To explore such a possibility we use a linear

combination MDA and MDT to compute a combined measure of deviation as

MDC =axMDA+(1-a)xMDT,0<a<1. (4-4)

4.5 Driving Performance Sorting Analysis

Since the driving performance is an indirect index of the alertness level, we
propose the sorted analysis method that sorts the smoothed log power spectra and
MD#* according to the driving performance index to assess the brain dynamics
corresponding to the transition from alertness to drowsiness in driving. This process is

used to obverse the features change as the increase of driving performance index.

This analysis flow is to separate.totak-trials from the driving trajectories. In our
analysis, we assumed that the driving deviation and drowsiness state were direct
proportional, so we decided to use the reaction time of driving deviation to be the
information of driving performance analysis. Every trial will find out the
corresponding EEG raw data. Hence, according to the alertness model in first 3
minutes, the frequency domain spectrum under the deviation can be changed out by
FFT, and continually, the MDT and MDA power can also be transformed. Further, the
trials are sorted following the length of deviations, and the synchronized MD* power
spectra also be sorted together. The width of road was divided into 256 points, and
speed of car drifting after deviation onset was 64 points/sec; in other words, the car
would drift 1/4 width of road and crash into the second lane or fourth lane in one
second. After trials sorting, according to above theory, we can separate the sorting

data into 4 segments: alertness (0.2~1s), slight drowsiness (1~2s), extreme drowsiness
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(2~3s), and sleepiness (over 3s). Then, the mean and standard deviation in every
segment which we counted shows the relationship between driving performance and
drowsiness state. The process of sorting analysis is shown as Fig. 4-5. The results of

sorting analysis will be discussed in next session.

Alertness model

(N
o

|| ||| |!I||| A || , : l
BNSRN  U1V  —

Raw Data Preprocess
(8sec FFT)

—» MDT & MDA

l

<4—{ Trials Sorting

Trials Separating

Classification
(Mean & Standard Deviation)

Fig. 4-5:Process of sorting analysis
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Chapter5 Results and Discussion

In this chapter, we will separate into two parts to discuss, including the
performance of portable EEG acquisition module and the relationship between driving
performance and unsupervised analysis. In the first segment, we use sine wave and
alpha wave to test the performance correlation. The next segment we will discuss the
unsupervised result by using correlation with driving performance, sorting analysis,
and linear combination to find out the proportional relationship. And finally we use
the binary classification method to summarize the threshold from alertness to

drowsiness, furthermore set the optimal threshold into the program of DSP module.

5.1 Performance of Portable EEG Acquisition Module

In this section, the reliability ofithe-propesed portable EEG acquisition module
was examined. First, several sine waves-with different frequencies generated by a
function generator was used as input signal to test whether the EEG acquisition
module can stably and validly acquire testing signals. Next, alpha rhythm of EEG
generated by closing our eyes and relaxing was used as input signals. We analyzed the
real EEG signals obtained by our EEG acquisition module, and checked whether the

alpha rhythm of EEG can effectively be extracted.

5.1.1 Test for Sine Wave Signal

In this performance test, we tried to test the correlation between the sine-waves
which were recorded actually by portable EEG acquisition module and the sin-waves

which were generated by MATLAB function. The EEG signals which were recorded
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about 23 sec. The result of correlation between two conditions was shown in Fig. 5-1.

And the correlation of total information could up to 0.9765.

