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摘要 

 

由於邊緣偵測被廣泛應用在許多不同的影像處理上，例如: 影像分割、物體

辨識追蹤、立體分析等；這些影像處理任務的效能受到邊緣偵測結果好壞的巨大

影響，所以邊緣偵測是個重要且不可忽視的基礎影像處理技術。為了得到更真實

的邊緣，彩色邊緣偵測已經受到越來越多的重視。過去影像處理著重黑白影像邊

緣偵測，不過灰階影像偵測邊緣時，往往不能偵測出具有相近灰階值但不同色彩

的邊緣，同時也因為人類的視覺能區分出數千個不同的顏色卻只能區分出大約二

十種的灰階，所以灰階影像失去許多彩色影像的邊緣資訊;近年來有越來越多關

於彩色邊緣偵測的研究，不過這些彩色邊緣的研究的結果也只達到一定程度的效

果，所以我們希望能夠提供比較有效的彩色邊緣偵測的方法。 

本論文，我們提出基於向量階層統計與主要成分分析的彩色邊緣偵測技術，

並且利用熵達到自動選取門檻的自動彩色邊緣偵測。利用我們提出的自動彩色邊

緣偵測，不僅可以偵測到當相鄰物體具有相近的灰階值但不同色彩的邊緣，且門

檻是依據影像內容所自動最佳調整，而不需要手動選取，增加使用者的方便性與

信賴度。 
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ABSTRACT 

 
Edge detection is an important process in low level image processing because of 

its wide use in various tasks, including segmentation, object recognition, tracking, 

stereo analysis, image coding and many others. The performance of various 

subsequent image or video processing tasks is therefore greatly affected by the 

goodness of edge detection. To obtain the genuine edges, there has been an increased 

interest in color edge detection. Humans can differentiate thousands of colors 

compared to about two dozen shades of gray; hence, grayscale images do not carry all 

the edge information that human visual system (HVS) can detect. 

In this thesis, we propose automatic color edge detection techniques based on 

vector order statistics and principal component analysis by entropic thresholding. 

Both methods employed improved entropic thresholding to determine the edge 

threshold. Our color edge detection techniques can detect edges when neighboring 

objects have different hues but with similar intensities, which cannot be detected by 

known grayscale or color edge detectors. Furthermore, by using entropic thresholding 

we can automatically determine an optimal threshold which is adaptive to different 

image contents without manual intervention. Edge detection by our proposed scheme 

is very user friendly and confident. 
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Chapter 1  Introduction 
 

1.1  Motivation 

 

Edge detection is an important process in low level image processing because of 

its wide use in several tasks such as segmentation, object recognition, tracking, stereo 

analysis, and image coding. The performance of these tasks is therefore tremendously 

affected by the goodness of edge detection. Conventionally, edge detectors use 

luminance component and locate changes in the intensity function. Pursuit of good 

edge detection algorithm led to such grayscale edge detectors as Canny, Cumani, and 

Compass [1]–[3]. Edges will not be detected in grayscale images when neighboring 

objects have different hues but equal intensities since the color cue is lost during 

grayscale conversion. Such objects cannot be distinguished in grayscale images. They 

are treated like one big object in the scene. This is not significant if the obstacle 

avoidance is the task of the vision system. Opposed to this, the capability of 

distinguishing between one big object and two (or several) objects may become 

crucial for the task of object grasping or even in 2-D image segmentation. 

Additionally, edge detection is sometimes difficult in low contrast images but rather 

sufficient results can be obtained in color images. 

To obtain more meaningful edges, there has been an increased interest in color 

edge detection. Humans can differentiate thousands of colors compared to about two 

dozen shades of gray; hence, grayscale images do not carry all the edge information 

that human visual system (HVS) can detect. In [4], it is stated that luminance 

component makes up 90% of all edge points in a color image but the remaining 10% 

can be crucial for subsequent techniques that rely on edges in an image; in some cases 

the additional information provided by color is of utmost importance. 



 2

Multi-dimensional nature of color makes it more challenging to detect edges in color 

images, and often increases the computational complexity threefold compared to gray 

scale edge detection. Hence, color edge detection algorithms accept from the 

beginning that all of the efforts are to find the remaining 10% of the edges. 

Importance of color edge detection also becomes more apparent in low contrast 

images [5]. 

In this thesis, we propose two different approaches to the problem of color edge 

detection. The first approach is based on vector order statistics [13]–[15], [17]. In this 

approach, we calculate the local maximum edge response for every pixel, and 

threshold the local maximum edge response adaptively to the image content. The 

second approach is based on principal component analysis [18], [19]. In this approach, 

we keep the low frequency part and the high frequency part of the image, and we 

utilize Sobel operator to each of three color components separately to find edges. 

 

1.2  Color Edge Detection 

 

Color edge detection techniques fall into two main categories. Techniques in the 

first group [6]–[10] calculate gradients in each color component separately, and either 

fuses the gradients immediately or detect edges in each component separately before 

fusing to detect color edges. Techniques in the second group [2], [3], [11]–[15] treat 

each pixel as a tree-tuple vector and apply vector processing techniques without 

decoupling color components to obtain the edge map. A comprehensive analysis of 

color edge detectors can be found in [5], [16]. 

There is no universally accepted “color edge” definition. Literatures in this field 

suggest the following three definitions: (1) an edge exists if there is an edge in the 

corresponding grayscale image, (2) an edges exists if at least one of the color 
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components has an edge, (3) an edge exists if some norm (generally 1L , 2L , or L∞ ) 

of the gradient from each color component exceeds a threshold value. 

     

1.3  Automatic Thresholding Technique 
 

In practice, edge detection is often done in an -ad hoc  manner, frequently 

requiring user tuning of parameters. To enable the building of robust machine vision 

systems, it would be preferable to automate the edge thresholding process which is 

adaptive to different image contents without manual intervention. 

The thresholding of edge detection involves the basic assumption that edges and 

non-edges pixels in the digital image have distinct edge response distributions. In [9], 

a fast entropic thresholding technique is used and shown to be highly efficient for the 

two-class classification problem. In [22], Joharmsen and Bille proposed a method 

using the entropy of the gray-level histrogram. This method divides the set of gray 

levels into two parts so as to minimize the interdependence (in information theoretic 

sense) between them. In [23], Wong and Sahoo proposed a thresholding method based 

on maximum entropy principle. The optimal threshold value is determined by 

maximizing the a posteriori entropy subject to certain inequality constraints which are 

derived by means of special measures characterizing uniformity and the shape of the 

regions in the image. For this purpose, the authors use both the gray-level distribution 

and the spatial information of an image. 

