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即時無線瞌睡偵測腦機介面系統 

學生：張哲睿    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所 

摘要 

近年來，交通意外是一個造成駕駛死亡的至關重要原因，其中駕駛者的精神

狀況不佳所造成車禍意外佔了絕大多數比例，所以開車駕駛瞌睡監控問題是我們

嘗試克服之處，試著以人為方式來減少車禍發生。近年來相關的開車監控研究主

要著重在使用者影像辨識上，瞳孔辨識、眨眼辨識或是偵測司機擺頭頻率，但是，

這些影像相關研究存在著先天上的缺點，使用者必須正對鏡頭才能得到好的量測

結果；此外為了克服此點，其他學者引進了生理參數來做為開車即時瞌睡狀況的

比較依據，如心電圖、眼電圖、肌電圖或腦波圖等，較影像辨識來得直接與精確，

使用者可以不必受影像定位之問題影響，本論文即對於此生理參數中腦波參數做

進一步的探討，並且設計一套無線可攜式的腦波擷取系統與數位訊號處理平台並

且搭配非監督式分析演算法做即時瞌睡判斷，其優勢在於可移除掉不同人、不同

次測量中個別跟環境差異性。本論文藉由虛擬實境模擬環境所記錄下開車偏移量

來當作瞌睡程度的參考，並與所發展的非監督式分析法的相互比對關係來證明此

演算法對瞌睡程度偵測的功效與可行性，最後實現在數位訊號處理平台上。經由

實際測試，可以成功在駕駛者有睡意時，利用聲音警示提醒駕駛保持清醒，確保

開車時的安全。 

關鍵字: 瞌睡監控、腦波圖、無線可攜式、腦波擷取系統、數位訊號處理平台、

虛擬實境模擬環境、開車偏移量、非監督式分析法 
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Real-time Wireless Brain Computer Interface for 

Drowsiness Detection 

 

Student: Che-Jui Chang Advisor: Dr. Chin-Teng Lin 

Department of Electrical and Control Engineering 

National Chiao Tung University 

Abstract 

In recent years, traffic accident is one of the critical reasons to cause deaths of 

drivers. Here, Drivers’ drowsiness has been implicated as a causal factor in many 

accidents because of the marked decline in drivers’ perception of risk and recognition 

of danger, and diminished vehicle handling abilities. Therefore, if the mental state of 

drivers can be real-time monitored directly, drowsiness detection and warning can 

effectively avoid disasters such as vehicle crashes in working environments. Some 

previous researches used non-physiological method, as eye closure with CCD image 

tracking, such as the pupil recognition, blink detection or identification the drivers 

head shaking frequency. However, for CCD image tracking, users couldn’t move for 

free, and the images detecting performance were easily be interfered by light. And 

others used physiological parameters to increase the accuracy of drowsy detection, 

like pulse wave analysis with neural network, the electrooculogram (EOG) and the 

electromyography (EMG) measurement, and the electroencephalogram (EEG). In this 

study, we proposed a real-time wireless brain computer interface for drowsiness 
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detection. Here, a small, light, and portable EEG acquisition module was designed for 

long-time EEG monitoring. And a novel algorithm of drowsiness detection based on 

was also proposed to reduce the computation complexity, and was implemented in a 

portable DSP module. In order to estimate the level of drowsiness, a lane-keeping 

driving experiment was designed. The drowsiness level of drivers was indirectly 

assessed by the reaction time and driving trajectory under Virtual Reality Driving 

Simulation Environment. The advantage of this unsupervised algorithm can remove 

the differences between individual and environment in different people or 

measurements. In order to verify the accurate and feasibility of our proposed 

unsupervised algorithm, we compared drowsiness status estimated by driving 

performance with that obtained by our proposed unsupervised algorithm. The results 

showed that our proposed algorithm can detect driver’s drowsiness status. Finally, our 

system can successfully be applied in practice to prevent traffic accidents caused by 

drowsy driving. 

 

 

 

 

 

 

KEYWORD: drowsiness detection, electroencephalogram, portable EEG acquisition 

module, DSP module, Virtual Reality Driving Simulation Environment, 

driving performance, unsupervised algorithm  
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Chapter1 Introduction 

In recent years, traffic accident is one of the critical reasons to cause deaths of 

drivers. World Health Organization report released that the global traffic accidents 

killed 1.2 million lives each year and caused millions of people were injured [1]. The 

report stated that a daily average of 1000 persons aged 25 years of age because of the 

people killed in traffic accidents, of which 90 percent of the victims took place mainly 

in Africa and Asia, low-income countries. The report said that the 19-year-old and 

15-year-old groups to the cause of death, traffic accidents ranked first, far exceeding 

the number of AIDS deaths. It showed that the traffic safety is the very urgent issues 

that need to straighten and improve. 

The cause of accidents is often imputed to driver’s mental state. A human in 

drowsiness often exhibits relative inattention to environments, eye closure, less 

mobility, failure to motor control and decision making [2]. Therefore, those accidents 

which caused by falling drowsiness usually not only endanger themselves but also 

involve the public. Many studies have pointed out that a driver’s drowsiness can cause 

serious traffic accidents [3]-[6]. In 2002, the National Highway Traffic Safety 

Administration (NHTSA) reported that about 0.7% of drivers have been involved in a 

crash that they attribute to drowsy driving, amounting to an estimated 800,000 to 1.88 

million drivers in the past five years [7]. The National Sleep Foundation (NSF) also 

reported that 51% of adult drivers had driven a vehicle while feeling drowsy and 17% 

had actually fallen asleep [8]. 

Thus, in the field of safety driving, development of methodologies for detection 

drowsiness / departure from alertness in drivers has become an important area of 

researches. If the mental state of drivers can be real-time monitored directly, 
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drowsiness detection and warning can effectively avoid disasters such as vehicle 

crashes in working environments. Recently, with the development of brain computer 

interface, real-time monitoring the mental states of drivers and detecting drowsiness 

have become feasible. 

 

1.1 Brain Computer Interface 

Brain Computer Interface (BCI) is an interface between human and computers or 

machines. BCIs were aimed at assisting, augmenting or repairing human cognitive or 

sensory-motor functions. It is based on the translation of the specific brain activity 

generated by a specific thought of a human to control machines, to communicate with 

the outside world directly, to convey the message, and independent operations, as well 

as self-care purposes. 

Current BCIs almost are one-way BCI, i.e. only external devices send signals to 

the brain [9], or receive commands from it [10]-[13], [14]-[41]. By acquisition of 

brain activities, BCI can be divided into three distinct modes: invasive, 

partially-invasive, and non-invasive BCI. Invasive BCI is implanted directly into the 

grey matter of the brain to obtain highest quality signals of brain activities or send 

external signals into the brain. But as the body reacts to a foreign object in the brain, 

scar-tissue is prone to buildup, and may cause the signals of BCI to become weaker or 

even lost. Partially invasive BCI is implanted inside the skull but rest outside the brain 

rather than among the grey matter. It produces better resolution signals than 

non-invasive BCI and has a lower risk of forming scar-tissue in the brain than 

invasive BCI. Electrocorticography (ECoG) is a typical technique used by 

partially-invasive BCI [10]-[13]. However, both invasive and partially-invasive BCIs 
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depend on surgical techniques. They are not friendly for general users. 

Contrast to invasive and partially-invasive BCIs, non-invasive BCI is easy to 

wear, although non-invasive implants produce poor signal resolution due to that the 

skull dampens and blurs signals of brain activities. However, non-invasive BCI is still 

the main stream of BCI research. Non-invasive BCI has advantages of both easy 

application and absence of procedural risks, such as infection or cortical micro-lesions. 

There are several approaches to non-invasively acquire brain activities, such as 

magentoencephalography (MEG), positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI), electroencephalography (EEG) and et al. EEG is 

the mainstream of non-invasive BCI, because of its much fine temporal resolution, 

ease of use, portability and low set-up cost. In particular, higher temporal resolution 

becomes the great temptation to use EEG techniques as a direct communication 

channel from the brain to the real world [42], [43]. 

 

1.2 Previous Research 

Drowsiness leads to decline in drivers’ abilities of perception, recognition, and 

vehicle control and hence monitoring of drowsiness in derivers is very important to 

avoid road accidents [44]. Some researches used non-physiological method, as eye 

closure with CCD image tracking [45]-[51]. And others used physiological parameters 

to increase the accuracy of drowsy detection, like pulse wave analysis with neural 

network [55], the electrooculogram (EOG) and the electromyography (EMG) 

measurement [52], [53], and the electroencephalogram (EEG) [54]-[56]. 

In 2003, Hamada et al. proposed a driver status monitor system by using CCD 

camera, as shown in Fig. 1-1 [48]. The CCD camera was installed in the car and 
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focused on the user’s eyes. The driver status monitor detected drowsiness from the 

change in the duration of eye closure during blinking and inattention from the change 

in the gaze direction. Using CCD camera to contribute the urgency system was a very 

difficult work here. There were some critical points inside, and needed to overcome. 

For instance, user couldn’t move for free, the images detecting performance were 

easily be interfered by light, and the biggest problem was that the system is too big, 

complex, and expensive to implement. The algorithm of eye tracking also needed to 

use edge detecting to train data, and hence to build up a neural network to classify the 

drowsy status.  