Recorded by Portable EEG Acquisition Module
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Fig. 5-1: The result of correlation betwéen two conditions

-

5.1.2 Test for Real EEG Signal

In this system quality test, we recorded a sample EEG data. Subject just open
eyes in first 1 second, and start to let eyes close. Subject maintained to stay in relaxed
state. In Fig. 5-2, we can notice the alpha wave happened after 1 second, so that we

showed time domain and frequency domain information in this figure.
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corresponding frequency domain- spectra
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5.2 Driving Performancé“énd Unshbervised Analysis

In this session, we will show the results of algorithm in three parts. First, discuss
the relation between driving behavior information and unsupervised analysis in
long-term time domain experiments. Second, separating the behavior trials hence
finds the corresponding EEG data, then sorting both information checks the
connection between MDA / MDT and the reaction time of driving performance. Final,
using linear combination finds out MDC and check the highest correlation between

both two information.
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5.2.1 Results of Unsupervised Analysis

Following the steps of preprocessing and the unsupervised analysis in above
chapters, we used OZ channel which has the highest average correlation in 10-20
system [61] to record EEG signal. Then, we constructed (X,S); and (X,S), in the

alert model, which X and S are mean vector and covariance matrix. Moreover,
according to the results of FFT counted the MDT and MDA out. There were two
examples to show the results of FFT preprocessing, MDA / MDT, and driving

performance, as Fig. 5-3 and Fig. 5-4.
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Fig. 5-3: Example 1 of driving performance and unsupervised analysis
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Fig. 5-4: Example 2 of driving performance and unsupervised analysis

From above two cases of unsupervised analysis, we can directly found out the
relationship about the variance of frequency domain spectrum and unsupervised
analysis when driving performance changed dramatically. According to those
experimental results, we can asseverate that EEG waves will be influenced by

behavior information when the subjects become drowsiness. And in our portable EEG
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acquisition module detects alpha wave clearer and more accurate than theta wave.

5.2.2 Relationship between Driving Performance and Unsupervised

Analysis

In reference (N. R. Pal, 2008 [59]) said, they investigated the relationship
between the driver’s performance and the concurrent changes in the EEG spectrum,
and go on, they had sorted the EEG power spectra in alpha band by smoothed driving
performance. The similar sorting is also done for power in the theta band. The result
which they discovered was that theta and alpha spectrum were directly proportional to

the deviation length of driving performance.

Our alert model did not use EEG pewer.dir€etly, but putative MDT and MDA.
So next we checked how strongly MDA and MDT were correlated with the driving
performance. Fig. 5-5(a) showed. the refation between driving performance and
MDT (across the 15 test subjects/sessions) while Fig. 5-5(b) exhibited the same for
MDA. It was interesting to see that, Fig. 5-5 and the above theory exhibit almost the
same behavior; in fact, the average MDT and MDA increased more steadily with

driving performance.
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Fig. 5-5: The relationship between MDT / MDA and reaction time

5.2.3 Linear Combination-of Model Deviations

To examine this possibility; we consider a very simple liner combination of
MDA and MDT as MDC=axMDA+(1-a)xMDT,0<a<1. There are infinitely
possible choices for the constant @ in the linear combination. We have used a grid
search in a = 0.1, 0.4, 0.6 and 0.9 and for every such linear combination we have
computed the correlation of MDC with driving performance. Table 5-1 lists the
correlation values for a few illustrative cases. Note that, in the second column we
have two correlation values x/y where x corresponds to MDA (i.e., a = 1) and y
corresponds to MDT (i.e. a = 0). As an example, for subject S1, if we use MDT, the
correlation is only 0.6743, while using MDC, for all combinations the correlation is

higher than that with MDT. This justifies the utility of the combined model.
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Table 5-1: The comparison of the correlation between power and driving performance