When applying entropy to the thresholding of edge detection, the problem is that 

most pixels in an image are not edge pixels causing an erroneous bias to entropic 

thresholding. Therefore, we introduce a simple method to alleviate this bias to 

facilitate our automatic thresholding technique based on maximizing entropy. 
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1.4 Thesis Outline 

 

The thesis is organized as follows. Before introducing the technique of our edge 

detection and entropic thresholding techniques, the basic concepts concerning the 

vector order statistics and principal component analysis are introduced in Chapter 2. 

Chapter 3 describes in details our vector-order statistics based and principal 

component analysis based edge detection techniques to calculate the edge response. 

Also, we describe in details our automatic thresholding techniques for these two 

detection techniques in Chapter 3. In Chapter 4, the experiment results of our 

automatic color edge detection techniques are shown and compared. At last, we 

conclude this thesis with a discussion in Chapter 5. 
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Chapter 2  Introduction to Vector Order Statistics 

and Principal Component Analysis 
 

In this chapter, we briefly explain the basic concepts of vector order statistics and 

principal component analysis. 

 

2.1  Vector Order Statistics  

 

2.1.1 Vector Order Statistics Review 

 

Scalar order statistics have played an important role in the design of robust signal 

analysis techniques. This is due to the fact that any outliers will be located in the 

extreme ranks in the sorted data. Consequently, these outliers can be isolated and 

filtered out before the signal is further processed. Ordering of univariate data is well 

defined and has been extensively studied [20]. Let the n  random variables iX , i  = 

1, 2, …, n , be arranged in ascending order of magnitude as 

                    (1) (2) ( )... nX X X≤ ≤ ≤                    (1)     

Then the thi  random variable ( )iX  is the so-called thi  order statistic. The 

minimum (1)X , the maximum ( )nX , and the median ( 2)nX  are among the most 

important order statistics, resulting the min, the max, and the median filters, 

respectively. 

The concepts are, however, not straightforwardly expanded to multivariate data 

since there is not any universal way of defining an ordering in multivariate data. 

There has been a number of ways proposed to perform multivariate data ordering that 
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are generally classified into [17]: marginal ordering (M-ordering), reduced or 

aggregate ordering (R-ordering), partial ordering (P-ordering), and conditional 

ordering (C-ordering). 

 

2.1.2  Characteristics of Vector Order Statistics 

 

Let X  represent a -dimensionalp  multivariate X = 1 2[ , ,..., ]T
pX X X  where 

,lX  l = 1, 2, …, p  are random variables and let ,iX  i = 1, 2, …, n  be an 

observation of .X  Each iX  is a -dimensionalp  vector iX = 1 2[ , ,..., ] .i i i T
pX X X  

In M-ordering, the multivariate samples are ordered along each one of the 

-dimensionsp  independently. For color signals, this is equivalent to the separable 

method where each one of the colors is processed independently. The thi  marginal 

order statistic is the vector ( ) ( ) ( ) ( )
1 2[ , ,..., ] ,i i i i T

pX X X X=  where ( )i
rX  is the thi  

largest element in the thr  channel. The marginal order statistic ( )iX  may not 

correspond to any of the original samples 1 2, ,..., nX X X  as it does in one dimension. 

In R-ordering, each multivariate observation iX  is reduced to a scalar value id  

according to a distance criterion. A metric that is often used is the generalized distance 

to some point .x  The samples are often arranged in ascending order of magnitude of 

the associated metric value .id  

In P-ordering, the objective is to partition the data into groups or sets of samples, 

such that the groups can be distinguished with respect to order, rank, or extremeness. 

This type of ordering can be accomplished by using the notion of convex hulls. 

However, the determination of the convex hull is difficult to do in more than two 

dimensions. Other ways to achieve P-ordering are ad hoc partitioning procedures and 
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thus are not preferred. Another drawback associated with P-ordering is that there is no 

ordering within the groups and thus it is not easily expressed in analytical terms. 

These properties make P-ordering infeasible for implementation in digital image 

processing. 

In C-ordering, the multivariate samples are ordered conditionally on one of the 

marginal sets of observations. This has the disadvantage in digital image processing 

that only the information in one component (channel) is used. 

From the above, it is evident that R-ordering is more appropriate for color image 

processing than the other vector ordering methods. If we employ as a distance metric 

the aggregate distance of iX  to the set of vectors 1 2, ,..., nX X X , then 

                 
1

 ,
n

i k
i

k
d X X

=

= −∑  1,  2, ..., i n=             (2) 

where   ⋅  represents an appropriate vector norm. The arrangement of the id s in 

ascending order ( )(1) (2) ( )... nd d d≤ ≤ ≤ , associates the same ordering to the 

multivariate iX s. 

     (1) (2) ( )... nX X X≤ ≤ ≤                       (3) 

In the ordered sequence, (1)X is the vector median of the data samples [21]. It is 

defined as the vector contained in the given set whose distance to all other vectors is a 

minimum. Moreover, vectors appearing in low ranks in the ordered sequence are 

vectors centrally located in the population, whereas vectors appearing in high ranks 

are vectors that diverge mostly from the data population. These samples are generally 

called “outliers.” It follows that this ordering scheme gives a natural definition of the 

median of a population and of the outliers of a population. 
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2.2  Principal Component Analysis 

 

2.2.1  Principal Component Analysis Review 

 

Principal Component Analysis (PCA) is a useful statistical technique that has 

found application in fields such as face recognition and image compression, and is a 

common technique for finding patterns in data of high dimension. It is a way of 

identifying patterns in data, and expressing the data in such a way as to highlight their 

similarities and differences. Since patterns in data can be hard to find in data of high 

dimension, where the luxury of graphical representation is not available, PCA is a 

powerful tool for analyzing data. The other main advantage of PCA is that once you 

have found these patterns in the data, and you compress the data by reducing the 

number of dimensions without much loss of information. This technique used in the 

field of image compression. 

PCA involves a mathematical procedure that transforms a number of possibly 

correlated variables into a smaller number of uncorrelated variables called principal 

components. The first principal component accounts for as much of the variability in 

the data as possible, and each succeeding component accounts for as much of the 

remaining variability as possible. 

PCA transforms the data to a new coordinate system such that the greatest 

variance by any projection of the data comes to lie on the first coordinate (called the 

first principal component), the second greatest variance on the second coordinate, and 

so on. PCA is theoretically the optimum transform for given data in least square 

terms. 

In [18], the transformation that preserves chrominance edges and effectively 

reduces the dimensionality of color space from three to one for detecting color edges 
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is based on PCA method. This transformation generates monochrome images that 

carry the color edge information to facilitate the performances of conventional 

grayscale edge detectors. 

In [19], in order to generate a set of eigenfaces, a large set of digitized images of 

human faces, taken under the same lighting conditions, are normalized to line up the 

eyes and mouths. They are then all re-sampled at the same pixel resolution. 