 

Fig. 1-1: The role of driver status monitor [48]

 An alternate is to detect the moment from alertness to drowsiness by using 

physiological parameters. In 2005, Thum et al. used EOG as an alternative to 

video-based systems in detecting eye activities caused by drowsiness [53]. EOG is 

electrical signal generated by polarization of the eye ball and can be measured on skin 

around the eyes. Its magnitude varies in accordance to the displacement of the eye 

ball from its resting location. Rapid eye movements (REM), which occur when one is 

awake, and slow eye movements (SEM), which occur when one is drowsy, can be 

detected through EOG. The results showed that the detection rate for eye activities 

caused by drowsiness was more than 80 %.  
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    In EEG system, it was different from other physiological parameters, and 

moreover it owned intuitive and specific characteristics, such as alpha, theta or beta 

band power followed subject’s own mental state. In addition, the EEG system usually 

needed to collect enough EEG data to analyze. The supervised methods which 

previously study often had been used to train a learning data, and usually implement 

in off-line EEG analysis. Our previous studies which used supervised methods 

developed several kinds of brain computer interface for drowsiness detection [54], 

[55]. When the subject changed the state from alertness to drowsiness, the alpha 

rhythm will increase and beta rhythm will decrease [56]. In 2005, a drowsy estimation 

system was developed by combining independent component analysis (ICA), 

power-spectrum analysis, correlation evaluations, and linear regression model to 

estimate a driver’s cognitive state when he/she drove a car in a virtual reality 

(VR)-based dynamic simulator [54]. Its flowchart of EEG processing was shown in 

Fig. 1-2. In 2006, an EEG-based drivers’ cognitive states estimation system by using 

fuzzy neural network (FNN) was proposed [55]. Here, fuzzy neural network was used 

to train drowsiness estimation coefficients. The ICAFNN is a fuzzy neural network 

(FNN) capable of parameter self-adapting and structure self-constructing to acquire a 

small number of fuzzy rules for interpreting the embedded knowledge of a system 

from the given training dataset. Our experiments showed that the ICAFNN can 

achieve significant improvements in the accuracy of drowsiness estimation compared 

with our previous works. Its flowchart of EEG processing was shown in Fig. 1-3. In 

the above studies, an EEG machine, Scan NuAmps Express system (Compumedics 

Ltd., VIC, Australia), was used to measure EEG, as shown in Fig. 1-4. It is not small, 

light, and wearable. Moreover, the above algorithms for drowsiness detection requires 

mass computation complexity, thus, they are not easy to be implemented in a portable 

DSP device.  
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Fig. 1-2: Flowchart of EEG processing in drowsy estimation system [54]

 

 

 

Fig. 1-3: Flowchart of EEG processing in EEG-based drivers’ cognitive states 
estimation system [55]
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Fig. 1-4: Scan NuAmps Express system (Compumedics Ltd., VIC, Australia) 

 

In this mode, supervised learning methods such as artificial neural network 

(ANN) could be used to classify different states of vigilance. But stimulus may 

introduce some noise. So in [57], the author proposed a semi-supervised learning 

algorithm which can quickly label huge amount of data. Here another author proposed 

another kind of semi-supervised learning method based on probabilistic principle 

component analysis (PPCA) to distinguish wake, drowsy and sleep in driving 

simulation experiment. After training with data of around 20 min (6–8 min for each 

state), they could directly use our method as a real time classifier to estimate driver’s 

vigilance state [58]. Although this method could greatly reduce the training time, but 

it still must used in off-line analysis. In our target, we wanted to find a non-training 

and unsupervised method, and easily implement to an on-line detecting system. 
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1.3 Motivation 

Recently, the advance in sensor technology and information technology reduces 

the power consumption of the sensors and make the cost of production cheaper. These 

trends make it possible to embed sensors in different places or objects to measure a 

wide variety of physiological signals. A physiological signal monitoring system will 

be extremely useful in many areas if they are portable and capable of wirelessly 

monitoring target physiological signals and analyzing them in real time. However, the 

inconvenience of traditional BCI (heavy and large EEG machine) limits the user’s 

mobility. Thus, portable and inexpensive BCI platform with long battery life that can 

be carried indoors or outdoors are desired. 

In this study, we proposed a real-time wireless brain computer interface for 

drowsiness detection. Here, a small, light, and wearable EEG acquisition module was 

designed for long-time EEG monitoring. And a novel algorithm of drowsiness 

detection based on [59] was proposed to reduce the computation complexity. Different 

from previous ICA-based drowsiness detection algorithm, it used the statistics 

properties of alpha and theta rhythm in alert state to build up the alert model. 

Consequently, a derivation from the alert model can be used to detect drowsiness. The 

most useful advantage of this algorithm could remove the differences between 

individual and environment in different people or measurements, and every analysis 

were independent. Moreover, with the advantage of low computation complexity, it is 

easy to be implemented in a portable DSP module. 
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1.4 Organization of Thesis 

In Chapter 2, it will describe that what is EEG signal, virtual reality driving 

simulation environment, and algorithms implemented in this thesis, which including 

EEG processing and unsupervised approach. In Chapter3, it will introduce how to 

implement a wireless portable EEG acquisition module and DSP module in hardware 

design. In Chapter 4, it will explain the detail of driving performance, unsupervised 

algorithm, and how to accomplish them. Finally, introduce the driving performance 

sorting analysis; then the method of driving performance and unsupervised approach 

will be verified with 15 real experimental subjects’ driving trajectories and 

corresponding EEG signals, the procedures and results of verification will be 

described in Chapter 5. Finally it will have conclusion in Chapter 6.  
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Chapter2 Material and Method 

We developed the BCI system according to the steps of Fig. 2-1. The portable 

EEG acquisition module which we designed was used in input device of BCI. The 

EEG raw data continually transmitted to DSP module, hence, the following three 

steps: signal processing, features extraction, and classifier, were processed in DSP 

module. The algorithm we chose was according to unsupervised approach (N. R. Pal, 

2008 [59]). The user interface can output real-time EEG signal and the results of 

drowsy detection on the screen of DSP module. If the results were judged to 

drowsiness by algorithm, DSP module will call the buzzer to output a warning voice 

to wake user up as a BCI application.  

 
Fig. 2-1: A typical BCI system architecture 

 

In off-line analysis, we wanted to verify the relationship between user’s driving 

trajectories and corresponding EEG signal. Before analyzing, we assumed that driving 

trajectories were directly proportional with variance of theta and alpha spectrum. So 

we designed a driving simulation experiment and used our portable EEG acquisition 
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module to observe and record driving information and actual EEG raw data at one 

time. We recorded 15 subjects’ EEG raw data and every one experimented 30 minutes. 

Our analysis included two parts: one was to analyze the driving trajectories, and 

another was to analyze the corresponding EEG signals. The first step of driving 

trajectories processing is to analyze the driving performance. On the other hand, we 

also analyze EEG signals. First, we use FFT to get the theta and alpha band 

information, and then using both two information built up an alert module, counting 

covariance matrix and mean vector of theta and alpha spectra. Furthermore, compute 

MDT, MDA, and MDC continually by using unsupervised method. After finishing 

both data analysis, we use binary classification test, sensitivity and specificity, to 

verify the drowsiness hit rate. Every experimental trial is separated and sorted, hence, 

the corresponding MD* (MDT, MDA, and MDC) will also be sorted. Defining the 

threshold of both information which been processed to decide the drowsiness or 

alertness, and to analyze the drowsy accuracy. 

 

2.1 EEG Signal Acquisition 

Electroencephalography (EEG) is the recording of electrical activity along the 

scalp produced by the firing of neurons within the brain. In clinical contexts, EEG 

refers to the recording of the brain's spontaneous electrical activity over a short period 

of time, usually 20–40 minutes, as recorded from multiple electrodes placed on the 

scalp [60]. When measuring from the scalps, recorded the EEG signal is about 

10-100uV for a typical adult human. And a common system reference electrode is 

connected to the other input of each different amplifier. These amplifiers amplify the 

voltage between the active electrode and the reference (typically 1,000–100,000 times, 
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or 60–100 dB of voltage gain). The EEG is typically described in terms of rhythmic 

activity and transients. The rhythmic activity is divided into bands by frequency. The 

common band of EEG is shown as Table 2-1. Following the classification of EEG, 

Theta and Alpha band are related to drowsiness. Thus, when the subjects become 

drowsy, both bands will increase their power.  

Table 2-1: Common band of EEG 
Type Frequency (Hz) Normally 
Delta <4 Slow wave sleep for adults 
Theta 4~7 Drowsiness, idling, or arousal in children and adults 
Alpha 8~12 Relaxed, reflecting, or closing the eyes 
Beta 12~30 Alert or working 

 

There are high correlation between drowsiness and EEG obtained from the 

location of OZ in the international 10–20 EEG system [61]. Therefore, in this study, 

we only monitored EEG in the location of OZ. Here, three EEG electrodes were used. 