and MD* and driving performance for channel OZ

. 0.1*MDA + 0.4*MDA + 0.6*MDA + 0.9*MDA +
Subjects  MDT /MDA

0.9*MDT 0.6*MDT 0.4*MDT 0.1*MDT
S1 0.6743/0.7220 0.6818 0.7019 0.7133 0.7278
S2 0.5579/0.5607 0.5589 0.5608 0.5613 0.5610
S3 0.4106/0.5474 0.4314 0.4714 0.4823 0.5514
S4 0.4737/0.5136 0.4791 0.4939 0.5025 0.5168
S5 0.3654 / 0.5469 0.4193 0.5369 0.5643 0.5556
S6 0.1840/0.5530 0.2745 0.4866 0.5418 0.5554
S7 0.2520/0.6076 0.3827 0.6056 0.6277 0.6143
S8 0.0052 /0.7942 0.2062 0.6313 0.7342 0.7970
S9 0.2585/0.7010 0.2832 0.3832 0.5536 0.6776
S10 0.2004 / 0.4090 0.2022 0.2372 0.3541 0.4144
S11 0.1670/ 0.6020 0.3253 0.5314 0.5725 0.6076
S12 0.3190/0.6940 0.3880 0.4602 0.5977 0.6798
S13 0.5186/0.5318 0.5472 - 0.6140 0.6208 0.6224
S14 0.6264 /0.6713 0.6425 0.6745 0.6820 0.6765
S15 0.1849/0.8473 0.2389 107708 0.8228 0.8484
Average 0.3465/0.6201 0.4041 0.5439 0.5954 0.6271

5.2.4 Threshold Definition and Drowsiness Classification

In drowsiness classification, we use the true-false table to define sensitivity and
specificity. Sensitivity and specificity are statistical measures of the performance of a
binary classification test. The sensitivity measures the proportion of actual positives
which are correctly identified as such (e.g. the percentage of drowsy people who are
identified as having the condition); and the specificity measures the proportion of
negatives which are correctly identified (e.g. the percentage of alert people who are
identified as not having the condition). The relationship between sensitivity and
specificity is shows in Fig. 5-6 and the description of binary classification test was in

Table 5-2.
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Fig. 5-6: The relationship between sensitivity and specificity
Table 5-2: The description of binary classification test
Type Description

True positive
False positive

True negative

False negative

Drowsy people eorrectly diagnosed as drowsy

Alert.people wrongly-identified as drowsy

Alert people correctly identified as alert

Drowsy Sick people wrongly identified as alert

To define the drowsy state in driving performance and MD*, we need to collect

the true positive, false positive, and false negative parameters, hence to analyze the

sensitivity and positive predictive value.

A. Positive Predictive Value:

PPV

number of True Positives

B number of True Positives + number of False Positives

(5-1)

The positive predictive value, or precision rate, or post-test probability of disease,

is the proportion of patients with positive test results who are correctly diagnosed. It is

the most important measure of a diagnostic method as it reflects the probability that a
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positive test reflects the underlying condition being tested for. Its value does however

depend on the prevalence of the disease, which may vary.

B. Sensitivity:

- number of True Positives
Sensitivity = — - (5-2)
number of True Positives + number of False Negatives

A sensitivity of 100% means that the test recognizes all drowsy people as drowsy.
Thus in a high sensitivity test, a negative result is used to rule out the disease.
Sensitivity alone does not tell us how well the test predicts other classes (that is, about
the negative cases). In the binary classification, as illustrated above, this is the
corresponding specificity test, or equivalently, the sensitivity for the other classes.
However, sensitivity is not the samé as the positive predictive value (ratio of true
positives to combined true and false positives), which is as much a statement about

the proportion of actual positives in'the population being tested as it is about the test.

The calculation of sensitivity does not take into account indeterminate test results.
If a test cannot be repeated, the options are to exclude indeterminate samples from
analysis (but the number of exclusions should be stated when quoting sensitivity), or,
alternatively, indeterminate samples can be treated as false negatives (which gives the

worst-case value for sensitivity and may therefore underestimate it).