Eigenfaces is extracted by means of PCA. The eigenfaces that are created will appear 

as light and dark areas that are arranged in a specific pattern. This pattern is how 

different features of a face are singled out to be evaluated and scored. 

 

2.2.2  Characteristics of Principal Components 

 

The first component extracted in a principal component analysis accounts for a 

maximal amount of total variance in the observed variables. Under typical conditions, 

this means that the first component will be correlated with at least some of the 

observed variables. It may be correlated with many. 

The second component extracted will have two important characteristics. First, 

this component will account for a maximal amount of variance in the data set that was 

not accounted for by the first component. Again under typical conditions, this means 

that the second component will be correlated with some of the observed variables that 

did not display strong correlations with component one.      

The second characteristic of the second component is that it will be uncorrelated 

with the first component. Literally, if you were to compute the correlation between 

components 1 and 2, that correlation would be zero. 

 The remaining components that are extracted in the analysis display the same 

two characteristics: each component accounts for a maximal amount of variance in the 
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observed variables that was not accounted for by the preceding components, and is 

uncorrelated with all of the preceding components. A principal component analysis 

proceeds in this fashion, with each new component accounting for progressively 

smaller and smaller amounts of variance (this is why only the first few components 

are usually retained and interpreted). When the analysis is complete, the resulting 

components will display varying degrees of correlation with the observed variables, 

but are completely uncorrelated with one another. 

Principal component analysis is sometimes confused with factor analysis, and 

this is understandable, because there are many important similarities between the two 

procedures: both are variable reduction methods that can be used to identify groups of 

observed variables that tend to hang together empirically. Both procedures can be 

performed with the SAS System’s FACTOR procedure, and they sometimes even 

provide very similar results. 

Nonetheless, there are some important conceptual differences between principal 

component analysis and factor analysis that should be understood at the outset. 

Perhaps the most important deals with the assumption of an underlying causal 

structure: factor analysis assumes that the co-variation in the observed variables is due 

to the presence of one or more latent variables (factors) that exert causal influence on 

these observed variables. 

In contrast, principal component analysis makes no assumption about an 

underlying causal model. Principal component analysis is simply a variable reduction 

procedure that (typically) results in a relatively small number of components that 

account for most of the variance in a set of observed variables. 
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2.2.3  Principal Component Vectors Computation 

 

Here, we demonstrate how to compute the principal components by a simple 

example. 

Principal component analysis is based on the statistical representation of a 

random variable. Suppose we have a random vector population ( )1 2, ,..., ,T
nX x x x=  

and the mean of that population is denoted by { }x E Xμ = . The covariance matrix of 

the same data set xC  is 

                  ( )( ){ }T

x x xC E X Xμ μ= − −                    (4) 

The components of xC , denoted by ijc , represent the covariances between the 

random variable components ix  and .jx  The component iic  is the variance of the 

component .ix  The variance of a component indicates the spread of the component 

values around its mean value. If two components ix  and jx  of the data are 

uncorrelated, their covariances ijc  and jic  are zero. The covariance matrix is, by 

definition, always symmetric. From a symmetric matrix such as the covariance matrix, 

we can calculate an orthogonal basis by finding its eigenvalues and eigenvectors. The 

eigenvectors iV  and the corresponding eigenvalues iλ  are the solutions of the 

equation  

                   ,x i i iC V Vλ=  1,  2,  ...,  i n=                     (5) 

These values can be found, for example, by finding the solutions of the 

characteristic equation 
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                       0,x iC Iλ− =  1,  2,  ...,  i n=                  (6) 

where I  is the identity matrix having the same order of xC  and   ⋅  denotes the 

determinant of the matrix. If the data vector has n components, the characteristic 

equation becomes of order n. 

By ordering the eigenvectors in the order of descending eigenvalues (largest 

first), one can create an ordered orthogonal basis with the first eigenvector having the 

direction of the largest variance of the data. In this way, we can find directions in 

which the data set has the most significant amounts of energy.  
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Chapter 3  Color Edge Detection and Entropic 

Thresholding  

 

3.1  Vector-Order Statistics based Color Edge detection 

 

3.1.1  Confined Window Case 

 

For a color image F  of size ,M N×  each pixel location ( ),m n  is 

represented by a three-tuple color vector ( ) ( ) ( ) ( )( )1 2 3, , ,  , ,  , ,F m n F m n F m n F m n=  

in which ( ),iF m n  denoting the -thi component of a color space, for 

1,  2, ..., m M=  and 1,  2, ..., .n N=  For each pixel location ( ),m n , by using a 

3 3×  window, we confine the pixel vectors in the window be the vectors 

1 2 9,  ,  ..., .X X X  We employ the aggregate distance of iX  as a distance metric to 

the set of vectors 1 2 9, ,  ..., ,X X X  then 

              
9

1

  ,i k
i

k

d X X
=

= −∑  1,  2, ..., 9i =                    (7) 

where   ⋅  represents a 2-norm. After we have computed the aggregate distances , 

we sort the distance values in ascending order (1) (2) (9)... .d d d≤ ≤ ≤  (1)d and (9)d  

correspond to the minimum and the maximum of the nine distance values 

respectively. 

By the concept of R-ordering, the ordering of (1) (2) (9)...d d d≤ ≤ ≤  associates 

the same ordering to the pixel vectors, (1) (2) (9)... ,X X X≤ ≤ ≤  which means that 
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(1)X  is the vector median of vectors in the window and (9)X  is the outlier of vectors 

in the window. Although we now obtain the information on the vector median and the 

outlier, the information contained among vectors (1) (2) (9),  ,  ...,  X X X  should also be 

captured and be useful for edge detection. The maximal variation among vectors is an 

indication of the distribution of the nine vectors. Since that vectors 

(1) (2) (9),  ,  ...,  X X X  correspond to the ordering of the aggregate distances, the 

confined maximal variation cMV  among these vectors can be simply defined as 

          ( )( ) 1max ,i i
cMV X X += −  1,  2, ..., 8i =                  (8)         

When the value cMV  is determined, we can also determine the exact two 

vectors ( )iX  and ( 1)iX +  which correspond to cMV .  ( )iX  and ( 1)iX +  further 

suggest that (1) (2) (9),  ,  ...,  X X X  can be classified into two clusters: (1) vectors, 

(1) (2) ( ),  ,  ...,  ,iX X X  from larger side of the edge, and (2) vectors, 

( 1) ( 2) (9),  ,  ...,  ,i iX X X+ +  from smaller side of the edge. Let sM  and lM  be the 

mean vector of the vectors (1) (2) ( ),  ,  ...,  ,iX X X  and the vectors 

( 1) ( 2) (9),  ,  ...,  i iX X X+ +  respectively. An edge detector can defined as a 

  Vector Mean Distance  (VMD) edge detector 

                     l sVMD M M= −                          (9) 

VMD detect the variation between two sides of edge (larger and smaller side) by 

a distance measure. Consequently, in a uniform area, where all vector values are close 

to each other, the output of VMD will be small. On the other hand, the output of VMD 

will be large since sM  and lM  are the mean vectors of two sides of the edge. By 

thresholding the output of VMD, the actual edge can be obtained. Since the 

distribution of vectors (1) (2) (9),  ,  ...,  X X X  is an important source of information for 
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calculating the variation between two sides of an edge, a more discreet method for 

capturing the distribution of the vectors should be applied. 