One is input, one is reference, and the other is ground. According to a modified 

International 10–20 EEG system and refer to right ear lobe as depicted in Fig. 2-2. We 

use the following notations: F: Frontal lobe. T: Temporal lobe. C: Central lobe. P: 

Parietal lobe. O: Occipital lobe. "Z" refers to an electrode placed on the mid-line. The 

input data is placed in OZ, ground is fixed in the center of forehead, and reference is 

pasted behind the right ear.  
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Fig. 2-2: International 10-20 system  

Raw EEG data were recorded with 12-bit quantization level at the sampling rate 

of 512 Hz. To simplify the computation, raw EEG data were down-sampled to 

sampling rate of 64 Hz. And a simple moving average filter was used to remove 60 

Hz power line noise and other high-frequency noise. 

 

2.2 Virtual Reality Driving Simulation Environment 

In this study, a lane-keeping driving experiment was utilized to investigate 

driving performance under different levels of drowsiness. Here, a virtual reality 

(VR)-based cruising environment was developed to simulate a car driving at 100 

km/hr on a straight four-lane highway at night [54], [62]. During the driving 

experiments, all scenes move according to the displacement of the car and the 

subject’s maneuvering of the wheels which make the subject feel like driving the car 

on a real road. The VR environment is showing in Fig. 2-3.  
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Fig. 2-3: The overview of surrounded VR scene. The VR-based highway scenes are 
projected into surround screen with seven projectors. 

In all our experiments we have kept the driving speed fixed at 100 km/hr and 

system automatically and randomly drifts the car away from the center of the cruising 

lane to mimic the effects of a non ideal road surface. The driver is asked to maintain 

the car along the center of the cruising lane. All subjects involved in this study have 

good driving skill and hence when the subject is alert, his/her response time to the 

random drift is short and the deviation of the car from the center of the lane is small. 

But, when the subject is not alert / drowsy, both the response time and the car’s 

deviation are high. Note that, in all our experiments, the subject’s car is the only car 

cruising on the VR-based freeway. Although, both response time and the deviation 

from the central line are related to the subject’s driving performance, in this study, we 

use the car’s deviation from the central line as a measure of performance of the 

subjects. The driving task is showing in Fig. 2-4.  
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Fig. 2-4: The digitized highway scene. The width of highway is equally divided into 
256 units and the width of the car is 32 units. An example of the deviation event. The 
car cruised with a fixed velocity of 100 km/hr on the VR-based highway scene and it 
was randomly drifted either to the left or to the right away from the cruising position 
with a constant velocity. The subjects were instructed to steer the vehicle back to the 
center of the cruising lane as quickly as possible [61]. 

 

In order to synchronize the records of driving trajectory and raw EEG data, a 

JAVA program was designed to record both of them at the same sampling rate. The 

driving trajectory produced from the VR-based cruising environment environment 

program, and raw EEG data obtained by portable EEG acquisition module were 

transmitted to JAVA program via RS232 and Blue tooth respectively. After finishing 
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the experiment, both the driving trajectory and raw EEG data were saved in a text file. 

Then, we can investigate the correlation between driving performance and results of 

unsupervised approach. The illustration of synchronization between the driving 

trajectory and EEG data was shown in Fig. 2-5. 

 

Fig. 2-5: Illustration of synchronization between the driving trajectory and EEG data 

 

2.3 EEG Preprocessing 

The EEG preprocessing steps were shown in Fig. 2-6. First, a simple moving 

average filter (low-pass filter with a cutoff frequency of 32 Hz) was used to remove 

60 Hz power line noise and other high-frequency noise. In order to simplify the 

computation, raw EEG data were down-sampled to sampling rate of 64 Hz. Then, a 

512-point moving window we designed to save the 8 seconds EEG information, as 

Fig. 2-7 shown. Finally, the power in the frequency band of alpha rhythm (8 ~ 11Hz) 

and theta rhythm (4 ~ 7Hz) was extracted. 
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Fig. 2-6: Steps of EEG preprocessing 

 

Fig. 2-7: Illustration of 8-second moving window with 7-second overlap 

 

2.4 Unsupervised Analysis 

It is recognized that the changes in EEG spectra in the theta band (4~7Hz) and 

alpha band (8~11Hz) reflect changes in the cognitive and memory performance [63]. 

Other studies have reported that EEG power spectra at the theta band [64], [65] and/or 

alpha band [66], [67] are associated with drowsiness, and EEG log power and 

subject’s driving performance are largely linearly related.  

As the above researches said, these findings have motivated us to derive the alert 

models of the driver using the alpha-band and theta-band EEG power spectrum 

computed using OZ channel output recorded in the first few minutes of driving. The 
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choice of the OZ channel is explained in the Experimental Results section. We 

emphasize that the few minutes of data used to find the alert model are not necessarily 

collected from the very beginning of driving session because different factors, such as 

walking of driver by a few meters to reach the garage, may influence the EEG signal 

generated at the very beginning. The specific window to be used for generation of the 

alert model is selected by Mardia test (explained later) [68]. We assume that if the 

subject/driver is in an alert state, then the EEG power spectra relating to theta band (as 

well as that relating to alpha band) would follow a multivariate normal distribution. 

The parameters of the multivariate normal distributions characterize the models. 

Using the alpha-band and theta-band EEG power, we identify two normal-distribution 

based models. Then, we assess the deviation of the current state of the subject from 

the alert model using Mahalanobis distance (MD). We assume that when the subject 

continues to remain alert, his/her EEG power should resemble the sample data used to 

generate the model and hence would match the alert model or template. If the subject 

becomes drowsy, then its power spectra in the alpha band (and also in theta band) will 

deviate from the respective model and hence MD will increase. With a view to 

reducing the effect of spurious noise, MDs are smoothed over a 90-sec moving 

windows, the window is moved by 1-sec steps [61]. We then study the relationship 

between smoothed Mahalanobis distance and subject’s driving performance by 

computing the correlation between the two. Fig. 2-8 shows the overall flow of the 

EEG data analysis. In this figure, note that, after the models are identified, the 

preprocessed alpha band and theta band power data directly go to the blocks for 

computation of MDA and MDT, respectively. MDT and MDA are measure of 

deviations of the subject’s present state from the respective models, this will be 

clarified later. The block for computation of MDC makes a linear combination of 

MDT and MDA. Finally, all three, MDA, MDT and MDC are used in correlation 
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analysis with the driver’s performance. 

 

Fig. 2-8: The flowchart of the EEG analysis method. 
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Chapter3 Hardware Frameworks 

In this chapter, we focus on this portable system hardware. Following the design 

flowchart, we will introduce the design methods of hardware circuits and firmware 

structures steps by steps.  

 

3.1 System Overview 

In order to online measure and analyze EEG signals, the whole hardware 

framework of our BCI mainly contains two sub-systems: One is portable EEG 

acquisition module, and the other is DSP module. First, EEG signal was measured by 

our portable EEG acquisition module continually. After amplifying tiny EEG signals, 

noise except the frequency band of EEG would be removed by filters in our portable 

EEG acquisition module. And then, filtered EEG signals would be digitized by 

analog-to-digital converter, and be transited to the DSP module via Bluetooth. Here, 

Linux kernel µClinux was used as the operation system in DSP module to handle 

user’s applications. The major tasks of DSP module are to receive EEG signals via 

Bluetooth, and to execute the program of online drowsiness level detection, which 

monitor the variation of power of users’ alpha rhythm and theta rhythm. The program 

of online drowsiness level detection would collect EEG data under alertness for first 3 

minutes to build EEG alert model, and then calculated drowsiness level by assessing 

the power variation of alpha and theta rhythm every 2 seconds. If the power variation 

exceeded the threshold of alert model, the DSP module would send warning tone of 

buzzer to wake up users. The whole hardware framework is shown as Fig. 3-1. 
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Fig. 3-1: Illustration of hardware framework of our BCI system 

 

3.2 Portable EEG Acquisition Module 

In order to be as small as possible and be easily wearable, a portable, distributive 

and wireless EEG headband system was designed to measure EEG signals. To reduce 

noise on PCB board produced by digital control circuit, the analog amplifier and 

digital control circuit were separated into two PCB boards. Following the previous 

researches [69], [70] worked, this general system was designed to minimize the 

circuit’s size, use a simple microcontroller to handle programs, implement filter more 

accurate, and etc. We also referenced some circuit designs [71]-[76]. Those circuit 

designs followed portable and wireless rules, separating the circuit into client and 

server model. In this session, we interested in the client circuit design. The portable 

EEG acquisition module system mainly contains five parts: (1) front-end filter circuit, 

(2) analog to digital converter, (3) digital controller, (4) power management circuit 

and (5) wireless transmission. The system block diagram is shown in Fig. 3-2. 
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Fig. 3-2: Block diagram of Portable EEG acquisition module   

 

3.2.1 Front-End Filter Circuit 

 The front-end circuit consisted of preamplifier, and band-pass filter. The total 

gain of front-end circuit was set as about 5040 times with the frequency band of 

0.1~100 Hz. In some references, other circuit designs liked to use unit gain filters and 

one variable gain amplifier. Moreover, they didn’t use a high-pass filter to cut-off the 

noise in low frequency band. To improve them, we designed a 3 stages high pass filter 

and 2 stages low pass filter to get the clear EEG information without noise. Hence, 

adding the gain into filter tried to minimize the total size. 