After explaining the definitions of sensitivity and positive predictive value, the
next step is to define the threshold of driving performance and MD*(MDT, MDA,
and MDC). The threshold of driving performance can follow above conclusion of
sorting analysis which separated into 4 parts: alertness (0.2 ~ 1s), slight drowsiness (1

~ 2s), extreme drowsiness (2 ~ 3s), and sleepiness (over 3s). Further, we assume that
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deviation time is smaller than 1 second to be alert, and others are drowsiness. On the
other hand, we need to define the threshold of MD*. Because the results of MD* had
been normalized, so we are beneficial to collect all 15 subjects’ MD* data and
analyze them. In Fig. 5-7 and Fig. 5-8, we set the threshold of MD* from 1 ~ 13
respectively and analyzed the sensitivity and positive predictive value in different
threshold. In linear combination, we also tried to separate into 9 conditions: a = 0.1,
0.2 ... 0.8, 0.9. Following the different conditions to find the sensitivity and positive

predict value in different threshold of MD*.
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Fig. 5-7: Positive predictive value vs. threshold of MD* (MDT, MTA, and MDC)
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Fig. 5-8: Sensitivity vs. threshold of MD* (MDT, MTA, and MDC)

When finished calculating positive predictive value and sensitivity in different
conditions of linear combination, then we needed to choose the suitable threshold of
MD#*. According to equation 5-3, the F-measure can be used as a single measure of

performance of the test. In information retrieval positive predictive value is called
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precision, and sensitivity is called recall. The F-measure is the harmonic mean of

precision and recall:

rx precision x recall
precision + recall

F —measure = (5-3)

The results of passing through F-measure were shown as Fig. 5-9. The percent of
F-measure mean the ratio of drowsy accuracy actually. Both parameters are associated
with drowsiness. In different linear combinational conditions, we could find out the
highest result of F-measure in condition a = 0.9. According to this conclusion, this
condition composed of the best linear combination of the MDC. Hence, the maximum
value of F-measure, 77.59%, happened in the most suitable threshold of MDC, 7.5. So
that the corresponding sensitivity was 88.28% and positive predictive value was

69.21%. Those results classified in Table 5-3.

The reason of which F-measure was not high enough was described into 3 critical

points:

1. The trials of driving trajectories and corresponding MD* which we picked out
didn’t use moving average to smooth, because of those sectional EEG
information were too short. So that the MD* were not good enough in

performance sorting analysis.

2.  We found out the relation between driving performance and MD*, hence
driving performance and MD* were a sufficient condition but not a necessary
condition. When MD* value was high, the corresponding driving performance

wasn’t high too. There were other variables appending to user’s EEG waves.

3. When subjects became drowsy, the MD* will increase, but will not happen

immediately. This phenomenon which based on time domain appeared step by
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Fig. 5-9: F-measure vs. threshold of MD* (MDT, MTA, and MDC)
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Table 5-3: The results of binary classification test

Types Max F-measure (%) Corresponding threshold PPV (%)  Sensitivity (%)
MDT 73.92 6.5 60.15 95.86
MDA 77.34 7.5 69.68 86.90
MDC (a=0.1) 73.46 6.5 59.29 96.55
MDC (a=0.2) 73.76 6.5 58.91 98.62
MDC (a=0.3) 74.02 7 63.73 88.28
MDC (a=0.4) 75.12 7 63.94 91.03
MDC (a=0.5) 76.00 7 63.88 93.79
MDC (a=0.6) 76.28 7 64.28 93.79
MDC (a=0.7) 76.65 7.5 70.87 83.45
MDC (a=0.8) 77.40 7.5 70.69 85.52
MDC (a=0.9) 77.59 7.5 69.21 88.28

5.2.5 DSP Module Programming

The flowchart of DSP module was shownin Fig. 5-10. In program development,

we used multithread to build up a“real-time analysis system, moreover to increase

program’s flexibility and the use of performance.

= =| Create Thread

Joint Thread F - -

Thread 1

Detect EEG and Preprocessing

Thread 2

512-point FFT

Thread 3

I Calculate Alert Model
(mean & covariance matrix)

Thread 4
Calculate MDC

Thread 5

Warning Output

Fig. 5-10: The flowchart of DSP module program
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Each thread is independent. In the DSP module’s main loop, we just create the
threads we want and joint them. The system kernel will automatically schedule those
threads and decrease the system waiting cost. In thread 1, Real-time detect EEG raw
data from Blue Tooth, and go on pass through a moving average to cut-off at 32Hz,
further down sample to 64 point in 1 second. Thread 2 handles FFT process. First, the
FFT result will be transmit into 3 minute array in alert model. When array is full, the
theta and alpha’s mean vector and covariance matrix in thread 3. Thread 4 mainly
handles the MDT and MDA converter, then based on above optimal conclusion to
calculate the MDC (a=0.9). If the values of MDC are higher than threshold in 7.5, the

thread 5 will be switch on and make some warning voice in thread 5.