To capture the distribution of the vectors, we assume that vectors 

(1) (2) (9),  ,  ...,  X X X  can be classified into two clusters. Because that  (9)X  

corresponds to the outlier of the vectors and could be affected, most probably one 

among the nine pixels in the window, by noise, (9)X  should be discarded for a 

clearer analysis of the distribution of the vectors. We first take (1)X  and (8)X  as the 

representatives of two sides (larger side and smaller side) of an edge. Let isd  denote 

the distance between vector ( )iX  and (1) ,X  and ild  denote the distance between 

( )iX  and (8).X  If isd < ild , ( )iX  belongs larger side of the edge. Otherwise, ( )iX  

belongs to smaller side of the edge. After this procedure, we have a clear view of the 

distribution of vectors (1) (2) (8),  ,  ...,  .X X X  

Since we know the distribution of vectors (1) (2) (8),  ,  ...,  ,X X X  the difference 

between two sides can reflect the variation of this area. We denote the mean vector of 

the smaller side of the edge as ssM  and the mean vector of the larger side of the edge 

as .lsM  Similar to VMD edge detector, an edge detector which capture the 

distribution of the vectors can be defined as a   Vector Distribution Difference  (VDD) 

edge detector 

                    ls ssVDD M M= −                          (10) 

VDD detect the variation between two sides of an edge (larger and smaller side) 

in a similar way to VMD and capture the distribution of the vectors by a discreet 

method. Also by discarding the outlier (9) ,X  VDD is more capable of alleviating the 

influence of noise. 

From a different point of view, the aggregate distance id  indicates how much a 
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vector iX  diverges from the other vectors in the window. If we modify the 

aggregate distance id  to reflect the variation of every pixel vector to its 

corresponding neighboring area, we should be able to have a clear insight for the 

distribution of the vectors. This concept leads us to the following edge detection 

method. 

 

3.1.2  Local Window Case 

 

For each pixel location ( ),m n , by using a 3 3×  window, we compute the local 

sum of distances to describe the relationship between the current pixel vector 

( ),F m n  and its neighboring pixel vectors. Let ( ),ld m n  be the local sum of 

distances for the current pixel vector ( ),F m n , then 

               ( ) ( ) ( )
1 1

1 1
,  , ,  

m n

l
i m j n

d m n F m n F i j
+ +

= − = −

= −∑ ∑                 (11) 

where   ⋅  represents a 2-norm. After we have computed the local sum of distances 

( ),ld m n  of the current pixel location ( ),m n , we sort the distance values in the 

neighboring area in ascending order (1) (2) (9)... .l l ld d d≤ ≤ ≤  The distance values 

(1)ld and (9)ld  correspond to the minimum and the maximum of the nine distance 

values, respectively. 

By the concept of R-ordering, the ordering of (1) (2) (9)...l l ld d d≤ ≤ ≤  

associates the same ordering to the pixel vectors, (1) (2) (9)... ,l l lX X X≤ ≤ ≤ which 

means that (1)
lX  is the pixel vector having the smallest local sum of distances and 
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(9)
lX  is the pixel vector having the largest local sum of distances.  If the current 

pixel location ( ),m n  has an edge, the vector ( ),F m n  must have a larger response 

of ( ), .d m n  Therefore, the subsequent edge detection process executes when the 

vector ( ),F m n  belongs to one of the vectors (4) (9) .l lX X−  Fig. 3.1 illustrates a 

simple edge example of the orderings of vectors based on the aggregate distances and 

the local sum of distances by the R-component only. Notice that the pixel in the center 

of the window has a smaller response of the aggregate distance in Fig. 3.1(c) denoted 

as (5)X  in Fig. 3.1(d), and has a larger response of ( ),ld m n  in Fig. 3.1(e) denoted 

as (5)
lX  in Fig. 3.1(f). 
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 (e) (f) 

Fig. 3.1.  A simple edge example. (a) single edge image, (b) R-component values in 

edge area, (c) the aggregate distances, and (d) sorted pixels vectors corresponding to 

the same ordering of the aggregate distances, (e) the local sum of distances, and (f) 

Sorted pixels vectors corresponding to the same ordering of the local sum of 

distances. 

 

Next, the edge detector Maximal Delta (MD) is defined as 

( )( )( )max  ,  ,j
lMD F m n X= −  4 9j≤ ≤              (12) 

Because that the ordered vectors (4) (5) (9),  ,  ..., l l lX X X  denote the larger six sum of 
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distances ( ),ld i j , the positions of these ordered vectors could also be edge 

candidates. Because that an edge is two pixels wide in nature, it suggests that we can 

find the maximum variation existent in the two pixels of edge bank by utilizing MD 

edge detector. 

 

3.2 PCA based Color Edge Detection 

 

3.2.1  rbCYC  Color Space 

 

Before we introduce our PCA based color edge detection, we now briefly 

introduce b rYC C  color space. 

The color space of b rYC C  can divided into luminance component (Y), and two 

chromatic blueness component ( bC ), redness component ( rC ). bC  and rC  are the 

difference of blue and the difference of red chromatic components. The following 

conversion matrix is used to convert RGB color space into b rYC C  color space. 