A. Preamplifier 

Here, instrumental amplifier LT1789-1 was used as the first stage of analog 

amplifier. LT1789-1 owns an ultra low input current and a high common-mode 

rejection ratio (CMRR) about 90dB. A high CMRR is important in applications that 

the signal of interest is represented by a small voltage fluctuation superimposed on a 

(possibly large) voltage offset, or when relevant information is contained in the 

voltage difference between two signals. Here, instrumental amplifier LT1789-1 

provided not only the function of gain, but also that of one stage high pass filter by 

adding a capacitor. The corner frequency was set at 0.1Hz, and the gain was set to 
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2.25 times. The instrumental amplifier circuit was shown in Fig. 3-3, and the 

simulation of preamplifier’s gain response was in Fig. 3-4. 
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Fig. 3-3: Circuits of preamplifier 
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Fig. 3-4: Simulation of preamplifier’s gain response 

B. Band pass filter 

 In order to more precisely reserve relevant EEG signal, a band pass filter with 

frequency band of 0.1Hz ~ 100Hz and with gain of 1588.75 times was designed. The 

band-pass filter consisted of a 2nd-order high-pass filter and a 2nd-order low-pass 
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filter. Here, OP-AMP AD8607 was used to construct the band-pass filter. AD8607 

also owns high CMRR (about 100dB), low input current, low distortion, and no phase 

reversal. The band-pass filter circuit was shown in Fig. 3-5, and the simulation of 

those gain response was in Fig. 3-6. 
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Fig. 3-5: Circuits of band-pass filter 
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Fig. 3-6: Simulation of band-pass filter’s gain response 
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The system specification of portable EEG acquisition module is listed below. 

The damping ratio of second order filter was set to 0.5, thus, the Bode diagram could 

be smoother in two sides of 3dB point as Table 3-1 descript. The final simulation of 

gain response was shown in Fig. 3-7. 

 

Table 3-1: System specification of IA, HP, and LP filter for portable EEG acquisition 
module 

Orders Type Gain Corner Freq. Damping 
Instrumental amplifier Quasi HP 2.25 0.099  
High-pass filter HP 43.7 0.099 0.5 
Low-pass filter LP 51.25 97.93 0.707 
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Fig. 3-7: Simulation of gain response of the portable EEG acquisition module 
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3.2.2 Analog to Digital Converter 

The analog amplifier circuit and digital control circuit of our portable EEG 

acquisition module were placed individually in two PCB boards. There are some 

leading wires to connect both. A 12-bits analog-to-digital converter (ADC) AD7466 

was used to convert continuous EEG signal of analog amplifier circuit to digitized 

EEG signal. Here, the micro-controller (MSP430F1611) was used to control ADC 

AD7466. The handshake mode between MSP430F1611 and AD7466 was shown in 

Fig. 3-8. The command signals and serial digitized EEG signal were transmitted via 

the serial peripheral interface (SPI) of MSP430F1611. The micro-controller 

MSP430F1611 outputs SCLK and CS signals in specific sampling rate 512Hz, and 

then digitized EEG signal would deliver into MSP430F1611. Each converting interval 

needed 16 cycles to complete transmission of digitized data, here, the data in first 4 

cycles were zero, and the others were real 12-bit digitized data based on MSB. 

 

Fig. 3-8: Handshake mode between AD7466 and MSP430F1611 

 Moreover, according to equation (3-1), the conversion time is about 4.7 μs, and 

8-bit digitized data were transmitted every transmission cycle. And the maximum 

frequency of input signal of ADC was 100Hz. After calculating in equation (3-2) and 

(3-3), the result conforms to the equation (3-1). Thus, this system needn’t a sample 

and hold amplifier to hold analog voltage. 
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3.2.3 Digital Controller 

The TI micro-controller MSP430F1611 was utilized to control other parts of 

circuits in portable EEG acquisition module. It owns many advantages for medical 

application, includes ultra-low power consumption, 16-bit RISC architecture, 125 ns 

instruction cycle time, five power saving modes, and diversification of peripheral 

communication interface. The functional block diagram of MSP430F1611 was shown 

in Fig. 3-9.  

 

Fig. 3-9: Functional block diagram of MSP430F1611 

MSP430F1611 catch digitized EEG signal from ADC AD7466 via serial 
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peripheral interface with sampling rate 512Hz, and then digitized EEG data were 

stored into memory of MSP430F1611. Next, a moving average filter was used to 

remove 60-Hz power line interference before wireless transmission. The operating 

flow chart in MSP430F1611 was shown in Fig. 3-10. 

 

Fig. 3-10: Operating flow chart in MSP430F1611 

A. Timer Interrupt 

The interrupt function of MSP430F1611 is based on inner timer/counter register, 

called Timer_A, to count a specific time value. The counter value TACCR0 had to be 

set first, as shown in Fig. 3-11. When the timer counted to the TACCR0 value, the 

TACCR0 CCIFG interrupt flag would be set. And when the timer counted from 

TACCR0 to zero, the TAIFG interrupt flag would be set. In our portable EEG 

acquisition module, 4MHz crystal oscillator was used as system clock of 

MSP430F1611, and the sub-system master clock was set to 2MHz. Therefore, the 

operating cycle of program in MSP430F1611 would follow sub-system master clock. 

Thus, if the sampling rate of our EEG acquisition module is set to 512 Hz, TACCR0 

has to be set to 3906. 

2MTACCR0 =  = 3906 512  
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Fig. 3-11: Timer_A up mode for interrupt function of MSP430F1611 

B. SPI Mode 

 In synchronous mode, the USART of MSP430F1611 connects to external 

systems via three or four pins: SIMO, SOMI, UCLK, and STE, as shown in Table 3-2.  

 

Table 3-2: Definition and function for pins of SPI mode 

SPI Mode Operation 

SIMO Slave in, master out 

SOMI Slave out, master in 

UCLK USART SPI clock 

STE Slave transmit enable. Not used in 3-pin mode. 

The master configuration of USART was shown in Fig. 3-12. The data 

transmission function of USART was initiated when transmitted data were moved to 

the transmit data buffer UxTXBUF. If the TX shift register was empty, then data in 

UxTXBUF would be moved into the TX shift register. When transmitted data were 

received, the received data were moved from the RX shift register to the received data 

buffer UxRXBUF and the receive interrupt flag URXIFGx would be set, that 

indicates the RX/TX operation was completed. 

In our portable EEG acquisition module, the micro-controller MSP430F1611 can 
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cascade-connect with four front-end circuits via SPI, as shown in Fig. 3-13. Therefore, 

the handshake connection between Master module and Slave module needs 3-pin to 

transmit data: CS, SOMI, and UCLK. And there are four CS signal lines, one SOMI, 

and one UCLK signal line inside the leading wire. 

 

Fig. 3-12: USART Master and external Slave 

 

Fig. 3-13: Illustration for connection between four front-end circuits and digital 
control circuit 

 

C. Moving Average 

 Moving average, also called rolling average or running average, is usually used 

to analyze a set of data points by creating a series of averages of different subsets of 

the full data set. Moving average can be applied to any data set, however, it is most 

commonly used with time series data to smooth out short-term fluctuations and 

highlight longer-term trends or cycles. The choice between short- and long- term, and 
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the setting of moving average parameters depends on the requirement of application. 

Mathematically, moving average is a type of convolution and is similar to a low-pass 

filter used in signal processing. The moving average filter is optimal for a common 

task: reducing random noise while retaining a sharp step response. This makes it as 

the premier filter for time domain encoded signals. 

 Given a sequence{ } , the output of an n-moving average is a new sequence 
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 defined as the average of subsequences of n terms. The formula of moving 

averaging was shown as followings. 
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Therefore, the sequences  of n-moving averages when ns 3,2=n  can be expressed 

as 
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Fig. 3-14 shows the results of noise cancellation by using moving average. Here, 

a function generator was used to generate sin wave, and our portable EEG acquisition 

module was used to record this signal. If our portable EEG acquisition module was 

close to some electric instruments, the signal recorded from EEG acquisition module 

would easily be influenced by noise of 60 Hz power line. In the above figure of Fig. 

3-14, it showed that the original sib wave had been contaminated by 60Hz power-line 

noise. After filtering by using moving average with 9-point moving window, we found 

moving average could effectively remove power-line noise, as shown in the below 

figure of Fig. 3-14.  
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Fig. 3-14: Result of noise cancellation by using moving average 

D. UART Interface 

 In asynchronous mode, USART connected MSP430 to external systems via two 

external pins, URXD and UTXD. In UART mode, USART transmitted and received 

characters at a bit rate asynchronously to another device. Timing for each character 

was based on the selected baud rate of USART. Here, the transmitter and receiver 

used the same baud rate. For initializing UART, RX and TX had to be enable first, and 

then decided the baud rate of UART and disable SWRST. The required division factor 

N for determining baud rate was listed as followings: 

BRCLKN
baud rate

=                                              (3-7) 

Here, BRCLK was 4 MHz, and baud rate was 115200 bit/s. After initializing 

UART, the micro-controller could transmit data filtered by moving average to BLUE 

TOOTH module via UART.  
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3.2.4 Power Management 

Power Management circuit in our portable EEG acquisition module includes two 

parts: one is power supply circuit, and the other is charging circuit.  