On the other hands, the program’s user interface could directly tell user how was
his / her physiological conditions. {Further;let users easy handle this system. The user
interface’s flowchart was shown:in Fig. 5-11. Following this flowchart, when the boot
loader setup, the real-time drowsy .det'ection program will be automatically started by
DSP module. If user finished dress the portable EEG acquisition module over, he / she
push the start button to start to detect real-time EEG raw data. Then the screen could
print the real-time data. Furthermore, according to the mean vector and covariance
matrix of alert model, the linear combination of MDT and MDA was counted
continually, and the result value will also print on the screen’s bottom side. Following
Fig. 5-12 showed, the screen’s update time we set was changed in every 1 second, so
we could show total 1 seconds EEG raw data and result of MDC at the same time on
the TFT-LCD, and the expanded SD card circuit will detect a new SPI command from
DSP module to ring the buzzer or not in every 1 second. By the way, user could push

the quit button to end this program.
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Chapter6 Conclusions

In this study, a real-time wireless brain computer interface for drowsiness
detection was proposed. Here, a portable wireless EEG acquisition module and a DSP
module were developed. The portable wireless EEG acquisition module was designed
to acquire EEG signal, and then transmit them into the DSP module wirelessly to
detect drowsiness. The modular approach applied in hardware and software design
enables this system to be configurable for different application scenarios. For example,
in the future, the EEG acquisition module can be used to connect several optional
physiological sensors in addition to the built-in one, and it doesn’t affect the whole
system architecture. This system is feasible for further extension. Moreover, our EEG
acquisition module is small, light, and.wearable, therefore, it is suitable for long-term

EEG monitoring in users’ daily life.

A novel algorithm based on [59] for drowsiness detection was also proposed in this
study. It can effectively reduce 'computation c;)mplexity, and is suitable to be
implemented in the DSP module, and it is good at removing the differences between
individual and environment in different people or measurements. Some previous
studies indicated that the level of drowsiness is proportional with the increase of alpha
and theta rhythms in EEG Under the assumption of that driving trajectory is
proportional with the level of drowsiness, our experimental results showed that the
power of alpha and theta rhythms (the average MDT and MDA) in EEG increased
indeed when the level of drowsiness increased, and the linear combination of alpha
and theta rhythms (MDC) with factor a = 0.9 had the highest correlation (0.6271) with

the level of drowsiness.

In this study, the levels of drowsiness were defined as follows: alertness (0.2 - 1s),
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slight drowsiness (1 - 2s), extreme drowsiness (2 - 3s), and sleepiness (over 3s). In
order to verify the reliability of our proposed algorithm, we simplified four cognitive
states into two: alert state and drowsy state (combining slight, deep and extreme
drowsiness), and then the binary classification test was used to investigate the
sensitivity and positive predictive value of our algorithm with different thresholds.
Our experimental results showed that MDC with factor a = 0.9 when threshold was
set to 7.5 had the highest F-measure value (F-measure = 77.59%, sensitivity = 88.28%,
and positive predictive value = 69.21%). However, the accurate of our algorithm for
drowsiness detection seems not good enough. This can explained by that each
increase of alpha and theta rhythm may not correspond to each drowsy event although
the long-term increasing trend of power of alpha and theta rhythm is proportional with
the level of drowsiness. In future work, our system could combine with the utility of
other physiological parameters, such as' EOG and EMG, to improve both the

sensitivity and positive predictive value: -
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