       
⎪
⎩

⎪
⎨

⎧

−×=
−×=

×+×+×=

)(7132.0
)(5674.0

1145.05866.02989.0

YRC
YBC

BGRY

r

b                (13) 

For a color edge detector, the goal is to detect edges that have changes in 

luminance or in chrominance. Our PCA based edge detection involves the 

reconstruction of the input image. We have to retain both chrominance and luminance 

information via the essential principal components of input image. Therefore, b rYC C  

color space is selected in our PCA based color edge detection theme. 
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3.2.2 Eigencolor Image Construction 

 

For an input image F  of size ,M N×  each pixel location ( ),m n  is 

represented by a three-tuple color space vector ( ),F m n  for 1,2,...,m M=  and 

1,2,..., .n N=  Each component of the color space in pixel location ( ),m n  can be 

represented as ( ), ,iF m n  for 1,  2, 3.i =  A color component of input image F  is 

denoted as .iF  Then, for the color component ,iF  the estimate of the mean is 

calculated as 

( )
1 1

1 ,
M N

i i
m n

M F m n
M N = =

=
× ∑∑                      (14) 

For 1,  2, and 3,i =  iM  is expanded to a matrix iF  of size M N×  having 

the value of iM  for every entry of matrix .iF  The covariance matrix estimate for 

the color component is 

          ( )( )Ti i i i iC F F F F= − −                        (15) 

Next, we compute for matrix 'siC  eigenvalues ,ijλ with ijV  being the corresponding 

eigenvectors such that 1 2 ... ,i i ijλ λ λ≥ ≥ ≥ for 1,  2,  ...,  ,j L= where 

( )min , .L M N=  We select the first ik  terms and the last ik  terms of eigenvectors 

ijv  to retain the low frequency and the high frequency contents of the color image 

.F  To obtain the compressed image for edge detection, we have to keep not only the 

low frequency principal components but also the high frequency components for 

detail and edge preservation, which is quite different from the conventional image 
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data compression approach. These eigenvectors are arranged in a matrix 

1 2 ( ) ( 1),  ,  ...,  ,  ,  ,  ...,  .
i i ii i i ik i L k i L k iLE V V V V V V− − +

⎡ ⎤= ⎣ ⎦  

After obtaining the eigenvectors, we are now constructing an image called 

“eigencolor” image. First, the matrix '
iF  of the color component i  is obtained by 

                           '
i i iF F F= −                            (16) 

And the weighting coefficients matrix iW  of selected eigenvectors can be computed 

by 

                            'T
i i iW E F=                             (17) 

The -thi  color component is then constructed by 

                         i i i iEigen EW F= +                         (18) 

The other two color components are also constructed in the same procedure. 

Finally, the eigencolor image can be obtained by combining three constructed 

color components iEigen  with the corresponding dimension order. 

 

3.2.3 Edge Response Calculation 

 

To obtain the edge response of the compressed eigencolor image, we simply 

apply the Sobel operator, as shown in Fig. 2, to each color component of eigencolor 

image, iEigen , and calculate the magnitude of edge response for each pixel location 

( ),m n  by 
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   ( ) ( )2 2( , ) , , ,  1,  2,  ..., ,  1,  2,  ...,
i ii h vME m n g m n g m n m M n N= + = =     (19) 

where ( , )
ihg m n  and ( , )

ivg m n  are respectively the horizontal and vertical responses 

of the Sobel operator, shown in Fig. 3.2, in pixel location ( ),m n  for the -thi  

component.  

 

+1 0 -1 

+2 0 -2 

+1 0 -1 
 

+1 +2 +1 

0 0 0 

-1 -2 -1 
 

(a) (b) 

Fig. 3.2.  Sobel operator. (a) horizontal derivative approximation ,
ihg  (b) vertical 

derivative approximation .
ivg  

 

By using a threshold ,iT  the iE  function classifies the iME  pixels into two 

classes:   and -  ,edge pixels non edge pixels  as 

       ( ) ( )
( )

1 (edge pixel),       if  ,
,

0 (nonedge pixel), if  ,
i i

i
i i

ME m n T
E m n

ME m n T
⎧ ≥⎪= ⎨ <⎪⎩

            (20) 

The edge image is obtained by a majority vote fusion rule on the detected edge of 

three color components. Let count  denote the number that ( ),iE m n  classifies 

pixel ( ),m n  as an edge for 1,  2, and 3.i =  Namely pixel ( ),m n  is classified as an 

edge if it is classified as an edge by at least two of its three color components, shown 

in (20). Otherwise, it is classified as a non-edge pixel and ( ),E m n  is set to 0.  
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           ( )
1 (edge pixel),       if  2

,
0 (nonedge pixel),  otherwise

count
E m n

≥⎧
= ⎨
⎩

                (21)   

                                                  

3.3  Entropic Thresholding 

 

To automatically obtain an optimal threshold that is adaptive to the image 

contents, the entropic thresholding technique is adopted. In the following, we 

illustrate how to apply entropic thresholding technique to the vector-order statistics 

based and the PCA based edge detections. 

 

3.3.1 Entropic Thresholding for Vector-Order Statistics based Edge Detection 

 

We are now introducing the entropic thresholding technique. Given a threshold, 

e.g., ,T  the probability distributions for the edge and non-edge pixel classes can be 

defined, respectively. As they are to be regarded as independent distributions, the 

probability for the non-edge pixels in a S S×  window having 2S  pixels ( )nP i  

can be defined as 

                        2( ) n
n

l
P i

S
=                             (22) 

where nl  indicates the number of pixels in the window that have the edge responses 

smaller than or equal to threshold T . The probability for the edge pixels ( )eP i  can 

be defined as 

                        2( ) e
e

l
P i

S
=                             (23) 
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where el  indicates the number of pixels in the window that have the edge responses 

greater than threshold T . The entropies for these two pixel classes are then given as 

                      ( ) ( ) log ( )n n nH T P i P i= −                        (24) 

                      ( ) ( ) log ( )e e eH T P i P i= −                        (25) 

The local optimal threshold lT ∗  selected for performing the non-edge and edge 

pixel classification has to satisfy the following criterion function: 

                ( ) ( ) ( )( )
1 2, , ..., 
max

L
l n eT T T T

H T H T H T∗

=
= +                   (26) 

where 1 2,  ,  ..., LT T T  are the proportional ratio constants with respect to the norm of 

the mean vector of two sides (larger and smaller side) of the edge. In this way, the 

local optimal threshold lT ∗  reflects the relative magnitude variation with respect to 

the mean magnitude of current processing area. In our experiments, we select 

1 2,  ,  ..., LT T T  to be 0.2,  0.3,  ...,  0.9. 