A. Power Supply Circuit 

In our portable EEG acquisition module, the operating voltage VCC was at 3V, 

and the virtual ground of analog circuit was at 1.5V. In order to provide stable 1.5V 

and 3V voltage, a regulator LP3985 was used to regulate battery voltage to 3V. Here, 

LP3985 is a micro-power, 150mA low noise, and ultra low dropout CMOS voltage 

regulator. The maximum output current can support 550mA. Furthermore, the turn-on 

time can reach 200μs. And a voltage divider circuit was used to divide 3V voltage 

into 1.5V, and a unity amplifier constructed from AD8628 was used to provide a 

voltage buffer. The total power supply circuit was shown in Fig. 3-15. 

 

Fig. 3-15: Power supply circuit in portable EEG acquisition module 
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B. Charging Circuit 

 The charging circuit BQ24010DRC had integrated power FET and current sensor 

for 1-A charging applications. The maximum charging current can arrive to 1A. The 

battery’s power would be detected automatically by charging circuit and switched to 

charging mode when battery’s power was not enough. BQ24010DRC also protected 

battery to avoid over charging or over driving [77]. The charging circuit was shown in 

Fig. 3-16. 

 

Fig. 3-16: Charging circuit in our portable EEG acquisition module  

 

3.2.5 Wireless Transmission 

Bluetooth is a wireless protocol utilizing short-range communication technology 

to facilitate data transmission over short distances from fixed and/or mobile devices. 

The intent behind the development of Bluetooth was the creation of a single digital 

wireless protocol, capable of connecting multiple devices and overcoming issues 

arising from synchronization of these devices. In this study, Bluetooth module 
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BM0203 was used. BM0203 is an integrated Bluetooth module to ease the design gap 

and uses CSR BuleCore4-External as the major Bluetooth chip. CSR 

BlueCore4-External is a single chip radio and baseband IC for Bluetooth 2.4GHz 

systems including enhanced data rates (EDR) to 3Mbps. It interfaces to 8Mbit of 

external Flash memory. When used with the CSR Bluetooth software stack, it 

provides a fully compliant Bluetooth system to v2.0 of the specification for data and 

voice communications. All hardware and device firmware of BM0203 is fully 

compliant with the Bluetooth v2.0 + EDR specification. Bluetooth operates at high 

frequency band to transmit wireless data, so it can be perfect worked by using a PCB 

antenna, as shown in Fig. 3-17.  

 

Fig. 3-17: PCB Blue Tooth antenna [77]

 

3.3 DSP Module 

 The design goal of DSP module is to build a back-end analysis platform. This 

platform not only has greatly powerful calculating ability, but also supports various 

peripheral interfaces. After measuring and pre-processing EEG signal by our portable 

EEG acquisition module, EEG signal would be transmitted to this DSP module via 

Bluetooth module. DSP module would then process and analyze EEG signal, and 

display results of EEG analysis on TFT LCD. Furthermore, it also can use other 
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peripheral interfaces to implement other applications [77]. 

 

3.3.1 DSP Framework 

A powerful digital signal processor Analog Device BF533-STAMP was used in 

this DSP module, and its CPU speed can be up to 600MHz. It owns two 16-bit MAC, 

Multiply-And-Accumulate, to execute 1200 lines addition and multiplication 

functions. By the way, DSP contains many independent DMA, Direct Memory Access, 

to effectively reduce the processing time of core. The system block diagram was 

shown in Fig. 3-18. Here, Bluetooth module and UART both worked in the same 

UART interface. 

TFT-LCD, worked by using Memory Mapping, shared the same Memory Bus 

with SDRAM. In order to reduce the size of platform, we decided to replace 

traditional parallel NOR Flash with SPI Flash, and it also shared with SD/MMC 

Socket. Furthermore, the DSP module also owned power management and charging 

circuits. SD/MMC Socket provided the interface scalability, such as SD/MMC Card, 

Sensor, ADC, Wireless Card, etc. In our application for drowsiness detection and 

warning, an expanded SD card circuit which can plug in SD card socket of DSP 

module was designed to produce buzzer. This circuit will be introduced in next 

session.  
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Fig. 3-18: The block diagram of DSP system [77]  

 

3.3.2 The Expanded SD Card Circuit 

The expanded SD card circuit was designed to expand the function of DSP 

module. DSP module and expanded SD card circuit communicated with each other 

via SPI interface. Here, DSP module was set as Master configuration, and expanded 

SD card circuit was set as Slave configuration, as shown in Fig. 3-19.  

 

Fig. 3-19: Handshake mode between DSP module and expanded SD card circuit 

In this expanded SD card circuit, another microcontroller MSP430F2013 was 
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used as the core of this circuit. This controller only has 14 pins and its size is 5.1 mm 

x 6.2 mm. MSP430F2013 can provide many benefits, such as inner 32768 Hz 

oscillator, two pair I/O ports, USI (Universal Serial Interface) interface, Timer 

interrupt, watch dog timer, 16-bit Sigma-Delta Analog to Digital converter, etc. The 

expanded SD card circuit included a microcontroller, an ICE download pin, SD/MMC 

interface connection, a buzzer, and a LED. The function block diagram was shown in 

Fig. 3-20. The schematic circuit of expanded SD card circuit was shown in Fig. 3-21.    

 

 

Fig. 3-20: The function block diagram of MSP430F2013 
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Fig. 3-21: Schematic circuit of expanded SD card circuit 

The operating flow chart of expanded SD card circuit was shown in Fig. 3-22. 

Here, MSP430F2013 in expanded SD card circuit always waited to receive commands 

from DSP module. When command data was arrived, expanded SD card circuit would 

start USI interrupt. Second, the command data for expanded SD card circuit was 

defined as two different warning modes. In mode one, low frequency warning tone 

would be generated by an interval PWM, and in mode two, high frequency warning 

tone would be generated by a high potential signal. 
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Fig. 3-22: Operating flow chart of expanded SD card circuit 

 

3.4 Hardware System Implementation 

A. Portable EEG acquisition module  

 Fig. 3-23(a ~ c) are the front-end analog circuit and digital control circuit in our 

portable EEG acquisition module, and the whole EEG acquisition module respectively, 

and the size of each circuit compared with a coin of one NTD was shown in Fig. 3-23. 

There are three leads in our portable EEG acquisition module, includes EEG input, 

reference, and virtual ground of the front-end analog circuit. The electrodes connected 

with the leads of virtual ground and EEG reference were placed on user’s forehead 
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and behind right ear respectively. The specification of portable EEG acquisition 

module was listed in Table 3-3. 

(a) 

(b) 

(c) 

 

Fig. 3-23: (a) The front-end analog circuit, (b) the digital control circuit, and (c) the 
whole portable EEG acquisition module with single channel. 
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Table 3-3: The spec of portable EEG acquisition module 

Type Portable EEG Acquisition Module 
Channel Number 1~8 
System Output Voltage Range 0~3V 
Gain 5000 
Bandwidth 0.1~100Hz 
ADC Resolution 12bits 
Output Current 29.5mA 
Battery  Lithium 3.7V 450mAh  15~33hr 
Full Scale Input Range 577μV 
Sampling 512Hz 
Input Impedance greater than 10MΩ 
Common Mode Rejection Ratio 77dB 
Power Supply Rejection Ratio 88dB 
Size 18mm x 20mm and 25mm x 40mm 

 

B. DSP Module and SD Card Circuit 

The expanded SD card circuit was shown in Fig. 3-24(a). It looked like a 

SD/MMC card, which can easily be plugged into the SD/MMC socket in DSP module. 

The size of expanded SD card circuit is 24mm x 32mm. Fig. 3-24(b) is the illustration 

for application of expanded SD card circuit. 
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(a) 

(b) 

Fig. 3-24: (a) The expanded SD card circuit and (b) illustration for application of 
expanded SD card circuit 
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Chapter4 Unsupervised Approach 

Based on the unsupervised analysis flowchart in Fig. 2-8, we will further discuss 

the details of every analysis diagrams in the following sessions. In order to find out 

the real driving behavior information, first we calculate the driver’s driving 

performance by using the record in simulation experiment. Moreover, we use the 

unsupervised analysis method to analyze the corresponding EEG information, 

including the preprocessing, alert model construction, and computation of the 

deviation using Mahalanobis distance method.   

 

4.1 Driving Performance 

The VR-based four-lane straight highway scene was applied in the experiment. 

In this scene, the four lanes from left to right are separated by a median stripe and the 

distance from the left side to the right side of the road was equally divided into 256 

points indicating the position of the vehicle as the digital output signal of the VR 

scene at each time instant. The width of each lane and the car is 60 units and 32 units, 

respectively. Fig. 2-4 shows an example of the driving performance represented by the 

vehicle deviation trajectories. We have defined an indirect index of the subject’s 

alertness level (driving performance) as the deviation between the center of the 

vehicle and the center of the cruising lane. VR driving simulation environment will 

randomly start a deviation event to move the car to right or left side in the car driving 

experiments. Subjects needs to sense those sudden movements and trying to make a 

reversely turn to back to the third lane. At one time, the VR environment also outputs 

the driving events inside the data of car trajectories, as deviation event start trigger, 

response onset trigger; and response offset trigger. Fig. 4-1 shows the example of 
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deviation event. 

 

Fig. 4-1: The example of deviation event and car trajectories 

In Fig. 4-2, the driving trajectories that we recorded followed below steps to 

show the driving performance. For restoring trajectories data, event trigger removal is 

the first process that we do. After deviation response offset, the positions of every 

experiment trial aren’t consistent, so that we need to remove the baseline every trial. 

The results of the second step will leave right or left turn trajectories. And then 

absolute trials to collocate total right / left turn data. Typically the drowsiness level 

fluctuates with cycle lengths longer than 4 minutes [64], [65], and hence we smooth 

the indirect alertness level index using a causal 90-sec moving window advancing. 

This helps us to eliminate variance with cycle lengths shorter than 1-2 minutes. We 

emphasize that this index is used only to validate our approach, and it is not as an 

input to develop the model for the alert state of the subject.  

 

Fig. 4-2: The processing steps of driving performance 

Following the above 4 steps, an example of driving performance are shown as 
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Fig. 4-3. Fig. 4-3(a) shows the original driving data which including event triggers, 

and Fig. 4-3(b ~ d) shows the results of 4 steps respectively. The final driving 

performance is in Fig. 4-3(e). Thus, we use this result to compare with MD*(MDT, 

MDA, and MTC) and implement in correlation analysis with the driver’s 

performance. 

 

Fig. 4-3: Example of driving performance analysis. (a ~ d) are the fragment of 
information which marked by two lines. (a) is the original driving trajectories data 
which including deviation event triggers. (b) is the result which has passed through 
event trigger removal. (c) is the absolute result. (d) is the result which has smoothed 
by 90-sec moving average. (e) shows the total driving performance data. 
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4.2 Smoothing of the Power Spectra  

Before extracting the power spectra of alpha and theta rhythms, raw EEG data 

would be preprocessed to remove power line noise and increase the resolution in the 

low frequency spectra. In this smoothing method, we used a moving average, as a 

low-pass filter to cut-off at 32 Hz in and filter noise over 32 Hz. A moving average 

filter was used to minimize the presence of artifacts in the EEG records of all 

sub-windows. Next, we down sample 8 times to 64Hz, so that every sub-window only 

left 64 points in one second. Those two preprocessing methods can decrease the 

unnecessary noise and increase the low frequency band information in theta and alpha 

band spectra. Go on, building up an 8 second moving window to save sub-windows, 

and displace a sub-window in every 1 second. The first FFT result will be produced at 

8th seconds; moreover other FFT results will be in every following 1 second. The 

smoothing method of moving window can reserve the low frequency information of 

EEG power spectra longer to further analysis. Thus, for each session EEG log power 

time series at alpha band as well as at theta band with 1 sec time intervals were 

generated. Fig. 4-4 showed the processes of spectra analysis as precedence. 
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Fig. 4-4: Processes of spectra analysis as precedence 

4.3 Construction of the Alertness Model 

To investigate the relationship between the measured EEG signals and subject’s 

cognitive state, and to quantify the level of the subject’s alertness in our previous 

studies [78]-[80], first, we need to quantify the volunteer’s drowsiness level in this 

experiment. When subjects fall drowsy, they often exhibit relative inattention to 

environments, eye closure, less mobility, failure to motor control and making decision. 

Hence, the vehicle deviations were defined as the subject’s drowsiness index. 

In our approach for every subject in every driving session a new model will be 

constructed. Consequently the variability between subjects as well as the inter-session 

variability is no more important; these are taken into account automatically. To 

develop the alert model we make a few mild but realistic assumptions as follows:   

(1) The subject is usually very alert immediately after he/she starts the driving 

session. 
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(2) Subject’s cognitive state can be characterized by the power spectrum of his/her 

EEG. 

(3) When the person is in the alert state, it can be modeled reasonably well using a 

multivariate distribution of the power spectrum. 

(4) The alert model expresses well the EEG spectra when the subject remains alert or 

return to alert state from drowsiness. 

One can argue that the subject may already be in a drowsy state when he/she 

begins driving. If that is really true, then that can be detected by checking the 

consistency between two alert models derived using data in two successive time 

intervals. In other words, we can check whether the two alert-models identifies in two 

successive time intervals are statistically same or not. If the subject was already in a 

drowsy state, then he/she will either move to a deep drowsy/sleepy state or will transit 

to an alert state. In both cases, the two models will not be statistically consistent. 

Here we use a multivariate distribution to model the distribution of power 

spectrum in the alert state. In particular, at every 1 second, we calculate the power 

spectrum vector in p dimension. In our experiment theta band is located in 32~63 

(4~7Hz), and alpha band is in 64~96 (8~12Hz). In this way, a set of n=60 data vectors 

{x1,…,x60} is generated in every minute. We use 3 minutes of spectral data to derive 

the alert model. The alert model is represented and characterized by a multivariate 

normal distribution , where ),N( 2Σμ μ  is the mean vector and is the 

variance-covariance matrix.  

Σ

We use the maximum likelihood estimates for μ  and 2Σ . After finding the alert 

model we check whether the EEG spectrum in the alpha band (also in theta band) 

indeed follows a multivariate normal using Mardia’s test [81], [82]. If the model 

passes the Mardia’s test, we accept that model as the alert model. Otherwise, we move 
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the data window by one minute and again use the next 3 minutes of data to derive and 

validate the model using Mardia’s test. Once a model is built, a significant deviation 

from the model can be taken as a departure from alertness. Note that, we are saying 

“departure from alertness” which is not necessarily drowsiness. For example, the 

subject could be excited over a continued conversation over a mobile phone. In this 

case, although the person is not drowsy, he/she is not alert as far as the driving task is 

concerned and hence needs to be cautioned. Thus our approach is more useful than 

typical drowsiness detection systems.  A consistent and significant deviation for 

some time can be taken as an indicator of drowsiness.  

For the sake of completeness, we briefly explain the Mardia’s test of 

multi-variate normality. Given a random sample, X={x1,…,xn} in Rp, Mardia [81], 

[82] defined the p-variate skewness and kurtosis as:  

31
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In (1) and (2) x and S represent the sample mean vector and covariance matrix, 

respectively. In this case of university data, b1,p and b2,p reduces to the usual university 

measures skewness and kurtosis, respectively. If the sample is obtained from a 

multivariate normal distribution, then the limiting distribution of b1,p is a Chi-square 

with  degrees of freedom, while that of ( 1)( 2) /p p p+ + 6

)2(8/))2((n ,2 ++− ppppb p is N(0,1). Hence we can use these statistics to test 

multi-variety normality. In all our experiments, we have used the routines available 

for Mardia’s test in the R-package [83].  



 

 51

 

4.4 Computation of the Deviation from the Subject 

After the alert model is found, we use it to assess the subject’s cognitive state. 

This was done by finding how the subject’s present state, as represented by the EEG 

power spectra, and was different from the state represented by the alert model. The 

deviation of the present state from the model is computed using Mahalanobis distance 

[84] that can account for the covariance between variables while computing the 

distance. Let the alert model computed using the alpha band be represented by 

( , )ASx  and that by the theta band be represented by ( , )TSx . Let x be a vector 

representing the power spectra in the alpha band (or in the theta band) of the EEG of 

the subject at some time instant, then the deviation of the present state from the model 

is:  

T -1MD*( )  ( - ) S ( - )=x x x x x             (4-3) 

In (3) if we use the alpha band model, then * is A, and for the theta band model 

and data, * will be T. Thus the deviation from the alpha band model will be denoted 

by MDA and that for the theta band model will be denoted by MDT. Similar to the 

pre-processing of the indirect alertness level index (driving performance), the 

MDA/MDT is also smoothed by the moving average method using a window with a 

window of 90 seconds. The moving average window is shifted by just one value (i.e., 

2 sec). For a better visual display, we have scaled the MD* values by subtracting the 

average MD* computed over the training data used for finding the alert model. 

We shall see later that the deviation from either the alpha band model (i.e., MDA) 

or the theta band model (i.e., MDT) can be used to detect departure from the alart 
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cognitive state. This raises a natural question, can a combined use of MDA and MDT 

do a better job than individual ones. To explore such a possibility we use a linear 

combination MDA and MDT to compute a combined measure of deviation as 

.                            (4-4) (1 ) ,0 1MDC a MDA a MDT a= × + − × ≤ ≤

 

4.5 Driving Performance Sorting Analysis 

Since the driving performance is an indirect index of the alertness level, we 

propose the sorted analysis method that sorts the smoothed log power spectra and 

MD* according to the driving performance index to assess the brain dynamics 

corresponding to the transition from alertness to drowsiness in driving. This process is 

used to obverse the features change as the increase of driving performance index.  

 This analysis flow is to separate total trials from the driving trajectories. In our 

analysis, we assumed that the driving deviation and drowsiness state were direct 

proportional, so we decided to use the reaction time of driving deviation to be the 

information of driving performance analysis. Every trial will find out the 

corresponding EEG raw data. Hence, according to the alertness model in first 3 

minutes, the frequency domain spectrum under the deviation can be changed out by 

FFT, and continually, the MDT and MDA power can also be transformed. Further, the 

trials are sorted following the length of deviations, and the synchronized MD* power 

spectra also be sorted together. The width of road was divided into 256 points, and 

speed of car drifting after deviation onset was 64 points/sec; in other words, the car 

would drift 1/4 width of road and crash into the second lane or fourth lane in one 

second. After trials sorting, according to above theory, we can separate the sorting 

data into 4 segments: alertness (0.2~1s), slight drowsiness (1~2s), extreme drowsiness 



 

 53

(2~3s), and sleepiness (over 3s). Then, the mean and standard deviation in every 

segment which we counted shows the relationship between driving performance and 

drowsiness state. The process of sorting analysis is shown as Fig. 4-5. The results of 

sorting analysis will be discussed in next session.  