 

3.3.2 Entropic Thresholding for PCA based Edge Detection 

 

After obtaining the magnitude of edge response ,iE  Sec. 3.2.2, of each color 

component for pixels in the image, we introduce the entropic thresholding technique 

globally. We utilize all the Sobel edge response values of pixels in the input image as 

the possible choices of the global optimal threshold for each components .gT i∗  For 

the -thi  component of the color space, let the edge responses of the pixels have the 

range [0,  ]nh  (the possible choices of the global optimal threshold), the probability 
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for the non-edge pixels in a M N×  image ( )nP i  can be defined as 

                    ( ) ,n
n

l
P i

M N
=

×
                            (27) 

where nl  indicates the number of pixels in the input image that have the edge 

responses smaller than or equal to threshold .T  The probability for the edge pixels 

( )eP i  can be defined as 

                   ( ) ,e
e

l
P i

M N
=

×
                             (28) 

where el  indicates the number of pixels in the input image that have the edge 

responses greater than threshold .T  

The entropies ( ) ( ) and n eH T H T  for these two pixel classes can be computed 

according to Eqs. (23) and (24). The global optimal threshold gT ∗  selected for 

performing the non-edge and edge pixel classification has to satisfy the following 

criterion function: 

                  ( ) ( ) ( )( )
10, , ..., 

max
n

g n eT h h
H T H T H T∗

=
= +                  (29) 

However, the global optimal threshold gT ∗  will be too small and too sensitive 

for edge detection because that most pixels in the input image are non-edge pixels 

causing a bias leaning to the non-edge pixels’ edge strength. From Eq. (28), it is clear 

that maximum entropy occurs when the numbers of pixels in edge class and non-edge 

class are equal. Since most pixels are non-edge pixels, which have small magnitudes 

of edge response, gT ∗  naturally is tuned to a small value among the pixels’ edge 

response, which results in an erroneous edge/non-edge threshold selection. Therefore, 

we need to discard the pixels with small magnitudes of edge response in order to 
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alleviate the bias caused from the usual uneven distribution between edge pixels and 

non-edge ones. To solve this, we introduce a sensitivity parameter ,γ  which is 

automatically calculated from the input image content. The pixels which have the 

magnitudes of edge response smaller than the sensitivity parameter γ  are the 

obvious non-edge pixels and are discarded when applying our global entropic 

thresholding technique. On testing various images, we have found that the Sobel edge 

responses of obvious non-edge pixels usually have strengths smaller than five. To this 

end, we calculate the histograms of the edge response in the following ten 

intervals: ( ] ( ] ( ]0,  0.5 ,  0.5, 1 ,  ..., 4.5, 5 .  The value of γ  is chosen to be the larger 

boundary of the interval that has the largest drop in histogram value, which could be 

the boundary for the obvious non-edge pixels and possible non-edge pixels. This is 

because that the majority of pixels in an image belong to non-edge regions and these 

pixels have small yet compact magnitudes of edge response. Therefore, we can 

assume that the intervals with maximal drop in histogram values represent the 

possible boundary between obvious non-edge pixels and possible non-edge pixels and 

we set γ  to be the right boundary value of this interval. For example, if the maximal 

drop in histogram values of pixels’ edge strength occurs between ( ]2,  2.5  and 

( ]2.5,  3 , the value of γ  is chosen as 2.5. 
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Chapter 4  Experimental Results 
 

In chapter 4, we test our vector-order statistics based and PCA based edge 

detection techniques on synthetic images and real world images. The synthetic images 

include one image that contains nine different color blocks with the same intensity. 

These synthetic images are generated for assessing the performance comparison. For 

all the real world images are smoothed by the Gaussian filter with 1σ =  to alleviate 

the interference from noises. In the end of this chapter, we evaluate our edge detection 

techniques quantitatively by using Pratt’s Figure Of Merit (FOM) [24] and TPR, TNR 

and ACC of Receiver Operating Characteristic (ROC) [25]. 

 
4.1 Vector-Order Statistics based Edge Detection 
 

We utilize our vector-order statistics based edge detectors to compute edge 

response and entropic thresholding technique to determine a local optimal threshold 

.lT ∗  The first image we test on is a image consisting of 9 different color blocks with 

the same intensity as shown in Fig. 4.1(a). This image is applied to verify that our 

edge detection techniques works when objects in image has the same intensity but 

different hues. Figs. 4.1(b)− (d) show the edge detection results obtained by VMD, 

VDD and MD, and proves that our edge detection techniques can work under this 

circumstance. Fig. 4.2 gives the corresponding histograms of local optimal threshold 

lT ∗  of VMD, VDD and MD to Fig. 4.1(a), where the X-axis is the proportional ratio 

constants described in Sec. 3.1.1.  
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(a) 

  

(b) 

 

(c) 

 

 

(d) 

Fig. 4.1. Edge detection results of a color image with the same intensity. (a) original 

image, (b) edge detection by VMD, (c) edge detection by VDD, (d) edge detection by 

MD. 
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(a) 

 

(b) 

 

 

(c) 

Fig. 4.2. The corresponding histograms of local optimal threshold lT ∗  to Fig. 4.1(a). 

(a) histogram of lT ∗  using VMD, (b) histogram of lT ∗  using VDD, (c) histogram of 

lT ∗  using MD.  
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Next, we apply our edge detection techniques to images similar to Fig. 4.1(a) but 

with different intensities as shown in Fig. 4.3(a) and Fig. 4.5(a). Figs. 4.3(b)− (d) and 

Figs. 4.5(b)− (d) illustrate the edge detection result applying VMD, VDD and MD to 

Fig. 4.3(a). Fig. 4.4 and Fig. 4.5 give the corresponding histograms of local optimal 

threshold lT ∗  of VMD, VDD and MD to Fig. 4.3(a) and Fig. 4.5(a) respectively. 
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(a) 

 

  

(b) 

 

(c) 

 

 

(d) 

Fig. 4.3. Edge detection results of a color image with different intensities. (a) original 

image, (b) edge detection by VMD, (c) edge detection by VDD, (d) edge detection by 

MD. 
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(a) 

 

(b) 

 

 

(c) 

Fig. 4.4. The corresponding histograms of local optimal threshold lT ∗  to Fig. 4.3(a). 

(a) histogram of lT ∗  using VMD, (b) histogram of lT ∗  using VDD, (c) histogram of 

lT ∗  using MD.  
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(a) 

  

(b) 

 

(c) 

 

 

(d) 

Fig. 4.5. Edge detection results of a color image with different intensities. (a) original 

image, (b) edge detection by VMD, (c) edge detection by VDD, (d) edge detection by 

MD. 
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(a) (b) 

 

 

(c) 

Fig. 4.6. The corresponding histograms of local optimal threshold lT ∗  to Fig. 4.5(a). 

(a) histogram of lT ∗  using VMD, (b) histogram of lT ∗  using VDD, (c) histogram of 

lT ∗  using MD.  
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From the above results, our vector-order statistics based edge detection 

techniques are capable of detecting vertical and horizontal edges. Therefore, we are 

interested in their ability to detect diagonal edges. Fig. 4.7 shows the result of 

applying our edge detection techniques to an image with diagonal edges. Fig. 4.8 

shows the corresponding histograms of local optimal threshold lT ∗  of VMD, VDD 

and MD to Fig. 4.7(a). At last, we apply our techniques to real world images, as 

shown in Fig. 4.9(a) and Fig. 4.10(a). The edge detection results are given in Figs. 

4.9(b)− (d) and Figs. 4.10(b)− (d). 
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(a) 

  

(b) 

 

(c) 

 

 

(d) 

Fig. 4.7. Edge detection results of a color image with diagonal edges. (a) original 

image, (b) edge detection by VMD, (c) edge detection by VDD, (d) edge detection by 

MD. 
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(a) (b) 

 

 

(c) 

Fig. 4.8. The corresponding histograms of local optimal threshold lT ∗  to Fig. 4.7(a). 

(a) histogram of lT ∗  using VMD, (b) histogram of lT ∗  using VDD, (c) histogram of 

lT ∗  using MD.  
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(a) 

  

(b) (c) 

 

 

(d) 

Fig. 4.9. Edge detection results of a real world image. (a) original image, (b) edge 

detection by VMD, (c) edge detection by VDD, (d) edge detection by MD. 
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(a) 

  

(b) (c) 

 

 

(d) 

Fig. 4.10. Edge detection results of a human face image. (a) original image, (b) edge 

detection by VMD, (c) edge detection by VDD, (d) edge detection by MD. 
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4.2 PCA based Edge Detection 

 

Here, we test our PCA based edge detection technique. If an input image has size 

,M N×  we select the minimum between M  and ,N  as mentioned in Sec. 3.2.2., 

to be .L  We select ik  to be 16% of L  for Y color component and 8% of L  for 

bC  and rC  components. In Sec. 3.2.2., ik  represents how many eigenvectors we 

select to retain the low and high frequency contents of an input image. After we 

obtained the eigencolor image, Sobel operator is applied to obtain edge responses. 

The global entropic thresholding technique is then applied to generate the global 

optimal threshold .gT ∗  The sensitivity parameter γ  is generated automatically to 

facilitate the global entropic thresholding technique. 

We first apply the image in Fig. 4.1(a) to test our PCA based edge detection 

technique, as shown in Fig. 4.11(a). Fig. 4.11(b) shows the corresponding eigencolor 

image in RGB color space. Fig. 4.11(c) is the corresponding edge detection result. 

From Fig. 4.11(b), we can observe that PCA can capture the low and high frequency 

image contents. Fig. 4.12 and Fig. 4.13 show the results of applying PCA based edge 

detection techniques to the color images in Fig. 4.5(a) and Fig. 4.7(a). Fig. 4.14 shows 

the probability density function (PDF) plots and cumulative distribution function 

(CDF) plots of gT ∗  taking the image with diagonal edges as an example. We can 

observe clearly that the maximum of entropy occurs when the numbers of pixels in 

edge class and in non-edge class are equal. 

At last, we apply our techniques to real world images, as shown in Fig. 4.15(a) 

and Fig. 4.16(a). Fig. 4.15(b) and Fig. 4.16(b) show the corresponding eigencolor 

images in RGB color space. Fig. 4.15(c) and Fig. 4.16(c) are the corresponding edge 

detection results. 
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(a) 

 

  

(b) (c) 

Fig. 4.11. Edge detection result of a color image with the same intensity. (a) original 

image, (b) the eigencolor image in RGB color space, (c) the edge detection result. 
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(a) 

 

  

(b) (c) 

Fig. 4.12. Edge detection result of a color image with the different intensities. (a) 

original image, (b) the eigencolor image in RGB color space, (c) the edge detection 

result. 

 

 

 

 

 

 

 

 

 



 43

 

(a) 

 

  

(b) 

 

(c) 

Fig. 4.13. Edge detection result of a color image with diagonal edges. (a) original 

image, (b) the eigencolor image in RGB color space, (c) the edge detection result. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Fig. 4.14. The PDF and CDF of gT ∗  of the color image with diagonal edges. (a) PDF 

of Y, (b) CDF of Y (CDF of gT ∗ =0.499), (c) PDF of bC ,  (d) CDF of bC  (CDF of 

gT ∗ =0.504), (e) PDF of rC , (f) CDF of rC  (CDF of gT ∗ =0.501). 
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(a) 

 

 

 

(b) (c) 

Fig. 4.15. Edge detection result of a real world image. (a) original image, (b) the 

eigencolor image in RGB color space, (c) the edge detection result. 
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(a) 

 

  

(b) (c) 

Fig. 4.16. Edge detection result of a human face image. (a) original image, (b) the 

eigencolor image in RGB color space, (c) the edge detection result. 
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4.3 Comparing the Experimental results 

 

First, we would like to introduce Pratt’s Figure Of Merit (FOM) and TPR, TNR 

and ACC of Receiver Operating Characteristic (ROC) as performance measures. 

FOM is defined as  

         
{ } ( )2

1

1 1 100%
max ,  1

DI

iD I i

FOM
I I dα=

= ×
+

∑                 (30) 

where DI  and II  are the number of detected and number of ideal edge points 

respectively, ( ) >0α  is a calibration constant, and id  is the edge deviation for the 

thi detected edge pixel. In all cases 0 FOM 1;< ≤  for a perfect match between the 

detected and the ideal edges FOM 1=  whereas the detected edges deviate more and 

more from the ideal ones FOM goes to zero. The scaling constant 1
9α =  proposed 

in [14] has been adopted. Next, True Positive Rate (TPR) is defined as  

( )
100%TPTPR

TP FN
= ×

+
                     (31) 

where TP (true positive) represents the number of pixels which are detected as an 

edge pixel and belong to an ideal edge pixel, and FN (false negative) represents the 

number of pixels which are detected as an non-edge pixel but belong to an ideal edge 

pixel. 

On the other hand, true negative rate (TNR) is defined as  

100%TNTNR
TN FP

= ×
+

                      (32) 

where TN (true negative) represents the number of pixels which are detected as an 

non-edge pixel and belong to an ideal non-edge pixel, and FP (false positive) 

represents the number of pixels which are detected as an edge pixel but belong to an 
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ideal non-edge pixel. 

At last, accuracy (ACC) is defined as 

100%TP TNACC
P N
+

= ×
+

                      (33) 

where P (positive) represents the total number of ideal edge pixels, and N (negative) 

represents the total number of ideal non-edge pixels. We also calculate the normalized 

accuracy by 

                    100%
2

TPR TNRNACC +
= ×                     (34) 

The performance of our automatic color edge detection techniques are compared 

to those by color Canny edge detector [1], MVD edge detector [14], directional 

operator [15], Dikbas et al. [18], and automatic isotropic color edge detector [9]. Figs. 

4.17−4.19 show the edge detection results of synthetic images for comparison. Tables 

I− III show the corresponding FOM, TPR, TNR, ACC and NACC of various edge 

detection schemes, with the script representing the rank of the method, of Figs. 

4.17−4.19. From Tables I− III, we can see that our edge detection techniques perform 

well compared to other edge detection techniques. Figs. 4.20 and 4.21 show the edge 

detection results of real world images for comparison. 