 

Fig. 4-5: Process of sorting analysis 
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Chapter5 Results and Discussion 

In this chapter, we will separate into two parts to discuss, including the 

performance of portable EEG acquisition module and the relationship between driving 

performance and unsupervised analysis. In the first segment, we use sine wave and 

alpha wave to test the performance correlation. The next segment we will discuss the 

unsupervised result by using correlation with driving performance, sorting analysis, 

and linear combination to find out the proportional relationship. And finally we use 

the binary classification method to summarize the threshold from alertness to 

drowsiness, furthermore set the optimal threshold into the program of DSP module.  

 

5.1 Performance of Portable EEG Acquisition Module 

In this section, the reliability of the proposed portable EEG acquisition module 

was examined. First, several sine waves with different frequencies generated by a 

function generator was used as input signal to test whether the EEG acquisition 

module can stably and validly acquire testing signals. Next, alpha rhythm of EEG 

generated by closing our eyes and relaxing was used as input signals. We analyzed the 

real EEG signals obtained by our EEG acquisition module, and checked whether the 

alpha rhythm of EEG can effectively be extracted. 

 

5.1.1 Test for Sine Wave Signal 

In this performance test, we tried to test the correlation between the sine-waves 

which were recorded actually by portable EEG acquisition module and the sin-waves 

which were generated by MATLAB function. The EEG signals which were recorded 
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about 23 sec. The result of correlation between two conditions was shown in Fig. 5-1. 

And the correlation of total information could up to 0.9765. 

 
Fig. 5-1: The result of correlation between two conditions 

 

5.1.2 Test for Real EEG Signal 

In this system quality test, we recorded a sample EEG data. Subject just open 

eyes in first 1 second, and start to let eyes close. Subject maintained to stay in relaxed 

state. In Fig. 5-2, we can notice the alpha wave happened after 1 second, so that we 

showed time domain and frequency domain information in this figure. 
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(a) 

(b) 

Fig. 5-2: An example of alpha wave test. (a) shows EEG raw data, and (b) is the 
corresponding frequency domain spectra. 

 

5.2 Driving Performance and Unsupervised Analysis 

In this session, we will show the results of algorithm in three parts. First, discuss 

the relation between driving behavior information and unsupervised analysis in 

long-term time domain experiments. Second, separating the behavior trials hence 

finds the corresponding EEG data, then sorting both information checks the 

connection between MDA / MDT and the reaction time of driving performance. Final, 

using linear combination finds out MDC and check the highest correlation between 

both two information.   
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5.2.1 Results of Unsupervised Analysis 

Following the steps of preprocessing and the unsupervised analysis in above 

chapters, we used OZ channel which has the highest average correlation in 10-20 

system [61] to record EEG signal. Then, we constructed ( , )TSx  and ( , )ASx  in the 

alert model, which x  and  are mean vector and covariance matrix. Moreover, 

according to the results of FFT counted the MDT and MDA out. There were two 

examples to show the results of FFT preprocessing, MDA / MDT, and driving 

performance, as 

S

Fig. 5-3 and Fig. 5-4. 
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Fig. 5-3: Example 1 of driving performance and unsupervised analysis 
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Fig. 5-4: Example 2 of driving performance and unsupervised analysis 

From above two cases of unsupervised analysis, we can directly found out the 

relationship about the variance of frequency domain spectrum and unsupervised 

analysis when driving performance changed dramatically. According to those 

experimental results, we can asseverate that EEG waves will be influenced by 

behavior information when the subjects become drowsiness. And in our portable EEG 
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acquisition module detects alpha wave clearer and more accurate than theta wave.    

 

5.2.2 Relationship between Driving Performance and Unsupervised 

Analysis 

In reference (N. R. Pal, 2008 [59]) said, they investigated the relationship 

between the driver’s performance and the concurrent changes in the EEG spectrum, 

and go on, they had sorted the EEG power spectra in alpha band by smoothed driving 

performance. The similar sorting is also done for power in the theta band. The result 

which they discovered was that theta and alpha spectrum were directly proportional to 

the deviation length of driving performance. 

Our alert model did not use EEG power directly, but putative MDT and MDA. 

So next we checked how strongly MDA and MDT were correlated with the driving 

performance.  Fig. 5-5(a) showed the relation between driving performance and 

MDT (across the 15 test subjects/sessions) while Fig. 5-5(b) exhibited the same for 

MDA. It was interesting to see that, Fig. 5-5 and the above theory exhibit almost the 

same behavior; in fact, the average MDT and MDA increased more steadily with 

driving performance. 
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Fig. 5-5: The relationship between MDT / MDA and reaction time  

 

5.2.3 Linear Combination of Model Deviations 

To examine this possibility, we consider a very simple liner combination of 

MDA and MDT as . There are infinitely 

possible choices for the constant a in the linear combination. We have used a grid 

search in a = 0.1, 0.4, 0.6 and 0.9 and for every such linear combination we have 

computed the correlation of MDC with driving performance.  

(1 ) ,0 1MDC a MDA a MDT a= × + − × ≤ ≤

Table 5-1 lists the 

correlation values for a few illustrative cases. Note that, in the second column we 

have two correlation values x/y where x corresponds to MDA (i.e., a = 1) and y 

corresponds to MDT (i.e. a = 0). As an example, for subject S1, if we use MDT, the 

correlation is only 0.6743, while using MDC, for all combinations the correlation is 

higher than that with MDT. This justifies the utility of the combined model. 
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Table 5-1: The comparison of the correlation between power and driving performance 
and MD* and driving performance for channel OZ 

Subjects MDT / MDA 
0.1*MDA + 
0.9*MDT 

0.4*MDA + 
0.6*MDT 

0.6*MDA + 
0.4*MDT 

0.9*MDA + 
0.1*MDT 

S1 0.6743 / 0.7220 0.6818 0.7019 0.7133 0.7278 
S2 0.5579 / 0.5607 0.5589 0.5608 0.5613 0.5610 
S3 0.4106 / 0.5474 0.4314 0.4714 0.4823 0.5514 
S4 0.4737 / 0.5136 0.4791 0.4939 0.5025 0.5168 
S5 0.3654 / 0.5469 0.4193 0.5369 0.5643 0.5556 
S6 0.1840 / 0.5530 0.2745 0.4866 0.5418 0.5554 
S7 0.2520 / 0.6076 0.3827 0.6056 0.6277 0.6143 
S8 0.0052 / 0.7942 0.2062 0.6313 0.7342 0.7970 
S9 0.2585 / 0.7010 0.2832 0.3832 0.5536 0.6776 
S10 0.2004 / 0.4090 0.2022 0.2372 0.3541 0.4144 
S11 0.1670 / 0.6020 0.3253 0.5314 0.5725 0.6076 
S12 0.3190 / 0.6940 0.3880 0.4602 0.5977 0.6798 
S13 0.5186 / 0.5318 0.5472 0.6140 0.6208 0.6224 
S14 0.6264 / 0.6713 0.6425 0.6745 0.6820 0.6765 
S15 0.1849 / 0.8473 0.2389 0.7708 0.8228 0.8484 
Average 0.3465 / 0.6201  0.4041 0.5439 0.5954 0.6271 

 

5.2.4 Threshold Definition and Drowsiness Classification  

In drowsiness classification, we use the true-false table to define sensitivity and 

specificity. Sensitivity and specificity are statistical measures of the performance of a 

binary classification test. The sensitivity measures the proportion of actual positives 

which are correctly identified as such (e.g. the percentage of drowsy people who are 

identified as having the condition); and the specificity measures the proportion of 

negatives which are correctly identified (e.g. the percentage of alert people who are 

identified as not having the condition). The relationship between sensitivity and 

specificity is shows in Fig. 5-6 and the description of binary classification test was in 

Table 5-2.  
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Fig. 5-6: The relationship between sensitivity and specificity 

 

Table 5-2: The description of binary classification test 
Type Description 
True positive Drowsy people correctly diagnosed as drowsy 
False positive Alert people wrongly identified as drowsy 
True negative Alert people correctly identified as alert 
False negative Drowsy Sick people wrongly identified as alert 

 

To define the drowsy state in driving performance and MD*, we need to collect 

the true positive, false positive, and false negative parameters, hence to analyze the 

sensitivity and positive predictive value. 

A. Positive Predictive Value: 

number of True PositivesPPV
number of True Positives number of False Positives

=
+

         (5-1) 

The positive predictive value, or precision rate, or post-test probability of disease, 

is the proportion of patients with positive test results who are correctly diagnosed. It is 

the most important measure of a diagnostic method as it reflects the probability that a 
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positive test reflects the underlying condition being tested for. Its value does however 

depend on the prevalence of the disease, which may vary. 

 

B. Sensitivity: 

number of True PositivesSensitivity
number of True Positives number of False Negatives

=
+

     (5-2) 

 A sensitivity of 100% means that the test recognizes all drowsy people as drowsy. 

Thus in a high sensitivity test, a negative result is used to rule out the disease. 

Sensitivity alone does not tell us how well the test predicts other classes (that is, about 

the negative cases). In the binary classification, as illustrated above, this is the 

corresponding specificity test, or equivalently, the sensitivity for the other classes. 

However, sensitivity is not the same as the positive predictive value (ratio of true 

positives to combined true and false positives), which is as much a statement about 

the proportion of actual positives in the population being tested as it is about the test. 

The calculation of sensitivity does not take into account indeterminate test results. 

If a test cannot be repeated, the options are to exclude indeterminate samples from 

analysis (but the number of exclusions should be stated when quoting sensitivity), or, 

alternatively, indeterminate samples can be treated as false negatives (which gives the 

worst-case value for sensitivity and may therefore underestimate it). 

After explaining the definitions of sensitivity and positive predictive value, the 

next step is to define the threshold of driving performance and MD*(MDT, MDA, 

and MDC). The threshold of driving performance can follow above conclusion of 

sorting analysis which separated into 4 parts: alertness (0.2 ~ 1s), slight drowsiness (1 

~ 2s), extreme drowsiness (2 ~ 3s), and sleepiness (over 3s). Further, we assume that 
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deviation time is smaller than 1 second to be alert, and others are drowsiness. On the 

other hand, we need to define the threshold of MD*. Because the results of MD* had 

been normalized, so we are beneficial to collect all 15 subjects’ MD* data and 

analyze them. In Fig. 5-7 and Fig. 5-8, we set the threshold of MD* from 1 ~ 13 

respectively and analyzed the sensitivity and positive predictive value in different 

threshold. In linear combination, we also tried to separate into 9 conditions: a = 0.1, 

0.2 … 0.8, 0.9. Following the different conditions to find the sensitivity and positive 

predict value in different threshold of MD*.  
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Fig. 5-7: Positive predictive value vs. threshold of MD* (MDT, MTA, and MDC)  
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Fig. 5-8: Sensitivity vs. threshold of MD* (MDT, MTA, and MDC)  

When finished calculating positive predictive value and sensitivity in different 

conditions of linear combination, then we needed to choose the suitable threshold of 

MD*. According to equation 5-3, the F-measure can be used as a single measure of 

performance of the test. In information retrieval positive predictive value is called 
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precision, and sensitivity is called recall. The F-measure is the harmonic mean of 

precision and recall: 

2 precision recallF measure
precision recall

×
− = ×

+
                                (5-3) 

The results of passing through F-measure were shown as Fig. 5-9. The percent of 

F-measure mean the ratio of drowsy accuracy actually. Both parameters are associated 

with drowsiness. In different linear combinational conditions, we could find out the 

highest result of F-measure in condition a = 0.9. According to this conclusion, this 

condition composed of the best linear combination of the MDC. Hence, the maximum 

value of F-measure, 77.59%, happened in the most suitable threshold of MDC, 7.5. So 

that the corresponding sensitivity was 88.28% and positive predictive value was 

69.21%. Those results classified in Table 5-3. 

The reason of which F-measure was not high enough was described into 3 critical 

points: 

1. The trials of driving trajectories and corresponding MD* which we picked out 

didn’t use moving average to smooth, because of those sectional EEG 

information were too short. So that the MD* were not good enough in 

performance sorting analysis. 

2. We found out the relation between driving performance and MD*, hence 

driving performance and MD* were a sufficient condition but not a necessary 

condition. When MD* value was high, the corresponding driving performance 

wasn’t high too. There were other variables appending to user’s EEG waves. 

3. When subjects became drowsy, the MD* will increase, but will not happen 

immediately. This phenomenon which based on time domain appeared step by 
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step. So we used trials of driving trajectories to analyze drowsiness was not 

sufficient to know the exact information of the EEG. 
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Fig. 5-9: F-measure vs. threshold of MD* (MDT, MTA, and MDC) 
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Table 5-3: The results of binary classification test 
Types Max F-measure (%) Corresponding threshold PPV (%) Sensitivity (%)
MDT 73.92 6.5 60.15 95.86 
MDA 77.34 7.5 69.68 86.90 
MDC (a = 0.1) 73.46 6.5 59.29 96.55 
MDC (a = 0.2) 73.76 6.5 58.91 98.62 
MDC (a = 0.3) 74.02 7 63.73 88.28 
MDC (a = 0.4) 75.12 7 63.94 91.03 
MDC (a = 0.5) 76.00 7 63.88 93.79 
MDC (a = 0.6) 76.28 7 64.28 93.79 
MDC (a = 0.7) 76.65 7.5 70.87 83.45 
MDC (a = 0.8) 77.40 7.5 70.69 85.52 
MDC (a = 0.9) 77.59 7.5 69.21 88.28 

 

5.2.5 DSP Module Programming  

The flowchart of DSP module was shown in Fig. 5-10. In program development, 

we used multithread to build up a real-time analysis system, moreover to increase 

program’s flexibility and the use of performance. 

 
Fig. 5-10: The flowchart of DSP module program 
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Each thread is independent. In the DSP module’s main loop, we just create the 

threads we want and joint them. The system kernel will automatically schedule those 

threads and decrease the system waiting cost. In thread 1, Real-time detect EEG raw 

data from Blue Tooth, and go on pass through a moving average to cut-off at 32Hz, 

further down sample to 64 point in 1 second. Thread 2 handles FFT process. First, the 

FFT result will be transmit into 3 minute array in alert model. When array is full, the 

theta and alpha’s mean vector and covariance matrix in thread 3. Thread 4 mainly 

handles the MDT and MDA converter, then based on above optimal conclusion to 

calculate the MDC (a=0.9). If the values of MDC are higher than threshold in 7.5, the 

thread 5 will be switch on and make some warning voice in thread 5.  

On the other hands, the program’s user interface could directly tell user how was 

his / her physiological conditions. Further, let users easy handle this system. The user 

interface’s flowchart was shown in Fig. 5-11. Following this flowchart, when the boot 

loader setup, the real-time drowsy detection program will be automatically started by 

DSP module. If user finished dress the portable EEG acquisition module over, he / she 

push the start button to start to detect real-time EEG raw data. Then the screen could 

print the real-time data. Furthermore, according to the mean vector and covariance 

matrix of alert model, the linear combination of MDT and MDA was counted 

continually, and the result value will also print on the screen’s bottom side. Following 

Fig. 5-12 showed, the screen’s update time we set was changed in every 1 second, so 

we could show total 1 seconds EEG raw data and result of MDC at the same time on 

the TFT-LCD, and the expanded SD card circuit will detect a new SPI command from 

DSP module to ring the buzzer or not in every 1 second. By the way, user could push 

the quit button to end this program.  
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Fig. 5-11: The user interface’s flowchart 

 

 

 

Fig. 5-12: The block diagram of dataflow 
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Chapter6 Conclusions 

In this study, a real-time wireless brain computer interface for drowsiness 

detection was proposed. Here, a portable wireless EEG acquisition module and a DSP 

module were developed. The portable wireless EEG acquisition module was designed 

to acquire EEG signal, and then transmit them into the DSP module wirelessly to 

detect drowsiness. The modular approach applied in hardware and software design 

enables this system to be configurable for different application scenarios. For example, 

in the future, the EEG acquisition module can be used to connect several optional 

physiological sensors in addition to the built-in one, and it doesn’t affect the whole 

system architecture. This system is feasible for further extension. Moreover, our EEG 

acquisition module is small, light, and wearable, therefore, it is suitable for long-term 

EEG monitoring in users’ daily life. 

  A novel algorithm based on [59] for drowsiness detection was also proposed in this 

study. It can effectively reduce computation complexity, and is suitable to be 

implemented in the DSP module, and it is good at removing the differences between 

individual and environment in different people or measurements. Some previous 

studies indicated that the level of drowsiness is proportional with the increase of alpha 

and theta rhythms in EEG. Under the assumption of that driving trajectory is 

proportional with the level of drowsiness, our experimental results showed that the 

power of alpha and theta rhythms (the average MDT and MDA) in EEG increased 

indeed when the level of drowsiness increased, and the linear combination of alpha 

and theta rhythms (MDC) with factor a = 0.9 had the highest correlation (0.6271) with 

the level of drowsiness.  

In this study, the levels of drowsiness were defined as follows: alertness (0.2 - 1s), 
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slight drowsiness (1 - 2s), extreme drowsiness (2 - 3s), and sleepiness (over 3s). In 

order to verify the reliability of our proposed algorithm, we simplified four cognitive 

states into two: alert state and drowsy state (combining slight, deep and extreme 

drowsiness), and then the binary classification test was used to investigate the 

sensitivity and positive predictive value of our algorithm with different thresholds. 

Our experimental results showed that MDC with factor a = 0.9 when threshold was 

set to 7.5 had the highest F-measure value (F-measure = 77.59%, sensitivity = 88.28%, 

and positive predictive value = 69.21%). However, the accurate of our algorithm for 

drowsiness detection seems not good enough. This can explained by that each 

increase of alpha and theta rhythm may not correspond to each drowsy event although 

the long-term increasing trend of power of alpha and theta rhythm is proportional with 

the level of drowsiness. In future work, our system could combine with the utility of 

other physiological parameters, such as EOG and EMG, to improve both the 

sensitivity and positive predictive value. 
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