From the above results, we can see that our techniques perform consistently well 

compared to other edge detection techniques. Comparing the results by our PCA 

based technique with the results by automatic isotropic color edge detector, we can 

see that our global entropic thresholding technique performs better because that the 

sensitivity parameter γ  alleviates the bias leaning to the non-edge pixels’ edge 

strength, which is mentioned in Sec. 3.3.2. The results of automatic isotropic color 

edge detector are too sensitive because that the edge detector utilizes all the pixels’ 

edge responses to determine the optimal threshold without alleviating the bias caused 
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from dominant non-edge pixels in number. From the results of our vector-statistics 

based edge detectors, VDD edge detector is more capable of alleviating the influence 

from noises but is too insensitive to real edges because that VDD detector discards the 

outlier (9)X  while calculating the edge response. In general, MD detector is sensitive 

to small texture variation since it detects the genuine local maximal variance within 

the processing area. 
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(a) 

 

  

(b) (c) 

 

  

(d) (e) 

 

  

(f) (g) 
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(h) (i) 

 

 

(j) 

Fig. 4.17. Edge detection result of a color image with the same intensity. (a) original 

image, (b) VMD, (c) VDD, (d) MD, (e) eigencolor, (f) color Canny, (g) MVD, (h) 

directional operator, (i) Dikbas et al. [18], (j) automatic isotropic color edge detector. 
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(b) (c) 

 

  

(d) (e) 

 

  

(f) (g) 
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(h) (i) 

 

 

(j) 

Fig. 4.18. Edge detection result of a color image with the different intensities. (a) 

original image, (b) VMD, (c) VDD, (d) MD, (e) eigencolor, (f) color Canny, (g) MVD, 

(h) directional operator, (i) Dikbas et al. [18], (j) automatic isotropic color edge 

detector. 
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(b) (c) 

 

  

(d) (e) 

 

  

(f) (g) 
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(h) 

 

(i) 

 

(j) 

Fig. 4.19. Edge detection result of a synthetic color image. (a) original image, (b) 

VMD, (c) VDD, (d) MD, (e) eigencolor, (f) color Canny, (g) MVD, (h) directional 

operator, (i) Dikbas et al. [18], (j) automatic isotropic color edge detector. 
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(a) 

 
  

(b) (c) 

 
  

(d) (e) 

 
  

(f) (g) 
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(h) (i) 

 

 

(j) 

Fig. 4.20. Edge detection result of a real world image. (a) original image, (b) VMD, (c) 

VDD, (d) MD, (e) eigencolor, (f) color Canny, (g) MVD, (h) directional operator, (i) 

Dikbas et al. [18], (j) automatic isotropic color edge detector. 

 

 

 

 

 

 

 

 

 

 



 58
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(h) (i) 

 

 

(j) 

Fig. 4.21. Edge detection result of a real world image. (a) original image, (b) VMD, (c) 

VDD, (d) MD, (e) eigencolor, (f) color Canny, (g) MVD, (h) directional operator, (i) 

Dikbas et al. [18], (j) automatic isotropic color edge detector. 
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TABLE I 

EVALUATION RESULT OF FOM, TPR, TNR, ACC AND NACC OF FIG. 4.17. 

 

Method FOM (%) TPR (%) TNR (%) ACC (%) NACC (%)
VMD 98.82 2 98.82 100.00 99.96 2 99.41 2 
VDD 98.82 2 98.82 100.00 99.96 2 99.41 2 
MD 98.82 2 98.82 100.00 99.96 2 99.41 2 

Eigencolor 92.00 4 92.00 100.00 99.48 4 96.00 3 
Color Canny 95.28 3 89.80 99.72 94.69 5 94.76 5 

MVD 100.00 1 100.00 100.00 100.00 1 100.00 1 
Directional operator 53.78 6 62.84 91.65 89.72 6 77.25 6 

Dikbas et al. [18] 90.57 5 90.57 99.25 99.74 3 94.91 4 
Automatic isotropic 100.00 1 100.00 100.00 100.00 1 100.00 1 

 

 

 

 

 

 

TABLE II 

EVALUATION RESULT OF FOM, TPR, TNR, ACC AND NACC OF FIG. 4.18. 

 

Method FOM (%) TPR (%) TNR (%) ACC (%) NACC (%)
VMD 98.43 3 98.43 100.00 99.95 2 99.21 2 
VDD 98.43 3 98.43 100.00 99.95 2 99.21 2 
MD 98.43 3 98.43 100.00 99.95 2 99.21 2 

Eigencolor 100.00 1 100.00 100.00 100.00 1 100.00 1 
Color Canny 98.61 2 95.56 99.84 99.71 3 97.70 3  

MVD 100.00 1 100.00 100.00 100.00 1 100.00 1 
Directional operator 53.47 5 65.56 91.72 89.55 5 78.64 5 

Dikbas et al. [18] 90.62 4 89.74 99.71 99.65 4 94.73 4 
Automatic isotropic 100.00 1 100.00 100.00 100.00 1 100.00 1 
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TABLE III 

EVALUATION RESULT OF FOM, TPR, TNR, ACC AND NACC OF FIG. 4.19. 

 

Method FOM (%) TPR (%) TNR (%) ACC (%) NACC (%)
VMD 90.26 3 88.52 97.85 96.74 3 93.19 2 
VDD 89.12 5 70.20 99.10 97.35 1 84.65 6 
MD 91.25 2 90.65 97.44 96.77 2 94.05 1 

Eigencolor 91.68 1 97.26 88.68 89.75 6 92.97 3 
Color Canny 91.05 4 83.33  95.68 95.15 5  89.50 5  

MVD 85.43 6 94.32 87.64 88.78 7 90.98 4 
Directional operator 77.78 8 42.44 92.15 88.62 8 67.30 9 

Dikbas et al. [18] 84.37 7 70.57 95.25 95.74 4 82.91 7 
Automatic isotropic 43.51 9 99.47 36.21 41.54 9 67.84 8 
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Chapter 5  Conclusion and Future Work 
 

In this thesis, we have proposed automatic color edge detection schemes by 

entropic thresholding. By using our edge detection and automatic thresholding 

techniques, we can detect not only edges with different intensities but also edges with 

minor color difference and similar intensity. In this way, the performances of higher 

level image processing tasks such as segmentation and object recognition can be 

improved because of the improvement of edge detection result. Experimental results 

have shown that our automatic color edge detection techniques are good and reliable. 

In the future study, we can further improve our automatic thresholding technique 

by applying texture analysis to the input image. By texture analysis, we can obtain the 

information concerning the amount of edges in the input image. Hence, we can have a 

more discreet method to obtain good γ  parameter and then alleviate the bias 

resulting from dominant non-edge pixels. 
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